Merge tag 'char-misc-3.3-rc3' of git://git.kernel.org/pub/scm/linux/kernel/git/gregkh...
[deliverable/linux.git] / drivers / regulator / core.c
1 /*
2 * core.c -- Voltage/Current Regulator framework.
3 *
4 * Copyright 2007, 2008 Wolfson Microelectronics PLC.
5 * Copyright 2008 SlimLogic Ltd.
6 *
7 * Author: Liam Girdwood <lrg@slimlogic.co.uk>
8 *
9 * This program is free software; you can redistribute it and/or modify it
10 * under the terms of the GNU General Public License as published by the
11 * Free Software Foundation; either version 2 of the License, or (at your
12 * option) any later version.
13 *
14 */
15
16 #define pr_fmt(fmt) "%s: " fmt, __func__
17
18 #include <linux/kernel.h>
19 #include <linux/init.h>
20 #include <linux/debugfs.h>
21 #include <linux/device.h>
22 #include <linux/slab.h>
23 #include <linux/async.h>
24 #include <linux/err.h>
25 #include <linux/mutex.h>
26 #include <linux/suspend.h>
27 #include <linux/delay.h>
28 #include <linux/of.h>
29 #include <linux/regulator/of_regulator.h>
30 #include <linux/regulator/consumer.h>
31 #include <linux/regulator/driver.h>
32 #include <linux/regulator/machine.h>
33 #include <linux/module.h>
34
35 #define CREATE_TRACE_POINTS
36 #include <trace/events/regulator.h>
37
38 #include "dummy.h"
39
40 #define rdev_crit(rdev, fmt, ...) \
41 pr_crit("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
42 #define rdev_err(rdev, fmt, ...) \
43 pr_err("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
44 #define rdev_warn(rdev, fmt, ...) \
45 pr_warn("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
46 #define rdev_info(rdev, fmt, ...) \
47 pr_info("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
48 #define rdev_dbg(rdev, fmt, ...) \
49 pr_debug("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
50
51 static DEFINE_MUTEX(regulator_list_mutex);
52 static LIST_HEAD(regulator_list);
53 static LIST_HEAD(regulator_map_list);
54 static bool has_full_constraints;
55 static bool board_wants_dummy_regulator;
56
57 #ifdef CONFIG_DEBUG_FS
58 static struct dentry *debugfs_root;
59 #endif
60
61 /*
62 * struct regulator_map
63 *
64 * Used to provide symbolic supply names to devices.
65 */
66 struct regulator_map {
67 struct list_head list;
68 const char *dev_name; /* The dev_name() for the consumer */
69 const char *supply;
70 struct regulator_dev *regulator;
71 };
72
73 /*
74 * struct regulator
75 *
76 * One for each consumer device.
77 */
78 struct regulator {
79 struct device *dev;
80 struct list_head list;
81 int uA_load;
82 int min_uV;
83 int max_uV;
84 char *supply_name;
85 struct device_attribute dev_attr;
86 struct regulator_dev *rdev;
87 #ifdef CONFIG_DEBUG_FS
88 struct dentry *debugfs;
89 #endif
90 };
91
92 static int _regulator_is_enabled(struct regulator_dev *rdev);
93 static int _regulator_disable(struct regulator_dev *rdev);
94 static int _regulator_get_voltage(struct regulator_dev *rdev);
95 static int _regulator_get_current_limit(struct regulator_dev *rdev);
96 static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
97 static void _notifier_call_chain(struct regulator_dev *rdev,
98 unsigned long event, void *data);
99 static int _regulator_do_set_voltage(struct regulator_dev *rdev,
100 int min_uV, int max_uV);
101 static struct regulator *create_regulator(struct regulator_dev *rdev,
102 struct device *dev,
103 const char *supply_name);
104
105 static const char *rdev_get_name(struct regulator_dev *rdev)
106 {
107 if (rdev->constraints && rdev->constraints->name)
108 return rdev->constraints->name;
109 else if (rdev->desc->name)
110 return rdev->desc->name;
111 else
112 return "";
113 }
114
115 /* gets the regulator for a given consumer device */
116 static struct regulator *get_device_regulator(struct device *dev)
117 {
118 struct regulator *regulator = NULL;
119 struct regulator_dev *rdev;
120
121 mutex_lock(&regulator_list_mutex);
122 list_for_each_entry(rdev, &regulator_list, list) {
123 mutex_lock(&rdev->mutex);
124 list_for_each_entry(regulator, &rdev->consumer_list, list) {
125 if (regulator->dev == dev) {
126 mutex_unlock(&rdev->mutex);
127 mutex_unlock(&regulator_list_mutex);
128 return regulator;
129 }
130 }
131 mutex_unlock(&rdev->mutex);
132 }
133 mutex_unlock(&regulator_list_mutex);
134 return NULL;
135 }
136
137 /**
138 * of_get_regulator - get a regulator device node based on supply name
139 * @dev: Device pointer for the consumer (of regulator) device
140 * @supply: regulator supply name
141 *
142 * Extract the regulator device node corresponding to the supply name.
143 * retruns the device node corresponding to the regulator if found, else
144 * returns NULL.
145 */
146 static struct device_node *of_get_regulator(struct device *dev, const char *supply)
147 {
148 struct device_node *regnode = NULL;
149 char prop_name[32]; /* 32 is max size of property name */
150
151 dev_dbg(dev, "Looking up %s-supply from device tree\n", supply);
152
153 snprintf(prop_name, 32, "%s-supply", supply);
154 regnode = of_parse_phandle(dev->of_node, prop_name, 0);
155
156 if (!regnode) {
157 dev_warn(dev, "%s property in node %s references invalid phandle",
158 prop_name, dev->of_node->full_name);
159 return NULL;
160 }
161 return regnode;
162 }
163
164 /* Platform voltage constraint check */
165 static int regulator_check_voltage(struct regulator_dev *rdev,
166 int *min_uV, int *max_uV)
167 {
168 BUG_ON(*min_uV > *max_uV);
169
170 if (!rdev->constraints) {
171 rdev_err(rdev, "no constraints\n");
172 return -ENODEV;
173 }
174 if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_VOLTAGE)) {
175 rdev_err(rdev, "operation not allowed\n");
176 return -EPERM;
177 }
178
179 if (*max_uV > rdev->constraints->max_uV)
180 *max_uV = rdev->constraints->max_uV;
181 if (*min_uV < rdev->constraints->min_uV)
182 *min_uV = rdev->constraints->min_uV;
183
184 if (*min_uV > *max_uV) {
185 rdev_err(rdev, "unsupportable voltage range: %d-%duV\n",
186 *min_uV, *max_uV);
187 return -EINVAL;
188 }
189
190 return 0;
191 }
192
193 /* Make sure we select a voltage that suits the needs of all
194 * regulator consumers
195 */
196 static int regulator_check_consumers(struct regulator_dev *rdev,
197 int *min_uV, int *max_uV)
198 {
199 struct regulator *regulator;
200
201 list_for_each_entry(regulator, &rdev->consumer_list, list) {
202 /*
203 * Assume consumers that didn't say anything are OK
204 * with anything in the constraint range.
205 */
206 if (!regulator->min_uV && !regulator->max_uV)
207 continue;
208
209 if (*max_uV > regulator->max_uV)
210 *max_uV = regulator->max_uV;
211 if (*min_uV < regulator->min_uV)
212 *min_uV = regulator->min_uV;
213 }
214
215 if (*min_uV > *max_uV)
216 return -EINVAL;
217
218 return 0;
219 }
220
221 /* current constraint check */
222 static int regulator_check_current_limit(struct regulator_dev *rdev,
223 int *min_uA, int *max_uA)
224 {
225 BUG_ON(*min_uA > *max_uA);
226
227 if (!rdev->constraints) {
228 rdev_err(rdev, "no constraints\n");
229 return -ENODEV;
230 }
231 if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_CURRENT)) {
232 rdev_err(rdev, "operation not allowed\n");
233 return -EPERM;
234 }
235
236 if (*max_uA > rdev->constraints->max_uA)
237 *max_uA = rdev->constraints->max_uA;
238 if (*min_uA < rdev->constraints->min_uA)
239 *min_uA = rdev->constraints->min_uA;
240
241 if (*min_uA > *max_uA) {
242 rdev_err(rdev, "unsupportable current range: %d-%duA\n",
243 *min_uA, *max_uA);
244 return -EINVAL;
245 }
246
247 return 0;
248 }
249
250 /* operating mode constraint check */
251 static int regulator_mode_constrain(struct regulator_dev *rdev, int *mode)
252 {
253 switch (*mode) {
254 case REGULATOR_MODE_FAST:
255 case REGULATOR_MODE_NORMAL:
256 case REGULATOR_MODE_IDLE:
257 case REGULATOR_MODE_STANDBY:
258 break;
259 default:
260 rdev_err(rdev, "invalid mode %x specified\n", *mode);
261 return -EINVAL;
262 }
263
264 if (!rdev->constraints) {
265 rdev_err(rdev, "no constraints\n");
266 return -ENODEV;
267 }
268 if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_MODE)) {
269 rdev_err(rdev, "operation not allowed\n");
270 return -EPERM;
271 }
272
273 /* The modes are bitmasks, the most power hungry modes having
274 * the lowest values. If the requested mode isn't supported
275 * try higher modes. */
276 while (*mode) {
277 if (rdev->constraints->valid_modes_mask & *mode)
278 return 0;
279 *mode /= 2;
280 }
281
282 return -EINVAL;
283 }
284
285 /* dynamic regulator mode switching constraint check */
286 static int regulator_check_drms(struct regulator_dev *rdev)
287 {
288 if (!rdev->constraints) {
289 rdev_err(rdev, "no constraints\n");
290 return -ENODEV;
291 }
292 if (!(rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS)) {
293 rdev_err(rdev, "operation not allowed\n");
294 return -EPERM;
295 }
296 return 0;
297 }
298
299 static ssize_t device_requested_uA_show(struct device *dev,
300 struct device_attribute *attr, char *buf)
301 {
302 struct regulator *regulator;
303
304 regulator = get_device_regulator(dev);
305 if (regulator == NULL)
306 return 0;
307
308 return sprintf(buf, "%d\n", regulator->uA_load);
309 }
310
311 static ssize_t regulator_uV_show(struct device *dev,
312 struct device_attribute *attr, char *buf)
313 {
314 struct regulator_dev *rdev = dev_get_drvdata(dev);
315 ssize_t ret;
316
317 mutex_lock(&rdev->mutex);
318 ret = sprintf(buf, "%d\n", _regulator_get_voltage(rdev));
319 mutex_unlock(&rdev->mutex);
320
321 return ret;
322 }
323 static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL);
324
325 static ssize_t regulator_uA_show(struct device *dev,
326 struct device_attribute *attr, char *buf)
327 {
328 struct regulator_dev *rdev = dev_get_drvdata(dev);
329
330 return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
331 }
332 static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL);
333
334 static ssize_t regulator_name_show(struct device *dev,
335 struct device_attribute *attr, char *buf)
336 {
337 struct regulator_dev *rdev = dev_get_drvdata(dev);
338
339 return sprintf(buf, "%s\n", rdev_get_name(rdev));
340 }
341
342 static ssize_t regulator_print_opmode(char *buf, int mode)
343 {
344 switch (mode) {
345 case REGULATOR_MODE_FAST:
346 return sprintf(buf, "fast\n");
347 case REGULATOR_MODE_NORMAL:
348 return sprintf(buf, "normal\n");
349 case REGULATOR_MODE_IDLE:
350 return sprintf(buf, "idle\n");
351 case REGULATOR_MODE_STANDBY:
352 return sprintf(buf, "standby\n");
353 }
354 return sprintf(buf, "unknown\n");
355 }
356
357 static ssize_t regulator_opmode_show(struct device *dev,
358 struct device_attribute *attr, char *buf)
359 {
360 struct regulator_dev *rdev = dev_get_drvdata(dev);
361
362 return regulator_print_opmode(buf, _regulator_get_mode(rdev));
363 }
364 static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL);
365
366 static ssize_t regulator_print_state(char *buf, int state)
367 {
368 if (state > 0)
369 return sprintf(buf, "enabled\n");
370 else if (state == 0)
371 return sprintf(buf, "disabled\n");
372 else
373 return sprintf(buf, "unknown\n");
374 }
375
376 static ssize_t regulator_state_show(struct device *dev,
377 struct device_attribute *attr, char *buf)
378 {
379 struct regulator_dev *rdev = dev_get_drvdata(dev);
380 ssize_t ret;
381
382 mutex_lock(&rdev->mutex);
383 ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
384 mutex_unlock(&rdev->mutex);
385
386 return ret;
387 }
388 static DEVICE_ATTR(state, 0444, regulator_state_show, NULL);
389
390 static ssize_t regulator_status_show(struct device *dev,
391 struct device_attribute *attr, char *buf)
392 {
393 struct regulator_dev *rdev = dev_get_drvdata(dev);
394 int status;
395 char *label;
396
397 status = rdev->desc->ops->get_status(rdev);
398 if (status < 0)
399 return status;
400
401 switch (status) {
402 case REGULATOR_STATUS_OFF:
403 label = "off";
404 break;
405 case REGULATOR_STATUS_ON:
406 label = "on";
407 break;
408 case REGULATOR_STATUS_ERROR:
409 label = "error";
410 break;
411 case REGULATOR_STATUS_FAST:
412 label = "fast";
413 break;
414 case REGULATOR_STATUS_NORMAL:
415 label = "normal";
416 break;
417 case REGULATOR_STATUS_IDLE:
418 label = "idle";
419 break;
420 case REGULATOR_STATUS_STANDBY:
421 label = "standby";
422 break;
423 default:
424 return -ERANGE;
425 }
426
427 return sprintf(buf, "%s\n", label);
428 }
429 static DEVICE_ATTR(status, 0444, regulator_status_show, NULL);
430
431 static ssize_t regulator_min_uA_show(struct device *dev,
432 struct device_attribute *attr, char *buf)
433 {
434 struct regulator_dev *rdev = dev_get_drvdata(dev);
435
436 if (!rdev->constraints)
437 return sprintf(buf, "constraint not defined\n");
438
439 return sprintf(buf, "%d\n", rdev->constraints->min_uA);
440 }
441 static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL);
442
443 static ssize_t regulator_max_uA_show(struct device *dev,
444 struct device_attribute *attr, char *buf)
445 {
446 struct regulator_dev *rdev = dev_get_drvdata(dev);
447
448 if (!rdev->constraints)
449 return sprintf(buf, "constraint not defined\n");
450
451 return sprintf(buf, "%d\n", rdev->constraints->max_uA);
452 }
453 static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL);
454
455 static ssize_t regulator_min_uV_show(struct device *dev,
456 struct device_attribute *attr, char *buf)
457 {
458 struct regulator_dev *rdev = dev_get_drvdata(dev);
459
460 if (!rdev->constraints)
461 return sprintf(buf, "constraint not defined\n");
462
463 return sprintf(buf, "%d\n", rdev->constraints->min_uV);
464 }
465 static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL);
466
467 static ssize_t regulator_max_uV_show(struct device *dev,
468 struct device_attribute *attr, char *buf)
469 {
470 struct regulator_dev *rdev = dev_get_drvdata(dev);
471
472 if (!rdev->constraints)
473 return sprintf(buf, "constraint not defined\n");
474
475 return sprintf(buf, "%d\n", rdev->constraints->max_uV);
476 }
477 static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL);
478
479 static ssize_t regulator_total_uA_show(struct device *dev,
480 struct device_attribute *attr, char *buf)
481 {
482 struct regulator_dev *rdev = dev_get_drvdata(dev);
483 struct regulator *regulator;
484 int uA = 0;
485
486 mutex_lock(&rdev->mutex);
487 list_for_each_entry(regulator, &rdev->consumer_list, list)
488 uA += regulator->uA_load;
489 mutex_unlock(&rdev->mutex);
490 return sprintf(buf, "%d\n", uA);
491 }
492 static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL);
493
494 static ssize_t regulator_num_users_show(struct device *dev,
495 struct device_attribute *attr, char *buf)
496 {
497 struct regulator_dev *rdev = dev_get_drvdata(dev);
498 return sprintf(buf, "%d\n", rdev->use_count);
499 }
500
501 static ssize_t regulator_type_show(struct device *dev,
502 struct device_attribute *attr, char *buf)
503 {
504 struct regulator_dev *rdev = dev_get_drvdata(dev);
505
506 switch (rdev->desc->type) {
507 case REGULATOR_VOLTAGE:
508 return sprintf(buf, "voltage\n");
509 case REGULATOR_CURRENT:
510 return sprintf(buf, "current\n");
511 }
512 return sprintf(buf, "unknown\n");
513 }
514
515 static ssize_t regulator_suspend_mem_uV_show(struct device *dev,
516 struct device_attribute *attr, char *buf)
517 {
518 struct regulator_dev *rdev = dev_get_drvdata(dev);
519
520 return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
521 }
522 static DEVICE_ATTR(suspend_mem_microvolts, 0444,
523 regulator_suspend_mem_uV_show, NULL);
524
525 static ssize_t regulator_suspend_disk_uV_show(struct device *dev,
526 struct device_attribute *attr, char *buf)
527 {
528 struct regulator_dev *rdev = dev_get_drvdata(dev);
529
530 return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
531 }
532 static DEVICE_ATTR(suspend_disk_microvolts, 0444,
533 regulator_suspend_disk_uV_show, NULL);
534
535 static ssize_t regulator_suspend_standby_uV_show(struct device *dev,
536 struct device_attribute *attr, char *buf)
537 {
538 struct regulator_dev *rdev = dev_get_drvdata(dev);
539
540 return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
541 }
542 static DEVICE_ATTR(suspend_standby_microvolts, 0444,
543 regulator_suspend_standby_uV_show, NULL);
544
545 static ssize_t regulator_suspend_mem_mode_show(struct device *dev,
546 struct device_attribute *attr, char *buf)
547 {
548 struct regulator_dev *rdev = dev_get_drvdata(dev);
549
550 return regulator_print_opmode(buf,
551 rdev->constraints->state_mem.mode);
552 }
553 static DEVICE_ATTR(suspend_mem_mode, 0444,
554 regulator_suspend_mem_mode_show, NULL);
555
556 static ssize_t regulator_suspend_disk_mode_show(struct device *dev,
557 struct device_attribute *attr, char *buf)
558 {
559 struct regulator_dev *rdev = dev_get_drvdata(dev);
560
561 return regulator_print_opmode(buf,
562 rdev->constraints->state_disk.mode);
563 }
564 static DEVICE_ATTR(suspend_disk_mode, 0444,
565 regulator_suspend_disk_mode_show, NULL);
566
567 static ssize_t regulator_suspend_standby_mode_show(struct device *dev,
568 struct device_attribute *attr, char *buf)
569 {
570 struct regulator_dev *rdev = dev_get_drvdata(dev);
571
572 return regulator_print_opmode(buf,
573 rdev->constraints->state_standby.mode);
574 }
575 static DEVICE_ATTR(suspend_standby_mode, 0444,
576 regulator_suspend_standby_mode_show, NULL);
577
578 static ssize_t regulator_suspend_mem_state_show(struct device *dev,
579 struct device_attribute *attr, char *buf)
580 {
581 struct regulator_dev *rdev = dev_get_drvdata(dev);
582
583 return regulator_print_state(buf,
584 rdev->constraints->state_mem.enabled);
585 }
586 static DEVICE_ATTR(suspend_mem_state, 0444,
587 regulator_suspend_mem_state_show, NULL);
588
589 static ssize_t regulator_suspend_disk_state_show(struct device *dev,
590 struct device_attribute *attr, char *buf)
591 {
592 struct regulator_dev *rdev = dev_get_drvdata(dev);
593
594 return regulator_print_state(buf,
595 rdev->constraints->state_disk.enabled);
596 }
597 static DEVICE_ATTR(suspend_disk_state, 0444,
598 regulator_suspend_disk_state_show, NULL);
599
600 static ssize_t regulator_suspend_standby_state_show(struct device *dev,
601 struct device_attribute *attr, char *buf)
602 {
603 struct regulator_dev *rdev = dev_get_drvdata(dev);
604
605 return regulator_print_state(buf,
606 rdev->constraints->state_standby.enabled);
607 }
608 static DEVICE_ATTR(suspend_standby_state, 0444,
609 regulator_suspend_standby_state_show, NULL);
610
611
612 /*
613 * These are the only attributes are present for all regulators.
614 * Other attributes are a function of regulator functionality.
615 */
616 static struct device_attribute regulator_dev_attrs[] = {
617 __ATTR(name, 0444, regulator_name_show, NULL),
618 __ATTR(num_users, 0444, regulator_num_users_show, NULL),
619 __ATTR(type, 0444, regulator_type_show, NULL),
620 __ATTR_NULL,
621 };
622
623 static void regulator_dev_release(struct device *dev)
624 {
625 struct regulator_dev *rdev = dev_get_drvdata(dev);
626 kfree(rdev);
627 }
628
629 static struct class regulator_class = {
630 .name = "regulator",
631 .dev_release = regulator_dev_release,
632 .dev_attrs = regulator_dev_attrs,
633 };
634
635 /* Calculate the new optimum regulator operating mode based on the new total
636 * consumer load. All locks held by caller */
637 static void drms_uA_update(struct regulator_dev *rdev)
638 {
639 struct regulator *sibling;
640 int current_uA = 0, output_uV, input_uV, err;
641 unsigned int mode;
642
643 err = regulator_check_drms(rdev);
644 if (err < 0 || !rdev->desc->ops->get_optimum_mode ||
645 (!rdev->desc->ops->get_voltage &&
646 !rdev->desc->ops->get_voltage_sel) ||
647 !rdev->desc->ops->set_mode)
648 return;
649
650 /* get output voltage */
651 output_uV = _regulator_get_voltage(rdev);
652 if (output_uV <= 0)
653 return;
654
655 /* get input voltage */
656 input_uV = 0;
657 if (rdev->supply)
658 input_uV = _regulator_get_voltage(rdev);
659 if (input_uV <= 0)
660 input_uV = rdev->constraints->input_uV;
661 if (input_uV <= 0)
662 return;
663
664 /* calc total requested load */
665 list_for_each_entry(sibling, &rdev->consumer_list, list)
666 current_uA += sibling->uA_load;
667
668 /* now get the optimum mode for our new total regulator load */
669 mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
670 output_uV, current_uA);
671
672 /* check the new mode is allowed */
673 err = regulator_mode_constrain(rdev, &mode);
674 if (err == 0)
675 rdev->desc->ops->set_mode(rdev, mode);
676 }
677
678 static int suspend_set_state(struct regulator_dev *rdev,
679 struct regulator_state *rstate)
680 {
681 int ret = 0;
682 bool can_set_state;
683
684 can_set_state = rdev->desc->ops->set_suspend_enable &&
685 rdev->desc->ops->set_suspend_disable;
686
687 /* If we have no suspend mode configration don't set anything;
688 * only warn if the driver actually makes the suspend mode
689 * configurable.
690 */
691 if (!rstate->enabled && !rstate->disabled) {
692 if (can_set_state)
693 rdev_warn(rdev, "No configuration\n");
694 return 0;
695 }
696
697 if (rstate->enabled && rstate->disabled) {
698 rdev_err(rdev, "invalid configuration\n");
699 return -EINVAL;
700 }
701
702 if (!can_set_state) {
703 rdev_err(rdev, "no way to set suspend state\n");
704 return -EINVAL;
705 }
706
707 if (rstate->enabled)
708 ret = rdev->desc->ops->set_suspend_enable(rdev);
709 else
710 ret = rdev->desc->ops->set_suspend_disable(rdev);
711 if (ret < 0) {
712 rdev_err(rdev, "failed to enabled/disable\n");
713 return ret;
714 }
715
716 if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
717 ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
718 if (ret < 0) {
719 rdev_err(rdev, "failed to set voltage\n");
720 return ret;
721 }
722 }
723
724 if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
725 ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
726 if (ret < 0) {
727 rdev_err(rdev, "failed to set mode\n");
728 return ret;
729 }
730 }
731 return ret;
732 }
733
734 /* locks held by caller */
735 static int suspend_prepare(struct regulator_dev *rdev, suspend_state_t state)
736 {
737 if (!rdev->constraints)
738 return -EINVAL;
739
740 switch (state) {
741 case PM_SUSPEND_STANDBY:
742 return suspend_set_state(rdev,
743 &rdev->constraints->state_standby);
744 case PM_SUSPEND_MEM:
745 return suspend_set_state(rdev,
746 &rdev->constraints->state_mem);
747 case PM_SUSPEND_MAX:
748 return suspend_set_state(rdev,
749 &rdev->constraints->state_disk);
750 default:
751 return -EINVAL;
752 }
753 }
754
755 static void print_constraints(struct regulator_dev *rdev)
756 {
757 struct regulation_constraints *constraints = rdev->constraints;
758 char buf[80] = "";
759 int count = 0;
760 int ret;
761
762 if (constraints->min_uV && constraints->max_uV) {
763 if (constraints->min_uV == constraints->max_uV)
764 count += sprintf(buf + count, "%d mV ",
765 constraints->min_uV / 1000);
766 else
767 count += sprintf(buf + count, "%d <--> %d mV ",
768 constraints->min_uV / 1000,
769 constraints->max_uV / 1000);
770 }
771
772 if (!constraints->min_uV ||
773 constraints->min_uV != constraints->max_uV) {
774 ret = _regulator_get_voltage(rdev);
775 if (ret > 0)
776 count += sprintf(buf + count, "at %d mV ", ret / 1000);
777 }
778
779 if (constraints->uV_offset)
780 count += sprintf(buf, "%dmV offset ",
781 constraints->uV_offset / 1000);
782
783 if (constraints->min_uA && constraints->max_uA) {
784 if (constraints->min_uA == constraints->max_uA)
785 count += sprintf(buf + count, "%d mA ",
786 constraints->min_uA / 1000);
787 else
788 count += sprintf(buf + count, "%d <--> %d mA ",
789 constraints->min_uA / 1000,
790 constraints->max_uA / 1000);
791 }
792
793 if (!constraints->min_uA ||
794 constraints->min_uA != constraints->max_uA) {
795 ret = _regulator_get_current_limit(rdev);
796 if (ret > 0)
797 count += sprintf(buf + count, "at %d mA ", ret / 1000);
798 }
799
800 if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
801 count += sprintf(buf + count, "fast ");
802 if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
803 count += sprintf(buf + count, "normal ");
804 if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
805 count += sprintf(buf + count, "idle ");
806 if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
807 count += sprintf(buf + count, "standby");
808
809 rdev_info(rdev, "%s\n", buf);
810 }
811
812 static int machine_constraints_voltage(struct regulator_dev *rdev,
813 struct regulation_constraints *constraints)
814 {
815 struct regulator_ops *ops = rdev->desc->ops;
816 int ret;
817
818 /* do we need to apply the constraint voltage */
819 if (rdev->constraints->apply_uV &&
820 rdev->constraints->min_uV == rdev->constraints->max_uV) {
821 ret = _regulator_do_set_voltage(rdev,
822 rdev->constraints->min_uV,
823 rdev->constraints->max_uV);
824 if (ret < 0) {
825 rdev_err(rdev, "failed to apply %duV constraint\n",
826 rdev->constraints->min_uV);
827 return ret;
828 }
829 }
830
831 /* constrain machine-level voltage specs to fit
832 * the actual range supported by this regulator.
833 */
834 if (ops->list_voltage && rdev->desc->n_voltages) {
835 int count = rdev->desc->n_voltages;
836 int i;
837 int min_uV = INT_MAX;
838 int max_uV = INT_MIN;
839 int cmin = constraints->min_uV;
840 int cmax = constraints->max_uV;
841
842 /* it's safe to autoconfigure fixed-voltage supplies
843 and the constraints are used by list_voltage. */
844 if (count == 1 && !cmin) {
845 cmin = 1;
846 cmax = INT_MAX;
847 constraints->min_uV = cmin;
848 constraints->max_uV = cmax;
849 }
850
851 /* voltage constraints are optional */
852 if ((cmin == 0) && (cmax == 0))
853 return 0;
854
855 /* else require explicit machine-level constraints */
856 if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
857 rdev_err(rdev, "invalid voltage constraints\n");
858 return -EINVAL;
859 }
860
861 /* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
862 for (i = 0; i < count; i++) {
863 int value;
864
865 value = ops->list_voltage(rdev, i);
866 if (value <= 0)
867 continue;
868
869 /* maybe adjust [min_uV..max_uV] */
870 if (value >= cmin && value < min_uV)
871 min_uV = value;
872 if (value <= cmax && value > max_uV)
873 max_uV = value;
874 }
875
876 /* final: [min_uV..max_uV] valid iff constraints valid */
877 if (max_uV < min_uV) {
878 rdev_err(rdev, "unsupportable voltage constraints\n");
879 return -EINVAL;
880 }
881
882 /* use regulator's subset of machine constraints */
883 if (constraints->min_uV < min_uV) {
884 rdev_dbg(rdev, "override min_uV, %d -> %d\n",
885 constraints->min_uV, min_uV);
886 constraints->min_uV = min_uV;
887 }
888 if (constraints->max_uV > max_uV) {
889 rdev_dbg(rdev, "override max_uV, %d -> %d\n",
890 constraints->max_uV, max_uV);
891 constraints->max_uV = max_uV;
892 }
893 }
894
895 return 0;
896 }
897
898 /**
899 * set_machine_constraints - sets regulator constraints
900 * @rdev: regulator source
901 * @constraints: constraints to apply
902 *
903 * Allows platform initialisation code to define and constrain
904 * regulator circuits e.g. valid voltage/current ranges, etc. NOTE:
905 * Constraints *must* be set by platform code in order for some
906 * regulator operations to proceed i.e. set_voltage, set_current_limit,
907 * set_mode.
908 */
909 static int set_machine_constraints(struct regulator_dev *rdev,
910 const struct regulation_constraints *constraints)
911 {
912 int ret = 0;
913 struct regulator_ops *ops = rdev->desc->ops;
914
915 if (constraints)
916 rdev->constraints = kmemdup(constraints, sizeof(*constraints),
917 GFP_KERNEL);
918 else
919 rdev->constraints = kzalloc(sizeof(*constraints),
920 GFP_KERNEL);
921 if (!rdev->constraints)
922 return -ENOMEM;
923
924 ret = machine_constraints_voltage(rdev, rdev->constraints);
925 if (ret != 0)
926 goto out;
927
928 /* do we need to setup our suspend state */
929 if (rdev->constraints->initial_state) {
930 ret = suspend_prepare(rdev, rdev->constraints->initial_state);
931 if (ret < 0) {
932 rdev_err(rdev, "failed to set suspend state\n");
933 goto out;
934 }
935 }
936
937 if (rdev->constraints->initial_mode) {
938 if (!ops->set_mode) {
939 rdev_err(rdev, "no set_mode operation\n");
940 ret = -EINVAL;
941 goto out;
942 }
943
944 ret = ops->set_mode(rdev, rdev->constraints->initial_mode);
945 if (ret < 0) {
946 rdev_err(rdev, "failed to set initial mode: %d\n", ret);
947 goto out;
948 }
949 }
950
951 /* If the constraints say the regulator should be on at this point
952 * and we have control then make sure it is enabled.
953 */
954 if ((rdev->constraints->always_on || rdev->constraints->boot_on) &&
955 ops->enable) {
956 ret = ops->enable(rdev);
957 if (ret < 0) {
958 rdev_err(rdev, "failed to enable\n");
959 goto out;
960 }
961 }
962
963 print_constraints(rdev);
964 return 0;
965 out:
966 kfree(rdev->constraints);
967 rdev->constraints = NULL;
968 return ret;
969 }
970
971 /**
972 * set_supply - set regulator supply regulator
973 * @rdev: regulator name
974 * @supply_rdev: supply regulator name
975 *
976 * Called by platform initialisation code to set the supply regulator for this
977 * regulator. This ensures that a regulators supply will also be enabled by the
978 * core if it's child is enabled.
979 */
980 static int set_supply(struct regulator_dev *rdev,
981 struct regulator_dev *supply_rdev)
982 {
983 int err;
984
985 rdev_info(rdev, "supplied by %s\n", rdev_get_name(supply_rdev));
986
987 rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY");
988 if (rdev->supply == NULL) {
989 err = -ENOMEM;
990 return err;
991 }
992
993 return 0;
994 }
995
996 /**
997 * set_consumer_device_supply - Bind a regulator to a symbolic supply
998 * @rdev: regulator source
999 * @consumer_dev: device the supply applies to
1000 * @consumer_dev_name: dev_name() string for device supply applies to
1001 * @supply: symbolic name for supply
1002 *
1003 * Allows platform initialisation code to map physical regulator
1004 * sources to symbolic names for supplies for use by devices. Devices
1005 * should use these symbolic names to request regulators, avoiding the
1006 * need to provide board-specific regulator names as platform data.
1007 *
1008 * Only one of consumer_dev and consumer_dev_name may be specified.
1009 */
1010 static int set_consumer_device_supply(struct regulator_dev *rdev,
1011 struct device *consumer_dev, const char *consumer_dev_name,
1012 const char *supply)
1013 {
1014 struct regulator_map *node;
1015 int has_dev;
1016
1017 if (consumer_dev && consumer_dev_name)
1018 return -EINVAL;
1019
1020 if (!consumer_dev_name && consumer_dev)
1021 consumer_dev_name = dev_name(consumer_dev);
1022
1023 if (supply == NULL)
1024 return -EINVAL;
1025
1026 if (consumer_dev_name != NULL)
1027 has_dev = 1;
1028 else
1029 has_dev = 0;
1030
1031 list_for_each_entry(node, &regulator_map_list, list) {
1032 if (node->dev_name && consumer_dev_name) {
1033 if (strcmp(node->dev_name, consumer_dev_name) != 0)
1034 continue;
1035 } else if (node->dev_name || consumer_dev_name) {
1036 continue;
1037 }
1038
1039 if (strcmp(node->supply, supply) != 0)
1040 continue;
1041
1042 dev_dbg(consumer_dev, "%s/%s is '%s' supply; fail %s/%s\n",
1043 dev_name(&node->regulator->dev),
1044 node->regulator->desc->name,
1045 supply,
1046 dev_name(&rdev->dev), rdev_get_name(rdev));
1047 return -EBUSY;
1048 }
1049
1050 node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
1051 if (node == NULL)
1052 return -ENOMEM;
1053
1054 node->regulator = rdev;
1055 node->supply = supply;
1056
1057 if (has_dev) {
1058 node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
1059 if (node->dev_name == NULL) {
1060 kfree(node);
1061 return -ENOMEM;
1062 }
1063 }
1064
1065 list_add(&node->list, &regulator_map_list);
1066 return 0;
1067 }
1068
1069 static void unset_regulator_supplies(struct regulator_dev *rdev)
1070 {
1071 struct regulator_map *node, *n;
1072
1073 list_for_each_entry_safe(node, n, &regulator_map_list, list) {
1074 if (rdev == node->regulator) {
1075 list_del(&node->list);
1076 kfree(node->dev_name);
1077 kfree(node);
1078 }
1079 }
1080 }
1081
1082 #define REG_STR_SIZE 64
1083
1084 static struct regulator *create_regulator(struct regulator_dev *rdev,
1085 struct device *dev,
1086 const char *supply_name)
1087 {
1088 struct regulator *regulator;
1089 char buf[REG_STR_SIZE];
1090 int err, size;
1091
1092 regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
1093 if (regulator == NULL)
1094 return NULL;
1095
1096 mutex_lock(&rdev->mutex);
1097 regulator->rdev = rdev;
1098 list_add(&regulator->list, &rdev->consumer_list);
1099
1100 if (dev) {
1101 /* create a 'requested_microamps_name' sysfs entry */
1102 size = scnprintf(buf, REG_STR_SIZE,
1103 "microamps_requested_%s-%s",
1104 dev_name(dev), supply_name);
1105 if (size >= REG_STR_SIZE)
1106 goto overflow_err;
1107
1108 regulator->dev = dev;
1109 sysfs_attr_init(&regulator->dev_attr.attr);
1110 regulator->dev_attr.attr.name = kstrdup(buf, GFP_KERNEL);
1111 if (regulator->dev_attr.attr.name == NULL)
1112 goto attr_name_err;
1113
1114 regulator->dev_attr.attr.mode = 0444;
1115 regulator->dev_attr.show = device_requested_uA_show;
1116 err = device_create_file(dev, &regulator->dev_attr);
1117 if (err < 0) {
1118 rdev_warn(rdev, "could not add regulator_dev requested microamps sysfs entry\n");
1119 goto attr_name_err;
1120 }
1121
1122 /* also add a link to the device sysfs entry */
1123 size = scnprintf(buf, REG_STR_SIZE, "%s-%s",
1124 dev->kobj.name, supply_name);
1125 if (size >= REG_STR_SIZE)
1126 goto attr_err;
1127
1128 regulator->supply_name = kstrdup(buf, GFP_KERNEL);
1129 if (regulator->supply_name == NULL)
1130 goto attr_err;
1131
1132 err = sysfs_create_link(&rdev->dev.kobj, &dev->kobj,
1133 buf);
1134 if (err) {
1135 rdev_warn(rdev, "could not add device link %s err %d\n",
1136 dev->kobj.name, err);
1137 goto link_name_err;
1138 }
1139 } else {
1140 regulator->supply_name = kstrdup(supply_name, GFP_KERNEL);
1141 if (regulator->supply_name == NULL)
1142 goto attr_err;
1143 }
1144
1145 #ifdef CONFIG_DEBUG_FS
1146 regulator->debugfs = debugfs_create_dir(regulator->supply_name,
1147 rdev->debugfs);
1148 if (IS_ERR_OR_NULL(regulator->debugfs)) {
1149 rdev_warn(rdev, "Failed to create debugfs directory\n");
1150 regulator->debugfs = NULL;
1151 } else {
1152 debugfs_create_u32("uA_load", 0444, regulator->debugfs,
1153 &regulator->uA_load);
1154 debugfs_create_u32("min_uV", 0444, regulator->debugfs,
1155 &regulator->min_uV);
1156 debugfs_create_u32("max_uV", 0444, regulator->debugfs,
1157 &regulator->max_uV);
1158 }
1159 #endif
1160
1161 mutex_unlock(&rdev->mutex);
1162 return regulator;
1163 link_name_err:
1164 kfree(regulator->supply_name);
1165 attr_err:
1166 device_remove_file(regulator->dev, &regulator->dev_attr);
1167 attr_name_err:
1168 kfree(regulator->dev_attr.attr.name);
1169 overflow_err:
1170 list_del(&regulator->list);
1171 kfree(regulator);
1172 mutex_unlock(&rdev->mutex);
1173 return NULL;
1174 }
1175
1176 static int _regulator_get_enable_time(struct regulator_dev *rdev)
1177 {
1178 if (!rdev->desc->ops->enable_time)
1179 return 0;
1180 return rdev->desc->ops->enable_time(rdev);
1181 }
1182
1183 static struct regulator_dev *regulator_dev_lookup(struct device *dev,
1184 const char *supply)
1185 {
1186 struct regulator_dev *r;
1187 struct device_node *node;
1188
1189 /* first do a dt based lookup */
1190 if (dev && dev->of_node) {
1191 node = of_get_regulator(dev, supply);
1192 if (node)
1193 list_for_each_entry(r, &regulator_list, list)
1194 if (r->dev.parent &&
1195 node == r->dev.of_node)
1196 return r;
1197 }
1198
1199 /* if not found, try doing it non-dt way */
1200 list_for_each_entry(r, &regulator_list, list)
1201 if (strcmp(rdev_get_name(r), supply) == 0)
1202 return r;
1203
1204 return NULL;
1205 }
1206
1207 /* Internal regulator request function */
1208 static struct regulator *_regulator_get(struct device *dev, const char *id,
1209 int exclusive)
1210 {
1211 struct regulator_dev *rdev;
1212 struct regulator_map *map;
1213 struct regulator *regulator = ERR_PTR(-ENODEV);
1214 const char *devname = NULL;
1215 int ret;
1216
1217 if (id == NULL) {
1218 pr_err("get() with no identifier\n");
1219 return regulator;
1220 }
1221
1222 if (dev)
1223 devname = dev_name(dev);
1224
1225 mutex_lock(&regulator_list_mutex);
1226
1227 rdev = regulator_dev_lookup(dev, id);
1228 if (rdev)
1229 goto found;
1230
1231 list_for_each_entry(map, &regulator_map_list, list) {
1232 /* If the mapping has a device set up it must match */
1233 if (map->dev_name &&
1234 (!devname || strcmp(map->dev_name, devname)))
1235 continue;
1236
1237 if (strcmp(map->supply, id) == 0) {
1238 rdev = map->regulator;
1239 goto found;
1240 }
1241 }
1242
1243 if (board_wants_dummy_regulator) {
1244 rdev = dummy_regulator_rdev;
1245 goto found;
1246 }
1247
1248 #ifdef CONFIG_REGULATOR_DUMMY
1249 if (!devname)
1250 devname = "deviceless";
1251
1252 /* If the board didn't flag that it was fully constrained then
1253 * substitute in a dummy regulator so consumers can continue.
1254 */
1255 if (!has_full_constraints) {
1256 pr_warn("%s supply %s not found, using dummy regulator\n",
1257 devname, id);
1258 rdev = dummy_regulator_rdev;
1259 goto found;
1260 }
1261 #endif
1262
1263 mutex_unlock(&regulator_list_mutex);
1264 return regulator;
1265
1266 found:
1267 if (rdev->exclusive) {
1268 regulator = ERR_PTR(-EPERM);
1269 goto out;
1270 }
1271
1272 if (exclusive && rdev->open_count) {
1273 regulator = ERR_PTR(-EBUSY);
1274 goto out;
1275 }
1276
1277 if (!try_module_get(rdev->owner))
1278 goto out;
1279
1280 regulator = create_regulator(rdev, dev, id);
1281 if (regulator == NULL) {
1282 regulator = ERR_PTR(-ENOMEM);
1283 module_put(rdev->owner);
1284 goto out;
1285 }
1286
1287 rdev->open_count++;
1288 if (exclusive) {
1289 rdev->exclusive = 1;
1290
1291 ret = _regulator_is_enabled(rdev);
1292 if (ret > 0)
1293 rdev->use_count = 1;
1294 else
1295 rdev->use_count = 0;
1296 }
1297
1298 out:
1299 mutex_unlock(&regulator_list_mutex);
1300
1301 return regulator;
1302 }
1303
1304 /**
1305 * regulator_get - lookup and obtain a reference to a regulator.
1306 * @dev: device for regulator "consumer"
1307 * @id: Supply name or regulator ID.
1308 *
1309 * Returns a struct regulator corresponding to the regulator producer,
1310 * or IS_ERR() condition containing errno.
1311 *
1312 * Use of supply names configured via regulator_set_device_supply() is
1313 * strongly encouraged. It is recommended that the supply name used
1314 * should match the name used for the supply and/or the relevant
1315 * device pins in the datasheet.
1316 */
1317 struct regulator *regulator_get(struct device *dev, const char *id)
1318 {
1319 return _regulator_get(dev, id, 0);
1320 }
1321 EXPORT_SYMBOL_GPL(regulator_get);
1322
1323 /**
1324 * regulator_get_exclusive - obtain exclusive access to a regulator.
1325 * @dev: device for regulator "consumer"
1326 * @id: Supply name or regulator ID.
1327 *
1328 * Returns a struct regulator corresponding to the regulator producer,
1329 * or IS_ERR() condition containing errno. Other consumers will be
1330 * unable to obtain this reference is held and the use count for the
1331 * regulator will be initialised to reflect the current state of the
1332 * regulator.
1333 *
1334 * This is intended for use by consumers which cannot tolerate shared
1335 * use of the regulator such as those which need to force the
1336 * regulator off for correct operation of the hardware they are
1337 * controlling.
1338 *
1339 * Use of supply names configured via regulator_set_device_supply() is
1340 * strongly encouraged. It is recommended that the supply name used
1341 * should match the name used for the supply and/or the relevant
1342 * device pins in the datasheet.
1343 */
1344 struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
1345 {
1346 return _regulator_get(dev, id, 1);
1347 }
1348 EXPORT_SYMBOL_GPL(regulator_get_exclusive);
1349
1350 /**
1351 * regulator_put - "free" the regulator source
1352 * @regulator: regulator source
1353 *
1354 * Note: drivers must ensure that all regulator_enable calls made on this
1355 * regulator source are balanced by regulator_disable calls prior to calling
1356 * this function.
1357 */
1358 void regulator_put(struct regulator *regulator)
1359 {
1360 struct regulator_dev *rdev;
1361
1362 if (regulator == NULL || IS_ERR(regulator))
1363 return;
1364
1365 mutex_lock(&regulator_list_mutex);
1366 rdev = regulator->rdev;
1367
1368 #ifdef CONFIG_DEBUG_FS
1369 debugfs_remove_recursive(regulator->debugfs);
1370 #endif
1371
1372 /* remove any sysfs entries */
1373 if (regulator->dev) {
1374 sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
1375 device_remove_file(regulator->dev, &regulator->dev_attr);
1376 kfree(regulator->dev_attr.attr.name);
1377 }
1378 kfree(regulator->supply_name);
1379 list_del(&regulator->list);
1380 kfree(regulator);
1381
1382 rdev->open_count--;
1383 rdev->exclusive = 0;
1384
1385 module_put(rdev->owner);
1386 mutex_unlock(&regulator_list_mutex);
1387 }
1388 EXPORT_SYMBOL_GPL(regulator_put);
1389
1390 static int _regulator_can_change_status(struct regulator_dev *rdev)
1391 {
1392 if (!rdev->constraints)
1393 return 0;
1394
1395 if (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_STATUS)
1396 return 1;
1397 else
1398 return 0;
1399 }
1400
1401 /* locks held by regulator_enable() */
1402 static int _regulator_enable(struct regulator_dev *rdev)
1403 {
1404 int ret, delay;
1405
1406 /* check voltage and requested load before enabling */
1407 if (rdev->constraints &&
1408 (rdev->constraints->valid_ops_mask & REGULATOR_CHANGE_DRMS))
1409 drms_uA_update(rdev);
1410
1411 if (rdev->use_count == 0) {
1412 /* The regulator may on if it's not switchable or left on */
1413 ret = _regulator_is_enabled(rdev);
1414 if (ret == -EINVAL || ret == 0) {
1415 if (!_regulator_can_change_status(rdev))
1416 return -EPERM;
1417
1418 if (!rdev->desc->ops->enable)
1419 return -EINVAL;
1420
1421 /* Query before enabling in case configuration
1422 * dependent. */
1423 ret = _regulator_get_enable_time(rdev);
1424 if (ret >= 0) {
1425 delay = ret;
1426 } else {
1427 rdev_warn(rdev, "enable_time() failed: %d\n",
1428 ret);
1429 delay = 0;
1430 }
1431
1432 trace_regulator_enable(rdev_get_name(rdev));
1433
1434 /* Allow the regulator to ramp; it would be useful
1435 * to extend this for bulk operations so that the
1436 * regulators can ramp together. */
1437 ret = rdev->desc->ops->enable(rdev);
1438 if (ret < 0)
1439 return ret;
1440
1441 trace_regulator_enable_delay(rdev_get_name(rdev));
1442
1443 if (delay >= 1000) {
1444 mdelay(delay / 1000);
1445 udelay(delay % 1000);
1446 } else if (delay) {
1447 udelay(delay);
1448 }
1449
1450 trace_regulator_enable_complete(rdev_get_name(rdev));
1451
1452 } else if (ret < 0) {
1453 rdev_err(rdev, "is_enabled() failed: %d\n", ret);
1454 return ret;
1455 }
1456 /* Fallthrough on positive return values - already enabled */
1457 }
1458
1459 rdev->use_count++;
1460
1461 return 0;
1462 }
1463
1464 /**
1465 * regulator_enable - enable regulator output
1466 * @regulator: regulator source
1467 *
1468 * Request that the regulator be enabled with the regulator output at
1469 * the predefined voltage or current value. Calls to regulator_enable()
1470 * must be balanced with calls to regulator_disable().
1471 *
1472 * NOTE: the output value can be set by other drivers, boot loader or may be
1473 * hardwired in the regulator.
1474 */
1475 int regulator_enable(struct regulator *regulator)
1476 {
1477 struct regulator_dev *rdev = regulator->rdev;
1478 int ret = 0;
1479
1480 if (rdev->supply) {
1481 ret = regulator_enable(rdev->supply);
1482 if (ret != 0)
1483 return ret;
1484 }
1485
1486 mutex_lock(&rdev->mutex);
1487 ret = _regulator_enable(rdev);
1488 mutex_unlock(&rdev->mutex);
1489
1490 if (ret != 0 && rdev->supply)
1491 regulator_disable(rdev->supply);
1492
1493 return ret;
1494 }
1495 EXPORT_SYMBOL_GPL(regulator_enable);
1496
1497 /* locks held by regulator_disable() */
1498 static int _regulator_disable(struct regulator_dev *rdev)
1499 {
1500 int ret = 0;
1501
1502 if (WARN(rdev->use_count <= 0,
1503 "unbalanced disables for %s\n", rdev_get_name(rdev)))
1504 return -EIO;
1505
1506 /* are we the last user and permitted to disable ? */
1507 if (rdev->use_count == 1 &&
1508 (rdev->constraints && !rdev->constraints->always_on)) {
1509
1510 /* we are last user */
1511 if (_regulator_can_change_status(rdev) &&
1512 rdev->desc->ops->disable) {
1513 trace_regulator_disable(rdev_get_name(rdev));
1514
1515 ret = rdev->desc->ops->disable(rdev);
1516 if (ret < 0) {
1517 rdev_err(rdev, "failed to disable\n");
1518 return ret;
1519 }
1520
1521 trace_regulator_disable_complete(rdev_get_name(rdev));
1522
1523 _notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
1524 NULL);
1525 }
1526
1527 rdev->use_count = 0;
1528 } else if (rdev->use_count > 1) {
1529
1530 if (rdev->constraints &&
1531 (rdev->constraints->valid_ops_mask &
1532 REGULATOR_CHANGE_DRMS))
1533 drms_uA_update(rdev);
1534
1535 rdev->use_count--;
1536 }
1537
1538 return ret;
1539 }
1540
1541 /**
1542 * regulator_disable - disable regulator output
1543 * @regulator: regulator source
1544 *
1545 * Disable the regulator output voltage or current. Calls to
1546 * regulator_enable() must be balanced with calls to
1547 * regulator_disable().
1548 *
1549 * NOTE: this will only disable the regulator output if no other consumer
1550 * devices have it enabled, the regulator device supports disabling and
1551 * machine constraints permit this operation.
1552 */
1553 int regulator_disable(struct regulator *regulator)
1554 {
1555 struct regulator_dev *rdev = regulator->rdev;
1556 int ret = 0;
1557
1558 mutex_lock(&rdev->mutex);
1559 ret = _regulator_disable(rdev);
1560 mutex_unlock(&rdev->mutex);
1561
1562 if (ret == 0 && rdev->supply)
1563 regulator_disable(rdev->supply);
1564
1565 return ret;
1566 }
1567 EXPORT_SYMBOL_GPL(regulator_disable);
1568
1569 /* locks held by regulator_force_disable() */
1570 static int _regulator_force_disable(struct regulator_dev *rdev)
1571 {
1572 int ret = 0;
1573
1574 /* force disable */
1575 if (rdev->desc->ops->disable) {
1576 /* ah well, who wants to live forever... */
1577 ret = rdev->desc->ops->disable(rdev);
1578 if (ret < 0) {
1579 rdev_err(rdev, "failed to force disable\n");
1580 return ret;
1581 }
1582 /* notify other consumers that power has been forced off */
1583 _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
1584 REGULATOR_EVENT_DISABLE, NULL);
1585 }
1586
1587 return ret;
1588 }
1589
1590 /**
1591 * regulator_force_disable - force disable regulator output
1592 * @regulator: regulator source
1593 *
1594 * Forcibly disable the regulator output voltage or current.
1595 * NOTE: this *will* disable the regulator output even if other consumer
1596 * devices have it enabled. This should be used for situations when device
1597 * damage will likely occur if the regulator is not disabled (e.g. over temp).
1598 */
1599 int regulator_force_disable(struct regulator *regulator)
1600 {
1601 struct regulator_dev *rdev = regulator->rdev;
1602 int ret;
1603
1604 mutex_lock(&rdev->mutex);
1605 regulator->uA_load = 0;
1606 ret = _regulator_force_disable(regulator->rdev);
1607 mutex_unlock(&rdev->mutex);
1608
1609 if (rdev->supply)
1610 while (rdev->open_count--)
1611 regulator_disable(rdev->supply);
1612
1613 return ret;
1614 }
1615 EXPORT_SYMBOL_GPL(regulator_force_disable);
1616
1617 static void regulator_disable_work(struct work_struct *work)
1618 {
1619 struct regulator_dev *rdev = container_of(work, struct regulator_dev,
1620 disable_work.work);
1621 int count, i, ret;
1622
1623 mutex_lock(&rdev->mutex);
1624
1625 BUG_ON(!rdev->deferred_disables);
1626
1627 count = rdev->deferred_disables;
1628 rdev->deferred_disables = 0;
1629
1630 for (i = 0; i < count; i++) {
1631 ret = _regulator_disable(rdev);
1632 if (ret != 0)
1633 rdev_err(rdev, "Deferred disable failed: %d\n", ret);
1634 }
1635
1636 mutex_unlock(&rdev->mutex);
1637
1638 if (rdev->supply) {
1639 for (i = 0; i < count; i++) {
1640 ret = regulator_disable(rdev->supply);
1641 if (ret != 0) {
1642 rdev_err(rdev,
1643 "Supply disable failed: %d\n", ret);
1644 }
1645 }
1646 }
1647 }
1648
1649 /**
1650 * regulator_disable_deferred - disable regulator output with delay
1651 * @regulator: regulator source
1652 * @ms: miliseconds until the regulator is disabled
1653 *
1654 * Execute regulator_disable() on the regulator after a delay. This
1655 * is intended for use with devices that require some time to quiesce.
1656 *
1657 * NOTE: this will only disable the regulator output if no other consumer
1658 * devices have it enabled, the regulator device supports disabling and
1659 * machine constraints permit this operation.
1660 */
1661 int regulator_disable_deferred(struct regulator *regulator, int ms)
1662 {
1663 struct regulator_dev *rdev = regulator->rdev;
1664 int ret;
1665
1666 mutex_lock(&rdev->mutex);
1667 rdev->deferred_disables++;
1668 mutex_unlock(&rdev->mutex);
1669
1670 ret = schedule_delayed_work(&rdev->disable_work,
1671 msecs_to_jiffies(ms));
1672 if (ret < 0)
1673 return ret;
1674 else
1675 return 0;
1676 }
1677 EXPORT_SYMBOL_GPL(regulator_disable_deferred);
1678
1679 static int _regulator_is_enabled(struct regulator_dev *rdev)
1680 {
1681 /* If we don't know then assume that the regulator is always on */
1682 if (!rdev->desc->ops->is_enabled)
1683 return 1;
1684
1685 return rdev->desc->ops->is_enabled(rdev);
1686 }
1687
1688 /**
1689 * regulator_is_enabled - is the regulator output enabled
1690 * @regulator: regulator source
1691 *
1692 * Returns positive if the regulator driver backing the source/client
1693 * has requested that the device be enabled, zero if it hasn't, else a
1694 * negative errno code.
1695 *
1696 * Note that the device backing this regulator handle can have multiple
1697 * users, so it might be enabled even if regulator_enable() was never
1698 * called for this particular source.
1699 */
1700 int regulator_is_enabled(struct regulator *regulator)
1701 {
1702 int ret;
1703
1704 mutex_lock(&regulator->rdev->mutex);
1705 ret = _regulator_is_enabled(regulator->rdev);
1706 mutex_unlock(&regulator->rdev->mutex);
1707
1708 return ret;
1709 }
1710 EXPORT_SYMBOL_GPL(regulator_is_enabled);
1711
1712 /**
1713 * regulator_count_voltages - count regulator_list_voltage() selectors
1714 * @regulator: regulator source
1715 *
1716 * Returns number of selectors, or negative errno. Selectors are
1717 * numbered starting at zero, and typically correspond to bitfields
1718 * in hardware registers.
1719 */
1720 int regulator_count_voltages(struct regulator *regulator)
1721 {
1722 struct regulator_dev *rdev = regulator->rdev;
1723
1724 return rdev->desc->n_voltages ? : -EINVAL;
1725 }
1726 EXPORT_SYMBOL_GPL(regulator_count_voltages);
1727
1728 /**
1729 * regulator_list_voltage - enumerate supported voltages
1730 * @regulator: regulator source
1731 * @selector: identify voltage to list
1732 * Context: can sleep
1733 *
1734 * Returns a voltage that can be passed to @regulator_set_voltage(),
1735 * zero if this selector code can't be used on this system, or a
1736 * negative errno.
1737 */
1738 int regulator_list_voltage(struct regulator *regulator, unsigned selector)
1739 {
1740 struct regulator_dev *rdev = regulator->rdev;
1741 struct regulator_ops *ops = rdev->desc->ops;
1742 int ret;
1743
1744 if (!ops->list_voltage || selector >= rdev->desc->n_voltages)
1745 return -EINVAL;
1746
1747 mutex_lock(&rdev->mutex);
1748 ret = ops->list_voltage(rdev, selector);
1749 mutex_unlock(&rdev->mutex);
1750
1751 if (ret > 0) {
1752 if (ret < rdev->constraints->min_uV)
1753 ret = 0;
1754 else if (ret > rdev->constraints->max_uV)
1755 ret = 0;
1756 }
1757
1758 return ret;
1759 }
1760 EXPORT_SYMBOL_GPL(regulator_list_voltage);
1761
1762 /**
1763 * regulator_is_supported_voltage - check if a voltage range can be supported
1764 *
1765 * @regulator: Regulator to check.
1766 * @min_uV: Minimum required voltage in uV.
1767 * @max_uV: Maximum required voltage in uV.
1768 *
1769 * Returns a boolean or a negative error code.
1770 */
1771 int regulator_is_supported_voltage(struct regulator *regulator,
1772 int min_uV, int max_uV)
1773 {
1774 int i, voltages, ret;
1775
1776 ret = regulator_count_voltages(regulator);
1777 if (ret < 0)
1778 return ret;
1779 voltages = ret;
1780
1781 for (i = 0; i < voltages; i++) {
1782 ret = regulator_list_voltage(regulator, i);
1783
1784 if (ret >= min_uV && ret <= max_uV)
1785 return 1;
1786 }
1787
1788 return 0;
1789 }
1790 EXPORT_SYMBOL_GPL(regulator_is_supported_voltage);
1791
1792 static int _regulator_do_set_voltage(struct regulator_dev *rdev,
1793 int min_uV, int max_uV)
1794 {
1795 int ret;
1796 int delay = 0;
1797 unsigned int selector;
1798
1799 trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV);
1800
1801 min_uV += rdev->constraints->uV_offset;
1802 max_uV += rdev->constraints->uV_offset;
1803
1804 if (rdev->desc->ops->set_voltage) {
1805 ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV,
1806 &selector);
1807
1808 if (rdev->desc->ops->list_voltage)
1809 selector = rdev->desc->ops->list_voltage(rdev,
1810 selector);
1811 else
1812 selector = -1;
1813 } else if (rdev->desc->ops->set_voltage_sel) {
1814 int best_val = INT_MAX;
1815 int i;
1816
1817 selector = 0;
1818
1819 /* Find the smallest voltage that falls within the specified
1820 * range.
1821 */
1822 for (i = 0; i < rdev->desc->n_voltages; i++) {
1823 ret = rdev->desc->ops->list_voltage(rdev, i);
1824 if (ret < 0)
1825 continue;
1826
1827 if (ret < best_val && ret >= min_uV && ret <= max_uV) {
1828 best_val = ret;
1829 selector = i;
1830 }
1831 }
1832
1833 /*
1834 * If we can't obtain the old selector there is not enough
1835 * info to call set_voltage_time_sel().
1836 */
1837 if (rdev->desc->ops->set_voltage_time_sel &&
1838 rdev->desc->ops->get_voltage_sel) {
1839 unsigned int old_selector = 0;
1840
1841 ret = rdev->desc->ops->get_voltage_sel(rdev);
1842 if (ret < 0)
1843 return ret;
1844 old_selector = ret;
1845 delay = rdev->desc->ops->set_voltage_time_sel(rdev,
1846 old_selector, selector);
1847 }
1848
1849 if (best_val != INT_MAX) {
1850 ret = rdev->desc->ops->set_voltage_sel(rdev, selector);
1851 selector = best_val;
1852 } else {
1853 ret = -EINVAL;
1854 }
1855 } else {
1856 ret = -EINVAL;
1857 }
1858
1859 /* Insert any necessary delays */
1860 if (delay >= 1000) {
1861 mdelay(delay / 1000);
1862 udelay(delay % 1000);
1863 } else if (delay) {
1864 udelay(delay);
1865 }
1866
1867 if (ret == 0)
1868 _notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE,
1869 NULL);
1870
1871 trace_regulator_set_voltage_complete(rdev_get_name(rdev), selector);
1872
1873 return ret;
1874 }
1875
1876 /**
1877 * regulator_set_voltage - set regulator output voltage
1878 * @regulator: regulator source
1879 * @min_uV: Minimum required voltage in uV
1880 * @max_uV: Maximum acceptable voltage in uV
1881 *
1882 * Sets a voltage regulator to the desired output voltage. This can be set
1883 * during any regulator state. IOW, regulator can be disabled or enabled.
1884 *
1885 * If the regulator is enabled then the voltage will change to the new value
1886 * immediately otherwise if the regulator is disabled the regulator will
1887 * output at the new voltage when enabled.
1888 *
1889 * NOTE: If the regulator is shared between several devices then the lowest
1890 * request voltage that meets the system constraints will be used.
1891 * Regulator system constraints must be set for this regulator before
1892 * calling this function otherwise this call will fail.
1893 */
1894 int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
1895 {
1896 struct regulator_dev *rdev = regulator->rdev;
1897 int ret = 0;
1898
1899 mutex_lock(&rdev->mutex);
1900
1901 /* If we're setting the same range as last time the change
1902 * should be a noop (some cpufreq implementations use the same
1903 * voltage for multiple frequencies, for example).
1904 */
1905 if (regulator->min_uV == min_uV && regulator->max_uV == max_uV)
1906 goto out;
1907
1908 /* sanity check */
1909 if (!rdev->desc->ops->set_voltage &&
1910 !rdev->desc->ops->set_voltage_sel) {
1911 ret = -EINVAL;
1912 goto out;
1913 }
1914
1915 /* constraints check */
1916 ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
1917 if (ret < 0)
1918 goto out;
1919 regulator->min_uV = min_uV;
1920 regulator->max_uV = max_uV;
1921
1922 ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
1923 if (ret < 0)
1924 goto out;
1925
1926 ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
1927
1928 out:
1929 mutex_unlock(&rdev->mutex);
1930 return ret;
1931 }
1932 EXPORT_SYMBOL_GPL(regulator_set_voltage);
1933
1934 /**
1935 * regulator_set_voltage_time - get raise/fall time
1936 * @regulator: regulator source
1937 * @old_uV: starting voltage in microvolts
1938 * @new_uV: target voltage in microvolts
1939 *
1940 * Provided with the starting and ending voltage, this function attempts to
1941 * calculate the time in microseconds required to rise or fall to this new
1942 * voltage.
1943 */
1944 int regulator_set_voltage_time(struct regulator *regulator,
1945 int old_uV, int new_uV)
1946 {
1947 struct regulator_dev *rdev = regulator->rdev;
1948 struct regulator_ops *ops = rdev->desc->ops;
1949 int old_sel = -1;
1950 int new_sel = -1;
1951 int voltage;
1952 int i;
1953
1954 /* Currently requires operations to do this */
1955 if (!ops->list_voltage || !ops->set_voltage_time_sel
1956 || !rdev->desc->n_voltages)
1957 return -EINVAL;
1958
1959 for (i = 0; i < rdev->desc->n_voltages; i++) {
1960 /* We only look for exact voltage matches here */
1961 voltage = regulator_list_voltage(regulator, i);
1962 if (voltage < 0)
1963 return -EINVAL;
1964 if (voltage == 0)
1965 continue;
1966 if (voltage == old_uV)
1967 old_sel = i;
1968 if (voltage == new_uV)
1969 new_sel = i;
1970 }
1971
1972 if (old_sel < 0 || new_sel < 0)
1973 return -EINVAL;
1974
1975 return ops->set_voltage_time_sel(rdev, old_sel, new_sel);
1976 }
1977 EXPORT_SYMBOL_GPL(regulator_set_voltage_time);
1978
1979 /**
1980 * regulator_sync_voltage - re-apply last regulator output voltage
1981 * @regulator: regulator source
1982 *
1983 * Re-apply the last configured voltage. This is intended to be used
1984 * where some external control source the consumer is cooperating with
1985 * has caused the configured voltage to change.
1986 */
1987 int regulator_sync_voltage(struct regulator *regulator)
1988 {
1989 struct regulator_dev *rdev = regulator->rdev;
1990 int ret, min_uV, max_uV;
1991
1992 mutex_lock(&rdev->mutex);
1993
1994 if (!rdev->desc->ops->set_voltage &&
1995 !rdev->desc->ops->set_voltage_sel) {
1996 ret = -EINVAL;
1997 goto out;
1998 }
1999
2000 /* This is only going to work if we've had a voltage configured. */
2001 if (!regulator->min_uV && !regulator->max_uV) {
2002 ret = -EINVAL;
2003 goto out;
2004 }
2005
2006 min_uV = regulator->min_uV;
2007 max_uV = regulator->max_uV;
2008
2009 /* This should be a paranoia check... */
2010 ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
2011 if (ret < 0)
2012 goto out;
2013
2014 ret = regulator_check_consumers(rdev, &min_uV, &max_uV);
2015 if (ret < 0)
2016 goto out;
2017
2018 ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
2019
2020 out:
2021 mutex_unlock(&rdev->mutex);
2022 return ret;
2023 }
2024 EXPORT_SYMBOL_GPL(regulator_sync_voltage);
2025
2026 static int _regulator_get_voltage(struct regulator_dev *rdev)
2027 {
2028 int sel, ret;
2029
2030 if (rdev->desc->ops->get_voltage_sel) {
2031 sel = rdev->desc->ops->get_voltage_sel(rdev);
2032 if (sel < 0)
2033 return sel;
2034 ret = rdev->desc->ops->list_voltage(rdev, sel);
2035 } else if (rdev->desc->ops->get_voltage) {
2036 ret = rdev->desc->ops->get_voltage(rdev);
2037 } else {
2038 return -EINVAL;
2039 }
2040
2041 if (ret < 0)
2042 return ret;
2043 return ret - rdev->constraints->uV_offset;
2044 }
2045
2046 /**
2047 * regulator_get_voltage - get regulator output voltage
2048 * @regulator: regulator source
2049 *
2050 * This returns the current regulator voltage in uV.
2051 *
2052 * NOTE: If the regulator is disabled it will return the voltage value. This
2053 * function should not be used to determine regulator state.
2054 */
2055 int regulator_get_voltage(struct regulator *regulator)
2056 {
2057 int ret;
2058
2059 mutex_lock(&regulator->rdev->mutex);
2060
2061 ret = _regulator_get_voltage(regulator->rdev);
2062
2063 mutex_unlock(&regulator->rdev->mutex);
2064
2065 return ret;
2066 }
2067 EXPORT_SYMBOL_GPL(regulator_get_voltage);
2068
2069 /**
2070 * regulator_set_current_limit - set regulator output current limit
2071 * @regulator: regulator source
2072 * @min_uA: Minimuum supported current in uA
2073 * @max_uA: Maximum supported current in uA
2074 *
2075 * Sets current sink to the desired output current. This can be set during
2076 * any regulator state. IOW, regulator can be disabled or enabled.
2077 *
2078 * If the regulator is enabled then the current will change to the new value
2079 * immediately otherwise if the regulator is disabled the regulator will
2080 * output at the new current when enabled.
2081 *
2082 * NOTE: Regulator system constraints must be set for this regulator before
2083 * calling this function otherwise this call will fail.
2084 */
2085 int regulator_set_current_limit(struct regulator *regulator,
2086 int min_uA, int max_uA)
2087 {
2088 struct regulator_dev *rdev = regulator->rdev;
2089 int ret;
2090
2091 mutex_lock(&rdev->mutex);
2092
2093 /* sanity check */
2094 if (!rdev->desc->ops->set_current_limit) {
2095 ret = -EINVAL;
2096 goto out;
2097 }
2098
2099 /* constraints check */
2100 ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
2101 if (ret < 0)
2102 goto out;
2103
2104 ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
2105 out:
2106 mutex_unlock(&rdev->mutex);
2107 return ret;
2108 }
2109 EXPORT_SYMBOL_GPL(regulator_set_current_limit);
2110
2111 static int _regulator_get_current_limit(struct regulator_dev *rdev)
2112 {
2113 int ret;
2114
2115 mutex_lock(&rdev->mutex);
2116
2117 /* sanity check */
2118 if (!rdev->desc->ops->get_current_limit) {
2119 ret = -EINVAL;
2120 goto out;
2121 }
2122
2123 ret = rdev->desc->ops->get_current_limit(rdev);
2124 out:
2125 mutex_unlock(&rdev->mutex);
2126 return ret;
2127 }
2128
2129 /**
2130 * regulator_get_current_limit - get regulator output current
2131 * @regulator: regulator source
2132 *
2133 * This returns the current supplied by the specified current sink in uA.
2134 *
2135 * NOTE: If the regulator is disabled it will return the current value. This
2136 * function should not be used to determine regulator state.
2137 */
2138 int regulator_get_current_limit(struct regulator *regulator)
2139 {
2140 return _regulator_get_current_limit(regulator->rdev);
2141 }
2142 EXPORT_SYMBOL_GPL(regulator_get_current_limit);
2143
2144 /**
2145 * regulator_set_mode - set regulator operating mode
2146 * @regulator: regulator source
2147 * @mode: operating mode - one of the REGULATOR_MODE constants
2148 *
2149 * Set regulator operating mode to increase regulator efficiency or improve
2150 * regulation performance.
2151 *
2152 * NOTE: Regulator system constraints must be set for this regulator before
2153 * calling this function otherwise this call will fail.
2154 */
2155 int regulator_set_mode(struct regulator *regulator, unsigned int mode)
2156 {
2157 struct regulator_dev *rdev = regulator->rdev;
2158 int ret;
2159 int regulator_curr_mode;
2160
2161 mutex_lock(&rdev->mutex);
2162
2163 /* sanity check */
2164 if (!rdev->desc->ops->set_mode) {
2165 ret = -EINVAL;
2166 goto out;
2167 }
2168
2169 /* return if the same mode is requested */
2170 if (rdev->desc->ops->get_mode) {
2171 regulator_curr_mode = rdev->desc->ops->get_mode(rdev);
2172 if (regulator_curr_mode == mode) {
2173 ret = 0;
2174 goto out;
2175 }
2176 }
2177
2178 /* constraints check */
2179 ret = regulator_mode_constrain(rdev, &mode);
2180 if (ret < 0)
2181 goto out;
2182
2183 ret = rdev->desc->ops->set_mode(rdev, mode);
2184 out:
2185 mutex_unlock(&rdev->mutex);
2186 return ret;
2187 }
2188 EXPORT_SYMBOL_GPL(regulator_set_mode);
2189
2190 static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
2191 {
2192 int ret;
2193
2194 mutex_lock(&rdev->mutex);
2195
2196 /* sanity check */
2197 if (!rdev->desc->ops->get_mode) {
2198 ret = -EINVAL;
2199 goto out;
2200 }
2201
2202 ret = rdev->desc->ops->get_mode(rdev);
2203 out:
2204 mutex_unlock(&rdev->mutex);
2205 return ret;
2206 }
2207
2208 /**
2209 * regulator_get_mode - get regulator operating mode
2210 * @regulator: regulator source
2211 *
2212 * Get the current regulator operating mode.
2213 */
2214 unsigned int regulator_get_mode(struct regulator *regulator)
2215 {
2216 return _regulator_get_mode(regulator->rdev);
2217 }
2218 EXPORT_SYMBOL_GPL(regulator_get_mode);
2219
2220 /**
2221 * regulator_set_optimum_mode - set regulator optimum operating mode
2222 * @regulator: regulator source
2223 * @uA_load: load current
2224 *
2225 * Notifies the regulator core of a new device load. This is then used by
2226 * DRMS (if enabled by constraints) to set the most efficient regulator
2227 * operating mode for the new regulator loading.
2228 *
2229 * Consumer devices notify their supply regulator of the maximum power
2230 * they will require (can be taken from device datasheet in the power
2231 * consumption tables) when they change operational status and hence power
2232 * state. Examples of operational state changes that can affect power
2233 * consumption are :-
2234 *
2235 * o Device is opened / closed.
2236 * o Device I/O is about to begin or has just finished.
2237 * o Device is idling in between work.
2238 *
2239 * This information is also exported via sysfs to userspace.
2240 *
2241 * DRMS will sum the total requested load on the regulator and change
2242 * to the most efficient operating mode if platform constraints allow.
2243 *
2244 * Returns the new regulator mode or error.
2245 */
2246 int regulator_set_optimum_mode(struct regulator *regulator, int uA_load)
2247 {
2248 struct regulator_dev *rdev = regulator->rdev;
2249 struct regulator *consumer;
2250 int ret, output_uV, input_uV, total_uA_load = 0;
2251 unsigned int mode;
2252
2253 mutex_lock(&rdev->mutex);
2254
2255 /*
2256 * first check to see if we can set modes at all, otherwise just
2257 * tell the consumer everything is OK.
2258 */
2259 regulator->uA_load = uA_load;
2260 ret = regulator_check_drms(rdev);
2261 if (ret < 0) {
2262 ret = 0;
2263 goto out;
2264 }
2265
2266 if (!rdev->desc->ops->get_optimum_mode)
2267 goto out;
2268
2269 /*
2270 * we can actually do this so any errors are indicators of
2271 * potential real failure.
2272 */
2273 ret = -EINVAL;
2274
2275 /* get output voltage */
2276 output_uV = _regulator_get_voltage(rdev);
2277 if (output_uV <= 0) {
2278 rdev_err(rdev, "invalid output voltage found\n");
2279 goto out;
2280 }
2281
2282 /* get input voltage */
2283 input_uV = 0;
2284 if (rdev->supply)
2285 input_uV = regulator_get_voltage(rdev->supply);
2286 if (input_uV <= 0)
2287 input_uV = rdev->constraints->input_uV;
2288 if (input_uV <= 0) {
2289 rdev_err(rdev, "invalid input voltage found\n");
2290 goto out;
2291 }
2292
2293 /* calc total requested load for this regulator */
2294 list_for_each_entry(consumer, &rdev->consumer_list, list)
2295 total_uA_load += consumer->uA_load;
2296
2297 mode = rdev->desc->ops->get_optimum_mode(rdev,
2298 input_uV, output_uV,
2299 total_uA_load);
2300 ret = regulator_mode_constrain(rdev, &mode);
2301 if (ret < 0) {
2302 rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV\n",
2303 total_uA_load, input_uV, output_uV);
2304 goto out;
2305 }
2306
2307 ret = rdev->desc->ops->set_mode(rdev, mode);
2308 if (ret < 0) {
2309 rdev_err(rdev, "failed to set optimum mode %x\n", mode);
2310 goto out;
2311 }
2312 ret = mode;
2313 out:
2314 mutex_unlock(&rdev->mutex);
2315 return ret;
2316 }
2317 EXPORT_SYMBOL_GPL(regulator_set_optimum_mode);
2318
2319 /**
2320 * regulator_register_notifier - register regulator event notifier
2321 * @regulator: regulator source
2322 * @nb: notifier block
2323 *
2324 * Register notifier block to receive regulator events.
2325 */
2326 int regulator_register_notifier(struct regulator *regulator,
2327 struct notifier_block *nb)
2328 {
2329 return blocking_notifier_chain_register(&regulator->rdev->notifier,
2330 nb);
2331 }
2332 EXPORT_SYMBOL_GPL(regulator_register_notifier);
2333
2334 /**
2335 * regulator_unregister_notifier - unregister regulator event notifier
2336 * @regulator: regulator source
2337 * @nb: notifier block
2338 *
2339 * Unregister regulator event notifier block.
2340 */
2341 int regulator_unregister_notifier(struct regulator *regulator,
2342 struct notifier_block *nb)
2343 {
2344 return blocking_notifier_chain_unregister(&regulator->rdev->notifier,
2345 nb);
2346 }
2347 EXPORT_SYMBOL_GPL(regulator_unregister_notifier);
2348
2349 /* notify regulator consumers and downstream regulator consumers.
2350 * Note mutex must be held by caller.
2351 */
2352 static void _notifier_call_chain(struct regulator_dev *rdev,
2353 unsigned long event, void *data)
2354 {
2355 /* call rdev chain first */
2356 blocking_notifier_call_chain(&rdev->notifier, event, NULL);
2357 }
2358
2359 /**
2360 * regulator_bulk_get - get multiple regulator consumers
2361 *
2362 * @dev: Device to supply
2363 * @num_consumers: Number of consumers to register
2364 * @consumers: Configuration of consumers; clients are stored here.
2365 *
2366 * @return 0 on success, an errno on failure.
2367 *
2368 * This helper function allows drivers to get several regulator
2369 * consumers in one operation. If any of the regulators cannot be
2370 * acquired then any regulators that were allocated will be freed
2371 * before returning to the caller.
2372 */
2373 int regulator_bulk_get(struct device *dev, int num_consumers,
2374 struct regulator_bulk_data *consumers)
2375 {
2376 int i;
2377 int ret;
2378
2379 for (i = 0; i < num_consumers; i++)
2380 consumers[i].consumer = NULL;
2381
2382 for (i = 0; i < num_consumers; i++) {
2383 consumers[i].consumer = regulator_get(dev,
2384 consumers[i].supply);
2385 if (IS_ERR(consumers[i].consumer)) {
2386 ret = PTR_ERR(consumers[i].consumer);
2387 dev_err(dev, "Failed to get supply '%s': %d\n",
2388 consumers[i].supply, ret);
2389 consumers[i].consumer = NULL;
2390 goto err;
2391 }
2392 }
2393
2394 return 0;
2395
2396 err:
2397 for (i = 0; i < num_consumers && consumers[i].consumer; i++)
2398 regulator_put(consumers[i].consumer);
2399
2400 return ret;
2401 }
2402 EXPORT_SYMBOL_GPL(regulator_bulk_get);
2403
2404 static void regulator_bulk_enable_async(void *data, async_cookie_t cookie)
2405 {
2406 struct regulator_bulk_data *bulk = data;
2407
2408 bulk->ret = regulator_enable(bulk->consumer);
2409 }
2410
2411 /**
2412 * regulator_bulk_enable - enable multiple regulator consumers
2413 *
2414 * @num_consumers: Number of consumers
2415 * @consumers: Consumer data; clients are stored here.
2416 * @return 0 on success, an errno on failure
2417 *
2418 * This convenience API allows consumers to enable multiple regulator
2419 * clients in a single API call. If any consumers cannot be enabled
2420 * then any others that were enabled will be disabled again prior to
2421 * return.
2422 */
2423 int regulator_bulk_enable(int num_consumers,
2424 struct regulator_bulk_data *consumers)
2425 {
2426 LIST_HEAD(async_domain);
2427 int i;
2428 int ret = 0;
2429
2430 for (i = 0; i < num_consumers; i++)
2431 async_schedule_domain(regulator_bulk_enable_async,
2432 &consumers[i], &async_domain);
2433
2434 async_synchronize_full_domain(&async_domain);
2435
2436 /* If any consumer failed we need to unwind any that succeeded */
2437 for (i = 0; i < num_consumers; i++) {
2438 if (consumers[i].ret != 0) {
2439 ret = consumers[i].ret;
2440 goto err;
2441 }
2442 }
2443
2444 return 0;
2445
2446 err:
2447 for (i = 0; i < num_consumers; i++)
2448 if (consumers[i].ret == 0)
2449 regulator_disable(consumers[i].consumer);
2450 else
2451 pr_err("Failed to enable %s: %d\n",
2452 consumers[i].supply, consumers[i].ret);
2453
2454 return ret;
2455 }
2456 EXPORT_SYMBOL_GPL(regulator_bulk_enable);
2457
2458 /**
2459 * regulator_bulk_disable - disable multiple regulator consumers
2460 *
2461 * @num_consumers: Number of consumers
2462 * @consumers: Consumer data; clients are stored here.
2463 * @return 0 on success, an errno on failure
2464 *
2465 * This convenience API allows consumers to disable multiple regulator
2466 * clients in a single API call. If any consumers cannot be enabled
2467 * then any others that were disabled will be disabled again prior to
2468 * return.
2469 */
2470 int regulator_bulk_disable(int num_consumers,
2471 struct regulator_bulk_data *consumers)
2472 {
2473 int i;
2474 int ret;
2475
2476 for (i = 0; i < num_consumers; i++) {
2477 ret = regulator_disable(consumers[i].consumer);
2478 if (ret != 0)
2479 goto err;
2480 }
2481
2482 return 0;
2483
2484 err:
2485 pr_err("Failed to disable %s: %d\n", consumers[i].supply, ret);
2486 for (--i; i >= 0; --i)
2487 regulator_enable(consumers[i].consumer);
2488
2489 return ret;
2490 }
2491 EXPORT_SYMBOL_GPL(regulator_bulk_disable);
2492
2493 /**
2494 * regulator_bulk_force_disable - force disable multiple regulator consumers
2495 *
2496 * @num_consumers: Number of consumers
2497 * @consumers: Consumer data; clients are stored here.
2498 * @return 0 on success, an errno on failure
2499 *
2500 * This convenience API allows consumers to forcibly disable multiple regulator
2501 * clients in a single API call.
2502 * NOTE: This should be used for situations when device damage will
2503 * likely occur if the regulators are not disabled (e.g. over temp).
2504 * Although regulator_force_disable function call for some consumers can
2505 * return error numbers, the function is called for all consumers.
2506 */
2507 int regulator_bulk_force_disable(int num_consumers,
2508 struct regulator_bulk_data *consumers)
2509 {
2510 int i;
2511 int ret;
2512
2513 for (i = 0; i < num_consumers; i++)
2514 consumers[i].ret =
2515 regulator_force_disable(consumers[i].consumer);
2516
2517 for (i = 0; i < num_consumers; i++) {
2518 if (consumers[i].ret != 0) {
2519 ret = consumers[i].ret;
2520 goto out;
2521 }
2522 }
2523
2524 return 0;
2525 out:
2526 return ret;
2527 }
2528 EXPORT_SYMBOL_GPL(regulator_bulk_force_disable);
2529
2530 /**
2531 * regulator_bulk_free - free multiple regulator consumers
2532 *
2533 * @num_consumers: Number of consumers
2534 * @consumers: Consumer data; clients are stored here.
2535 *
2536 * This convenience API allows consumers to free multiple regulator
2537 * clients in a single API call.
2538 */
2539 void regulator_bulk_free(int num_consumers,
2540 struct regulator_bulk_data *consumers)
2541 {
2542 int i;
2543
2544 for (i = 0; i < num_consumers; i++) {
2545 regulator_put(consumers[i].consumer);
2546 consumers[i].consumer = NULL;
2547 }
2548 }
2549 EXPORT_SYMBOL_GPL(regulator_bulk_free);
2550
2551 /**
2552 * regulator_notifier_call_chain - call regulator event notifier
2553 * @rdev: regulator source
2554 * @event: notifier block
2555 * @data: callback-specific data.
2556 *
2557 * Called by regulator drivers to notify clients a regulator event has
2558 * occurred. We also notify regulator clients downstream.
2559 * Note lock must be held by caller.
2560 */
2561 int regulator_notifier_call_chain(struct regulator_dev *rdev,
2562 unsigned long event, void *data)
2563 {
2564 _notifier_call_chain(rdev, event, data);
2565 return NOTIFY_DONE;
2566
2567 }
2568 EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);
2569
2570 /**
2571 * regulator_mode_to_status - convert a regulator mode into a status
2572 *
2573 * @mode: Mode to convert
2574 *
2575 * Convert a regulator mode into a status.
2576 */
2577 int regulator_mode_to_status(unsigned int mode)
2578 {
2579 switch (mode) {
2580 case REGULATOR_MODE_FAST:
2581 return REGULATOR_STATUS_FAST;
2582 case REGULATOR_MODE_NORMAL:
2583 return REGULATOR_STATUS_NORMAL;
2584 case REGULATOR_MODE_IDLE:
2585 return REGULATOR_STATUS_IDLE;
2586 case REGULATOR_STATUS_STANDBY:
2587 return REGULATOR_STATUS_STANDBY;
2588 default:
2589 return 0;
2590 }
2591 }
2592 EXPORT_SYMBOL_GPL(regulator_mode_to_status);
2593
2594 /*
2595 * To avoid cluttering sysfs (and memory) with useless state, only
2596 * create attributes that can be meaningfully displayed.
2597 */
2598 static int add_regulator_attributes(struct regulator_dev *rdev)
2599 {
2600 struct device *dev = &rdev->dev;
2601 struct regulator_ops *ops = rdev->desc->ops;
2602 int status = 0;
2603
2604 /* some attributes need specific methods to be displayed */
2605 if ((ops->get_voltage && ops->get_voltage(rdev) >= 0) ||
2606 (ops->get_voltage_sel && ops->get_voltage_sel(rdev) >= 0)) {
2607 status = device_create_file(dev, &dev_attr_microvolts);
2608 if (status < 0)
2609 return status;
2610 }
2611 if (ops->get_current_limit) {
2612 status = device_create_file(dev, &dev_attr_microamps);
2613 if (status < 0)
2614 return status;
2615 }
2616 if (ops->get_mode) {
2617 status = device_create_file(dev, &dev_attr_opmode);
2618 if (status < 0)
2619 return status;
2620 }
2621 if (ops->is_enabled) {
2622 status = device_create_file(dev, &dev_attr_state);
2623 if (status < 0)
2624 return status;
2625 }
2626 if (ops->get_status) {
2627 status = device_create_file(dev, &dev_attr_status);
2628 if (status < 0)
2629 return status;
2630 }
2631
2632 /* some attributes are type-specific */
2633 if (rdev->desc->type == REGULATOR_CURRENT) {
2634 status = device_create_file(dev, &dev_attr_requested_microamps);
2635 if (status < 0)
2636 return status;
2637 }
2638
2639 /* all the other attributes exist to support constraints;
2640 * don't show them if there are no constraints, or if the
2641 * relevant supporting methods are missing.
2642 */
2643 if (!rdev->constraints)
2644 return status;
2645
2646 /* constraints need specific supporting methods */
2647 if (ops->set_voltage || ops->set_voltage_sel) {
2648 status = device_create_file(dev, &dev_attr_min_microvolts);
2649 if (status < 0)
2650 return status;
2651 status = device_create_file(dev, &dev_attr_max_microvolts);
2652 if (status < 0)
2653 return status;
2654 }
2655 if (ops->set_current_limit) {
2656 status = device_create_file(dev, &dev_attr_min_microamps);
2657 if (status < 0)
2658 return status;
2659 status = device_create_file(dev, &dev_attr_max_microamps);
2660 if (status < 0)
2661 return status;
2662 }
2663
2664 /* suspend mode constraints need multiple supporting methods */
2665 if (!(ops->set_suspend_enable && ops->set_suspend_disable))
2666 return status;
2667
2668 status = device_create_file(dev, &dev_attr_suspend_standby_state);
2669 if (status < 0)
2670 return status;
2671 status = device_create_file(dev, &dev_attr_suspend_mem_state);
2672 if (status < 0)
2673 return status;
2674 status = device_create_file(dev, &dev_attr_suspend_disk_state);
2675 if (status < 0)
2676 return status;
2677
2678 if (ops->set_suspend_voltage) {
2679 status = device_create_file(dev,
2680 &dev_attr_suspend_standby_microvolts);
2681 if (status < 0)
2682 return status;
2683 status = device_create_file(dev,
2684 &dev_attr_suspend_mem_microvolts);
2685 if (status < 0)
2686 return status;
2687 status = device_create_file(dev,
2688 &dev_attr_suspend_disk_microvolts);
2689 if (status < 0)
2690 return status;
2691 }
2692
2693 if (ops->set_suspend_mode) {
2694 status = device_create_file(dev,
2695 &dev_attr_suspend_standby_mode);
2696 if (status < 0)
2697 return status;
2698 status = device_create_file(dev,
2699 &dev_attr_suspend_mem_mode);
2700 if (status < 0)
2701 return status;
2702 status = device_create_file(dev,
2703 &dev_attr_suspend_disk_mode);
2704 if (status < 0)
2705 return status;
2706 }
2707
2708 return status;
2709 }
2710
2711 static void rdev_init_debugfs(struct regulator_dev *rdev)
2712 {
2713 #ifdef CONFIG_DEBUG_FS
2714 rdev->debugfs = debugfs_create_dir(rdev_get_name(rdev), debugfs_root);
2715 if (IS_ERR(rdev->debugfs) || !rdev->debugfs) {
2716 rdev_warn(rdev, "Failed to create debugfs directory\n");
2717 rdev->debugfs = NULL;
2718 return;
2719 }
2720
2721 debugfs_create_u32("use_count", 0444, rdev->debugfs,
2722 &rdev->use_count);
2723 debugfs_create_u32("open_count", 0444, rdev->debugfs,
2724 &rdev->open_count);
2725 #endif
2726 }
2727
2728 /**
2729 * regulator_register - register regulator
2730 * @regulator_desc: regulator to register
2731 * @dev: struct device for the regulator
2732 * @init_data: platform provided init data, passed through by driver
2733 * @driver_data: private regulator data
2734 * @of_node: OpenFirmware node to parse for device tree bindings (may be
2735 * NULL).
2736 *
2737 * Called by regulator drivers to register a regulator.
2738 * Returns 0 on success.
2739 */
2740 struct regulator_dev *regulator_register(struct regulator_desc *regulator_desc,
2741 struct device *dev, const struct regulator_init_data *init_data,
2742 void *driver_data, struct device_node *of_node)
2743 {
2744 const struct regulation_constraints *constraints = NULL;
2745 static atomic_t regulator_no = ATOMIC_INIT(0);
2746 struct regulator_dev *rdev;
2747 int ret, i;
2748 const char *supply = NULL;
2749
2750 if (regulator_desc == NULL)
2751 return ERR_PTR(-EINVAL);
2752
2753 if (regulator_desc->name == NULL || regulator_desc->ops == NULL)
2754 return ERR_PTR(-EINVAL);
2755
2756 if (regulator_desc->type != REGULATOR_VOLTAGE &&
2757 regulator_desc->type != REGULATOR_CURRENT)
2758 return ERR_PTR(-EINVAL);
2759
2760 /* Only one of each should be implemented */
2761 WARN_ON(regulator_desc->ops->get_voltage &&
2762 regulator_desc->ops->get_voltage_sel);
2763 WARN_ON(regulator_desc->ops->set_voltage &&
2764 regulator_desc->ops->set_voltage_sel);
2765
2766 /* If we're using selectors we must implement list_voltage. */
2767 if (regulator_desc->ops->get_voltage_sel &&
2768 !regulator_desc->ops->list_voltage) {
2769 return ERR_PTR(-EINVAL);
2770 }
2771 if (regulator_desc->ops->set_voltage_sel &&
2772 !regulator_desc->ops->list_voltage) {
2773 return ERR_PTR(-EINVAL);
2774 }
2775
2776 rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
2777 if (rdev == NULL)
2778 return ERR_PTR(-ENOMEM);
2779
2780 mutex_lock(&regulator_list_mutex);
2781
2782 mutex_init(&rdev->mutex);
2783 rdev->reg_data = driver_data;
2784 rdev->owner = regulator_desc->owner;
2785 rdev->desc = regulator_desc;
2786 INIT_LIST_HEAD(&rdev->consumer_list);
2787 INIT_LIST_HEAD(&rdev->list);
2788 BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
2789 INIT_DELAYED_WORK(&rdev->disable_work, regulator_disable_work);
2790
2791 /* preform any regulator specific init */
2792 if (init_data && init_data->regulator_init) {
2793 ret = init_data->regulator_init(rdev->reg_data);
2794 if (ret < 0)
2795 goto clean;
2796 }
2797
2798 /* register with sysfs */
2799 rdev->dev.class = &regulator_class;
2800 rdev->dev.of_node = of_node;
2801 rdev->dev.parent = dev;
2802 dev_set_name(&rdev->dev, "regulator.%d",
2803 atomic_inc_return(&regulator_no) - 1);
2804 ret = device_register(&rdev->dev);
2805 if (ret != 0) {
2806 put_device(&rdev->dev);
2807 goto clean;
2808 }
2809
2810 dev_set_drvdata(&rdev->dev, rdev);
2811
2812 /* set regulator constraints */
2813 if (init_data)
2814 constraints = &init_data->constraints;
2815
2816 ret = set_machine_constraints(rdev, constraints);
2817 if (ret < 0)
2818 goto scrub;
2819
2820 /* add attributes supported by this regulator */
2821 ret = add_regulator_attributes(rdev);
2822 if (ret < 0)
2823 goto scrub;
2824
2825 if (init_data && init_data->supply_regulator)
2826 supply = init_data->supply_regulator;
2827 else if (regulator_desc->supply_name)
2828 supply = regulator_desc->supply_name;
2829
2830 if (supply) {
2831 struct regulator_dev *r;
2832
2833 r = regulator_dev_lookup(dev, supply);
2834
2835 if (!r) {
2836 dev_err(dev, "Failed to find supply %s\n", supply);
2837 ret = -ENODEV;
2838 goto scrub;
2839 }
2840
2841 ret = set_supply(rdev, r);
2842 if (ret < 0)
2843 goto scrub;
2844
2845 /* Enable supply if rail is enabled */
2846 if (rdev->desc->ops->is_enabled &&
2847 rdev->desc->ops->is_enabled(rdev)) {
2848 ret = regulator_enable(rdev->supply);
2849 if (ret < 0)
2850 goto scrub;
2851 }
2852 }
2853
2854 /* add consumers devices */
2855 if (init_data) {
2856 for (i = 0; i < init_data->num_consumer_supplies; i++) {
2857 ret = set_consumer_device_supply(rdev,
2858 init_data->consumer_supplies[i].dev,
2859 init_data->consumer_supplies[i].dev_name,
2860 init_data->consumer_supplies[i].supply);
2861 if (ret < 0) {
2862 dev_err(dev, "Failed to set supply %s\n",
2863 init_data->consumer_supplies[i].supply);
2864 goto unset_supplies;
2865 }
2866 }
2867 }
2868
2869 list_add(&rdev->list, &regulator_list);
2870
2871 rdev_init_debugfs(rdev);
2872 out:
2873 mutex_unlock(&regulator_list_mutex);
2874 return rdev;
2875
2876 unset_supplies:
2877 unset_regulator_supplies(rdev);
2878
2879 scrub:
2880 kfree(rdev->constraints);
2881 device_unregister(&rdev->dev);
2882 /* device core frees rdev */
2883 rdev = ERR_PTR(ret);
2884 goto out;
2885
2886 clean:
2887 kfree(rdev);
2888 rdev = ERR_PTR(ret);
2889 goto out;
2890 }
2891 EXPORT_SYMBOL_GPL(regulator_register);
2892
2893 /**
2894 * regulator_unregister - unregister regulator
2895 * @rdev: regulator to unregister
2896 *
2897 * Called by regulator drivers to unregister a regulator.
2898 */
2899 void regulator_unregister(struct regulator_dev *rdev)
2900 {
2901 if (rdev == NULL)
2902 return;
2903
2904 mutex_lock(&regulator_list_mutex);
2905 #ifdef CONFIG_DEBUG_FS
2906 debugfs_remove_recursive(rdev->debugfs);
2907 #endif
2908 flush_work_sync(&rdev->disable_work.work);
2909 WARN_ON(rdev->open_count);
2910 unset_regulator_supplies(rdev);
2911 list_del(&rdev->list);
2912 if (rdev->supply)
2913 regulator_put(rdev->supply);
2914 kfree(rdev->constraints);
2915 device_unregister(&rdev->dev);
2916 mutex_unlock(&regulator_list_mutex);
2917 }
2918 EXPORT_SYMBOL_GPL(regulator_unregister);
2919
2920 /**
2921 * regulator_suspend_prepare - prepare regulators for system wide suspend
2922 * @state: system suspend state
2923 *
2924 * Configure each regulator with it's suspend operating parameters for state.
2925 * This will usually be called by machine suspend code prior to supending.
2926 */
2927 int regulator_suspend_prepare(suspend_state_t state)
2928 {
2929 struct regulator_dev *rdev;
2930 int ret = 0;
2931
2932 /* ON is handled by regulator active state */
2933 if (state == PM_SUSPEND_ON)
2934 return -EINVAL;
2935
2936 mutex_lock(&regulator_list_mutex);
2937 list_for_each_entry(rdev, &regulator_list, list) {
2938
2939 mutex_lock(&rdev->mutex);
2940 ret = suspend_prepare(rdev, state);
2941 mutex_unlock(&rdev->mutex);
2942
2943 if (ret < 0) {
2944 rdev_err(rdev, "failed to prepare\n");
2945 goto out;
2946 }
2947 }
2948 out:
2949 mutex_unlock(&regulator_list_mutex);
2950 return ret;
2951 }
2952 EXPORT_SYMBOL_GPL(regulator_suspend_prepare);
2953
2954 /**
2955 * regulator_suspend_finish - resume regulators from system wide suspend
2956 *
2957 * Turn on regulators that might be turned off by regulator_suspend_prepare
2958 * and that should be turned on according to the regulators properties.
2959 */
2960 int regulator_suspend_finish(void)
2961 {
2962 struct regulator_dev *rdev;
2963 int ret = 0, error;
2964
2965 mutex_lock(&regulator_list_mutex);
2966 list_for_each_entry(rdev, &regulator_list, list) {
2967 struct regulator_ops *ops = rdev->desc->ops;
2968
2969 mutex_lock(&rdev->mutex);
2970 if ((rdev->use_count > 0 || rdev->constraints->always_on) &&
2971 ops->enable) {
2972 error = ops->enable(rdev);
2973 if (error)
2974 ret = error;
2975 } else {
2976 if (!has_full_constraints)
2977 goto unlock;
2978 if (!ops->disable)
2979 goto unlock;
2980 if (ops->is_enabled && !ops->is_enabled(rdev))
2981 goto unlock;
2982
2983 error = ops->disable(rdev);
2984 if (error)
2985 ret = error;
2986 }
2987 unlock:
2988 mutex_unlock(&rdev->mutex);
2989 }
2990 mutex_unlock(&regulator_list_mutex);
2991 return ret;
2992 }
2993 EXPORT_SYMBOL_GPL(regulator_suspend_finish);
2994
2995 /**
2996 * regulator_has_full_constraints - the system has fully specified constraints
2997 *
2998 * Calling this function will cause the regulator API to disable all
2999 * regulators which have a zero use count and don't have an always_on
3000 * constraint in a late_initcall.
3001 *
3002 * The intention is that this will become the default behaviour in a
3003 * future kernel release so users are encouraged to use this facility
3004 * now.
3005 */
3006 void regulator_has_full_constraints(void)
3007 {
3008 has_full_constraints = 1;
3009 }
3010 EXPORT_SYMBOL_GPL(regulator_has_full_constraints);
3011
3012 /**
3013 * regulator_use_dummy_regulator - Provide a dummy regulator when none is found
3014 *
3015 * Calling this function will cause the regulator API to provide a
3016 * dummy regulator to consumers if no physical regulator is found,
3017 * allowing most consumers to proceed as though a regulator were
3018 * configured. This allows systems such as those with software
3019 * controllable regulators for the CPU core only to be brought up more
3020 * readily.
3021 */
3022 void regulator_use_dummy_regulator(void)
3023 {
3024 board_wants_dummy_regulator = true;
3025 }
3026 EXPORT_SYMBOL_GPL(regulator_use_dummy_regulator);
3027
3028 /**
3029 * rdev_get_drvdata - get rdev regulator driver data
3030 * @rdev: regulator
3031 *
3032 * Get rdev regulator driver private data. This call can be used in the
3033 * regulator driver context.
3034 */
3035 void *rdev_get_drvdata(struct regulator_dev *rdev)
3036 {
3037 return rdev->reg_data;
3038 }
3039 EXPORT_SYMBOL_GPL(rdev_get_drvdata);
3040
3041 /**
3042 * regulator_get_drvdata - get regulator driver data
3043 * @regulator: regulator
3044 *
3045 * Get regulator driver private data. This call can be used in the consumer
3046 * driver context when non API regulator specific functions need to be called.
3047 */
3048 void *regulator_get_drvdata(struct regulator *regulator)
3049 {
3050 return regulator->rdev->reg_data;
3051 }
3052 EXPORT_SYMBOL_GPL(regulator_get_drvdata);
3053
3054 /**
3055 * regulator_set_drvdata - set regulator driver data
3056 * @regulator: regulator
3057 * @data: data
3058 */
3059 void regulator_set_drvdata(struct regulator *regulator, void *data)
3060 {
3061 regulator->rdev->reg_data = data;
3062 }
3063 EXPORT_SYMBOL_GPL(regulator_set_drvdata);
3064
3065 /**
3066 * regulator_get_id - get regulator ID
3067 * @rdev: regulator
3068 */
3069 int rdev_get_id(struct regulator_dev *rdev)
3070 {
3071 return rdev->desc->id;
3072 }
3073 EXPORT_SYMBOL_GPL(rdev_get_id);
3074
3075 struct device *rdev_get_dev(struct regulator_dev *rdev)
3076 {
3077 return &rdev->dev;
3078 }
3079 EXPORT_SYMBOL_GPL(rdev_get_dev);
3080
3081 void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
3082 {
3083 return reg_init_data->driver_data;
3084 }
3085 EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);
3086
3087 #ifdef CONFIG_DEBUG_FS
3088 static ssize_t supply_map_read_file(struct file *file, char __user *user_buf,
3089 size_t count, loff_t *ppos)
3090 {
3091 char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
3092 ssize_t len, ret = 0;
3093 struct regulator_map *map;
3094
3095 if (!buf)
3096 return -ENOMEM;
3097
3098 list_for_each_entry(map, &regulator_map_list, list) {
3099 len = snprintf(buf + ret, PAGE_SIZE - ret,
3100 "%s -> %s.%s\n",
3101 rdev_get_name(map->regulator), map->dev_name,
3102 map->supply);
3103 if (len >= 0)
3104 ret += len;
3105 if (ret > PAGE_SIZE) {
3106 ret = PAGE_SIZE;
3107 break;
3108 }
3109 }
3110
3111 ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
3112
3113 kfree(buf);
3114
3115 return ret;
3116 }
3117
3118 static const struct file_operations supply_map_fops = {
3119 .read = supply_map_read_file,
3120 .llseek = default_llseek,
3121 };
3122 #endif
3123
3124 static int __init regulator_init(void)
3125 {
3126 int ret;
3127
3128 ret = class_register(&regulator_class);
3129
3130 #ifdef CONFIG_DEBUG_FS
3131 debugfs_root = debugfs_create_dir("regulator", NULL);
3132 if (IS_ERR(debugfs_root) || !debugfs_root) {
3133 pr_warn("regulator: Failed to create debugfs directory\n");
3134 debugfs_root = NULL;
3135 }
3136
3137 if (IS_ERR(debugfs_create_file("supply_map", 0444, debugfs_root,
3138 NULL, &supply_map_fops)))
3139 pr_warn("regulator: Failed to create supplies debugfs\n");
3140 #endif
3141
3142 regulator_dummy_init();
3143
3144 return ret;
3145 }
3146
3147 /* init early to allow our consumers to complete system booting */
3148 core_initcall(regulator_init);
3149
3150 static int __init regulator_init_complete(void)
3151 {
3152 struct regulator_dev *rdev;
3153 struct regulator_ops *ops;
3154 struct regulation_constraints *c;
3155 int enabled, ret;
3156
3157 mutex_lock(&regulator_list_mutex);
3158
3159 /* If we have a full configuration then disable any regulators
3160 * which are not in use or always_on. This will become the
3161 * default behaviour in the future.
3162 */
3163 list_for_each_entry(rdev, &regulator_list, list) {
3164 ops = rdev->desc->ops;
3165 c = rdev->constraints;
3166
3167 if (!ops->disable || (c && c->always_on))
3168 continue;
3169
3170 mutex_lock(&rdev->mutex);
3171
3172 if (rdev->use_count)
3173 goto unlock;
3174
3175 /* If we can't read the status assume it's on. */
3176 if (ops->is_enabled)
3177 enabled = ops->is_enabled(rdev);
3178 else
3179 enabled = 1;
3180
3181 if (!enabled)
3182 goto unlock;
3183
3184 if (has_full_constraints) {
3185 /* We log since this may kill the system if it
3186 * goes wrong. */
3187 rdev_info(rdev, "disabling\n");
3188 ret = ops->disable(rdev);
3189 if (ret != 0) {
3190 rdev_err(rdev, "couldn't disable: %d\n", ret);
3191 }
3192 } else {
3193 /* The intention is that in future we will
3194 * assume that full constraints are provided
3195 * so warn even if we aren't going to do
3196 * anything here.
3197 */
3198 rdev_warn(rdev, "incomplete constraints, leaving on\n");
3199 }
3200
3201 unlock:
3202 mutex_unlock(&rdev->mutex);
3203 }
3204
3205 mutex_unlock(&regulator_list_mutex);
3206
3207 return 0;
3208 }
3209 late_initcall(regulator_init_complete);
This page took 0.105614 seconds and 6 git commands to generate.