regulator: move set_machine_constraints after regulator device initialization
[deliverable/linux.git] / drivers / regulator / core.c
1 /*
2 * core.c -- Voltage/Current Regulator framework.
3 *
4 * Copyright 2007, 2008 Wolfson Microelectronics PLC.
5 * Copyright 2008 SlimLogic Ltd.
6 *
7 * Author: Liam Girdwood <lrg@slimlogic.co.uk>
8 *
9 * This program is free software; you can redistribute it and/or modify it
10 * under the terms of the GNU General Public License as published by the
11 * Free Software Foundation; either version 2 of the License, or (at your
12 * option) any later version.
13 *
14 */
15
16 #include <linux/kernel.h>
17 #include <linux/init.h>
18 #include <linux/device.h>
19 #include <linux/err.h>
20 #include <linux/mutex.h>
21 #include <linux/suspend.h>
22 #include <linux/regulator/consumer.h>
23 #include <linux/regulator/driver.h>
24 #include <linux/regulator/machine.h>
25
26 #define REGULATOR_VERSION "0.5"
27
28 static DEFINE_MUTEX(regulator_list_mutex);
29 static LIST_HEAD(regulator_list);
30 static LIST_HEAD(regulator_map_list);
31
32 /**
33 * struct regulator_dev
34 *
35 * Voltage / Current regulator class device. One for each regulator.
36 */
37 struct regulator_dev {
38 struct regulator_desc *desc;
39 int use_count;
40
41 /* lists we belong to */
42 struct list_head list; /* list of all regulators */
43 struct list_head slist; /* list of supplied regulators */
44
45 /* lists we own */
46 struct list_head consumer_list; /* consumers we supply */
47 struct list_head supply_list; /* regulators we supply */
48
49 struct blocking_notifier_head notifier;
50 struct mutex mutex; /* consumer lock */
51 struct module *owner;
52 struct device dev;
53 struct regulation_constraints *constraints;
54 struct regulator_dev *supply; /* for tree */
55
56 void *reg_data; /* regulator_dev data */
57 };
58
59 /**
60 * struct regulator_map
61 *
62 * Used to provide symbolic supply names to devices.
63 */
64 struct regulator_map {
65 struct list_head list;
66 struct device *dev;
67 const char *supply;
68 struct regulator_dev *regulator;
69 };
70
71 /*
72 * struct regulator
73 *
74 * One for each consumer device.
75 */
76 struct regulator {
77 struct device *dev;
78 struct list_head list;
79 int uA_load;
80 int min_uV;
81 int max_uV;
82 int enabled; /* count of client enables */
83 char *supply_name;
84 struct device_attribute dev_attr;
85 struct regulator_dev *rdev;
86 };
87
88 static int _regulator_is_enabled(struct regulator_dev *rdev);
89 static int _regulator_disable(struct regulator_dev *rdev);
90 static int _regulator_get_voltage(struct regulator_dev *rdev);
91 static int _regulator_get_current_limit(struct regulator_dev *rdev);
92 static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
93 static void _notifier_call_chain(struct regulator_dev *rdev,
94 unsigned long event, void *data);
95
96 /* gets the regulator for a given consumer device */
97 static struct regulator *get_device_regulator(struct device *dev)
98 {
99 struct regulator *regulator = NULL;
100 struct regulator_dev *rdev;
101
102 mutex_lock(&regulator_list_mutex);
103 list_for_each_entry(rdev, &regulator_list, list) {
104 mutex_lock(&rdev->mutex);
105 list_for_each_entry(regulator, &rdev->consumer_list, list) {
106 if (regulator->dev == dev) {
107 mutex_unlock(&rdev->mutex);
108 mutex_unlock(&regulator_list_mutex);
109 return regulator;
110 }
111 }
112 mutex_unlock(&rdev->mutex);
113 }
114 mutex_unlock(&regulator_list_mutex);
115 return NULL;
116 }
117
118 /* Platform voltage constraint check */
119 static int regulator_check_voltage(struct regulator_dev *rdev,
120 int *min_uV, int *max_uV)
121 {
122 BUG_ON(*min_uV > *max_uV);
123
124 if (!rdev->constraints) {
125 printk(KERN_ERR "%s: no constraints for %s\n", __func__,
126 rdev->desc->name);
127 return -ENODEV;
128 }
129 if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
130 printk(KERN_ERR "%s: operation not allowed for %s\n",
131 __func__, rdev->desc->name);
132 return -EPERM;
133 }
134
135 if (*max_uV > rdev->constraints->max_uV)
136 *max_uV = rdev->constraints->max_uV;
137 if (*min_uV < rdev->constraints->min_uV)
138 *min_uV = rdev->constraints->min_uV;
139
140 if (*min_uV > *max_uV)
141 return -EINVAL;
142
143 return 0;
144 }
145
146 /* current constraint check */
147 static int regulator_check_current_limit(struct regulator_dev *rdev,
148 int *min_uA, int *max_uA)
149 {
150 BUG_ON(*min_uA > *max_uA);
151
152 if (!rdev->constraints) {
153 printk(KERN_ERR "%s: no constraints for %s\n", __func__,
154 rdev->desc->name);
155 return -ENODEV;
156 }
157 if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_CURRENT)) {
158 printk(KERN_ERR "%s: operation not allowed for %s\n",
159 __func__, rdev->desc->name);
160 return -EPERM;
161 }
162
163 if (*max_uA > rdev->constraints->max_uA)
164 *max_uA = rdev->constraints->max_uA;
165 if (*min_uA < rdev->constraints->min_uA)
166 *min_uA = rdev->constraints->min_uA;
167
168 if (*min_uA > *max_uA)
169 return -EINVAL;
170
171 return 0;
172 }
173
174 /* operating mode constraint check */
175 static int regulator_check_mode(struct regulator_dev *rdev, int mode)
176 {
177 switch (mode) {
178 case REGULATOR_MODE_FAST:
179 case REGULATOR_MODE_NORMAL:
180 case REGULATOR_MODE_IDLE:
181 case REGULATOR_MODE_STANDBY:
182 break;
183 default:
184 return -EINVAL;
185 }
186
187 if (!rdev->constraints) {
188 printk(KERN_ERR "%s: no constraints for %s\n", __func__,
189 rdev->desc->name);
190 return -ENODEV;
191 }
192 if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_MODE)) {
193 printk(KERN_ERR "%s: operation not allowed for %s\n",
194 __func__, rdev->desc->name);
195 return -EPERM;
196 }
197 if (!(rdev->constraints->valid_modes_mask & mode)) {
198 printk(KERN_ERR "%s: invalid mode %x for %s\n",
199 __func__, mode, rdev->desc->name);
200 return -EINVAL;
201 }
202 return 0;
203 }
204
205 /* dynamic regulator mode switching constraint check */
206 static int regulator_check_drms(struct regulator_dev *rdev)
207 {
208 if (!rdev->constraints) {
209 printk(KERN_ERR "%s: no constraints for %s\n", __func__,
210 rdev->desc->name);
211 return -ENODEV;
212 }
213 if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS)) {
214 printk(KERN_ERR "%s: operation not allowed for %s\n",
215 __func__, rdev->desc->name);
216 return -EPERM;
217 }
218 return 0;
219 }
220
221 static ssize_t device_requested_uA_show(struct device *dev,
222 struct device_attribute *attr, char *buf)
223 {
224 struct regulator *regulator;
225
226 regulator = get_device_regulator(dev);
227 if (regulator == NULL)
228 return 0;
229
230 return sprintf(buf, "%d\n", regulator->uA_load);
231 }
232
233 static ssize_t regulator_uV_show(struct device *dev,
234 struct device_attribute *attr, char *buf)
235 {
236 struct regulator_dev *rdev = dev_get_drvdata(dev);
237 ssize_t ret;
238
239 mutex_lock(&rdev->mutex);
240 ret = sprintf(buf, "%d\n", _regulator_get_voltage(rdev));
241 mutex_unlock(&rdev->mutex);
242
243 return ret;
244 }
245 static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL);
246
247 static ssize_t regulator_uA_show(struct device *dev,
248 struct device_attribute *attr, char *buf)
249 {
250 struct regulator_dev *rdev = dev_get_drvdata(dev);
251
252 return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
253 }
254 static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL);
255
256 static ssize_t regulator_name_show(struct device *dev,
257 struct device_attribute *attr, char *buf)
258 {
259 struct regulator_dev *rdev = dev_get_drvdata(dev);
260 const char *name;
261
262 if (rdev->constraints->name)
263 name = rdev->constraints->name;
264 else if (rdev->desc->name)
265 name = rdev->desc->name;
266 else
267 name = "";
268
269 return sprintf(buf, "%s\n", name);
270 }
271
272 static ssize_t regulator_print_opmode(char *buf, int mode)
273 {
274 switch (mode) {
275 case REGULATOR_MODE_FAST:
276 return sprintf(buf, "fast\n");
277 case REGULATOR_MODE_NORMAL:
278 return sprintf(buf, "normal\n");
279 case REGULATOR_MODE_IDLE:
280 return sprintf(buf, "idle\n");
281 case REGULATOR_MODE_STANDBY:
282 return sprintf(buf, "standby\n");
283 }
284 return sprintf(buf, "unknown\n");
285 }
286
287 static ssize_t regulator_opmode_show(struct device *dev,
288 struct device_attribute *attr, char *buf)
289 {
290 struct regulator_dev *rdev = dev_get_drvdata(dev);
291
292 return regulator_print_opmode(buf, _regulator_get_mode(rdev));
293 }
294 static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL);
295
296 static ssize_t regulator_print_state(char *buf, int state)
297 {
298 if (state > 0)
299 return sprintf(buf, "enabled\n");
300 else if (state == 0)
301 return sprintf(buf, "disabled\n");
302 else
303 return sprintf(buf, "unknown\n");
304 }
305
306 static ssize_t regulator_state_show(struct device *dev,
307 struct device_attribute *attr, char *buf)
308 {
309 struct regulator_dev *rdev = dev_get_drvdata(dev);
310
311 return regulator_print_state(buf, _regulator_is_enabled(rdev));
312 }
313 static DEVICE_ATTR(state, 0444, regulator_state_show, NULL);
314
315 static ssize_t regulator_min_uA_show(struct device *dev,
316 struct device_attribute *attr, char *buf)
317 {
318 struct regulator_dev *rdev = dev_get_drvdata(dev);
319
320 if (!rdev->constraints)
321 return sprintf(buf, "constraint not defined\n");
322
323 return sprintf(buf, "%d\n", rdev->constraints->min_uA);
324 }
325 static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL);
326
327 static ssize_t regulator_max_uA_show(struct device *dev,
328 struct device_attribute *attr, char *buf)
329 {
330 struct regulator_dev *rdev = dev_get_drvdata(dev);
331
332 if (!rdev->constraints)
333 return sprintf(buf, "constraint not defined\n");
334
335 return sprintf(buf, "%d\n", rdev->constraints->max_uA);
336 }
337 static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL);
338
339 static ssize_t regulator_min_uV_show(struct device *dev,
340 struct device_attribute *attr, char *buf)
341 {
342 struct regulator_dev *rdev = dev_get_drvdata(dev);
343
344 if (!rdev->constraints)
345 return sprintf(buf, "constraint not defined\n");
346
347 return sprintf(buf, "%d\n", rdev->constraints->min_uV);
348 }
349 static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL);
350
351 static ssize_t regulator_max_uV_show(struct device *dev,
352 struct device_attribute *attr, char *buf)
353 {
354 struct regulator_dev *rdev = dev_get_drvdata(dev);
355
356 if (!rdev->constraints)
357 return sprintf(buf, "constraint not defined\n");
358
359 return sprintf(buf, "%d\n", rdev->constraints->max_uV);
360 }
361 static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL);
362
363 static ssize_t regulator_total_uA_show(struct device *dev,
364 struct device_attribute *attr, char *buf)
365 {
366 struct regulator_dev *rdev = dev_get_drvdata(dev);
367 struct regulator *regulator;
368 int uA = 0;
369
370 mutex_lock(&rdev->mutex);
371 list_for_each_entry(regulator, &rdev->consumer_list, list)
372 uA += regulator->uA_load;
373 mutex_unlock(&rdev->mutex);
374 return sprintf(buf, "%d\n", uA);
375 }
376 static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL);
377
378 static ssize_t regulator_num_users_show(struct device *dev,
379 struct device_attribute *attr, char *buf)
380 {
381 struct regulator_dev *rdev = dev_get_drvdata(dev);
382 return sprintf(buf, "%d\n", rdev->use_count);
383 }
384
385 static ssize_t regulator_type_show(struct device *dev,
386 struct device_attribute *attr, char *buf)
387 {
388 struct regulator_dev *rdev = dev_get_drvdata(dev);
389
390 switch (rdev->desc->type) {
391 case REGULATOR_VOLTAGE:
392 return sprintf(buf, "voltage\n");
393 case REGULATOR_CURRENT:
394 return sprintf(buf, "current\n");
395 }
396 return sprintf(buf, "unknown\n");
397 }
398
399 static ssize_t regulator_suspend_mem_uV_show(struct device *dev,
400 struct device_attribute *attr, char *buf)
401 {
402 struct regulator_dev *rdev = dev_get_drvdata(dev);
403
404 return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
405 }
406 static DEVICE_ATTR(suspend_mem_microvolts, 0444,
407 regulator_suspend_mem_uV_show, NULL);
408
409 static ssize_t regulator_suspend_disk_uV_show(struct device *dev,
410 struct device_attribute *attr, char *buf)
411 {
412 struct regulator_dev *rdev = dev_get_drvdata(dev);
413
414 return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
415 }
416 static DEVICE_ATTR(suspend_disk_microvolts, 0444,
417 regulator_suspend_disk_uV_show, NULL);
418
419 static ssize_t regulator_suspend_standby_uV_show(struct device *dev,
420 struct device_attribute *attr, char *buf)
421 {
422 struct regulator_dev *rdev = dev_get_drvdata(dev);
423
424 return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
425 }
426 static DEVICE_ATTR(suspend_standby_microvolts, 0444,
427 regulator_suspend_standby_uV_show, NULL);
428
429 static ssize_t regulator_suspend_mem_mode_show(struct device *dev,
430 struct device_attribute *attr, char *buf)
431 {
432 struct regulator_dev *rdev = dev_get_drvdata(dev);
433
434 return regulator_print_opmode(buf,
435 rdev->constraints->state_mem.mode);
436 }
437 static DEVICE_ATTR(suspend_mem_mode, 0444,
438 regulator_suspend_mem_mode_show, NULL);
439
440 static ssize_t regulator_suspend_disk_mode_show(struct device *dev,
441 struct device_attribute *attr, char *buf)
442 {
443 struct regulator_dev *rdev = dev_get_drvdata(dev);
444
445 return regulator_print_opmode(buf,
446 rdev->constraints->state_disk.mode);
447 }
448 static DEVICE_ATTR(suspend_disk_mode, 0444,
449 regulator_suspend_disk_mode_show, NULL);
450
451 static ssize_t regulator_suspend_standby_mode_show(struct device *dev,
452 struct device_attribute *attr, char *buf)
453 {
454 struct regulator_dev *rdev = dev_get_drvdata(dev);
455
456 return regulator_print_opmode(buf,
457 rdev->constraints->state_standby.mode);
458 }
459 static DEVICE_ATTR(suspend_standby_mode, 0444,
460 regulator_suspend_standby_mode_show, NULL);
461
462 static ssize_t regulator_suspend_mem_state_show(struct device *dev,
463 struct device_attribute *attr, char *buf)
464 {
465 struct regulator_dev *rdev = dev_get_drvdata(dev);
466
467 return regulator_print_state(buf,
468 rdev->constraints->state_mem.enabled);
469 }
470 static DEVICE_ATTR(suspend_mem_state, 0444,
471 regulator_suspend_mem_state_show, NULL);
472
473 static ssize_t regulator_suspend_disk_state_show(struct device *dev,
474 struct device_attribute *attr, char *buf)
475 {
476 struct regulator_dev *rdev = dev_get_drvdata(dev);
477
478 return regulator_print_state(buf,
479 rdev->constraints->state_disk.enabled);
480 }
481 static DEVICE_ATTR(suspend_disk_state, 0444,
482 regulator_suspend_disk_state_show, NULL);
483
484 static ssize_t regulator_suspend_standby_state_show(struct device *dev,
485 struct device_attribute *attr, char *buf)
486 {
487 struct regulator_dev *rdev = dev_get_drvdata(dev);
488
489 return regulator_print_state(buf,
490 rdev->constraints->state_standby.enabled);
491 }
492 static DEVICE_ATTR(suspend_standby_state, 0444,
493 regulator_suspend_standby_state_show, NULL);
494
495
496 /*
497 * These are the only attributes are present for all regulators.
498 * Other attributes are a function of regulator functionality.
499 */
500 static struct device_attribute regulator_dev_attrs[] = {
501 __ATTR(name, 0444, regulator_name_show, NULL),
502 __ATTR(num_users, 0444, regulator_num_users_show, NULL),
503 __ATTR(type, 0444, regulator_type_show, NULL),
504 __ATTR_NULL,
505 };
506
507 static void regulator_dev_release(struct device *dev)
508 {
509 struct regulator_dev *rdev = dev_get_drvdata(dev);
510 kfree(rdev);
511 }
512
513 static struct class regulator_class = {
514 .name = "regulator",
515 .dev_release = regulator_dev_release,
516 .dev_attrs = regulator_dev_attrs,
517 };
518
519 /* Calculate the new optimum regulator operating mode based on the new total
520 * consumer load. All locks held by caller */
521 static void drms_uA_update(struct regulator_dev *rdev)
522 {
523 struct regulator *sibling;
524 int current_uA = 0, output_uV, input_uV, err;
525 unsigned int mode;
526
527 err = regulator_check_drms(rdev);
528 if (err < 0 || !rdev->desc->ops->get_optimum_mode ||
529 !rdev->desc->ops->get_voltage || !rdev->desc->ops->set_mode);
530 return;
531
532 /* get output voltage */
533 output_uV = rdev->desc->ops->get_voltage(rdev);
534 if (output_uV <= 0)
535 return;
536
537 /* get input voltage */
538 if (rdev->supply && rdev->supply->desc->ops->get_voltage)
539 input_uV = rdev->supply->desc->ops->get_voltage(rdev->supply);
540 else
541 input_uV = rdev->constraints->input_uV;
542 if (input_uV <= 0)
543 return;
544
545 /* calc total requested load */
546 list_for_each_entry(sibling, &rdev->consumer_list, list)
547 current_uA += sibling->uA_load;
548
549 /* now get the optimum mode for our new total regulator load */
550 mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
551 output_uV, current_uA);
552
553 /* check the new mode is allowed */
554 err = regulator_check_mode(rdev, mode);
555 if (err == 0)
556 rdev->desc->ops->set_mode(rdev, mode);
557 }
558
559 static int suspend_set_state(struct regulator_dev *rdev,
560 struct regulator_state *rstate)
561 {
562 int ret = 0;
563
564 /* enable & disable are mandatory for suspend control */
565 if (!rdev->desc->ops->set_suspend_enable ||
566 !rdev->desc->ops->set_suspend_disable) {
567 printk(KERN_ERR "%s: no way to set suspend state\n",
568 __func__);
569 return -EINVAL;
570 }
571
572 if (rstate->enabled)
573 ret = rdev->desc->ops->set_suspend_enable(rdev);
574 else
575 ret = rdev->desc->ops->set_suspend_disable(rdev);
576 if (ret < 0) {
577 printk(KERN_ERR "%s: failed to enabled/disable\n", __func__);
578 return ret;
579 }
580
581 if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
582 ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
583 if (ret < 0) {
584 printk(KERN_ERR "%s: failed to set voltage\n",
585 __func__);
586 return ret;
587 }
588 }
589
590 if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
591 ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
592 if (ret < 0) {
593 printk(KERN_ERR "%s: failed to set mode\n", __func__);
594 return ret;
595 }
596 }
597 return ret;
598 }
599
600 /* locks held by caller */
601 static int suspend_prepare(struct regulator_dev *rdev, suspend_state_t state)
602 {
603 if (!rdev->constraints)
604 return -EINVAL;
605
606 switch (state) {
607 case PM_SUSPEND_STANDBY:
608 return suspend_set_state(rdev,
609 &rdev->constraints->state_standby);
610 case PM_SUSPEND_MEM:
611 return suspend_set_state(rdev,
612 &rdev->constraints->state_mem);
613 case PM_SUSPEND_MAX:
614 return suspend_set_state(rdev,
615 &rdev->constraints->state_disk);
616 default:
617 return -EINVAL;
618 }
619 }
620
621 static void print_constraints(struct regulator_dev *rdev)
622 {
623 struct regulation_constraints *constraints = rdev->constraints;
624 char buf[80];
625 int count;
626
627 if (rdev->desc->type == REGULATOR_VOLTAGE) {
628 if (constraints->min_uV == constraints->max_uV)
629 count = sprintf(buf, "%d mV ",
630 constraints->min_uV / 1000);
631 else
632 count = sprintf(buf, "%d <--> %d mV ",
633 constraints->min_uV / 1000,
634 constraints->max_uV / 1000);
635 } else {
636 if (constraints->min_uA == constraints->max_uA)
637 count = sprintf(buf, "%d mA ",
638 constraints->min_uA / 1000);
639 else
640 count = sprintf(buf, "%d <--> %d mA ",
641 constraints->min_uA / 1000,
642 constraints->max_uA / 1000);
643 }
644 if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
645 count += sprintf(buf + count, "fast ");
646 if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
647 count += sprintf(buf + count, "normal ");
648 if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
649 count += sprintf(buf + count, "idle ");
650 if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
651 count += sprintf(buf + count, "standby");
652
653 printk(KERN_INFO "regulator: %s: %s\n", rdev->desc->name, buf);
654 }
655
656 /**
657 * set_machine_constraints - sets regulator constraints
658 * @regulator: regulator source
659 *
660 * Allows platform initialisation code to define and constrain
661 * regulator circuits e.g. valid voltage/current ranges, etc. NOTE:
662 * Constraints *must* be set by platform code in order for some
663 * regulator operations to proceed i.e. set_voltage, set_current_limit,
664 * set_mode.
665 */
666 static int set_machine_constraints(struct regulator_dev *rdev,
667 struct regulation_constraints *constraints)
668 {
669 int ret = 0;
670 const char *name;
671 struct regulator_ops *ops = rdev->desc->ops;
672
673 if (constraints->name)
674 name = constraints->name;
675 else if (rdev->desc->name)
676 name = rdev->desc->name;
677 else
678 name = "regulator";
679
680 rdev->constraints = constraints;
681
682 /* do we need to apply the constraint voltage */
683 if (rdev->constraints->apply_uV &&
684 rdev->constraints->min_uV == rdev->constraints->max_uV &&
685 ops->set_voltage) {
686 ret = ops->set_voltage(rdev,
687 rdev->constraints->min_uV, rdev->constraints->max_uV);
688 if (ret < 0) {
689 printk(KERN_ERR "%s: failed to apply %duV constraint to %s\n",
690 __func__,
691 rdev->constraints->min_uV, name);
692 rdev->constraints = NULL;
693 goto out;
694 }
695 }
696
697 /* are we enabled at boot time by firmware / bootloader */
698 if (rdev->constraints->boot_on)
699 rdev->use_count = 1;
700
701 /* do we need to setup our suspend state */
702 if (constraints->initial_state) {
703 ret = suspend_prepare(rdev, constraints->initial_state);
704 if (ret < 0) {
705 printk(KERN_ERR "%s: failed to set suspend state for %s\n",
706 __func__, name);
707 rdev->constraints = NULL;
708 goto out;
709 }
710 }
711
712 /* if always_on is set then turn the regulator on if it's not
713 * already on. */
714 if (constraints->always_on && ops->enable &&
715 ((ops->is_enabled && !ops->is_enabled(rdev)) ||
716 (!ops->is_enabled && !constraints->boot_on))) {
717 ret = ops->enable(rdev);
718 if (ret < 0) {
719 printk(KERN_ERR "%s: failed to enable %s\n",
720 __func__, name);
721 rdev->constraints = NULL;
722 goto out;
723 }
724 }
725
726 print_constraints(rdev);
727 out:
728 return ret;
729 }
730
731 /**
732 * set_supply - set regulator supply regulator
733 * @regulator: regulator name
734 * @supply: supply regulator name
735 *
736 * Called by platform initialisation code to set the supply regulator for this
737 * regulator. This ensures that a regulators supply will also be enabled by the
738 * core if it's child is enabled.
739 */
740 static int set_supply(struct regulator_dev *rdev,
741 struct regulator_dev *supply_rdev)
742 {
743 int err;
744
745 err = sysfs_create_link(&rdev->dev.kobj, &supply_rdev->dev.kobj,
746 "supply");
747 if (err) {
748 printk(KERN_ERR
749 "%s: could not add device link %s err %d\n",
750 __func__, supply_rdev->dev.kobj.name, err);
751 goto out;
752 }
753 rdev->supply = supply_rdev;
754 list_add(&rdev->slist, &supply_rdev->supply_list);
755 out:
756 return err;
757 }
758
759 /**
760 * set_consumer_device_supply: Bind a regulator to a symbolic supply
761 * @regulator: regulator source
762 * @dev: device the supply applies to
763 * @supply: symbolic name for supply
764 *
765 * Allows platform initialisation code to map physical regulator
766 * sources to symbolic names for supplies for use by devices. Devices
767 * should use these symbolic names to request regulators, avoiding the
768 * need to provide board-specific regulator names as platform data.
769 */
770 static int set_consumer_device_supply(struct regulator_dev *rdev,
771 struct device *consumer_dev, const char *supply)
772 {
773 struct regulator_map *node;
774
775 if (supply == NULL)
776 return -EINVAL;
777
778 node = kmalloc(sizeof(struct regulator_map), GFP_KERNEL);
779 if (node == NULL)
780 return -ENOMEM;
781
782 node->regulator = rdev;
783 node->dev = consumer_dev;
784 node->supply = supply;
785
786 list_add(&node->list, &regulator_map_list);
787 return 0;
788 }
789
790 static void unset_consumer_device_supply(struct regulator_dev *rdev,
791 struct device *consumer_dev)
792 {
793 struct regulator_map *node, *n;
794
795 list_for_each_entry_safe(node, n, &regulator_map_list, list) {
796 if (rdev == node->regulator &&
797 consumer_dev == node->dev) {
798 list_del(&node->list);
799 kfree(node);
800 return;
801 }
802 }
803 }
804
805 #define REG_STR_SIZE 32
806
807 static struct regulator *create_regulator(struct regulator_dev *rdev,
808 struct device *dev,
809 const char *supply_name)
810 {
811 struct regulator *regulator;
812 char buf[REG_STR_SIZE];
813 int err, size;
814
815 regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
816 if (regulator == NULL)
817 return NULL;
818
819 mutex_lock(&rdev->mutex);
820 regulator->rdev = rdev;
821 list_add(&regulator->list, &rdev->consumer_list);
822
823 if (dev) {
824 /* create a 'requested_microamps_name' sysfs entry */
825 size = scnprintf(buf, REG_STR_SIZE, "microamps_requested_%s",
826 supply_name);
827 if (size >= REG_STR_SIZE)
828 goto overflow_err;
829
830 regulator->dev = dev;
831 regulator->dev_attr.attr.name = kstrdup(buf, GFP_KERNEL);
832 if (regulator->dev_attr.attr.name == NULL)
833 goto attr_name_err;
834
835 regulator->dev_attr.attr.owner = THIS_MODULE;
836 regulator->dev_attr.attr.mode = 0444;
837 regulator->dev_attr.show = device_requested_uA_show;
838 err = device_create_file(dev, &regulator->dev_attr);
839 if (err < 0) {
840 printk(KERN_WARNING "%s: could not add regulator_dev"
841 " load sysfs\n", __func__);
842 goto attr_name_err;
843 }
844
845 /* also add a link to the device sysfs entry */
846 size = scnprintf(buf, REG_STR_SIZE, "%s-%s",
847 dev->kobj.name, supply_name);
848 if (size >= REG_STR_SIZE)
849 goto attr_err;
850
851 regulator->supply_name = kstrdup(buf, GFP_KERNEL);
852 if (regulator->supply_name == NULL)
853 goto attr_err;
854
855 err = sysfs_create_link(&rdev->dev.kobj, &dev->kobj,
856 buf);
857 if (err) {
858 printk(KERN_WARNING
859 "%s: could not add device link %s err %d\n",
860 __func__, dev->kobj.name, err);
861 device_remove_file(dev, &regulator->dev_attr);
862 goto link_name_err;
863 }
864 }
865 mutex_unlock(&rdev->mutex);
866 return regulator;
867 link_name_err:
868 kfree(regulator->supply_name);
869 attr_err:
870 device_remove_file(regulator->dev, &regulator->dev_attr);
871 attr_name_err:
872 kfree(regulator->dev_attr.attr.name);
873 overflow_err:
874 list_del(&regulator->list);
875 kfree(regulator);
876 mutex_unlock(&rdev->mutex);
877 return NULL;
878 }
879
880 /**
881 * regulator_get - lookup and obtain a reference to a regulator.
882 * @dev: device for regulator "consumer"
883 * @id: Supply name or regulator ID.
884 *
885 * Returns a struct regulator corresponding to the regulator producer,
886 * or IS_ERR() condition containing errno. Use of supply names
887 * configured via regulator_set_device_supply() is strongly
888 * encouraged.
889 */
890 struct regulator *regulator_get(struct device *dev, const char *id)
891 {
892 struct regulator_dev *rdev;
893 struct regulator_map *map;
894 struct regulator *regulator = ERR_PTR(-ENODEV);
895
896 if (id == NULL) {
897 printk(KERN_ERR "regulator: get() with no identifier\n");
898 return regulator;
899 }
900
901 mutex_lock(&regulator_list_mutex);
902
903 list_for_each_entry(map, &regulator_map_list, list) {
904 if (dev == map->dev &&
905 strcmp(map->supply, id) == 0) {
906 rdev = map->regulator;
907 goto found;
908 }
909 }
910 printk(KERN_ERR "regulator: Unable to get requested regulator: %s\n",
911 id);
912 mutex_unlock(&regulator_list_mutex);
913 return regulator;
914
915 found:
916 if (!try_module_get(rdev->owner))
917 goto out;
918
919 regulator = create_regulator(rdev, dev, id);
920 if (regulator == NULL) {
921 regulator = ERR_PTR(-ENOMEM);
922 module_put(rdev->owner);
923 }
924
925 out:
926 mutex_unlock(&regulator_list_mutex);
927 return regulator;
928 }
929 EXPORT_SYMBOL_GPL(regulator_get);
930
931 /**
932 * regulator_put - "free" the regulator source
933 * @regulator: regulator source
934 *
935 * Note: drivers must ensure that all regulator_enable calls made on this
936 * regulator source are balanced by regulator_disable calls prior to calling
937 * this function.
938 */
939 void regulator_put(struct regulator *regulator)
940 {
941 struct regulator_dev *rdev;
942
943 if (regulator == NULL || IS_ERR(regulator))
944 return;
945
946 mutex_lock(&regulator_list_mutex);
947 rdev = regulator->rdev;
948
949 if (WARN(regulator->enabled, "Releasing supply %s while enabled\n",
950 regulator->supply_name))
951 _regulator_disable(rdev);
952
953 /* remove any sysfs entries */
954 if (regulator->dev) {
955 sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
956 kfree(regulator->supply_name);
957 device_remove_file(regulator->dev, &regulator->dev_attr);
958 kfree(regulator->dev_attr.attr.name);
959 }
960 list_del(&regulator->list);
961 kfree(regulator);
962
963 module_put(rdev->owner);
964 mutex_unlock(&regulator_list_mutex);
965 }
966 EXPORT_SYMBOL_GPL(regulator_put);
967
968 /* locks held by regulator_enable() */
969 static int _regulator_enable(struct regulator_dev *rdev)
970 {
971 int ret = -EINVAL;
972
973 if (!rdev->constraints) {
974 printk(KERN_ERR "%s: %s has no constraints\n",
975 __func__, rdev->desc->name);
976 return ret;
977 }
978
979 /* do we need to enable the supply regulator first */
980 if (rdev->supply) {
981 ret = _regulator_enable(rdev->supply);
982 if (ret < 0) {
983 printk(KERN_ERR "%s: failed to enable %s: %d\n",
984 __func__, rdev->desc->name, ret);
985 return ret;
986 }
987 }
988
989 /* check voltage and requested load before enabling */
990 if (rdev->desc->ops->enable) {
991
992 if (rdev->constraints &&
993 (rdev->constraints->valid_ops_mask &
994 REGULATOR_CHANGE_DRMS))
995 drms_uA_update(rdev);
996
997 ret = rdev->desc->ops->enable(rdev);
998 if (ret < 0) {
999 printk(KERN_ERR "%s: failed to enable %s: %d\n",
1000 __func__, rdev->desc->name, ret);
1001 return ret;
1002 }
1003 rdev->use_count++;
1004 return ret;
1005 }
1006
1007 return ret;
1008 }
1009
1010 /**
1011 * regulator_enable - enable regulator output
1012 * @regulator: regulator source
1013 *
1014 * Enable the regulator output at the predefined voltage or current value.
1015 * NOTE: the output value can be set by other drivers, boot loader or may be
1016 * hardwired in the regulator.
1017 * NOTE: calls to regulator_enable() must be balanced with calls to
1018 * regulator_disable().
1019 */
1020 int regulator_enable(struct regulator *regulator)
1021 {
1022 struct regulator_dev *rdev = regulator->rdev;
1023 int ret = 0;
1024
1025 mutex_lock(&rdev->mutex);
1026 if (regulator->enabled == 0)
1027 ret = _regulator_enable(rdev);
1028 else if (regulator->enabled < 0)
1029 ret = -EIO;
1030 if (ret == 0)
1031 regulator->enabled++;
1032 mutex_unlock(&rdev->mutex);
1033 return ret;
1034 }
1035 EXPORT_SYMBOL_GPL(regulator_enable);
1036
1037 /* locks held by regulator_disable() */
1038 static int _regulator_disable(struct regulator_dev *rdev)
1039 {
1040 int ret = 0;
1041
1042 /* are we the last user and permitted to disable ? */
1043 if (rdev->use_count == 1 && !rdev->constraints->always_on) {
1044
1045 /* we are last user */
1046 if (rdev->desc->ops->disable) {
1047 ret = rdev->desc->ops->disable(rdev);
1048 if (ret < 0) {
1049 printk(KERN_ERR "%s: failed to disable %s\n",
1050 __func__, rdev->desc->name);
1051 return ret;
1052 }
1053 }
1054
1055 /* decrease our supplies ref count and disable if required */
1056 if (rdev->supply)
1057 _regulator_disable(rdev->supply);
1058
1059 rdev->use_count = 0;
1060 } else if (rdev->use_count > 1) {
1061
1062 if (rdev->constraints &&
1063 (rdev->constraints->valid_ops_mask &
1064 REGULATOR_CHANGE_DRMS))
1065 drms_uA_update(rdev);
1066
1067 rdev->use_count--;
1068 }
1069 return ret;
1070 }
1071
1072 /**
1073 * regulator_disable - disable regulator output
1074 * @regulator: regulator source
1075 *
1076 * Disable the regulator output voltage or current.
1077 * NOTE: this will only disable the regulator output if no other consumer
1078 * devices have it enabled.
1079 * NOTE: calls to regulator_enable() must be balanced with calls to
1080 * regulator_disable().
1081 */
1082 int regulator_disable(struct regulator *regulator)
1083 {
1084 struct regulator_dev *rdev = regulator->rdev;
1085 int ret = 0;
1086
1087 mutex_lock(&rdev->mutex);
1088 if (regulator->enabled == 1) {
1089 ret = _regulator_disable(rdev);
1090 if (ret == 0)
1091 regulator->uA_load = 0;
1092 } else if (WARN(regulator->enabled <= 0,
1093 "unbalanced disables for supply %s\n",
1094 regulator->supply_name))
1095 ret = -EIO;
1096 if (ret == 0)
1097 regulator->enabled--;
1098 mutex_unlock(&rdev->mutex);
1099 return ret;
1100 }
1101 EXPORT_SYMBOL_GPL(regulator_disable);
1102
1103 /* locks held by regulator_force_disable() */
1104 static int _regulator_force_disable(struct regulator_dev *rdev)
1105 {
1106 int ret = 0;
1107
1108 /* force disable */
1109 if (rdev->desc->ops->disable) {
1110 /* ah well, who wants to live forever... */
1111 ret = rdev->desc->ops->disable(rdev);
1112 if (ret < 0) {
1113 printk(KERN_ERR "%s: failed to force disable %s\n",
1114 __func__, rdev->desc->name);
1115 return ret;
1116 }
1117 /* notify other consumers that power has been forced off */
1118 _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE,
1119 NULL);
1120 }
1121
1122 /* decrease our supplies ref count and disable if required */
1123 if (rdev->supply)
1124 _regulator_disable(rdev->supply);
1125
1126 rdev->use_count = 0;
1127 return ret;
1128 }
1129
1130 /**
1131 * regulator_force_disable - force disable regulator output
1132 * @regulator: regulator source
1133 *
1134 * Forcibly disable the regulator output voltage or current.
1135 * NOTE: this *will* disable the regulator output even if other consumer
1136 * devices have it enabled. This should be used for situations when device
1137 * damage will likely occur if the regulator is not disabled (e.g. over temp).
1138 */
1139 int regulator_force_disable(struct regulator *regulator)
1140 {
1141 int ret;
1142
1143 mutex_lock(&regulator->rdev->mutex);
1144 regulator->enabled = 0;
1145 regulator->uA_load = 0;
1146 ret = _regulator_force_disable(regulator->rdev);
1147 mutex_unlock(&regulator->rdev->mutex);
1148 return ret;
1149 }
1150 EXPORT_SYMBOL_GPL(regulator_force_disable);
1151
1152 static int _regulator_is_enabled(struct regulator_dev *rdev)
1153 {
1154 int ret;
1155
1156 mutex_lock(&rdev->mutex);
1157
1158 /* sanity check */
1159 if (!rdev->desc->ops->is_enabled) {
1160 ret = -EINVAL;
1161 goto out;
1162 }
1163
1164 ret = rdev->desc->ops->is_enabled(rdev);
1165 out:
1166 mutex_unlock(&rdev->mutex);
1167 return ret;
1168 }
1169
1170 /**
1171 * regulator_is_enabled - is the regulator output enabled
1172 * @regulator: regulator source
1173 *
1174 * Returns positive if the regulator driver backing the source/client
1175 * has requested that the device be enabled, zero if it hasn't, else a
1176 * negative errno code.
1177 *
1178 * Note that the device backing this regulator handle can have multiple
1179 * users, so it might be enabled even if regulator_enable() was never
1180 * called for this particular source.
1181 */
1182 int regulator_is_enabled(struct regulator *regulator)
1183 {
1184 return _regulator_is_enabled(regulator->rdev);
1185 }
1186 EXPORT_SYMBOL_GPL(regulator_is_enabled);
1187
1188 /**
1189 * regulator_set_voltage - set regulator output voltage
1190 * @regulator: regulator source
1191 * @min_uV: Minimum required voltage in uV
1192 * @max_uV: Maximum acceptable voltage in uV
1193 *
1194 * Sets a voltage regulator to the desired output voltage. This can be set
1195 * during any regulator state. IOW, regulator can be disabled or enabled.
1196 *
1197 * If the regulator is enabled then the voltage will change to the new value
1198 * immediately otherwise if the regulator is disabled the regulator will
1199 * output at the new voltage when enabled.
1200 *
1201 * NOTE: If the regulator is shared between several devices then the lowest
1202 * request voltage that meets the system constraints will be used.
1203 * NOTE: Regulator system constraints must be set for this regulator before
1204 * calling this function otherwise this call will fail.
1205 */
1206 int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
1207 {
1208 struct regulator_dev *rdev = regulator->rdev;
1209 int ret;
1210
1211 mutex_lock(&rdev->mutex);
1212
1213 /* sanity check */
1214 if (!rdev->desc->ops->set_voltage) {
1215 ret = -EINVAL;
1216 goto out;
1217 }
1218
1219 /* constraints check */
1220 ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
1221 if (ret < 0)
1222 goto out;
1223 regulator->min_uV = min_uV;
1224 regulator->max_uV = max_uV;
1225 ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV);
1226
1227 out:
1228 mutex_unlock(&rdev->mutex);
1229 return ret;
1230 }
1231 EXPORT_SYMBOL_GPL(regulator_set_voltage);
1232
1233 static int _regulator_get_voltage(struct regulator_dev *rdev)
1234 {
1235 /* sanity check */
1236 if (rdev->desc->ops->get_voltage)
1237 return rdev->desc->ops->get_voltage(rdev);
1238 else
1239 return -EINVAL;
1240 }
1241
1242 /**
1243 * regulator_get_voltage - get regulator output voltage
1244 * @regulator: regulator source
1245 *
1246 * This returns the current regulator voltage in uV.
1247 *
1248 * NOTE: If the regulator is disabled it will return the voltage value. This
1249 * function should not be used to determine regulator state.
1250 */
1251 int regulator_get_voltage(struct regulator *regulator)
1252 {
1253 int ret;
1254
1255 mutex_lock(&regulator->rdev->mutex);
1256
1257 ret = _regulator_get_voltage(regulator->rdev);
1258
1259 mutex_unlock(&regulator->rdev->mutex);
1260
1261 return ret;
1262 }
1263 EXPORT_SYMBOL_GPL(regulator_get_voltage);
1264
1265 /**
1266 * regulator_set_current_limit - set regulator output current limit
1267 * @regulator: regulator source
1268 * @min_uA: Minimuum supported current in uA
1269 * @max_uA: Maximum supported current in uA
1270 *
1271 * Sets current sink to the desired output current. This can be set during
1272 * any regulator state. IOW, regulator can be disabled or enabled.
1273 *
1274 * If the regulator is enabled then the current will change to the new value
1275 * immediately otherwise if the regulator is disabled the regulator will
1276 * output at the new current when enabled.
1277 *
1278 * NOTE: Regulator system constraints must be set for this regulator before
1279 * calling this function otherwise this call will fail.
1280 */
1281 int regulator_set_current_limit(struct regulator *regulator,
1282 int min_uA, int max_uA)
1283 {
1284 struct regulator_dev *rdev = regulator->rdev;
1285 int ret;
1286
1287 mutex_lock(&rdev->mutex);
1288
1289 /* sanity check */
1290 if (!rdev->desc->ops->set_current_limit) {
1291 ret = -EINVAL;
1292 goto out;
1293 }
1294
1295 /* constraints check */
1296 ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
1297 if (ret < 0)
1298 goto out;
1299
1300 ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
1301 out:
1302 mutex_unlock(&rdev->mutex);
1303 return ret;
1304 }
1305 EXPORT_SYMBOL_GPL(regulator_set_current_limit);
1306
1307 static int _regulator_get_current_limit(struct regulator_dev *rdev)
1308 {
1309 int ret;
1310
1311 mutex_lock(&rdev->mutex);
1312
1313 /* sanity check */
1314 if (!rdev->desc->ops->get_current_limit) {
1315 ret = -EINVAL;
1316 goto out;
1317 }
1318
1319 ret = rdev->desc->ops->get_current_limit(rdev);
1320 out:
1321 mutex_unlock(&rdev->mutex);
1322 return ret;
1323 }
1324
1325 /**
1326 * regulator_get_current_limit - get regulator output current
1327 * @regulator: regulator source
1328 *
1329 * This returns the current supplied by the specified current sink in uA.
1330 *
1331 * NOTE: If the regulator is disabled it will return the current value. This
1332 * function should not be used to determine regulator state.
1333 */
1334 int regulator_get_current_limit(struct regulator *regulator)
1335 {
1336 return _regulator_get_current_limit(regulator->rdev);
1337 }
1338 EXPORT_SYMBOL_GPL(regulator_get_current_limit);
1339
1340 /**
1341 * regulator_set_mode - set regulator operating mode
1342 * @regulator: regulator source
1343 * @mode: operating mode - one of the REGULATOR_MODE constants
1344 *
1345 * Set regulator operating mode to increase regulator efficiency or improve
1346 * regulation performance.
1347 *
1348 * NOTE: Regulator system constraints must be set for this regulator before
1349 * calling this function otherwise this call will fail.
1350 */
1351 int regulator_set_mode(struct regulator *regulator, unsigned int mode)
1352 {
1353 struct regulator_dev *rdev = regulator->rdev;
1354 int ret;
1355
1356 mutex_lock(&rdev->mutex);
1357
1358 /* sanity check */
1359 if (!rdev->desc->ops->set_mode) {
1360 ret = -EINVAL;
1361 goto out;
1362 }
1363
1364 /* constraints check */
1365 ret = regulator_check_mode(rdev, mode);
1366 if (ret < 0)
1367 goto out;
1368
1369 ret = rdev->desc->ops->set_mode(rdev, mode);
1370 out:
1371 mutex_unlock(&rdev->mutex);
1372 return ret;
1373 }
1374 EXPORT_SYMBOL_GPL(regulator_set_mode);
1375
1376 static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
1377 {
1378 int ret;
1379
1380 mutex_lock(&rdev->mutex);
1381
1382 /* sanity check */
1383 if (!rdev->desc->ops->get_mode) {
1384 ret = -EINVAL;
1385 goto out;
1386 }
1387
1388 ret = rdev->desc->ops->get_mode(rdev);
1389 out:
1390 mutex_unlock(&rdev->mutex);
1391 return ret;
1392 }
1393
1394 /**
1395 * regulator_get_mode - get regulator operating mode
1396 * @regulator: regulator source
1397 *
1398 * Get the current regulator operating mode.
1399 */
1400 unsigned int regulator_get_mode(struct regulator *regulator)
1401 {
1402 return _regulator_get_mode(regulator->rdev);
1403 }
1404 EXPORT_SYMBOL_GPL(regulator_get_mode);
1405
1406 /**
1407 * regulator_set_optimum_mode - set regulator optimum operating mode
1408 * @regulator: regulator source
1409 * @uA_load: load current
1410 *
1411 * Notifies the regulator core of a new device load. This is then used by
1412 * DRMS (if enabled by constraints) to set the most efficient regulator
1413 * operating mode for the new regulator loading.
1414 *
1415 * Consumer devices notify their supply regulator of the maximum power
1416 * they will require (can be taken from device datasheet in the power
1417 * consumption tables) when they change operational status and hence power
1418 * state. Examples of operational state changes that can affect power
1419 * consumption are :-
1420 *
1421 * o Device is opened / closed.
1422 * o Device I/O is about to begin or has just finished.
1423 * o Device is idling in between work.
1424 *
1425 * This information is also exported via sysfs to userspace.
1426 *
1427 * DRMS will sum the total requested load on the regulator and change
1428 * to the most efficient operating mode if platform constraints allow.
1429 *
1430 * Returns the new regulator mode or error.
1431 */
1432 int regulator_set_optimum_mode(struct regulator *regulator, int uA_load)
1433 {
1434 struct regulator_dev *rdev = regulator->rdev;
1435 struct regulator *consumer;
1436 int ret, output_uV, input_uV, total_uA_load = 0;
1437 unsigned int mode;
1438
1439 mutex_lock(&rdev->mutex);
1440
1441 regulator->uA_load = uA_load;
1442 ret = regulator_check_drms(rdev);
1443 if (ret < 0)
1444 goto out;
1445 ret = -EINVAL;
1446
1447 /* sanity check */
1448 if (!rdev->desc->ops->get_optimum_mode)
1449 goto out;
1450
1451 /* get output voltage */
1452 output_uV = rdev->desc->ops->get_voltage(rdev);
1453 if (output_uV <= 0) {
1454 printk(KERN_ERR "%s: invalid output voltage found for %s\n",
1455 __func__, rdev->desc->name);
1456 goto out;
1457 }
1458
1459 /* get input voltage */
1460 if (rdev->supply && rdev->supply->desc->ops->get_voltage)
1461 input_uV = rdev->supply->desc->ops->get_voltage(rdev->supply);
1462 else
1463 input_uV = rdev->constraints->input_uV;
1464 if (input_uV <= 0) {
1465 printk(KERN_ERR "%s: invalid input voltage found for %s\n",
1466 __func__, rdev->desc->name);
1467 goto out;
1468 }
1469
1470 /* calc total requested load for this regulator */
1471 list_for_each_entry(consumer, &rdev->consumer_list, list)
1472 total_uA_load += consumer->uA_load;
1473
1474 mode = rdev->desc->ops->get_optimum_mode(rdev,
1475 input_uV, output_uV,
1476 total_uA_load);
1477 ret = regulator_check_mode(rdev, mode);
1478 if (ret < 0) {
1479 printk(KERN_ERR "%s: failed to get optimum mode for %s @"
1480 " %d uA %d -> %d uV\n", __func__, rdev->desc->name,
1481 total_uA_load, input_uV, output_uV);
1482 goto out;
1483 }
1484
1485 ret = rdev->desc->ops->set_mode(rdev, mode);
1486 if (ret < 0) {
1487 printk(KERN_ERR "%s: failed to set optimum mode %x for %s\n",
1488 __func__, mode, rdev->desc->name);
1489 goto out;
1490 }
1491 ret = mode;
1492 out:
1493 mutex_unlock(&rdev->mutex);
1494 return ret;
1495 }
1496 EXPORT_SYMBOL_GPL(regulator_set_optimum_mode);
1497
1498 /**
1499 * regulator_register_notifier - register regulator event notifier
1500 * @regulator: regulator source
1501 * @notifier_block: notifier block
1502 *
1503 * Register notifier block to receive regulator events.
1504 */
1505 int regulator_register_notifier(struct regulator *regulator,
1506 struct notifier_block *nb)
1507 {
1508 return blocking_notifier_chain_register(&regulator->rdev->notifier,
1509 nb);
1510 }
1511 EXPORT_SYMBOL_GPL(regulator_register_notifier);
1512
1513 /**
1514 * regulator_unregister_notifier - unregister regulator event notifier
1515 * @regulator: regulator source
1516 * @notifier_block: notifier block
1517 *
1518 * Unregister regulator event notifier block.
1519 */
1520 int regulator_unregister_notifier(struct regulator *regulator,
1521 struct notifier_block *nb)
1522 {
1523 return blocking_notifier_chain_unregister(&regulator->rdev->notifier,
1524 nb);
1525 }
1526 EXPORT_SYMBOL_GPL(regulator_unregister_notifier);
1527
1528 /* notify regulator consumers and downstream regulator consumers */
1529 static void _notifier_call_chain(struct regulator_dev *rdev,
1530 unsigned long event, void *data)
1531 {
1532 struct regulator_dev *_rdev;
1533
1534 /* call rdev chain first */
1535 mutex_lock(&rdev->mutex);
1536 blocking_notifier_call_chain(&rdev->notifier, event, NULL);
1537 mutex_unlock(&rdev->mutex);
1538
1539 /* now notify regulator we supply */
1540 list_for_each_entry(_rdev, &rdev->supply_list, slist)
1541 _notifier_call_chain(_rdev, event, data);
1542 }
1543
1544 /**
1545 * regulator_bulk_get - get multiple regulator consumers
1546 *
1547 * @dev: Device to supply
1548 * @num_consumers: Number of consumers to register
1549 * @consumers: Configuration of consumers; clients are stored here.
1550 *
1551 * @return 0 on success, an errno on failure.
1552 *
1553 * This helper function allows drivers to get several regulator
1554 * consumers in one operation. If any of the regulators cannot be
1555 * acquired then any regulators that were allocated will be freed
1556 * before returning to the caller.
1557 */
1558 int regulator_bulk_get(struct device *dev, int num_consumers,
1559 struct regulator_bulk_data *consumers)
1560 {
1561 int i;
1562 int ret;
1563
1564 for (i = 0; i < num_consumers; i++)
1565 consumers[i].consumer = NULL;
1566
1567 for (i = 0; i < num_consumers; i++) {
1568 consumers[i].consumer = regulator_get(dev,
1569 consumers[i].supply);
1570 if (IS_ERR(consumers[i].consumer)) {
1571 dev_err(dev, "Failed to get supply '%s'\n",
1572 consumers[i].supply);
1573 ret = PTR_ERR(consumers[i].consumer);
1574 consumers[i].consumer = NULL;
1575 goto err;
1576 }
1577 }
1578
1579 return 0;
1580
1581 err:
1582 for (i = 0; i < num_consumers && consumers[i].consumer; i++)
1583 regulator_put(consumers[i].consumer);
1584
1585 return ret;
1586 }
1587 EXPORT_SYMBOL_GPL(regulator_bulk_get);
1588
1589 /**
1590 * regulator_bulk_enable - enable multiple regulator consumers
1591 *
1592 * @num_consumers: Number of consumers
1593 * @consumers: Consumer data; clients are stored here.
1594 * @return 0 on success, an errno on failure
1595 *
1596 * This convenience API allows consumers to enable multiple regulator
1597 * clients in a single API call. If any consumers cannot be enabled
1598 * then any others that were enabled will be disabled again prior to
1599 * return.
1600 */
1601 int regulator_bulk_enable(int num_consumers,
1602 struct regulator_bulk_data *consumers)
1603 {
1604 int i;
1605 int ret;
1606
1607 for (i = 0; i < num_consumers; i++) {
1608 ret = regulator_enable(consumers[i].consumer);
1609 if (ret != 0)
1610 goto err;
1611 }
1612
1613 return 0;
1614
1615 err:
1616 printk(KERN_ERR "Failed to enable %s\n", consumers[i].supply);
1617 for (i = 0; i < num_consumers; i++)
1618 regulator_disable(consumers[i].consumer);
1619
1620 return ret;
1621 }
1622 EXPORT_SYMBOL_GPL(regulator_bulk_enable);
1623
1624 /**
1625 * regulator_bulk_disable - disable multiple regulator consumers
1626 *
1627 * @num_consumers: Number of consumers
1628 * @consumers: Consumer data; clients are stored here.
1629 * @return 0 on success, an errno on failure
1630 *
1631 * This convenience API allows consumers to disable multiple regulator
1632 * clients in a single API call. If any consumers cannot be enabled
1633 * then any others that were disabled will be disabled again prior to
1634 * return.
1635 */
1636 int regulator_bulk_disable(int num_consumers,
1637 struct regulator_bulk_data *consumers)
1638 {
1639 int i;
1640 int ret;
1641
1642 for (i = 0; i < num_consumers; i++) {
1643 ret = regulator_disable(consumers[i].consumer);
1644 if (ret != 0)
1645 goto err;
1646 }
1647
1648 return 0;
1649
1650 err:
1651 printk(KERN_ERR "Failed to disable %s\n", consumers[i].supply);
1652 for (i = 0; i < num_consumers; i++)
1653 regulator_enable(consumers[i].consumer);
1654
1655 return ret;
1656 }
1657 EXPORT_SYMBOL_GPL(regulator_bulk_disable);
1658
1659 /**
1660 * regulator_bulk_free - free multiple regulator consumers
1661 *
1662 * @num_consumers: Number of consumers
1663 * @consumers: Consumer data; clients are stored here.
1664 *
1665 * This convenience API allows consumers to free multiple regulator
1666 * clients in a single API call.
1667 */
1668 void regulator_bulk_free(int num_consumers,
1669 struct regulator_bulk_data *consumers)
1670 {
1671 int i;
1672
1673 for (i = 0; i < num_consumers; i++) {
1674 regulator_put(consumers[i].consumer);
1675 consumers[i].consumer = NULL;
1676 }
1677 }
1678 EXPORT_SYMBOL_GPL(regulator_bulk_free);
1679
1680 /**
1681 * regulator_notifier_call_chain - call regulator event notifier
1682 * @regulator: regulator source
1683 * @event: notifier block
1684 * @data:
1685 *
1686 * Called by regulator drivers to notify clients a regulator event has
1687 * occurred. We also notify regulator clients downstream.
1688 */
1689 int regulator_notifier_call_chain(struct regulator_dev *rdev,
1690 unsigned long event, void *data)
1691 {
1692 _notifier_call_chain(rdev, event, data);
1693 return NOTIFY_DONE;
1694
1695 }
1696 EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);
1697
1698 /*
1699 * To avoid cluttering sysfs (and memory) with useless state, only
1700 * create attributes that can be meaningfully displayed.
1701 */
1702 static int add_regulator_attributes(struct regulator_dev *rdev)
1703 {
1704 struct device *dev = &rdev->dev;
1705 struct regulator_ops *ops = rdev->desc->ops;
1706 int status = 0;
1707
1708 /* some attributes need specific methods to be displayed */
1709 if (ops->get_voltage) {
1710 status = device_create_file(dev, &dev_attr_microvolts);
1711 if (status < 0)
1712 return status;
1713 }
1714 if (ops->get_current_limit) {
1715 status = device_create_file(dev, &dev_attr_microamps);
1716 if (status < 0)
1717 return status;
1718 }
1719 if (ops->get_mode) {
1720 status = device_create_file(dev, &dev_attr_opmode);
1721 if (status < 0)
1722 return status;
1723 }
1724 if (ops->is_enabled) {
1725 status = device_create_file(dev, &dev_attr_state);
1726 if (status < 0)
1727 return status;
1728 }
1729
1730 /* some attributes are type-specific */
1731 if (rdev->desc->type == REGULATOR_CURRENT) {
1732 status = device_create_file(dev, &dev_attr_requested_microamps);
1733 if (status < 0)
1734 return status;
1735 }
1736
1737 /* all the other attributes exist to support constraints;
1738 * don't show them if there are no constraints, or if the
1739 * relevant supporting methods are missing.
1740 */
1741 if (!rdev->constraints)
1742 return status;
1743
1744 /* constraints need specific supporting methods */
1745 if (ops->set_voltage) {
1746 status = device_create_file(dev, &dev_attr_min_microvolts);
1747 if (status < 0)
1748 return status;
1749 status = device_create_file(dev, &dev_attr_max_microvolts);
1750 if (status < 0)
1751 return status;
1752 }
1753 if (ops->set_current_limit) {
1754 status = device_create_file(dev, &dev_attr_min_microamps);
1755 if (status < 0)
1756 return status;
1757 status = device_create_file(dev, &dev_attr_max_microamps);
1758 if (status < 0)
1759 return status;
1760 }
1761
1762 /* suspend mode constraints need multiple supporting methods */
1763 if (!(ops->set_suspend_enable && ops->set_suspend_disable))
1764 return status;
1765
1766 status = device_create_file(dev, &dev_attr_suspend_standby_state);
1767 if (status < 0)
1768 return status;
1769 status = device_create_file(dev, &dev_attr_suspend_mem_state);
1770 if (status < 0)
1771 return status;
1772 status = device_create_file(dev, &dev_attr_suspend_disk_state);
1773 if (status < 0)
1774 return status;
1775
1776 if (ops->set_suspend_voltage) {
1777 status = device_create_file(dev,
1778 &dev_attr_suspend_standby_microvolts);
1779 if (status < 0)
1780 return status;
1781 status = device_create_file(dev,
1782 &dev_attr_suspend_mem_microvolts);
1783 if (status < 0)
1784 return status;
1785 status = device_create_file(dev,
1786 &dev_attr_suspend_disk_microvolts);
1787 if (status < 0)
1788 return status;
1789 }
1790
1791 if (ops->set_suspend_mode) {
1792 status = device_create_file(dev,
1793 &dev_attr_suspend_standby_mode);
1794 if (status < 0)
1795 return status;
1796 status = device_create_file(dev,
1797 &dev_attr_suspend_mem_mode);
1798 if (status < 0)
1799 return status;
1800 status = device_create_file(dev,
1801 &dev_attr_suspend_disk_mode);
1802 if (status < 0)
1803 return status;
1804 }
1805
1806 return status;
1807 }
1808
1809 /**
1810 * regulator_register - register regulator
1811 * @regulator: regulator source
1812 * @reg_data: private regulator data
1813 *
1814 * Called by regulator drivers to register a regulator.
1815 * Returns 0 on success.
1816 */
1817 struct regulator_dev *regulator_register(struct regulator_desc *regulator_desc,
1818 struct device *dev, void *driver_data)
1819 {
1820 static atomic_t regulator_no = ATOMIC_INIT(0);
1821 struct regulator_dev *rdev;
1822 struct regulator_init_data *init_data = dev->platform_data;
1823 int ret, i;
1824
1825 if (regulator_desc == NULL)
1826 return ERR_PTR(-EINVAL);
1827
1828 if (regulator_desc->name == NULL || regulator_desc->ops == NULL)
1829 return ERR_PTR(-EINVAL);
1830
1831 if (!regulator_desc->type == REGULATOR_VOLTAGE &&
1832 !regulator_desc->type == REGULATOR_CURRENT)
1833 return ERR_PTR(-EINVAL);
1834
1835 if (!init_data)
1836 return ERR_PTR(-EINVAL);
1837
1838 rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
1839 if (rdev == NULL)
1840 return ERR_PTR(-ENOMEM);
1841
1842 mutex_lock(&regulator_list_mutex);
1843
1844 mutex_init(&rdev->mutex);
1845 rdev->reg_data = driver_data;
1846 rdev->owner = regulator_desc->owner;
1847 rdev->desc = regulator_desc;
1848 INIT_LIST_HEAD(&rdev->consumer_list);
1849 INIT_LIST_HEAD(&rdev->supply_list);
1850 INIT_LIST_HEAD(&rdev->list);
1851 INIT_LIST_HEAD(&rdev->slist);
1852 BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
1853
1854 /* preform any regulator specific init */
1855 if (init_data->regulator_init) {
1856 ret = init_data->regulator_init(rdev->reg_data);
1857 if (ret < 0)
1858 goto clean;
1859 }
1860
1861 /* register with sysfs */
1862 rdev->dev.class = &regulator_class;
1863 rdev->dev.parent = dev;
1864 dev_set_name(&rdev->dev, "regulator.%d",
1865 atomic_inc_return(&regulator_no) - 1);
1866 ret = device_register(&rdev->dev);
1867 if (ret != 0)
1868 goto clean;
1869
1870 dev_set_drvdata(&rdev->dev, rdev);
1871
1872 /* set regulator constraints */
1873 ret = set_machine_constraints(rdev, &init_data->constraints);
1874 if (ret < 0)
1875 goto scrub;
1876
1877 /* add attributes supported by this regulator */
1878 ret = add_regulator_attributes(rdev);
1879 if (ret < 0)
1880 goto scrub;
1881
1882 /* set supply regulator if it exists */
1883 if (init_data->supply_regulator_dev) {
1884 ret = set_supply(rdev,
1885 dev_get_drvdata(init_data->supply_regulator_dev));
1886 if (ret < 0)
1887 goto scrub;
1888 }
1889
1890 /* add consumers devices */
1891 for (i = 0; i < init_data->num_consumer_supplies; i++) {
1892 ret = set_consumer_device_supply(rdev,
1893 init_data->consumer_supplies[i].dev,
1894 init_data->consumer_supplies[i].supply);
1895 if (ret < 0) {
1896 for (--i; i >= 0; i--)
1897 unset_consumer_device_supply(rdev,
1898 init_data->consumer_supplies[i].dev);
1899 goto scrub;
1900 }
1901 }
1902
1903 list_add(&rdev->list, &regulator_list);
1904 out:
1905 mutex_unlock(&regulator_list_mutex);
1906 return rdev;
1907
1908 scrub:
1909 device_unregister(&rdev->dev);
1910 clean:
1911 kfree(rdev);
1912 rdev = ERR_PTR(ret);
1913 goto out;
1914 }
1915 EXPORT_SYMBOL_GPL(regulator_register);
1916
1917 /**
1918 * regulator_unregister - unregister regulator
1919 * @regulator: regulator source
1920 *
1921 * Called by regulator drivers to unregister a regulator.
1922 */
1923 void regulator_unregister(struct regulator_dev *rdev)
1924 {
1925 if (rdev == NULL)
1926 return;
1927
1928 mutex_lock(&regulator_list_mutex);
1929 list_del(&rdev->list);
1930 if (rdev->supply)
1931 sysfs_remove_link(&rdev->dev.kobj, "supply");
1932 device_unregister(&rdev->dev);
1933 mutex_unlock(&regulator_list_mutex);
1934 }
1935 EXPORT_SYMBOL_GPL(regulator_unregister);
1936
1937 /**
1938 * regulator_suspend_prepare: prepare regulators for system wide suspend
1939 * @state: system suspend state
1940 *
1941 * Configure each regulator with it's suspend operating parameters for state.
1942 * This will usually be called by machine suspend code prior to supending.
1943 */
1944 int regulator_suspend_prepare(suspend_state_t state)
1945 {
1946 struct regulator_dev *rdev;
1947 int ret = 0;
1948
1949 /* ON is handled by regulator active state */
1950 if (state == PM_SUSPEND_ON)
1951 return -EINVAL;
1952
1953 mutex_lock(&regulator_list_mutex);
1954 list_for_each_entry(rdev, &regulator_list, list) {
1955
1956 mutex_lock(&rdev->mutex);
1957 ret = suspend_prepare(rdev, state);
1958 mutex_unlock(&rdev->mutex);
1959
1960 if (ret < 0) {
1961 printk(KERN_ERR "%s: failed to prepare %s\n",
1962 __func__, rdev->desc->name);
1963 goto out;
1964 }
1965 }
1966 out:
1967 mutex_unlock(&regulator_list_mutex);
1968 return ret;
1969 }
1970 EXPORT_SYMBOL_GPL(regulator_suspend_prepare);
1971
1972 /**
1973 * rdev_get_drvdata - get rdev regulator driver data
1974 * @regulator: regulator
1975 *
1976 * Get rdev regulator driver private data. This call can be used in the
1977 * regulator driver context.
1978 */
1979 void *rdev_get_drvdata(struct regulator_dev *rdev)
1980 {
1981 return rdev->reg_data;
1982 }
1983 EXPORT_SYMBOL_GPL(rdev_get_drvdata);
1984
1985 /**
1986 * regulator_get_drvdata - get regulator driver data
1987 * @regulator: regulator
1988 *
1989 * Get regulator driver private data. This call can be used in the consumer
1990 * driver context when non API regulator specific functions need to be called.
1991 */
1992 void *regulator_get_drvdata(struct regulator *regulator)
1993 {
1994 return regulator->rdev->reg_data;
1995 }
1996 EXPORT_SYMBOL_GPL(regulator_get_drvdata);
1997
1998 /**
1999 * regulator_set_drvdata - set regulator driver data
2000 * @regulator: regulator
2001 * @data: data
2002 */
2003 void regulator_set_drvdata(struct regulator *regulator, void *data)
2004 {
2005 regulator->rdev->reg_data = data;
2006 }
2007 EXPORT_SYMBOL_GPL(regulator_set_drvdata);
2008
2009 /**
2010 * regulator_get_id - get regulator ID
2011 * @regulator: regulator
2012 */
2013 int rdev_get_id(struct regulator_dev *rdev)
2014 {
2015 return rdev->desc->id;
2016 }
2017 EXPORT_SYMBOL_GPL(rdev_get_id);
2018
2019 struct device *rdev_get_dev(struct regulator_dev *rdev)
2020 {
2021 return &rdev->dev;
2022 }
2023 EXPORT_SYMBOL_GPL(rdev_get_dev);
2024
2025 void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
2026 {
2027 return reg_init_data->driver_data;
2028 }
2029 EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);
2030
2031 static int __init regulator_init(void)
2032 {
2033 printk(KERN_INFO "regulator: core version %s\n", REGULATOR_VERSION);
2034 return class_register(&regulator_class);
2035 }
2036
2037 /* init early to allow our consumers to complete system booting */
2038 core_initcall(regulator_init);
This page took 0.088443 seconds and 6 git commands to generate.