Merge branch 'testing/driver-warnings' of git://git.kernel.org/pub/scm/linux/kernel...
[deliverable/linux.git] / drivers / remoteproc / remoteproc_core.c
1 /*
2 * Remote Processor Framework
3 *
4 * Copyright (C) 2011 Texas Instruments, Inc.
5 * Copyright (C) 2011 Google, Inc.
6 *
7 * Ohad Ben-Cohen <ohad@wizery.com>
8 * Brian Swetland <swetland@google.com>
9 * Mark Grosen <mgrosen@ti.com>
10 * Fernando Guzman Lugo <fernando.lugo@ti.com>
11 * Suman Anna <s-anna@ti.com>
12 * Robert Tivy <rtivy@ti.com>
13 * Armando Uribe De Leon <x0095078@ti.com>
14 *
15 * This program is free software; you can redistribute it and/or
16 * modify it under the terms of the GNU General Public License
17 * version 2 as published by the Free Software Foundation.
18 *
19 * This program is distributed in the hope that it will be useful,
20 * but WITHOUT ANY WARRANTY; without even the implied warranty of
21 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 * GNU General Public License for more details.
23 */
24
25 #define pr_fmt(fmt) "%s: " fmt, __func__
26
27 #include <linux/kernel.h>
28 #include <linux/module.h>
29 #include <linux/device.h>
30 #include <linux/slab.h>
31 #include <linux/mutex.h>
32 #include <linux/dma-mapping.h>
33 #include <linux/firmware.h>
34 #include <linux/string.h>
35 #include <linux/debugfs.h>
36 #include <linux/remoteproc.h>
37 #include <linux/iommu.h>
38 #include <linux/idr.h>
39 #include <linux/elf.h>
40 #include <linux/virtio_ids.h>
41 #include <linux/virtio_ring.h>
42 #include <asm/byteorder.h>
43
44 #include "remoteproc_internal.h"
45
46 typedef int (*rproc_handle_resources_t)(struct rproc *rproc,
47 struct resource_table *table, int len);
48 typedef int (*rproc_handle_resource_t)(struct rproc *rproc, void *, int avail);
49
50 /* Unique indices for remoteproc devices */
51 static DEFINE_IDA(rproc_dev_index);
52
53 static const char * const rproc_crash_names[] = {
54 [RPROC_MMUFAULT] = "mmufault",
55 };
56
57 /* translate rproc_crash_type to string */
58 static const char *rproc_crash_to_string(enum rproc_crash_type type)
59 {
60 if (type < ARRAY_SIZE(rproc_crash_names))
61 return rproc_crash_names[type];
62 return "unkown";
63 }
64
65 /*
66 * This is the IOMMU fault handler we register with the IOMMU API
67 * (when relevant; not all remote processors access memory through
68 * an IOMMU).
69 *
70 * IOMMU core will invoke this handler whenever the remote processor
71 * will try to access an unmapped device address.
72 */
73 static int rproc_iommu_fault(struct iommu_domain *domain, struct device *dev,
74 unsigned long iova, int flags, void *token)
75 {
76 struct rproc *rproc = token;
77
78 dev_err(dev, "iommu fault: da 0x%lx flags 0x%x\n", iova, flags);
79
80 rproc_report_crash(rproc, RPROC_MMUFAULT);
81
82 /*
83 * Let the iommu core know we're not really handling this fault;
84 * we just used it as a recovery trigger.
85 */
86 return -ENOSYS;
87 }
88
89 static int rproc_enable_iommu(struct rproc *rproc)
90 {
91 struct iommu_domain *domain;
92 struct device *dev = rproc->dev.parent;
93 int ret;
94
95 /*
96 * We currently use iommu_present() to decide if an IOMMU
97 * setup is needed.
98 *
99 * This works for simple cases, but will easily fail with
100 * platforms that do have an IOMMU, but not for this specific
101 * rproc.
102 *
103 * This will be easily solved by introducing hw capabilities
104 * that will be set by the remoteproc driver.
105 */
106 if (!iommu_present(dev->bus)) {
107 dev_dbg(dev, "iommu not found\n");
108 return 0;
109 }
110
111 domain = iommu_domain_alloc(dev->bus);
112 if (!domain) {
113 dev_err(dev, "can't alloc iommu domain\n");
114 return -ENOMEM;
115 }
116
117 iommu_set_fault_handler(domain, rproc_iommu_fault, rproc);
118
119 ret = iommu_attach_device(domain, dev);
120 if (ret) {
121 dev_err(dev, "can't attach iommu device: %d\n", ret);
122 goto free_domain;
123 }
124
125 rproc->domain = domain;
126
127 return 0;
128
129 free_domain:
130 iommu_domain_free(domain);
131 return ret;
132 }
133
134 static void rproc_disable_iommu(struct rproc *rproc)
135 {
136 struct iommu_domain *domain = rproc->domain;
137 struct device *dev = rproc->dev.parent;
138
139 if (!domain)
140 return;
141
142 iommu_detach_device(domain, dev);
143 iommu_domain_free(domain);
144
145 return;
146 }
147
148 /*
149 * Some remote processors will ask us to allocate them physically contiguous
150 * memory regions (which we call "carveouts"), and map them to specific
151 * device addresses (which are hardcoded in the firmware).
152 *
153 * They may then ask us to copy objects into specific device addresses (e.g.
154 * code/data sections) or expose us certain symbols in other device address
155 * (e.g. their trace buffer).
156 *
157 * This function is an internal helper with which we can go over the allocated
158 * carveouts and translate specific device address to kernel virtual addresses
159 * so we can access the referenced memory.
160 *
161 * Note: phys_to_virt(iommu_iova_to_phys(rproc->domain, da)) will work too,
162 * but only on kernel direct mapped RAM memory. Instead, we're just using
163 * here the output of the DMA API, which should be more correct.
164 */
165 void *rproc_da_to_va(struct rproc *rproc, u64 da, int len)
166 {
167 struct rproc_mem_entry *carveout;
168 void *ptr = NULL;
169
170 list_for_each_entry(carveout, &rproc->carveouts, node) {
171 int offset = da - carveout->da;
172
173 /* try next carveout if da is too small */
174 if (offset < 0)
175 continue;
176
177 /* try next carveout if da is too large */
178 if (offset + len > carveout->len)
179 continue;
180
181 ptr = carveout->va + offset;
182
183 break;
184 }
185
186 return ptr;
187 }
188 EXPORT_SYMBOL(rproc_da_to_va);
189
190 int rproc_alloc_vring(struct rproc_vdev *rvdev, int i)
191 {
192 struct rproc *rproc = rvdev->rproc;
193 struct device *dev = &rproc->dev;
194 struct rproc_vring *rvring = &rvdev->vring[i];
195 dma_addr_t dma;
196 void *va;
197 int ret, size, notifyid;
198
199 /* actual size of vring (in bytes) */
200 size = PAGE_ALIGN(vring_size(rvring->len, rvring->align));
201
202 if (!idr_pre_get(&rproc->notifyids, GFP_KERNEL)) {
203 dev_err(dev, "idr_pre_get failed\n");
204 return -ENOMEM;
205 }
206
207 /*
208 * Allocate non-cacheable memory for the vring. In the future
209 * this call will also configure the IOMMU for us
210 * TODO: let the rproc know the da of this vring
211 */
212 va = dma_alloc_coherent(dev->parent, size, &dma, GFP_KERNEL);
213 if (!va) {
214 dev_err(dev->parent, "dma_alloc_coherent failed\n");
215 return -EINVAL;
216 }
217
218 /*
219 * Assign an rproc-wide unique index for this vring
220 * TODO: assign a notifyid for rvdev updates as well
221 * TODO: let the rproc know the notifyid of this vring
222 * TODO: support predefined notifyids (via resource table)
223 */
224 ret = idr_get_new(&rproc->notifyids, rvring, &notifyid);
225 if (ret) {
226 dev_err(dev, "idr_get_new failed: %d\n", ret);
227 dma_free_coherent(dev->parent, size, va, dma);
228 return ret;
229 }
230
231 /* Store largest notifyid */
232 rproc->max_notifyid = max(rproc->max_notifyid, notifyid);
233
234 dev_dbg(dev, "vring%d: va %p dma %llx size %x idr %d\n", i, va,
235 (unsigned long long)dma, size, notifyid);
236
237 rvring->va = va;
238 rvring->dma = dma;
239 rvring->notifyid = notifyid;
240
241 return 0;
242 }
243
244 static int
245 rproc_parse_vring(struct rproc_vdev *rvdev, struct fw_rsc_vdev *rsc, int i)
246 {
247 struct rproc *rproc = rvdev->rproc;
248 struct device *dev = &rproc->dev;
249 struct fw_rsc_vdev_vring *vring = &rsc->vring[i];
250 struct rproc_vring *rvring = &rvdev->vring[i];
251
252 dev_dbg(dev, "vdev rsc: vring%d: da %x, qsz %d, align %d\n",
253 i, vring->da, vring->num, vring->align);
254
255 /* make sure reserved bytes are zeroes */
256 if (vring->reserved) {
257 dev_err(dev, "vring rsc has non zero reserved bytes\n");
258 return -EINVAL;
259 }
260
261 /* verify queue size and vring alignment are sane */
262 if (!vring->num || !vring->align) {
263 dev_err(dev, "invalid qsz (%d) or alignment (%d)\n",
264 vring->num, vring->align);
265 return -EINVAL;
266 }
267
268 rvring->len = vring->num;
269 rvring->align = vring->align;
270 rvring->rvdev = rvdev;
271
272 return 0;
273 }
274
275 static int rproc_max_notifyid(int id, void *p, void *data)
276 {
277 int *maxid = data;
278 *maxid = max(*maxid, id);
279 return 0;
280 }
281
282 void rproc_free_vring(struct rproc_vring *rvring)
283 {
284 int size = PAGE_ALIGN(vring_size(rvring->len, rvring->align));
285 struct rproc *rproc = rvring->rvdev->rproc;
286 int maxid = 0;
287
288 dma_free_coherent(rproc->dev.parent, size, rvring->va, rvring->dma);
289 idr_remove(&rproc->notifyids, rvring->notifyid);
290
291 /* Find the largest remaining notifyid */
292 idr_for_each(&rproc->notifyids, rproc_max_notifyid, &maxid);
293 rproc->max_notifyid = maxid;
294 }
295
296 /**
297 * rproc_handle_vdev() - handle a vdev fw resource
298 * @rproc: the remote processor
299 * @rsc: the vring resource descriptor
300 * @avail: size of available data (for sanity checking the image)
301 *
302 * This resource entry requests the host to statically register a virtio
303 * device (vdev), and setup everything needed to support it. It contains
304 * everything needed to make it possible: the virtio device id, virtio
305 * device features, vrings information, virtio config space, etc...
306 *
307 * Before registering the vdev, the vrings are allocated from non-cacheable
308 * physically contiguous memory. Currently we only support two vrings per
309 * remote processor (temporary limitation). We might also want to consider
310 * doing the vring allocation only later when ->find_vqs() is invoked, and
311 * then release them upon ->del_vqs().
312 *
313 * Note: @da is currently not really handled correctly: we dynamically
314 * allocate it using the DMA API, ignoring requested hard coded addresses,
315 * and we don't take care of any required IOMMU programming. This is all
316 * going to be taken care of when the generic iommu-based DMA API will be
317 * merged. Meanwhile, statically-addressed iommu-based firmware images should
318 * use RSC_DEVMEM resource entries to map their required @da to the physical
319 * address of their base CMA region (ouch, hacky!).
320 *
321 * Returns 0 on success, or an appropriate error code otherwise
322 */
323 static int rproc_handle_vdev(struct rproc *rproc, struct fw_rsc_vdev *rsc,
324 int avail)
325 {
326 struct device *dev = &rproc->dev;
327 struct rproc_vdev *rvdev;
328 int i, ret;
329
330 /* make sure resource isn't truncated */
331 if (sizeof(*rsc) + rsc->num_of_vrings * sizeof(struct fw_rsc_vdev_vring)
332 + rsc->config_len > avail) {
333 dev_err(dev, "vdev rsc is truncated\n");
334 return -EINVAL;
335 }
336
337 /* make sure reserved bytes are zeroes */
338 if (rsc->reserved[0] || rsc->reserved[1]) {
339 dev_err(dev, "vdev rsc has non zero reserved bytes\n");
340 return -EINVAL;
341 }
342
343 dev_dbg(dev, "vdev rsc: id %d, dfeatures %x, cfg len %d, %d vrings\n",
344 rsc->id, rsc->dfeatures, rsc->config_len, rsc->num_of_vrings);
345
346 /* we currently support only two vrings per rvdev */
347 if (rsc->num_of_vrings > ARRAY_SIZE(rvdev->vring)) {
348 dev_err(dev, "too many vrings: %d\n", rsc->num_of_vrings);
349 return -EINVAL;
350 }
351
352 rvdev = kzalloc(sizeof(struct rproc_vdev), GFP_KERNEL);
353 if (!rvdev)
354 return -ENOMEM;
355
356 rvdev->rproc = rproc;
357
358 /* parse the vrings */
359 for (i = 0; i < rsc->num_of_vrings; i++) {
360 ret = rproc_parse_vring(rvdev, rsc, i);
361 if (ret)
362 goto free_rvdev;
363 }
364
365 /* remember the device features */
366 rvdev->dfeatures = rsc->dfeatures;
367
368 list_add_tail(&rvdev->node, &rproc->rvdevs);
369
370 /* it is now safe to add the virtio device */
371 ret = rproc_add_virtio_dev(rvdev, rsc->id);
372 if (ret)
373 goto free_rvdev;
374
375 return 0;
376
377 free_rvdev:
378 kfree(rvdev);
379 return ret;
380 }
381
382 /**
383 * rproc_handle_trace() - handle a shared trace buffer resource
384 * @rproc: the remote processor
385 * @rsc: the trace resource descriptor
386 * @avail: size of available data (for sanity checking the image)
387 *
388 * In case the remote processor dumps trace logs into memory,
389 * export it via debugfs.
390 *
391 * Currently, the 'da' member of @rsc should contain the device address
392 * where the remote processor is dumping the traces. Later we could also
393 * support dynamically allocating this address using the generic
394 * DMA API (but currently there isn't a use case for that).
395 *
396 * Returns 0 on success, or an appropriate error code otherwise
397 */
398 static int rproc_handle_trace(struct rproc *rproc, struct fw_rsc_trace *rsc,
399 int avail)
400 {
401 struct rproc_mem_entry *trace;
402 struct device *dev = &rproc->dev;
403 void *ptr;
404 char name[15];
405
406 if (sizeof(*rsc) > avail) {
407 dev_err(dev, "trace rsc is truncated\n");
408 return -EINVAL;
409 }
410
411 /* make sure reserved bytes are zeroes */
412 if (rsc->reserved) {
413 dev_err(dev, "trace rsc has non zero reserved bytes\n");
414 return -EINVAL;
415 }
416
417 /* what's the kernel address of this resource ? */
418 ptr = rproc_da_to_va(rproc, rsc->da, rsc->len);
419 if (!ptr) {
420 dev_err(dev, "erroneous trace resource entry\n");
421 return -EINVAL;
422 }
423
424 trace = kzalloc(sizeof(*trace), GFP_KERNEL);
425 if (!trace) {
426 dev_err(dev, "kzalloc trace failed\n");
427 return -ENOMEM;
428 }
429
430 /* set the trace buffer dma properties */
431 trace->len = rsc->len;
432 trace->va = ptr;
433
434 /* make sure snprintf always null terminates, even if truncating */
435 snprintf(name, sizeof(name), "trace%d", rproc->num_traces);
436
437 /* create the debugfs entry */
438 trace->priv = rproc_create_trace_file(name, rproc, trace);
439 if (!trace->priv) {
440 trace->va = NULL;
441 kfree(trace);
442 return -EINVAL;
443 }
444
445 list_add_tail(&trace->node, &rproc->traces);
446
447 rproc->num_traces++;
448
449 dev_dbg(dev, "%s added: va %p, da 0x%x, len 0x%x\n", name, ptr,
450 rsc->da, rsc->len);
451
452 return 0;
453 }
454
455 /**
456 * rproc_handle_devmem() - handle devmem resource entry
457 * @rproc: remote processor handle
458 * @rsc: the devmem resource entry
459 * @avail: size of available data (for sanity checking the image)
460 *
461 * Remote processors commonly need to access certain on-chip peripherals.
462 *
463 * Some of these remote processors access memory via an iommu device,
464 * and might require us to configure their iommu before they can access
465 * the on-chip peripherals they need.
466 *
467 * This resource entry is a request to map such a peripheral device.
468 *
469 * These devmem entries will contain the physical address of the device in
470 * the 'pa' member. If a specific device address is expected, then 'da' will
471 * contain it (currently this is the only use case supported). 'len' will
472 * contain the size of the physical region we need to map.
473 *
474 * Currently we just "trust" those devmem entries to contain valid physical
475 * addresses, but this is going to change: we want the implementations to
476 * tell us ranges of physical addresses the firmware is allowed to request,
477 * and not allow firmwares to request access to physical addresses that
478 * are outside those ranges.
479 */
480 static int rproc_handle_devmem(struct rproc *rproc, struct fw_rsc_devmem *rsc,
481 int avail)
482 {
483 struct rproc_mem_entry *mapping;
484 struct device *dev = &rproc->dev;
485 int ret;
486
487 /* no point in handling this resource without a valid iommu domain */
488 if (!rproc->domain)
489 return -EINVAL;
490
491 if (sizeof(*rsc) > avail) {
492 dev_err(dev, "devmem rsc is truncated\n");
493 return -EINVAL;
494 }
495
496 /* make sure reserved bytes are zeroes */
497 if (rsc->reserved) {
498 dev_err(dev, "devmem rsc has non zero reserved bytes\n");
499 return -EINVAL;
500 }
501
502 mapping = kzalloc(sizeof(*mapping), GFP_KERNEL);
503 if (!mapping) {
504 dev_err(dev, "kzalloc mapping failed\n");
505 return -ENOMEM;
506 }
507
508 ret = iommu_map(rproc->domain, rsc->da, rsc->pa, rsc->len, rsc->flags);
509 if (ret) {
510 dev_err(dev, "failed to map devmem: %d\n", ret);
511 goto out;
512 }
513
514 /*
515 * We'll need this info later when we'll want to unmap everything
516 * (e.g. on shutdown).
517 *
518 * We can't trust the remote processor not to change the resource
519 * table, so we must maintain this info independently.
520 */
521 mapping->da = rsc->da;
522 mapping->len = rsc->len;
523 list_add_tail(&mapping->node, &rproc->mappings);
524
525 dev_dbg(dev, "mapped devmem pa 0x%x, da 0x%x, len 0x%x\n",
526 rsc->pa, rsc->da, rsc->len);
527
528 return 0;
529
530 out:
531 kfree(mapping);
532 return ret;
533 }
534
535 /**
536 * rproc_handle_carveout() - handle phys contig memory allocation requests
537 * @rproc: rproc handle
538 * @rsc: the resource entry
539 * @avail: size of available data (for image validation)
540 *
541 * This function will handle firmware requests for allocation of physically
542 * contiguous memory regions.
543 *
544 * These request entries should come first in the firmware's resource table,
545 * as other firmware entries might request placing other data objects inside
546 * these memory regions (e.g. data/code segments, trace resource entries, ...).
547 *
548 * Allocating memory this way helps utilizing the reserved physical memory
549 * (e.g. CMA) more efficiently, and also minimizes the number of TLB entries
550 * needed to map it (in case @rproc is using an IOMMU). Reducing the TLB
551 * pressure is important; it may have a substantial impact on performance.
552 */
553 static int rproc_handle_carveout(struct rproc *rproc,
554 struct fw_rsc_carveout *rsc, int avail)
555 {
556 struct rproc_mem_entry *carveout, *mapping;
557 struct device *dev = &rproc->dev;
558 dma_addr_t dma;
559 void *va;
560 int ret;
561
562 if (sizeof(*rsc) > avail) {
563 dev_err(dev, "carveout rsc is truncated\n");
564 return -EINVAL;
565 }
566
567 /* make sure reserved bytes are zeroes */
568 if (rsc->reserved) {
569 dev_err(dev, "carveout rsc has non zero reserved bytes\n");
570 return -EINVAL;
571 }
572
573 dev_dbg(dev, "carveout rsc: da %x, pa %x, len %x, flags %x\n",
574 rsc->da, rsc->pa, rsc->len, rsc->flags);
575
576 carveout = kzalloc(sizeof(*carveout), GFP_KERNEL);
577 if (!carveout) {
578 dev_err(dev, "kzalloc carveout failed\n");
579 return -ENOMEM;
580 }
581
582 va = dma_alloc_coherent(dev->parent, rsc->len, &dma, GFP_KERNEL);
583 if (!va) {
584 dev_err(dev->parent, "dma_alloc_coherent err: %d\n", rsc->len);
585 ret = -ENOMEM;
586 goto free_carv;
587 }
588
589 dev_dbg(dev, "carveout va %p, dma %llx, len 0x%x\n", va,
590 (unsigned long long)dma, rsc->len);
591
592 /*
593 * Ok, this is non-standard.
594 *
595 * Sometimes we can't rely on the generic iommu-based DMA API
596 * to dynamically allocate the device address and then set the IOMMU
597 * tables accordingly, because some remote processors might
598 * _require_ us to use hard coded device addresses that their
599 * firmware was compiled with.
600 *
601 * In this case, we must use the IOMMU API directly and map
602 * the memory to the device address as expected by the remote
603 * processor.
604 *
605 * Obviously such remote processor devices should not be configured
606 * to use the iommu-based DMA API: we expect 'dma' to contain the
607 * physical address in this case.
608 */
609 if (rproc->domain) {
610 mapping = kzalloc(sizeof(*mapping), GFP_KERNEL);
611 if (!mapping) {
612 dev_err(dev, "kzalloc mapping failed\n");
613 ret = -ENOMEM;
614 goto dma_free;
615 }
616
617 ret = iommu_map(rproc->domain, rsc->da, dma, rsc->len,
618 rsc->flags);
619 if (ret) {
620 dev_err(dev, "iommu_map failed: %d\n", ret);
621 goto free_mapping;
622 }
623
624 /*
625 * We'll need this info later when we'll want to unmap
626 * everything (e.g. on shutdown).
627 *
628 * We can't trust the remote processor not to change the
629 * resource table, so we must maintain this info independently.
630 */
631 mapping->da = rsc->da;
632 mapping->len = rsc->len;
633 list_add_tail(&mapping->node, &rproc->mappings);
634
635 dev_dbg(dev, "carveout mapped 0x%x to 0x%llx\n",
636 rsc->da, (unsigned long long)dma);
637 }
638
639 /*
640 * Some remote processors might need to know the pa
641 * even though they are behind an IOMMU. E.g., OMAP4's
642 * remote M3 processor needs this so it can control
643 * on-chip hardware accelerators that are not behind
644 * the IOMMU, and therefor must know the pa.
645 *
646 * Generally we don't want to expose physical addresses
647 * if we don't have to (remote processors are generally
648 * _not_ trusted), so we might want to do this only for
649 * remote processor that _must_ have this (e.g. OMAP4's
650 * dual M3 subsystem).
651 *
652 * Non-IOMMU processors might also want to have this info.
653 * In this case, the device address and the physical address
654 * are the same.
655 */
656 rsc->pa = dma;
657
658 carveout->va = va;
659 carveout->len = rsc->len;
660 carveout->dma = dma;
661 carveout->da = rsc->da;
662
663 list_add_tail(&carveout->node, &rproc->carveouts);
664
665 return 0;
666
667 free_mapping:
668 kfree(mapping);
669 dma_free:
670 dma_free_coherent(dev->parent, rsc->len, va, dma);
671 free_carv:
672 kfree(carveout);
673 return ret;
674 }
675
676 /*
677 * A lookup table for resource handlers. The indices are defined in
678 * enum fw_resource_type.
679 */
680 static rproc_handle_resource_t rproc_handle_rsc[] = {
681 [RSC_CARVEOUT] = (rproc_handle_resource_t)rproc_handle_carveout,
682 [RSC_DEVMEM] = (rproc_handle_resource_t)rproc_handle_devmem,
683 [RSC_TRACE] = (rproc_handle_resource_t)rproc_handle_trace,
684 [RSC_VDEV] = NULL, /* VDEVs were handled upon registrarion */
685 };
686
687 /* handle firmware resource entries before booting the remote processor */
688 static int
689 rproc_handle_boot_rsc(struct rproc *rproc, struct resource_table *table, int len)
690 {
691 struct device *dev = &rproc->dev;
692 rproc_handle_resource_t handler;
693 int ret = 0, i;
694
695 for (i = 0; i < table->num; i++) {
696 int offset = table->offset[i];
697 struct fw_rsc_hdr *hdr = (void *)table + offset;
698 int avail = len - offset - sizeof(*hdr);
699 void *rsc = (void *)hdr + sizeof(*hdr);
700
701 /* make sure table isn't truncated */
702 if (avail < 0) {
703 dev_err(dev, "rsc table is truncated\n");
704 return -EINVAL;
705 }
706
707 dev_dbg(dev, "rsc: type %d\n", hdr->type);
708
709 if (hdr->type >= RSC_LAST) {
710 dev_warn(dev, "unsupported resource %d\n", hdr->type);
711 continue;
712 }
713
714 handler = rproc_handle_rsc[hdr->type];
715 if (!handler)
716 continue;
717
718 ret = handler(rproc, rsc, avail);
719 if (ret)
720 break;
721 }
722
723 return ret;
724 }
725
726 /* handle firmware resource entries while registering the remote processor */
727 static int
728 rproc_handle_virtio_rsc(struct rproc *rproc, struct resource_table *table, int len)
729 {
730 struct device *dev = &rproc->dev;
731 int ret = 0, i;
732
733 for (i = 0; i < table->num; i++) {
734 int offset = table->offset[i];
735 struct fw_rsc_hdr *hdr = (void *)table + offset;
736 int avail = len - offset - sizeof(*hdr);
737 struct fw_rsc_vdev *vrsc;
738
739 /* make sure table isn't truncated */
740 if (avail < 0) {
741 dev_err(dev, "rsc table is truncated\n");
742 return -EINVAL;
743 }
744
745 dev_dbg(dev, "%s: rsc type %d\n", __func__, hdr->type);
746
747 if (hdr->type != RSC_VDEV)
748 continue;
749
750 vrsc = (struct fw_rsc_vdev *)hdr->data;
751
752 ret = rproc_handle_vdev(rproc, vrsc, avail);
753 if (ret)
754 break;
755 }
756
757 return ret;
758 }
759
760 /**
761 * rproc_resource_cleanup() - clean up and free all acquired resources
762 * @rproc: rproc handle
763 *
764 * This function will free all resources acquired for @rproc, and it
765 * is called whenever @rproc either shuts down or fails to boot.
766 */
767 static void rproc_resource_cleanup(struct rproc *rproc)
768 {
769 struct rproc_mem_entry *entry, *tmp;
770 struct device *dev = &rproc->dev;
771
772 /* clean up debugfs trace entries */
773 list_for_each_entry_safe(entry, tmp, &rproc->traces, node) {
774 rproc_remove_trace_file(entry->priv);
775 rproc->num_traces--;
776 list_del(&entry->node);
777 kfree(entry);
778 }
779
780 /* clean up carveout allocations */
781 list_for_each_entry_safe(entry, tmp, &rproc->carveouts, node) {
782 dma_free_coherent(dev->parent, entry->len, entry->va, entry->dma);
783 list_del(&entry->node);
784 kfree(entry);
785 }
786
787 /* clean up iommu mapping entries */
788 list_for_each_entry_safe(entry, tmp, &rproc->mappings, node) {
789 size_t unmapped;
790
791 unmapped = iommu_unmap(rproc->domain, entry->da, entry->len);
792 if (unmapped != entry->len) {
793 /* nothing much to do besides complaining */
794 dev_err(dev, "failed to unmap %u/%zu\n", entry->len,
795 unmapped);
796 }
797
798 list_del(&entry->node);
799 kfree(entry);
800 }
801 }
802
803 /*
804 * take a firmware and boot a remote processor with it.
805 */
806 static int rproc_fw_boot(struct rproc *rproc, const struct firmware *fw)
807 {
808 struct device *dev = &rproc->dev;
809 const char *name = rproc->firmware;
810 struct resource_table *table;
811 int ret, tablesz;
812
813 ret = rproc_fw_sanity_check(rproc, fw);
814 if (ret)
815 return ret;
816
817 dev_info(dev, "Booting fw image %s, size %zd\n", name, fw->size);
818
819 /*
820 * if enabling an IOMMU isn't relevant for this rproc, this is
821 * just a nop
822 */
823 ret = rproc_enable_iommu(rproc);
824 if (ret) {
825 dev_err(dev, "can't enable iommu: %d\n", ret);
826 return ret;
827 }
828
829 rproc->bootaddr = rproc_get_boot_addr(rproc, fw);
830
831 /* look for the resource table */
832 table = rproc_find_rsc_table(rproc, fw, &tablesz);
833 if (!table) {
834 ret = -EINVAL;
835 goto clean_up;
836 }
837
838 /* handle fw resources which are required to boot rproc */
839 ret = rproc_handle_boot_rsc(rproc, table, tablesz);
840 if (ret) {
841 dev_err(dev, "Failed to process resources: %d\n", ret);
842 goto clean_up;
843 }
844
845 /* load the ELF segments to memory */
846 ret = rproc_load_segments(rproc, fw);
847 if (ret) {
848 dev_err(dev, "Failed to load program segments: %d\n", ret);
849 goto clean_up;
850 }
851
852 /* power up the remote processor */
853 ret = rproc->ops->start(rproc);
854 if (ret) {
855 dev_err(dev, "can't start rproc %s: %d\n", rproc->name, ret);
856 goto clean_up;
857 }
858
859 rproc->state = RPROC_RUNNING;
860
861 dev_info(dev, "remote processor %s is now up\n", rproc->name);
862
863 return 0;
864
865 clean_up:
866 rproc_resource_cleanup(rproc);
867 rproc_disable_iommu(rproc);
868 return ret;
869 }
870
871 /*
872 * take a firmware and look for virtio devices to register.
873 *
874 * Note: this function is called asynchronously upon registration of the
875 * remote processor (so we must wait until it completes before we try
876 * to unregister the device. one other option is just to use kref here,
877 * that might be cleaner).
878 */
879 static void rproc_fw_config_virtio(const struct firmware *fw, void *context)
880 {
881 struct rproc *rproc = context;
882 struct resource_table *table;
883 int ret, tablesz;
884
885 if (rproc_fw_sanity_check(rproc, fw) < 0)
886 goto out;
887
888 /* look for the resource table */
889 table = rproc_find_rsc_table(rproc, fw, &tablesz);
890 if (!table)
891 goto out;
892
893 /* look for virtio devices and register them */
894 ret = rproc_handle_virtio_rsc(rproc, table, tablesz);
895 if (ret)
896 goto out;
897
898 out:
899 release_firmware(fw);
900 /* allow rproc_del() contexts, if any, to proceed */
901 complete_all(&rproc->firmware_loading_complete);
902 }
903
904 static int rproc_add_virtio_devices(struct rproc *rproc)
905 {
906 int ret;
907
908 /* rproc_del() calls must wait until async loader completes */
909 init_completion(&rproc->firmware_loading_complete);
910
911 /*
912 * We must retrieve early virtio configuration info from
913 * the firmware (e.g. whether to register a virtio device,
914 * what virtio features does it support, ...).
915 *
916 * We're initiating an asynchronous firmware loading, so we can
917 * be built-in kernel code, without hanging the boot process.
918 */
919 ret = request_firmware_nowait(THIS_MODULE, FW_ACTION_HOTPLUG,
920 rproc->firmware, &rproc->dev, GFP_KERNEL,
921 rproc, rproc_fw_config_virtio);
922 if (ret < 0) {
923 dev_err(&rproc->dev, "request_firmware_nowait err: %d\n", ret);
924 complete_all(&rproc->firmware_loading_complete);
925 }
926
927 return ret;
928 }
929
930 /**
931 * rproc_trigger_recovery() - recover a remoteproc
932 * @rproc: the remote processor
933 *
934 * The recovery is done by reseting all the virtio devices, that way all the
935 * rpmsg drivers will be reseted along with the remote processor making the
936 * remoteproc functional again.
937 *
938 * This function can sleep, so it cannot be called from atomic context.
939 */
940 int rproc_trigger_recovery(struct rproc *rproc)
941 {
942 struct rproc_vdev *rvdev, *rvtmp;
943
944 dev_err(&rproc->dev, "recovering %s\n", rproc->name);
945
946 init_completion(&rproc->crash_comp);
947
948 /* clean up remote vdev entries */
949 list_for_each_entry_safe(rvdev, rvtmp, &rproc->rvdevs, node)
950 rproc_remove_virtio_dev(rvdev);
951
952 /* wait until there is no more rproc users */
953 wait_for_completion(&rproc->crash_comp);
954
955 return rproc_add_virtio_devices(rproc);
956 }
957
958 /**
959 * rproc_crash_handler_work() - handle a crash
960 *
961 * This function needs to handle everything related to a crash, like cpu
962 * registers and stack dump, information to help to debug the fatal error, etc.
963 */
964 static void rproc_crash_handler_work(struct work_struct *work)
965 {
966 struct rproc *rproc = container_of(work, struct rproc, crash_handler);
967 struct device *dev = &rproc->dev;
968
969 dev_dbg(dev, "enter %s\n", __func__);
970
971 mutex_lock(&rproc->lock);
972
973 if (rproc->state == RPROC_CRASHED || rproc->state == RPROC_OFFLINE) {
974 /* handle only the first crash detected */
975 mutex_unlock(&rproc->lock);
976 return;
977 }
978
979 rproc->state = RPROC_CRASHED;
980 dev_err(dev, "handling crash #%u in %s\n", ++rproc->crash_cnt,
981 rproc->name);
982
983 mutex_unlock(&rproc->lock);
984
985 if (!rproc->recovery_disabled)
986 rproc_trigger_recovery(rproc);
987 }
988
989 /**
990 * rproc_boot() - boot a remote processor
991 * @rproc: handle of a remote processor
992 *
993 * Boot a remote processor (i.e. load its firmware, power it on, ...).
994 *
995 * If the remote processor is already powered on, this function immediately
996 * returns (successfully).
997 *
998 * Returns 0 on success, and an appropriate error value otherwise.
999 */
1000 int rproc_boot(struct rproc *rproc)
1001 {
1002 const struct firmware *firmware_p;
1003 struct device *dev;
1004 int ret;
1005
1006 if (!rproc) {
1007 pr_err("invalid rproc handle\n");
1008 return -EINVAL;
1009 }
1010
1011 dev = &rproc->dev;
1012
1013 ret = mutex_lock_interruptible(&rproc->lock);
1014 if (ret) {
1015 dev_err(dev, "can't lock rproc %s: %d\n", rproc->name, ret);
1016 return ret;
1017 }
1018
1019 /* loading a firmware is required */
1020 if (!rproc->firmware) {
1021 dev_err(dev, "%s: no firmware to load\n", __func__);
1022 ret = -EINVAL;
1023 goto unlock_mutex;
1024 }
1025
1026 /* prevent underlying implementation from being removed */
1027 if (!try_module_get(dev->parent->driver->owner)) {
1028 dev_err(dev, "%s: can't get owner\n", __func__);
1029 ret = -EINVAL;
1030 goto unlock_mutex;
1031 }
1032
1033 /* skip the boot process if rproc is already powered up */
1034 if (atomic_inc_return(&rproc->power) > 1) {
1035 ret = 0;
1036 goto unlock_mutex;
1037 }
1038
1039 dev_info(dev, "powering up %s\n", rproc->name);
1040
1041 /* load firmware */
1042 ret = request_firmware(&firmware_p, rproc->firmware, dev);
1043 if (ret < 0) {
1044 dev_err(dev, "request_firmware failed: %d\n", ret);
1045 goto downref_rproc;
1046 }
1047
1048 ret = rproc_fw_boot(rproc, firmware_p);
1049
1050 release_firmware(firmware_p);
1051
1052 downref_rproc:
1053 if (ret) {
1054 module_put(dev->parent->driver->owner);
1055 atomic_dec(&rproc->power);
1056 }
1057 unlock_mutex:
1058 mutex_unlock(&rproc->lock);
1059 return ret;
1060 }
1061 EXPORT_SYMBOL(rproc_boot);
1062
1063 /**
1064 * rproc_shutdown() - power off the remote processor
1065 * @rproc: the remote processor
1066 *
1067 * Power off a remote processor (previously booted with rproc_boot()).
1068 *
1069 * In case @rproc is still being used by an additional user(s), then
1070 * this function will just decrement the power refcount and exit,
1071 * without really powering off the device.
1072 *
1073 * Every call to rproc_boot() must (eventually) be accompanied by a call
1074 * to rproc_shutdown(). Calling rproc_shutdown() redundantly is a bug.
1075 *
1076 * Notes:
1077 * - we're not decrementing the rproc's refcount, only the power refcount.
1078 * which means that the @rproc handle stays valid even after rproc_shutdown()
1079 * returns, and users can still use it with a subsequent rproc_boot(), if
1080 * needed.
1081 */
1082 void rproc_shutdown(struct rproc *rproc)
1083 {
1084 struct device *dev = &rproc->dev;
1085 int ret;
1086
1087 ret = mutex_lock_interruptible(&rproc->lock);
1088 if (ret) {
1089 dev_err(dev, "can't lock rproc %s: %d\n", rproc->name, ret);
1090 return;
1091 }
1092
1093 /* if the remote proc is still needed, bail out */
1094 if (!atomic_dec_and_test(&rproc->power))
1095 goto out;
1096
1097 /* power off the remote processor */
1098 ret = rproc->ops->stop(rproc);
1099 if (ret) {
1100 atomic_inc(&rproc->power);
1101 dev_err(dev, "can't stop rproc: %d\n", ret);
1102 goto out;
1103 }
1104
1105 /* clean up all acquired resources */
1106 rproc_resource_cleanup(rproc);
1107
1108 rproc_disable_iommu(rproc);
1109
1110 /* if in crash state, unlock crash handler */
1111 if (rproc->state == RPROC_CRASHED)
1112 complete_all(&rproc->crash_comp);
1113
1114 rproc->state = RPROC_OFFLINE;
1115
1116 dev_info(dev, "stopped remote processor %s\n", rproc->name);
1117
1118 out:
1119 mutex_unlock(&rproc->lock);
1120 if (!ret)
1121 module_put(dev->parent->driver->owner);
1122 }
1123 EXPORT_SYMBOL(rproc_shutdown);
1124
1125 /**
1126 * rproc_add() - register a remote processor
1127 * @rproc: the remote processor handle to register
1128 *
1129 * Registers @rproc with the remoteproc framework, after it has been
1130 * allocated with rproc_alloc().
1131 *
1132 * This is called by the platform-specific rproc implementation, whenever
1133 * a new remote processor device is probed.
1134 *
1135 * Returns 0 on success and an appropriate error code otherwise.
1136 *
1137 * Note: this function initiates an asynchronous firmware loading
1138 * context, which will look for virtio devices supported by the rproc's
1139 * firmware.
1140 *
1141 * If found, those virtio devices will be created and added, so as a result
1142 * of registering this remote processor, additional virtio drivers might be
1143 * probed.
1144 */
1145 int rproc_add(struct rproc *rproc)
1146 {
1147 struct device *dev = &rproc->dev;
1148 int ret;
1149
1150 ret = device_add(dev);
1151 if (ret < 0)
1152 return ret;
1153
1154 dev_info(dev, "%s is available\n", rproc->name);
1155
1156 dev_info(dev, "Note: remoteproc is still under development and considered experimental.\n");
1157 dev_info(dev, "THE BINARY FORMAT IS NOT YET FINALIZED, and backward compatibility isn't yet guaranteed.\n");
1158
1159 /* create debugfs entries */
1160 rproc_create_debug_dir(rproc);
1161
1162 return rproc_add_virtio_devices(rproc);
1163 }
1164 EXPORT_SYMBOL(rproc_add);
1165
1166 /**
1167 * rproc_type_release() - release a remote processor instance
1168 * @dev: the rproc's device
1169 *
1170 * This function should _never_ be called directly.
1171 *
1172 * It will be called by the driver core when no one holds a valid pointer
1173 * to @dev anymore.
1174 */
1175 static void rproc_type_release(struct device *dev)
1176 {
1177 struct rproc *rproc = container_of(dev, struct rproc, dev);
1178
1179 dev_info(&rproc->dev, "releasing %s\n", rproc->name);
1180
1181 rproc_delete_debug_dir(rproc);
1182
1183 idr_remove_all(&rproc->notifyids);
1184 idr_destroy(&rproc->notifyids);
1185
1186 if (rproc->index >= 0)
1187 ida_simple_remove(&rproc_dev_index, rproc->index);
1188
1189 kfree(rproc);
1190 }
1191
1192 static struct device_type rproc_type = {
1193 .name = "remoteproc",
1194 .release = rproc_type_release,
1195 };
1196
1197 /**
1198 * rproc_alloc() - allocate a remote processor handle
1199 * @dev: the underlying device
1200 * @name: name of this remote processor
1201 * @ops: platform-specific handlers (mainly start/stop)
1202 * @firmware: name of firmware file to load
1203 * @len: length of private data needed by the rproc driver (in bytes)
1204 *
1205 * Allocates a new remote processor handle, but does not register
1206 * it yet.
1207 *
1208 * This function should be used by rproc implementations during initialization
1209 * of the remote processor.
1210 *
1211 * After creating an rproc handle using this function, and when ready,
1212 * implementations should then call rproc_add() to complete
1213 * the registration of the remote processor.
1214 *
1215 * On success the new rproc is returned, and on failure, NULL.
1216 *
1217 * Note: _never_ directly deallocate @rproc, even if it was not registered
1218 * yet. Instead, when you need to unroll rproc_alloc(), use rproc_put().
1219 */
1220 struct rproc *rproc_alloc(struct device *dev, const char *name,
1221 const struct rproc_ops *ops,
1222 const char *firmware, int len)
1223 {
1224 struct rproc *rproc;
1225
1226 if (!dev || !name || !ops)
1227 return NULL;
1228
1229 rproc = kzalloc(sizeof(struct rproc) + len, GFP_KERNEL);
1230 if (!rproc) {
1231 dev_err(dev, "%s: kzalloc failed\n", __func__);
1232 return NULL;
1233 }
1234
1235 rproc->name = name;
1236 rproc->ops = ops;
1237 rproc->firmware = firmware;
1238 rproc->priv = &rproc[1];
1239
1240 device_initialize(&rproc->dev);
1241 rproc->dev.parent = dev;
1242 rproc->dev.type = &rproc_type;
1243
1244 /* Assign a unique device index and name */
1245 rproc->index = ida_simple_get(&rproc_dev_index, 0, 0, GFP_KERNEL);
1246 if (rproc->index < 0) {
1247 dev_err(dev, "ida_simple_get failed: %d\n", rproc->index);
1248 put_device(&rproc->dev);
1249 return NULL;
1250 }
1251
1252 dev_set_name(&rproc->dev, "remoteproc%d", rproc->index);
1253
1254 atomic_set(&rproc->power, 0);
1255
1256 /* Set ELF as the default fw_ops handler */
1257 rproc->fw_ops = &rproc_elf_fw_ops;
1258
1259 mutex_init(&rproc->lock);
1260
1261 idr_init(&rproc->notifyids);
1262
1263 INIT_LIST_HEAD(&rproc->carveouts);
1264 INIT_LIST_HEAD(&rproc->mappings);
1265 INIT_LIST_HEAD(&rproc->traces);
1266 INIT_LIST_HEAD(&rproc->rvdevs);
1267
1268 INIT_WORK(&rproc->crash_handler, rproc_crash_handler_work);
1269 init_completion(&rproc->crash_comp);
1270
1271 rproc->state = RPROC_OFFLINE;
1272
1273 return rproc;
1274 }
1275 EXPORT_SYMBOL(rproc_alloc);
1276
1277 /**
1278 * rproc_put() - unroll rproc_alloc()
1279 * @rproc: the remote processor handle
1280 *
1281 * This function decrements the rproc dev refcount.
1282 *
1283 * If no one holds any reference to rproc anymore, then its refcount would
1284 * now drop to zero, and it would be freed.
1285 */
1286 void rproc_put(struct rproc *rproc)
1287 {
1288 put_device(&rproc->dev);
1289 }
1290 EXPORT_SYMBOL(rproc_put);
1291
1292 /**
1293 * rproc_del() - unregister a remote processor
1294 * @rproc: rproc handle to unregister
1295 *
1296 * This function should be called when the platform specific rproc
1297 * implementation decides to remove the rproc device. it should
1298 * _only_ be called if a previous invocation of rproc_add()
1299 * has completed successfully.
1300 *
1301 * After rproc_del() returns, @rproc isn't freed yet, because
1302 * of the outstanding reference created by rproc_alloc. To decrement that
1303 * one last refcount, one still needs to call rproc_put().
1304 *
1305 * Returns 0 on success and -EINVAL if @rproc isn't valid.
1306 */
1307 int rproc_del(struct rproc *rproc)
1308 {
1309 struct rproc_vdev *rvdev, *tmp;
1310
1311 if (!rproc)
1312 return -EINVAL;
1313
1314 /* if rproc is just being registered, wait */
1315 wait_for_completion(&rproc->firmware_loading_complete);
1316
1317 /* clean up remote vdev entries */
1318 list_for_each_entry_safe(rvdev, tmp, &rproc->rvdevs, node)
1319 rproc_remove_virtio_dev(rvdev);
1320
1321 device_del(&rproc->dev);
1322
1323 return 0;
1324 }
1325 EXPORT_SYMBOL(rproc_del);
1326
1327 /**
1328 * rproc_report_crash() - rproc crash reporter function
1329 * @rproc: remote processor
1330 * @type: crash type
1331 *
1332 * This function must be called every time a crash is detected by the low-level
1333 * drivers implementing a specific remoteproc. This should not be called from a
1334 * non-remoteproc driver.
1335 *
1336 * This function can be called from atomic/interrupt context.
1337 */
1338 void rproc_report_crash(struct rproc *rproc, enum rproc_crash_type type)
1339 {
1340 if (!rproc) {
1341 pr_err("NULL rproc pointer\n");
1342 return;
1343 }
1344
1345 dev_err(&rproc->dev, "crash detected in %s: type %s\n",
1346 rproc->name, rproc_crash_to_string(type));
1347
1348 /* create a new task to handle the error */
1349 schedule_work(&rproc->crash_handler);
1350 }
1351 EXPORT_SYMBOL(rproc_report_crash);
1352
1353 static int __init remoteproc_init(void)
1354 {
1355 rproc_init_debugfs();
1356
1357 return 0;
1358 }
1359 module_init(remoteproc_init);
1360
1361 static void __exit remoteproc_exit(void)
1362 {
1363 rproc_exit_debugfs();
1364 }
1365 module_exit(remoteproc_exit);
1366
1367 MODULE_LICENSE("GPL v2");
1368 MODULE_DESCRIPTION("Generic Remote Processor Framework");
This page took 0.084687 seconds and 5 git commands to generate.