ff8f544473058bd229386fe06240e1a3124ef7fa
[deliverable/linux.git] / drivers / regulator / core.c
1 /*
2 * core.c -- Voltage/Current Regulator framework.
3 *
4 * Copyright 2007, 2008 Wolfson Microelectronics PLC.
5 * Copyright 2008 SlimLogic Ltd.
6 *
7 * Author: Liam Girdwood <lrg@slimlogic.co.uk>
8 *
9 * This program is free software; you can redistribute it and/or modify it
10 * under the terms of the GNU General Public License as published by the
11 * Free Software Foundation; either version 2 of the License, or (at your
12 * option) any later version.
13 *
14 */
15
16 #include <linux/kernel.h>
17 #include <linux/init.h>
18 #include <linux/debugfs.h>
19 #include <linux/device.h>
20 #include <linux/slab.h>
21 #include <linux/async.h>
22 #include <linux/err.h>
23 #include <linux/mutex.h>
24 #include <linux/suspend.h>
25 #include <linux/delay.h>
26 #include <linux/gpio.h>
27 #include <linux/of.h>
28 #include <linux/regmap.h>
29 #include <linux/regulator/of_regulator.h>
30 #include <linux/regulator/consumer.h>
31 #include <linux/regulator/driver.h>
32 #include <linux/regulator/machine.h>
33 #include <linux/module.h>
34
35 #define CREATE_TRACE_POINTS
36 #include <trace/events/regulator.h>
37
38 #include "dummy.h"
39
40 #define rdev_crit(rdev, fmt, ...) \
41 pr_crit("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
42 #define rdev_err(rdev, fmt, ...) \
43 pr_err("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
44 #define rdev_warn(rdev, fmt, ...) \
45 pr_warn("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
46 #define rdev_info(rdev, fmt, ...) \
47 pr_info("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
48 #define rdev_dbg(rdev, fmt, ...) \
49 pr_debug("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
50
51 static DEFINE_MUTEX(regulator_list_mutex);
52 static LIST_HEAD(regulator_list);
53 static LIST_HEAD(regulator_map_list);
54 static bool has_full_constraints;
55 static bool board_wants_dummy_regulator;
56
57 static struct dentry *debugfs_root;
58
59 /*
60 * struct regulator_map
61 *
62 * Used to provide symbolic supply names to devices.
63 */
64 struct regulator_map {
65 struct list_head list;
66 const char *dev_name; /* The dev_name() for the consumer */
67 const char *supply;
68 struct regulator_dev *regulator;
69 };
70
71 /*
72 * struct regulator
73 *
74 * One for each consumer device.
75 */
76 struct regulator {
77 struct device *dev;
78 struct list_head list;
79 unsigned int always_on:1;
80 int uA_load;
81 int min_uV;
82 int max_uV;
83 char *supply_name;
84 struct device_attribute dev_attr;
85 struct regulator_dev *rdev;
86 struct dentry *debugfs;
87 };
88
89 static int _regulator_is_enabled(struct regulator_dev *rdev);
90 static int _regulator_disable(struct regulator_dev *rdev);
91 static int _regulator_get_voltage(struct regulator_dev *rdev);
92 static int _regulator_get_current_limit(struct regulator_dev *rdev);
93 static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
94 static void _notifier_call_chain(struct regulator_dev *rdev,
95 unsigned long event, void *data);
96 static int _regulator_do_set_voltage(struct regulator_dev *rdev,
97 int min_uV, int max_uV);
98 static struct regulator *create_regulator(struct regulator_dev *rdev,
99 struct device *dev,
100 const char *supply_name);
101
102 static const char *rdev_get_name(struct regulator_dev *rdev)
103 {
104 if (rdev->constraints && rdev->constraints->name)
105 return rdev->constraints->name;
106 else if (rdev->desc->name)
107 return rdev->desc->name;
108 else
109 return "";
110 }
111
112 /**
113 * of_get_regulator - get a regulator device node based on supply name
114 * @dev: Device pointer for the consumer (of regulator) device
115 * @supply: regulator supply name
116 *
117 * Extract the regulator device node corresponding to the supply name.
118 * retruns the device node corresponding to the regulator if found, else
119 * returns NULL.
120 */
121 static struct device_node *of_get_regulator(struct device *dev, const char *supply)
122 {
123 struct device_node *regnode = NULL;
124 char prop_name[32]; /* 32 is max size of property name */
125
126 dev_dbg(dev, "Looking up %s-supply from device tree\n", supply);
127
128 snprintf(prop_name, 32, "%s-supply", supply);
129 regnode = of_parse_phandle(dev->of_node, prop_name, 0);
130
131 if (!regnode) {
132 dev_dbg(dev, "Looking up %s property in node %s failed",
133 prop_name, dev->of_node->full_name);
134 return NULL;
135 }
136 return regnode;
137 }
138
139 static int _regulator_can_change_status(struct regulator_dev *rdev)
140 {
141 if (!rdev->constraints)
142 return 0;
143
144 if (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_STATUS)
145 return 1;
146 else
147 return 0;
148 }
149
150 /* Platform voltage constraint check */
151 static int regulator_check_voltage(struct regulator_dev *rdev,
152 int *min_uV, int *max_uV)
153 {
154 BUG_ON(*min_uV > *max_uV);
155
156 if (!rdev->constraints) {
157 rdev_err(rdev, "no constraints\n");
158 return -ENODEV;
159 }
160 if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
161 rdev_err(rdev, "operation not allowed\n");
162 return -EPERM;
163 }
164
165 if (*max_uV > rdev->constraints->max_uV)
166 *max_uV = rdev->constraints->max_uV;
167 if (*min_uV < rdev->constraints->min_uV)
168 *min_uV = rdev->constraints->min_uV;
169
170 if (*min_uV > *max_uV) {
171 rdev_err(rdev, "unsupportable voltage range: %d-%duV\n",
172 *min_uV, *max_uV);
173 return -EINVAL;
174 }
175
176 return 0;
177 }
178
179 /* Make sure we select a voltage that suits the needs of all
180 * regulator consumers
181 */
182 static int regulator_check_consumers(struct regulator_dev *rdev,
183 int *min_uV, int *max_uV)
184 {
185 struct regulator *regulator;
186
187 list_for_each_entry(regulator, &rdev->consumer_list, list) {
188 /*
189 * Assume consumers that didn't say anything are OK
190 * with anything in the constraint range.
191 */
192 if (!regulator->min_uV && !regulator->max_uV)
193 continue;
194
195 if (*max_uV > regulator->max_uV)
196 *max_uV = regulator->max_uV;
197 if (*min_uV < regulator->min_uV)
198 *min_uV = regulator->min_uV;
199 }
200
201 if (*min_uV > *max_uV)
202 return -EINVAL;
203
204 return 0;
205 }
206
207 /* current constraint check */
208 static int regulator_check_current_limit(struct regulator_dev *rdev,
209 int *min_uA, int *max_uA)
210 {
211 BUG_ON(*min_uA > *max_uA);
212
213 if (!rdev->constraints) {
214 rdev_err(rdev, "no constraints\n");
215 return -ENODEV;
216 }
217 if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_CURRENT)) {
218 rdev_err(rdev, "operation not allowed\n");
219 return -EPERM;
220 }
221
222 if (*max_uA > rdev->constraints->max_uA)
223 *max_uA = rdev->constraints->max_uA;
224 if (*min_uA < rdev->constraints->min_uA)
225 *min_uA = rdev->constraints->min_uA;
226
227 if (*min_uA > *max_uA) {
228 rdev_err(rdev, "unsupportable current range: %d-%duA\n",
229 *min_uA, *max_uA);
230 return -EINVAL;
231 }
232
233 return 0;
234 }
235
236 /* operating mode constraint check */
237 static int regulator_mode_constrain(struct regulator_dev *rdev, int *mode)
238 {
239 switch (*mode) {
240 case REGULATOR_MODE_FAST:
241 case REGULATOR_MODE_NORMAL:
242 case REGULATOR_MODE_IDLE:
243 case REGULATOR_MODE_STANDBY:
244 break;
245 default:
246 rdev_err(rdev, "invalid mode %x specified\n", *mode);
247 return -EINVAL;
248 }
249
250 if (!rdev->constraints) {
251 rdev_err(rdev, "no constraints\n");
252 return -ENODEV;
253 }
254 if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_MODE)) {
255 rdev_err(rdev, "operation not allowed\n");
256 return -EPERM;
257 }
258
259 /* The modes are bitmasks, the most power hungry modes having
260 * the lowest values. If the requested mode isn't supported
261 * try higher modes. */
262 while (*mode) {
263 if (rdev->constraints->valid_modes_mask & *mode)
264 return 0;
265 *mode /= 2;
266 }
267
268 return -EINVAL;
269 }
270
271 /* dynamic regulator mode switching constraint check */
272 static int regulator_check_drms(struct regulator_dev *rdev)
273 {
274 if (!rdev->constraints) {
275 rdev_err(rdev, "no constraints\n");
276 return -ENODEV;
277 }
278 if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS)) {
279 rdev_err(rdev, "operation not allowed\n");
280 return -EPERM;
281 }
282 return 0;
283 }
284
285 static ssize_t regulator_uV_show(struct device *dev,
286 struct device_attribute *attr, char *buf)
287 {
288 struct regulator_dev *rdev = dev_get_drvdata(dev);
289 ssize_t ret;
290
291 mutex_lock(&rdev->mutex);
292 ret = sprintf(buf, "%d\n", _regulator_get_voltage(rdev));
293 mutex_unlock(&rdev->mutex);
294
295 return ret;
296 }
297 static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL);
298
299 static ssize_t regulator_uA_show(struct device *dev,
300 struct device_attribute *attr, char *buf)
301 {
302 struct regulator_dev *rdev = dev_get_drvdata(dev);
303
304 return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
305 }
306 static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL);
307
308 static ssize_t regulator_name_show(struct device *dev,
309 struct device_attribute *attr, char *buf)
310 {
311 struct regulator_dev *rdev = dev_get_drvdata(dev);
312
313 return sprintf(buf, "%s\n", rdev_get_name(rdev));
314 }
315
316 static ssize_t regulator_print_opmode(char *buf, int mode)
317 {
318 switch (mode) {
319 case REGULATOR_MODE_FAST:
320 return sprintf(buf, "fast\n");
321 case REGULATOR_MODE_NORMAL:
322 return sprintf(buf, "normal\n");
323 case REGULATOR_MODE_IDLE:
324 return sprintf(buf, "idle\n");
325 case REGULATOR_MODE_STANDBY:
326 return sprintf(buf, "standby\n");
327 }
328 return sprintf(buf, "unknown\n");
329 }
330
331 static ssize_t regulator_opmode_show(struct device *dev,
332 struct device_attribute *attr, char *buf)
333 {
334 struct regulator_dev *rdev = dev_get_drvdata(dev);
335
336 return regulator_print_opmode(buf, _regulator_get_mode(rdev));
337 }
338 static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL);
339
340 static ssize_t regulator_print_state(char *buf, int state)
341 {
342 if (state > 0)
343 return sprintf(buf, "enabled\n");
344 else if (state == 0)
345 return sprintf(buf, "disabled\n");
346 else
347 return sprintf(buf, "unknown\n");
348 }
349
350 static ssize_t regulator_state_show(struct device *dev,
351 struct device_attribute *attr, char *buf)
352 {
353 struct regulator_dev *rdev = dev_get_drvdata(dev);
354 ssize_t ret;
355
356 mutex_lock(&rdev->mutex);
357 ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
358 mutex_unlock(&rdev->mutex);
359
360 return ret;
361 }
362 static DEVICE_ATTR(state, 0444, regulator_state_show, NULL);
363
364 static ssize_t regulator_status_show(struct device *dev,
365 struct device_attribute *attr, char *buf)
366 {
367 struct regulator_dev *rdev = dev_get_drvdata(dev);
368 int status;
369 char *label;
370
371 status = rdev->desc->ops->get_status(rdev);
372 if (status < 0)
373 return status;
374
375 switch (status) {
376 case REGULATOR_STATUS_OFF:
377 label = "off";
378 break;
379 case REGULATOR_STATUS_ON:
380 label = "on";
381 break;
382 case REGULATOR_STATUS_ERROR:
383 label = "error";
384 break;
385 case REGULATOR_STATUS_FAST:
386 label = "fast";
387 break;
388 case REGULATOR_STATUS_NORMAL:
389 label = "normal";
390 break;
391 case REGULATOR_STATUS_IDLE:
392 label = "idle";
393 break;
394 case REGULATOR_STATUS_STANDBY:
395 label = "standby";
396 break;
397 case REGULATOR_STATUS_UNDEFINED:
398 label = "undefined";
399 break;
400 default:
401 return -ERANGE;
402 }
403
404 return sprintf(buf, "%s\n", label);
405 }
406 static DEVICE_ATTR(status, 0444, regulator_status_show, NULL);
407
408 static ssize_t regulator_min_uA_show(struct device *dev,
409 struct device_attribute *attr, char *buf)
410 {
411 struct regulator_dev *rdev = dev_get_drvdata(dev);
412
413 if (!rdev->constraints)
414 return sprintf(buf, "constraint not defined\n");
415
416 return sprintf(buf, "%d\n", rdev->constraints->min_uA);
417 }
418 static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL);
419
420 static ssize_t regulator_max_uA_show(struct device *dev,
421 struct device_attribute *attr, char *buf)
422 {
423 struct regulator_dev *rdev = dev_get_drvdata(dev);
424
425 if (!rdev->constraints)
426 return sprintf(buf, "constraint not defined\n");
427
428 return sprintf(buf, "%d\n", rdev->constraints->max_uA);
429 }
430 static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL);
431
432 static ssize_t regulator_min_uV_show(struct device *dev,
433 struct device_attribute *attr, char *buf)
434 {
435 struct regulator_dev *rdev = dev_get_drvdata(dev);
436
437 if (!rdev->constraints)
438 return sprintf(buf, "constraint not defined\n");
439
440 return sprintf(buf, "%d\n", rdev->constraints->min_uV);
441 }
442 static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL);
443
444 static ssize_t regulator_max_uV_show(struct device *dev,
445 struct device_attribute *attr, char *buf)
446 {
447 struct regulator_dev *rdev = dev_get_drvdata(dev);
448
449 if (!rdev->constraints)
450 return sprintf(buf, "constraint not defined\n");
451
452 return sprintf(buf, "%d\n", rdev->constraints->max_uV);
453 }
454 static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL);
455
456 static ssize_t regulator_total_uA_show(struct device *dev,
457 struct device_attribute *attr, char *buf)
458 {
459 struct regulator_dev *rdev = dev_get_drvdata(dev);
460 struct regulator *regulator;
461 int uA = 0;
462
463 mutex_lock(&rdev->mutex);
464 list_for_each_entry(regulator, &rdev->consumer_list, list)
465 uA += regulator->uA_load;
466 mutex_unlock(&rdev->mutex);
467 return sprintf(buf, "%d\n", uA);
468 }
469 static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL);
470
471 static ssize_t regulator_num_users_show(struct device *dev,
472 struct device_attribute *attr, char *buf)
473 {
474 struct regulator_dev *rdev = dev_get_drvdata(dev);
475 return sprintf(buf, "%d\n", rdev->use_count);
476 }
477
478 static ssize_t regulator_type_show(struct device *dev,
479 struct device_attribute *attr, char *buf)
480 {
481 struct regulator_dev *rdev = dev_get_drvdata(dev);
482
483 switch (rdev->desc->type) {
484 case REGULATOR_VOLTAGE:
485 return sprintf(buf, "voltage\n");
486 case REGULATOR_CURRENT:
487 return sprintf(buf, "current\n");
488 }
489 return sprintf(buf, "unknown\n");
490 }
491
492 static ssize_t regulator_suspend_mem_uV_show(struct device *dev,
493 struct device_attribute *attr, char *buf)
494 {
495 struct regulator_dev *rdev = dev_get_drvdata(dev);
496
497 return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
498 }
499 static DEVICE_ATTR(suspend_mem_microvolts, 0444,
500 regulator_suspend_mem_uV_show, NULL);
501
502 static ssize_t regulator_suspend_disk_uV_show(struct device *dev,
503 struct device_attribute *attr, char *buf)
504 {
505 struct regulator_dev *rdev = dev_get_drvdata(dev);
506
507 return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
508 }
509 static DEVICE_ATTR(suspend_disk_microvolts, 0444,
510 regulator_suspend_disk_uV_show, NULL);
511
512 static ssize_t regulator_suspend_standby_uV_show(struct device *dev,
513 struct device_attribute *attr, char *buf)
514 {
515 struct regulator_dev *rdev = dev_get_drvdata(dev);
516
517 return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
518 }
519 static DEVICE_ATTR(suspend_standby_microvolts, 0444,
520 regulator_suspend_standby_uV_show, NULL);
521
522 static ssize_t regulator_suspend_mem_mode_show(struct device *dev,
523 struct device_attribute *attr, char *buf)
524 {
525 struct regulator_dev *rdev = dev_get_drvdata(dev);
526
527 return regulator_print_opmode(buf,
528 rdev->constraints->state_mem.mode);
529 }
530 static DEVICE_ATTR(suspend_mem_mode, 0444,
531 regulator_suspend_mem_mode_show, NULL);
532
533 static ssize_t regulator_suspend_disk_mode_show(struct device *dev,
534 struct device_attribute *attr, char *buf)
535 {
536 struct regulator_dev *rdev = dev_get_drvdata(dev);
537
538 return regulator_print_opmode(buf,
539 rdev->constraints->state_disk.mode);
540 }
541 static DEVICE_ATTR(suspend_disk_mode, 0444,
542 regulator_suspend_disk_mode_show, NULL);
543
544 static ssize_t regulator_suspend_standby_mode_show(struct device *dev,
545 struct device_attribute *attr, char *buf)
546 {
547 struct regulator_dev *rdev = dev_get_drvdata(dev);
548
549 return regulator_print_opmode(buf,
550 rdev->constraints->state_standby.mode);
551 }
552 static DEVICE_ATTR(suspend_standby_mode, 0444,
553 regulator_suspend_standby_mode_show, NULL);
554
555 static ssize_t regulator_suspend_mem_state_show(struct device *dev,
556 struct device_attribute *attr, char *buf)
557 {
558 struct regulator_dev *rdev = dev_get_drvdata(dev);
559
560 return regulator_print_state(buf,
561 rdev->constraints->state_mem.enabled);
562 }
563 static DEVICE_ATTR(suspend_mem_state, 0444,
564 regulator_suspend_mem_state_show, NULL);
565
566 static ssize_t regulator_suspend_disk_state_show(struct device *dev,
567 struct device_attribute *attr, char *buf)
568 {
569 struct regulator_dev *rdev = dev_get_drvdata(dev);
570
571 return regulator_print_state(buf,
572 rdev->constraints->state_disk.enabled);
573 }
574 static DEVICE_ATTR(suspend_disk_state, 0444,
575 regulator_suspend_disk_state_show, NULL);
576
577 static ssize_t regulator_suspend_standby_state_show(struct device *dev,
578 struct device_attribute *attr, char *buf)
579 {
580 struct regulator_dev *rdev = dev_get_drvdata(dev);
581
582 return regulator_print_state(buf,
583 rdev->constraints->state_standby.enabled);
584 }
585 static DEVICE_ATTR(suspend_standby_state, 0444,
586 regulator_suspend_standby_state_show, NULL);
587
588
589 /*
590 * These are the only attributes are present for all regulators.
591 * Other attributes are a function of regulator functionality.
592 */
593 static struct device_attribute regulator_dev_attrs[] = {
594 __ATTR(name, 0444, regulator_name_show, NULL),
595 __ATTR(num_users, 0444, regulator_num_users_show, NULL),
596 __ATTR(type, 0444, regulator_type_show, NULL),
597 __ATTR_NULL,
598 };
599
600 static void regulator_dev_release(struct device *dev)
601 {
602 struct regulator_dev *rdev = dev_get_drvdata(dev);
603 kfree(rdev);
604 }
605
606 static struct class regulator_class = {
607 .name = "regulator",
608 .dev_release = regulator_dev_release,
609 .dev_attrs = regulator_dev_attrs,
610 };
611
612 /* Calculate the new optimum regulator operating mode based on the new total
613 * consumer load. All locks held by caller */
614 static void drms_uA_update(struct regulator_dev *rdev)
615 {
616 struct regulator *sibling;
617 int current_uA = 0, output_uV, input_uV, err;
618 unsigned int mode;
619
620 err = regulator_check_drms(rdev);
621 if (err < 0 || !rdev->desc->ops->get_optimum_mode ||
622 (!rdev->desc->ops->get_voltage &&
623 !rdev->desc->ops->get_voltage_sel) ||
624 !rdev->desc->ops->set_mode)
625 return;
626
627 /* get output voltage */
628 output_uV = _regulator_get_voltage(rdev);
629 if (output_uV <= 0)
630 return;
631
632 /* get input voltage */
633 input_uV = 0;
634 if (rdev->supply)
635 input_uV = regulator_get_voltage(rdev->supply);
636 if (input_uV <= 0)
637 input_uV = rdev->constraints->input_uV;
638 if (input_uV <= 0)
639 return;
640
641 /* calc total requested load */
642 list_for_each_entry(sibling, &rdev->consumer_list, list)
643 current_uA += sibling->uA_load;
644
645 /* now get the optimum mode for our new total regulator load */
646 mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
647 output_uV, current_uA);
648
649 /* check the new mode is allowed */
650 err = regulator_mode_constrain(rdev, &mode);
651 if (err == 0)
652 rdev->desc->ops->set_mode(rdev, mode);
653 }
654
655 static int suspend_set_state(struct regulator_dev *rdev,
656 struct regulator_state *rstate)
657 {
658 int ret = 0;
659
660 /* If we have no suspend mode configration don't set anything;
661 * only warn if the driver implements set_suspend_voltage or
662 * set_suspend_mode callback.
663 */
664 if (!rstate->enabled && !rstate->disabled) {
665 if (rdev->desc->ops->set_suspend_voltage ||
666 rdev->desc->ops->set_suspend_mode)
667 rdev_warn(rdev, "No configuration\n");
668 return 0;
669 }
670
671 if (rstate->enabled && rstate->disabled) {
672 rdev_err(rdev, "invalid configuration\n");
673 return -EINVAL;
674 }
675
676 if (rstate->enabled && rdev->desc->ops->set_suspend_enable)
677 ret = rdev->desc->ops->set_suspend_enable(rdev);
678 else if (rstate->disabled && rdev->desc->ops->set_suspend_disable)
679 ret = rdev->desc->ops->set_suspend_disable(rdev);
680 else /* OK if set_suspend_enable or set_suspend_disable is NULL */
681 ret = 0;
682
683 if (ret < 0) {
684 rdev_err(rdev, "failed to enabled/disable\n");
685 return ret;
686 }
687
688 if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
689 ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
690 if (ret < 0) {
691 rdev_err(rdev, "failed to set voltage\n");
692 return ret;
693 }
694 }
695
696 if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
697 ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
698 if (ret < 0) {
699 rdev_err(rdev, "failed to set mode\n");
700 return ret;
701 }
702 }
703 return ret;
704 }
705
706 /* locks held by caller */
707 static int suspend_prepare(struct regulator_dev *rdev, suspend_state_t state)
708 {
709 if (!rdev->constraints)
710 return -EINVAL;
711
712 switch (state) {
713 case PM_SUSPEND_STANDBY:
714 return suspend_set_state(rdev,
715 &rdev->constraints->state_standby);
716 case PM_SUSPEND_MEM:
717 return suspend_set_state(rdev,
718 &rdev->constraints->state_mem);
719 case PM_SUSPEND_MAX:
720 return suspend_set_state(rdev,
721 &rdev->constraints->state_disk);
722 default:
723 return -EINVAL;
724 }
725 }
726
727 static void print_constraints(struct regulator_dev *rdev)
728 {
729 struct regulation_constraints *constraints = rdev->constraints;
730 char buf[80] = "";
731 int count = 0;
732 int ret;
733
734 if (constraints->min_uV && constraints->max_uV) {
735 if (constraints->min_uV == constraints->max_uV)
736 count += sprintf(buf + count, "%d mV ",
737 constraints->min_uV / 1000);
738 else
739 count += sprintf(buf + count, "%d <--> %d mV ",
740 constraints->min_uV / 1000,
741 constraints->max_uV / 1000);
742 }
743
744 if (!constraints->min_uV ||
745 constraints->min_uV != constraints->max_uV) {
746 ret = _regulator_get_voltage(rdev);
747 if (ret > 0)
748 count += sprintf(buf + count, "at %d mV ", ret / 1000);
749 }
750
751 if (constraints->uV_offset)
752 count += sprintf(buf, "%dmV offset ",
753 constraints->uV_offset / 1000);
754
755 if (constraints->min_uA && constraints->max_uA) {
756 if (constraints->min_uA == constraints->max_uA)
757 count += sprintf(buf + count, "%d mA ",
758 constraints->min_uA / 1000);
759 else
760 count += sprintf(buf + count, "%d <--> %d mA ",
761 constraints->min_uA / 1000,
762 constraints->max_uA / 1000);
763 }
764
765 if (!constraints->min_uA ||
766 constraints->min_uA != constraints->max_uA) {
767 ret = _regulator_get_current_limit(rdev);
768 if (ret > 0)
769 count += sprintf(buf + count, "at %d mA ", ret / 1000);
770 }
771
772 if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
773 count += sprintf(buf + count, "fast ");
774 if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
775 count += sprintf(buf + count, "normal ");
776 if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
777 count += sprintf(buf + count, "idle ");
778 if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
779 count += sprintf(buf + count, "standby");
780
781 if (!count)
782 sprintf(buf, "no parameters");
783
784 rdev_info(rdev, "%s\n", buf);
785
786 if ((constraints->min_uV != constraints->max_uV) &&
787 !(constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE))
788 rdev_warn(rdev,
789 "Voltage range but no REGULATOR_CHANGE_VOLTAGE\n");
790 }
791
792 static int machine_constraints_voltage(struct regulator_dev *rdev,
793 struct regulation_constraints *constraints)
794 {
795 struct regulator_ops *ops = rdev->desc->ops;
796 int ret;
797
798 /* do we need to apply the constraint voltage */
799 if (rdev->constraints->apply_uV &&
800 rdev->constraints->min_uV == rdev->constraints->max_uV) {
801 ret = _regulator_do_set_voltage(rdev,
802 rdev->constraints->min_uV,
803 rdev->constraints->max_uV);
804 if (ret < 0) {
805 rdev_err(rdev, "failed to apply %duV constraint\n",
806 rdev->constraints->min_uV);
807 return ret;
808 }
809 }
810
811 /* constrain machine-level voltage specs to fit
812 * the actual range supported by this regulator.
813 */
814 if (ops->list_voltage && rdev->desc->n_voltages) {
815 int count = rdev->desc->n_voltages;
816 int i;
817 int min_uV = INT_MAX;
818 int max_uV = INT_MIN;
819 int cmin = constraints->min_uV;
820 int cmax = constraints->max_uV;
821
822 /* it's safe to autoconfigure fixed-voltage supplies
823 and the constraints are used by list_voltage. */
824 if (count == 1 && !cmin) {
825 cmin = 1;
826 cmax = INT_MAX;
827 constraints->min_uV = cmin;
828 constraints->max_uV = cmax;
829 }
830
831 /* voltage constraints are optional */
832 if ((cmin == 0) && (cmax == 0))
833 return 0;
834
835 /* else require explicit machine-level constraints */
836 if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
837 rdev_err(rdev, "invalid voltage constraints\n");
838 return -EINVAL;
839 }
840
841 /* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
842 for (i = 0; i < count; i++) {
843 int value;
844
845 value = ops->list_voltage(rdev, i);
846 if (value <= 0)
847 continue;
848
849 /* maybe adjust [min_uV..max_uV] */
850 if (value >= cmin && value < min_uV)
851 min_uV = value;
852 if (value <= cmax && value > max_uV)
853 max_uV = value;
854 }
855
856 /* final: [min_uV..max_uV] valid iff constraints valid */
857 if (max_uV < min_uV) {
858 rdev_err(rdev, "unsupportable voltage constraints\n");
859 return -EINVAL;
860 }
861
862 /* use regulator's subset of machine constraints */
863 if (constraints->min_uV < min_uV) {
864 rdev_dbg(rdev, "override min_uV, %d -> %d\n",
865 constraints->min_uV, min_uV);
866 constraints->min_uV = min_uV;
867 }
868 if (constraints->max_uV > max_uV) {
869 rdev_dbg(rdev, "override max_uV, %d -> %d\n",
870 constraints->max_uV, max_uV);
871 constraints->max_uV = max_uV;
872 }
873 }
874
875 return 0;
876 }
877
878 /**
879 * set_machine_constraints - sets regulator constraints
880 * @rdev: regulator source
881 * @constraints: constraints to apply
882 *
883 * Allows platform initialisation code to define and constrain
884 * regulator circuits e.g. valid voltage/current ranges, etc. NOTE:
885 * Constraints *must* be set by platform code in order for some
886 * regulator operations to proceed i.e. set_voltage, set_current_limit,
887 * set_mode.
888 */
889 static int set_machine_constraints(struct regulator_dev *rdev,
890 const struct regulation_constraints *constraints)
891 {
892 int ret = 0;
893 struct regulator_ops *ops = rdev->desc->ops;
894
895 if (constraints)
896 rdev->constraints = kmemdup(constraints, sizeof(*constraints),
897 GFP_KERNEL);
898 else
899 rdev->constraints = kzalloc(sizeof(*constraints),
900 GFP_KERNEL);
901 if (!rdev->constraints)
902 return -ENOMEM;
903
904 ret = machine_constraints_voltage(rdev, rdev->constraints);
905 if (ret != 0)
906 goto out;
907
908 /* do we need to setup our suspend state */
909 if (rdev->constraints->initial_state) {
910 ret = suspend_prepare(rdev, rdev->constraints->initial_state);
911 if (ret < 0) {
912 rdev_err(rdev, "failed to set suspend state\n");
913 goto out;
914 }
915 }
916
917 if (rdev->constraints->initial_mode) {
918 if (!ops->set_mode) {
919 rdev_err(rdev, "no set_mode operation\n");
920 ret = -EINVAL;
921 goto out;
922 }
923
924 ret = ops->set_mode(rdev, rdev->constraints->initial_mode);
925 if (ret < 0) {
926 rdev_err(rdev, "failed to set initial mode: %d\n", ret);
927 goto out;
928 }
929 }
930
931 /* If the constraints say the regulator should be on at this point
932 * and we have control then make sure it is enabled.
933 */
934 if ((rdev->constraints->always_on || rdev->constraints->boot_on) &&
935 ops->enable) {
936 ret = ops->enable(rdev);
937 if (ret < 0) {
938 rdev_err(rdev, "failed to enable\n");
939 goto out;
940 }
941 }
942
943 if (rdev->constraints->ramp_delay && ops->set_ramp_delay) {
944 ret = ops->set_ramp_delay(rdev, rdev->constraints->ramp_delay);
945 if (ret < 0) {
946 rdev_err(rdev, "failed to set ramp_delay\n");
947 goto out;
948 }
949 }
950
951 print_constraints(rdev);
952 return 0;
953 out:
954 kfree(rdev->constraints);
955 rdev->constraints = NULL;
956 return ret;
957 }
958
959 /**
960 * set_supply - set regulator supply regulator
961 * @rdev: regulator name
962 * @supply_rdev: supply regulator name
963 *
964 * Called by platform initialisation code to set the supply regulator for this
965 * regulator. This ensures that a regulators supply will also be enabled by the
966 * core if it's child is enabled.
967 */
968 static int set_supply(struct regulator_dev *rdev,
969 struct regulator_dev *supply_rdev)
970 {
971 int err;
972
973 rdev_info(rdev, "supplied by %s\n", rdev_get_name(supply_rdev));
974
975 rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY");
976 if (rdev->supply == NULL) {
977 err = -ENOMEM;
978 return err;
979 }
980 supply_rdev->open_count++;
981
982 return 0;
983 }
984
985 /**
986 * set_consumer_device_supply - Bind a regulator to a symbolic supply
987 * @rdev: regulator source
988 * @consumer_dev_name: dev_name() string for device supply applies to
989 * @supply: symbolic name for supply
990 *
991 * Allows platform initialisation code to map physical regulator
992 * sources to symbolic names for supplies for use by devices. Devices
993 * should use these symbolic names to request regulators, avoiding the
994 * need to provide board-specific regulator names as platform data.
995 */
996 static int set_consumer_device_supply(struct regulator_dev *rdev,
997 const char *consumer_dev_name,
998 const char *supply)
999 {
1000 struct regulator_map *node;
1001 int has_dev;
1002
1003 if (supply == NULL)
1004 return -EINVAL;
1005
1006 if (consumer_dev_name != NULL)
1007 has_dev = 1;
1008 else
1009 has_dev = 0;
1010
1011 list_for_each_entry(node, &regulator_map_list, list) {
1012 if (node->dev_name && consumer_dev_name) {
1013 if (strcmp(node->dev_name, consumer_dev_name) != 0)
1014 continue;
1015 } else if (node->dev_name || consumer_dev_name) {
1016 continue;
1017 }
1018
1019 if (strcmp(node->supply, supply) != 0)
1020 continue;
1021
1022 pr_debug("%s: %s/%s is '%s' supply; fail %s/%s\n",
1023 consumer_dev_name,
1024 dev_name(&node->regulator->dev),
1025 node->regulator->desc->name,
1026 supply,
1027 dev_name(&rdev->dev), rdev_get_name(rdev));
1028 return -EBUSY;
1029 }
1030
1031 node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
1032 if (node == NULL)
1033 return -ENOMEM;
1034
1035 node->regulator = rdev;
1036 node->supply = supply;
1037
1038 if (has_dev) {
1039 node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
1040 if (node->dev_name == NULL) {
1041 kfree(node);
1042 return -ENOMEM;
1043 }
1044 }
1045
1046 list_add(&node->list, &regulator_map_list);
1047 return 0;
1048 }
1049
1050 static void unset_regulator_supplies(struct regulator_dev *rdev)
1051 {
1052 struct regulator_map *node, *n;
1053
1054 list_for_each_entry_safe(node, n, &regulator_map_list, list) {
1055 if (rdev == node->regulator) {
1056 list_del(&node->list);
1057 kfree(node->dev_name);
1058 kfree(node);
1059 }
1060 }
1061 }
1062
1063 #define REG_STR_SIZE 64
1064
1065 static struct regulator *create_regulator(struct regulator_dev *rdev,
1066 struct device *dev,
1067 const char *supply_name)
1068 {
1069 struct regulator *regulator;
1070 char buf[REG_STR_SIZE];
1071 int err, size;
1072
1073 regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
1074 if (regulator == NULL)
1075 return NULL;
1076
1077 mutex_lock(&rdev->mutex);
1078 regulator->rdev = rdev;
1079 list_add(&regulator->list, &rdev->consumer_list);
1080
1081 if (dev) {
1082 regulator->dev = dev;
1083
1084 /* Add a link to the device sysfs entry */
1085 size = scnprintf(buf, REG_STR_SIZE, "%s-%s",
1086 dev->kobj.name, supply_name);
1087 if (size >= REG_STR_SIZE)
1088 goto overflow_err;
1089
1090 regulator->supply_name = kstrdup(buf, GFP_KERNEL);
1091 if (regulator->supply_name == NULL)
1092 goto overflow_err;
1093
1094 err = sysfs_create_link(&rdev->dev.kobj, &dev->kobj,
1095 buf);
1096 if (err) {
1097 rdev_warn(rdev, "could not add device link %s err %d\n",
1098 dev->kobj.name, err);
1099 /* non-fatal */
1100 }
1101 } else {
1102 regulator->supply_name = kstrdup(supply_name, GFP_KERNEL);
1103 if (regulator->supply_name == NULL)
1104 goto overflow_err;
1105 }
1106
1107 regulator->debugfs = debugfs_create_dir(regulator->supply_name,
1108 rdev->debugfs);
1109 if (!regulator->debugfs) {
1110 rdev_warn(rdev, "Failed to create debugfs directory\n");
1111 } else {
1112 debugfs_create_u32("uA_load", 0444, regulator->debugfs,
1113 &regulator->uA_load);
1114 debugfs_create_u32("min_uV", 0444, regulator->debugfs,
1115 &regulator->min_uV);
1116 debugfs_create_u32("max_uV", 0444, regulator->debugfs,
1117 &regulator->max_uV);
1118 }
1119
1120 /*
1121 * Check now if the regulator is an always on regulator - if
1122 * it is then we don't need to do nearly so much work for
1123 * enable/disable calls.
1124 */
1125 if (!_regulator_can_change_status(rdev) &&
1126 _regulator_is_enabled(rdev))
1127 regulator->always_on = true;
1128
1129 mutex_unlock(&rdev->mutex);
1130 return regulator;
1131 overflow_err:
1132 list_del(&regulator->list);
1133 kfree(regulator);
1134 mutex_unlock(&rdev->mutex);
1135 return NULL;
1136 }
1137
1138 static int _regulator_get_enable_time(struct regulator_dev *rdev)
1139 {
1140 if (!rdev->desc->ops->enable_time)
1141 return rdev->desc->enable_time;
1142 return rdev->desc->ops->enable_time(rdev);
1143 }
1144
1145 static struct regulator_dev *regulator_dev_lookup(struct device *dev,
1146 const char *supply,
1147 int *ret)
1148 {
1149 struct regulator_dev *r;
1150 struct device_node *node;
1151 struct regulator_map *map;
1152 const char *devname = NULL;
1153
1154 /* first do a dt based lookup */
1155 if (dev && dev->of_node) {
1156 node = of_get_regulator(dev, supply);
1157 if (node) {
1158 list_for_each_entry(r, &regulator_list, list)
1159 if (r->dev.parent &&
1160 node == r->dev.of_node)
1161 return r;
1162 } else {
1163 /*
1164 * If we couldn't even get the node then it's
1165 * not just that the device didn't register
1166 * yet, there's no node and we'll never
1167 * succeed.
1168 */
1169 *ret = -ENODEV;
1170 }
1171 }
1172
1173 /* if not found, try doing it non-dt way */
1174 if (dev)
1175 devname = dev_name(dev);
1176
1177 list_for_each_entry(r, &regulator_list, list)
1178 if (strcmp(rdev_get_name(r), supply) == 0)
1179 return r;
1180
1181 list_for_each_entry(map, &regulator_map_list, list) {
1182 /* If the mapping has a device set up it must match */
1183 if (map->dev_name &&
1184 (!devname || strcmp(map->dev_name, devname)))
1185 continue;
1186
1187 if (strcmp(map->supply, supply) == 0)
1188 return map->regulator;
1189 }
1190
1191
1192 return NULL;
1193 }
1194
1195 /* Internal regulator request function */
1196 static struct regulator *_regulator_get(struct device *dev, const char *id,
1197 int exclusive)
1198 {
1199 struct regulator_dev *rdev;
1200 struct regulator *regulator = ERR_PTR(-EPROBE_DEFER);
1201 const char *devname = NULL;
1202 int ret;
1203
1204 if (id == NULL) {
1205 pr_err("get() with no identifier\n");
1206 return regulator;
1207 }
1208
1209 if (dev)
1210 devname = dev_name(dev);
1211
1212 mutex_lock(&regulator_list_mutex);
1213
1214 rdev = regulator_dev_lookup(dev, id, &ret);
1215 if (rdev)
1216 goto found;
1217
1218 if (board_wants_dummy_regulator) {
1219 rdev = dummy_regulator_rdev;
1220 goto found;
1221 }
1222
1223 #ifdef CONFIG_REGULATOR_DUMMY
1224 if (!devname)
1225 devname = "deviceless";
1226
1227 /* If the board didn't flag that it was fully constrained then
1228 * substitute in a dummy regulator so consumers can continue.
1229 */
1230 if (!has_full_constraints) {
1231 pr_warn("%s supply %s not found, using dummy regulator\n",
1232 devname, id);
1233 rdev = dummy_regulator_rdev;
1234 goto found;
1235 }
1236 #endif
1237
1238 mutex_unlock(&regulator_list_mutex);
1239 return regulator;
1240
1241 found:
1242 if (rdev->exclusive) {
1243 regulator = ERR_PTR(-EPERM);
1244 goto out;
1245 }
1246
1247 if (exclusive && rdev->open_count) {
1248 regulator = ERR_PTR(-EBUSY);
1249 goto out;
1250 }
1251
1252 if (!try_module_get(rdev->owner))
1253 goto out;
1254
1255 regulator = create_regulator(rdev, dev, id);
1256 if (regulator == NULL) {
1257 regulator = ERR_PTR(-ENOMEM);
1258 module_put(rdev->owner);
1259 goto out;
1260 }
1261
1262 rdev->open_count++;
1263 if (exclusive) {
1264 rdev->exclusive = 1;
1265
1266 ret = _regulator_is_enabled(rdev);
1267 if (ret > 0)
1268 rdev->use_count = 1;
1269 else
1270 rdev->use_count = 0;
1271 }
1272
1273 out:
1274 mutex_unlock(&regulator_list_mutex);
1275
1276 return regulator;
1277 }
1278
1279 /**
1280 * regulator_get - lookup and obtain a reference to a regulator.
1281 * @dev: device for regulator "consumer"
1282 * @id: Supply name or regulator ID.
1283 *
1284 * Returns a struct regulator corresponding to the regulator producer,
1285 * or IS_ERR() condition containing errno.
1286 *
1287 * Use of supply names configured via regulator_set_device_supply() is
1288 * strongly encouraged. It is recommended that the supply name used
1289 * should match the name used for the supply and/or the relevant
1290 * device pins in the datasheet.
1291 */
1292 struct regulator *regulator_get(struct device *dev, const char *id)
1293 {
1294 return _regulator_get(dev, id, 0);
1295 }
1296 EXPORT_SYMBOL_GPL(regulator_get);
1297
1298 static void devm_regulator_release(struct device *dev, void *res)
1299 {
1300 regulator_put(*(struct regulator **)res);
1301 }
1302
1303 /**
1304 * devm_regulator_get - Resource managed regulator_get()
1305 * @dev: device for regulator "consumer"
1306 * @id: Supply name or regulator ID.
1307 *
1308 * Managed regulator_get(). Regulators returned from this function are
1309 * automatically regulator_put() on driver detach. See regulator_get() for more
1310 * information.
1311 */
1312 struct regulator *devm_regulator_get(struct device *dev, const char *id)
1313 {
1314 struct regulator **ptr, *regulator;
1315
1316 ptr = devres_alloc(devm_regulator_release, sizeof(*ptr), GFP_KERNEL);
1317 if (!ptr)
1318 return ERR_PTR(-ENOMEM);
1319
1320 regulator = regulator_get(dev, id);
1321 if (!IS_ERR(regulator)) {
1322 *ptr = regulator;
1323 devres_add(dev, ptr);
1324 } else {
1325 devres_free(ptr);
1326 }
1327
1328 return regulator;
1329 }
1330 EXPORT_SYMBOL_GPL(devm_regulator_get);
1331
1332 /**
1333 * regulator_get_exclusive - obtain exclusive access to a regulator.
1334 * @dev: device for regulator "consumer"
1335 * @id: Supply name or regulator ID.
1336 *
1337 * Returns a struct regulator corresponding to the regulator producer,
1338 * or IS_ERR() condition containing errno. Other consumers will be
1339 * unable to obtain this reference is held and the use count for the
1340 * regulator will be initialised to reflect the current state of the
1341 * regulator.
1342 *
1343 * This is intended for use by consumers which cannot tolerate shared
1344 * use of the regulator such as those which need to force the
1345 * regulator off for correct operation of the hardware they are
1346 * controlling.
1347 *
1348 * Use of supply names configured via regulator_set_device_supply() is
1349 * strongly encouraged. It is recommended that the supply name used
1350 * should match the name used for the supply and/or the relevant
1351 * device pins in the datasheet.
1352 */
1353 struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
1354 {
1355 return _regulator_get(dev, id, 1);
1356 }
1357 EXPORT_SYMBOL_GPL(regulator_get_exclusive);
1358
1359 /**
1360 * regulator_put - "free" the regulator source
1361 * @regulator: regulator source
1362 *
1363 * Note: drivers must ensure that all regulator_enable calls made on this
1364 * regulator source are balanced by regulator_disable calls prior to calling
1365 * this function.
1366 */
1367 void regulator_put(struct regulator *regulator)
1368 {
1369 struct regulator_dev *rdev;
1370
1371 if (regulator == NULL || IS_ERR(regulator))
1372 return;
1373
1374 mutex_lock(&regulator_list_mutex);
1375 rdev = regulator->rdev;
1376
1377 debugfs_remove_recursive(regulator->debugfs);
1378
1379 /* remove any sysfs entries */
1380 if (regulator->dev)
1381 sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
1382 kfree(regulator->supply_name);
1383 list_del(&regulator->list);
1384 kfree(regulator);
1385
1386 rdev->open_count--;
1387 rdev->exclusive = 0;
1388
1389 module_put(rdev->owner);
1390 mutex_unlock(&regulator_list_mutex);
1391 }
1392 EXPORT_SYMBOL_GPL(regulator_put);
1393
1394 static int devm_regulator_match(struct device *dev, void *res, void *data)
1395 {
1396 struct regulator **r = res;
1397 if (!r || !*r) {
1398 WARN_ON(!r || !*r);
1399 return 0;
1400 }
1401 return *r == data;
1402 }
1403
1404 /**
1405 * devm_regulator_put - Resource managed regulator_put()
1406 * @regulator: regulator to free
1407 *
1408 * Deallocate a regulator allocated with devm_regulator_get(). Normally
1409 * this function will not need to be called and the resource management
1410 * code will ensure that the resource is freed.
1411 */
1412 void devm_regulator_put(struct regulator *regulator)
1413 {
1414 int rc;
1415
1416 rc = devres_release(regulator->dev, devm_regulator_release,
1417 devm_regulator_match, regulator);
1418 if (rc != 0)
1419 WARN_ON(rc);
1420 }
1421 EXPORT_SYMBOL_GPL(devm_regulator_put);
1422
1423 static int _regulator_do_enable(struct regulator_dev *rdev)
1424 {
1425 int ret, delay;
1426
1427 /* Query before enabling in case configuration dependent. */
1428 ret = _regulator_get_enable_time(rdev);
1429 if (ret >= 0) {
1430 delay = ret;
1431 } else {
1432 rdev_warn(rdev, "enable_time() failed: %d\n", ret);
1433 delay = 0;
1434 }
1435
1436 trace_regulator_enable(rdev_get_name(rdev));
1437
1438 if (rdev->ena_gpio) {
1439 gpio_set_value_cansleep(rdev->ena_gpio,
1440 !rdev->ena_gpio_invert);
1441 rdev->ena_gpio_state = 1;
1442 } else if (rdev->desc->ops->enable) {
1443 ret = rdev->desc->ops->enable(rdev);
1444 if (ret < 0)
1445 return ret;
1446 } else {
1447 return -EINVAL;
1448 }
1449
1450 /* Allow the regulator to ramp; it would be useful to extend
1451 * this for bulk operations so that the regulators can ramp
1452 * together. */
1453 trace_regulator_enable_delay(rdev_get_name(rdev));
1454
1455 if (delay >= 1000) {
1456 mdelay(delay / 1000);
1457 udelay(delay % 1000);
1458 } else if (delay) {
1459 udelay(delay);
1460 }
1461
1462 trace_regulator_enable_complete(rdev_get_name(rdev));
1463
1464 return 0;
1465 }
1466
1467 /* locks held by regulator_enable() */
1468 static int _regulator_enable(struct regulator_dev *rdev)
1469 {
1470 int ret;
1471
1472 /* check voltage and requested load before enabling */
1473 if (rdev->constraints &&
1474 (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS))
1475 drms_uA_update(rdev);
1476
1477 if (rdev->use_count == 0) {
1478 /* The regulator may on if it's not switchable or left on */
1479 ret = _regulator_is_enabled(rdev);
1480 if (ret == -EINVAL || ret == 0) {
1481 if (!_regulator_can_change_status(rdev))
1482 return -EPERM;
1483
1484 ret = _regulator_do_enable(rdev);
1485 if (ret < 0)
1486 return ret;
1487
1488 } else if (ret < 0) {
1489 rdev_err(rdev, "is_enabled() failed: %d\n", ret);
1490 return ret;
1491 }
1492 /* Fallthrough on positive return values - already enabled */
1493 }
1494
1495 rdev->use_count++;
1496
1497 return 0;
1498 }
1499
1500 /**
1501 * regulator_enable - enable regulator output
1502 * @regulator: regulator source
1503 *
1504 * Request that the regulator be enabled with the regulator output at
1505 * the predefined voltage or current value. Calls to regulator_enable()
1506 * must be balanced with calls to regulator_disable().
1507 *
1508 * NOTE: the output value can be set by other drivers, boot loader or may be
1509 * hardwired in the regulator.
1510 */
1511 int regulator_enable(struct regulator *regulator)
1512 {
1513 struct regulator_dev *rdev = regulator->rdev;
1514 int ret = 0;
1515
1516 if (regulator->always_on)
1517 return 0;
1518
1519 if (rdev->supply) {
1520 ret = regulator_enable(rdev->supply);
1521 if (ret != 0)
1522 return ret;
1523 }
1524
1525 mutex_lock(&rdev->mutex);
1526 ret = _regulator_enable(rdev);
1527 mutex_unlock(&rdev->mutex);
1528
1529 if (ret != 0 && rdev->supply)
1530 regulator_disable(rdev->supply);
1531
1532 return ret;
1533 }
1534 EXPORT_SYMBOL_GPL(regulator_enable);
1535
1536 static int _regulator_do_disable(struct regulator_dev *rdev)
1537 {
1538 int ret;
1539
1540 trace_regulator_disable(rdev_get_name(rdev));
1541
1542 if (rdev->ena_gpio) {
1543 gpio_set_value_cansleep(rdev->ena_gpio,
1544 rdev->ena_gpio_invert);
1545 rdev->ena_gpio_state = 0;
1546
1547 } else if (rdev->desc->ops->disable) {
1548 ret = rdev->desc->ops->disable(rdev);
1549 if (ret != 0)
1550 return ret;
1551 }
1552
1553 trace_regulator_disable_complete(rdev_get_name(rdev));
1554
1555 _notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
1556 NULL);
1557 return 0;
1558 }
1559
1560 /* locks held by regulator_disable() */
1561 static int _regulator_disable(struct regulator_dev *rdev)
1562 {
1563 int ret = 0;
1564
1565 if (WARN(rdev->use_count <= 0,
1566 "unbalanced disables for %s\n", rdev_get_name(rdev)))
1567 return -EIO;
1568
1569 /* are we the last user and permitted to disable ? */
1570 if (rdev->use_count == 1 &&
1571 (rdev->constraints && !rdev->constraints->always_on)) {
1572
1573 /* we are last user */
1574 if (_regulator_can_change_status(rdev)) {
1575 ret = _regulator_do_disable(rdev);
1576 if (ret < 0) {
1577 rdev_err(rdev, "failed to disable\n");
1578 return ret;
1579 }
1580 }
1581
1582 rdev->use_count = 0;
1583 } else if (rdev->use_count > 1) {
1584
1585 if (rdev->constraints &&
1586 (rdev->constraints->valid_ops_mask &
1587 REGULATOR_CHANGE_DRMS))
1588 drms_uA_update(rdev);
1589
1590 rdev->use_count--;
1591 }
1592
1593 return ret;
1594 }
1595
1596 /**
1597 * regulator_disable - disable regulator output
1598 * @regulator: regulator source
1599 *
1600 * Disable the regulator output voltage or current. Calls to
1601 * regulator_enable() must be balanced with calls to
1602 * regulator_disable().
1603 *
1604 * NOTE: this will only disable the regulator output if no other consumer
1605 * devices have it enabled, the regulator device supports disabling and
1606 * machine constraints permit this operation.
1607 */
1608 int regulator_disable(struct regulator *regulator)
1609 {
1610 struct regulator_dev *rdev = regulator->rdev;
1611 int ret = 0;
1612
1613 if (regulator->always_on)
1614 return 0;
1615
1616 mutex_lock(&rdev->mutex);
1617 ret = _regulator_disable(rdev);
1618 mutex_unlock(&rdev->mutex);
1619
1620 if (ret == 0 && rdev->supply)
1621 regulator_disable(rdev->supply);
1622
1623 return ret;
1624 }
1625 EXPORT_SYMBOL_GPL(regulator_disable);
1626
1627 /* locks held by regulator_force_disable() */
1628 static int _regulator_force_disable(struct regulator_dev *rdev)
1629 {
1630 int ret = 0;
1631
1632 /* force disable */
1633 if (rdev->desc->ops->disable) {
1634 /* ah well, who wants to live forever... */
1635 ret = rdev->desc->ops->disable(rdev);
1636 if (ret < 0) {
1637 rdev_err(rdev, "failed to force disable\n");
1638 return ret;
1639 }
1640 /* notify other consumers that power has been forced off */
1641 _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
1642 REGULATOR_EVENT_DISABLE, NULL);
1643 }
1644
1645 return ret;
1646 }
1647
1648 /**
1649 * regulator_force_disable - force disable regulator output
1650 * @regulator: regulator source
1651 *
1652 * Forcibly disable the regulator output voltage or current.
1653 * NOTE: this *will* disable the regulator output even if other consumer
1654 * devices have it enabled. This should be used for situations when device
1655 * damage will likely occur if the regulator is not disabled (e.g. over temp).
1656 */
1657 int regulator_force_disable(struct regulator *regulator)
1658 {
1659 struct regulator_dev *rdev = regulator->rdev;
1660 int ret;
1661
1662 mutex_lock(&rdev->mutex);
1663 regulator->uA_load = 0;
1664 ret = _regulator_force_disable(regulator->rdev);
1665 mutex_unlock(&rdev->mutex);
1666
1667 if (rdev->supply)
1668 while (rdev->open_count--)
1669 regulator_disable(rdev->supply);
1670
1671 return ret;
1672 }
1673 EXPORT_SYMBOL_GPL(regulator_force_disable);
1674
1675 static void regulator_disable_work(struct work_struct *work)
1676 {
1677 struct regulator_dev *rdev = container_of(work, struct regulator_dev,
1678 disable_work.work);
1679 int count, i, ret;
1680
1681 mutex_lock(&rdev->mutex);
1682
1683 BUG_ON(!rdev->deferred_disables);
1684
1685 count = rdev->deferred_disables;
1686 rdev->deferred_disables = 0;
1687
1688 for (i = 0; i < count; i++) {
1689 ret = _regulator_disable(rdev);
1690 if (ret != 0)
1691 rdev_err(rdev, "Deferred disable failed: %d\n", ret);
1692 }
1693
1694 mutex_unlock(&rdev->mutex);
1695
1696 if (rdev->supply) {
1697 for (i = 0; i < count; i++) {
1698 ret = regulator_disable(rdev->supply);
1699 if (ret != 0) {
1700 rdev_err(rdev,
1701 "Supply disable failed: %d\n", ret);
1702 }
1703 }
1704 }
1705 }
1706
1707 /**
1708 * regulator_disable_deferred - disable regulator output with delay
1709 * @regulator: regulator source
1710 * @ms: miliseconds until the regulator is disabled
1711 *
1712 * Execute regulator_disable() on the regulator after a delay. This
1713 * is intended for use with devices that require some time to quiesce.
1714 *
1715 * NOTE: this will only disable the regulator output if no other consumer
1716 * devices have it enabled, the regulator device supports disabling and
1717 * machine constraints permit this operation.
1718 */
1719 int regulator_disable_deferred(struct regulator *regulator, int ms)
1720 {
1721 struct regulator_dev *rdev = regulator->rdev;
1722 int ret;
1723
1724 if (regulator->always_on)
1725 return 0;
1726
1727 mutex_lock(&rdev->mutex);
1728 rdev->deferred_disables++;
1729 mutex_unlock(&rdev->mutex);
1730
1731 ret = schedule_delayed_work(&rdev->disable_work,
1732 msecs_to_jiffies(ms));
1733 if (ret < 0)
1734 return ret;
1735 else
1736 return 0;
1737 }
1738 EXPORT_SYMBOL_GPL(regulator_disable_deferred);
1739
1740 /**
1741 * regulator_is_enabled_regmap - standard is_enabled() for regmap users
1742 *
1743 * @rdev: regulator to operate on
1744 *
1745 * Regulators that use regmap for their register I/O can set the
1746 * enable_reg and enable_mask fields in their descriptor and then use
1747 * this as their is_enabled operation, saving some code.
1748 */
1749 int regulator_is_enabled_regmap(struct regulator_dev *rdev)
1750 {
1751 unsigned int val;
1752 int ret;
1753
1754 ret = regmap_read(rdev->regmap, rdev->desc->enable_reg, &val);
1755 if (ret != 0)
1756 return ret;
1757
1758 return (val & rdev->desc->enable_mask) != 0;
1759 }
1760 EXPORT_SYMBOL_GPL(regulator_is_enabled_regmap);
1761
1762 /**
1763 * regulator_enable_regmap - standard enable() for regmap users
1764 *
1765 * @rdev: regulator to operate on
1766 *
1767 * Regulators that use regmap for their register I/O can set the
1768 * enable_reg and enable_mask fields in their descriptor and then use
1769 * this as their enable() operation, saving some code.
1770 */
1771 int regulator_enable_regmap(struct regulator_dev *rdev)
1772 {
1773 return regmap_update_bits(rdev->regmap, rdev->desc->enable_reg,
1774 rdev->desc->enable_mask,
1775 rdev->desc->enable_mask);
1776 }
1777 EXPORT_SYMBOL_GPL(regulator_enable_regmap);
1778
1779 /**
1780 * regulator_disable_regmap - standard disable() for regmap users
1781 *
1782 * @rdev: regulator to operate on
1783 *
1784 * Regulators that use regmap for their register I/O can set the
1785 * enable_reg and enable_mask fields in their descriptor and then use
1786 * this as their disable() operation, saving some code.
1787 */
1788 int regulator_disable_regmap(struct regulator_dev *rdev)
1789 {
1790 return regmap_update_bits(rdev->regmap, rdev->desc->enable_reg,
1791 rdev->desc->enable_mask, 0);
1792 }
1793 EXPORT_SYMBOL_GPL(regulator_disable_regmap);
1794
1795 static int _regulator_is_enabled(struct regulator_dev *rdev)
1796 {
1797 /* A GPIO control always takes precedence */
1798 if (rdev->ena_gpio)
1799 return rdev->ena_gpio_state;
1800
1801 /* If we don't know then assume that the regulator is always on */
1802 if (!rdev->desc->ops->is_enabled)
1803 return 1;
1804
1805 return rdev->desc->ops->is_enabled(rdev);
1806 }
1807
1808 /**
1809 * regulator_is_enabled - is the regulator output enabled
1810 * @regulator: regulator source
1811 *
1812 * Returns positive if the regulator driver backing the source/client
1813 * has requested that the device be enabled, zero if it hasn't, else a
1814 * negative errno code.
1815 *
1816 * Note that the device backing this regulator handle can have multiple
1817 * users, so it might be enabled even if regulator_enable() was never
1818 * called for this particular source.
1819 */
1820 int regulator_is_enabled(struct regulator *regulator)
1821 {
1822 int ret;
1823
1824 if (regulator->always_on)
1825 return 1;
1826
1827 mutex_lock(&regulator->rdev->mutex);
1828 ret = _regulator_is_enabled(regulator->rdev);
1829 mutex_unlock(&regulator->rdev->mutex);
1830
1831 return ret;
1832 }
1833 EXPORT_SYMBOL_GPL(regulator_is_enabled);
1834
1835 /**
1836 * regulator_count_voltages - count regulator_list_voltage() selectors
1837 * @regulator: regulator source
1838 *
1839 * Returns number of selectors, or negative errno. Selectors are
1840 * numbered starting at zero, and typically correspond to bitfields
1841 * in hardware registers.
1842 */
1843 int regulator_count_voltages(struct regulator *regulator)
1844 {
1845 struct regulator_dev *rdev = regulator->rdev;
1846
1847 return rdev->desc->n_voltages ? : -EINVAL;
1848 }
1849 EXPORT_SYMBOL_GPL(regulator_count_voltages);
1850
1851 /**
1852 * regulator_list_voltage_linear - List voltages with simple calculation
1853 *
1854 * @rdev: Regulator device
1855 * @selector: Selector to convert into a voltage
1856 *
1857 * Regulators with a simple linear mapping between voltages and
1858 * selectors can set min_uV and uV_step in the regulator descriptor
1859 * and then use this function as their list_voltage() operation,
1860 */
1861 int regulator_list_voltage_linear(struct regulator_dev *rdev,
1862 unsigned int selector)
1863 {
1864 if (selector >= rdev->desc->n_voltages)
1865 return -EINVAL;
1866
1867 return rdev->desc->min_uV + (rdev->desc->uV_step * selector);
1868 }
1869 EXPORT_SYMBOL_GPL(regulator_list_voltage_linear);
1870
1871 /**
1872 * regulator_list_voltage_table - List voltages with table based mapping
1873 *
1874 * @rdev: Regulator device
1875 * @selector: Selector to convert into a voltage
1876 *
1877 * Regulators with table based mapping between voltages and
1878 * selectors can set volt_table in the regulator descriptor
1879 * and then use this function as their list_voltage() operation.
1880 */
1881 int regulator_list_voltage_table(struct regulator_dev *rdev,
1882 unsigned int selector)
1883 {
1884 if (!rdev->desc->volt_table) {
1885 BUG_ON(!rdev->desc->volt_table);
1886 return -EINVAL;
1887 }
1888
1889 if (selector >= rdev->desc->n_voltages)
1890 return -EINVAL;
1891
1892 return rdev->desc->volt_table[selector];
1893 }
1894 EXPORT_SYMBOL_GPL(regulator_list_voltage_table);
1895
1896 /**
1897 * regulator_list_voltage - enumerate supported voltages
1898 * @regulator: regulator source
1899 * @selector: identify voltage to list
1900 * Context: can sleep
1901 *
1902 * Returns a voltage that can be passed to @regulator_set_voltage(),
1903 * zero if this selector code can't be used on this system, or a
1904 * negative errno.
1905 */
1906 int regulator_list_voltage(struct regulator *regulator, unsigned selector)
1907 {
1908 struct regulator_dev *rdev = regulator->rdev;
1909 struct regulator_ops *ops = rdev->desc->ops;
1910 int ret;
1911
1912 if (!ops->list_voltage || selector >= rdev->desc->n_voltages)
1913 return -EINVAL;
1914
1915 mutex_lock(&rdev->mutex);
1916 ret = ops->list_voltage(rdev, selector);
1917 mutex_unlock(&rdev->mutex);
1918
1919 if (ret > 0) {
1920 if (ret < rdev->constraints->min_uV)
1921 ret = 0;
1922 else if (ret > rdev->constraints->max_uV)
1923 ret = 0;
1924 }
1925
1926 return ret;
1927 }
1928 EXPORT_SYMBOL_GPL(regulator_list_voltage);
1929
1930 /**
1931 * regulator_is_supported_voltage - check if a voltage range can be supported
1932 *
1933 * @regulator: Regulator to check.
1934 * @min_uV: Minimum required voltage in uV.
1935 * @max_uV: Maximum required voltage in uV.
1936 *
1937 * Returns a boolean or a negative error code.
1938 */
1939 int regulator_is_supported_voltage(struct regulator *regulator,
1940 int min_uV, int max_uV)
1941 {
1942 struct regulator_dev *rdev = regulator->rdev;
1943 int i, voltages, ret;
1944
1945 /* If we can't change voltage check the current voltage */
1946 if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
1947 ret = regulator_get_voltage(regulator);
1948 if (ret >= 0)
1949 return (min_uV >= ret && ret <= max_uV);
1950 else
1951 return ret;
1952 }
1953
1954 ret = regulator_count_voltages(regulator);
1955 if (ret < 0)
1956 return ret;
1957 voltages = ret;
1958
1959 for (i = 0; i < voltages; i++) {
1960 ret = regulator_list_voltage(regulator, i);
1961
1962 if (ret >= min_uV && ret <= max_uV)
1963 return 1;
1964 }
1965
1966 return 0;
1967 }
1968 EXPORT_SYMBOL_GPL(regulator_is_supported_voltage);
1969
1970 /**
1971 * regulator_get_voltage_sel_regmap - standard get_voltage_sel for regmap users
1972 *
1973 * @rdev: regulator to operate on
1974 *
1975 * Regulators that use regmap for their register I/O can set the
1976 * vsel_reg and vsel_mask fields in their descriptor and then use this
1977 * as their get_voltage_vsel operation, saving some code.
1978 */
1979 int regulator_get_voltage_sel_regmap(struct regulator_dev *rdev)
1980 {
1981 unsigned int val;
1982 int ret;
1983
1984 ret = regmap_read(rdev->regmap, rdev->desc->vsel_reg, &val);
1985 if (ret != 0)
1986 return ret;
1987
1988 val &= rdev->desc->vsel_mask;
1989 val >>= ffs(rdev->desc->vsel_mask) - 1;
1990
1991 return val;
1992 }
1993 EXPORT_SYMBOL_GPL(regulator_get_voltage_sel_regmap);
1994
1995 /**
1996 * regulator_set_voltage_sel_regmap - standard set_voltage_sel for regmap users
1997 *
1998 * @rdev: regulator to operate on
1999 * @sel: Selector to set
2000 *
2001 * Regulators that use regmap for their register I/O can set the
2002 * vsel_reg and vsel_mask fields in their descriptor and then use this
2003 * as their set_voltage_vsel operation, saving some code.
2004 */
2005 int regulator_set_voltage_sel_regmap(struct regulator_dev *rdev, unsigned sel)
2006 {
2007 sel <<= ffs(rdev->desc->vsel_mask) - 1;
2008
2009 return regmap_update_bits(rdev->regmap, rdev->desc->vsel_reg,
2010 rdev->desc->vsel_mask, sel);
2011 }
2012 EXPORT_SYMBOL_GPL(regulator_set_voltage_sel_regmap);
2013
2014 /**
2015 * regulator_map_voltage_iterate - map_voltage() based on list_voltage()
2016 *
2017 * @rdev: Regulator to operate on
2018 * @min_uV: Lower bound for voltage
2019 * @max_uV: Upper bound for voltage
2020 *
2021 * Drivers implementing set_voltage_sel() and list_voltage() can use
2022 * this as their map_voltage() operation. It will find a suitable
2023 * voltage by calling list_voltage() until it gets something in bounds
2024 * for the requested voltages.
2025 */
2026 int regulator_map_voltage_iterate(struct regulator_dev *rdev,
2027 int min_uV, int max_uV)
2028 {
2029 int best_val = INT_MAX;
2030 int selector = 0;
2031 int i, ret;
2032
2033 /* Find the smallest voltage that falls within the specified
2034 * range.
2035 */
2036 for (i = 0; i < rdev->desc->n_voltages; i++) {
2037 ret = rdev->desc->ops->list_voltage(rdev, i);
2038 if (ret < 0)
2039 continue;
2040
2041 if (ret < best_val && ret >= min_uV && ret <= max_uV) {
2042 best_val = ret;
2043 selector = i;
2044 }
2045 }
2046
2047 if (best_val != INT_MAX)
2048 return selector;
2049 else
2050 return -EINVAL;
2051 }
2052 EXPORT_SYMBOL_GPL(regulator_map_voltage_iterate);
2053
2054 /**
2055 * regulator_map_voltage_linear - map_voltage() for simple linear mappings
2056 *
2057 * @rdev: Regulator to operate on
2058 * @min_uV: Lower bound for voltage
2059 * @max_uV: Upper bound for voltage
2060 *
2061 * Drivers providing min_uV and uV_step in their regulator_desc can
2062 * use this as their map_voltage() operation.
2063 */
2064 int regulator_map_voltage_linear(struct regulator_dev *rdev,
2065 int min_uV, int max_uV)
2066 {
2067 int ret, voltage;
2068
2069 /* Allow uV_step to be 0 for fixed voltage */
2070 if (rdev->desc->n_voltages == 1 && rdev->desc->uV_step == 0) {
2071 if (min_uV <= rdev->desc->min_uV && rdev->desc->min_uV <= max_uV)
2072 return 0;
2073 else
2074 return -EINVAL;
2075 }
2076
2077 if (!rdev->desc->uV_step) {
2078 BUG_ON(!rdev->desc->uV_step);
2079 return -EINVAL;
2080 }
2081
2082 if (min_uV < rdev->desc->min_uV)
2083 min_uV = rdev->desc->min_uV;
2084
2085 ret = DIV_ROUND_UP(min_uV - rdev->desc->min_uV, rdev->desc->uV_step);
2086 if (ret < 0)
2087 return ret;
2088
2089 /* Map back into a voltage to verify we're still in bounds */
2090 voltage = rdev->desc->ops->list_voltage(rdev, ret);
2091 if (voltage < min_uV || voltage > max_uV)
2092 return -EINVAL;
2093
2094 return ret;
2095 }
2096 EXPORT_SYMBOL_GPL(regulator_map_voltage_linear);
2097
2098 static int _regulator_do_set_voltage(struct regulator_dev *rdev,
2099 int min_uV, int max_uV)
2100 {
2101 int ret;
2102 int delay = 0;
2103 int best_val = 0;
2104 unsigned int selector;
2105 int old_selector = -1;
2106
2107 trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV);
2108
2109 min_uV += rdev->constraints->uV_offset;
2110 max_uV += rdev->constraints->uV_offset;
2111
2112 /*
2113 * If we can't obtain the old selector there is not enough
2114 * info to call set_voltage_time_sel().
2115 */
2116 if (_regulator_is_enabled(rdev) &&
2117 rdev->desc->ops->set_voltage_time_sel &&
2118 rdev->desc->ops->get_voltage_sel) {
2119 old_selector = rdev->desc->ops->get_voltage_sel(rdev);
2120 if (old_selector < 0)
2121 return old_selector;
2122 }
2123
2124 if (rdev->desc->ops->set_voltage) {
2125 ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV,
2126 &selector);
2127
2128 if (ret >= 0) {
2129 if (rdev->desc->ops->list_voltage)
2130 best_val = rdev->desc->ops->list_voltage(rdev,
2131 selector);
2132 else
2133 best_val = _regulator_get_voltage(rdev);
2134 }
2135
2136 } else if (rdev->desc->ops->set_voltage_sel) {
2137 if (rdev->desc->ops->map_voltage) {
2138 ret = rdev->desc->ops->map_voltage(rdev, min_uV,
2139 max_uV);
2140 } else {
2141 if (rdev->desc->ops->list_voltage ==
2142 regulator_list_voltage_linear)
2143 ret = regulator_map_voltage_linear(rdev,
2144 min_uV, max_uV);
2145 else
2146 ret = regulator_map_voltage_iterate(rdev,
2147 min_uV, max_uV);
2148 }
2149
2150 if (ret >= 0) {
2151 best_val = rdev->desc->ops->list_voltage(rdev, ret);
2152 if (min_uV <= best_val && max_uV >= best_val) {
2153 selector = ret;
2154 ret = rdev->desc->ops->set_voltage_sel(rdev,
2155 ret);
2156 } else {
2157 ret = -EINVAL;
2158 }
2159 }
2160 } else {
2161 ret = -EINVAL;
2162 }
2163
2164 /* Call set_voltage_time_sel if successfully obtained old_selector */
2165 if (ret == 0 && _regulator_is_enabled(rdev) && old_selector >= 0 &&
2166 rdev->desc->ops->set_voltage_time_sel) {
2167
2168 delay = rdev->desc->ops->set_voltage_time_sel(rdev,
2169 old_selector, selector);
2170 if (delay < 0) {
2171 rdev_warn(rdev, "set_voltage_time_sel() failed: %d\n",
2172 delay);
2173 delay = 0;
2174 }
2175
2176 /* Insert any necessary delays */
2177 if (delay >= 1000) {
2178 mdelay(delay / 1000);
2179 udelay(delay % 1000);
2180 } else if (delay) {
2181 udelay(delay);
2182 }
2183 }
2184
2185 if (ret == 0 && best_val >= 0) {
2186 unsigned long data = best_val;
2187
2188 _notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE,
2189 (void *)data);
2190 }
2191
2192 trace_regulator_set_voltage_complete(rdev_get_name(rdev), best_val);
2193
2194 return ret;
2195 }
2196
2197 /**
2198 * regulator_set_voltage - set regulator output voltage
2199 * @regulator: regulator source
2200 * @min_uV: Minimum required voltage in uV
2201 * @max_uV: Maximum acceptable voltage in uV
2202 *
2203 * Sets a voltage regulator to the desired output voltage. This can be set
2204 * during any regulator state. IOW, regulator can be disabled or enabled.
2205 *
2206 * If the regulator is enabled then the voltage will change to the new value
2207 * immediately otherwise if the regulator is disabled the regulator will
2208 * output at the new voltage when enabled.
2209 *
2210 * NOTE: If the regulator is shared between several devices then the lowest
2211 * request voltage that meets the system constraints will be used.
2212 * Regulator system constraints must be set for this regulator before
2213 * calling this function otherwise this call will fail.
2214 */
2215 int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
2216 {
2217 struct regulator_dev *rdev = regulator->rdev;
2218 int ret = 0;
2219
2220 mutex_lock(&rdev->mutex);
2221
2222 /* If we're setting the same range as last time the change
2223 * should be a noop (some cpufreq implementations use the same
2224 * voltage for multiple frequencies, for example).
2225 */
2226 if (regulator->min_uV == min_uV && regulator->max_uV == max_uV)
2227 goto out;
2228
2229 /* sanity check */
2230 if (!rdev->desc->ops->set_voltage &&
2231 !rdev->desc->ops->set_voltage_sel) {
2232 ret = -EINVAL;
2233 goto out;
2234 }
2235
2236 /* constraints check */
2237 ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
2238 if (ret < 0)
2239 goto out;
2240 regulator->min_uV = min_uV;
2241 regulator->max_uV = max_uV;
2242
2243 ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
2244 if (ret < 0)
2245 goto out;
2246
2247 ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
2248
2249 out:
2250 mutex_unlock(&rdev->mutex);
2251 return ret;
2252 }
2253 EXPORT_SYMBOL_GPL(regulator_set_voltage);
2254
2255 /**
2256 * regulator_set_voltage_time - get raise/fall time
2257 * @regulator: regulator source
2258 * @old_uV: starting voltage in microvolts
2259 * @new_uV: target voltage in microvolts
2260 *
2261 * Provided with the starting and ending voltage, this function attempts to
2262 * calculate the time in microseconds required to rise or fall to this new
2263 * voltage.
2264 */
2265 int regulator_set_voltage_time(struct regulator *regulator,
2266 int old_uV, int new_uV)
2267 {
2268 struct regulator_dev *rdev = regulator->rdev;
2269 struct regulator_ops *ops = rdev->desc->ops;
2270 int old_sel = -1;
2271 int new_sel = -1;
2272 int voltage;
2273 int i;
2274
2275 /* Currently requires operations to do this */
2276 if (!ops->list_voltage || !ops->set_voltage_time_sel
2277 || !rdev->desc->n_voltages)
2278 return -EINVAL;
2279
2280 for (i = 0; i < rdev->desc->n_voltages; i++) {
2281 /* We only look for exact voltage matches here */
2282 voltage = regulator_list_voltage(regulator, i);
2283 if (voltage < 0)
2284 return -EINVAL;
2285 if (voltage == 0)
2286 continue;
2287 if (voltage == old_uV)
2288 old_sel = i;
2289 if (voltage == new_uV)
2290 new_sel = i;
2291 }
2292
2293 if (old_sel < 0 || new_sel < 0)
2294 return -EINVAL;
2295
2296 return ops->set_voltage_time_sel(rdev, old_sel, new_sel);
2297 }
2298 EXPORT_SYMBOL_GPL(regulator_set_voltage_time);
2299
2300 /**
2301 *regulator_set_voltage_time_sel - get raise/fall time
2302 * @regulator: regulator source
2303 * @old_selector: selector for starting voltage
2304 * @new_selector: selector for target voltage
2305 *
2306 * Provided with the starting and target voltage selectors, this function
2307 * returns time in microseconds required to rise or fall to this new voltage
2308 *
2309 * Drivers providing ramp_delay in regulation_constraints can use this as their
2310 * set_voltage_time_sel() operation.
2311 */
2312 int regulator_set_voltage_time_sel(struct regulator_dev *rdev,
2313 unsigned int old_selector,
2314 unsigned int new_selector)
2315 {
2316 unsigned int ramp_delay = 0;
2317 int old_volt, new_volt;
2318
2319 if (rdev->constraints->ramp_delay)
2320 ramp_delay = rdev->constraints->ramp_delay;
2321 else if (rdev->desc->ramp_delay)
2322 ramp_delay = rdev->desc->ramp_delay;
2323
2324 if (ramp_delay == 0) {
2325 rdev_warn(rdev, "ramp_delay not set\n");
2326 return 0;
2327 }
2328
2329 /* sanity check */
2330 if (!rdev->desc->ops->list_voltage)
2331 return -EINVAL;
2332
2333 old_volt = rdev->desc->ops->list_voltage(rdev, old_selector);
2334 new_volt = rdev->desc->ops->list_voltage(rdev, new_selector);
2335
2336 return DIV_ROUND_UP(abs(new_volt - old_volt), ramp_delay);
2337 }
2338 EXPORT_SYMBOL_GPL(regulator_set_voltage_time_sel);
2339
2340 /**
2341 * regulator_sync_voltage - re-apply last regulator output voltage
2342 * @regulator: regulator source
2343 *
2344 * Re-apply the last configured voltage. This is intended to be used
2345 * where some external control source the consumer is cooperating with
2346 * has caused the configured voltage to change.
2347 */
2348 int regulator_sync_voltage(struct regulator *regulator)
2349 {
2350 struct regulator_dev *rdev = regulator->rdev;
2351 int ret, min_uV, max_uV;
2352
2353 mutex_lock(&rdev->mutex);
2354
2355 if (!rdev->desc->ops->set_voltage &&
2356 !rdev->desc->ops->set_voltage_sel) {
2357 ret = -EINVAL;
2358 goto out;
2359 }
2360
2361 /* This is only going to work if we've had a voltage configured. */
2362 if (!regulator->min_uV && !regulator->max_uV) {
2363 ret = -EINVAL;
2364 goto out;
2365 }
2366
2367 min_uV = regulator->min_uV;
2368 max_uV = regulator->max_uV;
2369
2370 /* This should be a paranoia check... */
2371 ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
2372 if (ret < 0)
2373 goto out;
2374
2375 ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
2376 if (ret < 0)
2377 goto out;
2378
2379 ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
2380
2381 out:
2382 mutex_unlock(&rdev->mutex);
2383 return ret;
2384 }
2385 EXPORT_SYMBOL_GPL(regulator_sync_voltage);
2386
2387 static int _regulator_get_voltage(struct regulator_dev *rdev)
2388 {
2389 int sel, ret;
2390
2391 if (rdev->desc->ops->get_voltage_sel) {
2392 sel = rdev->desc->ops->get_voltage_sel(rdev);
2393 if (sel < 0)
2394 return sel;
2395 ret = rdev->desc->ops->list_voltage(rdev, sel);
2396 } else if (rdev->desc->ops->get_voltage) {
2397 ret = rdev->desc->ops->get_voltage(rdev);
2398 } else if (rdev->desc->ops->list_voltage) {
2399 ret = rdev->desc->ops->list_voltage(rdev, 0);
2400 } else {
2401 return -EINVAL;
2402 }
2403
2404 if (ret < 0)
2405 return ret;
2406 return ret - rdev->constraints->uV_offset;
2407 }
2408
2409 /**
2410 * regulator_get_voltage - get regulator output voltage
2411 * @regulator: regulator source
2412 *
2413 * This returns the current regulator voltage in uV.
2414 *
2415 * NOTE: If the regulator is disabled it will return the voltage value. This
2416 * function should not be used to determine regulator state.
2417 */
2418 int regulator_get_voltage(struct regulator *regulator)
2419 {
2420 int ret;
2421
2422 mutex_lock(&regulator->rdev->mutex);
2423
2424 ret = _regulator_get_voltage(regulator->rdev);
2425
2426 mutex_unlock(&regulator->rdev->mutex);
2427
2428 return ret;
2429 }
2430 EXPORT_SYMBOL_GPL(regulator_get_voltage);
2431
2432 /**
2433 * regulator_set_current_limit - set regulator output current limit
2434 * @regulator: regulator source
2435 * @min_uA: Minimuum supported current in uA
2436 * @max_uA: Maximum supported current in uA
2437 *
2438 * Sets current sink to the desired output current. This can be set during
2439 * any regulator state. IOW, regulator can be disabled or enabled.
2440 *
2441 * If the regulator is enabled then the current will change to the new value
2442 * immediately otherwise if the regulator is disabled the regulator will
2443 * output at the new current when enabled.
2444 *
2445 * NOTE: Regulator system constraints must be set for this regulator before
2446 * calling this function otherwise this call will fail.
2447 */
2448 int regulator_set_current_limit(struct regulator *regulator,
2449 int min_uA, int max_uA)
2450 {
2451 struct regulator_dev *rdev = regulator->rdev;
2452 int ret;
2453
2454 mutex_lock(&rdev->mutex);
2455
2456 /* sanity check */
2457 if (!rdev->desc->ops->set_current_limit) {
2458 ret = -EINVAL;
2459 goto out;
2460 }
2461
2462 /* constraints check */
2463 ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
2464 if (ret < 0)
2465 goto out;
2466
2467 ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
2468 out:
2469 mutex_unlock(&rdev->mutex);
2470 return ret;
2471 }
2472 EXPORT_SYMBOL_GPL(regulator_set_current_limit);
2473
2474 static int _regulator_get_current_limit(struct regulator_dev *rdev)
2475 {
2476 int ret;
2477
2478 mutex_lock(&rdev->mutex);
2479
2480 /* sanity check */
2481 if (!rdev->desc->ops->get_current_limit) {
2482 ret = -EINVAL;
2483 goto out;
2484 }
2485
2486 ret = rdev->desc->ops->get_current_limit(rdev);
2487 out:
2488 mutex_unlock(&rdev->mutex);
2489 return ret;
2490 }
2491
2492 /**
2493 * regulator_get_current_limit - get regulator output current
2494 * @regulator: regulator source
2495 *
2496 * This returns the current supplied by the specified current sink in uA.
2497 *
2498 * NOTE: If the regulator is disabled it will return the current value. This
2499 * function should not be used to determine regulator state.
2500 */
2501 int regulator_get_current_limit(struct regulator *regulator)
2502 {
2503 return _regulator_get_current_limit(regulator->rdev);
2504 }
2505 EXPORT_SYMBOL_GPL(regulator_get_current_limit);
2506
2507 /**
2508 * regulator_set_mode - set regulator operating mode
2509 * @regulator: regulator source
2510 * @mode: operating mode - one of the REGULATOR_MODE constants
2511 *
2512 * Set regulator operating mode to increase regulator efficiency or improve
2513 * regulation performance.
2514 *
2515 * NOTE: Regulator system constraints must be set for this regulator before
2516 * calling this function otherwise this call will fail.
2517 */
2518 int regulator_set_mode(struct regulator *regulator, unsigned int mode)
2519 {
2520 struct regulator_dev *rdev = regulator->rdev;
2521 int ret;
2522 int regulator_curr_mode;
2523
2524 mutex_lock(&rdev->mutex);
2525
2526 /* sanity check */
2527 if (!rdev->desc->ops->set_mode) {
2528 ret = -EINVAL;
2529 goto out;
2530 }
2531
2532 /* return if the same mode is requested */
2533 if (rdev->desc->ops->get_mode) {
2534 regulator_curr_mode = rdev->desc->ops->get_mode(rdev);
2535 if (regulator_curr_mode == mode) {
2536 ret = 0;
2537 goto out;
2538 }
2539 }
2540
2541 /* constraints check */
2542 ret = regulator_mode_constrain(rdev, &mode);
2543 if (ret < 0)
2544 goto out;
2545
2546 ret = rdev->desc->ops->set_mode(rdev, mode);
2547 out:
2548 mutex_unlock(&rdev->mutex);
2549 return ret;
2550 }
2551 EXPORT_SYMBOL_GPL(regulator_set_mode);
2552
2553 static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
2554 {
2555 int ret;
2556
2557 mutex_lock(&rdev->mutex);
2558
2559 /* sanity check */
2560 if (!rdev->desc->ops->get_mode) {
2561 ret = -EINVAL;
2562 goto out;
2563 }
2564
2565 ret = rdev->desc->ops->get_mode(rdev);
2566 out:
2567 mutex_unlock(&rdev->mutex);
2568 return ret;
2569 }
2570
2571 /**
2572 * regulator_get_mode - get regulator operating mode
2573 * @regulator: regulator source
2574 *
2575 * Get the current regulator operating mode.
2576 */
2577 unsigned int regulator_get_mode(struct regulator *regulator)
2578 {
2579 return _regulator_get_mode(regulator->rdev);
2580 }
2581 EXPORT_SYMBOL_GPL(regulator_get_mode);
2582
2583 /**
2584 * regulator_set_optimum_mode - set regulator optimum operating mode
2585 * @regulator: regulator source
2586 * @uA_load: load current
2587 *
2588 * Notifies the regulator core of a new device load. This is then used by
2589 * DRMS (if enabled by constraints) to set the most efficient regulator
2590 * operating mode for the new regulator loading.
2591 *
2592 * Consumer devices notify their supply regulator of the maximum power
2593 * they will require (can be taken from device datasheet in the power
2594 * consumption tables) when they change operational status and hence power
2595 * state. Examples of operational state changes that can affect power
2596 * consumption are :-
2597 *
2598 * o Device is opened / closed.
2599 * o Device I/O is about to begin or has just finished.
2600 * o Device is idling in between work.
2601 *
2602 * This information is also exported via sysfs to userspace.
2603 *
2604 * DRMS will sum the total requested load on the regulator and change
2605 * to the most efficient operating mode if platform constraints allow.
2606 *
2607 * Returns the new regulator mode or error.
2608 */
2609 int regulator_set_optimum_mode(struct regulator *regulator, int uA_load)
2610 {
2611 struct regulator_dev *rdev = regulator->rdev;
2612 struct regulator *consumer;
2613 int ret, output_uV, input_uV = 0, total_uA_load = 0;
2614 unsigned int mode;
2615
2616 if (rdev->supply)
2617 input_uV = regulator_get_voltage(rdev->supply);
2618
2619 mutex_lock(&rdev->mutex);
2620
2621 /*
2622 * first check to see if we can set modes at all, otherwise just
2623 * tell the consumer everything is OK.
2624 */
2625 regulator->uA_load = uA_load;
2626 ret = regulator_check_drms(rdev);
2627 if (ret < 0) {
2628 ret = 0;
2629 goto out;
2630 }
2631
2632 if (!rdev->desc->ops->get_optimum_mode)
2633 goto out;
2634
2635 /*
2636 * we can actually do this so any errors are indicators of
2637 * potential real failure.
2638 */
2639 ret = -EINVAL;
2640
2641 if (!rdev->desc->ops->set_mode)
2642 goto out;
2643
2644 /* get output voltage */
2645 output_uV = _regulator_get_voltage(rdev);
2646 if (output_uV <= 0) {
2647 rdev_err(rdev, "invalid output voltage found\n");
2648 goto out;
2649 }
2650
2651 /* No supply? Use constraint voltage */
2652 if (input_uV <= 0)
2653 input_uV = rdev->constraints->input_uV;
2654 if (input_uV <= 0) {
2655 rdev_err(rdev, "invalid input voltage found\n");
2656 goto out;
2657 }
2658
2659 /* calc total requested load for this regulator */
2660 list_for_each_entry(consumer, &rdev->consumer_list, list)
2661 total_uA_load += consumer->uA_load;
2662
2663 mode = rdev->desc->ops->get_optimum_mode(rdev,
2664 input_uV, output_uV,
2665 total_uA_load);
2666 ret = regulator_mode_constrain(rdev, &mode);
2667 if (ret < 0) {
2668 rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV\n",
2669 total_uA_load, input_uV, output_uV);
2670 goto out;
2671 }
2672
2673 ret = rdev->desc->ops->set_mode(rdev, mode);
2674 if (ret < 0) {
2675 rdev_err(rdev, "failed to set optimum mode %x\n", mode);
2676 goto out;
2677 }
2678 ret = mode;
2679 out:
2680 mutex_unlock(&rdev->mutex);
2681 return ret;
2682 }
2683 EXPORT_SYMBOL_GPL(regulator_set_optimum_mode);
2684
2685 /**
2686 * regulator_register_notifier - register regulator event notifier
2687 * @regulator: regulator source
2688 * @nb: notifier block
2689 *
2690 * Register notifier block to receive regulator events.
2691 */
2692 int regulator_register_notifier(struct regulator *regulator,
2693 struct notifier_block *nb)
2694 {
2695 return blocking_notifier_chain_register(&regulator->rdev->notifier,
2696 nb);
2697 }
2698 EXPORT_SYMBOL_GPL(regulator_register_notifier);
2699
2700 /**
2701 * regulator_unregister_notifier - unregister regulator event notifier
2702 * @regulator: regulator source
2703 * @nb: notifier block
2704 *
2705 * Unregister regulator event notifier block.
2706 */
2707 int regulator_unregister_notifier(struct regulator *regulator,
2708 struct notifier_block *nb)
2709 {
2710 return blocking_notifier_chain_unregister(&regulator->rdev->notifier,
2711 nb);
2712 }
2713 EXPORT_SYMBOL_GPL(regulator_unregister_notifier);
2714
2715 /* notify regulator consumers and downstream regulator consumers.
2716 * Note mutex must be held by caller.
2717 */
2718 static void _notifier_call_chain(struct regulator_dev *rdev,
2719 unsigned long event, void *data)
2720 {
2721 /* call rdev chain first */
2722 blocking_notifier_call_chain(&rdev->notifier, event, data);
2723 }
2724
2725 /**
2726 * regulator_bulk_get - get multiple regulator consumers
2727 *
2728 * @dev: Device to supply
2729 * @num_consumers: Number of consumers to register
2730 * @consumers: Configuration of consumers; clients are stored here.
2731 *
2732 * @return 0 on success, an errno on failure.
2733 *
2734 * This helper function allows drivers to get several regulator
2735 * consumers in one operation. If any of the regulators cannot be
2736 * acquired then any regulators that were allocated will be freed
2737 * before returning to the caller.
2738 */
2739 int regulator_bulk_get(struct device *dev, int num_consumers,
2740 struct regulator_bulk_data *consumers)
2741 {
2742 int i;
2743 int ret;
2744
2745 for (i = 0; i < num_consumers; i++)
2746 consumers[i].consumer = NULL;
2747
2748 for (i = 0; i < num_consumers; i++) {
2749 consumers[i].consumer = regulator_get(dev,
2750 consumers[i].supply);
2751 if (IS_ERR(consumers[i].consumer)) {
2752 ret = PTR_ERR(consumers[i].consumer);
2753 dev_err(dev, "Failed to get supply '%s': %d\n",
2754 consumers[i].supply, ret);
2755 consumers[i].consumer = NULL;
2756 goto err;
2757 }
2758 }
2759
2760 return 0;
2761
2762 err:
2763 while (--i >= 0)
2764 regulator_put(consumers[i].consumer);
2765
2766 return ret;
2767 }
2768 EXPORT_SYMBOL_GPL(regulator_bulk_get);
2769
2770 /**
2771 * devm_regulator_bulk_get - managed get multiple regulator consumers
2772 *
2773 * @dev: Device to supply
2774 * @num_consumers: Number of consumers to register
2775 * @consumers: Configuration of consumers; clients are stored here.
2776 *
2777 * @return 0 on success, an errno on failure.
2778 *
2779 * This helper function allows drivers to get several regulator
2780 * consumers in one operation with management, the regulators will
2781 * automatically be freed when the device is unbound. If any of the
2782 * regulators cannot be acquired then any regulators that were
2783 * allocated will be freed before returning to the caller.
2784 */
2785 int devm_regulator_bulk_get(struct device *dev, int num_consumers,
2786 struct regulator_bulk_data *consumers)
2787 {
2788 int i;
2789 int ret;
2790
2791 for (i = 0; i < num_consumers; i++)
2792 consumers[i].consumer = NULL;
2793
2794 for (i = 0; i < num_consumers; i++) {
2795 consumers[i].consumer = devm_regulator_get(dev,
2796 consumers[i].supply);
2797 if (IS_ERR(consumers[i].consumer)) {
2798 ret = PTR_ERR(consumers[i].consumer);
2799 dev_err(dev, "Failed to get supply '%s': %d\n",
2800 consumers[i].supply, ret);
2801 consumers[i].consumer = NULL;
2802 goto err;
2803 }
2804 }
2805
2806 return 0;
2807
2808 err:
2809 for (i = 0; i < num_consumers && consumers[i].consumer; i++)
2810 devm_regulator_put(consumers[i].consumer);
2811
2812 return ret;
2813 }
2814 EXPORT_SYMBOL_GPL(devm_regulator_bulk_get);
2815
2816 static void regulator_bulk_enable_async(void *data, async_cookie_t cookie)
2817 {
2818 struct regulator_bulk_data *bulk = data;
2819
2820 bulk->ret = regulator_enable(bulk->consumer);
2821 }
2822
2823 /**
2824 * regulator_bulk_enable - enable multiple regulator consumers
2825 *
2826 * @num_consumers: Number of consumers
2827 * @consumers: Consumer data; clients are stored here.
2828 * @return 0 on success, an errno on failure
2829 *
2830 * This convenience API allows consumers to enable multiple regulator
2831 * clients in a single API call. If any consumers cannot be enabled
2832 * then any others that were enabled will be disabled again prior to
2833 * return.
2834 */
2835 int regulator_bulk_enable(int num_consumers,
2836 struct regulator_bulk_data *consumers)
2837 {
2838 ASYNC_DOMAIN_EXCLUSIVE(async_domain);
2839 int i;
2840 int ret = 0;
2841
2842 for (i = 0; i < num_consumers; i++) {
2843 if (consumers[i].consumer->always_on)
2844 consumers[i].ret = 0;
2845 else
2846 async_schedule_domain(regulator_bulk_enable_async,
2847 &consumers[i], &async_domain);
2848 }
2849
2850 async_synchronize_full_domain(&async_domain);
2851
2852 /* If any consumer failed we need to unwind any that succeeded */
2853 for (i = 0; i < num_consumers; i++) {
2854 if (consumers[i].ret != 0) {
2855 ret = consumers[i].ret;
2856 goto err;
2857 }
2858 }
2859
2860 return 0;
2861
2862 err:
2863 pr_err("Failed to enable %s: %d\n", consumers[i].supply, ret);
2864 while (--i >= 0)
2865 regulator_disable(consumers[i].consumer);
2866
2867 return ret;
2868 }
2869 EXPORT_SYMBOL_GPL(regulator_bulk_enable);
2870
2871 /**
2872 * regulator_bulk_disable - disable multiple regulator consumers
2873 *
2874 * @num_consumers: Number of consumers
2875 * @consumers: Consumer data; clients are stored here.
2876 * @return 0 on success, an errno on failure
2877 *
2878 * This convenience API allows consumers to disable multiple regulator
2879 * clients in a single API call. If any consumers cannot be disabled
2880 * then any others that were disabled will be enabled again prior to
2881 * return.
2882 */
2883 int regulator_bulk_disable(int num_consumers,
2884 struct regulator_bulk_data *consumers)
2885 {
2886 int i;
2887 int ret, r;
2888
2889 for (i = num_consumers - 1; i >= 0; --i) {
2890 ret = regulator_disable(consumers[i].consumer);
2891 if (ret != 0)
2892 goto err;
2893 }
2894
2895 return 0;
2896
2897 err:
2898 pr_err("Failed to disable %s: %d\n", consumers[i].supply, ret);
2899 for (++i; i < num_consumers; ++i) {
2900 r = regulator_enable(consumers[i].consumer);
2901 if (r != 0)
2902 pr_err("Failed to reename %s: %d\n",
2903 consumers[i].supply, r);
2904 }
2905
2906 return ret;
2907 }
2908 EXPORT_SYMBOL_GPL(regulator_bulk_disable);
2909
2910 /**
2911 * regulator_bulk_force_disable - force disable multiple regulator consumers
2912 *
2913 * @num_consumers: Number of consumers
2914 * @consumers: Consumer data; clients are stored here.
2915 * @return 0 on success, an errno on failure
2916 *
2917 * This convenience API allows consumers to forcibly disable multiple regulator
2918 * clients in a single API call.
2919 * NOTE: This should be used for situations when device damage will
2920 * likely occur if the regulators are not disabled (e.g. over temp).
2921 * Although regulator_force_disable function call for some consumers can
2922 * return error numbers, the function is called for all consumers.
2923 */
2924 int regulator_bulk_force_disable(int num_consumers,
2925 struct regulator_bulk_data *consumers)
2926 {
2927 int i;
2928 int ret;
2929
2930 for (i = 0; i < num_consumers; i++)
2931 consumers[i].ret =
2932 regulator_force_disable(consumers[i].consumer);
2933
2934 for (i = 0; i < num_consumers; i++) {
2935 if (consumers[i].ret != 0) {
2936 ret = consumers[i].ret;
2937 goto out;
2938 }
2939 }
2940
2941 return 0;
2942 out:
2943 return ret;
2944 }
2945 EXPORT_SYMBOL_GPL(regulator_bulk_force_disable);
2946
2947 /**
2948 * regulator_bulk_free - free multiple regulator consumers
2949 *
2950 * @num_consumers: Number of consumers
2951 * @consumers: Consumer data; clients are stored here.
2952 *
2953 * This convenience API allows consumers to free multiple regulator
2954 * clients in a single API call.
2955 */
2956 void regulator_bulk_free(int num_consumers,
2957 struct regulator_bulk_data *consumers)
2958 {
2959 int i;
2960
2961 for (i = 0; i < num_consumers; i++) {
2962 regulator_put(consumers[i].consumer);
2963 consumers[i].consumer = NULL;
2964 }
2965 }
2966 EXPORT_SYMBOL_GPL(regulator_bulk_free);
2967
2968 /**
2969 * regulator_notifier_call_chain - call regulator event notifier
2970 * @rdev: regulator source
2971 * @event: notifier block
2972 * @data: callback-specific data.
2973 *
2974 * Called by regulator drivers to notify clients a regulator event has
2975 * occurred. We also notify regulator clients downstream.
2976 * Note lock must be held by caller.
2977 */
2978 int regulator_notifier_call_chain(struct regulator_dev *rdev,
2979 unsigned long event, void *data)
2980 {
2981 _notifier_call_chain(rdev, event, data);
2982 return NOTIFY_DONE;
2983
2984 }
2985 EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);
2986
2987 /**
2988 * regulator_mode_to_status - convert a regulator mode into a status
2989 *
2990 * @mode: Mode to convert
2991 *
2992 * Convert a regulator mode into a status.
2993 */
2994 int regulator_mode_to_status(unsigned int mode)
2995 {
2996 switch (mode) {
2997 case REGULATOR_MODE_FAST:
2998 return REGULATOR_STATUS_FAST;
2999 case REGULATOR_MODE_NORMAL:
3000 return REGULATOR_STATUS_NORMAL;
3001 case REGULATOR_MODE_IDLE:
3002 return REGULATOR_STATUS_IDLE;
3003 case REGULATOR_MODE_STANDBY:
3004 return REGULATOR_STATUS_STANDBY;
3005 default:
3006 return REGULATOR_STATUS_UNDEFINED;
3007 }
3008 }
3009 EXPORT_SYMBOL_GPL(regulator_mode_to_status);
3010
3011 /*
3012 * To avoid cluttering sysfs (and memory) with useless state, only
3013 * create attributes that can be meaningfully displayed.
3014 */
3015 static int add_regulator_attributes(struct regulator_dev *rdev)
3016 {
3017 struct device *dev = &rdev->dev;
3018 struct regulator_ops *ops = rdev->desc->ops;
3019 int status = 0;
3020
3021 /* some attributes need specific methods to be displayed */
3022 if ((ops->get_voltage && ops->get_voltage(rdev) >= 0) ||
3023 (ops->get_voltage_sel && ops->get_voltage_sel(rdev) >= 0)) {
3024 status = device_create_file(dev, &dev_attr_microvolts);
3025 if (status < 0)
3026 return status;
3027 }
3028 if (ops->get_current_limit) {
3029 status = device_create_file(dev, &dev_attr_microamps);
3030 if (status < 0)
3031 return status;
3032 }
3033 if (ops->get_mode) {
3034 status = device_create_file(dev, &dev_attr_opmode);
3035 if (status < 0)
3036 return status;
3037 }
3038 if (ops->is_enabled) {
3039 status = device_create_file(dev, &dev_attr_state);
3040 if (status < 0)
3041 return status;
3042 }
3043 if (ops->get_status) {
3044 status = device_create_file(dev, &dev_attr_status);
3045 if (status < 0)
3046 return status;
3047 }
3048
3049 /* some attributes are type-specific */
3050 if (rdev->desc->type == REGULATOR_CURRENT) {
3051 status = device_create_file(dev, &dev_attr_requested_microamps);
3052 if (status < 0)
3053 return status;
3054 }
3055
3056 /* all the other attributes exist to support constraints;
3057 * don't show them if there are no constraints, or if the
3058 * relevant supporting methods are missing.
3059 */
3060 if (!rdev->constraints)
3061 return status;
3062
3063 /* constraints need specific supporting methods */
3064 if (ops->set_voltage || ops->set_voltage_sel) {
3065 status = device_create_file(dev, &dev_attr_min_microvolts);
3066 if (status < 0)
3067 return status;
3068 status = device_create_file(dev, &dev_attr_max_microvolts);
3069 if (status < 0)
3070 return status;
3071 }
3072 if (ops->set_current_limit) {
3073 status = device_create_file(dev, &dev_attr_min_microamps);
3074 if (status < 0)
3075 return status;
3076 status = device_create_file(dev, &dev_attr_max_microamps);
3077 if (status < 0)
3078 return status;
3079 }
3080
3081 status = device_create_file(dev, &dev_attr_suspend_standby_state);
3082 if (status < 0)
3083 return status;
3084 status = device_create_file(dev, &dev_attr_suspend_mem_state);
3085 if (status < 0)
3086 return status;
3087 status = device_create_file(dev, &dev_attr_suspend_disk_state);
3088 if (status < 0)
3089 return status;
3090
3091 if (ops->set_suspend_voltage) {
3092 status = device_create_file(dev,
3093 &dev_attr_suspend_standby_microvolts);
3094 if (status < 0)
3095 return status;
3096 status = device_create_file(dev,
3097 &dev_attr_suspend_mem_microvolts);
3098 if (status < 0)
3099 return status;
3100 status = device_create_file(dev,
3101 &dev_attr_suspend_disk_microvolts);
3102 if (status < 0)
3103 return status;
3104 }
3105
3106 if (ops->set_suspend_mode) {
3107 status = device_create_file(dev,
3108 &dev_attr_suspend_standby_mode);
3109 if (status < 0)
3110 return status;
3111 status = device_create_file(dev,
3112 &dev_attr_suspend_mem_mode);
3113 if (status < 0)
3114 return status;
3115 status = device_create_file(dev,
3116 &dev_attr_suspend_disk_mode);
3117 if (status < 0)
3118 return status;
3119 }
3120
3121 return status;
3122 }
3123
3124 static void rdev_init_debugfs(struct regulator_dev *rdev)
3125 {
3126 rdev->debugfs = debugfs_create_dir(rdev_get_name(rdev), debugfs_root);
3127 if (!rdev->debugfs) {
3128 rdev_warn(rdev, "Failed to create debugfs directory\n");
3129 return;
3130 }
3131
3132 debugfs_create_u32("use_count", 0444, rdev->debugfs,
3133 &rdev->use_count);
3134 debugfs_create_u32("open_count", 0444, rdev->debugfs,
3135 &rdev->open_count);
3136 }
3137
3138 /**
3139 * regulator_register - register regulator
3140 * @regulator_desc: regulator to register
3141 * @config: runtime configuration for regulator
3142 *
3143 * Called by regulator drivers to register a regulator.
3144 * Returns 0 on success.
3145 */
3146 struct regulator_dev *
3147 regulator_register(const struct regulator_desc *regulator_desc,
3148 const struct regulator_config *config)
3149 {
3150 const struct regulation_constraints *constraints = NULL;
3151 const struct regulator_init_data *init_data;
3152 static atomic_t regulator_no = ATOMIC_INIT(0);
3153 struct regulator_dev *rdev;
3154 struct device *dev;
3155 int ret, i;
3156 const char *supply = NULL;
3157
3158 if (regulator_desc == NULL || config == NULL)
3159 return ERR_PTR(-EINVAL);
3160
3161 dev = config->dev;
3162 WARN_ON(!dev);
3163
3164 if (regulator_desc->name == NULL || regulator_desc->ops == NULL)
3165 return ERR_PTR(-EINVAL);
3166
3167 if (regulator_desc->type != REGULATOR_VOLTAGE &&
3168 regulator_desc->type != REGULATOR_CURRENT)
3169 return ERR_PTR(-EINVAL);
3170
3171 /* Only one of each should be implemented */
3172 WARN_ON(regulator_desc->ops->get_voltage &&
3173 regulator_desc->ops->get_voltage_sel);
3174 WARN_ON(regulator_desc->ops->set_voltage &&
3175 regulator_desc->ops->set_voltage_sel);
3176
3177 /* If we're using selectors we must implement list_voltage. */
3178 if (regulator_desc->ops->get_voltage_sel &&
3179 !regulator_desc->ops->list_voltage) {
3180 return ERR_PTR(-EINVAL);
3181 }
3182 if (regulator_desc->ops->set_voltage_sel &&
3183 !regulator_desc->ops->list_voltage) {
3184 return ERR_PTR(-EINVAL);
3185 }
3186
3187 init_data = config->init_data;
3188
3189 rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
3190 if (rdev == NULL)
3191 return ERR_PTR(-ENOMEM);
3192
3193 mutex_lock(&regulator_list_mutex);
3194
3195 mutex_init(&rdev->mutex);
3196 rdev->reg_data = config->driver_data;
3197 rdev->owner = regulator_desc->owner;
3198 rdev->desc = regulator_desc;
3199 if (config->regmap)
3200 rdev->regmap = config->regmap;
3201 else
3202 rdev->regmap = dev_get_regmap(dev, NULL);
3203 INIT_LIST_HEAD(&rdev->consumer_list);
3204 INIT_LIST_HEAD(&rdev->list);
3205 BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
3206 INIT_DELAYED_WORK(&rdev->disable_work, regulator_disable_work);
3207
3208 /* preform any regulator specific init */
3209 if (init_data && init_data->regulator_init) {
3210 ret = init_data->regulator_init(rdev->reg_data);
3211 if (ret < 0)
3212 goto clean;
3213 }
3214
3215 /* register with sysfs */
3216 rdev->dev.class = &regulator_class;
3217 rdev->dev.of_node = config->of_node;
3218 rdev->dev.parent = dev;
3219 dev_set_name(&rdev->dev, "regulator.%d",
3220 atomic_inc_return(&regulator_no) - 1);
3221 ret = device_register(&rdev->dev);
3222 if (ret != 0) {
3223 put_device(&rdev->dev);
3224 goto clean;
3225 }
3226
3227 dev_set_drvdata(&rdev->dev, rdev);
3228
3229 if (config->ena_gpio) {
3230 ret = gpio_request_one(config->ena_gpio,
3231 GPIOF_DIR_OUT | config->ena_gpio_flags,
3232 rdev_get_name(rdev));
3233 if (ret != 0) {
3234 rdev_err(rdev, "Failed to request enable GPIO%d: %d\n",
3235 config->ena_gpio, ret);
3236 goto clean;
3237 }
3238
3239 rdev->ena_gpio = config->ena_gpio;
3240 rdev->ena_gpio_invert = config->ena_gpio_invert;
3241
3242 if (config->ena_gpio_flags & GPIOF_OUT_INIT_HIGH)
3243 rdev->ena_gpio_state = 1;
3244
3245 if (rdev->ena_gpio_invert)
3246 rdev->ena_gpio_state = !rdev->ena_gpio_state;
3247 }
3248
3249 /* set regulator constraints */
3250 if (init_data)
3251 constraints = &init_data->constraints;
3252
3253 ret = set_machine_constraints(rdev, constraints);
3254 if (ret < 0)
3255 goto scrub;
3256
3257 /* add attributes supported by this regulator */
3258 ret = add_regulator_attributes(rdev);
3259 if (ret < 0)
3260 goto scrub;
3261
3262 if (init_data && init_data->supply_regulator)
3263 supply = init_data->supply_regulator;
3264 else if (regulator_desc->supply_name)
3265 supply = regulator_desc->supply_name;
3266
3267 if (supply) {
3268 struct regulator_dev *r;
3269
3270 r = regulator_dev_lookup(dev, supply, &ret);
3271
3272 if (!r) {
3273 dev_err(dev, "Failed to find supply %s\n", supply);
3274 ret = -EPROBE_DEFER;
3275 goto scrub;
3276 }
3277
3278 ret = set_supply(rdev, r);
3279 if (ret < 0)
3280 goto scrub;
3281
3282 /* Enable supply if rail is enabled */
3283 if (_regulator_is_enabled(rdev)) {
3284 ret = regulator_enable(rdev->supply);
3285 if (ret < 0)
3286 goto scrub;
3287 }
3288 }
3289
3290 /* add consumers devices */
3291 if (init_data) {
3292 for (i = 0; i < init_data->num_consumer_supplies; i++) {
3293 ret = set_consumer_device_supply(rdev,
3294 init_data->consumer_supplies[i].dev_name,
3295 init_data->consumer_supplies[i].supply);
3296 if (ret < 0) {
3297 dev_err(dev, "Failed to set supply %s\n",
3298 init_data->consumer_supplies[i].supply);
3299 goto unset_supplies;
3300 }
3301 }
3302 }
3303
3304 list_add(&rdev->list, &regulator_list);
3305
3306 rdev_init_debugfs(rdev);
3307 out:
3308 mutex_unlock(&regulator_list_mutex);
3309 return rdev;
3310
3311 unset_supplies:
3312 unset_regulator_supplies(rdev);
3313
3314 scrub:
3315 if (rdev->supply)
3316 regulator_put(rdev->supply);
3317 if (rdev->ena_gpio)
3318 gpio_free(rdev->ena_gpio);
3319 kfree(rdev->constraints);
3320 device_unregister(&rdev->dev);
3321 /* device core frees rdev */
3322 rdev = ERR_PTR(ret);
3323 goto out;
3324
3325 clean:
3326 kfree(rdev);
3327 rdev = ERR_PTR(ret);
3328 goto out;
3329 }
3330 EXPORT_SYMBOL_GPL(regulator_register);
3331
3332 /**
3333 * regulator_unregister - unregister regulator
3334 * @rdev: regulator to unregister
3335 *
3336 * Called by regulator drivers to unregister a regulator.
3337 */
3338 void regulator_unregister(struct regulator_dev *rdev)
3339 {
3340 if (rdev == NULL)
3341 return;
3342
3343 if (rdev->supply)
3344 regulator_put(rdev->supply);
3345 mutex_lock(&regulator_list_mutex);
3346 debugfs_remove_recursive(rdev->debugfs);
3347 flush_work_sync(&rdev->disable_work.work);
3348 WARN_ON(rdev->open_count);
3349 unset_regulator_supplies(rdev);
3350 list_del(&rdev->list);
3351 kfree(rdev->constraints);
3352 if (rdev->ena_gpio)
3353 gpio_free(rdev->ena_gpio);
3354 device_unregister(&rdev->dev);
3355 mutex_unlock(&regulator_list_mutex);
3356 }
3357 EXPORT_SYMBOL_GPL(regulator_unregister);
3358
3359 /**
3360 * regulator_suspend_prepare - prepare regulators for system wide suspend
3361 * @state: system suspend state
3362 *
3363 * Configure each regulator with it's suspend operating parameters for state.
3364 * This will usually be called by machine suspend code prior to supending.
3365 */
3366 int regulator_suspend_prepare(suspend_state_t state)
3367 {
3368 struct regulator_dev *rdev;
3369 int ret = 0;
3370
3371 /* ON is handled by regulator active state */
3372 if (state == PM_SUSPEND_ON)
3373 return -EINVAL;
3374
3375 mutex_lock(&regulator_list_mutex);
3376 list_for_each_entry(rdev, &regulator_list, list) {
3377
3378 mutex_lock(&rdev->mutex);
3379 ret = suspend_prepare(rdev, state);
3380 mutex_unlock(&rdev->mutex);
3381
3382 if (ret < 0) {
3383 rdev_err(rdev, "failed to prepare\n");
3384 goto out;
3385 }
3386 }
3387 out:
3388 mutex_unlock(&regulator_list_mutex);
3389 return ret;
3390 }
3391 EXPORT_SYMBOL_GPL(regulator_suspend_prepare);
3392
3393 /**
3394 * regulator_suspend_finish - resume regulators from system wide suspend
3395 *
3396 * Turn on regulators that might be turned off by regulator_suspend_prepare
3397 * and that should be turned on according to the regulators properties.
3398 */
3399 int regulator_suspend_finish(void)
3400 {
3401 struct regulator_dev *rdev;
3402 int ret = 0, error;
3403
3404 mutex_lock(&regulator_list_mutex);
3405 list_for_each_entry(rdev, &regulator_list, list) {
3406 struct regulator_ops *ops = rdev->desc->ops;
3407
3408 mutex_lock(&rdev->mutex);
3409 if ((rdev->use_count > 0 || rdev->constraints->always_on) &&
3410 ops->enable) {
3411 error = ops->enable(rdev);
3412 if (error)
3413 ret = error;
3414 } else {
3415 if (!has_full_constraints)
3416 goto unlock;
3417 if (!ops->disable)
3418 goto unlock;
3419 if (!_regulator_is_enabled(rdev))
3420 goto unlock;
3421
3422 error = ops->disable(rdev);
3423 if (error)
3424 ret = error;
3425 }
3426 unlock:
3427 mutex_unlock(&rdev->mutex);
3428 }
3429 mutex_unlock(&regulator_list_mutex);
3430 return ret;
3431 }
3432 EXPORT_SYMBOL_GPL(regulator_suspend_finish);
3433
3434 /**
3435 * regulator_has_full_constraints - the system has fully specified constraints
3436 *
3437 * Calling this function will cause the regulator API to disable all
3438 * regulators which have a zero use count and don't have an always_on
3439 * constraint in a late_initcall.
3440 *
3441 * The intention is that this will become the default behaviour in a
3442 * future kernel release so users are encouraged to use this facility
3443 * now.
3444 */
3445 void regulator_has_full_constraints(void)
3446 {
3447 has_full_constraints = 1;
3448 }
3449 EXPORT_SYMBOL_GPL(regulator_has_full_constraints);
3450
3451 /**
3452 * regulator_use_dummy_regulator - Provide a dummy regulator when none is found
3453 *
3454 * Calling this function will cause the regulator API to provide a
3455 * dummy regulator to consumers if no physical regulator is found,
3456 * allowing most consumers to proceed as though a regulator were
3457 * configured. This allows systems such as those with software
3458 * controllable regulators for the CPU core only to be brought up more
3459 * readily.
3460 */
3461 void regulator_use_dummy_regulator(void)
3462 {
3463 board_wants_dummy_regulator = true;
3464 }
3465 EXPORT_SYMBOL_GPL(regulator_use_dummy_regulator);
3466
3467 /**
3468 * rdev_get_drvdata - get rdev regulator driver data
3469 * @rdev: regulator
3470 *
3471 * Get rdev regulator driver private data. This call can be used in the
3472 * regulator driver context.
3473 */
3474 void *rdev_get_drvdata(struct regulator_dev *rdev)
3475 {
3476 return rdev->reg_data;
3477 }
3478 EXPORT_SYMBOL_GPL(rdev_get_drvdata);
3479
3480 /**
3481 * regulator_get_drvdata - get regulator driver data
3482 * @regulator: regulator
3483 *
3484 * Get regulator driver private data. This call can be used in the consumer
3485 * driver context when non API regulator specific functions need to be called.
3486 */
3487 void *regulator_get_drvdata(struct regulator *regulator)
3488 {
3489 return regulator->rdev->reg_data;
3490 }
3491 EXPORT_SYMBOL_GPL(regulator_get_drvdata);
3492
3493 /**
3494 * regulator_set_drvdata - set regulator driver data
3495 * @regulator: regulator
3496 * @data: data
3497 */
3498 void regulator_set_drvdata(struct regulator *regulator, void *data)
3499 {
3500 regulator->rdev->reg_data = data;
3501 }
3502 EXPORT_SYMBOL_GPL(regulator_set_drvdata);
3503
3504 /**
3505 * regulator_get_id - get regulator ID
3506 * @rdev: regulator
3507 */
3508 int rdev_get_id(struct regulator_dev *rdev)
3509 {
3510 return rdev->desc->id;
3511 }
3512 EXPORT_SYMBOL_GPL(rdev_get_id);
3513
3514 struct device *rdev_get_dev(struct regulator_dev *rdev)
3515 {
3516 return &rdev->dev;
3517 }
3518 EXPORT_SYMBOL_GPL(rdev_get_dev);
3519
3520 void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
3521 {
3522 return reg_init_data->driver_data;
3523 }
3524 EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);
3525
3526 #ifdef CONFIG_DEBUG_FS
3527 static ssize_t supply_map_read_file(struct file *file, char __user *user_buf,
3528 size_t count, loff_t *ppos)
3529 {
3530 char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
3531 ssize_t len, ret = 0;
3532 struct regulator_map *map;
3533
3534 if (!buf)
3535 return -ENOMEM;
3536
3537 list_for_each_entry(map, &regulator_map_list, list) {
3538 len = snprintf(buf + ret, PAGE_SIZE - ret,
3539 "%s -> %s.%s\n",
3540 rdev_get_name(map->regulator), map->dev_name,
3541 map->supply);
3542 if (len >= 0)
3543 ret += len;
3544 if (ret > PAGE_SIZE) {
3545 ret = PAGE_SIZE;
3546 break;
3547 }
3548 }
3549
3550 ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
3551
3552 kfree(buf);
3553
3554 return ret;
3555 }
3556 #endif
3557
3558 static const struct file_operations supply_map_fops = {
3559 #ifdef CONFIG_DEBUG_FS
3560 .read = supply_map_read_file,
3561 .llseek = default_llseek,
3562 #endif
3563 };
3564
3565 static int __init regulator_init(void)
3566 {
3567 int ret;
3568
3569 ret = class_register(&regulator_class);
3570
3571 debugfs_root = debugfs_create_dir("regulator", NULL);
3572 if (!debugfs_root)
3573 pr_warn("regulator: Failed to create debugfs directory\n");
3574
3575 debugfs_create_file("supply_map", 0444, debugfs_root, NULL,
3576 &supply_map_fops);
3577
3578 regulator_dummy_init();
3579
3580 return ret;
3581 }
3582
3583 /* init early to allow our consumers to complete system booting */
3584 core_initcall(regulator_init);
3585
3586 static int __init regulator_init_complete(void)
3587 {
3588 struct regulator_dev *rdev;
3589 struct regulator_ops *ops;
3590 struct regulation_constraints *c;
3591 int enabled, ret;
3592
3593 /*
3594 * Since DT doesn't provide an idiomatic mechanism for
3595 * enabling full constraints and since it's much more natural
3596 * with DT to provide them just assume that a DT enabled
3597 * system has full constraints.
3598 */
3599 if (of_have_populated_dt())
3600 has_full_constraints = true;
3601
3602 mutex_lock(&regulator_list_mutex);
3603
3604 /* If we have a full configuration then disable any regulators
3605 * which are not in use or always_on. This will become the
3606 * default behaviour in the future.
3607 */
3608 list_for_each_entry(rdev, &regulator_list, list) {
3609 ops = rdev->desc->ops;
3610 c = rdev->constraints;
3611
3612 if (!ops->disable || (c && c->always_on))
3613 continue;
3614
3615 mutex_lock(&rdev->mutex);
3616
3617 if (rdev->use_count)
3618 goto unlock;
3619
3620 /* If we can't read the status assume it's on. */
3621 if (ops->is_enabled)
3622 enabled = ops->is_enabled(rdev);
3623 else
3624 enabled = 1;
3625
3626 if (!enabled)
3627 goto unlock;
3628
3629 if (has_full_constraints) {
3630 /* We log since this may kill the system if it
3631 * goes wrong. */
3632 rdev_info(rdev, "disabling\n");
3633 ret = ops->disable(rdev);
3634 if (ret != 0) {
3635 rdev_err(rdev, "couldn't disable: %d\n", ret);
3636 }
3637 } else {
3638 /* The intention is that in future we will
3639 * assume that full constraints are provided
3640 * so warn even if we aren't going to do
3641 * anything here.
3642 */
3643 rdev_warn(rdev, "incomplete constraints, leaving on\n");
3644 }
3645
3646 unlock:
3647 mutex_unlock(&rdev->mutex);
3648 }
3649
3650 mutex_unlock(&regulator_list_mutex);
3651
3652 return 0;
3653 }
3654 late_initcall(regulator_init_complete);
This page took 0.171225 seconds and 4 git commands to generate.