Merge tag 'for-4.1' of git://git.kernel.org/pub/scm/linux/kernel/git/kishon/linux...
[deliverable/linux.git] / drivers / regulator / core.c
1 /*
2 * core.c -- Voltage/Current Regulator framework.
3 *
4 * Copyright 2007, 2008 Wolfson Microelectronics PLC.
5 * Copyright 2008 SlimLogic Ltd.
6 *
7 * Author: Liam Girdwood <lrg@slimlogic.co.uk>
8 *
9 * This program is free software; you can redistribute it and/or modify it
10 * under the terms of the GNU General Public License as published by the
11 * Free Software Foundation; either version 2 of the License, or (at your
12 * option) any later version.
13 *
14 */
15
16 #include <linux/kernel.h>
17 #include <linux/init.h>
18 #include <linux/debugfs.h>
19 #include <linux/device.h>
20 #include <linux/slab.h>
21 #include <linux/async.h>
22 #include <linux/err.h>
23 #include <linux/mutex.h>
24 #include <linux/suspend.h>
25 #include <linux/delay.h>
26 #include <linux/gpio.h>
27 #include <linux/gpio/consumer.h>
28 #include <linux/of.h>
29 #include <linux/regmap.h>
30 #include <linux/regulator/of_regulator.h>
31 #include <linux/regulator/consumer.h>
32 #include <linux/regulator/driver.h>
33 #include <linux/regulator/machine.h>
34 #include <linux/module.h>
35
36 #define CREATE_TRACE_POINTS
37 #include <trace/events/regulator.h>
38
39 #include "dummy.h"
40 #include "internal.h"
41
42 #define rdev_crit(rdev, fmt, ...) \
43 pr_crit("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
44 #define rdev_err(rdev, fmt, ...) \
45 pr_err("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
46 #define rdev_warn(rdev, fmt, ...) \
47 pr_warn("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
48 #define rdev_info(rdev, fmt, ...) \
49 pr_info("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
50 #define rdev_dbg(rdev, fmt, ...) \
51 pr_debug("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
52
53 static DEFINE_MUTEX(regulator_list_mutex);
54 static LIST_HEAD(regulator_list);
55 static LIST_HEAD(regulator_map_list);
56 static LIST_HEAD(regulator_ena_gpio_list);
57 static LIST_HEAD(regulator_supply_alias_list);
58 static bool has_full_constraints;
59
60 static struct dentry *debugfs_root;
61
62 /*
63 * struct regulator_map
64 *
65 * Used to provide symbolic supply names to devices.
66 */
67 struct regulator_map {
68 struct list_head list;
69 const char *dev_name; /* The dev_name() for the consumer */
70 const char *supply;
71 struct regulator_dev *regulator;
72 };
73
74 /*
75 * struct regulator_enable_gpio
76 *
77 * Management for shared enable GPIO pin
78 */
79 struct regulator_enable_gpio {
80 struct list_head list;
81 struct gpio_desc *gpiod;
82 u32 enable_count; /* a number of enabled shared GPIO */
83 u32 request_count; /* a number of requested shared GPIO */
84 unsigned int ena_gpio_invert:1;
85 };
86
87 /*
88 * struct regulator_supply_alias
89 *
90 * Used to map lookups for a supply onto an alternative device.
91 */
92 struct regulator_supply_alias {
93 struct list_head list;
94 struct device *src_dev;
95 const char *src_supply;
96 struct device *alias_dev;
97 const char *alias_supply;
98 };
99
100 static int _regulator_is_enabled(struct regulator_dev *rdev);
101 static int _regulator_disable(struct regulator_dev *rdev);
102 static int _regulator_get_voltage(struct regulator_dev *rdev);
103 static int _regulator_get_current_limit(struct regulator_dev *rdev);
104 static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
105 static int _notifier_call_chain(struct regulator_dev *rdev,
106 unsigned long event, void *data);
107 static int _regulator_do_set_voltage(struct regulator_dev *rdev,
108 int min_uV, int max_uV);
109 static struct regulator *create_regulator(struct regulator_dev *rdev,
110 struct device *dev,
111 const char *supply_name);
112
113 static const char *rdev_get_name(struct regulator_dev *rdev)
114 {
115 if (rdev->constraints && rdev->constraints->name)
116 return rdev->constraints->name;
117 else if (rdev->desc->name)
118 return rdev->desc->name;
119 else
120 return "";
121 }
122
123 static bool have_full_constraints(void)
124 {
125 return has_full_constraints || of_have_populated_dt();
126 }
127
128 /**
129 * of_get_regulator - get a regulator device node based on supply name
130 * @dev: Device pointer for the consumer (of regulator) device
131 * @supply: regulator supply name
132 *
133 * Extract the regulator device node corresponding to the supply name.
134 * returns the device node corresponding to the regulator if found, else
135 * returns NULL.
136 */
137 static struct device_node *of_get_regulator(struct device *dev, const char *supply)
138 {
139 struct device_node *regnode = NULL;
140 char prop_name[32]; /* 32 is max size of property name */
141
142 dev_dbg(dev, "Looking up %s-supply from device tree\n", supply);
143
144 snprintf(prop_name, 32, "%s-supply", supply);
145 regnode = of_parse_phandle(dev->of_node, prop_name, 0);
146
147 if (!regnode) {
148 dev_dbg(dev, "Looking up %s property in node %s failed",
149 prop_name, dev->of_node->full_name);
150 return NULL;
151 }
152 return regnode;
153 }
154
155 static int _regulator_can_change_status(struct regulator_dev *rdev)
156 {
157 if (!rdev->constraints)
158 return 0;
159
160 if (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_STATUS)
161 return 1;
162 else
163 return 0;
164 }
165
166 /* Platform voltage constraint check */
167 static int regulator_check_voltage(struct regulator_dev *rdev,
168 int *min_uV, int *max_uV)
169 {
170 BUG_ON(*min_uV > *max_uV);
171
172 if (!rdev->constraints) {
173 rdev_err(rdev, "no constraints\n");
174 return -ENODEV;
175 }
176 if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
177 rdev_err(rdev, "operation not allowed\n");
178 return -EPERM;
179 }
180
181 if (*max_uV > rdev->constraints->max_uV)
182 *max_uV = rdev->constraints->max_uV;
183 if (*min_uV < rdev->constraints->min_uV)
184 *min_uV = rdev->constraints->min_uV;
185
186 if (*min_uV > *max_uV) {
187 rdev_err(rdev, "unsupportable voltage range: %d-%duV\n",
188 *min_uV, *max_uV);
189 return -EINVAL;
190 }
191
192 return 0;
193 }
194
195 /* Make sure we select a voltage that suits the needs of all
196 * regulator consumers
197 */
198 static int regulator_check_consumers(struct regulator_dev *rdev,
199 int *min_uV, int *max_uV)
200 {
201 struct regulator *regulator;
202
203 list_for_each_entry(regulator, &rdev->consumer_list, list) {
204 /*
205 * Assume consumers that didn't say anything are OK
206 * with anything in the constraint range.
207 */
208 if (!regulator->min_uV && !regulator->max_uV)
209 continue;
210
211 if (*max_uV > regulator->max_uV)
212 *max_uV = regulator->max_uV;
213 if (*min_uV < regulator->min_uV)
214 *min_uV = regulator->min_uV;
215 }
216
217 if (*min_uV > *max_uV) {
218 rdev_err(rdev, "Restricting voltage, %u-%uuV\n",
219 *min_uV, *max_uV);
220 return -EINVAL;
221 }
222
223 return 0;
224 }
225
226 /* current constraint check */
227 static int regulator_check_current_limit(struct regulator_dev *rdev,
228 int *min_uA, int *max_uA)
229 {
230 BUG_ON(*min_uA > *max_uA);
231
232 if (!rdev->constraints) {
233 rdev_err(rdev, "no constraints\n");
234 return -ENODEV;
235 }
236 if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_CURRENT)) {
237 rdev_err(rdev, "operation not allowed\n");
238 return -EPERM;
239 }
240
241 if (*max_uA > rdev->constraints->max_uA)
242 *max_uA = rdev->constraints->max_uA;
243 if (*min_uA < rdev->constraints->min_uA)
244 *min_uA = rdev->constraints->min_uA;
245
246 if (*min_uA > *max_uA) {
247 rdev_err(rdev, "unsupportable current range: %d-%duA\n",
248 *min_uA, *max_uA);
249 return -EINVAL;
250 }
251
252 return 0;
253 }
254
255 /* operating mode constraint check */
256 static int regulator_mode_constrain(struct regulator_dev *rdev, int *mode)
257 {
258 switch (*mode) {
259 case REGULATOR_MODE_FAST:
260 case REGULATOR_MODE_NORMAL:
261 case REGULATOR_MODE_IDLE:
262 case REGULATOR_MODE_STANDBY:
263 break;
264 default:
265 rdev_err(rdev, "invalid mode %x specified\n", *mode);
266 return -EINVAL;
267 }
268
269 if (!rdev->constraints) {
270 rdev_err(rdev, "no constraints\n");
271 return -ENODEV;
272 }
273 if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_MODE)) {
274 rdev_err(rdev, "operation not allowed\n");
275 return -EPERM;
276 }
277
278 /* The modes are bitmasks, the most power hungry modes having
279 * the lowest values. If the requested mode isn't supported
280 * try higher modes. */
281 while (*mode) {
282 if (rdev->constraints->valid_modes_mask & *mode)
283 return 0;
284 *mode /= 2;
285 }
286
287 return -EINVAL;
288 }
289
290 /* dynamic regulator mode switching constraint check */
291 static int regulator_check_drms(struct regulator_dev *rdev)
292 {
293 if (!rdev->constraints) {
294 rdev_err(rdev, "no constraints\n");
295 return -ENODEV;
296 }
297 if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS)) {
298 rdev_err(rdev, "operation not allowed\n");
299 return -EPERM;
300 }
301 return 0;
302 }
303
304 static ssize_t regulator_uV_show(struct device *dev,
305 struct device_attribute *attr, char *buf)
306 {
307 struct regulator_dev *rdev = dev_get_drvdata(dev);
308 ssize_t ret;
309
310 mutex_lock(&rdev->mutex);
311 ret = sprintf(buf, "%d\n", _regulator_get_voltage(rdev));
312 mutex_unlock(&rdev->mutex);
313
314 return ret;
315 }
316 static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL);
317
318 static ssize_t regulator_uA_show(struct device *dev,
319 struct device_attribute *attr, char *buf)
320 {
321 struct regulator_dev *rdev = dev_get_drvdata(dev);
322
323 return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
324 }
325 static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL);
326
327 static ssize_t name_show(struct device *dev, struct device_attribute *attr,
328 char *buf)
329 {
330 struct regulator_dev *rdev = dev_get_drvdata(dev);
331
332 return sprintf(buf, "%s\n", rdev_get_name(rdev));
333 }
334 static DEVICE_ATTR_RO(name);
335
336 static ssize_t regulator_print_opmode(char *buf, int mode)
337 {
338 switch (mode) {
339 case REGULATOR_MODE_FAST:
340 return sprintf(buf, "fast\n");
341 case REGULATOR_MODE_NORMAL:
342 return sprintf(buf, "normal\n");
343 case REGULATOR_MODE_IDLE:
344 return sprintf(buf, "idle\n");
345 case REGULATOR_MODE_STANDBY:
346 return sprintf(buf, "standby\n");
347 }
348 return sprintf(buf, "unknown\n");
349 }
350
351 static ssize_t regulator_opmode_show(struct device *dev,
352 struct device_attribute *attr, char *buf)
353 {
354 struct regulator_dev *rdev = dev_get_drvdata(dev);
355
356 return regulator_print_opmode(buf, _regulator_get_mode(rdev));
357 }
358 static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL);
359
360 static ssize_t regulator_print_state(char *buf, int state)
361 {
362 if (state > 0)
363 return sprintf(buf, "enabled\n");
364 else if (state == 0)
365 return sprintf(buf, "disabled\n");
366 else
367 return sprintf(buf, "unknown\n");
368 }
369
370 static ssize_t regulator_state_show(struct device *dev,
371 struct device_attribute *attr, char *buf)
372 {
373 struct regulator_dev *rdev = dev_get_drvdata(dev);
374 ssize_t ret;
375
376 mutex_lock(&rdev->mutex);
377 ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
378 mutex_unlock(&rdev->mutex);
379
380 return ret;
381 }
382 static DEVICE_ATTR(state, 0444, regulator_state_show, NULL);
383
384 static ssize_t regulator_status_show(struct device *dev,
385 struct device_attribute *attr, char *buf)
386 {
387 struct regulator_dev *rdev = dev_get_drvdata(dev);
388 int status;
389 char *label;
390
391 status = rdev->desc->ops->get_status(rdev);
392 if (status < 0)
393 return status;
394
395 switch (status) {
396 case REGULATOR_STATUS_OFF:
397 label = "off";
398 break;
399 case REGULATOR_STATUS_ON:
400 label = "on";
401 break;
402 case REGULATOR_STATUS_ERROR:
403 label = "error";
404 break;
405 case REGULATOR_STATUS_FAST:
406 label = "fast";
407 break;
408 case REGULATOR_STATUS_NORMAL:
409 label = "normal";
410 break;
411 case REGULATOR_STATUS_IDLE:
412 label = "idle";
413 break;
414 case REGULATOR_STATUS_STANDBY:
415 label = "standby";
416 break;
417 case REGULATOR_STATUS_BYPASS:
418 label = "bypass";
419 break;
420 case REGULATOR_STATUS_UNDEFINED:
421 label = "undefined";
422 break;
423 default:
424 return -ERANGE;
425 }
426
427 return sprintf(buf, "%s\n", label);
428 }
429 static DEVICE_ATTR(status, 0444, regulator_status_show, NULL);
430
431 static ssize_t regulator_min_uA_show(struct device *dev,
432 struct device_attribute *attr, char *buf)
433 {
434 struct regulator_dev *rdev = dev_get_drvdata(dev);
435
436 if (!rdev->constraints)
437 return sprintf(buf, "constraint not defined\n");
438
439 return sprintf(buf, "%d\n", rdev->constraints->min_uA);
440 }
441 static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL);
442
443 static ssize_t regulator_max_uA_show(struct device *dev,
444 struct device_attribute *attr, char *buf)
445 {
446 struct regulator_dev *rdev = dev_get_drvdata(dev);
447
448 if (!rdev->constraints)
449 return sprintf(buf, "constraint not defined\n");
450
451 return sprintf(buf, "%d\n", rdev->constraints->max_uA);
452 }
453 static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL);
454
455 static ssize_t regulator_min_uV_show(struct device *dev,
456 struct device_attribute *attr, char *buf)
457 {
458 struct regulator_dev *rdev = dev_get_drvdata(dev);
459
460 if (!rdev->constraints)
461 return sprintf(buf, "constraint not defined\n");
462
463 return sprintf(buf, "%d\n", rdev->constraints->min_uV);
464 }
465 static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL);
466
467 static ssize_t regulator_max_uV_show(struct device *dev,
468 struct device_attribute *attr, char *buf)
469 {
470 struct regulator_dev *rdev = dev_get_drvdata(dev);
471
472 if (!rdev->constraints)
473 return sprintf(buf, "constraint not defined\n");
474
475 return sprintf(buf, "%d\n", rdev->constraints->max_uV);
476 }
477 static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL);
478
479 static ssize_t regulator_total_uA_show(struct device *dev,
480 struct device_attribute *attr, char *buf)
481 {
482 struct regulator_dev *rdev = dev_get_drvdata(dev);
483 struct regulator *regulator;
484 int uA = 0;
485
486 mutex_lock(&rdev->mutex);
487 list_for_each_entry(regulator, &rdev->consumer_list, list)
488 uA += regulator->uA_load;
489 mutex_unlock(&rdev->mutex);
490 return sprintf(buf, "%d\n", uA);
491 }
492 static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL);
493
494 static ssize_t num_users_show(struct device *dev, struct device_attribute *attr,
495 char *buf)
496 {
497 struct regulator_dev *rdev = dev_get_drvdata(dev);
498 return sprintf(buf, "%d\n", rdev->use_count);
499 }
500 static DEVICE_ATTR_RO(num_users);
501
502 static ssize_t type_show(struct device *dev, struct device_attribute *attr,
503 char *buf)
504 {
505 struct regulator_dev *rdev = dev_get_drvdata(dev);
506
507 switch (rdev->desc->type) {
508 case REGULATOR_VOLTAGE:
509 return sprintf(buf, "voltage\n");
510 case REGULATOR_CURRENT:
511 return sprintf(buf, "current\n");
512 }
513 return sprintf(buf, "unknown\n");
514 }
515 static DEVICE_ATTR_RO(type);
516
517 static ssize_t regulator_suspend_mem_uV_show(struct device *dev,
518 struct device_attribute *attr, char *buf)
519 {
520 struct regulator_dev *rdev = dev_get_drvdata(dev);
521
522 return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
523 }
524 static DEVICE_ATTR(suspend_mem_microvolts, 0444,
525 regulator_suspend_mem_uV_show, NULL);
526
527 static ssize_t regulator_suspend_disk_uV_show(struct device *dev,
528 struct device_attribute *attr, char *buf)
529 {
530 struct regulator_dev *rdev = dev_get_drvdata(dev);
531
532 return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
533 }
534 static DEVICE_ATTR(suspend_disk_microvolts, 0444,
535 regulator_suspend_disk_uV_show, NULL);
536
537 static ssize_t regulator_suspend_standby_uV_show(struct device *dev,
538 struct device_attribute *attr, char *buf)
539 {
540 struct regulator_dev *rdev = dev_get_drvdata(dev);
541
542 return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
543 }
544 static DEVICE_ATTR(suspend_standby_microvolts, 0444,
545 regulator_suspend_standby_uV_show, NULL);
546
547 static ssize_t regulator_suspend_mem_mode_show(struct device *dev,
548 struct device_attribute *attr, char *buf)
549 {
550 struct regulator_dev *rdev = dev_get_drvdata(dev);
551
552 return regulator_print_opmode(buf,
553 rdev->constraints->state_mem.mode);
554 }
555 static DEVICE_ATTR(suspend_mem_mode, 0444,
556 regulator_suspend_mem_mode_show, NULL);
557
558 static ssize_t regulator_suspend_disk_mode_show(struct device *dev,
559 struct device_attribute *attr, char *buf)
560 {
561 struct regulator_dev *rdev = dev_get_drvdata(dev);
562
563 return regulator_print_opmode(buf,
564 rdev->constraints->state_disk.mode);
565 }
566 static DEVICE_ATTR(suspend_disk_mode, 0444,
567 regulator_suspend_disk_mode_show, NULL);
568
569 static ssize_t regulator_suspend_standby_mode_show(struct device *dev,
570 struct device_attribute *attr, char *buf)
571 {
572 struct regulator_dev *rdev = dev_get_drvdata(dev);
573
574 return regulator_print_opmode(buf,
575 rdev->constraints->state_standby.mode);
576 }
577 static DEVICE_ATTR(suspend_standby_mode, 0444,
578 regulator_suspend_standby_mode_show, NULL);
579
580 static ssize_t regulator_suspend_mem_state_show(struct device *dev,
581 struct device_attribute *attr, char *buf)
582 {
583 struct regulator_dev *rdev = dev_get_drvdata(dev);
584
585 return regulator_print_state(buf,
586 rdev->constraints->state_mem.enabled);
587 }
588 static DEVICE_ATTR(suspend_mem_state, 0444,
589 regulator_suspend_mem_state_show, NULL);
590
591 static ssize_t regulator_suspend_disk_state_show(struct device *dev,
592 struct device_attribute *attr, char *buf)
593 {
594 struct regulator_dev *rdev = dev_get_drvdata(dev);
595
596 return regulator_print_state(buf,
597 rdev->constraints->state_disk.enabled);
598 }
599 static DEVICE_ATTR(suspend_disk_state, 0444,
600 regulator_suspend_disk_state_show, NULL);
601
602 static ssize_t regulator_suspend_standby_state_show(struct device *dev,
603 struct device_attribute *attr, char *buf)
604 {
605 struct regulator_dev *rdev = dev_get_drvdata(dev);
606
607 return regulator_print_state(buf,
608 rdev->constraints->state_standby.enabled);
609 }
610 static DEVICE_ATTR(suspend_standby_state, 0444,
611 regulator_suspend_standby_state_show, NULL);
612
613 static ssize_t regulator_bypass_show(struct device *dev,
614 struct device_attribute *attr, char *buf)
615 {
616 struct regulator_dev *rdev = dev_get_drvdata(dev);
617 const char *report;
618 bool bypass;
619 int ret;
620
621 ret = rdev->desc->ops->get_bypass(rdev, &bypass);
622
623 if (ret != 0)
624 report = "unknown";
625 else if (bypass)
626 report = "enabled";
627 else
628 report = "disabled";
629
630 return sprintf(buf, "%s\n", report);
631 }
632 static DEVICE_ATTR(bypass, 0444,
633 regulator_bypass_show, NULL);
634
635 /* Calculate the new optimum regulator operating mode based on the new total
636 * consumer load. All locks held by caller */
637 static int drms_uA_update(struct regulator_dev *rdev)
638 {
639 struct regulator *sibling;
640 int current_uA = 0, output_uV, input_uV, err;
641 unsigned int mode;
642
643 /*
644 * first check to see if we can set modes at all, otherwise just
645 * tell the consumer everything is OK.
646 */
647 err = regulator_check_drms(rdev);
648 if (err < 0)
649 return 0;
650
651 if (!rdev->desc->ops->get_optimum_mode)
652 return 0;
653
654 if (!rdev->desc->ops->set_mode)
655 return -EINVAL;
656
657 /* get output voltage */
658 output_uV = _regulator_get_voltage(rdev);
659 if (output_uV <= 0) {
660 rdev_err(rdev, "invalid output voltage found\n");
661 return -EINVAL;
662 }
663
664 /* get input voltage */
665 input_uV = 0;
666 if (rdev->supply)
667 input_uV = regulator_get_voltage(rdev->supply);
668 if (input_uV <= 0)
669 input_uV = rdev->constraints->input_uV;
670 if (input_uV <= 0) {
671 rdev_err(rdev, "invalid input voltage found\n");
672 return -EINVAL;
673 }
674
675 /* calc total requested load */
676 list_for_each_entry(sibling, &rdev->consumer_list, list)
677 current_uA += sibling->uA_load;
678
679 /* now get the optimum mode for our new total regulator load */
680 mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
681 output_uV, current_uA);
682
683 /* check the new mode is allowed */
684 err = regulator_mode_constrain(rdev, &mode);
685 if (err < 0) {
686 rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV\n",
687 current_uA, input_uV, output_uV);
688 return err;
689 }
690
691 err = rdev->desc->ops->set_mode(rdev, mode);
692 if (err < 0)
693 rdev_err(rdev, "failed to set optimum mode %x\n", mode);
694
695 return err;
696 }
697
698 static int suspend_set_state(struct regulator_dev *rdev,
699 struct regulator_state *rstate)
700 {
701 int ret = 0;
702
703 /* If we have no suspend mode configration don't set anything;
704 * only warn if the driver implements set_suspend_voltage or
705 * set_suspend_mode callback.
706 */
707 if (!rstate->enabled && !rstate->disabled) {
708 if (rdev->desc->ops->set_suspend_voltage ||
709 rdev->desc->ops->set_suspend_mode)
710 rdev_warn(rdev, "No configuration\n");
711 return 0;
712 }
713
714 if (rstate->enabled && rstate->disabled) {
715 rdev_err(rdev, "invalid configuration\n");
716 return -EINVAL;
717 }
718
719 if (rstate->enabled && rdev->desc->ops->set_suspend_enable)
720 ret = rdev->desc->ops->set_suspend_enable(rdev);
721 else if (rstate->disabled && rdev->desc->ops->set_suspend_disable)
722 ret = rdev->desc->ops->set_suspend_disable(rdev);
723 else /* OK if set_suspend_enable or set_suspend_disable is NULL */
724 ret = 0;
725
726 if (ret < 0) {
727 rdev_err(rdev, "failed to enabled/disable\n");
728 return ret;
729 }
730
731 if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
732 ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
733 if (ret < 0) {
734 rdev_err(rdev, "failed to set voltage\n");
735 return ret;
736 }
737 }
738
739 if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
740 ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
741 if (ret < 0) {
742 rdev_err(rdev, "failed to set mode\n");
743 return ret;
744 }
745 }
746 return ret;
747 }
748
749 /* locks held by caller */
750 static int suspend_prepare(struct regulator_dev *rdev, suspend_state_t state)
751 {
752 if (!rdev->constraints)
753 return -EINVAL;
754
755 switch (state) {
756 case PM_SUSPEND_STANDBY:
757 return suspend_set_state(rdev,
758 &rdev->constraints->state_standby);
759 case PM_SUSPEND_MEM:
760 return suspend_set_state(rdev,
761 &rdev->constraints->state_mem);
762 case PM_SUSPEND_MAX:
763 return suspend_set_state(rdev,
764 &rdev->constraints->state_disk);
765 default:
766 return -EINVAL;
767 }
768 }
769
770 static void print_constraints(struct regulator_dev *rdev)
771 {
772 struct regulation_constraints *constraints = rdev->constraints;
773 char buf[80] = "";
774 int count = 0;
775 int ret;
776
777 if (constraints->min_uV && constraints->max_uV) {
778 if (constraints->min_uV == constraints->max_uV)
779 count += sprintf(buf + count, "%d mV ",
780 constraints->min_uV / 1000);
781 else
782 count += sprintf(buf + count, "%d <--> %d mV ",
783 constraints->min_uV / 1000,
784 constraints->max_uV / 1000);
785 }
786
787 if (!constraints->min_uV ||
788 constraints->min_uV != constraints->max_uV) {
789 ret = _regulator_get_voltage(rdev);
790 if (ret > 0)
791 count += sprintf(buf + count, "at %d mV ", ret / 1000);
792 }
793
794 if (constraints->uV_offset)
795 count += sprintf(buf, "%dmV offset ",
796 constraints->uV_offset / 1000);
797
798 if (constraints->min_uA && constraints->max_uA) {
799 if (constraints->min_uA == constraints->max_uA)
800 count += sprintf(buf + count, "%d mA ",
801 constraints->min_uA / 1000);
802 else
803 count += sprintf(buf + count, "%d <--> %d mA ",
804 constraints->min_uA / 1000,
805 constraints->max_uA / 1000);
806 }
807
808 if (!constraints->min_uA ||
809 constraints->min_uA != constraints->max_uA) {
810 ret = _regulator_get_current_limit(rdev);
811 if (ret > 0)
812 count += sprintf(buf + count, "at %d mA ", ret / 1000);
813 }
814
815 if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
816 count += sprintf(buf + count, "fast ");
817 if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
818 count += sprintf(buf + count, "normal ");
819 if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
820 count += sprintf(buf + count, "idle ");
821 if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
822 count += sprintf(buf + count, "standby");
823
824 if (!count)
825 sprintf(buf, "no parameters");
826
827 rdev_dbg(rdev, "%s\n", buf);
828
829 if ((constraints->min_uV != constraints->max_uV) &&
830 !(constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE))
831 rdev_warn(rdev,
832 "Voltage range but no REGULATOR_CHANGE_VOLTAGE\n");
833 }
834
835 static int machine_constraints_voltage(struct regulator_dev *rdev,
836 struct regulation_constraints *constraints)
837 {
838 const struct regulator_ops *ops = rdev->desc->ops;
839 int ret;
840
841 /* do we need to apply the constraint voltage */
842 if (rdev->constraints->apply_uV &&
843 rdev->constraints->min_uV == rdev->constraints->max_uV) {
844 int current_uV = _regulator_get_voltage(rdev);
845 if (current_uV < 0) {
846 rdev_err(rdev,
847 "failed to get the current voltage(%d)\n",
848 current_uV);
849 return current_uV;
850 }
851 if (current_uV < rdev->constraints->min_uV ||
852 current_uV > rdev->constraints->max_uV) {
853 ret = _regulator_do_set_voltage(
854 rdev, rdev->constraints->min_uV,
855 rdev->constraints->max_uV);
856 if (ret < 0) {
857 rdev_err(rdev,
858 "failed to apply %duV constraint(%d)\n",
859 rdev->constraints->min_uV, ret);
860 return ret;
861 }
862 }
863 }
864
865 /* constrain machine-level voltage specs to fit
866 * the actual range supported by this regulator.
867 */
868 if (ops->list_voltage && rdev->desc->n_voltages) {
869 int count = rdev->desc->n_voltages;
870 int i;
871 int min_uV = INT_MAX;
872 int max_uV = INT_MIN;
873 int cmin = constraints->min_uV;
874 int cmax = constraints->max_uV;
875
876 /* it's safe to autoconfigure fixed-voltage supplies
877 and the constraints are used by list_voltage. */
878 if (count == 1 && !cmin) {
879 cmin = 1;
880 cmax = INT_MAX;
881 constraints->min_uV = cmin;
882 constraints->max_uV = cmax;
883 }
884
885 /* voltage constraints are optional */
886 if ((cmin == 0) && (cmax == 0))
887 return 0;
888
889 /* else require explicit machine-level constraints */
890 if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
891 rdev_err(rdev, "invalid voltage constraints\n");
892 return -EINVAL;
893 }
894
895 /* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
896 for (i = 0; i < count; i++) {
897 int value;
898
899 value = ops->list_voltage(rdev, i);
900 if (value <= 0)
901 continue;
902
903 /* maybe adjust [min_uV..max_uV] */
904 if (value >= cmin && value < min_uV)
905 min_uV = value;
906 if (value <= cmax && value > max_uV)
907 max_uV = value;
908 }
909
910 /* final: [min_uV..max_uV] valid iff constraints valid */
911 if (max_uV < min_uV) {
912 rdev_err(rdev,
913 "unsupportable voltage constraints %u-%uuV\n",
914 min_uV, max_uV);
915 return -EINVAL;
916 }
917
918 /* use regulator's subset of machine constraints */
919 if (constraints->min_uV < min_uV) {
920 rdev_dbg(rdev, "override min_uV, %d -> %d\n",
921 constraints->min_uV, min_uV);
922 constraints->min_uV = min_uV;
923 }
924 if (constraints->max_uV > max_uV) {
925 rdev_dbg(rdev, "override max_uV, %d -> %d\n",
926 constraints->max_uV, max_uV);
927 constraints->max_uV = max_uV;
928 }
929 }
930
931 return 0;
932 }
933
934 static int machine_constraints_current(struct regulator_dev *rdev,
935 struct regulation_constraints *constraints)
936 {
937 const struct regulator_ops *ops = rdev->desc->ops;
938 int ret;
939
940 if (!constraints->min_uA && !constraints->max_uA)
941 return 0;
942
943 if (constraints->min_uA > constraints->max_uA) {
944 rdev_err(rdev, "Invalid current constraints\n");
945 return -EINVAL;
946 }
947
948 if (!ops->set_current_limit || !ops->get_current_limit) {
949 rdev_warn(rdev, "Operation of current configuration missing\n");
950 return 0;
951 }
952
953 /* Set regulator current in constraints range */
954 ret = ops->set_current_limit(rdev, constraints->min_uA,
955 constraints->max_uA);
956 if (ret < 0) {
957 rdev_err(rdev, "Failed to set current constraint, %d\n", ret);
958 return ret;
959 }
960
961 return 0;
962 }
963
964 static int _regulator_do_enable(struct regulator_dev *rdev);
965
966 /**
967 * set_machine_constraints - sets regulator constraints
968 * @rdev: regulator source
969 * @constraints: constraints to apply
970 *
971 * Allows platform initialisation code to define and constrain
972 * regulator circuits e.g. valid voltage/current ranges, etc. NOTE:
973 * Constraints *must* be set by platform code in order for some
974 * regulator operations to proceed i.e. set_voltage, set_current_limit,
975 * set_mode.
976 */
977 static int set_machine_constraints(struct regulator_dev *rdev,
978 const struct regulation_constraints *constraints)
979 {
980 int ret = 0;
981 const struct regulator_ops *ops = rdev->desc->ops;
982
983 if (constraints)
984 rdev->constraints = kmemdup(constraints, sizeof(*constraints),
985 GFP_KERNEL);
986 else
987 rdev->constraints = kzalloc(sizeof(*constraints),
988 GFP_KERNEL);
989 if (!rdev->constraints)
990 return -ENOMEM;
991
992 ret = machine_constraints_voltage(rdev, rdev->constraints);
993 if (ret != 0)
994 goto out;
995
996 ret = machine_constraints_current(rdev, rdev->constraints);
997 if (ret != 0)
998 goto out;
999
1000 /* do we need to setup our suspend state */
1001 if (rdev->constraints->initial_state) {
1002 ret = suspend_prepare(rdev, rdev->constraints->initial_state);
1003 if (ret < 0) {
1004 rdev_err(rdev, "failed to set suspend state\n");
1005 goto out;
1006 }
1007 }
1008
1009 if (rdev->constraints->initial_mode) {
1010 if (!ops->set_mode) {
1011 rdev_err(rdev, "no set_mode operation\n");
1012 ret = -EINVAL;
1013 goto out;
1014 }
1015
1016 ret = ops->set_mode(rdev, rdev->constraints->initial_mode);
1017 if (ret < 0) {
1018 rdev_err(rdev, "failed to set initial mode: %d\n", ret);
1019 goto out;
1020 }
1021 }
1022
1023 /* If the constraints say the regulator should be on at this point
1024 * and we have control then make sure it is enabled.
1025 */
1026 if (rdev->constraints->always_on || rdev->constraints->boot_on) {
1027 ret = _regulator_do_enable(rdev);
1028 if (ret < 0 && ret != -EINVAL) {
1029 rdev_err(rdev, "failed to enable\n");
1030 goto out;
1031 }
1032 }
1033
1034 if ((rdev->constraints->ramp_delay || rdev->constraints->ramp_disable)
1035 && ops->set_ramp_delay) {
1036 ret = ops->set_ramp_delay(rdev, rdev->constraints->ramp_delay);
1037 if (ret < 0) {
1038 rdev_err(rdev, "failed to set ramp_delay\n");
1039 goto out;
1040 }
1041 }
1042
1043 print_constraints(rdev);
1044 return 0;
1045 out:
1046 kfree(rdev->constraints);
1047 rdev->constraints = NULL;
1048 return ret;
1049 }
1050
1051 /**
1052 * set_supply - set regulator supply regulator
1053 * @rdev: regulator name
1054 * @supply_rdev: supply regulator name
1055 *
1056 * Called by platform initialisation code to set the supply regulator for this
1057 * regulator. This ensures that a regulators supply will also be enabled by the
1058 * core if it's child is enabled.
1059 */
1060 static int set_supply(struct regulator_dev *rdev,
1061 struct regulator_dev *supply_rdev)
1062 {
1063 int err;
1064
1065 rdev_info(rdev, "supplied by %s\n", rdev_get_name(supply_rdev));
1066
1067 rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY");
1068 if (rdev->supply == NULL) {
1069 err = -ENOMEM;
1070 return err;
1071 }
1072 supply_rdev->open_count++;
1073
1074 return 0;
1075 }
1076
1077 /**
1078 * set_consumer_device_supply - Bind a regulator to a symbolic supply
1079 * @rdev: regulator source
1080 * @consumer_dev_name: dev_name() string for device supply applies to
1081 * @supply: symbolic name for supply
1082 *
1083 * Allows platform initialisation code to map physical regulator
1084 * sources to symbolic names for supplies for use by devices. Devices
1085 * should use these symbolic names to request regulators, avoiding the
1086 * need to provide board-specific regulator names as platform data.
1087 */
1088 static int set_consumer_device_supply(struct regulator_dev *rdev,
1089 const char *consumer_dev_name,
1090 const char *supply)
1091 {
1092 struct regulator_map *node;
1093 int has_dev;
1094
1095 if (supply == NULL)
1096 return -EINVAL;
1097
1098 if (consumer_dev_name != NULL)
1099 has_dev = 1;
1100 else
1101 has_dev = 0;
1102
1103 list_for_each_entry(node, &regulator_map_list, list) {
1104 if (node->dev_name && consumer_dev_name) {
1105 if (strcmp(node->dev_name, consumer_dev_name) != 0)
1106 continue;
1107 } else if (node->dev_name || consumer_dev_name) {
1108 continue;
1109 }
1110
1111 if (strcmp(node->supply, supply) != 0)
1112 continue;
1113
1114 pr_debug("%s: %s/%s is '%s' supply; fail %s/%s\n",
1115 consumer_dev_name,
1116 dev_name(&node->regulator->dev),
1117 node->regulator->desc->name,
1118 supply,
1119 dev_name(&rdev->dev), rdev_get_name(rdev));
1120 return -EBUSY;
1121 }
1122
1123 node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
1124 if (node == NULL)
1125 return -ENOMEM;
1126
1127 node->regulator = rdev;
1128 node->supply = supply;
1129
1130 if (has_dev) {
1131 node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
1132 if (node->dev_name == NULL) {
1133 kfree(node);
1134 return -ENOMEM;
1135 }
1136 }
1137
1138 list_add(&node->list, &regulator_map_list);
1139 return 0;
1140 }
1141
1142 static void unset_regulator_supplies(struct regulator_dev *rdev)
1143 {
1144 struct regulator_map *node, *n;
1145
1146 list_for_each_entry_safe(node, n, &regulator_map_list, list) {
1147 if (rdev == node->regulator) {
1148 list_del(&node->list);
1149 kfree(node->dev_name);
1150 kfree(node);
1151 }
1152 }
1153 }
1154
1155 #define REG_STR_SIZE 64
1156
1157 static struct regulator *create_regulator(struct regulator_dev *rdev,
1158 struct device *dev,
1159 const char *supply_name)
1160 {
1161 struct regulator *regulator;
1162 char buf[REG_STR_SIZE];
1163 int err, size;
1164
1165 regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
1166 if (regulator == NULL)
1167 return NULL;
1168
1169 mutex_lock(&rdev->mutex);
1170 regulator->rdev = rdev;
1171 list_add(&regulator->list, &rdev->consumer_list);
1172
1173 if (dev) {
1174 regulator->dev = dev;
1175
1176 /* Add a link to the device sysfs entry */
1177 size = scnprintf(buf, REG_STR_SIZE, "%s-%s",
1178 dev->kobj.name, supply_name);
1179 if (size >= REG_STR_SIZE)
1180 goto overflow_err;
1181
1182 regulator->supply_name = kstrdup(buf, GFP_KERNEL);
1183 if (regulator->supply_name == NULL)
1184 goto overflow_err;
1185
1186 err = sysfs_create_link(&rdev->dev.kobj, &dev->kobj,
1187 buf);
1188 if (err) {
1189 rdev_warn(rdev, "could not add device link %s err %d\n",
1190 dev->kobj.name, err);
1191 /* non-fatal */
1192 }
1193 } else {
1194 regulator->supply_name = kstrdup(supply_name, GFP_KERNEL);
1195 if (regulator->supply_name == NULL)
1196 goto overflow_err;
1197 }
1198
1199 regulator->debugfs = debugfs_create_dir(regulator->supply_name,
1200 rdev->debugfs);
1201 if (!regulator->debugfs) {
1202 rdev_warn(rdev, "Failed to create debugfs directory\n");
1203 } else {
1204 debugfs_create_u32("uA_load", 0444, regulator->debugfs,
1205 &regulator->uA_load);
1206 debugfs_create_u32("min_uV", 0444, regulator->debugfs,
1207 &regulator->min_uV);
1208 debugfs_create_u32("max_uV", 0444, regulator->debugfs,
1209 &regulator->max_uV);
1210 }
1211
1212 /*
1213 * Check now if the regulator is an always on regulator - if
1214 * it is then we don't need to do nearly so much work for
1215 * enable/disable calls.
1216 */
1217 if (!_regulator_can_change_status(rdev) &&
1218 _regulator_is_enabled(rdev))
1219 regulator->always_on = true;
1220
1221 mutex_unlock(&rdev->mutex);
1222 return regulator;
1223 overflow_err:
1224 list_del(&regulator->list);
1225 kfree(regulator);
1226 mutex_unlock(&rdev->mutex);
1227 return NULL;
1228 }
1229
1230 static int _regulator_get_enable_time(struct regulator_dev *rdev)
1231 {
1232 if (rdev->constraints && rdev->constraints->enable_time)
1233 return rdev->constraints->enable_time;
1234 if (!rdev->desc->ops->enable_time)
1235 return rdev->desc->enable_time;
1236 return rdev->desc->ops->enable_time(rdev);
1237 }
1238
1239 static struct regulator_supply_alias *regulator_find_supply_alias(
1240 struct device *dev, const char *supply)
1241 {
1242 struct regulator_supply_alias *map;
1243
1244 list_for_each_entry(map, &regulator_supply_alias_list, list)
1245 if (map->src_dev == dev && strcmp(map->src_supply, supply) == 0)
1246 return map;
1247
1248 return NULL;
1249 }
1250
1251 static void regulator_supply_alias(struct device **dev, const char **supply)
1252 {
1253 struct regulator_supply_alias *map;
1254
1255 map = regulator_find_supply_alias(*dev, *supply);
1256 if (map) {
1257 dev_dbg(*dev, "Mapping supply %s to %s,%s\n",
1258 *supply, map->alias_supply,
1259 dev_name(map->alias_dev));
1260 *dev = map->alias_dev;
1261 *supply = map->alias_supply;
1262 }
1263 }
1264
1265 static struct regulator_dev *regulator_dev_lookup(struct device *dev,
1266 const char *supply,
1267 int *ret)
1268 {
1269 struct regulator_dev *r;
1270 struct device_node *node;
1271 struct regulator_map *map;
1272 const char *devname = NULL;
1273
1274 regulator_supply_alias(&dev, &supply);
1275
1276 /* first do a dt based lookup */
1277 if (dev && dev->of_node) {
1278 node = of_get_regulator(dev, supply);
1279 if (node) {
1280 list_for_each_entry(r, &regulator_list, list)
1281 if (r->dev.parent &&
1282 node == r->dev.of_node)
1283 return r;
1284 *ret = -EPROBE_DEFER;
1285 return NULL;
1286 } else {
1287 /*
1288 * If we couldn't even get the node then it's
1289 * not just that the device didn't register
1290 * yet, there's no node and we'll never
1291 * succeed.
1292 */
1293 *ret = -ENODEV;
1294 }
1295 }
1296
1297 /* if not found, try doing it non-dt way */
1298 if (dev)
1299 devname = dev_name(dev);
1300
1301 list_for_each_entry(r, &regulator_list, list)
1302 if (strcmp(rdev_get_name(r), supply) == 0)
1303 return r;
1304
1305 list_for_each_entry(map, &regulator_map_list, list) {
1306 /* If the mapping has a device set up it must match */
1307 if (map->dev_name &&
1308 (!devname || strcmp(map->dev_name, devname)))
1309 continue;
1310
1311 if (strcmp(map->supply, supply) == 0)
1312 return map->regulator;
1313 }
1314
1315
1316 return NULL;
1317 }
1318
1319 /* Internal regulator request function */
1320 static struct regulator *_regulator_get(struct device *dev, const char *id,
1321 bool exclusive, bool allow_dummy)
1322 {
1323 struct regulator_dev *rdev;
1324 struct regulator *regulator = ERR_PTR(-EPROBE_DEFER);
1325 const char *devname = NULL;
1326 int ret;
1327
1328 if (id == NULL) {
1329 pr_err("get() with no identifier\n");
1330 return ERR_PTR(-EINVAL);
1331 }
1332
1333 if (dev)
1334 devname = dev_name(dev);
1335
1336 if (have_full_constraints())
1337 ret = -ENODEV;
1338 else
1339 ret = -EPROBE_DEFER;
1340
1341 mutex_lock(&regulator_list_mutex);
1342
1343 rdev = regulator_dev_lookup(dev, id, &ret);
1344 if (rdev)
1345 goto found;
1346
1347 regulator = ERR_PTR(ret);
1348
1349 /*
1350 * If we have return value from dev_lookup fail, we do not expect to
1351 * succeed, so, quit with appropriate error value
1352 */
1353 if (ret && ret != -ENODEV)
1354 goto out;
1355
1356 if (!devname)
1357 devname = "deviceless";
1358
1359 /*
1360 * Assume that a regulator is physically present and enabled
1361 * even if it isn't hooked up and just provide a dummy.
1362 */
1363 if (have_full_constraints() && allow_dummy) {
1364 pr_warn("%s supply %s not found, using dummy regulator\n",
1365 devname, id);
1366
1367 rdev = dummy_regulator_rdev;
1368 goto found;
1369 /* Don't log an error when called from regulator_get_optional() */
1370 } else if (!have_full_constraints() || exclusive) {
1371 dev_warn(dev, "dummy supplies not allowed\n");
1372 }
1373
1374 mutex_unlock(&regulator_list_mutex);
1375 return regulator;
1376
1377 found:
1378 if (rdev->exclusive) {
1379 regulator = ERR_PTR(-EPERM);
1380 goto out;
1381 }
1382
1383 if (exclusive && rdev->open_count) {
1384 regulator = ERR_PTR(-EBUSY);
1385 goto out;
1386 }
1387
1388 if (!try_module_get(rdev->owner))
1389 goto out;
1390
1391 regulator = create_regulator(rdev, dev, id);
1392 if (regulator == NULL) {
1393 regulator = ERR_PTR(-ENOMEM);
1394 module_put(rdev->owner);
1395 goto out;
1396 }
1397
1398 rdev->open_count++;
1399 if (exclusive) {
1400 rdev->exclusive = 1;
1401
1402 ret = _regulator_is_enabled(rdev);
1403 if (ret > 0)
1404 rdev->use_count = 1;
1405 else
1406 rdev->use_count = 0;
1407 }
1408
1409 out:
1410 mutex_unlock(&regulator_list_mutex);
1411
1412 return regulator;
1413 }
1414
1415 /**
1416 * regulator_get - lookup and obtain a reference to a regulator.
1417 * @dev: device for regulator "consumer"
1418 * @id: Supply name or regulator ID.
1419 *
1420 * Returns a struct regulator corresponding to the regulator producer,
1421 * or IS_ERR() condition containing errno.
1422 *
1423 * Use of supply names configured via regulator_set_device_supply() is
1424 * strongly encouraged. It is recommended that the supply name used
1425 * should match the name used for the supply and/or the relevant
1426 * device pins in the datasheet.
1427 */
1428 struct regulator *regulator_get(struct device *dev, const char *id)
1429 {
1430 return _regulator_get(dev, id, false, true);
1431 }
1432 EXPORT_SYMBOL_GPL(regulator_get);
1433
1434 /**
1435 * regulator_get_exclusive - obtain exclusive access to a regulator.
1436 * @dev: device for regulator "consumer"
1437 * @id: Supply name or regulator ID.
1438 *
1439 * Returns a struct regulator corresponding to the regulator producer,
1440 * or IS_ERR() condition containing errno. Other consumers will be
1441 * unable to obtain this regulator while this reference is held and the
1442 * use count for the regulator will be initialised to reflect the current
1443 * state of the regulator.
1444 *
1445 * This is intended for use by consumers which cannot tolerate shared
1446 * use of the regulator such as those which need to force the
1447 * regulator off for correct operation of the hardware they are
1448 * controlling.
1449 *
1450 * Use of supply names configured via regulator_set_device_supply() is
1451 * strongly encouraged. It is recommended that the supply name used
1452 * should match the name used for the supply and/or the relevant
1453 * device pins in the datasheet.
1454 */
1455 struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
1456 {
1457 return _regulator_get(dev, id, true, false);
1458 }
1459 EXPORT_SYMBOL_GPL(regulator_get_exclusive);
1460
1461 /**
1462 * regulator_get_optional - obtain optional access to a regulator.
1463 * @dev: device for regulator "consumer"
1464 * @id: Supply name or regulator ID.
1465 *
1466 * Returns a struct regulator corresponding to the regulator producer,
1467 * or IS_ERR() condition containing errno.
1468 *
1469 * This is intended for use by consumers for devices which can have
1470 * some supplies unconnected in normal use, such as some MMC devices.
1471 * It can allow the regulator core to provide stub supplies for other
1472 * supplies requested using normal regulator_get() calls without
1473 * disrupting the operation of drivers that can handle absent
1474 * supplies.
1475 *
1476 * Use of supply names configured via regulator_set_device_supply() is
1477 * strongly encouraged. It is recommended that the supply name used
1478 * should match the name used for the supply and/or the relevant
1479 * device pins in the datasheet.
1480 */
1481 struct regulator *regulator_get_optional(struct device *dev, const char *id)
1482 {
1483 return _regulator_get(dev, id, false, false);
1484 }
1485 EXPORT_SYMBOL_GPL(regulator_get_optional);
1486
1487 /* regulator_list_mutex lock held by regulator_put() */
1488 static void _regulator_put(struct regulator *regulator)
1489 {
1490 struct regulator_dev *rdev;
1491
1492 if (regulator == NULL || IS_ERR(regulator))
1493 return;
1494
1495 rdev = regulator->rdev;
1496
1497 debugfs_remove_recursive(regulator->debugfs);
1498
1499 /* remove any sysfs entries */
1500 if (regulator->dev)
1501 sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
1502 mutex_lock(&rdev->mutex);
1503 kfree(regulator->supply_name);
1504 list_del(&regulator->list);
1505 kfree(regulator);
1506
1507 rdev->open_count--;
1508 rdev->exclusive = 0;
1509 mutex_unlock(&rdev->mutex);
1510
1511 module_put(rdev->owner);
1512 }
1513
1514 /**
1515 * regulator_put - "free" the regulator source
1516 * @regulator: regulator source
1517 *
1518 * Note: drivers must ensure that all regulator_enable calls made on this
1519 * regulator source are balanced by regulator_disable calls prior to calling
1520 * this function.
1521 */
1522 void regulator_put(struct regulator *regulator)
1523 {
1524 mutex_lock(&regulator_list_mutex);
1525 _regulator_put(regulator);
1526 mutex_unlock(&regulator_list_mutex);
1527 }
1528 EXPORT_SYMBOL_GPL(regulator_put);
1529
1530 /**
1531 * regulator_register_supply_alias - Provide device alias for supply lookup
1532 *
1533 * @dev: device that will be given as the regulator "consumer"
1534 * @id: Supply name or regulator ID
1535 * @alias_dev: device that should be used to lookup the supply
1536 * @alias_id: Supply name or regulator ID that should be used to lookup the
1537 * supply
1538 *
1539 * All lookups for id on dev will instead be conducted for alias_id on
1540 * alias_dev.
1541 */
1542 int regulator_register_supply_alias(struct device *dev, const char *id,
1543 struct device *alias_dev,
1544 const char *alias_id)
1545 {
1546 struct regulator_supply_alias *map;
1547
1548 map = regulator_find_supply_alias(dev, id);
1549 if (map)
1550 return -EEXIST;
1551
1552 map = kzalloc(sizeof(struct regulator_supply_alias), GFP_KERNEL);
1553 if (!map)
1554 return -ENOMEM;
1555
1556 map->src_dev = dev;
1557 map->src_supply = id;
1558 map->alias_dev = alias_dev;
1559 map->alias_supply = alias_id;
1560
1561 list_add(&map->list, &regulator_supply_alias_list);
1562
1563 pr_info("Adding alias for supply %s,%s -> %s,%s\n",
1564 id, dev_name(dev), alias_id, dev_name(alias_dev));
1565
1566 return 0;
1567 }
1568 EXPORT_SYMBOL_GPL(regulator_register_supply_alias);
1569
1570 /**
1571 * regulator_unregister_supply_alias - Remove device alias
1572 *
1573 * @dev: device that will be given as the regulator "consumer"
1574 * @id: Supply name or regulator ID
1575 *
1576 * Remove a lookup alias if one exists for id on dev.
1577 */
1578 void regulator_unregister_supply_alias(struct device *dev, const char *id)
1579 {
1580 struct regulator_supply_alias *map;
1581
1582 map = regulator_find_supply_alias(dev, id);
1583 if (map) {
1584 list_del(&map->list);
1585 kfree(map);
1586 }
1587 }
1588 EXPORT_SYMBOL_GPL(regulator_unregister_supply_alias);
1589
1590 /**
1591 * regulator_bulk_register_supply_alias - register multiple aliases
1592 *
1593 * @dev: device that will be given as the regulator "consumer"
1594 * @id: List of supply names or regulator IDs
1595 * @alias_dev: device that should be used to lookup the supply
1596 * @alias_id: List of supply names or regulator IDs that should be used to
1597 * lookup the supply
1598 * @num_id: Number of aliases to register
1599 *
1600 * @return 0 on success, an errno on failure.
1601 *
1602 * This helper function allows drivers to register several supply
1603 * aliases in one operation. If any of the aliases cannot be
1604 * registered any aliases that were registered will be removed
1605 * before returning to the caller.
1606 */
1607 int regulator_bulk_register_supply_alias(struct device *dev,
1608 const char *const *id,
1609 struct device *alias_dev,
1610 const char *const *alias_id,
1611 int num_id)
1612 {
1613 int i;
1614 int ret;
1615
1616 for (i = 0; i < num_id; ++i) {
1617 ret = regulator_register_supply_alias(dev, id[i], alias_dev,
1618 alias_id[i]);
1619 if (ret < 0)
1620 goto err;
1621 }
1622
1623 return 0;
1624
1625 err:
1626 dev_err(dev,
1627 "Failed to create supply alias %s,%s -> %s,%s\n",
1628 id[i], dev_name(dev), alias_id[i], dev_name(alias_dev));
1629
1630 while (--i >= 0)
1631 regulator_unregister_supply_alias(dev, id[i]);
1632
1633 return ret;
1634 }
1635 EXPORT_SYMBOL_GPL(regulator_bulk_register_supply_alias);
1636
1637 /**
1638 * regulator_bulk_unregister_supply_alias - unregister multiple aliases
1639 *
1640 * @dev: device that will be given as the regulator "consumer"
1641 * @id: List of supply names or regulator IDs
1642 * @num_id: Number of aliases to unregister
1643 *
1644 * This helper function allows drivers to unregister several supply
1645 * aliases in one operation.
1646 */
1647 void regulator_bulk_unregister_supply_alias(struct device *dev,
1648 const char *const *id,
1649 int num_id)
1650 {
1651 int i;
1652
1653 for (i = 0; i < num_id; ++i)
1654 regulator_unregister_supply_alias(dev, id[i]);
1655 }
1656 EXPORT_SYMBOL_GPL(regulator_bulk_unregister_supply_alias);
1657
1658
1659 /* Manage enable GPIO list. Same GPIO pin can be shared among regulators */
1660 static int regulator_ena_gpio_request(struct regulator_dev *rdev,
1661 const struct regulator_config *config)
1662 {
1663 struct regulator_enable_gpio *pin;
1664 struct gpio_desc *gpiod;
1665 int ret;
1666
1667 gpiod = gpio_to_desc(config->ena_gpio);
1668
1669 list_for_each_entry(pin, &regulator_ena_gpio_list, list) {
1670 if (pin->gpiod == gpiod) {
1671 rdev_dbg(rdev, "GPIO %d is already used\n",
1672 config->ena_gpio);
1673 goto update_ena_gpio_to_rdev;
1674 }
1675 }
1676
1677 ret = gpio_request_one(config->ena_gpio,
1678 GPIOF_DIR_OUT | config->ena_gpio_flags,
1679 rdev_get_name(rdev));
1680 if (ret)
1681 return ret;
1682
1683 pin = kzalloc(sizeof(struct regulator_enable_gpio), GFP_KERNEL);
1684 if (pin == NULL) {
1685 gpio_free(config->ena_gpio);
1686 return -ENOMEM;
1687 }
1688
1689 pin->gpiod = gpiod;
1690 pin->ena_gpio_invert = config->ena_gpio_invert;
1691 list_add(&pin->list, &regulator_ena_gpio_list);
1692
1693 update_ena_gpio_to_rdev:
1694 pin->request_count++;
1695 rdev->ena_pin = pin;
1696 return 0;
1697 }
1698
1699 static void regulator_ena_gpio_free(struct regulator_dev *rdev)
1700 {
1701 struct regulator_enable_gpio *pin, *n;
1702
1703 if (!rdev->ena_pin)
1704 return;
1705
1706 /* Free the GPIO only in case of no use */
1707 list_for_each_entry_safe(pin, n, &regulator_ena_gpio_list, list) {
1708 if (pin->gpiod == rdev->ena_pin->gpiod) {
1709 if (pin->request_count <= 1) {
1710 pin->request_count = 0;
1711 gpiod_put(pin->gpiod);
1712 list_del(&pin->list);
1713 kfree(pin);
1714 rdev->ena_pin = NULL;
1715 return;
1716 } else {
1717 pin->request_count--;
1718 }
1719 }
1720 }
1721 }
1722
1723 /**
1724 * regulator_ena_gpio_ctrl - balance enable_count of each GPIO and actual GPIO pin control
1725 * @rdev: regulator_dev structure
1726 * @enable: enable GPIO at initial use?
1727 *
1728 * GPIO is enabled in case of initial use. (enable_count is 0)
1729 * GPIO is disabled when it is not shared any more. (enable_count <= 1)
1730 */
1731 static int regulator_ena_gpio_ctrl(struct regulator_dev *rdev, bool enable)
1732 {
1733 struct regulator_enable_gpio *pin = rdev->ena_pin;
1734
1735 if (!pin)
1736 return -EINVAL;
1737
1738 if (enable) {
1739 /* Enable GPIO at initial use */
1740 if (pin->enable_count == 0)
1741 gpiod_set_value_cansleep(pin->gpiod,
1742 !pin->ena_gpio_invert);
1743
1744 pin->enable_count++;
1745 } else {
1746 if (pin->enable_count > 1) {
1747 pin->enable_count--;
1748 return 0;
1749 }
1750
1751 /* Disable GPIO if not used */
1752 if (pin->enable_count <= 1) {
1753 gpiod_set_value_cansleep(pin->gpiod,
1754 pin->ena_gpio_invert);
1755 pin->enable_count = 0;
1756 }
1757 }
1758
1759 return 0;
1760 }
1761
1762 /**
1763 * _regulator_enable_delay - a delay helper function
1764 * @delay: time to delay in microseconds
1765 *
1766 * Delay for the requested amount of time as per the guidelines in:
1767 *
1768 * Documentation/timers/timers-howto.txt
1769 *
1770 * The assumption here is that regulators will never be enabled in
1771 * atomic context and therefore sleeping functions can be used.
1772 */
1773 static void _regulator_enable_delay(unsigned int delay)
1774 {
1775 unsigned int ms = delay / 1000;
1776 unsigned int us = delay % 1000;
1777
1778 if (ms > 0) {
1779 /*
1780 * For small enough values, handle super-millisecond
1781 * delays in the usleep_range() call below.
1782 */
1783 if (ms < 20)
1784 us += ms * 1000;
1785 else
1786 msleep(ms);
1787 }
1788
1789 /*
1790 * Give the scheduler some room to coalesce with any other
1791 * wakeup sources. For delays shorter than 10 us, don't even
1792 * bother setting up high-resolution timers and just busy-
1793 * loop.
1794 */
1795 if (us >= 10)
1796 usleep_range(us, us + 100);
1797 else
1798 udelay(us);
1799 }
1800
1801 static int _regulator_do_enable(struct regulator_dev *rdev)
1802 {
1803 int ret, delay;
1804
1805 /* Query before enabling in case configuration dependent. */
1806 ret = _regulator_get_enable_time(rdev);
1807 if (ret >= 0) {
1808 delay = ret;
1809 } else {
1810 rdev_warn(rdev, "enable_time() failed: %d\n", ret);
1811 delay = 0;
1812 }
1813
1814 trace_regulator_enable(rdev_get_name(rdev));
1815
1816 if (rdev->desc->off_on_delay) {
1817 /* if needed, keep a distance of off_on_delay from last time
1818 * this regulator was disabled.
1819 */
1820 unsigned long start_jiffy = jiffies;
1821 unsigned long intended, max_delay, remaining;
1822
1823 max_delay = usecs_to_jiffies(rdev->desc->off_on_delay);
1824 intended = rdev->last_off_jiffy + max_delay;
1825
1826 if (time_before(start_jiffy, intended)) {
1827 /* calc remaining jiffies to deal with one-time
1828 * timer wrapping.
1829 * in case of multiple timer wrapping, either it can be
1830 * detected by out-of-range remaining, or it cannot be
1831 * detected and we gets a panelty of
1832 * _regulator_enable_delay().
1833 */
1834 remaining = intended - start_jiffy;
1835 if (remaining <= max_delay)
1836 _regulator_enable_delay(
1837 jiffies_to_usecs(remaining));
1838 }
1839 }
1840
1841 if (rdev->ena_pin) {
1842 if (!rdev->ena_gpio_state) {
1843 ret = regulator_ena_gpio_ctrl(rdev, true);
1844 if (ret < 0)
1845 return ret;
1846 rdev->ena_gpio_state = 1;
1847 }
1848 } else if (rdev->desc->ops->enable) {
1849 ret = rdev->desc->ops->enable(rdev);
1850 if (ret < 0)
1851 return ret;
1852 } else {
1853 return -EINVAL;
1854 }
1855
1856 /* Allow the regulator to ramp; it would be useful to extend
1857 * this for bulk operations so that the regulators can ramp
1858 * together. */
1859 trace_regulator_enable_delay(rdev_get_name(rdev));
1860
1861 _regulator_enable_delay(delay);
1862
1863 trace_regulator_enable_complete(rdev_get_name(rdev));
1864
1865 return 0;
1866 }
1867
1868 /* locks held by regulator_enable() */
1869 static int _regulator_enable(struct regulator_dev *rdev)
1870 {
1871 int ret;
1872
1873 /* check voltage and requested load before enabling */
1874 if (rdev->constraints &&
1875 (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS))
1876 drms_uA_update(rdev);
1877
1878 if (rdev->use_count == 0) {
1879 /* The regulator may on if it's not switchable or left on */
1880 ret = _regulator_is_enabled(rdev);
1881 if (ret == -EINVAL || ret == 0) {
1882 if (!_regulator_can_change_status(rdev))
1883 return -EPERM;
1884
1885 ret = _regulator_do_enable(rdev);
1886 if (ret < 0)
1887 return ret;
1888
1889 } else if (ret < 0) {
1890 rdev_err(rdev, "is_enabled() failed: %d\n", ret);
1891 return ret;
1892 }
1893 /* Fallthrough on positive return values - already enabled */
1894 }
1895
1896 rdev->use_count++;
1897
1898 return 0;
1899 }
1900
1901 /**
1902 * regulator_enable - enable regulator output
1903 * @regulator: regulator source
1904 *
1905 * Request that the regulator be enabled with the regulator output at
1906 * the predefined voltage or current value. Calls to regulator_enable()
1907 * must be balanced with calls to regulator_disable().
1908 *
1909 * NOTE: the output value can be set by other drivers, boot loader or may be
1910 * hardwired in the regulator.
1911 */
1912 int regulator_enable(struct regulator *regulator)
1913 {
1914 struct regulator_dev *rdev = regulator->rdev;
1915 int ret = 0;
1916
1917 if (regulator->always_on)
1918 return 0;
1919
1920 if (rdev->supply) {
1921 ret = regulator_enable(rdev->supply);
1922 if (ret != 0)
1923 return ret;
1924 }
1925
1926 mutex_lock(&rdev->mutex);
1927 ret = _regulator_enable(rdev);
1928 mutex_unlock(&rdev->mutex);
1929
1930 if (ret != 0 && rdev->supply)
1931 regulator_disable(rdev->supply);
1932
1933 return ret;
1934 }
1935 EXPORT_SYMBOL_GPL(regulator_enable);
1936
1937 static int _regulator_do_disable(struct regulator_dev *rdev)
1938 {
1939 int ret;
1940
1941 trace_regulator_disable(rdev_get_name(rdev));
1942
1943 if (rdev->ena_pin) {
1944 if (rdev->ena_gpio_state) {
1945 ret = regulator_ena_gpio_ctrl(rdev, false);
1946 if (ret < 0)
1947 return ret;
1948 rdev->ena_gpio_state = 0;
1949 }
1950
1951 } else if (rdev->desc->ops->disable) {
1952 ret = rdev->desc->ops->disable(rdev);
1953 if (ret != 0)
1954 return ret;
1955 }
1956
1957 /* cares about last_off_jiffy only if off_on_delay is required by
1958 * device.
1959 */
1960 if (rdev->desc->off_on_delay)
1961 rdev->last_off_jiffy = jiffies;
1962
1963 trace_regulator_disable_complete(rdev_get_name(rdev));
1964
1965 return 0;
1966 }
1967
1968 /* locks held by regulator_disable() */
1969 static int _regulator_disable(struct regulator_dev *rdev)
1970 {
1971 int ret = 0;
1972
1973 if (WARN(rdev->use_count <= 0,
1974 "unbalanced disables for %s\n", rdev_get_name(rdev)))
1975 return -EIO;
1976
1977 /* are we the last user and permitted to disable ? */
1978 if (rdev->use_count == 1 &&
1979 (rdev->constraints && !rdev->constraints->always_on)) {
1980
1981 /* we are last user */
1982 if (_regulator_can_change_status(rdev)) {
1983 ret = _notifier_call_chain(rdev,
1984 REGULATOR_EVENT_PRE_DISABLE,
1985 NULL);
1986 if (ret & NOTIFY_STOP_MASK)
1987 return -EINVAL;
1988
1989 ret = _regulator_do_disable(rdev);
1990 if (ret < 0) {
1991 rdev_err(rdev, "failed to disable\n");
1992 _notifier_call_chain(rdev,
1993 REGULATOR_EVENT_ABORT_DISABLE,
1994 NULL);
1995 return ret;
1996 }
1997 _notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
1998 NULL);
1999 }
2000
2001 rdev->use_count = 0;
2002 } else if (rdev->use_count > 1) {
2003
2004 if (rdev->constraints &&
2005 (rdev->constraints->valid_ops_mask &
2006 REGULATOR_CHANGE_DRMS))
2007 drms_uA_update(rdev);
2008
2009 rdev->use_count--;
2010 }
2011
2012 return ret;
2013 }
2014
2015 /**
2016 * regulator_disable - disable regulator output
2017 * @regulator: regulator source
2018 *
2019 * Disable the regulator output voltage or current. Calls to
2020 * regulator_enable() must be balanced with calls to
2021 * regulator_disable().
2022 *
2023 * NOTE: this will only disable the regulator output if no other consumer
2024 * devices have it enabled, the regulator device supports disabling and
2025 * machine constraints permit this operation.
2026 */
2027 int regulator_disable(struct regulator *regulator)
2028 {
2029 struct regulator_dev *rdev = regulator->rdev;
2030 int ret = 0;
2031
2032 if (regulator->always_on)
2033 return 0;
2034
2035 mutex_lock(&rdev->mutex);
2036 ret = _regulator_disable(rdev);
2037 mutex_unlock(&rdev->mutex);
2038
2039 if (ret == 0 && rdev->supply)
2040 regulator_disable(rdev->supply);
2041
2042 return ret;
2043 }
2044 EXPORT_SYMBOL_GPL(regulator_disable);
2045
2046 /* locks held by regulator_force_disable() */
2047 static int _regulator_force_disable(struct regulator_dev *rdev)
2048 {
2049 int ret = 0;
2050
2051 ret = _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2052 REGULATOR_EVENT_PRE_DISABLE, NULL);
2053 if (ret & NOTIFY_STOP_MASK)
2054 return -EINVAL;
2055
2056 ret = _regulator_do_disable(rdev);
2057 if (ret < 0) {
2058 rdev_err(rdev, "failed to force disable\n");
2059 _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2060 REGULATOR_EVENT_ABORT_DISABLE, NULL);
2061 return ret;
2062 }
2063
2064 _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2065 REGULATOR_EVENT_DISABLE, NULL);
2066
2067 return 0;
2068 }
2069
2070 /**
2071 * regulator_force_disable - force disable regulator output
2072 * @regulator: regulator source
2073 *
2074 * Forcibly disable the regulator output voltage or current.
2075 * NOTE: this *will* disable the regulator output even if other consumer
2076 * devices have it enabled. This should be used for situations when device
2077 * damage will likely occur if the regulator is not disabled (e.g. over temp).
2078 */
2079 int regulator_force_disable(struct regulator *regulator)
2080 {
2081 struct regulator_dev *rdev = regulator->rdev;
2082 int ret;
2083
2084 mutex_lock(&rdev->mutex);
2085 regulator->uA_load = 0;
2086 ret = _regulator_force_disable(regulator->rdev);
2087 mutex_unlock(&rdev->mutex);
2088
2089 if (rdev->supply)
2090 while (rdev->open_count--)
2091 regulator_disable(rdev->supply);
2092
2093 return ret;
2094 }
2095 EXPORT_SYMBOL_GPL(regulator_force_disable);
2096
2097 static void regulator_disable_work(struct work_struct *work)
2098 {
2099 struct regulator_dev *rdev = container_of(work, struct regulator_dev,
2100 disable_work.work);
2101 int count, i, ret;
2102
2103 mutex_lock(&rdev->mutex);
2104
2105 BUG_ON(!rdev->deferred_disables);
2106
2107 count = rdev->deferred_disables;
2108 rdev->deferred_disables = 0;
2109
2110 for (i = 0; i < count; i++) {
2111 ret = _regulator_disable(rdev);
2112 if (ret != 0)
2113 rdev_err(rdev, "Deferred disable failed: %d\n", ret);
2114 }
2115
2116 mutex_unlock(&rdev->mutex);
2117
2118 if (rdev->supply) {
2119 for (i = 0; i < count; i++) {
2120 ret = regulator_disable(rdev->supply);
2121 if (ret != 0) {
2122 rdev_err(rdev,
2123 "Supply disable failed: %d\n", ret);
2124 }
2125 }
2126 }
2127 }
2128
2129 /**
2130 * regulator_disable_deferred - disable regulator output with delay
2131 * @regulator: regulator source
2132 * @ms: miliseconds until the regulator is disabled
2133 *
2134 * Execute regulator_disable() on the regulator after a delay. This
2135 * is intended for use with devices that require some time to quiesce.
2136 *
2137 * NOTE: this will only disable the regulator output if no other consumer
2138 * devices have it enabled, the regulator device supports disabling and
2139 * machine constraints permit this operation.
2140 */
2141 int regulator_disable_deferred(struct regulator *regulator, int ms)
2142 {
2143 struct regulator_dev *rdev = regulator->rdev;
2144 int ret;
2145
2146 if (regulator->always_on)
2147 return 0;
2148
2149 if (!ms)
2150 return regulator_disable(regulator);
2151
2152 mutex_lock(&rdev->mutex);
2153 rdev->deferred_disables++;
2154 mutex_unlock(&rdev->mutex);
2155
2156 ret = queue_delayed_work(system_power_efficient_wq,
2157 &rdev->disable_work,
2158 msecs_to_jiffies(ms));
2159 if (ret < 0)
2160 return ret;
2161 else
2162 return 0;
2163 }
2164 EXPORT_SYMBOL_GPL(regulator_disable_deferred);
2165
2166 static int _regulator_is_enabled(struct regulator_dev *rdev)
2167 {
2168 /* A GPIO control always takes precedence */
2169 if (rdev->ena_pin)
2170 return rdev->ena_gpio_state;
2171
2172 /* If we don't know then assume that the regulator is always on */
2173 if (!rdev->desc->ops->is_enabled)
2174 return 1;
2175
2176 return rdev->desc->ops->is_enabled(rdev);
2177 }
2178
2179 /**
2180 * regulator_is_enabled - is the regulator output enabled
2181 * @regulator: regulator source
2182 *
2183 * Returns positive if the regulator driver backing the source/client
2184 * has requested that the device be enabled, zero if it hasn't, else a
2185 * negative errno code.
2186 *
2187 * Note that the device backing this regulator handle can have multiple
2188 * users, so it might be enabled even if regulator_enable() was never
2189 * called for this particular source.
2190 */
2191 int regulator_is_enabled(struct regulator *regulator)
2192 {
2193 int ret;
2194
2195 if (regulator->always_on)
2196 return 1;
2197
2198 mutex_lock(&regulator->rdev->mutex);
2199 ret = _regulator_is_enabled(regulator->rdev);
2200 mutex_unlock(&regulator->rdev->mutex);
2201
2202 return ret;
2203 }
2204 EXPORT_SYMBOL_GPL(regulator_is_enabled);
2205
2206 /**
2207 * regulator_can_change_voltage - check if regulator can change voltage
2208 * @regulator: regulator source
2209 *
2210 * Returns positive if the regulator driver backing the source/client
2211 * can change its voltage, false otherwise. Useful for detecting fixed
2212 * or dummy regulators and disabling voltage change logic in the client
2213 * driver.
2214 */
2215 int regulator_can_change_voltage(struct regulator *regulator)
2216 {
2217 struct regulator_dev *rdev = regulator->rdev;
2218
2219 if (rdev->constraints &&
2220 (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
2221 if (rdev->desc->n_voltages - rdev->desc->linear_min_sel > 1)
2222 return 1;
2223
2224 if (rdev->desc->continuous_voltage_range &&
2225 rdev->constraints->min_uV && rdev->constraints->max_uV &&
2226 rdev->constraints->min_uV != rdev->constraints->max_uV)
2227 return 1;
2228 }
2229
2230 return 0;
2231 }
2232 EXPORT_SYMBOL_GPL(regulator_can_change_voltage);
2233
2234 /**
2235 * regulator_count_voltages - count regulator_list_voltage() selectors
2236 * @regulator: regulator source
2237 *
2238 * Returns number of selectors, or negative errno. Selectors are
2239 * numbered starting at zero, and typically correspond to bitfields
2240 * in hardware registers.
2241 */
2242 int regulator_count_voltages(struct regulator *regulator)
2243 {
2244 struct regulator_dev *rdev = regulator->rdev;
2245
2246 if (rdev->desc->n_voltages)
2247 return rdev->desc->n_voltages;
2248
2249 if (!rdev->supply)
2250 return -EINVAL;
2251
2252 return regulator_count_voltages(rdev->supply);
2253 }
2254 EXPORT_SYMBOL_GPL(regulator_count_voltages);
2255
2256 /**
2257 * regulator_list_voltage - enumerate supported voltages
2258 * @regulator: regulator source
2259 * @selector: identify voltage to list
2260 * Context: can sleep
2261 *
2262 * Returns a voltage that can be passed to @regulator_set_voltage(),
2263 * zero if this selector code can't be used on this system, or a
2264 * negative errno.
2265 */
2266 int regulator_list_voltage(struct regulator *regulator, unsigned selector)
2267 {
2268 struct regulator_dev *rdev = regulator->rdev;
2269 const struct regulator_ops *ops = rdev->desc->ops;
2270 int ret;
2271
2272 if (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1 && !selector)
2273 return rdev->desc->fixed_uV;
2274
2275 if (ops->list_voltage) {
2276 if (selector >= rdev->desc->n_voltages)
2277 return -EINVAL;
2278 mutex_lock(&rdev->mutex);
2279 ret = ops->list_voltage(rdev, selector);
2280 mutex_unlock(&rdev->mutex);
2281 } else if (rdev->supply) {
2282 ret = regulator_list_voltage(rdev->supply, selector);
2283 } else {
2284 return -EINVAL;
2285 }
2286
2287 if (ret > 0) {
2288 if (ret < rdev->constraints->min_uV)
2289 ret = 0;
2290 else if (ret > rdev->constraints->max_uV)
2291 ret = 0;
2292 }
2293
2294 return ret;
2295 }
2296 EXPORT_SYMBOL_GPL(regulator_list_voltage);
2297
2298 /**
2299 * regulator_get_regmap - get the regulator's register map
2300 * @regulator: regulator source
2301 *
2302 * Returns the register map for the given regulator, or an ERR_PTR value
2303 * if the regulator doesn't use regmap.
2304 */
2305 struct regmap *regulator_get_regmap(struct regulator *regulator)
2306 {
2307 struct regmap *map = regulator->rdev->regmap;
2308
2309 return map ? map : ERR_PTR(-EOPNOTSUPP);
2310 }
2311
2312 /**
2313 * regulator_get_hardware_vsel_register - get the HW voltage selector register
2314 * @regulator: regulator source
2315 * @vsel_reg: voltage selector register, output parameter
2316 * @vsel_mask: mask for voltage selector bitfield, output parameter
2317 *
2318 * Returns the hardware register offset and bitmask used for setting the
2319 * regulator voltage. This might be useful when configuring voltage-scaling
2320 * hardware or firmware that can make I2C requests behind the kernel's back,
2321 * for example.
2322 *
2323 * On success, the output parameters @vsel_reg and @vsel_mask are filled in
2324 * and 0 is returned, otherwise a negative errno is returned.
2325 */
2326 int regulator_get_hardware_vsel_register(struct regulator *regulator,
2327 unsigned *vsel_reg,
2328 unsigned *vsel_mask)
2329 {
2330 struct regulator_dev *rdev = regulator->rdev;
2331 const struct regulator_ops *ops = rdev->desc->ops;
2332
2333 if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
2334 return -EOPNOTSUPP;
2335
2336 *vsel_reg = rdev->desc->vsel_reg;
2337 *vsel_mask = rdev->desc->vsel_mask;
2338
2339 return 0;
2340 }
2341 EXPORT_SYMBOL_GPL(regulator_get_hardware_vsel_register);
2342
2343 /**
2344 * regulator_list_hardware_vsel - get the HW-specific register value for a selector
2345 * @regulator: regulator source
2346 * @selector: identify voltage to list
2347 *
2348 * Converts the selector to a hardware-specific voltage selector that can be
2349 * directly written to the regulator registers. The address of the voltage
2350 * register can be determined by calling @regulator_get_hardware_vsel_register.
2351 *
2352 * On error a negative errno is returned.
2353 */
2354 int regulator_list_hardware_vsel(struct regulator *regulator,
2355 unsigned selector)
2356 {
2357 struct regulator_dev *rdev = regulator->rdev;
2358 const struct regulator_ops *ops = rdev->desc->ops;
2359
2360 if (selector >= rdev->desc->n_voltages)
2361 return -EINVAL;
2362 if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
2363 return -EOPNOTSUPP;
2364
2365 return selector;
2366 }
2367 EXPORT_SYMBOL_GPL(regulator_list_hardware_vsel);
2368
2369 /**
2370 * regulator_get_linear_step - return the voltage step size between VSEL values
2371 * @regulator: regulator source
2372 *
2373 * Returns the voltage step size between VSEL values for linear
2374 * regulators, or return 0 if the regulator isn't a linear regulator.
2375 */
2376 unsigned int regulator_get_linear_step(struct regulator *regulator)
2377 {
2378 struct regulator_dev *rdev = regulator->rdev;
2379
2380 return rdev->desc->uV_step;
2381 }
2382 EXPORT_SYMBOL_GPL(regulator_get_linear_step);
2383
2384 /**
2385 * regulator_is_supported_voltage - check if a voltage range can be supported
2386 *
2387 * @regulator: Regulator to check.
2388 * @min_uV: Minimum required voltage in uV.
2389 * @max_uV: Maximum required voltage in uV.
2390 *
2391 * Returns a boolean or a negative error code.
2392 */
2393 int regulator_is_supported_voltage(struct regulator *regulator,
2394 int min_uV, int max_uV)
2395 {
2396 struct regulator_dev *rdev = regulator->rdev;
2397 int i, voltages, ret;
2398
2399 /* If we can't change voltage check the current voltage */
2400 if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
2401 ret = regulator_get_voltage(regulator);
2402 if (ret >= 0)
2403 return min_uV <= ret && ret <= max_uV;
2404 else
2405 return ret;
2406 }
2407
2408 /* Any voltage within constrains range is fine? */
2409 if (rdev->desc->continuous_voltage_range)
2410 return min_uV >= rdev->constraints->min_uV &&
2411 max_uV <= rdev->constraints->max_uV;
2412
2413 ret = regulator_count_voltages(regulator);
2414 if (ret < 0)
2415 return ret;
2416 voltages = ret;
2417
2418 for (i = 0; i < voltages; i++) {
2419 ret = regulator_list_voltage(regulator, i);
2420
2421 if (ret >= min_uV && ret <= max_uV)
2422 return 1;
2423 }
2424
2425 return 0;
2426 }
2427 EXPORT_SYMBOL_GPL(regulator_is_supported_voltage);
2428
2429 static int _regulator_call_set_voltage(struct regulator_dev *rdev,
2430 int min_uV, int max_uV,
2431 unsigned *selector)
2432 {
2433 struct pre_voltage_change_data data;
2434 int ret;
2435
2436 data.old_uV = _regulator_get_voltage(rdev);
2437 data.min_uV = min_uV;
2438 data.max_uV = max_uV;
2439 ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
2440 &data);
2441 if (ret & NOTIFY_STOP_MASK)
2442 return -EINVAL;
2443
2444 ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV, selector);
2445 if (ret >= 0)
2446 return ret;
2447
2448 _notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
2449 (void *)data.old_uV);
2450
2451 return ret;
2452 }
2453
2454 static int _regulator_call_set_voltage_sel(struct regulator_dev *rdev,
2455 int uV, unsigned selector)
2456 {
2457 struct pre_voltage_change_data data;
2458 int ret;
2459
2460 data.old_uV = _regulator_get_voltage(rdev);
2461 data.min_uV = uV;
2462 data.max_uV = uV;
2463 ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
2464 &data);
2465 if (ret & NOTIFY_STOP_MASK)
2466 return -EINVAL;
2467
2468 ret = rdev->desc->ops->set_voltage_sel(rdev, selector);
2469 if (ret >= 0)
2470 return ret;
2471
2472 _notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
2473 (void *)data.old_uV);
2474
2475 return ret;
2476 }
2477
2478 static int _regulator_do_set_voltage(struct regulator_dev *rdev,
2479 int min_uV, int max_uV)
2480 {
2481 int ret;
2482 int delay = 0;
2483 int best_val = 0;
2484 unsigned int selector;
2485 int old_selector = -1;
2486
2487 trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV);
2488
2489 min_uV += rdev->constraints->uV_offset;
2490 max_uV += rdev->constraints->uV_offset;
2491
2492 /*
2493 * If we can't obtain the old selector there is not enough
2494 * info to call set_voltage_time_sel().
2495 */
2496 if (_regulator_is_enabled(rdev) &&
2497 rdev->desc->ops->set_voltage_time_sel &&
2498 rdev->desc->ops->get_voltage_sel) {
2499 old_selector = rdev->desc->ops->get_voltage_sel(rdev);
2500 if (old_selector < 0)
2501 return old_selector;
2502 }
2503
2504 if (rdev->desc->ops->set_voltage) {
2505 ret = _regulator_call_set_voltage(rdev, min_uV, max_uV,
2506 &selector);
2507
2508 if (ret >= 0) {
2509 if (rdev->desc->ops->list_voltage)
2510 best_val = rdev->desc->ops->list_voltage(rdev,
2511 selector);
2512 else
2513 best_val = _regulator_get_voltage(rdev);
2514 }
2515
2516 } else if (rdev->desc->ops->set_voltage_sel) {
2517 if (rdev->desc->ops->map_voltage) {
2518 ret = rdev->desc->ops->map_voltage(rdev, min_uV,
2519 max_uV);
2520 } else {
2521 if (rdev->desc->ops->list_voltage ==
2522 regulator_list_voltage_linear)
2523 ret = regulator_map_voltage_linear(rdev,
2524 min_uV, max_uV);
2525 else if (rdev->desc->ops->list_voltage ==
2526 regulator_list_voltage_linear_range)
2527 ret = regulator_map_voltage_linear_range(rdev,
2528 min_uV, max_uV);
2529 else
2530 ret = regulator_map_voltage_iterate(rdev,
2531 min_uV, max_uV);
2532 }
2533
2534 if (ret >= 0) {
2535 best_val = rdev->desc->ops->list_voltage(rdev, ret);
2536 if (min_uV <= best_val && max_uV >= best_val) {
2537 selector = ret;
2538 if (old_selector == selector)
2539 ret = 0;
2540 else
2541 ret = _regulator_call_set_voltage_sel(
2542 rdev, best_val, selector);
2543 } else {
2544 ret = -EINVAL;
2545 }
2546 }
2547 } else {
2548 ret = -EINVAL;
2549 }
2550
2551 /* Call set_voltage_time_sel if successfully obtained old_selector */
2552 if (ret == 0 && !rdev->constraints->ramp_disable && old_selector >= 0
2553 && old_selector != selector) {
2554
2555 delay = rdev->desc->ops->set_voltage_time_sel(rdev,
2556 old_selector, selector);
2557 if (delay < 0) {
2558 rdev_warn(rdev, "set_voltage_time_sel() failed: %d\n",
2559 delay);
2560 delay = 0;
2561 }
2562
2563 /* Insert any necessary delays */
2564 if (delay >= 1000) {
2565 mdelay(delay / 1000);
2566 udelay(delay % 1000);
2567 } else if (delay) {
2568 udelay(delay);
2569 }
2570 }
2571
2572 if (ret == 0 && best_val >= 0) {
2573 unsigned long data = best_val;
2574
2575 _notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE,
2576 (void *)data);
2577 }
2578
2579 trace_regulator_set_voltage_complete(rdev_get_name(rdev), best_val);
2580
2581 return ret;
2582 }
2583
2584 /**
2585 * regulator_set_voltage - set regulator output voltage
2586 * @regulator: regulator source
2587 * @min_uV: Minimum required voltage in uV
2588 * @max_uV: Maximum acceptable voltage in uV
2589 *
2590 * Sets a voltage regulator to the desired output voltage. This can be set
2591 * during any regulator state. IOW, regulator can be disabled or enabled.
2592 *
2593 * If the regulator is enabled then the voltage will change to the new value
2594 * immediately otherwise if the regulator is disabled the regulator will
2595 * output at the new voltage when enabled.
2596 *
2597 * NOTE: If the regulator is shared between several devices then the lowest
2598 * request voltage that meets the system constraints will be used.
2599 * Regulator system constraints must be set for this regulator before
2600 * calling this function otherwise this call will fail.
2601 */
2602 int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
2603 {
2604 struct regulator_dev *rdev = regulator->rdev;
2605 int ret = 0;
2606 int old_min_uV, old_max_uV;
2607 int current_uV;
2608
2609 mutex_lock(&rdev->mutex);
2610
2611 /* If we're setting the same range as last time the change
2612 * should be a noop (some cpufreq implementations use the same
2613 * voltage for multiple frequencies, for example).
2614 */
2615 if (regulator->min_uV == min_uV && regulator->max_uV == max_uV)
2616 goto out;
2617
2618 /* If we're trying to set a range that overlaps the current voltage,
2619 * return succesfully even though the regulator does not support
2620 * changing the voltage.
2621 */
2622 if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
2623 current_uV = _regulator_get_voltage(rdev);
2624 if (min_uV <= current_uV && current_uV <= max_uV) {
2625 regulator->min_uV = min_uV;
2626 regulator->max_uV = max_uV;
2627 goto out;
2628 }
2629 }
2630
2631 /* sanity check */
2632 if (!rdev->desc->ops->set_voltage &&
2633 !rdev->desc->ops->set_voltage_sel) {
2634 ret = -EINVAL;
2635 goto out;
2636 }
2637
2638 /* constraints check */
2639 ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
2640 if (ret < 0)
2641 goto out;
2642
2643 /* restore original values in case of error */
2644 old_min_uV = regulator->min_uV;
2645 old_max_uV = regulator->max_uV;
2646 regulator->min_uV = min_uV;
2647 regulator->max_uV = max_uV;
2648
2649 ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
2650 if (ret < 0)
2651 goto out2;
2652
2653 ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
2654 if (ret < 0)
2655 goto out2;
2656
2657 out:
2658 mutex_unlock(&rdev->mutex);
2659 return ret;
2660 out2:
2661 regulator->min_uV = old_min_uV;
2662 regulator->max_uV = old_max_uV;
2663 mutex_unlock(&rdev->mutex);
2664 return ret;
2665 }
2666 EXPORT_SYMBOL_GPL(regulator_set_voltage);
2667
2668 /**
2669 * regulator_set_voltage_time - get raise/fall time
2670 * @regulator: regulator source
2671 * @old_uV: starting voltage in microvolts
2672 * @new_uV: target voltage in microvolts
2673 *
2674 * Provided with the starting and ending voltage, this function attempts to
2675 * calculate the time in microseconds required to rise or fall to this new
2676 * voltage.
2677 */
2678 int regulator_set_voltage_time(struct regulator *regulator,
2679 int old_uV, int new_uV)
2680 {
2681 struct regulator_dev *rdev = regulator->rdev;
2682 const struct regulator_ops *ops = rdev->desc->ops;
2683 int old_sel = -1;
2684 int new_sel = -1;
2685 int voltage;
2686 int i;
2687
2688 /* Currently requires operations to do this */
2689 if (!ops->list_voltage || !ops->set_voltage_time_sel
2690 || !rdev->desc->n_voltages)
2691 return -EINVAL;
2692
2693 for (i = 0; i < rdev->desc->n_voltages; i++) {
2694 /* We only look for exact voltage matches here */
2695 voltage = regulator_list_voltage(regulator, i);
2696 if (voltage < 0)
2697 return -EINVAL;
2698 if (voltage == 0)
2699 continue;
2700 if (voltage == old_uV)
2701 old_sel = i;
2702 if (voltage == new_uV)
2703 new_sel = i;
2704 }
2705
2706 if (old_sel < 0 || new_sel < 0)
2707 return -EINVAL;
2708
2709 return ops->set_voltage_time_sel(rdev, old_sel, new_sel);
2710 }
2711 EXPORT_SYMBOL_GPL(regulator_set_voltage_time);
2712
2713 /**
2714 * regulator_set_voltage_time_sel - get raise/fall time
2715 * @rdev: regulator source device
2716 * @old_selector: selector for starting voltage
2717 * @new_selector: selector for target voltage
2718 *
2719 * Provided with the starting and target voltage selectors, this function
2720 * returns time in microseconds required to rise or fall to this new voltage
2721 *
2722 * Drivers providing ramp_delay in regulation_constraints can use this as their
2723 * set_voltage_time_sel() operation.
2724 */
2725 int regulator_set_voltage_time_sel(struct regulator_dev *rdev,
2726 unsigned int old_selector,
2727 unsigned int new_selector)
2728 {
2729 unsigned int ramp_delay = 0;
2730 int old_volt, new_volt;
2731
2732 if (rdev->constraints->ramp_delay)
2733 ramp_delay = rdev->constraints->ramp_delay;
2734 else if (rdev->desc->ramp_delay)
2735 ramp_delay = rdev->desc->ramp_delay;
2736
2737 if (ramp_delay == 0) {
2738 rdev_warn(rdev, "ramp_delay not set\n");
2739 return 0;
2740 }
2741
2742 /* sanity check */
2743 if (!rdev->desc->ops->list_voltage)
2744 return -EINVAL;
2745
2746 old_volt = rdev->desc->ops->list_voltage(rdev, old_selector);
2747 new_volt = rdev->desc->ops->list_voltage(rdev, new_selector);
2748
2749 return DIV_ROUND_UP(abs(new_volt - old_volt), ramp_delay);
2750 }
2751 EXPORT_SYMBOL_GPL(regulator_set_voltage_time_sel);
2752
2753 /**
2754 * regulator_sync_voltage - re-apply last regulator output voltage
2755 * @regulator: regulator source
2756 *
2757 * Re-apply the last configured voltage. This is intended to be used
2758 * where some external control source the consumer is cooperating with
2759 * has caused the configured voltage to change.
2760 */
2761 int regulator_sync_voltage(struct regulator *regulator)
2762 {
2763 struct regulator_dev *rdev = regulator->rdev;
2764 int ret, min_uV, max_uV;
2765
2766 mutex_lock(&rdev->mutex);
2767
2768 if (!rdev->desc->ops->set_voltage &&
2769 !rdev->desc->ops->set_voltage_sel) {
2770 ret = -EINVAL;
2771 goto out;
2772 }
2773
2774 /* This is only going to work if we've had a voltage configured. */
2775 if (!regulator->min_uV && !regulator->max_uV) {
2776 ret = -EINVAL;
2777 goto out;
2778 }
2779
2780 min_uV = regulator->min_uV;
2781 max_uV = regulator->max_uV;
2782
2783 /* This should be a paranoia check... */
2784 ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
2785 if (ret < 0)
2786 goto out;
2787
2788 ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
2789 if (ret < 0)
2790 goto out;
2791
2792 ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
2793
2794 out:
2795 mutex_unlock(&rdev->mutex);
2796 return ret;
2797 }
2798 EXPORT_SYMBOL_GPL(regulator_sync_voltage);
2799
2800 static int _regulator_get_voltage(struct regulator_dev *rdev)
2801 {
2802 int sel, ret;
2803
2804 if (rdev->desc->ops->get_voltage_sel) {
2805 sel = rdev->desc->ops->get_voltage_sel(rdev);
2806 if (sel < 0)
2807 return sel;
2808 ret = rdev->desc->ops->list_voltage(rdev, sel);
2809 } else if (rdev->desc->ops->get_voltage) {
2810 ret = rdev->desc->ops->get_voltage(rdev);
2811 } else if (rdev->desc->ops->list_voltage) {
2812 ret = rdev->desc->ops->list_voltage(rdev, 0);
2813 } else if (rdev->desc->fixed_uV && (rdev->desc->n_voltages == 1)) {
2814 ret = rdev->desc->fixed_uV;
2815 } else if (rdev->supply) {
2816 ret = regulator_get_voltage(rdev->supply);
2817 } else {
2818 return -EINVAL;
2819 }
2820
2821 if (ret < 0)
2822 return ret;
2823 return ret - rdev->constraints->uV_offset;
2824 }
2825
2826 /**
2827 * regulator_get_voltage - get regulator output voltage
2828 * @regulator: regulator source
2829 *
2830 * This returns the current regulator voltage in uV.
2831 *
2832 * NOTE: If the regulator is disabled it will return the voltage value. This
2833 * function should not be used to determine regulator state.
2834 */
2835 int regulator_get_voltage(struct regulator *regulator)
2836 {
2837 int ret;
2838
2839 mutex_lock(&regulator->rdev->mutex);
2840
2841 ret = _regulator_get_voltage(regulator->rdev);
2842
2843 mutex_unlock(&regulator->rdev->mutex);
2844
2845 return ret;
2846 }
2847 EXPORT_SYMBOL_GPL(regulator_get_voltage);
2848
2849 /**
2850 * regulator_set_current_limit - set regulator output current limit
2851 * @regulator: regulator source
2852 * @min_uA: Minimum supported current in uA
2853 * @max_uA: Maximum supported current in uA
2854 *
2855 * Sets current sink to the desired output current. This can be set during
2856 * any regulator state. IOW, regulator can be disabled or enabled.
2857 *
2858 * If the regulator is enabled then the current will change to the new value
2859 * immediately otherwise if the regulator is disabled the regulator will
2860 * output at the new current when enabled.
2861 *
2862 * NOTE: Regulator system constraints must be set for this regulator before
2863 * calling this function otherwise this call will fail.
2864 */
2865 int regulator_set_current_limit(struct regulator *regulator,
2866 int min_uA, int max_uA)
2867 {
2868 struct regulator_dev *rdev = regulator->rdev;
2869 int ret;
2870
2871 mutex_lock(&rdev->mutex);
2872
2873 /* sanity check */
2874 if (!rdev->desc->ops->set_current_limit) {
2875 ret = -EINVAL;
2876 goto out;
2877 }
2878
2879 /* constraints check */
2880 ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
2881 if (ret < 0)
2882 goto out;
2883
2884 ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
2885 out:
2886 mutex_unlock(&rdev->mutex);
2887 return ret;
2888 }
2889 EXPORT_SYMBOL_GPL(regulator_set_current_limit);
2890
2891 static int _regulator_get_current_limit(struct regulator_dev *rdev)
2892 {
2893 int ret;
2894
2895 mutex_lock(&rdev->mutex);
2896
2897 /* sanity check */
2898 if (!rdev->desc->ops->get_current_limit) {
2899 ret = -EINVAL;
2900 goto out;
2901 }
2902
2903 ret = rdev->desc->ops->get_current_limit(rdev);
2904 out:
2905 mutex_unlock(&rdev->mutex);
2906 return ret;
2907 }
2908
2909 /**
2910 * regulator_get_current_limit - get regulator output current
2911 * @regulator: regulator source
2912 *
2913 * This returns the current supplied by the specified current sink in uA.
2914 *
2915 * NOTE: If the regulator is disabled it will return the current value. This
2916 * function should not be used to determine regulator state.
2917 */
2918 int regulator_get_current_limit(struct regulator *regulator)
2919 {
2920 return _regulator_get_current_limit(regulator->rdev);
2921 }
2922 EXPORT_SYMBOL_GPL(regulator_get_current_limit);
2923
2924 /**
2925 * regulator_set_mode - set regulator operating mode
2926 * @regulator: regulator source
2927 * @mode: operating mode - one of the REGULATOR_MODE constants
2928 *
2929 * Set regulator operating mode to increase regulator efficiency or improve
2930 * regulation performance.
2931 *
2932 * NOTE: Regulator system constraints must be set for this regulator before
2933 * calling this function otherwise this call will fail.
2934 */
2935 int regulator_set_mode(struct regulator *regulator, unsigned int mode)
2936 {
2937 struct regulator_dev *rdev = regulator->rdev;
2938 int ret;
2939 int regulator_curr_mode;
2940
2941 mutex_lock(&rdev->mutex);
2942
2943 /* sanity check */
2944 if (!rdev->desc->ops->set_mode) {
2945 ret = -EINVAL;
2946 goto out;
2947 }
2948
2949 /* return if the same mode is requested */
2950 if (rdev->desc->ops->get_mode) {
2951 regulator_curr_mode = rdev->desc->ops->get_mode(rdev);
2952 if (regulator_curr_mode == mode) {
2953 ret = 0;
2954 goto out;
2955 }
2956 }
2957
2958 /* constraints check */
2959 ret = regulator_mode_constrain(rdev, &mode);
2960 if (ret < 0)
2961 goto out;
2962
2963 ret = rdev->desc->ops->set_mode(rdev, mode);
2964 out:
2965 mutex_unlock(&rdev->mutex);
2966 return ret;
2967 }
2968 EXPORT_SYMBOL_GPL(regulator_set_mode);
2969
2970 static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
2971 {
2972 int ret;
2973
2974 mutex_lock(&rdev->mutex);
2975
2976 /* sanity check */
2977 if (!rdev->desc->ops->get_mode) {
2978 ret = -EINVAL;
2979 goto out;
2980 }
2981
2982 ret = rdev->desc->ops->get_mode(rdev);
2983 out:
2984 mutex_unlock(&rdev->mutex);
2985 return ret;
2986 }
2987
2988 /**
2989 * regulator_get_mode - get regulator operating mode
2990 * @regulator: regulator source
2991 *
2992 * Get the current regulator operating mode.
2993 */
2994 unsigned int regulator_get_mode(struct regulator *regulator)
2995 {
2996 return _regulator_get_mode(regulator->rdev);
2997 }
2998 EXPORT_SYMBOL_GPL(regulator_get_mode);
2999
3000 /**
3001 * regulator_set_optimum_mode - set regulator optimum operating mode
3002 * @regulator: regulator source
3003 * @uA_load: load current
3004 *
3005 * Notifies the regulator core of a new device load. This is then used by
3006 * DRMS (if enabled by constraints) to set the most efficient regulator
3007 * operating mode for the new regulator loading.
3008 *
3009 * Consumer devices notify their supply regulator of the maximum power
3010 * they will require (can be taken from device datasheet in the power
3011 * consumption tables) when they change operational status and hence power
3012 * state. Examples of operational state changes that can affect power
3013 * consumption are :-
3014 *
3015 * o Device is opened / closed.
3016 * o Device I/O is about to begin or has just finished.
3017 * o Device is idling in between work.
3018 *
3019 * This information is also exported via sysfs to userspace.
3020 *
3021 * DRMS will sum the total requested load on the regulator and change
3022 * to the most efficient operating mode if platform constraints allow.
3023 *
3024 * Returns the new regulator mode or error.
3025 */
3026 int regulator_set_optimum_mode(struct regulator *regulator, int uA_load)
3027 {
3028 struct regulator_dev *rdev = regulator->rdev;
3029 int ret;
3030
3031 mutex_lock(&rdev->mutex);
3032 regulator->uA_load = uA_load;
3033 ret = drms_uA_update(rdev);
3034 mutex_unlock(&rdev->mutex);
3035
3036 return ret;
3037 }
3038 EXPORT_SYMBOL_GPL(regulator_set_optimum_mode);
3039
3040 /**
3041 * regulator_allow_bypass - allow the regulator to go into bypass mode
3042 *
3043 * @regulator: Regulator to configure
3044 * @enable: enable or disable bypass mode
3045 *
3046 * Allow the regulator to go into bypass mode if all other consumers
3047 * for the regulator also enable bypass mode and the machine
3048 * constraints allow this. Bypass mode means that the regulator is
3049 * simply passing the input directly to the output with no regulation.
3050 */
3051 int regulator_allow_bypass(struct regulator *regulator, bool enable)
3052 {
3053 struct regulator_dev *rdev = regulator->rdev;
3054 int ret = 0;
3055
3056 if (!rdev->desc->ops->set_bypass)
3057 return 0;
3058
3059 if (rdev->constraints &&
3060 !(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_BYPASS))
3061 return 0;
3062
3063 mutex_lock(&rdev->mutex);
3064
3065 if (enable && !regulator->bypass) {
3066 rdev->bypass_count++;
3067
3068 if (rdev->bypass_count == rdev->open_count) {
3069 ret = rdev->desc->ops->set_bypass(rdev, enable);
3070 if (ret != 0)
3071 rdev->bypass_count--;
3072 }
3073
3074 } else if (!enable && regulator->bypass) {
3075 rdev->bypass_count--;
3076
3077 if (rdev->bypass_count != rdev->open_count) {
3078 ret = rdev->desc->ops->set_bypass(rdev, enable);
3079 if (ret != 0)
3080 rdev->bypass_count++;
3081 }
3082 }
3083
3084 if (ret == 0)
3085 regulator->bypass = enable;
3086
3087 mutex_unlock(&rdev->mutex);
3088
3089 return ret;
3090 }
3091 EXPORT_SYMBOL_GPL(regulator_allow_bypass);
3092
3093 /**
3094 * regulator_register_notifier - register regulator event notifier
3095 * @regulator: regulator source
3096 * @nb: notifier block
3097 *
3098 * Register notifier block to receive regulator events.
3099 */
3100 int regulator_register_notifier(struct regulator *regulator,
3101 struct notifier_block *nb)
3102 {
3103 return blocking_notifier_chain_register(&regulator->rdev->notifier,
3104 nb);
3105 }
3106 EXPORT_SYMBOL_GPL(regulator_register_notifier);
3107
3108 /**
3109 * regulator_unregister_notifier - unregister regulator event notifier
3110 * @regulator: regulator source
3111 * @nb: notifier block
3112 *
3113 * Unregister regulator event notifier block.
3114 */
3115 int regulator_unregister_notifier(struct regulator *regulator,
3116 struct notifier_block *nb)
3117 {
3118 return blocking_notifier_chain_unregister(&regulator->rdev->notifier,
3119 nb);
3120 }
3121 EXPORT_SYMBOL_GPL(regulator_unregister_notifier);
3122
3123 /* notify regulator consumers and downstream regulator consumers.
3124 * Note mutex must be held by caller.
3125 */
3126 static int _notifier_call_chain(struct regulator_dev *rdev,
3127 unsigned long event, void *data)
3128 {
3129 /* call rdev chain first */
3130 return blocking_notifier_call_chain(&rdev->notifier, event, data);
3131 }
3132
3133 /**
3134 * regulator_bulk_get - get multiple regulator consumers
3135 *
3136 * @dev: Device to supply
3137 * @num_consumers: Number of consumers to register
3138 * @consumers: Configuration of consumers; clients are stored here.
3139 *
3140 * @return 0 on success, an errno on failure.
3141 *
3142 * This helper function allows drivers to get several regulator
3143 * consumers in one operation. If any of the regulators cannot be
3144 * acquired then any regulators that were allocated will be freed
3145 * before returning to the caller.
3146 */
3147 int regulator_bulk_get(struct device *dev, int num_consumers,
3148 struct regulator_bulk_data *consumers)
3149 {
3150 int i;
3151 int ret;
3152
3153 for (i = 0; i < num_consumers; i++)
3154 consumers[i].consumer = NULL;
3155
3156 for (i = 0; i < num_consumers; i++) {
3157 consumers[i].consumer = regulator_get(dev,
3158 consumers[i].supply);
3159 if (IS_ERR(consumers[i].consumer)) {
3160 ret = PTR_ERR(consumers[i].consumer);
3161 dev_err(dev, "Failed to get supply '%s': %d\n",
3162 consumers[i].supply, ret);
3163 consumers[i].consumer = NULL;
3164 goto err;
3165 }
3166 }
3167
3168 return 0;
3169
3170 err:
3171 while (--i >= 0)
3172 regulator_put(consumers[i].consumer);
3173
3174 return ret;
3175 }
3176 EXPORT_SYMBOL_GPL(regulator_bulk_get);
3177
3178 static void regulator_bulk_enable_async(void *data, async_cookie_t cookie)
3179 {
3180 struct regulator_bulk_data *bulk = data;
3181
3182 bulk->ret = regulator_enable(bulk->consumer);
3183 }
3184
3185 /**
3186 * regulator_bulk_enable - enable multiple regulator consumers
3187 *
3188 * @num_consumers: Number of consumers
3189 * @consumers: Consumer data; clients are stored here.
3190 * @return 0 on success, an errno on failure
3191 *
3192 * This convenience API allows consumers to enable multiple regulator
3193 * clients in a single API call. If any consumers cannot be enabled
3194 * then any others that were enabled will be disabled again prior to
3195 * return.
3196 */
3197 int regulator_bulk_enable(int num_consumers,
3198 struct regulator_bulk_data *consumers)
3199 {
3200 ASYNC_DOMAIN_EXCLUSIVE(async_domain);
3201 int i;
3202 int ret = 0;
3203
3204 for (i = 0; i < num_consumers; i++) {
3205 if (consumers[i].consumer->always_on)
3206 consumers[i].ret = 0;
3207 else
3208 async_schedule_domain(regulator_bulk_enable_async,
3209 &consumers[i], &async_domain);
3210 }
3211
3212 async_synchronize_full_domain(&async_domain);
3213
3214 /* If any consumer failed we need to unwind any that succeeded */
3215 for (i = 0; i < num_consumers; i++) {
3216 if (consumers[i].ret != 0) {
3217 ret = consumers[i].ret;
3218 goto err;
3219 }
3220 }
3221
3222 return 0;
3223
3224 err:
3225 for (i = 0; i < num_consumers; i++) {
3226 if (consumers[i].ret < 0)
3227 pr_err("Failed to enable %s: %d\n", consumers[i].supply,
3228 consumers[i].ret);
3229 else
3230 regulator_disable(consumers[i].consumer);
3231 }
3232
3233 return ret;
3234 }
3235 EXPORT_SYMBOL_GPL(regulator_bulk_enable);
3236
3237 /**
3238 * regulator_bulk_disable - disable multiple regulator consumers
3239 *
3240 * @num_consumers: Number of consumers
3241 * @consumers: Consumer data; clients are stored here.
3242 * @return 0 on success, an errno on failure
3243 *
3244 * This convenience API allows consumers to disable multiple regulator
3245 * clients in a single API call. If any consumers cannot be disabled
3246 * then any others that were disabled will be enabled again prior to
3247 * return.
3248 */
3249 int regulator_bulk_disable(int num_consumers,
3250 struct regulator_bulk_data *consumers)
3251 {
3252 int i;
3253 int ret, r;
3254
3255 for (i = num_consumers - 1; i >= 0; --i) {
3256 ret = regulator_disable(consumers[i].consumer);
3257 if (ret != 0)
3258 goto err;
3259 }
3260
3261 return 0;
3262
3263 err:
3264 pr_err("Failed to disable %s: %d\n", consumers[i].supply, ret);
3265 for (++i; i < num_consumers; ++i) {
3266 r = regulator_enable(consumers[i].consumer);
3267 if (r != 0)
3268 pr_err("Failed to reename %s: %d\n",
3269 consumers[i].supply, r);
3270 }
3271
3272 return ret;
3273 }
3274 EXPORT_SYMBOL_GPL(regulator_bulk_disable);
3275
3276 /**
3277 * regulator_bulk_force_disable - force disable multiple regulator consumers
3278 *
3279 * @num_consumers: Number of consumers
3280 * @consumers: Consumer data; clients are stored here.
3281 * @return 0 on success, an errno on failure
3282 *
3283 * This convenience API allows consumers to forcibly disable multiple regulator
3284 * clients in a single API call.
3285 * NOTE: This should be used for situations when device damage will
3286 * likely occur if the regulators are not disabled (e.g. over temp).
3287 * Although regulator_force_disable function call for some consumers can
3288 * return error numbers, the function is called for all consumers.
3289 */
3290 int regulator_bulk_force_disable(int num_consumers,
3291 struct regulator_bulk_data *consumers)
3292 {
3293 int i;
3294 int ret;
3295
3296 for (i = 0; i < num_consumers; i++)
3297 consumers[i].ret =
3298 regulator_force_disable(consumers[i].consumer);
3299
3300 for (i = 0; i < num_consumers; i++) {
3301 if (consumers[i].ret != 0) {
3302 ret = consumers[i].ret;
3303 goto out;
3304 }
3305 }
3306
3307 return 0;
3308 out:
3309 return ret;
3310 }
3311 EXPORT_SYMBOL_GPL(regulator_bulk_force_disable);
3312
3313 /**
3314 * regulator_bulk_free - free multiple regulator consumers
3315 *
3316 * @num_consumers: Number of consumers
3317 * @consumers: Consumer data; clients are stored here.
3318 *
3319 * This convenience API allows consumers to free multiple regulator
3320 * clients in a single API call.
3321 */
3322 void regulator_bulk_free(int num_consumers,
3323 struct regulator_bulk_data *consumers)
3324 {
3325 int i;
3326
3327 for (i = 0; i < num_consumers; i++) {
3328 regulator_put(consumers[i].consumer);
3329 consumers[i].consumer = NULL;
3330 }
3331 }
3332 EXPORT_SYMBOL_GPL(regulator_bulk_free);
3333
3334 /**
3335 * regulator_notifier_call_chain - call regulator event notifier
3336 * @rdev: regulator source
3337 * @event: notifier block
3338 * @data: callback-specific data.
3339 *
3340 * Called by regulator drivers to notify clients a regulator event has
3341 * occurred. We also notify regulator clients downstream.
3342 * Note lock must be held by caller.
3343 */
3344 int regulator_notifier_call_chain(struct regulator_dev *rdev,
3345 unsigned long event, void *data)
3346 {
3347 _notifier_call_chain(rdev, event, data);
3348 return NOTIFY_DONE;
3349
3350 }
3351 EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);
3352
3353 /**
3354 * regulator_mode_to_status - convert a regulator mode into a status
3355 *
3356 * @mode: Mode to convert
3357 *
3358 * Convert a regulator mode into a status.
3359 */
3360 int regulator_mode_to_status(unsigned int mode)
3361 {
3362 switch (mode) {
3363 case REGULATOR_MODE_FAST:
3364 return REGULATOR_STATUS_FAST;
3365 case REGULATOR_MODE_NORMAL:
3366 return REGULATOR_STATUS_NORMAL;
3367 case REGULATOR_MODE_IDLE:
3368 return REGULATOR_STATUS_IDLE;
3369 case REGULATOR_MODE_STANDBY:
3370 return REGULATOR_STATUS_STANDBY;
3371 default:
3372 return REGULATOR_STATUS_UNDEFINED;
3373 }
3374 }
3375 EXPORT_SYMBOL_GPL(regulator_mode_to_status);
3376
3377 static struct attribute *regulator_dev_attrs[] = {
3378 &dev_attr_name.attr,
3379 &dev_attr_num_users.attr,
3380 &dev_attr_type.attr,
3381 &dev_attr_microvolts.attr,
3382 &dev_attr_microamps.attr,
3383 &dev_attr_opmode.attr,
3384 &dev_attr_state.attr,
3385 &dev_attr_status.attr,
3386 &dev_attr_bypass.attr,
3387 &dev_attr_requested_microamps.attr,
3388 &dev_attr_min_microvolts.attr,
3389 &dev_attr_max_microvolts.attr,
3390 &dev_attr_min_microamps.attr,
3391 &dev_attr_max_microamps.attr,
3392 &dev_attr_suspend_standby_state.attr,
3393 &dev_attr_suspend_mem_state.attr,
3394 &dev_attr_suspend_disk_state.attr,
3395 &dev_attr_suspend_standby_microvolts.attr,
3396 &dev_attr_suspend_mem_microvolts.attr,
3397 &dev_attr_suspend_disk_microvolts.attr,
3398 &dev_attr_suspend_standby_mode.attr,
3399 &dev_attr_suspend_mem_mode.attr,
3400 &dev_attr_suspend_disk_mode.attr,
3401 NULL
3402 };
3403
3404 /*
3405 * To avoid cluttering sysfs (and memory) with useless state, only
3406 * create attributes that can be meaningfully displayed.
3407 */
3408 static umode_t regulator_attr_is_visible(struct kobject *kobj,
3409 struct attribute *attr, int idx)
3410 {
3411 struct device *dev = kobj_to_dev(kobj);
3412 struct regulator_dev *rdev = container_of(dev, struct regulator_dev, dev);
3413 const struct regulator_ops *ops = rdev->desc->ops;
3414 umode_t mode = attr->mode;
3415
3416 /* these three are always present */
3417 if (attr == &dev_attr_name.attr ||
3418 attr == &dev_attr_num_users.attr ||
3419 attr == &dev_attr_type.attr)
3420 return mode;
3421
3422 /* some attributes need specific methods to be displayed */
3423 if (attr == &dev_attr_microvolts.attr) {
3424 if ((ops->get_voltage && ops->get_voltage(rdev) >= 0) ||
3425 (ops->get_voltage_sel && ops->get_voltage_sel(rdev) >= 0) ||
3426 (ops->list_voltage && ops->list_voltage(rdev, 0) >= 0) ||
3427 (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1))
3428 return mode;
3429 return 0;
3430 }
3431
3432 if (attr == &dev_attr_microamps.attr)
3433 return ops->get_current_limit ? mode : 0;
3434
3435 if (attr == &dev_attr_opmode.attr)
3436 return ops->get_mode ? mode : 0;
3437
3438 if (attr == &dev_attr_state.attr)
3439 return (rdev->ena_pin || ops->is_enabled) ? mode : 0;
3440
3441 if (attr == &dev_attr_status.attr)
3442 return ops->get_status ? mode : 0;
3443
3444 if (attr == &dev_attr_bypass.attr)
3445 return ops->get_bypass ? mode : 0;
3446
3447 /* some attributes are type-specific */
3448 if (attr == &dev_attr_requested_microamps.attr)
3449 return rdev->desc->type == REGULATOR_CURRENT ? mode : 0;
3450
3451 /* constraints need specific supporting methods */
3452 if (attr == &dev_attr_min_microvolts.attr ||
3453 attr == &dev_attr_max_microvolts.attr)
3454 return (ops->set_voltage || ops->set_voltage_sel) ? mode : 0;
3455
3456 if (attr == &dev_attr_min_microamps.attr ||
3457 attr == &dev_attr_max_microamps.attr)
3458 return ops->set_current_limit ? mode : 0;
3459
3460 if (attr == &dev_attr_suspend_standby_state.attr ||
3461 attr == &dev_attr_suspend_mem_state.attr ||
3462 attr == &dev_attr_suspend_disk_state.attr)
3463 return mode;
3464
3465 if (attr == &dev_attr_suspend_standby_microvolts.attr ||
3466 attr == &dev_attr_suspend_mem_microvolts.attr ||
3467 attr == &dev_attr_suspend_disk_microvolts.attr)
3468 return ops->set_suspend_voltage ? mode : 0;
3469
3470 if (attr == &dev_attr_suspend_standby_mode.attr ||
3471 attr == &dev_attr_suspend_mem_mode.attr ||
3472 attr == &dev_attr_suspend_disk_mode.attr)
3473 return ops->set_suspend_mode ? mode : 0;
3474
3475 return mode;
3476 }
3477
3478 static const struct attribute_group regulator_dev_group = {
3479 .attrs = regulator_dev_attrs,
3480 .is_visible = regulator_attr_is_visible,
3481 };
3482
3483 static const struct attribute_group *regulator_dev_groups[] = {
3484 &regulator_dev_group,
3485 NULL
3486 };
3487
3488 static void regulator_dev_release(struct device *dev)
3489 {
3490 struct regulator_dev *rdev = dev_get_drvdata(dev);
3491 kfree(rdev);
3492 }
3493
3494 static struct class regulator_class = {
3495 .name = "regulator",
3496 .dev_release = regulator_dev_release,
3497 .dev_groups = regulator_dev_groups,
3498 };
3499
3500 static void rdev_init_debugfs(struct regulator_dev *rdev)
3501 {
3502 rdev->debugfs = debugfs_create_dir(rdev_get_name(rdev), debugfs_root);
3503 if (!rdev->debugfs) {
3504 rdev_warn(rdev, "Failed to create debugfs directory\n");
3505 return;
3506 }
3507
3508 debugfs_create_u32("use_count", 0444, rdev->debugfs,
3509 &rdev->use_count);
3510 debugfs_create_u32("open_count", 0444, rdev->debugfs,
3511 &rdev->open_count);
3512 debugfs_create_u32("bypass_count", 0444, rdev->debugfs,
3513 &rdev->bypass_count);
3514 }
3515
3516 /**
3517 * regulator_register - register regulator
3518 * @regulator_desc: regulator to register
3519 * @cfg: runtime configuration for regulator
3520 *
3521 * Called by regulator drivers to register a regulator.
3522 * Returns a valid pointer to struct regulator_dev on success
3523 * or an ERR_PTR() on error.
3524 */
3525 struct regulator_dev *
3526 regulator_register(const struct regulator_desc *regulator_desc,
3527 const struct regulator_config *cfg)
3528 {
3529 const struct regulation_constraints *constraints = NULL;
3530 const struct regulator_init_data *init_data;
3531 struct regulator_config *config = NULL;
3532 static atomic_t regulator_no = ATOMIC_INIT(-1);
3533 struct regulator_dev *rdev;
3534 struct device *dev;
3535 int ret, i;
3536 const char *supply = NULL;
3537
3538 if (regulator_desc == NULL || cfg == NULL)
3539 return ERR_PTR(-EINVAL);
3540
3541 dev = cfg->dev;
3542 WARN_ON(!dev);
3543
3544 if (regulator_desc->name == NULL || regulator_desc->ops == NULL)
3545 return ERR_PTR(-EINVAL);
3546
3547 if (regulator_desc->type != REGULATOR_VOLTAGE &&
3548 regulator_desc->type != REGULATOR_CURRENT)
3549 return ERR_PTR(-EINVAL);
3550
3551 /* Only one of each should be implemented */
3552 WARN_ON(regulator_desc->ops->get_voltage &&
3553 regulator_desc->ops->get_voltage_sel);
3554 WARN_ON(regulator_desc->ops->set_voltage &&
3555 regulator_desc->ops->set_voltage_sel);
3556
3557 /* If we're using selectors we must implement list_voltage. */
3558 if (regulator_desc->ops->get_voltage_sel &&
3559 !regulator_desc->ops->list_voltage) {
3560 return ERR_PTR(-EINVAL);
3561 }
3562 if (regulator_desc->ops->set_voltage_sel &&
3563 !regulator_desc->ops->list_voltage) {
3564 return ERR_PTR(-EINVAL);
3565 }
3566
3567 rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
3568 if (rdev == NULL)
3569 return ERR_PTR(-ENOMEM);
3570
3571 /*
3572 * Duplicate the config so the driver could override it after
3573 * parsing init data.
3574 */
3575 config = kmemdup(cfg, sizeof(*cfg), GFP_KERNEL);
3576 if (config == NULL) {
3577 kfree(rdev);
3578 return ERR_PTR(-ENOMEM);
3579 }
3580
3581 init_data = regulator_of_get_init_data(dev, regulator_desc, config,
3582 &rdev->dev.of_node);
3583 if (!init_data) {
3584 init_data = config->init_data;
3585 rdev->dev.of_node = of_node_get(config->of_node);
3586 }
3587
3588 mutex_lock(&regulator_list_mutex);
3589
3590 mutex_init(&rdev->mutex);
3591 rdev->reg_data = config->driver_data;
3592 rdev->owner = regulator_desc->owner;
3593 rdev->desc = regulator_desc;
3594 if (config->regmap)
3595 rdev->regmap = config->regmap;
3596 else if (dev_get_regmap(dev, NULL))
3597 rdev->regmap = dev_get_regmap(dev, NULL);
3598 else if (dev->parent)
3599 rdev->regmap = dev_get_regmap(dev->parent, NULL);
3600 INIT_LIST_HEAD(&rdev->consumer_list);
3601 INIT_LIST_HEAD(&rdev->list);
3602 BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
3603 INIT_DELAYED_WORK(&rdev->disable_work, regulator_disable_work);
3604
3605 /* preform any regulator specific init */
3606 if (init_data && init_data->regulator_init) {
3607 ret = init_data->regulator_init(rdev->reg_data);
3608 if (ret < 0)
3609 goto clean;
3610 }
3611
3612 /* register with sysfs */
3613 rdev->dev.class = &regulator_class;
3614 rdev->dev.parent = dev;
3615 dev_set_name(&rdev->dev, "regulator.%lu",
3616 (unsigned long) atomic_inc_return(&regulator_no));
3617 ret = device_register(&rdev->dev);
3618 if (ret != 0) {
3619 put_device(&rdev->dev);
3620 goto clean;
3621 }
3622
3623 dev_set_drvdata(&rdev->dev, rdev);
3624
3625 if ((config->ena_gpio || config->ena_gpio_initialized) &&
3626 gpio_is_valid(config->ena_gpio)) {
3627 ret = regulator_ena_gpio_request(rdev, config);
3628 if (ret != 0) {
3629 rdev_err(rdev, "Failed to request enable GPIO%d: %d\n",
3630 config->ena_gpio, ret);
3631 goto wash;
3632 }
3633 }
3634
3635 /* set regulator constraints */
3636 if (init_data)
3637 constraints = &init_data->constraints;
3638
3639 ret = set_machine_constraints(rdev, constraints);
3640 if (ret < 0)
3641 goto scrub;
3642
3643 if (init_data && init_data->supply_regulator)
3644 supply = init_data->supply_regulator;
3645 else if (regulator_desc->supply_name)
3646 supply = regulator_desc->supply_name;
3647
3648 if (supply) {
3649 struct regulator_dev *r;
3650
3651 r = regulator_dev_lookup(dev, supply, &ret);
3652
3653 if (ret == -ENODEV) {
3654 /*
3655 * No supply was specified for this regulator and
3656 * there will never be one.
3657 */
3658 ret = 0;
3659 goto add_dev;
3660 } else if (!r) {
3661 dev_err(dev, "Failed to find supply %s\n", supply);
3662 ret = -EPROBE_DEFER;
3663 goto scrub;
3664 }
3665
3666 ret = set_supply(rdev, r);
3667 if (ret < 0)
3668 goto scrub;
3669
3670 /* Enable supply if rail is enabled */
3671 if (_regulator_is_enabled(rdev)) {
3672 ret = regulator_enable(rdev->supply);
3673 if (ret < 0)
3674 goto scrub;
3675 }
3676 }
3677
3678 add_dev:
3679 /* add consumers devices */
3680 if (init_data) {
3681 for (i = 0; i < init_data->num_consumer_supplies; i++) {
3682 ret = set_consumer_device_supply(rdev,
3683 init_data->consumer_supplies[i].dev_name,
3684 init_data->consumer_supplies[i].supply);
3685 if (ret < 0) {
3686 dev_err(dev, "Failed to set supply %s\n",
3687 init_data->consumer_supplies[i].supply);
3688 goto unset_supplies;
3689 }
3690 }
3691 }
3692
3693 list_add(&rdev->list, &regulator_list);
3694
3695 rdev_init_debugfs(rdev);
3696 out:
3697 mutex_unlock(&regulator_list_mutex);
3698 kfree(config);
3699 return rdev;
3700
3701 unset_supplies:
3702 unset_regulator_supplies(rdev);
3703
3704 scrub:
3705 if (rdev->supply)
3706 _regulator_put(rdev->supply);
3707 regulator_ena_gpio_free(rdev);
3708 kfree(rdev->constraints);
3709 wash:
3710 device_unregister(&rdev->dev);
3711 /* device core frees rdev */
3712 rdev = ERR_PTR(ret);
3713 goto out;
3714
3715 clean:
3716 kfree(rdev);
3717 rdev = ERR_PTR(ret);
3718 goto out;
3719 }
3720 EXPORT_SYMBOL_GPL(regulator_register);
3721
3722 /**
3723 * regulator_unregister - unregister regulator
3724 * @rdev: regulator to unregister
3725 *
3726 * Called by regulator drivers to unregister a regulator.
3727 */
3728 void regulator_unregister(struct regulator_dev *rdev)
3729 {
3730 if (rdev == NULL)
3731 return;
3732
3733 if (rdev->supply) {
3734 while (rdev->use_count--)
3735 regulator_disable(rdev->supply);
3736 regulator_put(rdev->supply);
3737 }
3738 mutex_lock(&regulator_list_mutex);
3739 debugfs_remove_recursive(rdev->debugfs);
3740 flush_work(&rdev->disable_work.work);
3741 WARN_ON(rdev->open_count);
3742 unset_regulator_supplies(rdev);
3743 list_del(&rdev->list);
3744 kfree(rdev->constraints);
3745 regulator_ena_gpio_free(rdev);
3746 of_node_put(rdev->dev.of_node);
3747 device_unregister(&rdev->dev);
3748 mutex_unlock(&regulator_list_mutex);
3749 }
3750 EXPORT_SYMBOL_GPL(regulator_unregister);
3751
3752 /**
3753 * regulator_suspend_prepare - prepare regulators for system wide suspend
3754 * @state: system suspend state
3755 *
3756 * Configure each regulator with it's suspend operating parameters for state.
3757 * This will usually be called by machine suspend code prior to supending.
3758 */
3759 int regulator_suspend_prepare(suspend_state_t state)
3760 {
3761 struct regulator_dev *rdev;
3762 int ret = 0;
3763
3764 /* ON is handled by regulator active state */
3765 if (state == PM_SUSPEND_ON)
3766 return -EINVAL;
3767
3768 mutex_lock(&regulator_list_mutex);
3769 list_for_each_entry(rdev, &regulator_list, list) {
3770
3771 mutex_lock(&rdev->mutex);
3772 ret = suspend_prepare(rdev, state);
3773 mutex_unlock(&rdev->mutex);
3774
3775 if (ret < 0) {
3776 rdev_err(rdev, "failed to prepare\n");
3777 goto out;
3778 }
3779 }
3780 out:
3781 mutex_unlock(&regulator_list_mutex);
3782 return ret;
3783 }
3784 EXPORT_SYMBOL_GPL(regulator_suspend_prepare);
3785
3786 /**
3787 * regulator_suspend_finish - resume regulators from system wide suspend
3788 *
3789 * Turn on regulators that might be turned off by regulator_suspend_prepare
3790 * and that should be turned on according to the regulators properties.
3791 */
3792 int regulator_suspend_finish(void)
3793 {
3794 struct regulator_dev *rdev;
3795 int ret = 0, error;
3796
3797 mutex_lock(&regulator_list_mutex);
3798 list_for_each_entry(rdev, &regulator_list, list) {
3799 mutex_lock(&rdev->mutex);
3800 if (rdev->use_count > 0 || rdev->constraints->always_on) {
3801 if (!_regulator_is_enabled(rdev)) {
3802 error = _regulator_do_enable(rdev);
3803 if (error)
3804 ret = error;
3805 }
3806 } else {
3807 if (!have_full_constraints())
3808 goto unlock;
3809 if (!_regulator_is_enabled(rdev))
3810 goto unlock;
3811
3812 error = _regulator_do_disable(rdev);
3813 if (error)
3814 ret = error;
3815 }
3816 unlock:
3817 mutex_unlock(&rdev->mutex);
3818 }
3819 mutex_unlock(&regulator_list_mutex);
3820 return ret;
3821 }
3822 EXPORT_SYMBOL_GPL(regulator_suspend_finish);
3823
3824 /**
3825 * regulator_has_full_constraints - the system has fully specified constraints
3826 *
3827 * Calling this function will cause the regulator API to disable all
3828 * regulators which have a zero use count and don't have an always_on
3829 * constraint in a late_initcall.
3830 *
3831 * The intention is that this will become the default behaviour in a
3832 * future kernel release so users are encouraged to use this facility
3833 * now.
3834 */
3835 void regulator_has_full_constraints(void)
3836 {
3837 has_full_constraints = 1;
3838 }
3839 EXPORT_SYMBOL_GPL(regulator_has_full_constraints);
3840
3841 /**
3842 * rdev_get_drvdata - get rdev regulator driver data
3843 * @rdev: regulator
3844 *
3845 * Get rdev regulator driver private data. This call can be used in the
3846 * regulator driver context.
3847 */
3848 void *rdev_get_drvdata(struct regulator_dev *rdev)
3849 {
3850 return rdev->reg_data;
3851 }
3852 EXPORT_SYMBOL_GPL(rdev_get_drvdata);
3853
3854 /**
3855 * regulator_get_drvdata - get regulator driver data
3856 * @regulator: regulator
3857 *
3858 * Get regulator driver private data. This call can be used in the consumer
3859 * driver context when non API regulator specific functions need to be called.
3860 */
3861 void *regulator_get_drvdata(struct regulator *regulator)
3862 {
3863 return regulator->rdev->reg_data;
3864 }
3865 EXPORT_SYMBOL_GPL(regulator_get_drvdata);
3866
3867 /**
3868 * regulator_set_drvdata - set regulator driver data
3869 * @regulator: regulator
3870 * @data: data
3871 */
3872 void regulator_set_drvdata(struct regulator *regulator, void *data)
3873 {
3874 regulator->rdev->reg_data = data;
3875 }
3876 EXPORT_SYMBOL_GPL(regulator_set_drvdata);
3877
3878 /**
3879 * regulator_get_id - get regulator ID
3880 * @rdev: regulator
3881 */
3882 int rdev_get_id(struct regulator_dev *rdev)
3883 {
3884 return rdev->desc->id;
3885 }
3886 EXPORT_SYMBOL_GPL(rdev_get_id);
3887
3888 struct device *rdev_get_dev(struct regulator_dev *rdev)
3889 {
3890 return &rdev->dev;
3891 }
3892 EXPORT_SYMBOL_GPL(rdev_get_dev);
3893
3894 void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
3895 {
3896 return reg_init_data->driver_data;
3897 }
3898 EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);
3899
3900 #ifdef CONFIG_DEBUG_FS
3901 static ssize_t supply_map_read_file(struct file *file, char __user *user_buf,
3902 size_t count, loff_t *ppos)
3903 {
3904 char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
3905 ssize_t len, ret = 0;
3906 struct regulator_map *map;
3907
3908 if (!buf)
3909 return -ENOMEM;
3910
3911 list_for_each_entry(map, &regulator_map_list, list) {
3912 len = snprintf(buf + ret, PAGE_SIZE - ret,
3913 "%s -> %s.%s\n",
3914 rdev_get_name(map->regulator), map->dev_name,
3915 map->supply);
3916 if (len >= 0)
3917 ret += len;
3918 if (ret > PAGE_SIZE) {
3919 ret = PAGE_SIZE;
3920 break;
3921 }
3922 }
3923
3924 ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
3925
3926 kfree(buf);
3927
3928 return ret;
3929 }
3930 #endif
3931
3932 static const struct file_operations supply_map_fops = {
3933 #ifdef CONFIG_DEBUG_FS
3934 .read = supply_map_read_file,
3935 .llseek = default_llseek,
3936 #endif
3937 };
3938
3939 static int __init regulator_init(void)
3940 {
3941 int ret;
3942
3943 ret = class_register(&regulator_class);
3944
3945 debugfs_root = debugfs_create_dir("regulator", NULL);
3946 if (!debugfs_root)
3947 pr_warn("regulator: Failed to create debugfs directory\n");
3948
3949 debugfs_create_file("supply_map", 0444, debugfs_root, NULL,
3950 &supply_map_fops);
3951
3952 regulator_dummy_init();
3953
3954 return ret;
3955 }
3956
3957 /* init early to allow our consumers to complete system booting */
3958 core_initcall(regulator_init);
3959
3960 static int __init regulator_init_complete(void)
3961 {
3962 struct regulator_dev *rdev;
3963 const struct regulator_ops *ops;
3964 struct regulation_constraints *c;
3965 int enabled, ret;
3966
3967 /*
3968 * Since DT doesn't provide an idiomatic mechanism for
3969 * enabling full constraints and since it's much more natural
3970 * with DT to provide them just assume that a DT enabled
3971 * system has full constraints.
3972 */
3973 if (of_have_populated_dt())
3974 has_full_constraints = true;
3975
3976 mutex_lock(&regulator_list_mutex);
3977
3978 /* If we have a full configuration then disable any regulators
3979 * we have permission to change the status for and which are
3980 * not in use or always_on. This is effectively the default
3981 * for DT and ACPI as they have full constraints.
3982 */
3983 list_for_each_entry(rdev, &regulator_list, list) {
3984 ops = rdev->desc->ops;
3985 c = rdev->constraints;
3986
3987 if (c && c->always_on)
3988 continue;
3989
3990 if (c && !(c->valid_ops_mask & REGULATOR_CHANGE_STATUS))
3991 continue;
3992
3993 mutex_lock(&rdev->mutex);
3994
3995 if (rdev->use_count)
3996 goto unlock;
3997
3998 /* If we can't read the status assume it's on. */
3999 if (ops->is_enabled)
4000 enabled = ops->is_enabled(rdev);
4001 else
4002 enabled = 1;
4003
4004 if (!enabled)
4005 goto unlock;
4006
4007 if (have_full_constraints()) {
4008 /* We log since this may kill the system if it
4009 * goes wrong. */
4010 rdev_info(rdev, "disabling\n");
4011 ret = _regulator_do_disable(rdev);
4012 if (ret != 0)
4013 rdev_err(rdev, "couldn't disable: %d\n", ret);
4014 } else {
4015 /* The intention is that in future we will
4016 * assume that full constraints are provided
4017 * so warn even if we aren't going to do
4018 * anything here.
4019 */
4020 rdev_warn(rdev, "incomplete constraints, leaving on\n");
4021 }
4022
4023 unlock:
4024 mutex_unlock(&rdev->mutex);
4025 }
4026
4027 mutex_unlock(&regulator_list_mutex);
4028
4029 return 0;
4030 }
4031 late_initcall_sync(regulator_init_complete);
This page took 0.172492 seconds and 6 git commands to generate.