Merge remote-tracking branch 'regulator/topic/hotplug' into regulator-next
[deliverable/linux.git] / drivers / regulator / core.c
1 /*
2 * core.c -- Voltage/Current Regulator framework.
3 *
4 * Copyright 2007, 2008 Wolfson Microelectronics PLC.
5 * Copyright 2008 SlimLogic Ltd.
6 *
7 * Author: Liam Girdwood <lrg@slimlogic.co.uk>
8 *
9 * This program is free software; you can redistribute it and/or modify it
10 * under the terms of the GNU General Public License as published by the
11 * Free Software Foundation; either version 2 of the License, or (at your
12 * option) any later version.
13 *
14 */
15
16 #include <linux/kernel.h>
17 #include <linux/init.h>
18 #include <linux/debugfs.h>
19 #include <linux/device.h>
20 #include <linux/slab.h>
21 #include <linux/async.h>
22 #include <linux/err.h>
23 #include <linux/mutex.h>
24 #include <linux/suspend.h>
25 #include <linux/delay.h>
26 #include <linux/gpio.h>
27 #include <linux/of.h>
28 #include <linux/regmap.h>
29 #include <linux/regulator/of_regulator.h>
30 #include <linux/regulator/consumer.h>
31 #include <linux/regulator/driver.h>
32 #include <linux/regulator/machine.h>
33 #include <linux/module.h>
34
35 #define CREATE_TRACE_POINTS
36 #include <trace/events/regulator.h>
37
38 #include "dummy.h"
39
40 #define rdev_crit(rdev, fmt, ...) \
41 pr_crit("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
42 #define rdev_err(rdev, fmt, ...) \
43 pr_err("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
44 #define rdev_warn(rdev, fmt, ...) \
45 pr_warn("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
46 #define rdev_info(rdev, fmt, ...) \
47 pr_info("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
48 #define rdev_dbg(rdev, fmt, ...) \
49 pr_debug("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
50
51 static DEFINE_MUTEX(regulator_list_mutex);
52 static LIST_HEAD(regulator_list);
53 static LIST_HEAD(regulator_map_list);
54 static bool has_full_constraints;
55 static bool board_wants_dummy_regulator;
56
57 static struct dentry *debugfs_root;
58
59 /*
60 * struct regulator_map
61 *
62 * Used to provide symbolic supply names to devices.
63 */
64 struct regulator_map {
65 struct list_head list;
66 const char *dev_name; /* The dev_name() for the consumer */
67 const char *supply;
68 struct regulator_dev *regulator;
69 };
70
71 /*
72 * struct regulator
73 *
74 * One for each consumer device.
75 */
76 struct regulator {
77 struct device *dev;
78 struct list_head list;
79 unsigned int always_on:1;
80 unsigned int bypass:1;
81 int uA_load;
82 int min_uV;
83 int max_uV;
84 char *supply_name;
85 struct device_attribute dev_attr;
86 struct regulator_dev *rdev;
87 struct dentry *debugfs;
88 };
89
90 static int _regulator_is_enabled(struct regulator_dev *rdev);
91 static int _regulator_disable(struct regulator_dev *rdev);
92 static int _regulator_get_voltage(struct regulator_dev *rdev);
93 static int _regulator_get_current_limit(struct regulator_dev *rdev);
94 static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
95 static void _notifier_call_chain(struct regulator_dev *rdev,
96 unsigned long event, void *data);
97 static int _regulator_do_set_voltage(struct regulator_dev *rdev,
98 int min_uV, int max_uV);
99 static struct regulator *create_regulator(struct regulator_dev *rdev,
100 struct device *dev,
101 const char *supply_name);
102
103 static const char *rdev_get_name(struct regulator_dev *rdev)
104 {
105 if (rdev->constraints && rdev->constraints->name)
106 return rdev->constraints->name;
107 else if (rdev->desc->name)
108 return rdev->desc->name;
109 else
110 return "";
111 }
112
113 /**
114 * of_get_regulator - get a regulator device node based on supply name
115 * @dev: Device pointer for the consumer (of regulator) device
116 * @supply: regulator supply name
117 *
118 * Extract the regulator device node corresponding to the supply name.
119 * retruns the device node corresponding to the regulator if found, else
120 * returns NULL.
121 */
122 static struct device_node *of_get_regulator(struct device *dev, const char *supply)
123 {
124 struct device_node *regnode = NULL;
125 char prop_name[32]; /* 32 is max size of property name */
126
127 dev_dbg(dev, "Looking up %s-supply from device tree\n", supply);
128
129 snprintf(prop_name, 32, "%s-supply", supply);
130 regnode = of_parse_phandle(dev->of_node, prop_name, 0);
131
132 if (!regnode) {
133 dev_dbg(dev, "Looking up %s property in node %s failed",
134 prop_name, dev->of_node->full_name);
135 return NULL;
136 }
137 return regnode;
138 }
139
140 static int _regulator_can_change_status(struct regulator_dev *rdev)
141 {
142 if (!rdev->constraints)
143 return 0;
144
145 if (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_STATUS)
146 return 1;
147 else
148 return 0;
149 }
150
151 /* Platform voltage constraint check */
152 static int regulator_check_voltage(struct regulator_dev *rdev,
153 int *min_uV, int *max_uV)
154 {
155 BUG_ON(*min_uV > *max_uV);
156
157 if (!rdev->constraints) {
158 rdev_err(rdev, "no constraints\n");
159 return -ENODEV;
160 }
161 if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
162 rdev_err(rdev, "operation not allowed\n");
163 return -EPERM;
164 }
165
166 if (*max_uV > rdev->constraints->max_uV)
167 *max_uV = rdev->constraints->max_uV;
168 if (*min_uV < rdev->constraints->min_uV)
169 *min_uV = rdev->constraints->min_uV;
170
171 if (*min_uV > *max_uV) {
172 rdev_err(rdev, "unsupportable voltage range: %d-%duV\n",
173 *min_uV, *max_uV);
174 return -EINVAL;
175 }
176
177 return 0;
178 }
179
180 /* Make sure we select a voltage that suits the needs of all
181 * regulator consumers
182 */
183 static int regulator_check_consumers(struct regulator_dev *rdev,
184 int *min_uV, int *max_uV)
185 {
186 struct regulator *regulator;
187
188 list_for_each_entry(regulator, &rdev->consumer_list, list) {
189 /*
190 * Assume consumers that didn't say anything are OK
191 * with anything in the constraint range.
192 */
193 if (!regulator->min_uV && !regulator->max_uV)
194 continue;
195
196 if (*max_uV > regulator->max_uV)
197 *max_uV = regulator->max_uV;
198 if (*min_uV < regulator->min_uV)
199 *min_uV = regulator->min_uV;
200 }
201
202 if (*min_uV > *max_uV)
203 return -EINVAL;
204
205 return 0;
206 }
207
208 /* current constraint check */
209 static int regulator_check_current_limit(struct regulator_dev *rdev,
210 int *min_uA, int *max_uA)
211 {
212 BUG_ON(*min_uA > *max_uA);
213
214 if (!rdev->constraints) {
215 rdev_err(rdev, "no constraints\n");
216 return -ENODEV;
217 }
218 if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_CURRENT)) {
219 rdev_err(rdev, "operation not allowed\n");
220 return -EPERM;
221 }
222
223 if (*max_uA > rdev->constraints->max_uA)
224 *max_uA = rdev->constraints->max_uA;
225 if (*min_uA < rdev->constraints->min_uA)
226 *min_uA = rdev->constraints->min_uA;
227
228 if (*min_uA > *max_uA) {
229 rdev_err(rdev, "unsupportable current range: %d-%duA\n",
230 *min_uA, *max_uA);
231 return -EINVAL;
232 }
233
234 return 0;
235 }
236
237 /* operating mode constraint check */
238 static int regulator_mode_constrain(struct regulator_dev *rdev, int *mode)
239 {
240 switch (*mode) {
241 case REGULATOR_MODE_FAST:
242 case REGULATOR_MODE_NORMAL:
243 case REGULATOR_MODE_IDLE:
244 case REGULATOR_MODE_STANDBY:
245 break;
246 default:
247 rdev_err(rdev, "invalid mode %x specified\n", *mode);
248 return -EINVAL;
249 }
250
251 if (!rdev->constraints) {
252 rdev_err(rdev, "no constraints\n");
253 return -ENODEV;
254 }
255 if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_MODE)) {
256 rdev_err(rdev, "operation not allowed\n");
257 return -EPERM;
258 }
259
260 /* The modes are bitmasks, the most power hungry modes having
261 * the lowest values. If the requested mode isn't supported
262 * try higher modes. */
263 while (*mode) {
264 if (rdev->constraints->valid_modes_mask & *mode)
265 return 0;
266 *mode /= 2;
267 }
268
269 return -EINVAL;
270 }
271
272 /* dynamic regulator mode switching constraint check */
273 static int regulator_check_drms(struct regulator_dev *rdev)
274 {
275 if (!rdev->constraints) {
276 rdev_err(rdev, "no constraints\n");
277 return -ENODEV;
278 }
279 if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS)) {
280 rdev_err(rdev, "operation not allowed\n");
281 return -EPERM;
282 }
283 return 0;
284 }
285
286 static ssize_t regulator_uV_show(struct device *dev,
287 struct device_attribute *attr, char *buf)
288 {
289 struct regulator_dev *rdev = dev_get_drvdata(dev);
290 ssize_t ret;
291
292 mutex_lock(&rdev->mutex);
293 ret = sprintf(buf, "%d\n", _regulator_get_voltage(rdev));
294 mutex_unlock(&rdev->mutex);
295
296 return ret;
297 }
298 static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL);
299
300 static ssize_t regulator_uA_show(struct device *dev,
301 struct device_attribute *attr, char *buf)
302 {
303 struct regulator_dev *rdev = dev_get_drvdata(dev);
304
305 return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
306 }
307 static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL);
308
309 static ssize_t regulator_name_show(struct device *dev,
310 struct device_attribute *attr, char *buf)
311 {
312 struct regulator_dev *rdev = dev_get_drvdata(dev);
313
314 return sprintf(buf, "%s\n", rdev_get_name(rdev));
315 }
316
317 static ssize_t regulator_print_opmode(char *buf, int mode)
318 {
319 switch (mode) {
320 case REGULATOR_MODE_FAST:
321 return sprintf(buf, "fast\n");
322 case REGULATOR_MODE_NORMAL:
323 return sprintf(buf, "normal\n");
324 case REGULATOR_MODE_IDLE:
325 return sprintf(buf, "idle\n");
326 case REGULATOR_MODE_STANDBY:
327 return sprintf(buf, "standby\n");
328 }
329 return sprintf(buf, "unknown\n");
330 }
331
332 static ssize_t regulator_opmode_show(struct device *dev,
333 struct device_attribute *attr, char *buf)
334 {
335 struct regulator_dev *rdev = dev_get_drvdata(dev);
336
337 return regulator_print_opmode(buf, _regulator_get_mode(rdev));
338 }
339 static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL);
340
341 static ssize_t regulator_print_state(char *buf, int state)
342 {
343 if (state > 0)
344 return sprintf(buf, "enabled\n");
345 else if (state == 0)
346 return sprintf(buf, "disabled\n");
347 else
348 return sprintf(buf, "unknown\n");
349 }
350
351 static ssize_t regulator_state_show(struct device *dev,
352 struct device_attribute *attr, char *buf)
353 {
354 struct regulator_dev *rdev = dev_get_drvdata(dev);
355 ssize_t ret;
356
357 mutex_lock(&rdev->mutex);
358 ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
359 mutex_unlock(&rdev->mutex);
360
361 return ret;
362 }
363 static DEVICE_ATTR(state, 0444, regulator_state_show, NULL);
364
365 static ssize_t regulator_status_show(struct device *dev,
366 struct device_attribute *attr, char *buf)
367 {
368 struct regulator_dev *rdev = dev_get_drvdata(dev);
369 int status;
370 char *label;
371
372 status = rdev->desc->ops->get_status(rdev);
373 if (status < 0)
374 return status;
375
376 switch (status) {
377 case REGULATOR_STATUS_OFF:
378 label = "off";
379 break;
380 case REGULATOR_STATUS_ON:
381 label = "on";
382 break;
383 case REGULATOR_STATUS_ERROR:
384 label = "error";
385 break;
386 case REGULATOR_STATUS_FAST:
387 label = "fast";
388 break;
389 case REGULATOR_STATUS_NORMAL:
390 label = "normal";
391 break;
392 case REGULATOR_STATUS_IDLE:
393 label = "idle";
394 break;
395 case REGULATOR_STATUS_STANDBY:
396 label = "standby";
397 break;
398 case REGULATOR_STATUS_BYPASS:
399 label = "bypass";
400 break;
401 case REGULATOR_STATUS_UNDEFINED:
402 label = "undefined";
403 break;
404 default:
405 return -ERANGE;
406 }
407
408 return sprintf(buf, "%s\n", label);
409 }
410 static DEVICE_ATTR(status, 0444, regulator_status_show, NULL);
411
412 static ssize_t regulator_min_uA_show(struct device *dev,
413 struct device_attribute *attr, char *buf)
414 {
415 struct regulator_dev *rdev = dev_get_drvdata(dev);
416
417 if (!rdev->constraints)
418 return sprintf(buf, "constraint not defined\n");
419
420 return sprintf(buf, "%d\n", rdev->constraints->min_uA);
421 }
422 static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL);
423
424 static ssize_t regulator_max_uA_show(struct device *dev,
425 struct device_attribute *attr, char *buf)
426 {
427 struct regulator_dev *rdev = dev_get_drvdata(dev);
428
429 if (!rdev->constraints)
430 return sprintf(buf, "constraint not defined\n");
431
432 return sprintf(buf, "%d\n", rdev->constraints->max_uA);
433 }
434 static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL);
435
436 static ssize_t regulator_min_uV_show(struct device *dev,
437 struct device_attribute *attr, char *buf)
438 {
439 struct regulator_dev *rdev = dev_get_drvdata(dev);
440
441 if (!rdev->constraints)
442 return sprintf(buf, "constraint not defined\n");
443
444 return sprintf(buf, "%d\n", rdev->constraints->min_uV);
445 }
446 static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL);
447
448 static ssize_t regulator_max_uV_show(struct device *dev,
449 struct device_attribute *attr, char *buf)
450 {
451 struct regulator_dev *rdev = dev_get_drvdata(dev);
452
453 if (!rdev->constraints)
454 return sprintf(buf, "constraint not defined\n");
455
456 return sprintf(buf, "%d\n", rdev->constraints->max_uV);
457 }
458 static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL);
459
460 static ssize_t regulator_total_uA_show(struct device *dev,
461 struct device_attribute *attr, char *buf)
462 {
463 struct regulator_dev *rdev = dev_get_drvdata(dev);
464 struct regulator *regulator;
465 int uA = 0;
466
467 mutex_lock(&rdev->mutex);
468 list_for_each_entry(regulator, &rdev->consumer_list, list)
469 uA += regulator->uA_load;
470 mutex_unlock(&rdev->mutex);
471 return sprintf(buf, "%d\n", uA);
472 }
473 static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL);
474
475 static ssize_t regulator_num_users_show(struct device *dev,
476 struct device_attribute *attr, char *buf)
477 {
478 struct regulator_dev *rdev = dev_get_drvdata(dev);
479 return sprintf(buf, "%d\n", rdev->use_count);
480 }
481
482 static ssize_t regulator_type_show(struct device *dev,
483 struct device_attribute *attr, char *buf)
484 {
485 struct regulator_dev *rdev = dev_get_drvdata(dev);
486
487 switch (rdev->desc->type) {
488 case REGULATOR_VOLTAGE:
489 return sprintf(buf, "voltage\n");
490 case REGULATOR_CURRENT:
491 return sprintf(buf, "current\n");
492 }
493 return sprintf(buf, "unknown\n");
494 }
495
496 static ssize_t regulator_suspend_mem_uV_show(struct device *dev,
497 struct device_attribute *attr, char *buf)
498 {
499 struct regulator_dev *rdev = dev_get_drvdata(dev);
500
501 return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
502 }
503 static DEVICE_ATTR(suspend_mem_microvolts, 0444,
504 regulator_suspend_mem_uV_show, NULL);
505
506 static ssize_t regulator_suspend_disk_uV_show(struct device *dev,
507 struct device_attribute *attr, char *buf)
508 {
509 struct regulator_dev *rdev = dev_get_drvdata(dev);
510
511 return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
512 }
513 static DEVICE_ATTR(suspend_disk_microvolts, 0444,
514 regulator_suspend_disk_uV_show, NULL);
515
516 static ssize_t regulator_suspend_standby_uV_show(struct device *dev,
517 struct device_attribute *attr, char *buf)
518 {
519 struct regulator_dev *rdev = dev_get_drvdata(dev);
520
521 return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
522 }
523 static DEVICE_ATTR(suspend_standby_microvolts, 0444,
524 regulator_suspend_standby_uV_show, NULL);
525
526 static ssize_t regulator_suspend_mem_mode_show(struct device *dev,
527 struct device_attribute *attr, char *buf)
528 {
529 struct regulator_dev *rdev = dev_get_drvdata(dev);
530
531 return regulator_print_opmode(buf,
532 rdev->constraints->state_mem.mode);
533 }
534 static DEVICE_ATTR(suspend_mem_mode, 0444,
535 regulator_suspend_mem_mode_show, NULL);
536
537 static ssize_t regulator_suspend_disk_mode_show(struct device *dev,
538 struct device_attribute *attr, char *buf)
539 {
540 struct regulator_dev *rdev = dev_get_drvdata(dev);
541
542 return regulator_print_opmode(buf,
543 rdev->constraints->state_disk.mode);
544 }
545 static DEVICE_ATTR(suspend_disk_mode, 0444,
546 regulator_suspend_disk_mode_show, NULL);
547
548 static ssize_t regulator_suspend_standby_mode_show(struct device *dev,
549 struct device_attribute *attr, char *buf)
550 {
551 struct regulator_dev *rdev = dev_get_drvdata(dev);
552
553 return regulator_print_opmode(buf,
554 rdev->constraints->state_standby.mode);
555 }
556 static DEVICE_ATTR(suspend_standby_mode, 0444,
557 regulator_suspend_standby_mode_show, NULL);
558
559 static ssize_t regulator_suspend_mem_state_show(struct device *dev,
560 struct device_attribute *attr, char *buf)
561 {
562 struct regulator_dev *rdev = dev_get_drvdata(dev);
563
564 return regulator_print_state(buf,
565 rdev->constraints->state_mem.enabled);
566 }
567 static DEVICE_ATTR(suspend_mem_state, 0444,
568 regulator_suspend_mem_state_show, NULL);
569
570 static ssize_t regulator_suspend_disk_state_show(struct device *dev,
571 struct device_attribute *attr, char *buf)
572 {
573 struct regulator_dev *rdev = dev_get_drvdata(dev);
574
575 return regulator_print_state(buf,
576 rdev->constraints->state_disk.enabled);
577 }
578 static DEVICE_ATTR(suspend_disk_state, 0444,
579 regulator_suspend_disk_state_show, NULL);
580
581 static ssize_t regulator_suspend_standby_state_show(struct device *dev,
582 struct device_attribute *attr, char *buf)
583 {
584 struct regulator_dev *rdev = dev_get_drvdata(dev);
585
586 return regulator_print_state(buf,
587 rdev->constraints->state_standby.enabled);
588 }
589 static DEVICE_ATTR(suspend_standby_state, 0444,
590 regulator_suspend_standby_state_show, NULL);
591
592 static ssize_t regulator_bypass_show(struct device *dev,
593 struct device_attribute *attr, char *buf)
594 {
595 struct regulator_dev *rdev = dev_get_drvdata(dev);
596 const char *report;
597 bool bypass;
598 int ret;
599
600 ret = rdev->desc->ops->get_bypass(rdev, &bypass);
601
602 if (ret != 0)
603 report = "unknown";
604 else if (bypass)
605 report = "enabled";
606 else
607 report = "disabled";
608
609 return sprintf(buf, "%s\n", report);
610 }
611 static DEVICE_ATTR(bypass, 0444,
612 regulator_bypass_show, NULL);
613
614 /*
615 * These are the only attributes are present for all regulators.
616 * Other attributes are a function of regulator functionality.
617 */
618 static struct device_attribute regulator_dev_attrs[] = {
619 __ATTR(name, 0444, regulator_name_show, NULL),
620 __ATTR(num_users, 0444, regulator_num_users_show, NULL),
621 __ATTR(type, 0444, regulator_type_show, NULL),
622 __ATTR_NULL,
623 };
624
625 static void regulator_dev_release(struct device *dev)
626 {
627 struct regulator_dev *rdev = dev_get_drvdata(dev);
628 kfree(rdev);
629 }
630
631 static struct class regulator_class = {
632 .name = "regulator",
633 .dev_release = regulator_dev_release,
634 .dev_attrs = regulator_dev_attrs,
635 };
636
637 /* Calculate the new optimum regulator operating mode based on the new total
638 * consumer load. All locks held by caller */
639 static void drms_uA_update(struct regulator_dev *rdev)
640 {
641 struct regulator *sibling;
642 int current_uA = 0, output_uV, input_uV, err;
643 unsigned int mode;
644
645 err = regulator_check_drms(rdev);
646 if (err < 0 || !rdev->desc->ops->get_optimum_mode ||
647 (!rdev->desc->ops->get_voltage &&
648 !rdev->desc->ops->get_voltage_sel) ||
649 !rdev->desc->ops->set_mode)
650 return;
651
652 /* get output voltage */
653 output_uV = _regulator_get_voltage(rdev);
654 if (output_uV <= 0)
655 return;
656
657 /* get input voltage */
658 input_uV = 0;
659 if (rdev->supply)
660 input_uV = regulator_get_voltage(rdev->supply);
661 if (input_uV <= 0)
662 input_uV = rdev->constraints->input_uV;
663 if (input_uV <= 0)
664 return;
665
666 /* calc total requested load */
667 list_for_each_entry(sibling, &rdev->consumer_list, list)
668 current_uA += sibling->uA_load;
669
670 /* now get the optimum mode for our new total regulator load */
671 mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
672 output_uV, current_uA);
673
674 /* check the new mode is allowed */
675 err = regulator_mode_constrain(rdev, &mode);
676 if (err == 0)
677 rdev->desc->ops->set_mode(rdev, mode);
678 }
679
680 static int suspend_set_state(struct regulator_dev *rdev,
681 struct regulator_state *rstate)
682 {
683 int ret = 0;
684
685 /* If we have no suspend mode configration don't set anything;
686 * only warn if the driver implements set_suspend_voltage or
687 * set_suspend_mode callback.
688 */
689 if (!rstate->enabled && !rstate->disabled) {
690 if (rdev->desc->ops->set_suspend_voltage ||
691 rdev->desc->ops->set_suspend_mode)
692 rdev_warn(rdev, "No configuration\n");
693 return 0;
694 }
695
696 if (rstate->enabled && rstate->disabled) {
697 rdev_err(rdev, "invalid configuration\n");
698 return -EINVAL;
699 }
700
701 if (rstate->enabled && rdev->desc->ops->set_suspend_enable)
702 ret = rdev->desc->ops->set_suspend_enable(rdev);
703 else if (rstate->disabled && rdev->desc->ops->set_suspend_disable)
704 ret = rdev->desc->ops->set_suspend_disable(rdev);
705 else /* OK if set_suspend_enable or set_suspend_disable is NULL */
706 ret = 0;
707
708 if (ret < 0) {
709 rdev_err(rdev, "failed to enabled/disable\n");
710 return ret;
711 }
712
713 if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
714 ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
715 if (ret < 0) {
716 rdev_err(rdev, "failed to set voltage\n");
717 return ret;
718 }
719 }
720
721 if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
722 ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
723 if (ret < 0) {
724 rdev_err(rdev, "failed to set mode\n");
725 return ret;
726 }
727 }
728 return ret;
729 }
730
731 /* locks held by caller */
732 static int suspend_prepare(struct regulator_dev *rdev, suspend_state_t state)
733 {
734 if (!rdev->constraints)
735 return -EINVAL;
736
737 switch (state) {
738 case PM_SUSPEND_STANDBY:
739 return suspend_set_state(rdev,
740 &rdev->constraints->state_standby);
741 case PM_SUSPEND_MEM:
742 return suspend_set_state(rdev,
743 &rdev->constraints->state_mem);
744 case PM_SUSPEND_MAX:
745 return suspend_set_state(rdev,
746 &rdev->constraints->state_disk);
747 default:
748 return -EINVAL;
749 }
750 }
751
752 static void print_constraints(struct regulator_dev *rdev)
753 {
754 struct regulation_constraints *constraints = rdev->constraints;
755 char buf[80] = "";
756 int count = 0;
757 int ret;
758
759 if (constraints->min_uV && constraints->max_uV) {
760 if (constraints->min_uV == constraints->max_uV)
761 count += sprintf(buf + count, "%d mV ",
762 constraints->min_uV / 1000);
763 else
764 count += sprintf(buf + count, "%d <--> %d mV ",
765 constraints->min_uV / 1000,
766 constraints->max_uV / 1000);
767 }
768
769 if (!constraints->min_uV ||
770 constraints->min_uV != constraints->max_uV) {
771 ret = _regulator_get_voltage(rdev);
772 if (ret > 0)
773 count += sprintf(buf + count, "at %d mV ", ret / 1000);
774 }
775
776 if (constraints->uV_offset)
777 count += sprintf(buf, "%dmV offset ",
778 constraints->uV_offset / 1000);
779
780 if (constraints->min_uA && constraints->max_uA) {
781 if (constraints->min_uA == constraints->max_uA)
782 count += sprintf(buf + count, "%d mA ",
783 constraints->min_uA / 1000);
784 else
785 count += sprintf(buf + count, "%d <--> %d mA ",
786 constraints->min_uA / 1000,
787 constraints->max_uA / 1000);
788 }
789
790 if (!constraints->min_uA ||
791 constraints->min_uA != constraints->max_uA) {
792 ret = _regulator_get_current_limit(rdev);
793 if (ret > 0)
794 count += sprintf(buf + count, "at %d mA ", ret / 1000);
795 }
796
797 if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
798 count += sprintf(buf + count, "fast ");
799 if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
800 count += sprintf(buf + count, "normal ");
801 if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
802 count += sprintf(buf + count, "idle ");
803 if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
804 count += sprintf(buf + count, "standby");
805
806 if (!count)
807 sprintf(buf, "no parameters");
808
809 rdev_info(rdev, "%s\n", buf);
810
811 if ((constraints->min_uV != constraints->max_uV) &&
812 !(constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE))
813 rdev_warn(rdev,
814 "Voltage range but no REGULATOR_CHANGE_VOLTAGE\n");
815 }
816
817 static int machine_constraints_voltage(struct regulator_dev *rdev,
818 struct regulation_constraints *constraints)
819 {
820 struct regulator_ops *ops = rdev->desc->ops;
821 int ret;
822
823 /* do we need to apply the constraint voltage */
824 if (rdev->constraints->apply_uV &&
825 rdev->constraints->min_uV == rdev->constraints->max_uV) {
826 ret = _regulator_do_set_voltage(rdev,
827 rdev->constraints->min_uV,
828 rdev->constraints->max_uV);
829 if (ret < 0) {
830 rdev_err(rdev, "failed to apply %duV constraint\n",
831 rdev->constraints->min_uV);
832 return ret;
833 }
834 }
835
836 /* constrain machine-level voltage specs to fit
837 * the actual range supported by this regulator.
838 */
839 if (ops->list_voltage && rdev->desc->n_voltages) {
840 int count = rdev->desc->n_voltages;
841 int i;
842 int min_uV = INT_MAX;
843 int max_uV = INT_MIN;
844 int cmin = constraints->min_uV;
845 int cmax = constraints->max_uV;
846
847 /* it's safe to autoconfigure fixed-voltage supplies
848 and the constraints are used by list_voltage. */
849 if (count == 1 && !cmin) {
850 cmin = 1;
851 cmax = INT_MAX;
852 constraints->min_uV = cmin;
853 constraints->max_uV = cmax;
854 }
855
856 /* voltage constraints are optional */
857 if ((cmin == 0) && (cmax == 0))
858 return 0;
859
860 /* else require explicit machine-level constraints */
861 if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
862 rdev_err(rdev, "invalid voltage constraints\n");
863 return -EINVAL;
864 }
865
866 /* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
867 for (i = 0; i < count; i++) {
868 int value;
869
870 value = ops->list_voltage(rdev, i);
871 if (value <= 0)
872 continue;
873
874 /* maybe adjust [min_uV..max_uV] */
875 if (value >= cmin && value < min_uV)
876 min_uV = value;
877 if (value <= cmax && value > max_uV)
878 max_uV = value;
879 }
880
881 /* final: [min_uV..max_uV] valid iff constraints valid */
882 if (max_uV < min_uV) {
883 rdev_err(rdev, "unsupportable voltage constraints\n");
884 return -EINVAL;
885 }
886
887 /* use regulator's subset of machine constraints */
888 if (constraints->min_uV < min_uV) {
889 rdev_dbg(rdev, "override min_uV, %d -> %d\n",
890 constraints->min_uV, min_uV);
891 constraints->min_uV = min_uV;
892 }
893 if (constraints->max_uV > max_uV) {
894 rdev_dbg(rdev, "override max_uV, %d -> %d\n",
895 constraints->max_uV, max_uV);
896 constraints->max_uV = max_uV;
897 }
898 }
899
900 return 0;
901 }
902
903 /**
904 * set_machine_constraints - sets regulator constraints
905 * @rdev: regulator source
906 * @constraints: constraints to apply
907 *
908 * Allows platform initialisation code to define and constrain
909 * regulator circuits e.g. valid voltage/current ranges, etc. NOTE:
910 * Constraints *must* be set by platform code in order for some
911 * regulator operations to proceed i.e. set_voltage, set_current_limit,
912 * set_mode.
913 */
914 static int set_machine_constraints(struct regulator_dev *rdev,
915 const struct regulation_constraints *constraints)
916 {
917 int ret = 0;
918 struct regulator_ops *ops = rdev->desc->ops;
919
920 if (constraints)
921 rdev->constraints = kmemdup(constraints, sizeof(*constraints),
922 GFP_KERNEL);
923 else
924 rdev->constraints = kzalloc(sizeof(*constraints),
925 GFP_KERNEL);
926 if (!rdev->constraints)
927 return -ENOMEM;
928
929 ret = machine_constraints_voltage(rdev, rdev->constraints);
930 if (ret != 0)
931 goto out;
932
933 /* do we need to setup our suspend state */
934 if (rdev->constraints->initial_state) {
935 ret = suspend_prepare(rdev, rdev->constraints->initial_state);
936 if (ret < 0) {
937 rdev_err(rdev, "failed to set suspend state\n");
938 goto out;
939 }
940 }
941
942 if (rdev->constraints->initial_mode) {
943 if (!ops->set_mode) {
944 rdev_err(rdev, "no set_mode operation\n");
945 ret = -EINVAL;
946 goto out;
947 }
948
949 ret = ops->set_mode(rdev, rdev->constraints->initial_mode);
950 if (ret < 0) {
951 rdev_err(rdev, "failed to set initial mode: %d\n", ret);
952 goto out;
953 }
954 }
955
956 /* If the constraints say the regulator should be on at this point
957 * and we have control then make sure it is enabled.
958 */
959 if ((rdev->constraints->always_on || rdev->constraints->boot_on) &&
960 ops->enable) {
961 ret = ops->enable(rdev);
962 if (ret < 0) {
963 rdev_err(rdev, "failed to enable\n");
964 goto out;
965 }
966 }
967
968 if (rdev->constraints->ramp_delay && ops->set_ramp_delay) {
969 ret = ops->set_ramp_delay(rdev, rdev->constraints->ramp_delay);
970 if (ret < 0) {
971 rdev_err(rdev, "failed to set ramp_delay\n");
972 goto out;
973 }
974 }
975
976 print_constraints(rdev);
977 return 0;
978 out:
979 kfree(rdev->constraints);
980 rdev->constraints = NULL;
981 return ret;
982 }
983
984 /**
985 * set_supply - set regulator supply regulator
986 * @rdev: regulator name
987 * @supply_rdev: supply regulator name
988 *
989 * Called by platform initialisation code to set the supply regulator for this
990 * regulator. This ensures that a regulators supply will also be enabled by the
991 * core if it's child is enabled.
992 */
993 static int set_supply(struct regulator_dev *rdev,
994 struct regulator_dev *supply_rdev)
995 {
996 int err;
997
998 rdev_info(rdev, "supplied by %s\n", rdev_get_name(supply_rdev));
999
1000 rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY");
1001 if (rdev->supply == NULL) {
1002 err = -ENOMEM;
1003 return err;
1004 }
1005 supply_rdev->open_count++;
1006
1007 return 0;
1008 }
1009
1010 /**
1011 * set_consumer_device_supply - Bind a regulator to a symbolic supply
1012 * @rdev: regulator source
1013 * @consumer_dev_name: dev_name() string for device supply applies to
1014 * @supply: symbolic name for supply
1015 *
1016 * Allows platform initialisation code to map physical regulator
1017 * sources to symbolic names for supplies for use by devices. Devices
1018 * should use these symbolic names to request regulators, avoiding the
1019 * need to provide board-specific regulator names as platform data.
1020 */
1021 static int set_consumer_device_supply(struct regulator_dev *rdev,
1022 const char *consumer_dev_name,
1023 const char *supply)
1024 {
1025 struct regulator_map *node;
1026 int has_dev;
1027
1028 if (supply == NULL)
1029 return -EINVAL;
1030
1031 if (consumer_dev_name != NULL)
1032 has_dev = 1;
1033 else
1034 has_dev = 0;
1035
1036 list_for_each_entry(node, &regulator_map_list, list) {
1037 if (node->dev_name && consumer_dev_name) {
1038 if (strcmp(node->dev_name, consumer_dev_name) != 0)
1039 continue;
1040 } else if (node->dev_name || consumer_dev_name) {
1041 continue;
1042 }
1043
1044 if (strcmp(node->supply, supply) != 0)
1045 continue;
1046
1047 pr_debug("%s: %s/%s is '%s' supply; fail %s/%s\n",
1048 consumer_dev_name,
1049 dev_name(&node->regulator->dev),
1050 node->regulator->desc->name,
1051 supply,
1052 dev_name(&rdev->dev), rdev_get_name(rdev));
1053 return -EBUSY;
1054 }
1055
1056 node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
1057 if (node == NULL)
1058 return -ENOMEM;
1059
1060 node->regulator = rdev;
1061 node->supply = supply;
1062
1063 if (has_dev) {
1064 node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
1065 if (node->dev_name == NULL) {
1066 kfree(node);
1067 return -ENOMEM;
1068 }
1069 }
1070
1071 list_add(&node->list, &regulator_map_list);
1072 return 0;
1073 }
1074
1075 static void unset_regulator_supplies(struct regulator_dev *rdev)
1076 {
1077 struct regulator_map *node, *n;
1078
1079 list_for_each_entry_safe(node, n, &regulator_map_list, list) {
1080 if (rdev == node->regulator) {
1081 list_del(&node->list);
1082 kfree(node->dev_name);
1083 kfree(node);
1084 }
1085 }
1086 }
1087
1088 #define REG_STR_SIZE 64
1089
1090 static struct regulator *create_regulator(struct regulator_dev *rdev,
1091 struct device *dev,
1092 const char *supply_name)
1093 {
1094 struct regulator *regulator;
1095 char buf[REG_STR_SIZE];
1096 int err, size;
1097
1098 regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
1099 if (regulator == NULL)
1100 return NULL;
1101
1102 mutex_lock(&rdev->mutex);
1103 regulator->rdev = rdev;
1104 list_add(&regulator->list, &rdev->consumer_list);
1105
1106 if (dev) {
1107 regulator->dev = dev;
1108
1109 /* Add a link to the device sysfs entry */
1110 size = scnprintf(buf, REG_STR_SIZE, "%s-%s",
1111 dev->kobj.name, supply_name);
1112 if (size >= REG_STR_SIZE)
1113 goto overflow_err;
1114
1115 regulator->supply_name = kstrdup(buf, GFP_KERNEL);
1116 if (regulator->supply_name == NULL)
1117 goto overflow_err;
1118
1119 err = sysfs_create_link(&rdev->dev.kobj, &dev->kobj,
1120 buf);
1121 if (err) {
1122 rdev_warn(rdev, "could not add device link %s err %d\n",
1123 dev->kobj.name, err);
1124 /* non-fatal */
1125 }
1126 } else {
1127 regulator->supply_name = kstrdup(supply_name, GFP_KERNEL);
1128 if (regulator->supply_name == NULL)
1129 goto overflow_err;
1130 }
1131
1132 regulator->debugfs = debugfs_create_dir(regulator->supply_name,
1133 rdev->debugfs);
1134 if (!regulator->debugfs) {
1135 rdev_warn(rdev, "Failed to create debugfs directory\n");
1136 } else {
1137 debugfs_create_u32("uA_load", 0444, regulator->debugfs,
1138 &regulator->uA_load);
1139 debugfs_create_u32("min_uV", 0444, regulator->debugfs,
1140 &regulator->min_uV);
1141 debugfs_create_u32("max_uV", 0444, regulator->debugfs,
1142 &regulator->max_uV);
1143 }
1144
1145 /*
1146 * Check now if the regulator is an always on regulator - if
1147 * it is then we don't need to do nearly so much work for
1148 * enable/disable calls.
1149 */
1150 if (!_regulator_can_change_status(rdev) &&
1151 _regulator_is_enabled(rdev))
1152 regulator->always_on = true;
1153
1154 mutex_unlock(&rdev->mutex);
1155 return regulator;
1156 overflow_err:
1157 list_del(&regulator->list);
1158 kfree(regulator);
1159 mutex_unlock(&rdev->mutex);
1160 return NULL;
1161 }
1162
1163 static int _regulator_get_enable_time(struct regulator_dev *rdev)
1164 {
1165 if (!rdev->desc->ops->enable_time)
1166 return rdev->desc->enable_time;
1167 return rdev->desc->ops->enable_time(rdev);
1168 }
1169
1170 static struct regulator_dev *regulator_dev_lookup(struct device *dev,
1171 const char *supply,
1172 int *ret)
1173 {
1174 struct regulator_dev *r;
1175 struct device_node *node;
1176 struct regulator_map *map;
1177 const char *devname = NULL;
1178
1179 /* first do a dt based lookup */
1180 if (dev && dev->of_node) {
1181 node = of_get_regulator(dev, supply);
1182 if (node) {
1183 list_for_each_entry(r, &regulator_list, list)
1184 if (r->dev.parent &&
1185 node == r->dev.of_node)
1186 return r;
1187 } else {
1188 /*
1189 * If we couldn't even get the node then it's
1190 * not just that the device didn't register
1191 * yet, there's no node and we'll never
1192 * succeed.
1193 */
1194 *ret = -ENODEV;
1195 }
1196 }
1197
1198 /* if not found, try doing it non-dt way */
1199 if (dev)
1200 devname = dev_name(dev);
1201
1202 list_for_each_entry(r, &regulator_list, list)
1203 if (strcmp(rdev_get_name(r), supply) == 0)
1204 return r;
1205
1206 list_for_each_entry(map, &regulator_map_list, list) {
1207 /* If the mapping has a device set up it must match */
1208 if (map->dev_name &&
1209 (!devname || strcmp(map->dev_name, devname)))
1210 continue;
1211
1212 if (strcmp(map->supply, supply) == 0)
1213 return map->regulator;
1214 }
1215
1216
1217 return NULL;
1218 }
1219
1220 /* Internal regulator request function */
1221 static struct regulator *_regulator_get(struct device *dev, const char *id,
1222 int exclusive)
1223 {
1224 struct regulator_dev *rdev;
1225 struct regulator *regulator = ERR_PTR(-EPROBE_DEFER);
1226 const char *devname = NULL;
1227 int ret;
1228
1229 if (id == NULL) {
1230 pr_err("get() with no identifier\n");
1231 return regulator;
1232 }
1233
1234 if (dev)
1235 devname = dev_name(dev);
1236
1237 mutex_lock(&regulator_list_mutex);
1238
1239 rdev = regulator_dev_lookup(dev, id, &ret);
1240 if (rdev)
1241 goto found;
1242
1243 if (board_wants_dummy_regulator) {
1244 rdev = dummy_regulator_rdev;
1245 goto found;
1246 }
1247
1248 #ifdef CONFIG_REGULATOR_DUMMY
1249 if (!devname)
1250 devname = "deviceless";
1251
1252 /* If the board didn't flag that it was fully constrained then
1253 * substitute in a dummy regulator so consumers can continue.
1254 */
1255 if (!has_full_constraints) {
1256 pr_warn("%s supply %s not found, using dummy regulator\n",
1257 devname, id);
1258 rdev = dummy_regulator_rdev;
1259 goto found;
1260 }
1261 #endif
1262
1263 mutex_unlock(&regulator_list_mutex);
1264 return regulator;
1265
1266 found:
1267 if (rdev->exclusive) {
1268 regulator = ERR_PTR(-EPERM);
1269 goto out;
1270 }
1271
1272 if (exclusive && rdev->open_count) {
1273 regulator = ERR_PTR(-EBUSY);
1274 goto out;
1275 }
1276
1277 if (!try_module_get(rdev->owner))
1278 goto out;
1279
1280 regulator = create_regulator(rdev, dev, id);
1281 if (regulator == NULL) {
1282 regulator = ERR_PTR(-ENOMEM);
1283 module_put(rdev->owner);
1284 goto out;
1285 }
1286
1287 rdev->open_count++;
1288 if (exclusive) {
1289 rdev->exclusive = 1;
1290
1291 ret = _regulator_is_enabled(rdev);
1292 if (ret > 0)
1293 rdev->use_count = 1;
1294 else
1295 rdev->use_count = 0;
1296 }
1297
1298 out:
1299 mutex_unlock(&regulator_list_mutex);
1300
1301 return regulator;
1302 }
1303
1304 /**
1305 * regulator_get - lookup and obtain a reference to a regulator.
1306 * @dev: device for regulator "consumer"
1307 * @id: Supply name or regulator ID.
1308 *
1309 * Returns a struct regulator corresponding to the regulator producer,
1310 * or IS_ERR() condition containing errno.
1311 *
1312 * Use of supply names configured via regulator_set_device_supply() is
1313 * strongly encouraged. It is recommended that the supply name used
1314 * should match the name used for the supply and/or the relevant
1315 * device pins in the datasheet.
1316 */
1317 struct regulator *regulator_get(struct device *dev, const char *id)
1318 {
1319 return _regulator_get(dev, id, 0);
1320 }
1321 EXPORT_SYMBOL_GPL(regulator_get);
1322
1323 static void devm_regulator_release(struct device *dev, void *res)
1324 {
1325 regulator_put(*(struct regulator **)res);
1326 }
1327
1328 /**
1329 * devm_regulator_get - Resource managed regulator_get()
1330 * @dev: device for regulator "consumer"
1331 * @id: Supply name or regulator ID.
1332 *
1333 * Managed regulator_get(). Regulators returned from this function are
1334 * automatically regulator_put() on driver detach. See regulator_get() for more
1335 * information.
1336 */
1337 struct regulator *devm_regulator_get(struct device *dev, const char *id)
1338 {
1339 struct regulator **ptr, *regulator;
1340
1341 ptr = devres_alloc(devm_regulator_release, sizeof(*ptr), GFP_KERNEL);
1342 if (!ptr)
1343 return ERR_PTR(-ENOMEM);
1344
1345 regulator = regulator_get(dev, id);
1346 if (!IS_ERR(regulator)) {
1347 *ptr = regulator;
1348 devres_add(dev, ptr);
1349 } else {
1350 devres_free(ptr);
1351 }
1352
1353 return regulator;
1354 }
1355 EXPORT_SYMBOL_GPL(devm_regulator_get);
1356
1357 /**
1358 * regulator_get_exclusive - obtain exclusive access to a regulator.
1359 * @dev: device for regulator "consumer"
1360 * @id: Supply name or regulator ID.
1361 *
1362 * Returns a struct regulator corresponding to the regulator producer,
1363 * or IS_ERR() condition containing errno. Other consumers will be
1364 * unable to obtain this reference is held and the use count for the
1365 * regulator will be initialised to reflect the current state of the
1366 * regulator.
1367 *
1368 * This is intended for use by consumers which cannot tolerate shared
1369 * use of the regulator such as those which need to force the
1370 * regulator off for correct operation of the hardware they are
1371 * controlling.
1372 *
1373 * Use of supply names configured via regulator_set_device_supply() is
1374 * strongly encouraged. It is recommended that the supply name used
1375 * should match the name used for the supply and/or the relevant
1376 * device pins in the datasheet.
1377 */
1378 struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
1379 {
1380 return _regulator_get(dev, id, 1);
1381 }
1382 EXPORT_SYMBOL_GPL(regulator_get_exclusive);
1383
1384 /* Locks held by regulator_put() */
1385 static void _regulator_put(struct regulator *regulator)
1386 {
1387 struct regulator_dev *rdev;
1388
1389 if (regulator == NULL || IS_ERR(regulator))
1390 return;
1391
1392 rdev = regulator->rdev;
1393
1394 debugfs_remove_recursive(regulator->debugfs);
1395
1396 /* remove any sysfs entries */
1397 if (regulator->dev)
1398 sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
1399 kfree(regulator->supply_name);
1400 list_del(&regulator->list);
1401 kfree(regulator);
1402
1403 rdev->open_count--;
1404 rdev->exclusive = 0;
1405
1406 module_put(rdev->owner);
1407 }
1408
1409 /**
1410 * regulator_put - "free" the regulator source
1411 * @regulator: regulator source
1412 *
1413 * Note: drivers must ensure that all regulator_enable calls made on this
1414 * regulator source are balanced by regulator_disable calls prior to calling
1415 * this function.
1416 */
1417 void regulator_put(struct regulator *regulator)
1418 {
1419 mutex_lock(&regulator_list_mutex);
1420 _regulator_put(regulator);
1421 mutex_unlock(&regulator_list_mutex);
1422 }
1423 EXPORT_SYMBOL_GPL(regulator_put);
1424
1425 static int devm_regulator_match(struct device *dev, void *res, void *data)
1426 {
1427 struct regulator **r = res;
1428 if (!r || !*r) {
1429 WARN_ON(!r || !*r);
1430 return 0;
1431 }
1432 return *r == data;
1433 }
1434
1435 /**
1436 * devm_regulator_put - Resource managed regulator_put()
1437 * @regulator: regulator to free
1438 *
1439 * Deallocate a regulator allocated with devm_regulator_get(). Normally
1440 * this function will not need to be called and the resource management
1441 * code will ensure that the resource is freed.
1442 */
1443 void devm_regulator_put(struct regulator *regulator)
1444 {
1445 int rc;
1446
1447 rc = devres_release(regulator->dev, devm_regulator_release,
1448 devm_regulator_match, regulator);
1449 if (rc != 0)
1450 WARN_ON(rc);
1451 }
1452 EXPORT_SYMBOL_GPL(devm_regulator_put);
1453
1454 static int _regulator_do_enable(struct regulator_dev *rdev)
1455 {
1456 int ret, delay;
1457
1458 /* Query before enabling in case configuration dependent. */
1459 ret = _regulator_get_enable_time(rdev);
1460 if (ret >= 0) {
1461 delay = ret;
1462 } else {
1463 rdev_warn(rdev, "enable_time() failed: %d\n", ret);
1464 delay = 0;
1465 }
1466
1467 trace_regulator_enable(rdev_get_name(rdev));
1468
1469 if (rdev->ena_gpio) {
1470 gpio_set_value_cansleep(rdev->ena_gpio,
1471 !rdev->ena_gpio_invert);
1472 rdev->ena_gpio_state = 1;
1473 } else if (rdev->desc->ops->enable) {
1474 ret = rdev->desc->ops->enable(rdev);
1475 if (ret < 0)
1476 return ret;
1477 } else {
1478 return -EINVAL;
1479 }
1480
1481 /* Allow the regulator to ramp; it would be useful to extend
1482 * this for bulk operations so that the regulators can ramp
1483 * together. */
1484 trace_regulator_enable_delay(rdev_get_name(rdev));
1485
1486 if (delay >= 1000) {
1487 mdelay(delay / 1000);
1488 udelay(delay % 1000);
1489 } else if (delay) {
1490 udelay(delay);
1491 }
1492
1493 trace_regulator_enable_complete(rdev_get_name(rdev));
1494
1495 return 0;
1496 }
1497
1498 /* locks held by regulator_enable() */
1499 static int _regulator_enable(struct regulator_dev *rdev)
1500 {
1501 int ret;
1502
1503 /* check voltage and requested load before enabling */
1504 if (rdev->constraints &&
1505 (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS))
1506 drms_uA_update(rdev);
1507
1508 if (rdev->use_count == 0) {
1509 /* The regulator may on if it's not switchable or left on */
1510 ret = _regulator_is_enabled(rdev);
1511 if (ret == -EINVAL || ret == 0) {
1512 if (!_regulator_can_change_status(rdev))
1513 return -EPERM;
1514
1515 ret = _regulator_do_enable(rdev);
1516 if (ret < 0)
1517 return ret;
1518
1519 } else if (ret < 0) {
1520 rdev_err(rdev, "is_enabled() failed: %d\n", ret);
1521 return ret;
1522 }
1523 /* Fallthrough on positive return values - already enabled */
1524 }
1525
1526 rdev->use_count++;
1527
1528 return 0;
1529 }
1530
1531 /**
1532 * regulator_enable - enable regulator output
1533 * @regulator: regulator source
1534 *
1535 * Request that the regulator be enabled with the regulator output at
1536 * the predefined voltage or current value. Calls to regulator_enable()
1537 * must be balanced with calls to regulator_disable().
1538 *
1539 * NOTE: the output value can be set by other drivers, boot loader or may be
1540 * hardwired in the regulator.
1541 */
1542 int regulator_enable(struct regulator *regulator)
1543 {
1544 struct regulator_dev *rdev = regulator->rdev;
1545 int ret = 0;
1546
1547 if (regulator->always_on)
1548 return 0;
1549
1550 if (rdev->supply) {
1551 ret = regulator_enable(rdev->supply);
1552 if (ret != 0)
1553 return ret;
1554 }
1555
1556 mutex_lock(&rdev->mutex);
1557 ret = _regulator_enable(rdev);
1558 mutex_unlock(&rdev->mutex);
1559
1560 if (ret != 0 && rdev->supply)
1561 regulator_disable(rdev->supply);
1562
1563 return ret;
1564 }
1565 EXPORT_SYMBOL_GPL(regulator_enable);
1566
1567 static int _regulator_do_disable(struct regulator_dev *rdev)
1568 {
1569 int ret;
1570
1571 trace_regulator_disable(rdev_get_name(rdev));
1572
1573 if (rdev->ena_gpio) {
1574 gpio_set_value_cansleep(rdev->ena_gpio,
1575 rdev->ena_gpio_invert);
1576 rdev->ena_gpio_state = 0;
1577
1578 } else if (rdev->desc->ops->disable) {
1579 ret = rdev->desc->ops->disable(rdev);
1580 if (ret != 0)
1581 return ret;
1582 }
1583
1584 trace_regulator_disable_complete(rdev_get_name(rdev));
1585
1586 _notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
1587 NULL);
1588 return 0;
1589 }
1590
1591 /* locks held by regulator_disable() */
1592 static int _regulator_disable(struct regulator_dev *rdev)
1593 {
1594 int ret = 0;
1595
1596 if (WARN(rdev->use_count <= 0,
1597 "unbalanced disables for %s\n", rdev_get_name(rdev)))
1598 return -EIO;
1599
1600 /* are we the last user and permitted to disable ? */
1601 if (rdev->use_count == 1 &&
1602 (rdev->constraints && !rdev->constraints->always_on)) {
1603
1604 /* we are last user */
1605 if (_regulator_can_change_status(rdev)) {
1606 ret = _regulator_do_disable(rdev);
1607 if (ret < 0) {
1608 rdev_err(rdev, "failed to disable\n");
1609 return ret;
1610 }
1611 }
1612
1613 rdev->use_count = 0;
1614 } else if (rdev->use_count > 1) {
1615
1616 if (rdev->constraints &&
1617 (rdev->constraints->valid_ops_mask &
1618 REGULATOR_CHANGE_DRMS))
1619 drms_uA_update(rdev);
1620
1621 rdev->use_count--;
1622 }
1623
1624 return ret;
1625 }
1626
1627 /**
1628 * regulator_disable - disable regulator output
1629 * @regulator: regulator source
1630 *
1631 * Disable the regulator output voltage or current. Calls to
1632 * regulator_enable() must be balanced with calls to
1633 * regulator_disable().
1634 *
1635 * NOTE: this will only disable the regulator output if no other consumer
1636 * devices have it enabled, the regulator device supports disabling and
1637 * machine constraints permit this operation.
1638 */
1639 int regulator_disable(struct regulator *regulator)
1640 {
1641 struct regulator_dev *rdev = regulator->rdev;
1642 int ret = 0;
1643
1644 if (regulator->always_on)
1645 return 0;
1646
1647 mutex_lock(&rdev->mutex);
1648 ret = _regulator_disable(rdev);
1649 mutex_unlock(&rdev->mutex);
1650
1651 if (ret == 0 && rdev->supply)
1652 regulator_disable(rdev->supply);
1653
1654 return ret;
1655 }
1656 EXPORT_SYMBOL_GPL(regulator_disable);
1657
1658 /* locks held by regulator_force_disable() */
1659 static int _regulator_force_disable(struct regulator_dev *rdev)
1660 {
1661 int ret = 0;
1662
1663 /* force disable */
1664 if (rdev->desc->ops->disable) {
1665 /* ah well, who wants to live forever... */
1666 ret = rdev->desc->ops->disable(rdev);
1667 if (ret < 0) {
1668 rdev_err(rdev, "failed to force disable\n");
1669 return ret;
1670 }
1671 /* notify other consumers that power has been forced off */
1672 _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
1673 REGULATOR_EVENT_DISABLE, NULL);
1674 }
1675
1676 return ret;
1677 }
1678
1679 /**
1680 * regulator_force_disable - force disable regulator output
1681 * @regulator: regulator source
1682 *
1683 * Forcibly disable the regulator output voltage or current.
1684 * NOTE: this *will* disable the regulator output even if other consumer
1685 * devices have it enabled. This should be used for situations when device
1686 * damage will likely occur if the regulator is not disabled (e.g. over temp).
1687 */
1688 int regulator_force_disable(struct regulator *regulator)
1689 {
1690 struct regulator_dev *rdev = regulator->rdev;
1691 int ret;
1692
1693 mutex_lock(&rdev->mutex);
1694 regulator->uA_load = 0;
1695 ret = _regulator_force_disable(regulator->rdev);
1696 mutex_unlock(&rdev->mutex);
1697
1698 if (rdev->supply)
1699 while (rdev->open_count--)
1700 regulator_disable(rdev->supply);
1701
1702 return ret;
1703 }
1704 EXPORT_SYMBOL_GPL(regulator_force_disable);
1705
1706 static void regulator_disable_work(struct work_struct *work)
1707 {
1708 struct regulator_dev *rdev = container_of(work, struct regulator_dev,
1709 disable_work.work);
1710 int count, i, ret;
1711
1712 mutex_lock(&rdev->mutex);
1713
1714 BUG_ON(!rdev->deferred_disables);
1715
1716 count = rdev->deferred_disables;
1717 rdev->deferred_disables = 0;
1718
1719 for (i = 0; i < count; i++) {
1720 ret = _regulator_disable(rdev);
1721 if (ret != 0)
1722 rdev_err(rdev, "Deferred disable failed: %d\n", ret);
1723 }
1724
1725 mutex_unlock(&rdev->mutex);
1726
1727 if (rdev->supply) {
1728 for (i = 0; i < count; i++) {
1729 ret = regulator_disable(rdev->supply);
1730 if (ret != 0) {
1731 rdev_err(rdev,
1732 "Supply disable failed: %d\n", ret);
1733 }
1734 }
1735 }
1736 }
1737
1738 /**
1739 * regulator_disable_deferred - disable regulator output with delay
1740 * @regulator: regulator source
1741 * @ms: miliseconds until the regulator is disabled
1742 *
1743 * Execute regulator_disable() on the regulator after a delay. This
1744 * is intended for use with devices that require some time to quiesce.
1745 *
1746 * NOTE: this will only disable the regulator output if no other consumer
1747 * devices have it enabled, the regulator device supports disabling and
1748 * machine constraints permit this operation.
1749 */
1750 int regulator_disable_deferred(struct regulator *regulator, int ms)
1751 {
1752 struct regulator_dev *rdev = regulator->rdev;
1753 int ret;
1754
1755 if (regulator->always_on)
1756 return 0;
1757
1758 if (!ms)
1759 return regulator_disable(regulator);
1760
1761 mutex_lock(&rdev->mutex);
1762 rdev->deferred_disables++;
1763 mutex_unlock(&rdev->mutex);
1764
1765 ret = schedule_delayed_work(&rdev->disable_work,
1766 msecs_to_jiffies(ms));
1767 if (ret < 0)
1768 return ret;
1769 else
1770 return 0;
1771 }
1772 EXPORT_SYMBOL_GPL(regulator_disable_deferred);
1773
1774 /**
1775 * regulator_is_enabled_regmap - standard is_enabled() for regmap users
1776 *
1777 * @rdev: regulator to operate on
1778 *
1779 * Regulators that use regmap for their register I/O can set the
1780 * enable_reg and enable_mask fields in their descriptor and then use
1781 * this as their is_enabled operation, saving some code.
1782 */
1783 int regulator_is_enabled_regmap(struct regulator_dev *rdev)
1784 {
1785 unsigned int val;
1786 int ret;
1787
1788 ret = regmap_read(rdev->regmap, rdev->desc->enable_reg, &val);
1789 if (ret != 0)
1790 return ret;
1791
1792 return (val & rdev->desc->enable_mask) != 0;
1793 }
1794 EXPORT_SYMBOL_GPL(regulator_is_enabled_regmap);
1795
1796 /**
1797 * regulator_enable_regmap - standard enable() for regmap users
1798 *
1799 * @rdev: regulator to operate on
1800 *
1801 * Regulators that use regmap for their register I/O can set the
1802 * enable_reg and enable_mask fields in their descriptor and then use
1803 * this as their enable() operation, saving some code.
1804 */
1805 int regulator_enable_regmap(struct regulator_dev *rdev)
1806 {
1807 return regmap_update_bits(rdev->regmap, rdev->desc->enable_reg,
1808 rdev->desc->enable_mask,
1809 rdev->desc->enable_mask);
1810 }
1811 EXPORT_SYMBOL_GPL(regulator_enable_regmap);
1812
1813 /**
1814 * regulator_disable_regmap - standard disable() for regmap users
1815 *
1816 * @rdev: regulator to operate on
1817 *
1818 * Regulators that use regmap for their register I/O can set the
1819 * enable_reg and enable_mask fields in their descriptor and then use
1820 * this as their disable() operation, saving some code.
1821 */
1822 int regulator_disable_regmap(struct regulator_dev *rdev)
1823 {
1824 return regmap_update_bits(rdev->regmap, rdev->desc->enable_reg,
1825 rdev->desc->enable_mask, 0);
1826 }
1827 EXPORT_SYMBOL_GPL(regulator_disable_regmap);
1828
1829 static int _regulator_is_enabled(struct regulator_dev *rdev)
1830 {
1831 /* A GPIO control always takes precedence */
1832 if (rdev->ena_gpio)
1833 return rdev->ena_gpio_state;
1834
1835 /* If we don't know then assume that the regulator is always on */
1836 if (!rdev->desc->ops->is_enabled)
1837 return 1;
1838
1839 return rdev->desc->ops->is_enabled(rdev);
1840 }
1841
1842 /**
1843 * regulator_is_enabled - is the regulator output enabled
1844 * @regulator: regulator source
1845 *
1846 * Returns positive if the regulator driver backing the source/client
1847 * has requested that the device be enabled, zero if it hasn't, else a
1848 * negative errno code.
1849 *
1850 * Note that the device backing this regulator handle can have multiple
1851 * users, so it might be enabled even if regulator_enable() was never
1852 * called for this particular source.
1853 */
1854 int regulator_is_enabled(struct regulator *regulator)
1855 {
1856 int ret;
1857
1858 if (regulator->always_on)
1859 return 1;
1860
1861 mutex_lock(&regulator->rdev->mutex);
1862 ret = _regulator_is_enabled(regulator->rdev);
1863 mutex_unlock(&regulator->rdev->mutex);
1864
1865 return ret;
1866 }
1867 EXPORT_SYMBOL_GPL(regulator_is_enabled);
1868
1869 /**
1870 * regulator_can_change_voltage - check if regulator can change voltage
1871 * @regulator: regulator source
1872 *
1873 * Returns positive if the regulator driver backing the source/client
1874 * can change its voltage, false otherwise. Usefull for detecting fixed
1875 * or dummy regulators and disabling voltage change logic in the client
1876 * driver.
1877 */
1878 int regulator_can_change_voltage(struct regulator *regulator)
1879 {
1880 struct regulator_dev *rdev = regulator->rdev;
1881
1882 if (rdev->constraints &&
1883 rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE &&
1884 rdev->desc->n_voltages > 1)
1885 return 1;
1886
1887 return 0;
1888 }
1889 EXPORT_SYMBOL_GPL(regulator_can_change_voltage);
1890
1891 /**
1892 * regulator_count_voltages - count regulator_list_voltage() selectors
1893 * @regulator: regulator source
1894 *
1895 * Returns number of selectors, or negative errno. Selectors are
1896 * numbered starting at zero, and typically correspond to bitfields
1897 * in hardware registers.
1898 */
1899 int regulator_count_voltages(struct regulator *regulator)
1900 {
1901 struct regulator_dev *rdev = regulator->rdev;
1902
1903 return rdev->desc->n_voltages ? : -EINVAL;
1904 }
1905 EXPORT_SYMBOL_GPL(regulator_count_voltages);
1906
1907 /**
1908 * regulator_list_voltage_linear - List voltages with simple calculation
1909 *
1910 * @rdev: Regulator device
1911 * @selector: Selector to convert into a voltage
1912 *
1913 * Regulators with a simple linear mapping between voltages and
1914 * selectors can set min_uV and uV_step in the regulator descriptor
1915 * and then use this function as their list_voltage() operation,
1916 */
1917 int regulator_list_voltage_linear(struct regulator_dev *rdev,
1918 unsigned int selector)
1919 {
1920 if (selector >= rdev->desc->n_voltages)
1921 return -EINVAL;
1922
1923 return rdev->desc->min_uV + (rdev->desc->uV_step * selector);
1924 }
1925 EXPORT_SYMBOL_GPL(regulator_list_voltage_linear);
1926
1927 /**
1928 * regulator_list_voltage_table - List voltages with table based mapping
1929 *
1930 * @rdev: Regulator device
1931 * @selector: Selector to convert into a voltage
1932 *
1933 * Regulators with table based mapping between voltages and
1934 * selectors can set volt_table in the regulator descriptor
1935 * and then use this function as their list_voltage() operation.
1936 */
1937 int regulator_list_voltage_table(struct regulator_dev *rdev,
1938 unsigned int selector)
1939 {
1940 if (!rdev->desc->volt_table) {
1941 BUG_ON(!rdev->desc->volt_table);
1942 return -EINVAL;
1943 }
1944
1945 if (selector >= rdev->desc->n_voltages)
1946 return -EINVAL;
1947
1948 return rdev->desc->volt_table[selector];
1949 }
1950 EXPORT_SYMBOL_GPL(regulator_list_voltage_table);
1951
1952 /**
1953 * regulator_list_voltage - enumerate supported voltages
1954 * @regulator: regulator source
1955 * @selector: identify voltage to list
1956 * Context: can sleep
1957 *
1958 * Returns a voltage that can be passed to @regulator_set_voltage(),
1959 * zero if this selector code can't be used on this system, or a
1960 * negative errno.
1961 */
1962 int regulator_list_voltage(struct regulator *regulator, unsigned selector)
1963 {
1964 struct regulator_dev *rdev = regulator->rdev;
1965 struct regulator_ops *ops = rdev->desc->ops;
1966 int ret;
1967
1968 if (!ops->list_voltage || selector >= rdev->desc->n_voltages)
1969 return -EINVAL;
1970
1971 mutex_lock(&rdev->mutex);
1972 ret = ops->list_voltage(rdev, selector);
1973 mutex_unlock(&rdev->mutex);
1974
1975 if (ret > 0) {
1976 if (ret < rdev->constraints->min_uV)
1977 ret = 0;
1978 else if (ret > rdev->constraints->max_uV)
1979 ret = 0;
1980 }
1981
1982 return ret;
1983 }
1984 EXPORT_SYMBOL_GPL(regulator_list_voltage);
1985
1986 /**
1987 * regulator_is_supported_voltage - check if a voltage range can be supported
1988 *
1989 * @regulator: Regulator to check.
1990 * @min_uV: Minimum required voltage in uV.
1991 * @max_uV: Maximum required voltage in uV.
1992 *
1993 * Returns a boolean or a negative error code.
1994 */
1995 int regulator_is_supported_voltage(struct regulator *regulator,
1996 int min_uV, int max_uV)
1997 {
1998 struct regulator_dev *rdev = regulator->rdev;
1999 int i, voltages, ret;
2000
2001 /* If we can't change voltage check the current voltage */
2002 if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
2003 ret = regulator_get_voltage(regulator);
2004 if (ret >= 0)
2005 return (min_uV <= ret && ret <= max_uV);
2006 else
2007 return ret;
2008 }
2009
2010 /* Any voltage within constrains range is fine? */
2011 if (rdev->desc->continuous_voltage_range)
2012 return min_uV >= rdev->constraints->min_uV &&
2013 max_uV <= rdev->constraints->max_uV;
2014
2015 ret = regulator_count_voltages(regulator);
2016 if (ret < 0)
2017 return ret;
2018 voltages = ret;
2019
2020 for (i = 0; i < voltages; i++) {
2021 ret = regulator_list_voltage(regulator, i);
2022
2023 if (ret >= min_uV && ret <= max_uV)
2024 return 1;
2025 }
2026
2027 return 0;
2028 }
2029 EXPORT_SYMBOL_GPL(regulator_is_supported_voltage);
2030
2031 /**
2032 * regulator_get_voltage_sel_regmap - standard get_voltage_sel for regmap users
2033 *
2034 * @rdev: regulator to operate on
2035 *
2036 * Regulators that use regmap for their register I/O can set the
2037 * vsel_reg and vsel_mask fields in their descriptor and then use this
2038 * as their get_voltage_vsel operation, saving some code.
2039 */
2040 int regulator_get_voltage_sel_regmap(struct regulator_dev *rdev)
2041 {
2042 unsigned int val;
2043 int ret;
2044
2045 ret = regmap_read(rdev->regmap, rdev->desc->vsel_reg, &val);
2046 if (ret != 0)
2047 return ret;
2048
2049 val &= rdev->desc->vsel_mask;
2050 val >>= ffs(rdev->desc->vsel_mask) - 1;
2051
2052 return val;
2053 }
2054 EXPORT_SYMBOL_GPL(regulator_get_voltage_sel_regmap);
2055
2056 /**
2057 * regulator_set_voltage_sel_regmap - standard set_voltage_sel for regmap users
2058 *
2059 * @rdev: regulator to operate on
2060 * @sel: Selector to set
2061 *
2062 * Regulators that use regmap for their register I/O can set the
2063 * vsel_reg and vsel_mask fields in their descriptor and then use this
2064 * as their set_voltage_vsel operation, saving some code.
2065 */
2066 int regulator_set_voltage_sel_regmap(struct regulator_dev *rdev, unsigned sel)
2067 {
2068 sel <<= ffs(rdev->desc->vsel_mask) - 1;
2069
2070 return regmap_update_bits(rdev->regmap, rdev->desc->vsel_reg,
2071 rdev->desc->vsel_mask, sel);
2072 }
2073 EXPORT_SYMBOL_GPL(regulator_set_voltage_sel_regmap);
2074
2075 /**
2076 * regulator_map_voltage_iterate - map_voltage() based on list_voltage()
2077 *
2078 * @rdev: Regulator to operate on
2079 * @min_uV: Lower bound for voltage
2080 * @max_uV: Upper bound for voltage
2081 *
2082 * Drivers implementing set_voltage_sel() and list_voltage() can use
2083 * this as their map_voltage() operation. It will find a suitable
2084 * voltage by calling list_voltage() until it gets something in bounds
2085 * for the requested voltages.
2086 */
2087 int regulator_map_voltage_iterate(struct regulator_dev *rdev,
2088 int min_uV, int max_uV)
2089 {
2090 int best_val = INT_MAX;
2091 int selector = 0;
2092 int i, ret;
2093
2094 /* Find the smallest voltage that falls within the specified
2095 * range.
2096 */
2097 for (i = 0; i < rdev->desc->n_voltages; i++) {
2098 ret = rdev->desc->ops->list_voltage(rdev, i);
2099 if (ret < 0)
2100 continue;
2101
2102 if (ret < best_val && ret >= min_uV && ret <= max_uV) {
2103 best_val = ret;
2104 selector = i;
2105 }
2106 }
2107
2108 if (best_val != INT_MAX)
2109 return selector;
2110 else
2111 return -EINVAL;
2112 }
2113 EXPORT_SYMBOL_GPL(regulator_map_voltage_iterate);
2114
2115 /**
2116 * regulator_map_voltage_linear - map_voltage() for simple linear mappings
2117 *
2118 * @rdev: Regulator to operate on
2119 * @min_uV: Lower bound for voltage
2120 * @max_uV: Upper bound for voltage
2121 *
2122 * Drivers providing min_uV and uV_step in their regulator_desc can
2123 * use this as their map_voltage() operation.
2124 */
2125 int regulator_map_voltage_linear(struct regulator_dev *rdev,
2126 int min_uV, int max_uV)
2127 {
2128 int ret, voltage;
2129
2130 /* Allow uV_step to be 0 for fixed voltage */
2131 if (rdev->desc->n_voltages == 1 && rdev->desc->uV_step == 0) {
2132 if (min_uV <= rdev->desc->min_uV && rdev->desc->min_uV <= max_uV)
2133 return 0;
2134 else
2135 return -EINVAL;
2136 }
2137
2138 if (!rdev->desc->uV_step) {
2139 BUG_ON(!rdev->desc->uV_step);
2140 return -EINVAL;
2141 }
2142
2143 if (min_uV < rdev->desc->min_uV)
2144 min_uV = rdev->desc->min_uV;
2145
2146 ret = DIV_ROUND_UP(min_uV - rdev->desc->min_uV, rdev->desc->uV_step);
2147 if (ret < 0)
2148 return ret;
2149
2150 /* Map back into a voltage to verify we're still in bounds */
2151 voltage = rdev->desc->ops->list_voltage(rdev, ret);
2152 if (voltage < min_uV || voltage > max_uV)
2153 return -EINVAL;
2154
2155 return ret;
2156 }
2157 EXPORT_SYMBOL_GPL(regulator_map_voltage_linear);
2158
2159 static int _regulator_do_set_voltage(struct regulator_dev *rdev,
2160 int min_uV, int max_uV)
2161 {
2162 int ret;
2163 int delay = 0;
2164 int best_val = 0;
2165 unsigned int selector;
2166 int old_selector = -1;
2167
2168 trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV);
2169
2170 min_uV += rdev->constraints->uV_offset;
2171 max_uV += rdev->constraints->uV_offset;
2172
2173 /*
2174 * If we can't obtain the old selector there is not enough
2175 * info to call set_voltage_time_sel().
2176 */
2177 if (_regulator_is_enabled(rdev) &&
2178 rdev->desc->ops->set_voltage_time_sel &&
2179 rdev->desc->ops->get_voltage_sel) {
2180 old_selector = rdev->desc->ops->get_voltage_sel(rdev);
2181 if (old_selector < 0)
2182 return old_selector;
2183 }
2184
2185 if (rdev->desc->ops->set_voltage) {
2186 ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV,
2187 &selector);
2188
2189 if (ret >= 0) {
2190 if (rdev->desc->ops->list_voltage)
2191 best_val = rdev->desc->ops->list_voltage(rdev,
2192 selector);
2193 else
2194 best_val = _regulator_get_voltage(rdev);
2195 }
2196
2197 } else if (rdev->desc->ops->set_voltage_sel) {
2198 if (rdev->desc->ops->map_voltage) {
2199 ret = rdev->desc->ops->map_voltage(rdev, min_uV,
2200 max_uV);
2201 } else {
2202 if (rdev->desc->ops->list_voltage ==
2203 regulator_list_voltage_linear)
2204 ret = regulator_map_voltage_linear(rdev,
2205 min_uV, max_uV);
2206 else
2207 ret = regulator_map_voltage_iterate(rdev,
2208 min_uV, max_uV);
2209 }
2210
2211 if (ret >= 0) {
2212 best_val = rdev->desc->ops->list_voltage(rdev, ret);
2213 if (min_uV <= best_val && max_uV >= best_val) {
2214 selector = ret;
2215 ret = rdev->desc->ops->set_voltage_sel(rdev,
2216 ret);
2217 } else {
2218 ret = -EINVAL;
2219 }
2220 }
2221 } else {
2222 ret = -EINVAL;
2223 }
2224
2225 /* Call set_voltage_time_sel if successfully obtained old_selector */
2226 if (ret == 0 && _regulator_is_enabled(rdev) && old_selector >= 0 &&
2227 rdev->desc->ops->set_voltage_time_sel) {
2228
2229 delay = rdev->desc->ops->set_voltage_time_sel(rdev,
2230 old_selector, selector);
2231 if (delay < 0) {
2232 rdev_warn(rdev, "set_voltage_time_sel() failed: %d\n",
2233 delay);
2234 delay = 0;
2235 }
2236
2237 /* Insert any necessary delays */
2238 if (delay >= 1000) {
2239 mdelay(delay / 1000);
2240 udelay(delay % 1000);
2241 } else if (delay) {
2242 udelay(delay);
2243 }
2244 }
2245
2246 if (ret == 0 && best_val >= 0) {
2247 unsigned long data = best_val;
2248
2249 _notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE,
2250 (void *)data);
2251 }
2252
2253 trace_regulator_set_voltage_complete(rdev_get_name(rdev), best_val);
2254
2255 return ret;
2256 }
2257
2258 /**
2259 * regulator_set_voltage - set regulator output voltage
2260 * @regulator: regulator source
2261 * @min_uV: Minimum required voltage in uV
2262 * @max_uV: Maximum acceptable voltage in uV
2263 *
2264 * Sets a voltage regulator to the desired output voltage. This can be set
2265 * during any regulator state. IOW, regulator can be disabled or enabled.
2266 *
2267 * If the regulator is enabled then the voltage will change to the new value
2268 * immediately otherwise if the regulator is disabled the regulator will
2269 * output at the new voltage when enabled.
2270 *
2271 * NOTE: If the regulator is shared between several devices then the lowest
2272 * request voltage that meets the system constraints will be used.
2273 * Regulator system constraints must be set for this regulator before
2274 * calling this function otherwise this call will fail.
2275 */
2276 int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
2277 {
2278 struct regulator_dev *rdev = regulator->rdev;
2279 int ret = 0;
2280
2281 mutex_lock(&rdev->mutex);
2282
2283 /* If we're setting the same range as last time the change
2284 * should be a noop (some cpufreq implementations use the same
2285 * voltage for multiple frequencies, for example).
2286 */
2287 if (regulator->min_uV == min_uV && regulator->max_uV == max_uV)
2288 goto out;
2289
2290 /* sanity check */
2291 if (!rdev->desc->ops->set_voltage &&
2292 !rdev->desc->ops->set_voltage_sel) {
2293 ret = -EINVAL;
2294 goto out;
2295 }
2296
2297 /* constraints check */
2298 ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
2299 if (ret < 0)
2300 goto out;
2301 regulator->min_uV = min_uV;
2302 regulator->max_uV = max_uV;
2303
2304 ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
2305 if (ret < 0)
2306 goto out;
2307
2308 ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
2309
2310 out:
2311 mutex_unlock(&rdev->mutex);
2312 return ret;
2313 }
2314 EXPORT_SYMBOL_GPL(regulator_set_voltage);
2315
2316 /**
2317 * regulator_set_voltage_time - get raise/fall time
2318 * @regulator: regulator source
2319 * @old_uV: starting voltage in microvolts
2320 * @new_uV: target voltage in microvolts
2321 *
2322 * Provided with the starting and ending voltage, this function attempts to
2323 * calculate the time in microseconds required to rise or fall to this new
2324 * voltage.
2325 */
2326 int regulator_set_voltage_time(struct regulator *regulator,
2327 int old_uV, int new_uV)
2328 {
2329 struct regulator_dev *rdev = regulator->rdev;
2330 struct regulator_ops *ops = rdev->desc->ops;
2331 int old_sel = -1;
2332 int new_sel = -1;
2333 int voltage;
2334 int i;
2335
2336 /* Currently requires operations to do this */
2337 if (!ops->list_voltage || !ops->set_voltage_time_sel
2338 || !rdev->desc->n_voltages)
2339 return -EINVAL;
2340
2341 for (i = 0; i < rdev->desc->n_voltages; i++) {
2342 /* We only look for exact voltage matches here */
2343 voltage = regulator_list_voltage(regulator, i);
2344 if (voltage < 0)
2345 return -EINVAL;
2346 if (voltage == 0)
2347 continue;
2348 if (voltage == old_uV)
2349 old_sel = i;
2350 if (voltage == new_uV)
2351 new_sel = i;
2352 }
2353
2354 if (old_sel < 0 || new_sel < 0)
2355 return -EINVAL;
2356
2357 return ops->set_voltage_time_sel(rdev, old_sel, new_sel);
2358 }
2359 EXPORT_SYMBOL_GPL(regulator_set_voltage_time);
2360
2361 /**
2362 * regulator_set_voltage_time_sel - get raise/fall time
2363 * @rdev: regulator source device
2364 * @old_selector: selector for starting voltage
2365 * @new_selector: selector for target voltage
2366 *
2367 * Provided with the starting and target voltage selectors, this function
2368 * returns time in microseconds required to rise or fall to this new voltage
2369 *
2370 * Drivers providing ramp_delay in regulation_constraints can use this as their
2371 * set_voltage_time_sel() operation.
2372 */
2373 int regulator_set_voltage_time_sel(struct regulator_dev *rdev,
2374 unsigned int old_selector,
2375 unsigned int new_selector)
2376 {
2377 unsigned int ramp_delay = 0;
2378 int old_volt, new_volt;
2379
2380 if (rdev->constraints->ramp_delay)
2381 ramp_delay = rdev->constraints->ramp_delay;
2382 else if (rdev->desc->ramp_delay)
2383 ramp_delay = rdev->desc->ramp_delay;
2384
2385 if (ramp_delay == 0) {
2386 rdev_warn(rdev, "ramp_delay not set\n");
2387 return 0;
2388 }
2389
2390 /* sanity check */
2391 if (!rdev->desc->ops->list_voltage)
2392 return -EINVAL;
2393
2394 old_volt = rdev->desc->ops->list_voltage(rdev, old_selector);
2395 new_volt = rdev->desc->ops->list_voltage(rdev, new_selector);
2396
2397 return DIV_ROUND_UP(abs(new_volt - old_volt), ramp_delay);
2398 }
2399 EXPORT_SYMBOL_GPL(regulator_set_voltage_time_sel);
2400
2401 /**
2402 * regulator_sync_voltage - re-apply last regulator output voltage
2403 * @regulator: regulator source
2404 *
2405 * Re-apply the last configured voltage. This is intended to be used
2406 * where some external control source the consumer is cooperating with
2407 * has caused the configured voltage to change.
2408 */
2409 int regulator_sync_voltage(struct regulator *regulator)
2410 {
2411 struct regulator_dev *rdev = regulator->rdev;
2412 int ret, min_uV, max_uV;
2413
2414 mutex_lock(&rdev->mutex);
2415
2416 if (!rdev->desc->ops->set_voltage &&
2417 !rdev->desc->ops->set_voltage_sel) {
2418 ret = -EINVAL;
2419 goto out;
2420 }
2421
2422 /* This is only going to work if we've had a voltage configured. */
2423 if (!regulator->min_uV && !regulator->max_uV) {
2424 ret = -EINVAL;
2425 goto out;
2426 }
2427
2428 min_uV = regulator->min_uV;
2429 max_uV = regulator->max_uV;
2430
2431 /* This should be a paranoia check... */
2432 ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
2433 if (ret < 0)
2434 goto out;
2435
2436 ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
2437 if (ret < 0)
2438 goto out;
2439
2440 ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
2441
2442 out:
2443 mutex_unlock(&rdev->mutex);
2444 return ret;
2445 }
2446 EXPORT_SYMBOL_GPL(regulator_sync_voltage);
2447
2448 static int _regulator_get_voltage(struct regulator_dev *rdev)
2449 {
2450 int sel, ret;
2451
2452 if (rdev->desc->ops->get_voltage_sel) {
2453 sel = rdev->desc->ops->get_voltage_sel(rdev);
2454 if (sel < 0)
2455 return sel;
2456 ret = rdev->desc->ops->list_voltage(rdev, sel);
2457 } else if (rdev->desc->ops->get_voltage) {
2458 ret = rdev->desc->ops->get_voltage(rdev);
2459 } else if (rdev->desc->ops->list_voltage) {
2460 ret = rdev->desc->ops->list_voltage(rdev, 0);
2461 } else {
2462 return -EINVAL;
2463 }
2464
2465 if (ret < 0)
2466 return ret;
2467 return ret - rdev->constraints->uV_offset;
2468 }
2469
2470 /**
2471 * regulator_get_voltage - get regulator output voltage
2472 * @regulator: regulator source
2473 *
2474 * This returns the current regulator voltage in uV.
2475 *
2476 * NOTE: If the regulator is disabled it will return the voltage value. This
2477 * function should not be used to determine regulator state.
2478 */
2479 int regulator_get_voltage(struct regulator *regulator)
2480 {
2481 int ret;
2482
2483 mutex_lock(&regulator->rdev->mutex);
2484
2485 ret = _regulator_get_voltage(regulator->rdev);
2486
2487 mutex_unlock(&regulator->rdev->mutex);
2488
2489 return ret;
2490 }
2491 EXPORT_SYMBOL_GPL(regulator_get_voltage);
2492
2493 /**
2494 * regulator_set_current_limit - set regulator output current limit
2495 * @regulator: regulator source
2496 * @min_uA: Minimuum supported current in uA
2497 * @max_uA: Maximum supported current in uA
2498 *
2499 * Sets current sink to the desired output current. This can be set during
2500 * any regulator state. IOW, regulator can be disabled or enabled.
2501 *
2502 * If the regulator is enabled then the current will change to the new value
2503 * immediately otherwise if the regulator is disabled the regulator will
2504 * output at the new current when enabled.
2505 *
2506 * NOTE: Regulator system constraints must be set for this regulator before
2507 * calling this function otherwise this call will fail.
2508 */
2509 int regulator_set_current_limit(struct regulator *regulator,
2510 int min_uA, int max_uA)
2511 {
2512 struct regulator_dev *rdev = regulator->rdev;
2513 int ret;
2514
2515 mutex_lock(&rdev->mutex);
2516
2517 /* sanity check */
2518 if (!rdev->desc->ops->set_current_limit) {
2519 ret = -EINVAL;
2520 goto out;
2521 }
2522
2523 /* constraints check */
2524 ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
2525 if (ret < 0)
2526 goto out;
2527
2528 ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
2529 out:
2530 mutex_unlock(&rdev->mutex);
2531 return ret;
2532 }
2533 EXPORT_SYMBOL_GPL(regulator_set_current_limit);
2534
2535 static int _regulator_get_current_limit(struct regulator_dev *rdev)
2536 {
2537 int ret;
2538
2539 mutex_lock(&rdev->mutex);
2540
2541 /* sanity check */
2542 if (!rdev->desc->ops->get_current_limit) {
2543 ret = -EINVAL;
2544 goto out;
2545 }
2546
2547 ret = rdev->desc->ops->get_current_limit(rdev);
2548 out:
2549 mutex_unlock(&rdev->mutex);
2550 return ret;
2551 }
2552
2553 /**
2554 * regulator_get_current_limit - get regulator output current
2555 * @regulator: regulator source
2556 *
2557 * This returns the current supplied by the specified current sink in uA.
2558 *
2559 * NOTE: If the regulator is disabled it will return the current value. This
2560 * function should not be used to determine regulator state.
2561 */
2562 int regulator_get_current_limit(struct regulator *regulator)
2563 {
2564 return _regulator_get_current_limit(regulator->rdev);
2565 }
2566 EXPORT_SYMBOL_GPL(regulator_get_current_limit);
2567
2568 /**
2569 * regulator_set_mode - set regulator operating mode
2570 * @regulator: regulator source
2571 * @mode: operating mode - one of the REGULATOR_MODE constants
2572 *
2573 * Set regulator operating mode to increase regulator efficiency or improve
2574 * regulation performance.
2575 *
2576 * NOTE: Regulator system constraints must be set for this regulator before
2577 * calling this function otherwise this call will fail.
2578 */
2579 int regulator_set_mode(struct regulator *regulator, unsigned int mode)
2580 {
2581 struct regulator_dev *rdev = regulator->rdev;
2582 int ret;
2583 int regulator_curr_mode;
2584
2585 mutex_lock(&rdev->mutex);
2586
2587 /* sanity check */
2588 if (!rdev->desc->ops->set_mode) {
2589 ret = -EINVAL;
2590 goto out;
2591 }
2592
2593 /* return if the same mode is requested */
2594 if (rdev->desc->ops->get_mode) {
2595 regulator_curr_mode = rdev->desc->ops->get_mode(rdev);
2596 if (regulator_curr_mode == mode) {
2597 ret = 0;
2598 goto out;
2599 }
2600 }
2601
2602 /* constraints check */
2603 ret = regulator_mode_constrain(rdev, &mode);
2604 if (ret < 0)
2605 goto out;
2606
2607 ret = rdev->desc->ops->set_mode(rdev, mode);
2608 out:
2609 mutex_unlock(&rdev->mutex);
2610 return ret;
2611 }
2612 EXPORT_SYMBOL_GPL(regulator_set_mode);
2613
2614 static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
2615 {
2616 int ret;
2617
2618 mutex_lock(&rdev->mutex);
2619
2620 /* sanity check */
2621 if (!rdev->desc->ops->get_mode) {
2622 ret = -EINVAL;
2623 goto out;
2624 }
2625
2626 ret = rdev->desc->ops->get_mode(rdev);
2627 out:
2628 mutex_unlock(&rdev->mutex);
2629 return ret;
2630 }
2631
2632 /**
2633 * regulator_get_mode - get regulator operating mode
2634 * @regulator: regulator source
2635 *
2636 * Get the current regulator operating mode.
2637 */
2638 unsigned int regulator_get_mode(struct regulator *regulator)
2639 {
2640 return _regulator_get_mode(regulator->rdev);
2641 }
2642 EXPORT_SYMBOL_GPL(regulator_get_mode);
2643
2644 /**
2645 * regulator_set_optimum_mode - set regulator optimum operating mode
2646 * @regulator: regulator source
2647 * @uA_load: load current
2648 *
2649 * Notifies the regulator core of a new device load. This is then used by
2650 * DRMS (if enabled by constraints) to set the most efficient regulator
2651 * operating mode for the new regulator loading.
2652 *
2653 * Consumer devices notify their supply regulator of the maximum power
2654 * they will require (can be taken from device datasheet in the power
2655 * consumption tables) when they change operational status and hence power
2656 * state. Examples of operational state changes that can affect power
2657 * consumption are :-
2658 *
2659 * o Device is opened / closed.
2660 * o Device I/O is about to begin or has just finished.
2661 * o Device is idling in between work.
2662 *
2663 * This information is also exported via sysfs to userspace.
2664 *
2665 * DRMS will sum the total requested load on the regulator and change
2666 * to the most efficient operating mode if platform constraints allow.
2667 *
2668 * Returns the new regulator mode or error.
2669 */
2670 int regulator_set_optimum_mode(struct regulator *regulator, int uA_load)
2671 {
2672 struct regulator_dev *rdev = regulator->rdev;
2673 struct regulator *consumer;
2674 int ret, output_uV, input_uV = 0, total_uA_load = 0;
2675 unsigned int mode;
2676
2677 if (rdev->supply)
2678 input_uV = regulator_get_voltage(rdev->supply);
2679
2680 mutex_lock(&rdev->mutex);
2681
2682 /*
2683 * first check to see if we can set modes at all, otherwise just
2684 * tell the consumer everything is OK.
2685 */
2686 regulator->uA_load = uA_load;
2687 ret = regulator_check_drms(rdev);
2688 if (ret < 0) {
2689 ret = 0;
2690 goto out;
2691 }
2692
2693 if (!rdev->desc->ops->get_optimum_mode)
2694 goto out;
2695
2696 /*
2697 * we can actually do this so any errors are indicators of
2698 * potential real failure.
2699 */
2700 ret = -EINVAL;
2701
2702 if (!rdev->desc->ops->set_mode)
2703 goto out;
2704
2705 /* get output voltage */
2706 output_uV = _regulator_get_voltage(rdev);
2707 if (output_uV <= 0) {
2708 rdev_err(rdev, "invalid output voltage found\n");
2709 goto out;
2710 }
2711
2712 /* No supply? Use constraint voltage */
2713 if (input_uV <= 0)
2714 input_uV = rdev->constraints->input_uV;
2715 if (input_uV <= 0) {
2716 rdev_err(rdev, "invalid input voltage found\n");
2717 goto out;
2718 }
2719
2720 /* calc total requested load for this regulator */
2721 list_for_each_entry(consumer, &rdev->consumer_list, list)
2722 total_uA_load += consumer->uA_load;
2723
2724 mode = rdev->desc->ops->get_optimum_mode(rdev,
2725 input_uV, output_uV,
2726 total_uA_load);
2727 ret = regulator_mode_constrain(rdev, &mode);
2728 if (ret < 0) {
2729 rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV\n",
2730 total_uA_load, input_uV, output_uV);
2731 goto out;
2732 }
2733
2734 ret = rdev->desc->ops->set_mode(rdev, mode);
2735 if (ret < 0) {
2736 rdev_err(rdev, "failed to set optimum mode %x\n", mode);
2737 goto out;
2738 }
2739 ret = mode;
2740 out:
2741 mutex_unlock(&rdev->mutex);
2742 return ret;
2743 }
2744 EXPORT_SYMBOL_GPL(regulator_set_optimum_mode);
2745
2746 /**
2747 * regulator_set_bypass_regmap - Default set_bypass() using regmap
2748 *
2749 * @rdev: device to operate on.
2750 * @enable: state to set.
2751 */
2752 int regulator_set_bypass_regmap(struct regulator_dev *rdev, bool enable)
2753 {
2754 unsigned int val;
2755
2756 if (enable)
2757 val = rdev->desc->bypass_mask;
2758 else
2759 val = 0;
2760
2761 return regmap_update_bits(rdev->regmap, rdev->desc->bypass_reg,
2762 rdev->desc->bypass_mask, val);
2763 }
2764 EXPORT_SYMBOL_GPL(regulator_set_bypass_regmap);
2765
2766 /**
2767 * regulator_get_bypass_regmap - Default get_bypass() using regmap
2768 *
2769 * @rdev: device to operate on.
2770 * @enable: current state.
2771 */
2772 int regulator_get_bypass_regmap(struct regulator_dev *rdev, bool *enable)
2773 {
2774 unsigned int val;
2775 int ret;
2776
2777 ret = regmap_read(rdev->regmap, rdev->desc->bypass_reg, &val);
2778 if (ret != 0)
2779 return ret;
2780
2781 *enable = val & rdev->desc->bypass_mask;
2782
2783 return 0;
2784 }
2785 EXPORT_SYMBOL_GPL(regulator_get_bypass_regmap);
2786
2787 /**
2788 * regulator_allow_bypass - allow the regulator to go into bypass mode
2789 *
2790 * @regulator: Regulator to configure
2791 * @allow: enable or disable bypass mode
2792 *
2793 * Allow the regulator to go into bypass mode if all other consumers
2794 * for the regulator also enable bypass mode and the machine
2795 * constraints allow this. Bypass mode means that the regulator is
2796 * simply passing the input directly to the output with no regulation.
2797 */
2798 int regulator_allow_bypass(struct regulator *regulator, bool enable)
2799 {
2800 struct regulator_dev *rdev = regulator->rdev;
2801 int ret = 0;
2802
2803 if (!rdev->desc->ops->set_bypass)
2804 return 0;
2805
2806 if (rdev->constraints &&
2807 !(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_BYPASS))
2808 return 0;
2809
2810 mutex_lock(&rdev->mutex);
2811
2812 if (enable && !regulator->bypass) {
2813 rdev->bypass_count++;
2814
2815 if (rdev->bypass_count == rdev->open_count) {
2816 ret = rdev->desc->ops->set_bypass(rdev, enable);
2817 if (ret != 0)
2818 rdev->bypass_count--;
2819 }
2820
2821 } else if (!enable && regulator->bypass) {
2822 rdev->bypass_count--;
2823
2824 if (rdev->bypass_count != rdev->open_count) {
2825 ret = rdev->desc->ops->set_bypass(rdev, enable);
2826 if (ret != 0)
2827 rdev->bypass_count++;
2828 }
2829 }
2830
2831 if (ret == 0)
2832 regulator->bypass = enable;
2833
2834 mutex_unlock(&rdev->mutex);
2835
2836 return ret;
2837 }
2838 EXPORT_SYMBOL_GPL(regulator_allow_bypass);
2839
2840 /**
2841 * regulator_register_notifier - register regulator event notifier
2842 * @regulator: regulator source
2843 * @nb: notifier block
2844 *
2845 * Register notifier block to receive regulator events.
2846 */
2847 int regulator_register_notifier(struct regulator *regulator,
2848 struct notifier_block *nb)
2849 {
2850 return blocking_notifier_chain_register(&regulator->rdev->notifier,
2851 nb);
2852 }
2853 EXPORT_SYMBOL_GPL(regulator_register_notifier);
2854
2855 /**
2856 * regulator_unregister_notifier - unregister regulator event notifier
2857 * @regulator: regulator source
2858 * @nb: notifier block
2859 *
2860 * Unregister regulator event notifier block.
2861 */
2862 int regulator_unregister_notifier(struct regulator *regulator,
2863 struct notifier_block *nb)
2864 {
2865 return blocking_notifier_chain_unregister(&regulator->rdev->notifier,
2866 nb);
2867 }
2868 EXPORT_SYMBOL_GPL(regulator_unregister_notifier);
2869
2870 /* notify regulator consumers and downstream regulator consumers.
2871 * Note mutex must be held by caller.
2872 */
2873 static void _notifier_call_chain(struct regulator_dev *rdev,
2874 unsigned long event, void *data)
2875 {
2876 /* call rdev chain first */
2877 blocking_notifier_call_chain(&rdev->notifier, event, data);
2878 }
2879
2880 /**
2881 * regulator_bulk_get - get multiple regulator consumers
2882 *
2883 * @dev: Device to supply
2884 * @num_consumers: Number of consumers to register
2885 * @consumers: Configuration of consumers; clients are stored here.
2886 *
2887 * @return 0 on success, an errno on failure.
2888 *
2889 * This helper function allows drivers to get several regulator
2890 * consumers in one operation. If any of the regulators cannot be
2891 * acquired then any regulators that were allocated will be freed
2892 * before returning to the caller.
2893 */
2894 int regulator_bulk_get(struct device *dev, int num_consumers,
2895 struct regulator_bulk_data *consumers)
2896 {
2897 int i;
2898 int ret;
2899
2900 for (i = 0; i < num_consumers; i++)
2901 consumers[i].consumer = NULL;
2902
2903 for (i = 0; i < num_consumers; i++) {
2904 consumers[i].consumer = regulator_get(dev,
2905 consumers[i].supply);
2906 if (IS_ERR(consumers[i].consumer)) {
2907 ret = PTR_ERR(consumers[i].consumer);
2908 dev_err(dev, "Failed to get supply '%s': %d\n",
2909 consumers[i].supply, ret);
2910 consumers[i].consumer = NULL;
2911 goto err;
2912 }
2913 }
2914
2915 return 0;
2916
2917 err:
2918 while (--i >= 0)
2919 regulator_put(consumers[i].consumer);
2920
2921 return ret;
2922 }
2923 EXPORT_SYMBOL_GPL(regulator_bulk_get);
2924
2925 /**
2926 * devm_regulator_bulk_get - managed get multiple regulator consumers
2927 *
2928 * @dev: Device to supply
2929 * @num_consumers: Number of consumers to register
2930 * @consumers: Configuration of consumers; clients are stored here.
2931 *
2932 * @return 0 on success, an errno on failure.
2933 *
2934 * This helper function allows drivers to get several regulator
2935 * consumers in one operation with management, the regulators will
2936 * automatically be freed when the device is unbound. If any of the
2937 * regulators cannot be acquired then any regulators that were
2938 * allocated will be freed before returning to the caller.
2939 */
2940 int devm_regulator_bulk_get(struct device *dev, int num_consumers,
2941 struct regulator_bulk_data *consumers)
2942 {
2943 int i;
2944 int ret;
2945
2946 for (i = 0; i < num_consumers; i++)
2947 consumers[i].consumer = NULL;
2948
2949 for (i = 0; i < num_consumers; i++) {
2950 consumers[i].consumer = devm_regulator_get(dev,
2951 consumers[i].supply);
2952 if (IS_ERR(consumers[i].consumer)) {
2953 ret = PTR_ERR(consumers[i].consumer);
2954 dev_err(dev, "Failed to get supply '%s': %d\n",
2955 consumers[i].supply, ret);
2956 consumers[i].consumer = NULL;
2957 goto err;
2958 }
2959 }
2960
2961 return 0;
2962
2963 err:
2964 for (i = 0; i < num_consumers && consumers[i].consumer; i++)
2965 devm_regulator_put(consumers[i].consumer);
2966
2967 return ret;
2968 }
2969 EXPORT_SYMBOL_GPL(devm_regulator_bulk_get);
2970
2971 static void regulator_bulk_enable_async(void *data, async_cookie_t cookie)
2972 {
2973 struct regulator_bulk_data *bulk = data;
2974
2975 bulk->ret = regulator_enable(bulk->consumer);
2976 }
2977
2978 /**
2979 * regulator_bulk_enable - enable multiple regulator consumers
2980 *
2981 * @num_consumers: Number of consumers
2982 * @consumers: Consumer data; clients are stored here.
2983 * @return 0 on success, an errno on failure
2984 *
2985 * This convenience API allows consumers to enable multiple regulator
2986 * clients in a single API call. If any consumers cannot be enabled
2987 * then any others that were enabled will be disabled again prior to
2988 * return.
2989 */
2990 int regulator_bulk_enable(int num_consumers,
2991 struct regulator_bulk_data *consumers)
2992 {
2993 ASYNC_DOMAIN_EXCLUSIVE(async_domain);
2994 int i;
2995 int ret = 0;
2996
2997 for (i = 0; i < num_consumers; i++) {
2998 if (consumers[i].consumer->always_on)
2999 consumers[i].ret = 0;
3000 else
3001 async_schedule_domain(regulator_bulk_enable_async,
3002 &consumers[i], &async_domain);
3003 }
3004
3005 async_synchronize_full_domain(&async_domain);
3006
3007 /* If any consumer failed we need to unwind any that succeeded */
3008 for (i = 0; i < num_consumers; i++) {
3009 if (consumers[i].ret != 0) {
3010 ret = consumers[i].ret;
3011 goto err;
3012 }
3013 }
3014
3015 return 0;
3016
3017 err:
3018 pr_err("Failed to enable %s: %d\n", consumers[i].supply, ret);
3019 while (--i >= 0)
3020 regulator_disable(consumers[i].consumer);
3021
3022 return ret;
3023 }
3024 EXPORT_SYMBOL_GPL(regulator_bulk_enable);
3025
3026 /**
3027 * regulator_bulk_disable - disable multiple regulator consumers
3028 *
3029 * @num_consumers: Number of consumers
3030 * @consumers: Consumer data; clients are stored here.
3031 * @return 0 on success, an errno on failure
3032 *
3033 * This convenience API allows consumers to disable multiple regulator
3034 * clients in a single API call. If any consumers cannot be disabled
3035 * then any others that were disabled will be enabled again prior to
3036 * return.
3037 */
3038 int regulator_bulk_disable(int num_consumers,
3039 struct regulator_bulk_data *consumers)
3040 {
3041 int i;
3042 int ret, r;
3043
3044 for (i = num_consumers - 1; i >= 0; --i) {
3045 ret = regulator_disable(consumers[i].consumer);
3046 if (ret != 0)
3047 goto err;
3048 }
3049
3050 return 0;
3051
3052 err:
3053 pr_err("Failed to disable %s: %d\n", consumers[i].supply, ret);
3054 for (++i; i < num_consumers; ++i) {
3055 r = regulator_enable(consumers[i].consumer);
3056 if (r != 0)
3057 pr_err("Failed to reename %s: %d\n",
3058 consumers[i].supply, r);
3059 }
3060
3061 return ret;
3062 }
3063 EXPORT_SYMBOL_GPL(regulator_bulk_disable);
3064
3065 /**
3066 * regulator_bulk_force_disable - force disable multiple regulator consumers
3067 *
3068 * @num_consumers: Number of consumers
3069 * @consumers: Consumer data; clients are stored here.
3070 * @return 0 on success, an errno on failure
3071 *
3072 * This convenience API allows consumers to forcibly disable multiple regulator
3073 * clients in a single API call.
3074 * NOTE: This should be used for situations when device damage will
3075 * likely occur if the regulators are not disabled (e.g. over temp).
3076 * Although regulator_force_disable function call for some consumers can
3077 * return error numbers, the function is called for all consumers.
3078 */
3079 int regulator_bulk_force_disable(int num_consumers,
3080 struct regulator_bulk_data *consumers)
3081 {
3082 int i;
3083 int ret;
3084
3085 for (i = 0; i < num_consumers; i++)
3086 consumers[i].ret =
3087 regulator_force_disable(consumers[i].consumer);
3088
3089 for (i = 0; i < num_consumers; i++) {
3090 if (consumers[i].ret != 0) {
3091 ret = consumers[i].ret;
3092 goto out;
3093 }
3094 }
3095
3096 return 0;
3097 out:
3098 return ret;
3099 }
3100 EXPORT_SYMBOL_GPL(regulator_bulk_force_disable);
3101
3102 /**
3103 * regulator_bulk_free - free multiple regulator consumers
3104 *
3105 * @num_consumers: Number of consumers
3106 * @consumers: Consumer data; clients are stored here.
3107 *
3108 * This convenience API allows consumers to free multiple regulator
3109 * clients in a single API call.
3110 */
3111 void regulator_bulk_free(int num_consumers,
3112 struct regulator_bulk_data *consumers)
3113 {
3114 int i;
3115
3116 for (i = 0; i < num_consumers; i++) {
3117 regulator_put(consumers[i].consumer);
3118 consumers[i].consumer = NULL;
3119 }
3120 }
3121 EXPORT_SYMBOL_GPL(regulator_bulk_free);
3122
3123 /**
3124 * regulator_notifier_call_chain - call regulator event notifier
3125 * @rdev: regulator source
3126 * @event: notifier block
3127 * @data: callback-specific data.
3128 *
3129 * Called by regulator drivers to notify clients a regulator event has
3130 * occurred. We also notify regulator clients downstream.
3131 * Note lock must be held by caller.
3132 */
3133 int regulator_notifier_call_chain(struct regulator_dev *rdev,
3134 unsigned long event, void *data)
3135 {
3136 _notifier_call_chain(rdev, event, data);
3137 return NOTIFY_DONE;
3138
3139 }
3140 EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);
3141
3142 /**
3143 * regulator_mode_to_status - convert a regulator mode into a status
3144 *
3145 * @mode: Mode to convert
3146 *
3147 * Convert a regulator mode into a status.
3148 */
3149 int regulator_mode_to_status(unsigned int mode)
3150 {
3151 switch (mode) {
3152 case REGULATOR_MODE_FAST:
3153 return REGULATOR_STATUS_FAST;
3154 case REGULATOR_MODE_NORMAL:
3155 return REGULATOR_STATUS_NORMAL;
3156 case REGULATOR_MODE_IDLE:
3157 return REGULATOR_STATUS_IDLE;
3158 case REGULATOR_MODE_STANDBY:
3159 return REGULATOR_STATUS_STANDBY;
3160 default:
3161 return REGULATOR_STATUS_UNDEFINED;
3162 }
3163 }
3164 EXPORT_SYMBOL_GPL(regulator_mode_to_status);
3165
3166 /*
3167 * To avoid cluttering sysfs (and memory) with useless state, only
3168 * create attributes that can be meaningfully displayed.
3169 */
3170 static int add_regulator_attributes(struct regulator_dev *rdev)
3171 {
3172 struct device *dev = &rdev->dev;
3173 struct regulator_ops *ops = rdev->desc->ops;
3174 int status = 0;
3175
3176 /* some attributes need specific methods to be displayed */
3177 if ((ops->get_voltage && ops->get_voltage(rdev) >= 0) ||
3178 (ops->get_voltage_sel && ops->get_voltage_sel(rdev) >= 0) ||
3179 (ops->list_voltage && ops->list_voltage(rdev, 0) >= 0)) {
3180 status = device_create_file(dev, &dev_attr_microvolts);
3181 if (status < 0)
3182 return status;
3183 }
3184 if (ops->get_current_limit) {
3185 status = device_create_file(dev, &dev_attr_microamps);
3186 if (status < 0)
3187 return status;
3188 }
3189 if (ops->get_mode) {
3190 status = device_create_file(dev, &dev_attr_opmode);
3191 if (status < 0)
3192 return status;
3193 }
3194 if (ops->is_enabled) {
3195 status = device_create_file(dev, &dev_attr_state);
3196 if (status < 0)
3197 return status;
3198 }
3199 if (ops->get_status) {
3200 status = device_create_file(dev, &dev_attr_status);
3201 if (status < 0)
3202 return status;
3203 }
3204 if (ops->get_bypass) {
3205 status = device_create_file(dev, &dev_attr_bypass);
3206 if (status < 0)
3207 return status;
3208 }
3209
3210 /* some attributes are type-specific */
3211 if (rdev->desc->type == REGULATOR_CURRENT) {
3212 status = device_create_file(dev, &dev_attr_requested_microamps);
3213 if (status < 0)
3214 return status;
3215 }
3216
3217 /* all the other attributes exist to support constraints;
3218 * don't show them if there are no constraints, or if the
3219 * relevant supporting methods are missing.
3220 */
3221 if (!rdev->constraints)
3222 return status;
3223
3224 /* constraints need specific supporting methods */
3225 if (ops->set_voltage || ops->set_voltage_sel) {
3226 status = device_create_file(dev, &dev_attr_min_microvolts);
3227 if (status < 0)
3228 return status;
3229 status = device_create_file(dev, &dev_attr_max_microvolts);
3230 if (status < 0)
3231 return status;
3232 }
3233 if (ops->set_current_limit) {
3234 status = device_create_file(dev, &dev_attr_min_microamps);
3235 if (status < 0)
3236 return status;
3237 status = device_create_file(dev, &dev_attr_max_microamps);
3238 if (status < 0)
3239 return status;
3240 }
3241
3242 status = device_create_file(dev, &dev_attr_suspend_standby_state);
3243 if (status < 0)
3244 return status;
3245 status = device_create_file(dev, &dev_attr_suspend_mem_state);
3246 if (status < 0)
3247 return status;
3248 status = device_create_file(dev, &dev_attr_suspend_disk_state);
3249 if (status < 0)
3250 return status;
3251
3252 if (ops->set_suspend_voltage) {
3253 status = device_create_file(dev,
3254 &dev_attr_suspend_standby_microvolts);
3255 if (status < 0)
3256 return status;
3257 status = device_create_file(dev,
3258 &dev_attr_suspend_mem_microvolts);
3259 if (status < 0)
3260 return status;
3261 status = device_create_file(dev,
3262 &dev_attr_suspend_disk_microvolts);
3263 if (status < 0)
3264 return status;
3265 }
3266
3267 if (ops->set_suspend_mode) {
3268 status = device_create_file(dev,
3269 &dev_attr_suspend_standby_mode);
3270 if (status < 0)
3271 return status;
3272 status = device_create_file(dev,
3273 &dev_attr_suspend_mem_mode);
3274 if (status < 0)
3275 return status;
3276 status = device_create_file(dev,
3277 &dev_attr_suspend_disk_mode);
3278 if (status < 0)
3279 return status;
3280 }
3281
3282 return status;
3283 }
3284
3285 static void rdev_init_debugfs(struct regulator_dev *rdev)
3286 {
3287 rdev->debugfs = debugfs_create_dir(rdev_get_name(rdev), debugfs_root);
3288 if (!rdev->debugfs) {
3289 rdev_warn(rdev, "Failed to create debugfs directory\n");
3290 return;
3291 }
3292
3293 debugfs_create_u32("use_count", 0444, rdev->debugfs,
3294 &rdev->use_count);
3295 debugfs_create_u32("open_count", 0444, rdev->debugfs,
3296 &rdev->open_count);
3297 debugfs_create_u32("bypass_count", 0444, rdev->debugfs,
3298 &rdev->bypass_count);
3299 }
3300
3301 /**
3302 * regulator_register - register regulator
3303 * @regulator_desc: regulator to register
3304 * @config: runtime configuration for regulator
3305 *
3306 * Called by regulator drivers to register a regulator.
3307 * Returns 0 on success.
3308 */
3309 struct regulator_dev *
3310 regulator_register(const struct regulator_desc *regulator_desc,
3311 const struct regulator_config *config)
3312 {
3313 const struct regulation_constraints *constraints = NULL;
3314 const struct regulator_init_data *init_data;
3315 static atomic_t regulator_no = ATOMIC_INIT(0);
3316 struct regulator_dev *rdev;
3317 struct device *dev;
3318 int ret, i;
3319 const char *supply = NULL;
3320
3321 if (regulator_desc == NULL || config == NULL)
3322 return ERR_PTR(-EINVAL);
3323
3324 dev = config->dev;
3325 WARN_ON(!dev);
3326
3327 if (regulator_desc->name == NULL || regulator_desc->ops == NULL)
3328 return ERR_PTR(-EINVAL);
3329
3330 if (regulator_desc->type != REGULATOR_VOLTAGE &&
3331 regulator_desc->type != REGULATOR_CURRENT)
3332 return ERR_PTR(-EINVAL);
3333
3334 /* Only one of each should be implemented */
3335 WARN_ON(regulator_desc->ops->get_voltage &&
3336 regulator_desc->ops->get_voltage_sel);
3337 WARN_ON(regulator_desc->ops->set_voltage &&
3338 regulator_desc->ops->set_voltage_sel);
3339
3340 /* If we're using selectors we must implement list_voltage. */
3341 if (regulator_desc->ops->get_voltage_sel &&
3342 !regulator_desc->ops->list_voltage) {
3343 return ERR_PTR(-EINVAL);
3344 }
3345 if (regulator_desc->ops->set_voltage_sel &&
3346 !regulator_desc->ops->list_voltage) {
3347 return ERR_PTR(-EINVAL);
3348 }
3349
3350 init_data = config->init_data;
3351
3352 rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
3353 if (rdev == NULL)
3354 return ERR_PTR(-ENOMEM);
3355
3356 mutex_lock(&regulator_list_mutex);
3357
3358 mutex_init(&rdev->mutex);
3359 rdev->reg_data = config->driver_data;
3360 rdev->owner = regulator_desc->owner;
3361 rdev->desc = regulator_desc;
3362 if (config->regmap)
3363 rdev->regmap = config->regmap;
3364 else if (dev_get_regmap(dev, NULL))
3365 rdev->regmap = dev_get_regmap(dev, NULL);
3366 else if (dev->parent)
3367 rdev->regmap = dev_get_regmap(dev->parent, NULL);
3368 INIT_LIST_HEAD(&rdev->consumer_list);
3369 INIT_LIST_HEAD(&rdev->list);
3370 BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
3371 INIT_DELAYED_WORK(&rdev->disable_work, regulator_disable_work);
3372
3373 /* preform any regulator specific init */
3374 if (init_data && init_data->regulator_init) {
3375 ret = init_data->regulator_init(rdev->reg_data);
3376 if (ret < 0)
3377 goto clean;
3378 }
3379
3380 /* register with sysfs */
3381 rdev->dev.class = &regulator_class;
3382 rdev->dev.of_node = config->of_node;
3383 rdev->dev.parent = dev;
3384 dev_set_name(&rdev->dev, "regulator.%d",
3385 atomic_inc_return(&regulator_no) - 1);
3386 ret = device_register(&rdev->dev);
3387 if (ret != 0) {
3388 put_device(&rdev->dev);
3389 goto clean;
3390 }
3391
3392 dev_set_drvdata(&rdev->dev, rdev);
3393
3394 if (config->ena_gpio && gpio_is_valid(config->ena_gpio)) {
3395 ret = gpio_request_one(config->ena_gpio,
3396 GPIOF_DIR_OUT | config->ena_gpio_flags,
3397 rdev_get_name(rdev));
3398 if (ret != 0) {
3399 rdev_err(rdev, "Failed to request enable GPIO%d: %d\n",
3400 config->ena_gpio, ret);
3401 goto wash;
3402 }
3403
3404 rdev->ena_gpio = config->ena_gpio;
3405 rdev->ena_gpio_invert = config->ena_gpio_invert;
3406
3407 if (config->ena_gpio_flags & GPIOF_OUT_INIT_HIGH)
3408 rdev->ena_gpio_state = 1;
3409
3410 if (rdev->ena_gpio_invert)
3411 rdev->ena_gpio_state = !rdev->ena_gpio_state;
3412 }
3413
3414 /* set regulator constraints */
3415 if (init_data)
3416 constraints = &init_data->constraints;
3417
3418 ret = set_machine_constraints(rdev, constraints);
3419 if (ret < 0)
3420 goto scrub;
3421
3422 /* add attributes supported by this regulator */
3423 ret = add_regulator_attributes(rdev);
3424 if (ret < 0)
3425 goto scrub;
3426
3427 if (init_data && init_data->supply_regulator)
3428 supply = init_data->supply_regulator;
3429 else if (regulator_desc->supply_name)
3430 supply = regulator_desc->supply_name;
3431
3432 if (supply) {
3433 struct regulator_dev *r;
3434
3435 r = regulator_dev_lookup(dev, supply, &ret);
3436
3437 if (!r) {
3438 dev_err(dev, "Failed to find supply %s\n", supply);
3439 ret = -EPROBE_DEFER;
3440 goto scrub;
3441 }
3442
3443 ret = set_supply(rdev, r);
3444 if (ret < 0)
3445 goto scrub;
3446
3447 /* Enable supply if rail is enabled */
3448 if (_regulator_is_enabled(rdev)) {
3449 ret = regulator_enable(rdev->supply);
3450 if (ret < 0)
3451 goto scrub;
3452 }
3453 }
3454
3455 /* add consumers devices */
3456 if (init_data) {
3457 for (i = 0; i < init_data->num_consumer_supplies; i++) {
3458 ret = set_consumer_device_supply(rdev,
3459 init_data->consumer_supplies[i].dev_name,
3460 init_data->consumer_supplies[i].supply);
3461 if (ret < 0) {
3462 dev_err(dev, "Failed to set supply %s\n",
3463 init_data->consumer_supplies[i].supply);
3464 goto unset_supplies;
3465 }
3466 }
3467 }
3468
3469 list_add(&rdev->list, &regulator_list);
3470
3471 rdev_init_debugfs(rdev);
3472 out:
3473 mutex_unlock(&regulator_list_mutex);
3474 return rdev;
3475
3476 unset_supplies:
3477 unset_regulator_supplies(rdev);
3478
3479 scrub:
3480 if (rdev->supply)
3481 _regulator_put(rdev->supply);
3482 if (rdev->ena_gpio)
3483 gpio_free(rdev->ena_gpio);
3484 kfree(rdev->constraints);
3485 wash:
3486 device_unregister(&rdev->dev);
3487 /* device core frees rdev */
3488 rdev = ERR_PTR(ret);
3489 goto out;
3490
3491 clean:
3492 kfree(rdev);
3493 rdev = ERR_PTR(ret);
3494 goto out;
3495 }
3496 EXPORT_SYMBOL_GPL(regulator_register);
3497
3498 /**
3499 * regulator_unregister - unregister regulator
3500 * @rdev: regulator to unregister
3501 *
3502 * Called by regulator drivers to unregister a regulator.
3503 */
3504 void regulator_unregister(struct regulator_dev *rdev)
3505 {
3506 if (rdev == NULL)
3507 return;
3508
3509 if (rdev->supply)
3510 regulator_put(rdev->supply);
3511 mutex_lock(&regulator_list_mutex);
3512 debugfs_remove_recursive(rdev->debugfs);
3513 flush_work(&rdev->disable_work.work);
3514 WARN_ON(rdev->open_count);
3515 unset_regulator_supplies(rdev);
3516 list_del(&rdev->list);
3517 kfree(rdev->constraints);
3518 if (rdev->ena_gpio)
3519 gpio_free(rdev->ena_gpio);
3520 device_unregister(&rdev->dev);
3521 mutex_unlock(&regulator_list_mutex);
3522 }
3523 EXPORT_SYMBOL_GPL(regulator_unregister);
3524
3525 /**
3526 * regulator_suspend_prepare - prepare regulators for system wide suspend
3527 * @state: system suspend state
3528 *
3529 * Configure each regulator with it's suspend operating parameters for state.
3530 * This will usually be called by machine suspend code prior to supending.
3531 */
3532 int regulator_suspend_prepare(suspend_state_t state)
3533 {
3534 struct regulator_dev *rdev;
3535 int ret = 0;
3536
3537 /* ON is handled by regulator active state */
3538 if (state == PM_SUSPEND_ON)
3539 return -EINVAL;
3540
3541 mutex_lock(&regulator_list_mutex);
3542 list_for_each_entry(rdev, &regulator_list, list) {
3543
3544 mutex_lock(&rdev->mutex);
3545 ret = suspend_prepare(rdev, state);
3546 mutex_unlock(&rdev->mutex);
3547
3548 if (ret < 0) {
3549 rdev_err(rdev, "failed to prepare\n");
3550 goto out;
3551 }
3552 }
3553 out:
3554 mutex_unlock(&regulator_list_mutex);
3555 return ret;
3556 }
3557 EXPORT_SYMBOL_GPL(regulator_suspend_prepare);
3558
3559 /**
3560 * regulator_suspend_finish - resume regulators from system wide suspend
3561 *
3562 * Turn on regulators that might be turned off by regulator_suspend_prepare
3563 * and that should be turned on according to the regulators properties.
3564 */
3565 int regulator_suspend_finish(void)
3566 {
3567 struct regulator_dev *rdev;
3568 int ret = 0, error;
3569
3570 mutex_lock(&regulator_list_mutex);
3571 list_for_each_entry(rdev, &regulator_list, list) {
3572 struct regulator_ops *ops = rdev->desc->ops;
3573
3574 mutex_lock(&rdev->mutex);
3575 if ((rdev->use_count > 0 || rdev->constraints->always_on) &&
3576 ops->enable) {
3577 error = ops->enable(rdev);
3578 if (error)
3579 ret = error;
3580 } else {
3581 if (!has_full_constraints)
3582 goto unlock;
3583 if (!ops->disable)
3584 goto unlock;
3585 if (!_regulator_is_enabled(rdev))
3586 goto unlock;
3587
3588 error = ops->disable(rdev);
3589 if (error)
3590 ret = error;
3591 }
3592 unlock:
3593 mutex_unlock(&rdev->mutex);
3594 }
3595 mutex_unlock(&regulator_list_mutex);
3596 return ret;
3597 }
3598 EXPORT_SYMBOL_GPL(regulator_suspend_finish);
3599
3600 /**
3601 * regulator_has_full_constraints - the system has fully specified constraints
3602 *
3603 * Calling this function will cause the regulator API to disable all
3604 * regulators which have a zero use count and don't have an always_on
3605 * constraint in a late_initcall.
3606 *
3607 * The intention is that this will become the default behaviour in a
3608 * future kernel release so users are encouraged to use this facility
3609 * now.
3610 */
3611 void regulator_has_full_constraints(void)
3612 {
3613 has_full_constraints = 1;
3614 }
3615 EXPORT_SYMBOL_GPL(regulator_has_full_constraints);
3616
3617 /**
3618 * regulator_use_dummy_regulator - Provide a dummy regulator when none is found
3619 *
3620 * Calling this function will cause the regulator API to provide a
3621 * dummy regulator to consumers if no physical regulator is found,
3622 * allowing most consumers to proceed as though a regulator were
3623 * configured. This allows systems such as those with software
3624 * controllable regulators for the CPU core only to be brought up more
3625 * readily.
3626 */
3627 void regulator_use_dummy_regulator(void)
3628 {
3629 board_wants_dummy_regulator = true;
3630 }
3631 EXPORT_SYMBOL_GPL(regulator_use_dummy_regulator);
3632
3633 /**
3634 * rdev_get_drvdata - get rdev regulator driver data
3635 * @rdev: regulator
3636 *
3637 * Get rdev regulator driver private data. This call can be used in the
3638 * regulator driver context.
3639 */
3640 void *rdev_get_drvdata(struct regulator_dev *rdev)
3641 {
3642 return rdev->reg_data;
3643 }
3644 EXPORT_SYMBOL_GPL(rdev_get_drvdata);
3645
3646 /**
3647 * regulator_get_drvdata - get regulator driver data
3648 * @regulator: regulator
3649 *
3650 * Get regulator driver private data. This call can be used in the consumer
3651 * driver context when non API regulator specific functions need to be called.
3652 */
3653 void *regulator_get_drvdata(struct regulator *regulator)
3654 {
3655 return regulator->rdev->reg_data;
3656 }
3657 EXPORT_SYMBOL_GPL(regulator_get_drvdata);
3658
3659 /**
3660 * regulator_set_drvdata - set regulator driver data
3661 * @regulator: regulator
3662 * @data: data
3663 */
3664 void regulator_set_drvdata(struct regulator *regulator, void *data)
3665 {
3666 regulator->rdev->reg_data = data;
3667 }
3668 EXPORT_SYMBOL_GPL(regulator_set_drvdata);
3669
3670 /**
3671 * regulator_get_id - get regulator ID
3672 * @rdev: regulator
3673 */
3674 int rdev_get_id(struct regulator_dev *rdev)
3675 {
3676 return rdev->desc->id;
3677 }
3678 EXPORT_SYMBOL_GPL(rdev_get_id);
3679
3680 struct device *rdev_get_dev(struct regulator_dev *rdev)
3681 {
3682 return &rdev->dev;
3683 }
3684 EXPORT_SYMBOL_GPL(rdev_get_dev);
3685
3686 void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
3687 {
3688 return reg_init_data->driver_data;
3689 }
3690 EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);
3691
3692 #ifdef CONFIG_DEBUG_FS
3693 static ssize_t supply_map_read_file(struct file *file, char __user *user_buf,
3694 size_t count, loff_t *ppos)
3695 {
3696 char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
3697 ssize_t len, ret = 0;
3698 struct regulator_map *map;
3699
3700 if (!buf)
3701 return -ENOMEM;
3702
3703 list_for_each_entry(map, &regulator_map_list, list) {
3704 len = snprintf(buf + ret, PAGE_SIZE - ret,
3705 "%s -> %s.%s\n",
3706 rdev_get_name(map->regulator), map->dev_name,
3707 map->supply);
3708 if (len >= 0)
3709 ret += len;
3710 if (ret > PAGE_SIZE) {
3711 ret = PAGE_SIZE;
3712 break;
3713 }
3714 }
3715
3716 ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
3717
3718 kfree(buf);
3719
3720 return ret;
3721 }
3722 #endif
3723
3724 static const struct file_operations supply_map_fops = {
3725 #ifdef CONFIG_DEBUG_FS
3726 .read = supply_map_read_file,
3727 .llseek = default_llseek,
3728 #endif
3729 };
3730
3731 static int __init regulator_init(void)
3732 {
3733 int ret;
3734
3735 ret = class_register(&regulator_class);
3736
3737 debugfs_root = debugfs_create_dir("regulator", NULL);
3738 if (!debugfs_root)
3739 pr_warn("regulator: Failed to create debugfs directory\n");
3740
3741 debugfs_create_file("supply_map", 0444, debugfs_root, NULL,
3742 &supply_map_fops);
3743
3744 regulator_dummy_init();
3745
3746 return ret;
3747 }
3748
3749 /* init early to allow our consumers to complete system booting */
3750 core_initcall(regulator_init);
3751
3752 static int __init regulator_init_complete(void)
3753 {
3754 struct regulator_dev *rdev;
3755 struct regulator_ops *ops;
3756 struct regulation_constraints *c;
3757 int enabled, ret;
3758
3759 /*
3760 * Since DT doesn't provide an idiomatic mechanism for
3761 * enabling full constraints and since it's much more natural
3762 * with DT to provide them just assume that a DT enabled
3763 * system has full constraints.
3764 */
3765 if (of_have_populated_dt())
3766 has_full_constraints = true;
3767
3768 mutex_lock(&regulator_list_mutex);
3769
3770 /* If we have a full configuration then disable any regulators
3771 * which are not in use or always_on. This will become the
3772 * default behaviour in the future.
3773 */
3774 list_for_each_entry(rdev, &regulator_list, list) {
3775 ops = rdev->desc->ops;
3776 c = rdev->constraints;
3777
3778 if (!ops->disable || (c && c->always_on))
3779 continue;
3780
3781 mutex_lock(&rdev->mutex);
3782
3783 if (rdev->use_count)
3784 goto unlock;
3785
3786 /* If we can't read the status assume it's on. */
3787 if (ops->is_enabled)
3788 enabled = ops->is_enabled(rdev);
3789 else
3790 enabled = 1;
3791
3792 if (!enabled)
3793 goto unlock;
3794
3795 if (has_full_constraints) {
3796 /* We log since this may kill the system if it
3797 * goes wrong. */
3798 rdev_info(rdev, "disabling\n");
3799 ret = ops->disable(rdev);
3800 if (ret != 0) {
3801 rdev_err(rdev, "couldn't disable: %d\n", ret);
3802 }
3803 } else {
3804 /* The intention is that in future we will
3805 * assume that full constraints are provided
3806 * so warn even if we aren't going to do
3807 * anything here.
3808 */
3809 rdev_warn(rdev, "incomplete constraints, leaving on\n");
3810 }
3811
3812 unlock:
3813 mutex_unlock(&rdev->mutex);
3814 }
3815
3816 mutex_unlock(&regulator_list_mutex);
3817
3818 return 0;
3819 }
3820 late_initcall(regulator_init_complete);
This page took 0.132196 seconds and 6 git commands to generate.