dynamic debug: update docs
[deliverable/linux.git] / drivers / regulator / core.c
1 /*
2 * core.c -- Voltage/Current Regulator framework.
3 *
4 * Copyright 2007, 2008 Wolfson Microelectronics PLC.
5 * Copyright 2008 SlimLogic Ltd.
6 *
7 * Author: Liam Girdwood <lrg@slimlogic.co.uk>
8 *
9 * This program is free software; you can redistribute it and/or modify it
10 * under the terms of the GNU General Public License as published by the
11 * Free Software Foundation; either version 2 of the License, or (at your
12 * option) any later version.
13 *
14 */
15
16 #include <linux/kernel.h>
17 #include <linux/init.h>
18 #include <linux/device.h>
19 #include <linux/err.h>
20 #include <linux/mutex.h>
21 #include <linux/suspend.h>
22 #include <linux/regulator/consumer.h>
23 #include <linux/regulator/driver.h>
24 #include <linux/regulator/machine.h>
25
26 #define REGULATOR_VERSION "0.5"
27
28 static DEFINE_MUTEX(regulator_list_mutex);
29 static LIST_HEAD(regulator_list);
30 static LIST_HEAD(regulator_map_list);
31
32 /*
33 * struct regulator_dev
34 *
35 * Voltage / Current regulator class device. One for each regulator.
36 */
37 struct regulator_dev {
38 struct regulator_desc *desc;
39 int use_count;
40
41 /* lists we belong to */
42 struct list_head list; /* list of all regulators */
43 struct list_head slist; /* list of supplied regulators */
44
45 /* lists we own */
46 struct list_head consumer_list; /* consumers we supply */
47 struct list_head supply_list; /* regulators we supply */
48
49 struct blocking_notifier_head notifier;
50 struct mutex mutex; /* consumer lock */
51 struct module *owner;
52 struct device dev;
53 struct regulation_constraints *constraints;
54 struct regulator_dev *supply; /* for tree */
55
56 void *reg_data; /* regulator_dev data */
57 };
58
59 /*
60 * struct regulator_map
61 *
62 * Used to provide symbolic supply names to devices.
63 */
64 struct regulator_map {
65 struct list_head list;
66 struct device *dev;
67 const char *supply;
68 struct regulator_dev *regulator;
69 };
70
71 /*
72 * struct regulator
73 *
74 * One for each consumer device.
75 */
76 struct regulator {
77 struct device *dev;
78 struct list_head list;
79 int uA_load;
80 int min_uV;
81 int max_uV;
82 int enabled; /* count of client enables */
83 char *supply_name;
84 struct device_attribute dev_attr;
85 struct regulator_dev *rdev;
86 };
87
88 static int _regulator_is_enabled(struct regulator_dev *rdev);
89 static int _regulator_disable(struct regulator_dev *rdev);
90 static int _regulator_get_voltage(struct regulator_dev *rdev);
91 static int _regulator_get_current_limit(struct regulator_dev *rdev);
92 static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
93 static void _notifier_call_chain(struct regulator_dev *rdev,
94 unsigned long event, void *data);
95
96 /* gets the regulator for a given consumer device */
97 static struct regulator *get_device_regulator(struct device *dev)
98 {
99 struct regulator *regulator = NULL;
100 struct regulator_dev *rdev;
101
102 mutex_lock(&regulator_list_mutex);
103 list_for_each_entry(rdev, &regulator_list, list) {
104 mutex_lock(&rdev->mutex);
105 list_for_each_entry(regulator, &rdev->consumer_list, list) {
106 if (regulator->dev == dev) {
107 mutex_unlock(&rdev->mutex);
108 mutex_unlock(&regulator_list_mutex);
109 return regulator;
110 }
111 }
112 mutex_unlock(&rdev->mutex);
113 }
114 mutex_unlock(&regulator_list_mutex);
115 return NULL;
116 }
117
118 /* Platform voltage constraint check */
119 static int regulator_check_voltage(struct regulator_dev *rdev,
120 int *min_uV, int *max_uV)
121 {
122 BUG_ON(*min_uV > *max_uV);
123
124 if (!rdev->constraints) {
125 printk(KERN_ERR "%s: no constraints for %s\n", __func__,
126 rdev->desc->name);
127 return -ENODEV;
128 }
129 if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
130 printk(KERN_ERR "%s: operation not allowed for %s\n",
131 __func__, rdev->desc->name);
132 return -EPERM;
133 }
134
135 if (*max_uV > rdev->constraints->max_uV)
136 *max_uV = rdev->constraints->max_uV;
137 if (*min_uV < rdev->constraints->min_uV)
138 *min_uV = rdev->constraints->min_uV;
139
140 if (*min_uV > *max_uV)
141 return -EINVAL;
142
143 return 0;
144 }
145
146 /* current constraint check */
147 static int regulator_check_current_limit(struct regulator_dev *rdev,
148 int *min_uA, int *max_uA)
149 {
150 BUG_ON(*min_uA > *max_uA);
151
152 if (!rdev->constraints) {
153 printk(KERN_ERR "%s: no constraints for %s\n", __func__,
154 rdev->desc->name);
155 return -ENODEV;
156 }
157 if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_CURRENT)) {
158 printk(KERN_ERR "%s: operation not allowed for %s\n",
159 __func__, rdev->desc->name);
160 return -EPERM;
161 }
162
163 if (*max_uA > rdev->constraints->max_uA)
164 *max_uA = rdev->constraints->max_uA;
165 if (*min_uA < rdev->constraints->min_uA)
166 *min_uA = rdev->constraints->min_uA;
167
168 if (*min_uA > *max_uA)
169 return -EINVAL;
170
171 return 0;
172 }
173
174 /* operating mode constraint check */
175 static int regulator_check_mode(struct regulator_dev *rdev, int mode)
176 {
177 switch (mode) {
178 case REGULATOR_MODE_FAST:
179 case REGULATOR_MODE_NORMAL:
180 case REGULATOR_MODE_IDLE:
181 case REGULATOR_MODE_STANDBY:
182 break;
183 default:
184 return -EINVAL;
185 }
186
187 if (!rdev->constraints) {
188 printk(KERN_ERR "%s: no constraints for %s\n", __func__,
189 rdev->desc->name);
190 return -ENODEV;
191 }
192 if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_MODE)) {
193 printk(KERN_ERR "%s: operation not allowed for %s\n",
194 __func__, rdev->desc->name);
195 return -EPERM;
196 }
197 if (!(rdev->constraints->valid_modes_mask & mode)) {
198 printk(KERN_ERR "%s: invalid mode %x for %s\n",
199 __func__, mode, rdev->desc->name);
200 return -EINVAL;
201 }
202 return 0;
203 }
204
205 /* dynamic regulator mode switching constraint check */
206 static int regulator_check_drms(struct regulator_dev *rdev)
207 {
208 if (!rdev->constraints) {
209 printk(KERN_ERR "%s: no constraints for %s\n", __func__,
210 rdev->desc->name);
211 return -ENODEV;
212 }
213 if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS)) {
214 printk(KERN_ERR "%s: operation not allowed for %s\n",
215 __func__, rdev->desc->name);
216 return -EPERM;
217 }
218 return 0;
219 }
220
221 static ssize_t device_requested_uA_show(struct device *dev,
222 struct device_attribute *attr, char *buf)
223 {
224 struct regulator *regulator;
225
226 regulator = get_device_regulator(dev);
227 if (regulator == NULL)
228 return 0;
229
230 return sprintf(buf, "%d\n", regulator->uA_load);
231 }
232
233 static ssize_t regulator_uV_show(struct device *dev,
234 struct device_attribute *attr, char *buf)
235 {
236 struct regulator_dev *rdev = dev_get_drvdata(dev);
237 ssize_t ret;
238
239 mutex_lock(&rdev->mutex);
240 ret = sprintf(buf, "%d\n", _regulator_get_voltage(rdev));
241 mutex_unlock(&rdev->mutex);
242
243 return ret;
244 }
245 static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL);
246
247 static ssize_t regulator_uA_show(struct device *dev,
248 struct device_attribute *attr, char *buf)
249 {
250 struct regulator_dev *rdev = dev_get_drvdata(dev);
251
252 return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
253 }
254 static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL);
255
256 static ssize_t regulator_name_show(struct device *dev,
257 struct device_attribute *attr, char *buf)
258 {
259 struct regulator_dev *rdev = dev_get_drvdata(dev);
260 const char *name;
261
262 if (rdev->constraints->name)
263 name = rdev->constraints->name;
264 else if (rdev->desc->name)
265 name = rdev->desc->name;
266 else
267 name = "";
268
269 return sprintf(buf, "%s\n", name);
270 }
271
272 static ssize_t regulator_print_opmode(char *buf, int mode)
273 {
274 switch (mode) {
275 case REGULATOR_MODE_FAST:
276 return sprintf(buf, "fast\n");
277 case REGULATOR_MODE_NORMAL:
278 return sprintf(buf, "normal\n");
279 case REGULATOR_MODE_IDLE:
280 return sprintf(buf, "idle\n");
281 case REGULATOR_MODE_STANDBY:
282 return sprintf(buf, "standby\n");
283 }
284 return sprintf(buf, "unknown\n");
285 }
286
287 static ssize_t regulator_opmode_show(struct device *dev,
288 struct device_attribute *attr, char *buf)
289 {
290 struct regulator_dev *rdev = dev_get_drvdata(dev);
291
292 return regulator_print_opmode(buf, _regulator_get_mode(rdev));
293 }
294 static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL);
295
296 static ssize_t regulator_print_state(char *buf, int state)
297 {
298 if (state > 0)
299 return sprintf(buf, "enabled\n");
300 else if (state == 0)
301 return sprintf(buf, "disabled\n");
302 else
303 return sprintf(buf, "unknown\n");
304 }
305
306 static ssize_t regulator_state_show(struct device *dev,
307 struct device_attribute *attr, char *buf)
308 {
309 struct regulator_dev *rdev = dev_get_drvdata(dev);
310
311 return regulator_print_state(buf, _regulator_is_enabled(rdev));
312 }
313 static DEVICE_ATTR(state, 0444, regulator_state_show, NULL);
314
315 static ssize_t regulator_min_uA_show(struct device *dev,
316 struct device_attribute *attr, char *buf)
317 {
318 struct regulator_dev *rdev = dev_get_drvdata(dev);
319
320 if (!rdev->constraints)
321 return sprintf(buf, "constraint not defined\n");
322
323 return sprintf(buf, "%d\n", rdev->constraints->min_uA);
324 }
325 static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL);
326
327 static ssize_t regulator_max_uA_show(struct device *dev,
328 struct device_attribute *attr, char *buf)
329 {
330 struct regulator_dev *rdev = dev_get_drvdata(dev);
331
332 if (!rdev->constraints)
333 return sprintf(buf, "constraint not defined\n");
334
335 return sprintf(buf, "%d\n", rdev->constraints->max_uA);
336 }
337 static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL);
338
339 static ssize_t regulator_min_uV_show(struct device *dev,
340 struct device_attribute *attr, char *buf)
341 {
342 struct regulator_dev *rdev = dev_get_drvdata(dev);
343
344 if (!rdev->constraints)
345 return sprintf(buf, "constraint not defined\n");
346
347 return sprintf(buf, "%d\n", rdev->constraints->min_uV);
348 }
349 static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL);
350
351 static ssize_t regulator_max_uV_show(struct device *dev,
352 struct device_attribute *attr, char *buf)
353 {
354 struct regulator_dev *rdev = dev_get_drvdata(dev);
355
356 if (!rdev->constraints)
357 return sprintf(buf, "constraint not defined\n");
358
359 return sprintf(buf, "%d\n", rdev->constraints->max_uV);
360 }
361 static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL);
362
363 static ssize_t regulator_total_uA_show(struct device *dev,
364 struct device_attribute *attr, char *buf)
365 {
366 struct regulator_dev *rdev = dev_get_drvdata(dev);
367 struct regulator *regulator;
368 int uA = 0;
369
370 mutex_lock(&rdev->mutex);
371 list_for_each_entry(regulator, &rdev->consumer_list, list)
372 uA += regulator->uA_load;
373 mutex_unlock(&rdev->mutex);
374 return sprintf(buf, "%d\n", uA);
375 }
376 static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL);
377
378 static ssize_t regulator_num_users_show(struct device *dev,
379 struct device_attribute *attr, char *buf)
380 {
381 struct regulator_dev *rdev = dev_get_drvdata(dev);
382 return sprintf(buf, "%d\n", rdev->use_count);
383 }
384
385 static ssize_t regulator_type_show(struct device *dev,
386 struct device_attribute *attr, char *buf)
387 {
388 struct regulator_dev *rdev = dev_get_drvdata(dev);
389
390 switch (rdev->desc->type) {
391 case REGULATOR_VOLTAGE:
392 return sprintf(buf, "voltage\n");
393 case REGULATOR_CURRENT:
394 return sprintf(buf, "current\n");
395 }
396 return sprintf(buf, "unknown\n");
397 }
398
399 static ssize_t regulator_suspend_mem_uV_show(struct device *dev,
400 struct device_attribute *attr, char *buf)
401 {
402 struct regulator_dev *rdev = dev_get_drvdata(dev);
403
404 return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
405 }
406 static DEVICE_ATTR(suspend_mem_microvolts, 0444,
407 regulator_suspend_mem_uV_show, NULL);
408
409 static ssize_t regulator_suspend_disk_uV_show(struct device *dev,
410 struct device_attribute *attr, char *buf)
411 {
412 struct regulator_dev *rdev = dev_get_drvdata(dev);
413
414 return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
415 }
416 static DEVICE_ATTR(suspend_disk_microvolts, 0444,
417 regulator_suspend_disk_uV_show, NULL);
418
419 static ssize_t regulator_suspend_standby_uV_show(struct device *dev,
420 struct device_attribute *attr, char *buf)
421 {
422 struct regulator_dev *rdev = dev_get_drvdata(dev);
423
424 return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
425 }
426 static DEVICE_ATTR(suspend_standby_microvolts, 0444,
427 regulator_suspend_standby_uV_show, NULL);
428
429 static ssize_t regulator_suspend_mem_mode_show(struct device *dev,
430 struct device_attribute *attr, char *buf)
431 {
432 struct regulator_dev *rdev = dev_get_drvdata(dev);
433
434 return regulator_print_opmode(buf,
435 rdev->constraints->state_mem.mode);
436 }
437 static DEVICE_ATTR(suspend_mem_mode, 0444,
438 regulator_suspend_mem_mode_show, NULL);
439
440 static ssize_t regulator_suspend_disk_mode_show(struct device *dev,
441 struct device_attribute *attr, char *buf)
442 {
443 struct regulator_dev *rdev = dev_get_drvdata(dev);
444
445 return regulator_print_opmode(buf,
446 rdev->constraints->state_disk.mode);
447 }
448 static DEVICE_ATTR(suspend_disk_mode, 0444,
449 regulator_suspend_disk_mode_show, NULL);
450
451 static ssize_t regulator_suspend_standby_mode_show(struct device *dev,
452 struct device_attribute *attr, char *buf)
453 {
454 struct regulator_dev *rdev = dev_get_drvdata(dev);
455
456 return regulator_print_opmode(buf,
457 rdev->constraints->state_standby.mode);
458 }
459 static DEVICE_ATTR(suspend_standby_mode, 0444,
460 regulator_suspend_standby_mode_show, NULL);
461
462 static ssize_t regulator_suspend_mem_state_show(struct device *dev,
463 struct device_attribute *attr, char *buf)
464 {
465 struct regulator_dev *rdev = dev_get_drvdata(dev);
466
467 return regulator_print_state(buf,
468 rdev->constraints->state_mem.enabled);
469 }
470 static DEVICE_ATTR(suspend_mem_state, 0444,
471 regulator_suspend_mem_state_show, NULL);
472
473 static ssize_t regulator_suspend_disk_state_show(struct device *dev,
474 struct device_attribute *attr, char *buf)
475 {
476 struct regulator_dev *rdev = dev_get_drvdata(dev);
477
478 return regulator_print_state(buf,
479 rdev->constraints->state_disk.enabled);
480 }
481 static DEVICE_ATTR(suspend_disk_state, 0444,
482 regulator_suspend_disk_state_show, NULL);
483
484 static ssize_t regulator_suspend_standby_state_show(struct device *dev,
485 struct device_attribute *attr, char *buf)
486 {
487 struct regulator_dev *rdev = dev_get_drvdata(dev);
488
489 return regulator_print_state(buf,
490 rdev->constraints->state_standby.enabled);
491 }
492 static DEVICE_ATTR(suspend_standby_state, 0444,
493 regulator_suspend_standby_state_show, NULL);
494
495
496 /*
497 * These are the only attributes are present for all regulators.
498 * Other attributes are a function of regulator functionality.
499 */
500 static struct device_attribute regulator_dev_attrs[] = {
501 __ATTR(name, 0444, regulator_name_show, NULL),
502 __ATTR(num_users, 0444, regulator_num_users_show, NULL),
503 __ATTR(type, 0444, regulator_type_show, NULL),
504 __ATTR_NULL,
505 };
506
507 static void regulator_dev_release(struct device *dev)
508 {
509 struct regulator_dev *rdev = dev_get_drvdata(dev);
510 kfree(rdev);
511 }
512
513 static struct class regulator_class = {
514 .name = "regulator",
515 .dev_release = regulator_dev_release,
516 .dev_attrs = regulator_dev_attrs,
517 };
518
519 /* Calculate the new optimum regulator operating mode based on the new total
520 * consumer load. All locks held by caller */
521 static void drms_uA_update(struct regulator_dev *rdev)
522 {
523 struct regulator *sibling;
524 int current_uA = 0, output_uV, input_uV, err;
525 unsigned int mode;
526
527 err = regulator_check_drms(rdev);
528 if (err < 0 || !rdev->desc->ops->get_optimum_mode ||
529 !rdev->desc->ops->get_voltage || !rdev->desc->ops->set_mode);
530 return;
531
532 /* get output voltage */
533 output_uV = rdev->desc->ops->get_voltage(rdev);
534 if (output_uV <= 0)
535 return;
536
537 /* get input voltage */
538 if (rdev->supply && rdev->supply->desc->ops->get_voltage)
539 input_uV = rdev->supply->desc->ops->get_voltage(rdev->supply);
540 else
541 input_uV = rdev->constraints->input_uV;
542 if (input_uV <= 0)
543 return;
544
545 /* calc total requested load */
546 list_for_each_entry(sibling, &rdev->consumer_list, list)
547 current_uA += sibling->uA_load;
548
549 /* now get the optimum mode for our new total regulator load */
550 mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
551 output_uV, current_uA);
552
553 /* check the new mode is allowed */
554 err = regulator_check_mode(rdev, mode);
555 if (err == 0)
556 rdev->desc->ops->set_mode(rdev, mode);
557 }
558
559 static int suspend_set_state(struct regulator_dev *rdev,
560 struct regulator_state *rstate)
561 {
562 int ret = 0;
563
564 /* enable & disable are mandatory for suspend control */
565 if (!rdev->desc->ops->set_suspend_enable ||
566 !rdev->desc->ops->set_suspend_disable) {
567 printk(KERN_ERR "%s: no way to set suspend state\n",
568 __func__);
569 return -EINVAL;
570 }
571
572 if (rstate->enabled)
573 ret = rdev->desc->ops->set_suspend_enable(rdev);
574 else
575 ret = rdev->desc->ops->set_suspend_disable(rdev);
576 if (ret < 0) {
577 printk(KERN_ERR "%s: failed to enabled/disable\n", __func__);
578 return ret;
579 }
580
581 if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
582 ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
583 if (ret < 0) {
584 printk(KERN_ERR "%s: failed to set voltage\n",
585 __func__);
586 return ret;
587 }
588 }
589
590 if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
591 ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
592 if (ret < 0) {
593 printk(KERN_ERR "%s: failed to set mode\n", __func__);
594 return ret;
595 }
596 }
597 return ret;
598 }
599
600 /* locks held by caller */
601 static int suspend_prepare(struct regulator_dev *rdev, suspend_state_t state)
602 {
603 if (!rdev->constraints)
604 return -EINVAL;
605
606 switch (state) {
607 case PM_SUSPEND_STANDBY:
608 return suspend_set_state(rdev,
609 &rdev->constraints->state_standby);
610 case PM_SUSPEND_MEM:
611 return suspend_set_state(rdev,
612 &rdev->constraints->state_mem);
613 case PM_SUSPEND_MAX:
614 return suspend_set_state(rdev,
615 &rdev->constraints->state_disk);
616 default:
617 return -EINVAL;
618 }
619 }
620
621 static void print_constraints(struct regulator_dev *rdev)
622 {
623 struct regulation_constraints *constraints = rdev->constraints;
624 char buf[80];
625 int count;
626
627 if (rdev->desc->type == REGULATOR_VOLTAGE) {
628 if (constraints->min_uV == constraints->max_uV)
629 count = sprintf(buf, "%d mV ",
630 constraints->min_uV / 1000);
631 else
632 count = sprintf(buf, "%d <--> %d mV ",
633 constraints->min_uV / 1000,
634 constraints->max_uV / 1000);
635 } else {
636 if (constraints->min_uA == constraints->max_uA)
637 count = sprintf(buf, "%d mA ",
638 constraints->min_uA / 1000);
639 else
640 count = sprintf(buf, "%d <--> %d mA ",
641 constraints->min_uA / 1000,
642 constraints->max_uA / 1000);
643 }
644 if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
645 count += sprintf(buf + count, "fast ");
646 if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
647 count += sprintf(buf + count, "normal ");
648 if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
649 count += sprintf(buf + count, "idle ");
650 if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
651 count += sprintf(buf + count, "standby");
652
653 printk(KERN_INFO "regulator: %s: %s\n", rdev->desc->name, buf);
654 }
655
656 /**
657 * set_machine_constraints - sets regulator constraints
658 * @rdev: regulator source
659 * @constraints: constraints to apply
660 *
661 * Allows platform initialisation code to define and constrain
662 * regulator circuits e.g. valid voltage/current ranges, etc. NOTE:
663 * Constraints *must* be set by platform code in order for some
664 * regulator operations to proceed i.e. set_voltage, set_current_limit,
665 * set_mode.
666 */
667 static int set_machine_constraints(struct regulator_dev *rdev,
668 struct regulation_constraints *constraints)
669 {
670 int ret = 0;
671 const char *name;
672 struct regulator_ops *ops = rdev->desc->ops;
673
674 if (constraints->name)
675 name = constraints->name;
676 else if (rdev->desc->name)
677 name = rdev->desc->name;
678 else
679 name = "regulator";
680
681 rdev->constraints = constraints;
682
683 /* do we need to apply the constraint voltage */
684 if (rdev->constraints->apply_uV &&
685 rdev->constraints->min_uV == rdev->constraints->max_uV &&
686 ops->set_voltage) {
687 ret = ops->set_voltage(rdev,
688 rdev->constraints->min_uV, rdev->constraints->max_uV);
689 if (ret < 0) {
690 printk(KERN_ERR "%s: failed to apply %duV constraint to %s\n",
691 __func__,
692 rdev->constraints->min_uV, name);
693 rdev->constraints = NULL;
694 goto out;
695 }
696 }
697
698 /* are we enabled at boot time by firmware / bootloader */
699 if (rdev->constraints->boot_on)
700 rdev->use_count = 1;
701
702 /* do we need to setup our suspend state */
703 if (constraints->initial_state) {
704 ret = suspend_prepare(rdev, constraints->initial_state);
705 if (ret < 0) {
706 printk(KERN_ERR "%s: failed to set suspend state for %s\n",
707 __func__, name);
708 rdev->constraints = NULL;
709 goto out;
710 }
711 }
712
713 /* if always_on is set then turn the regulator on if it's not
714 * already on. */
715 if (constraints->always_on && ops->enable &&
716 ((ops->is_enabled && !ops->is_enabled(rdev)) ||
717 (!ops->is_enabled && !constraints->boot_on))) {
718 ret = ops->enable(rdev);
719 if (ret < 0) {
720 printk(KERN_ERR "%s: failed to enable %s\n",
721 __func__, name);
722 rdev->constraints = NULL;
723 goto out;
724 }
725 }
726
727 print_constraints(rdev);
728 out:
729 return ret;
730 }
731
732 /**
733 * set_supply - set regulator supply regulator
734 * @rdev: regulator name
735 * @supply_rdev: supply regulator name
736 *
737 * Called by platform initialisation code to set the supply regulator for this
738 * regulator. This ensures that a regulators supply will also be enabled by the
739 * core if it's child is enabled.
740 */
741 static int set_supply(struct regulator_dev *rdev,
742 struct regulator_dev *supply_rdev)
743 {
744 int err;
745
746 err = sysfs_create_link(&rdev->dev.kobj, &supply_rdev->dev.kobj,
747 "supply");
748 if (err) {
749 printk(KERN_ERR
750 "%s: could not add device link %s err %d\n",
751 __func__, supply_rdev->dev.kobj.name, err);
752 goto out;
753 }
754 rdev->supply = supply_rdev;
755 list_add(&rdev->slist, &supply_rdev->supply_list);
756 out:
757 return err;
758 }
759
760 /**
761 * set_consumer_device_supply: Bind a regulator to a symbolic supply
762 * @rdev: regulator source
763 * @consumer_dev: device the supply applies to
764 * @supply: symbolic name for supply
765 *
766 * Allows platform initialisation code to map physical regulator
767 * sources to symbolic names for supplies for use by devices. Devices
768 * should use these symbolic names to request regulators, avoiding the
769 * need to provide board-specific regulator names as platform data.
770 */
771 static int set_consumer_device_supply(struct regulator_dev *rdev,
772 struct device *consumer_dev, const char *supply)
773 {
774 struct regulator_map *node;
775
776 if (supply == NULL)
777 return -EINVAL;
778
779 list_for_each_entry(node, &regulator_map_list, list) {
780 if (consumer_dev != node->dev)
781 continue;
782 if (strcmp(node->supply, supply) != 0)
783 continue;
784
785 dev_dbg(consumer_dev, "%s/%s is '%s' supply; fail %s/%s\n",
786 dev_name(&node->regulator->dev),
787 node->regulator->desc->name,
788 supply,
789 dev_name(&rdev->dev), rdev->desc->name);
790 return -EBUSY;
791 }
792
793 node = kmalloc(sizeof(struct regulator_map), GFP_KERNEL);
794 if (node == NULL)
795 return -ENOMEM;
796
797 node->regulator = rdev;
798 node->dev = consumer_dev;
799 node->supply = supply;
800
801 list_add(&node->list, &regulator_map_list);
802 return 0;
803 }
804
805 static void unset_consumer_device_supply(struct regulator_dev *rdev,
806 struct device *consumer_dev)
807 {
808 struct regulator_map *node, *n;
809
810 list_for_each_entry_safe(node, n, &regulator_map_list, list) {
811 if (rdev == node->regulator &&
812 consumer_dev == node->dev) {
813 list_del(&node->list);
814 kfree(node);
815 return;
816 }
817 }
818 }
819
820 #define REG_STR_SIZE 32
821
822 static struct regulator *create_regulator(struct regulator_dev *rdev,
823 struct device *dev,
824 const char *supply_name)
825 {
826 struct regulator *regulator;
827 char buf[REG_STR_SIZE];
828 int err, size;
829
830 regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
831 if (regulator == NULL)
832 return NULL;
833
834 mutex_lock(&rdev->mutex);
835 regulator->rdev = rdev;
836 list_add(&regulator->list, &rdev->consumer_list);
837
838 if (dev) {
839 /* create a 'requested_microamps_name' sysfs entry */
840 size = scnprintf(buf, REG_STR_SIZE, "microamps_requested_%s",
841 supply_name);
842 if (size >= REG_STR_SIZE)
843 goto overflow_err;
844
845 regulator->dev = dev;
846 regulator->dev_attr.attr.name = kstrdup(buf, GFP_KERNEL);
847 if (regulator->dev_attr.attr.name == NULL)
848 goto attr_name_err;
849
850 regulator->dev_attr.attr.owner = THIS_MODULE;
851 regulator->dev_attr.attr.mode = 0444;
852 regulator->dev_attr.show = device_requested_uA_show;
853 err = device_create_file(dev, &regulator->dev_attr);
854 if (err < 0) {
855 printk(KERN_WARNING "%s: could not add regulator_dev"
856 " load sysfs\n", __func__);
857 goto attr_name_err;
858 }
859
860 /* also add a link to the device sysfs entry */
861 size = scnprintf(buf, REG_STR_SIZE, "%s-%s",
862 dev->kobj.name, supply_name);
863 if (size >= REG_STR_SIZE)
864 goto attr_err;
865
866 regulator->supply_name = kstrdup(buf, GFP_KERNEL);
867 if (regulator->supply_name == NULL)
868 goto attr_err;
869
870 err = sysfs_create_link(&rdev->dev.kobj, &dev->kobj,
871 buf);
872 if (err) {
873 printk(KERN_WARNING
874 "%s: could not add device link %s err %d\n",
875 __func__, dev->kobj.name, err);
876 device_remove_file(dev, &regulator->dev_attr);
877 goto link_name_err;
878 }
879 }
880 mutex_unlock(&rdev->mutex);
881 return regulator;
882 link_name_err:
883 kfree(regulator->supply_name);
884 attr_err:
885 device_remove_file(regulator->dev, &regulator->dev_attr);
886 attr_name_err:
887 kfree(regulator->dev_attr.attr.name);
888 overflow_err:
889 list_del(&regulator->list);
890 kfree(regulator);
891 mutex_unlock(&rdev->mutex);
892 return NULL;
893 }
894
895 /**
896 * regulator_get - lookup and obtain a reference to a regulator.
897 * @dev: device for regulator "consumer"
898 * @id: Supply name or regulator ID.
899 *
900 * Returns a struct regulator corresponding to the regulator producer,
901 * or IS_ERR() condition containing errno. Use of supply names
902 * configured via regulator_set_device_supply() is strongly
903 * encouraged.
904 */
905 struct regulator *regulator_get(struct device *dev, const char *id)
906 {
907 struct regulator_dev *rdev;
908 struct regulator_map *map;
909 struct regulator *regulator = ERR_PTR(-ENODEV);
910
911 if (id == NULL) {
912 printk(KERN_ERR "regulator: get() with no identifier\n");
913 return regulator;
914 }
915
916 mutex_lock(&regulator_list_mutex);
917
918 list_for_each_entry(map, &regulator_map_list, list) {
919 if (dev == map->dev &&
920 strcmp(map->supply, id) == 0) {
921 rdev = map->regulator;
922 goto found;
923 }
924 }
925 printk(KERN_ERR "regulator: Unable to get requested regulator: %s\n",
926 id);
927 mutex_unlock(&regulator_list_mutex);
928 return regulator;
929
930 found:
931 if (!try_module_get(rdev->owner))
932 goto out;
933
934 regulator = create_regulator(rdev, dev, id);
935 if (regulator == NULL) {
936 regulator = ERR_PTR(-ENOMEM);
937 module_put(rdev->owner);
938 }
939
940 out:
941 mutex_unlock(&regulator_list_mutex);
942 return regulator;
943 }
944 EXPORT_SYMBOL_GPL(regulator_get);
945
946 /**
947 * regulator_put - "free" the regulator source
948 * @regulator: regulator source
949 *
950 * Note: drivers must ensure that all regulator_enable calls made on this
951 * regulator source are balanced by regulator_disable calls prior to calling
952 * this function.
953 */
954 void regulator_put(struct regulator *regulator)
955 {
956 struct regulator_dev *rdev;
957
958 if (regulator == NULL || IS_ERR(regulator))
959 return;
960
961 mutex_lock(&regulator_list_mutex);
962 rdev = regulator->rdev;
963
964 if (WARN(regulator->enabled, "Releasing supply %s while enabled\n",
965 regulator->supply_name))
966 _regulator_disable(rdev);
967
968 /* remove any sysfs entries */
969 if (regulator->dev) {
970 sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
971 kfree(regulator->supply_name);
972 device_remove_file(regulator->dev, &regulator->dev_attr);
973 kfree(regulator->dev_attr.attr.name);
974 }
975 list_del(&regulator->list);
976 kfree(regulator);
977
978 module_put(rdev->owner);
979 mutex_unlock(&regulator_list_mutex);
980 }
981 EXPORT_SYMBOL_GPL(regulator_put);
982
983 /* locks held by regulator_enable() */
984 static int _regulator_enable(struct regulator_dev *rdev)
985 {
986 int ret = -EINVAL;
987
988 if (!rdev->constraints) {
989 printk(KERN_ERR "%s: %s has no constraints\n",
990 __func__, rdev->desc->name);
991 return ret;
992 }
993
994 /* do we need to enable the supply regulator first */
995 if (rdev->supply) {
996 ret = _regulator_enable(rdev->supply);
997 if (ret < 0) {
998 printk(KERN_ERR "%s: failed to enable %s: %d\n",
999 __func__, rdev->desc->name, ret);
1000 return ret;
1001 }
1002 }
1003
1004 /* check voltage and requested load before enabling */
1005 if (rdev->desc->ops->enable) {
1006
1007 if (rdev->constraints &&
1008 (rdev->constraints->valid_ops_mask &
1009 REGULATOR_CHANGE_DRMS))
1010 drms_uA_update(rdev);
1011
1012 ret = rdev->desc->ops->enable(rdev);
1013 if (ret < 0) {
1014 printk(KERN_ERR "%s: failed to enable %s: %d\n",
1015 __func__, rdev->desc->name, ret);
1016 return ret;
1017 }
1018 rdev->use_count++;
1019 return ret;
1020 }
1021
1022 return ret;
1023 }
1024
1025 /**
1026 * regulator_enable - enable regulator output
1027 * @regulator: regulator source
1028 *
1029 * Request that the regulator be enabled with the regulator output at
1030 * the predefined voltage or current value. Calls to regulator_enable()
1031 * must be balanced with calls to regulator_disable().
1032 *
1033 * NOTE: the output value can be set by other drivers, boot loader or may be
1034 * hardwired in the regulator.
1035 */
1036 int regulator_enable(struct regulator *regulator)
1037 {
1038 struct regulator_dev *rdev = regulator->rdev;
1039 int ret = 0;
1040
1041 mutex_lock(&rdev->mutex);
1042 if (regulator->enabled == 0)
1043 ret = _regulator_enable(rdev);
1044 else if (regulator->enabled < 0)
1045 ret = -EIO;
1046 if (ret == 0)
1047 regulator->enabled++;
1048 mutex_unlock(&rdev->mutex);
1049 return ret;
1050 }
1051 EXPORT_SYMBOL_GPL(regulator_enable);
1052
1053 /* locks held by regulator_disable() */
1054 static int _regulator_disable(struct regulator_dev *rdev)
1055 {
1056 int ret = 0;
1057
1058 /* are we the last user and permitted to disable ? */
1059 if (rdev->use_count == 1 && !rdev->constraints->always_on) {
1060
1061 /* we are last user */
1062 if (rdev->desc->ops->disable) {
1063 ret = rdev->desc->ops->disable(rdev);
1064 if (ret < 0) {
1065 printk(KERN_ERR "%s: failed to disable %s\n",
1066 __func__, rdev->desc->name);
1067 return ret;
1068 }
1069 }
1070
1071 /* decrease our supplies ref count and disable if required */
1072 if (rdev->supply)
1073 _regulator_disable(rdev->supply);
1074
1075 rdev->use_count = 0;
1076 } else if (rdev->use_count > 1) {
1077
1078 if (rdev->constraints &&
1079 (rdev->constraints->valid_ops_mask &
1080 REGULATOR_CHANGE_DRMS))
1081 drms_uA_update(rdev);
1082
1083 rdev->use_count--;
1084 }
1085 return ret;
1086 }
1087
1088 /**
1089 * regulator_disable - disable regulator output
1090 * @regulator: regulator source
1091 *
1092 * Disable the regulator output voltage or current. Calls to
1093 * regulator_enable() must be balanced with calls to
1094 * regulator_disable().
1095 *
1096 * NOTE: this will only disable the regulator output if no other consumer
1097 * devices have it enabled, the regulator device supports disabling and
1098 * machine constraints permit this operation.
1099 */
1100 int regulator_disable(struct regulator *regulator)
1101 {
1102 struct regulator_dev *rdev = regulator->rdev;
1103 int ret = 0;
1104
1105 mutex_lock(&rdev->mutex);
1106 if (regulator->enabled == 1) {
1107 ret = _regulator_disable(rdev);
1108 if (ret == 0)
1109 regulator->uA_load = 0;
1110 } else if (WARN(regulator->enabled <= 0,
1111 "unbalanced disables for supply %s\n",
1112 regulator->supply_name))
1113 ret = -EIO;
1114 if (ret == 0)
1115 regulator->enabled--;
1116 mutex_unlock(&rdev->mutex);
1117 return ret;
1118 }
1119 EXPORT_SYMBOL_GPL(regulator_disable);
1120
1121 /* locks held by regulator_force_disable() */
1122 static int _regulator_force_disable(struct regulator_dev *rdev)
1123 {
1124 int ret = 0;
1125
1126 /* force disable */
1127 if (rdev->desc->ops->disable) {
1128 /* ah well, who wants to live forever... */
1129 ret = rdev->desc->ops->disable(rdev);
1130 if (ret < 0) {
1131 printk(KERN_ERR "%s: failed to force disable %s\n",
1132 __func__, rdev->desc->name);
1133 return ret;
1134 }
1135 /* notify other consumers that power has been forced off */
1136 _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE,
1137 NULL);
1138 }
1139
1140 /* decrease our supplies ref count and disable if required */
1141 if (rdev->supply)
1142 _regulator_disable(rdev->supply);
1143
1144 rdev->use_count = 0;
1145 return ret;
1146 }
1147
1148 /**
1149 * regulator_force_disable - force disable regulator output
1150 * @regulator: regulator source
1151 *
1152 * Forcibly disable the regulator output voltage or current.
1153 * NOTE: this *will* disable the regulator output even if other consumer
1154 * devices have it enabled. This should be used for situations when device
1155 * damage will likely occur if the regulator is not disabled (e.g. over temp).
1156 */
1157 int regulator_force_disable(struct regulator *regulator)
1158 {
1159 int ret;
1160
1161 mutex_lock(&regulator->rdev->mutex);
1162 regulator->enabled = 0;
1163 regulator->uA_load = 0;
1164 ret = _regulator_force_disable(regulator->rdev);
1165 mutex_unlock(&regulator->rdev->mutex);
1166 return ret;
1167 }
1168 EXPORT_SYMBOL_GPL(regulator_force_disable);
1169
1170 static int _regulator_is_enabled(struct regulator_dev *rdev)
1171 {
1172 int ret;
1173
1174 mutex_lock(&rdev->mutex);
1175
1176 /* sanity check */
1177 if (!rdev->desc->ops->is_enabled) {
1178 ret = -EINVAL;
1179 goto out;
1180 }
1181
1182 ret = rdev->desc->ops->is_enabled(rdev);
1183 out:
1184 mutex_unlock(&rdev->mutex);
1185 return ret;
1186 }
1187
1188 /**
1189 * regulator_is_enabled - is the regulator output enabled
1190 * @regulator: regulator source
1191 *
1192 * Returns positive if the regulator driver backing the source/client
1193 * has requested that the device be enabled, zero if it hasn't, else a
1194 * negative errno code.
1195 *
1196 * Note that the device backing this regulator handle can have multiple
1197 * users, so it might be enabled even if regulator_enable() was never
1198 * called for this particular source.
1199 */
1200 int regulator_is_enabled(struct regulator *regulator)
1201 {
1202 return _regulator_is_enabled(regulator->rdev);
1203 }
1204 EXPORT_SYMBOL_GPL(regulator_is_enabled);
1205
1206 /**
1207 * regulator_set_voltage - set regulator output voltage
1208 * @regulator: regulator source
1209 * @min_uV: Minimum required voltage in uV
1210 * @max_uV: Maximum acceptable voltage in uV
1211 *
1212 * Sets a voltage regulator to the desired output voltage. This can be set
1213 * during any regulator state. IOW, regulator can be disabled or enabled.
1214 *
1215 * If the regulator is enabled then the voltage will change to the new value
1216 * immediately otherwise if the regulator is disabled the regulator will
1217 * output at the new voltage when enabled.
1218 *
1219 * NOTE: If the regulator is shared between several devices then the lowest
1220 * request voltage that meets the system constraints will be used.
1221 * Regulator system constraints must be set for this regulator before
1222 * calling this function otherwise this call will fail.
1223 */
1224 int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
1225 {
1226 struct regulator_dev *rdev = regulator->rdev;
1227 int ret;
1228
1229 mutex_lock(&rdev->mutex);
1230
1231 /* sanity check */
1232 if (!rdev->desc->ops->set_voltage) {
1233 ret = -EINVAL;
1234 goto out;
1235 }
1236
1237 /* constraints check */
1238 ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
1239 if (ret < 0)
1240 goto out;
1241 regulator->min_uV = min_uV;
1242 regulator->max_uV = max_uV;
1243 ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV);
1244
1245 out:
1246 mutex_unlock(&rdev->mutex);
1247 return ret;
1248 }
1249 EXPORT_SYMBOL_GPL(regulator_set_voltage);
1250
1251 static int _regulator_get_voltage(struct regulator_dev *rdev)
1252 {
1253 /* sanity check */
1254 if (rdev->desc->ops->get_voltage)
1255 return rdev->desc->ops->get_voltage(rdev);
1256 else
1257 return -EINVAL;
1258 }
1259
1260 /**
1261 * regulator_get_voltage - get regulator output voltage
1262 * @regulator: regulator source
1263 *
1264 * This returns the current regulator voltage in uV.
1265 *
1266 * NOTE: If the regulator is disabled it will return the voltage value. This
1267 * function should not be used to determine regulator state.
1268 */
1269 int regulator_get_voltage(struct regulator *regulator)
1270 {
1271 int ret;
1272
1273 mutex_lock(&regulator->rdev->mutex);
1274
1275 ret = _regulator_get_voltage(regulator->rdev);
1276
1277 mutex_unlock(&regulator->rdev->mutex);
1278
1279 return ret;
1280 }
1281 EXPORT_SYMBOL_GPL(regulator_get_voltage);
1282
1283 /**
1284 * regulator_set_current_limit - set regulator output current limit
1285 * @regulator: regulator source
1286 * @min_uA: Minimuum supported current in uA
1287 * @max_uA: Maximum supported current in uA
1288 *
1289 * Sets current sink to the desired output current. This can be set during
1290 * any regulator state. IOW, regulator can be disabled or enabled.
1291 *
1292 * If the regulator is enabled then the current will change to the new value
1293 * immediately otherwise if the regulator is disabled the regulator will
1294 * output at the new current when enabled.
1295 *
1296 * NOTE: Regulator system constraints must be set for this regulator before
1297 * calling this function otherwise this call will fail.
1298 */
1299 int regulator_set_current_limit(struct regulator *regulator,
1300 int min_uA, int max_uA)
1301 {
1302 struct regulator_dev *rdev = regulator->rdev;
1303 int ret;
1304
1305 mutex_lock(&rdev->mutex);
1306
1307 /* sanity check */
1308 if (!rdev->desc->ops->set_current_limit) {
1309 ret = -EINVAL;
1310 goto out;
1311 }
1312
1313 /* constraints check */
1314 ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
1315 if (ret < 0)
1316 goto out;
1317
1318 ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
1319 out:
1320 mutex_unlock(&rdev->mutex);
1321 return ret;
1322 }
1323 EXPORT_SYMBOL_GPL(regulator_set_current_limit);
1324
1325 static int _regulator_get_current_limit(struct regulator_dev *rdev)
1326 {
1327 int ret;
1328
1329 mutex_lock(&rdev->mutex);
1330
1331 /* sanity check */
1332 if (!rdev->desc->ops->get_current_limit) {
1333 ret = -EINVAL;
1334 goto out;
1335 }
1336
1337 ret = rdev->desc->ops->get_current_limit(rdev);
1338 out:
1339 mutex_unlock(&rdev->mutex);
1340 return ret;
1341 }
1342
1343 /**
1344 * regulator_get_current_limit - get regulator output current
1345 * @regulator: regulator source
1346 *
1347 * This returns the current supplied by the specified current sink in uA.
1348 *
1349 * NOTE: If the regulator is disabled it will return the current value. This
1350 * function should not be used to determine regulator state.
1351 */
1352 int regulator_get_current_limit(struct regulator *regulator)
1353 {
1354 return _regulator_get_current_limit(regulator->rdev);
1355 }
1356 EXPORT_SYMBOL_GPL(regulator_get_current_limit);
1357
1358 /**
1359 * regulator_set_mode - set regulator operating mode
1360 * @regulator: regulator source
1361 * @mode: operating mode - one of the REGULATOR_MODE constants
1362 *
1363 * Set regulator operating mode to increase regulator efficiency or improve
1364 * regulation performance.
1365 *
1366 * NOTE: Regulator system constraints must be set for this regulator before
1367 * calling this function otherwise this call will fail.
1368 */
1369 int regulator_set_mode(struct regulator *regulator, unsigned int mode)
1370 {
1371 struct regulator_dev *rdev = regulator->rdev;
1372 int ret;
1373
1374 mutex_lock(&rdev->mutex);
1375
1376 /* sanity check */
1377 if (!rdev->desc->ops->set_mode) {
1378 ret = -EINVAL;
1379 goto out;
1380 }
1381
1382 /* constraints check */
1383 ret = regulator_check_mode(rdev, mode);
1384 if (ret < 0)
1385 goto out;
1386
1387 ret = rdev->desc->ops->set_mode(rdev, mode);
1388 out:
1389 mutex_unlock(&rdev->mutex);
1390 return ret;
1391 }
1392 EXPORT_SYMBOL_GPL(regulator_set_mode);
1393
1394 static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
1395 {
1396 int ret;
1397
1398 mutex_lock(&rdev->mutex);
1399
1400 /* sanity check */
1401 if (!rdev->desc->ops->get_mode) {
1402 ret = -EINVAL;
1403 goto out;
1404 }
1405
1406 ret = rdev->desc->ops->get_mode(rdev);
1407 out:
1408 mutex_unlock(&rdev->mutex);
1409 return ret;
1410 }
1411
1412 /**
1413 * regulator_get_mode - get regulator operating mode
1414 * @regulator: regulator source
1415 *
1416 * Get the current regulator operating mode.
1417 */
1418 unsigned int regulator_get_mode(struct regulator *regulator)
1419 {
1420 return _regulator_get_mode(regulator->rdev);
1421 }
1422 EXPORT_SYMBOL_GPL(regulator_get_mode);
1423
1424 /**
1425 * regulator_set_optimum_mode - set regulator optimum operating mode
1426 * @regulator: regulator source
1427 * @uA_load: load current
1428 *
1429 * Notifies the regulator core of a new device load. This is then used by
1430 * DRMS (if enabled by constraints) to set the most efficient regulator
1431 * operating mode for the new regulator loading.
1432 *
1433 * Consumer devices notify their supply regulator of the maximum power
1434 * they will require (can be taken from device datasheet in the power
1435 * consumption tables) when they change operational status and hence power
1436 * state. Examples of operational state changes that can affect power
1437 * consumption are :-
1438 *
1439 * o Device is opened / closed.
1440 * o Device I/O is about to begin or has just finished.
1441 * o Device is idling in between work.
1442 *
1443 * This information is also exported via sysfs to userspace.
1444 *
1445 * DRMS will sum the total requested load on the regulator and change
1446 * to the most efficient operating mode if platform constraints allow.
1447 *
1448 * Returns the new regulator mode or error.
1449 */
1450 int regulator_set_optimum_mode(struct regulator *regulator, int uA_load)
1451 {
1452 struct regulator_dev *rdev = regulator->rdev;
1453 struct regulator *consumer;
1454 int ret, output_uV, input_uV, total_uA_load = 0;
1455 unsigned int mode;
1456
1457 mutex_lock(&rdev->mutex);
1458
1459 regulator->uA_load = uA_load;
1460 ret = regulator_check_drms(rdev);
1461 if (ret < 0)
1462 goto out;
1463 ret = -EINVAL;
1464
1465 /* sanity check */
1466 if (!rdev->desc->ops->get_optimum_mode)
1467 goto out;
1468
1469 /* get output voltage */
1470 output_uV = rdev->desc->ops->get_voltage(rdev);
1471 if (output_uV <= 0) {
1472 printk(KERN_ERR "%s: invalid output voltage found for %s\n",
1473 __func__, rdev->desc->name);
1474 goto out;
1475 }
1476
1477 /* get input voltage */
1478 if (rdev->supply && rdev->supply->desc->ops->get_voltage)
1479 input_uV = rdev->supply->desc->ops->get_voltage(rdev->supply);
1480 else
1481 input_uV = rdev->constraints->input_uV;
1482 if (input_uV <= 0) {
1483 printk(KERN_ERR "%s: invalid input voltage found for %s\n",
1484 __func__, rdev->desc->name);
1485 goto out;
1486 }
1487
1488 /* calc total requested load for this regulator */
1489 list_for_each_entry(consumer, &rdev->consumer_list, list)
1490 total_uA_load += consumer->uA_load;
1491
1492 mode = rdev->desc->ops->get_optimum_mode(rdev,
1493 input_uV, output_uV,
1494 total_uA_load);
1495 ret = regulator_check_mode(rdev, mode);
1496 if (ret < 0) {
1497 printk(KERN_ERR "%s: failed to get optimum mode for %s @"
1498 " %d uA %d -> %d uV\n", __func__, rdev->desc->name,
1499 total_uA_load, input_uV, output_uV);
1500 goto out;
1501 }
1502
1503 ret = rdev->desc->ops->set_mode(rdev, mode);
1504 if (ret < 0) {
1505 printk(KERN_ERR "%s: failed to set optimum mode %x for %s\n",
1506 __func__, mode, rdev->desc->name);
1507 goto out;
1508 }
1509 ret = mode;
1510 out:
1511 mutex_unlock(&rdev->mutex);
1512 return ret;
1513 }
1514 EXPORT_SYMBOL_GPL(regulator_set_optimum_mode);
1515
1516 /**
1517 * regulator_register_notifier - register regulator event notifier
1518 * @regulator: regulator source
1519 * @nb: notifier block
1520 *
1521 * Register notifier block to receive regulator events.
1522 */
1523 int regulator_register_notifier(struct regulator *regulator,
1524 struct notifier_block *nb)
1525 {
1526 return blocking_notifier_chain_register(&regulator->rdev->notifier,
1527 nb);
1528 }
1529 EXPORT_SYMBOL_GPL(regulator_register_notifier);
1530
1531 /**
1532 * regulator_unregister_notifier - unregister regulator event notifier
1533 * @regulator: regulator source
1534 * @nb: notifier block
1535 *
1536 * Unregister regulator event notifier block.
1537 */
1538 int regulator_unregister_notifier(struct regulator *regulator,
1539 struct notifier_block *nb)
1540 {
1541 return blocking_notifier_chain_unregister(&regulator->rdev->notifier,
1542 nb);
1543 }
1544 EXPORT_SYMBOL_GPL(regulator_unregister_notifier);
1545
1546 /* notify regulator consumers and downstream regulator consumers */
1547 static void _notifier_call_chain(struct regulator_dev *rdev,
1548 unsigned long event, void *data)
1549 {
1550 struct regulator_dev *_rdev;
1551
1552 /* call rdev chain first */
1553 mutex_lock(&rdev->mutex);
1554 blocking_notifier_call_chain(&rdev->notifier, event, NULL);
1555 mutex_unlock(&rdev->mutex);
1556
1557 /* now notify regulator we supply */
1558 list_for_each_entry(_rdev, &rdev->supply_list, slist)
1559 _notifier_call_chain(_rdev, event, data);
1560 }
1561
1562 /**
1563 * regulator_bulk_get - get multiple regulator consumers
1564 *
1565 * @dev: Device to supply
1566 * @num_consumers: Number of consumers to register
1567 * @consumers: Configuration of consumers; clients are stored here.
1568 *
1569 * @return 0 on success, an errno on failure.
1570 *
1571 * This helper function allows drivers to get several regulator
1572 * consumers in one operation. If any of the regulators cannot be
1573 * acquired then any regulators that were allocated will be freed
1574 * before returning to the caller.
1575 */
1576 int regulator_bulk_get(struct device *dev, int num_consumers,
1577 struct regulator_bulk_data *consumers)
1578 {
1579 int i;
1580 int ret;
1581
1582 for (i = 0; i < num_consumers; i++)
1583 consumers[i].consumer = NULL;
1584
1585 for (i = 0; i < num_consumers; i++) {
1586 consumers[i].consumer = regulator_get(dev,
1587 consumers[i].supply);
1588 if (IS_ERR(consumers[i].consumer)) {
1589 dev_err(dev, "Failed to get supply '%s'\n",
1590 consumers[i].supply);
1591 ret = PTR_ERR(consumers[i].consumer);
1592 consumers[i].consumer = NULL;
1593 goto err;
1594 }
1595 }
1596
1597 return 0;
1598
1599 err:
1600 for (i = 0; i < num_consumers && consumers[i].consumer; i++)
1601 regulator_put(consumers[i].consumer);
1602
1603 return ret;
1604 }
1605 EXPORT_SYMBOL_GPL(regulator_bulk_get);
1606
1607 /**
1608 * regulator_bulk_enable - enable multiple regulator consumers
1609 *
1610 * @num_consumers: Number of consumers
1611 * @consumers: Consumer data; clients are stored here.
1612 * @return 0 on success, an errno on failure
1613 *
1614 * This convenience API allows consumers to enable multiple regulator
1615 * clients in a single API call. If any consumers cannot be enabled
1616 * then any others that were enabled will be disabled again prior to
1617 * return.
1618 */
1619 int regulator_bulk_enable(int num_consumers,
1620 struct regulator_bulk_data *consumers)
1621 {
1622 int i;
1623 int ret;
1624
1625 for (i = 0; i < num_consumers; i++) {
1626 ret = regulator_enable(consumers[i].consumer);
1627 if (ret != 0)
1628 goto err;
1629 }
1630
1631 return 0;
1632
1633 err:
1634 printk(KERN_ERR "Failed to enable %s\n", consumers[i].supply);
1635 for (i = 0; i < num_consumers; i++)
1636 regulator_disable(consumers[i].consumer);
1637
1638 return ret;
1639 }
1640 EXPORT_SYMBOL_GPL(regulator_bulk_enable);
1641
1642 /**
1643 * regulator_bulk_disable - disable multiple regulator consumers
1644 *
1645 * @num_consumers: Number of consumers
1646 * @consumers: Consumer data; clients are stored here.
1647 * @return 0 on success, an errno on failure
1648 *
1649 * This convenience API allows consumers to disable multiple regulator
1650 * clients in a single API call. If any consumers cannot be enabled
1651 * then any others that were disabled will be disabled again prior to
1652 * return.
1653 */
1654 int regulator_bulk_disable(int num_consumers,
1655 struct regulator_bulk_data *consumers)
1656 {
1657 int i;
1658 int ret;
1659
1660 for (i = 0; i < num_consumers; i++) {
1661 ret = regulator_disable(consumers[i].consumer);
1662 if (ret != 0)
1663 goto err;
1664 }
1665
1666 return 0;
1667
1668 err:
1669 printk(KERN_ERR "Failed to disable %s\n", consumers[i].supply);
1670 for (i = 0; i < num_consumers; i++)
1671 regulator_enable(consumers[i].consumer);
1672
1673 return ret;
1674 }
1675 EXPORT_SYMBOL_GPL(regulator_bulk_disable);
1676
1677 /**
1678 * regulator_bulk_free - free multiple regulator consumers
1679 *
1680 * @num_consumers: Number of consumers
1681 * @consumers: Consumer data; clients are stored here.
1682 *
1683 * This convenience API allows consumers to free multiple regulator
1684 * clients in a single API call.
1685 */
1686 void regulator_bulk_free(int num_consumers,
1687 struct regulator_bulk_data *consumers)
1688 {
1689 int i;
1690
1691 for (i = 0; i < num_consumers; i++) {
1692 regulator_put(consumers[i].consumer);
1693 consumers[i].consumer = NULL;
1694 }
1695 }
1696 EXPORT_SYMBOL_GPL(regulator_bulk_free);
1697
1698 /**
1699 * regulator_notifier_call_chain - call regulator event notifier
1700 * @rdev: regulator source
1701 * @event: notifier block
1702 * @data: callback-specific data.
1703 *
1704 * Called by regulator drivers to notify clients a regulator event has
1705 * occurred. We also notify regulator clients downstream.
1706 */
1707 int regulator_notifier_call_chain(struct regulator_dev *rdev,
1708 unsigned long event, void *data)
1709 {
1710 _notifier_call_chain(rdev, event, data);
1711 return NOTIFY_DONE;
1712
1713 }
1714 EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);
1715
1716 /*
1717 * To avoid cluttering sysfs (and memory) with useless state, only
1718 * create attributes that can be meaningfully displayed.
1719 */
1720 static int add_regulator_attributes(struct regulator_dev *rdev)
1721 {
1722 struct device *dev = &rdev->dev;
1723 struct regulator_ops *ops = rdev->desc->ops;
1724 int status = 0;
1725
1726 /* some attributes need specific methods to be displayed */
1727 if (ops->get_voltage) {
1728 status = device_create_file(dev, &dev_attr_microvolts);
1729 if (status < 0)
1730 return status;
1731 }
1732 if (ops->get_current_limit) {
1733 status = device_create_file(dev, &dev_attr_microamps);
1734 if (status < 0)
1735 return status;
1736 }
1737 if (ops->get_mode) {
1738 status = device_create_file(dev, &dev_attr_opmode);
1739 if (status < 0)
1740 return status;
1741 }
1742 if (ops->is_enabled) {
1743 status = device_create_file(dev, &dev_attr_state);
1744 if (status < 0)
1745 return status;
1746 }
1747
1748 /* some attributes are type-specific */
1749 if (rdev->desc->type == REGULATOR_CURRENT) {
1750 status = device_create_file(dev, &dev_attr_requested_microamps);
1751 if (status < 0)
1752 return status;
1753 }
1754
1755 /* all the other attributes exist to support constraints;
1756 * don't show them if there are no constraints, or if the
1757 * relevant supporting methods are missing.
1758 */
1759 if (!rdev->constraints)
1760 return status;
1761
1762 /* constraints need specific supporting methods */
1763 if (ops->set_voltage) {
1764 status = device_create_file(dev, &dev_attr_min_microvolts);
1765 if (status < 0)
1766 return status;
1767 status = device_create_file(dev, &dev_attr_max_microvolts);
1768 if (status < 0)
1769 return status;
1770 }
1771 if (ops->set_current_limit) {
1772 status = device_create_file(dev, &dev_attr_min_microamps);
1773 if (status < 0)
1774 return status;
1775 status = device_create_file(dev, &dev_attr_max_microamps);
1776 if (status < 0)
1777 return status;
1778 }
1779
1780 /* suspend mode constraints need multiple supporting methods */
1781 if (!(ops->set_suspend_enable && ops->set_suspend_disable))
1782 return status;
1783
1784 status = device_create_file(dev, &dev_attr_suspend_standby_state);
1785 if (status < 0)
1786 return status;
1787 status = device_create_file(dev, &dev_attr_suspend_mem_state);
1788 if (status < 0)
1789 return status;
1790 status = device_create_file(dev, &dev_attr_suspend_disk_state);
1791 if (status < 0)
1792 return status;
1793
1794 if (ops->set_suspend_voltage) {
1795 status = device_create_file(dev,
1796 &dev_attr_suspend_standby_microvolts);
1797 if (status < 0)
1798 return status;
1799 status = device_create_file(dev,
1800 &dev_attr_suspend_mem_microvolts);
1801 if (status < 0)
1802 return status;
1803 status = device_create_file(dev,
1804 &dev_attr_suspend_disk_microvolts);
1805 if (status < 0)
1806 return status;
1807 }
1808
1809 if (ops->set_suspend_mode) {
1810 status = device_create_file(dev,
1811 &dev_attr_suspend_standby_mode);
1812 if (status < 0)
1813 return status;
1814 status = device_create_file(dev,
1815 &dev_attr_suspend_mem_mode);
1816 if (status < 0)
1817 return status;
1818 status = device_create_file(dev,
1819 &dev_attr_suspend_disk_mode);
1820 if (status < 0)
1821 return status;
1822 }
1823
1824 return status;
1825 }
1826
1827 /**
1828 * regulator_register - register regulator
1829 * @regulator_desc: regulator to register
1830 * @dev: struct device for the regulator
1831 * @driver_data: private regulator data
1832 *
1833 * Called by regulator drivers to register a regulator.
1834 * Returns 0 on success.
1835 */
1836 struct regulator_dev *regulator_register(struct regulator_desc *regulator_desc,
1837 struct device *dev, void *driver_data)
1838 {
1839 static atomic_t regulator_no = ATOMIC_INIT(0);
1840 struct regulator_dev *rdev;
1841 struct regulator_init_data *init_data = dev->platform_data;
1842 int ret, i;
1843
1844 if (regulator_desc == NULL)
1845 return ERR_PTR(-EINVAL);
1846
1847 if (regulator_desc->name == NULL || regulator_desc->ops == NULL)
1848 return ERR_PTR(-EINVAL);
1849
1850 if (!regulator_desc->type == REGULATOR_VOLTAGE &&
1851 !regulator_desc->type == REGULATOR_CURRENT)
1852 return ERR_PTR(-EINVAL);
1853
1854 if (!init_data)
1855 return ERR_PTR(-EINVAL);
1856
1857 rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
1858 if (rdev == NULL)
1859 return ERR_PTR(-ENOMEM);
1860
1861 mutex_lock(&regulator_list_mutex);
1862
1863 mutex_init(&rdev->mutex);
1864 rdev->reg_data = driver_data;
1865 rdev->owner = regulator_desc->owner;
1866 rdev->desc = regulator_desc;
1867 INIT_LIST_HEAD(&rdev->consumer_list);
1868 INIT_LIST_HEAD(&rdev->supply_list);
1869 INIT_LIST_HEAD(&rdev->list);
1870 INIT_LIST_HEAD(&rdev->slist);
1871 BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
1872
1873 /* preform any regulator specific init */
1874 if (init_data->regulator_init) {
1875 ret = init_data->regulator_init(rdev->reg_data);
1876 if (ret < 0)
1877 goto clean;
1878 }
1879
1880 /* register with sysfs */
1881 rdev->dev.class = &regulator_class;
1882 rdev->dev.parent = dev;
1883 dev_set_name(&rdev->dev, "regulator.%d",
1884 atomic_inc_return(&regulator_no) - 1);
1885 ret = device_register(&rdev->dev);
1886 if (ret != 0)
1887 goto clean;
1888
1889 dev_set_drvdata(&rdev->dev, rdev);
1890
1891 /* set regulator constraints */
1892 ret = set_machine_constraints(rdev, &init_data->constraints);
1893 if (ret < 0)
1894 goto scrub;
1895
1896 /* add attributes supported by this regulator */
1897 ret = add_regulator_attributes(rdev);
1898 if (ret < 0)
1899 goto scrub;
1900
1901 /* set supply regulator if it exists */
1902 if (init_data->supply_regulator_dev) {
1903 ret = set_supply(rdev,
1904 dev_get_drvdata(init_data->supply_regulator_dev));
1905 if (ret < 0)
1906 goto scrub;
1907 }
1908
1909 /* add consumers devices */
1910 for (i = 0; i < init_data->num_consumer_supplies; i++) {
1911 ret = set_consumer_device_supply(rdev,
1912 init_data->consumer_supplies[i].dev,
1913 init_data->consumer_supplies[i].supply);
1914 if (ret < 0) {
1915 for (--i; i >= 0; i--)
1916 unset_consumer_device_supply(rdev,
1917 init_data->consumer_supplies[i].dev);
1918 goto scrub;
1919 }
1920 }
1921
1922 list_add(&rdev->list, &regulator_list);
1923 out:
1924 mutex_unlock(&regulator_list_mutex);
1925 return rdev;
1926
1927 scrub:
1928 device_unregister(&rdev->dev);
1929 clean:
1930 kfree(rdev);
1931 rdev = ERR_PTR(ret);
1932 goto out;
1933 }
1934 EXPORT_SYMBOL_GPL(regulator_register);
1935
1936 /**
1937 * regulator_unregister - unregister regulator
1938 * @rdev: regulator to unregister
1939 *
1940 * Called by regulator drivers to unregister a regulator.
1941 */
1942 void regulator_unregister(struct regulator_dev *rdev)
1943 {
1944 if (rdev == NULL)
1945 return;
1946
1947 mutex_lock(&regulator_list_mutex);
1948 list_del(&rdev->list);
1949 if (rdev->supply)
1950 sysfs_remove_link(&rdev->dev.kobj, "supply");
1951 device_unregister(&rdev->dev);
1952 mutex_unlock(&regulator_list_mutex);
1953 }
1954 EXPORT_SYMBOL_GPL(regulator_unregister);
1955
1956 /**
1957 * regulator_suspend_prepare - prepare regulators for system wide suspend
1958 * @state: system suspend state
1959 *
1960 * Configure each regulator with it's suspend operating parameters for state.
1961 * This will usually be called by machine suspend code prior to supending.
1962 */
1963 int regulator_suspend_prepare(suspend_state_t state)
1964 {
1965 struct regulator_dev *rdev;
1966 int ret = 0;
1967
1968 /* ON is handled by regulator active state */
1969 if (state == PM_SUSPEND_ON)
1970 return -EINVAL;
1971
1972 mutex_lock(&regulator_list_mutex);
1973 list_for_each_entry(rdev, &regulator_list, list) {
1974
1975 mutex_lock(&rdev->mutex);
1976 ret = suspend_prepare(rdev, state);
1977 mutex_unlock(&rdev->mutex);
1978
1979 if (ret < 0) {
1980 printk(KERN_ERR "%s: failed to prepare %s\n",
1981 __func__, rdev->desc->name);
1982 goto out;
1983 }
1984 }
1985 out:
1986 mutex_unlock(&regulator_list_mutex);
1987 return ret;
1988 }
1989 EXPORT_SYMBOL_GPL(regulator_suspend_prepare);
1990
1991 /**
1992 * rdev_get_drvdata - get rdev regulator driver data
1993 * @rdev: regulator
1994 *
1995 * Get rdev regulator driver private data. This call can be used in the
1996 * regulator driver context.
1997 */
1998 void *rdev_get_drvdata(struct regulator_dev *rdev)
1999 {
2000 return rdev->reg_data;
2001 }
2002 EXPORT_SYMBOL_GPL(rdev_get_drvdata);
2003
2004 /**
2005 * regulator_get_drvdata - get regulator driver data
2006 * @regulator: regulator
2007 *
2008 * Get regulator driver private data. This call can be used in the consumer
2009 * driver context when non API regulator specific functions need to be called.
2010 */
2011 void *regulator_get_drvdata(struct regulator *regulator)
2012 {
2013 return regulator->rdev->reg_data;
2014 }
2015 EXPORT_SYMBOL_GPL(regulator_get_drvdata);
2016
2017 /**
2018 * regulator_set_drvdata - set regulator driver data
2019 * @regulator: regulator
2020 * @data: data
2021 */
2022 void regulator_set_drvdata(struct regulator *regulator, void *data)
2023 {
2024 regulator->rdev->reg_data = data;
2025 }
2026 EXPORT_SYMBOL_GPL(regulator_set_drvdata);
2027
2028 /**
2029 * regulator_get_id - get regulator ID
2030 * @rdev: regulator
2031 */
2032 int rdev_get_id(struct regulator_dev *rdev)
2033 {
2034 return rdev->desc->id;
2035 }
2036 EXPORT_SYMBOL_GPL(rdev_get_id);
2037
2038 struct device *rdev_get_dev(struct regulator_dev *rdev)
2039 {
2040 return &rdev->dev;
2041 }
2042 EXPORT_SYMBOL_GPL(rdev_get_dev);
2043
2044 void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
2045 {
2046 return reg_init_data->driver_data;
2047 }
2048 EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);
2049
2050 static int __init regulator_init(void)
2051 {
2052 printk(KERN_INFO "regulator: core version %s\n", REGULATOR_VERSION);
2053 return class_register(&regulator_class);
2054 }
2055
2056 /* init early to allow our consumers to complete system booting */
2057 core_initcall(regulator_init);
This page took 0.075948 seconds and 5 git commands to generate.