rtc: ds1307: comment and format cleanup
[deliverable/linux.git] / drivers / rtc / interface.c
1 /*
2 * RTC subsystem, interface functions
3 *
4 * Copyright (C) 2005 Tower Technologies
5 * Author: Alessandro Zummo <a.zummo@towertech.it>
6 *
7 * based on arch/arm/common/rtctime.c
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
12 */
13
14 #include <linux/rtc.h>
15 #include <linux/sched.h>
16 #include <linux/module.h>
17 #include <linux/log2.h>
18 #include <linux/workqueue.h>
19
20 static int rtc_timer_enqueue(struct rtc_device *rtc, struct rtc_timer *timer);
21 static void rtc_timer_remove(struct rtc_device *rtc, struct rtc_timer *timer);
22
23 static int __rtc_read_time(struct rtc_device *rtc, struct rtc_time *tm)
24 {
25 int err;
26 if (!rtc->ops)
27 err = -ENODEV;
28 else if (!rtc->ops->read_time)
29 err = -EINVAL;
30 else {
31 memset(tm, 0, sizeof(struct rtc_time));
32 err = rtc->ops->read_time(rtc->dev.parent, tm);
33 }
34 return err;
35 }
36
37 int rtc_read_time(struct rtc_device *rtc, struct rtc_time *tm)
38 {
39 int err;
40
41 err = mutex_lock_interruptible(&rtc->ops_lock);
42 if (err)
43 return err;
44
45 err = __rtc_read_time(rtc, tm);
46 mutex_unlock(&rtc->ops_lock);
47 return err;
48 }
49 EXPORT_SYMBOL_GPL(rtc_read_time);
50
51 int rtc_set_time(struct rtc_device *rtc, struct rtc_time *tm)
52 {
53 int err;
54
55 err = rtc_valid_tm(tm);
56 if (err != 0)
57 return err;
58
59 err = mutex_lock_interruptible(&rtc->ops_lock);
60 if (err)
61 return err;
62
63 if (!rtc->ops)
64 err = -ENODEV;
65 else if (rtc->ops->set_time)
66 err = rtc->ops->set_time(rtc->dev.parent, tm);
67 else if (rtc->ops->set_mmss) {
68 unsigned long secs;
69 err = rtc_tm_to_time(tm, &secs);
70 if (err == 0)
71 err = rtc->ops->set_mmss(rtc->dev.parent, secs);
72 } else
73 err = -EINVAL;
74
75 mutex_unlock(&rtc->ops_lock);
76 /* A timer might have just expired */
77 schedule_work(&rtc->irqwork);
78 return err;
79 }
80 EXPORT_SYMBOL_GPL(rtc_set_time);
81
82 int rtc_set_mmss(struct rtc_device *rtc, unsigned long secs)
83 {
84 int err;
85
86 err = mutex_lock_interruptible(&rtc->ops_lock);
87 if (err)
88 return err;
89
90 if (!rtc->ops)
91 err = -ENODEV;
92 else if (rtc->ops->set_mmss)
93 err = rtc->ops->set_mmss(rtc->dev.parent, secs);
94 else if (rtc->ops->read_time && rtc->ops->set_time) {
95 struct rtc_time new, old;
96
97 err = rtc->ops->read_time(rtc->dev.parent, &old);
98 if (err == 0) {
99 rtc_time_to_tm(secs, &new);
100
101 /*
102 * avoid writing when we're going to change the day of
103 * the month. We will retry in the next minute. This
104 * basically means that if the RTC must not drift
105 * by more than 1 minute in 11 minutes.
106 */
107 if (!((old.tm_hour == 23 && old.tm_min == 59) ||
108 (new.tm_hour == 23 && new.tm_min == 59)))
109 err = rtc->ops->set_time(rtc->dev.parent,
110 &new);
111 }
112 }
113 else
114 err = -EINVAL;
115
116 mutex_unlock(&rtc->ops_lock);
117 /* A timer might have just expired */
118 schedule_work(&rtc->irqwork);
119
120 return err;
121 }
122 EXPORT_SYMBOL_GPL(rtc_set_mmss);
123
124 static int rtc_read_alarm_internal(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
125 {
126 int err;
127
128 err = mutex_lock_interruptible(&rtc->ops_lock);
129 if (err)
130 return err;
131
132 if (rtc->ops == NULL)
133 err = -ENODEV;
134 else if (!rtc->ops->read_alarm)
135 err = -EINVAL;
136 else {
137 memset(alarm, 0, sizeof(struct rtc_wkalrm));
138 err = rtc->ops->read_alarm(rtc->dev.parent, alarm);
139 }
140
141 mutex_unlock(&rtc->ops_lock);
142 return err;
143 }
144
145 int __rtc_read_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
146 {
147 int err;
148 struct rtc_time before, now;
149 int first_time = 1;
150 unsigned long t_now, t_alm;
151 enum { none, day, month, year } missing = none;
152 unsigned days;
153
154 /* The lower level RTC driver may return -1 in some fields,
155 * creating invalid alarm->time values, for reasons like:
156 *
157 * - The hardware may not be capable of filling them in;
158 * many alarms match only on time-of-day fields, not
159 * day/month/year calendar data.
160 *
161 * - Some hardware uses illegal values as "wildcard" match
162 * values, which non-Linux firmware (like a BIOS) may try
163 * to set up as e.g. "alarm 15 minutes after each hour".
164 * Linux uses only oneshot alarms.
165 *
166 * When we see that here, we deal with it by using values from
167 * a current RTC timestamp for any missing (-1) values. The
168 * RTC driver prevents "periodic alarm" modes.
169 *
170 * But this can be racey, because some fields of the RTC timestamp
171 * may have wrapped in the interval since we read the RTC alarm,
172 * which would lead to us inserting inconsistent values in place
173 * of the -1 fields.
174 *
175 * Reading the alarm and timestamp in the reverse sequence
176 * would have the same race condition, and not solve the issue.
177 *
178 * So, we must first read the RTC timestamp,
179 * then read the RTC alarm value,
180 * and then read a second RTC timestamp.
181 *
182 * If any fields of the second timestamp have changed
183 * when compared with the first timestamp, then we know
184 * our timestamp may be inconsistent with that used by
185 * the low-level rtc_read_alarm_internal() function.
186 *
187 * So, when the two timestamps disagree, we just loop and do
188 * the process again to get a fully consistent set of values.
189 *
190 * This could all instead be done in the lower level driver,
191 * but since more than one lower level RTC implementation needs it,
192 * then it's probably best best to do it here instead of there..
193 */
194
195 /* Get the "before" timestamp */
196 err = rtc_read_time(rtc, &before);
197 if (err < 0)
198 return err;
199 do {
200 if (!first_time)
201 memcpy(&before, &now, sizeof(struct rtc_time));
202 first_time = 0;
203
204 /* get the RTC alarm values, which may be incomplete */
205 err = rtc_read_alarm_internal(rtc, alarm);
206 if (err)
207 return err;
208
209 /* full-function RTCs won't have such missing fields */
210 if (rtc_valid_tm(&alarm->time) == 0)
211 return 0;
212
213 /* get the "after" timestamp, to detect wrapped fields */
214 err = rtc_read_time(rtc, &now);
215 if (err < 0)
216 return err;
217
218 /* note that tm_sec is a "don't care" value here: */
219 } while ( before.tm_min != now.tm_min
220 || before.tm_hour != now.tm_hour
221 || before.tm_mon != now.tm_mon
222 || before.tm_year != now.tm_year);
223
224 /* Fill in the missing alarm fields using the timestamp; we
225 * know there's at least one since alarm->time is invalid.
226 */
227 if (alarm->time.tm_sec == -1)
228 alarm->time.tm_sec = now.tm_sec;
229 if (alarm->time.tm_min == -1)
230 alarm->time.tm_min = now.tm_min;
231 if (alarm->time.tm_hour == -1)
232 alarm->time.tm_hour = now.tm_hour;
233
234 /* For simplicity, only support date rollover for now */
235 if (alarm->time.tm_mday < 1 || alarm->time.tm_mday > 31) {
236 alarm->time.tm_mday = now.tm_mday;
237 missing = day;
238 }
239 if ((unsigned)alarm->time.tm_mon >= 12) {
240 alarm->time.tm_mon = now.tm_mon;
241 if (missing == none)
242 missing = month;
243 }
244 if (alarm->time.tm_year == -1) {
245 alarm->time.tm_year = now.tm_year;
246 if (missing == none)
247 missing = year;
248 }
249
250 /* with luck, no rollover is needed */
251 rtc_tm_to_time(&now, &t_now);
252 rtc_tm_to_time(&alarm->time, &t_alm);
253 if (t_now < t_alm)
254 goto done;
255
256 switch (missing) {
257
258 /* 24 hour rollover ... if it's now 10am Monday, an alarm that
259 * that will trigger at 5am will do so at 5am Tuesday, which
260 * could also be in the next month or year. This is a common
261 * case, especially for PCs.
262 */
263 case day:
264 dev_dbg(&rtc->dev, "alarm rollover: %s\n", "day");
265 t_alm += 24 * 60 * 60;
266 rtc_time_to_tm(t_alm, &alarm->time);
267 break;
268
269 /* Month rollover ... if it's the 31th, an alarm on the 3rd will
270 * be next month. An alarm matching on the 30th, 29th, or 28th
271 * may end up in the month after that! Many newer PCs support
272 * this type of alarm.
273 */
274 case month:
275 dev_dbg(&rtc->dev, "alarm rollover: %s\n", "month");
276 do {
277 if (alarm->time.tm_mon < 11)
278 alarm->time.tm_mon++;
279 else {
280 alarm->time.tm_mon = 0;
281 alarm->time.tm_year++;
282 }
283 days = rtc_month_days(alarm->time.tm_mon,
284 alarm->time.tm_year);
285 } while (days < alarm->time.tm_mday);
286 break;
287
288 /* Year rollover ... easy except for leap years! */
289 case year:
290 dev_dbg(&rtc->dev, "alarm rollover: %s\n", "year");
291 do {
292 alarm->time.tm_year++;
293 } while (rtc_valid_tm(&alarm->time) != 0);
294 break;
295
296 default:
297 dev_warn(&rtc->dev, "alarm rollover not handled\n");
298 }
299
300 done:
301 return 0;
302 }
303
304 int rtc_read_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
305 {
306 int err;
307
308 err = mutex_lock_interruptible(&rtc->ops_lock);
309 if (err)
310 return err;
311 if (rtc->ops == NULL)
312 err = -ENODEV;
313 else if (!rtc->ops->read_alarm)
314 err = -EINVAL;
315 else {
316 memset(alarm, 0, sizeof(struct rtc_wkalrm));
317 alarm->enabled = rtc->aie_timer.enabled;
318 alarm->time = rtc_ktime_to_tm(rtc->aie_timer.node.expires);
319 }
320 mutex_unlock(&rtc->ops_lock);
321
322 return err;
323 }
324 EXPORT_SYMBOL_GPL(rtc_read_alarm);
325
326 static int __rtc_set_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
327 {
328 struct rtc_time tm;
329 long now, scheduled;
330 int err;
331
332 err = rtc_valid_tm(&alarm->time);
333 if (err)
334 return err;
335 rtc_tm_to_time(&alarm->time, &scheduled);
336
337 /* Make sure we're not setting alarms in the past */
338 err = __rtc_read_time(rtc, &tm);
339 rtc_tm_to_time(&tm, &now);
340 if (scheduled <= now)
341 return -ETIME;
342 /*
343 * XXX - We just checked to make sure the alarm time is not
344 * in the past, but there is still a race window where if
345 * the is alarm set for the next second and the second ticks
346 * over right here, before we set the alarm.
347 */
348
349 if (!rtc->ops)
350 err = -ENODEV;
351 else if (!rtc->ops->set_alarm)
352 err = -EINVAL;
353 else
354 err = rtc->ops->set_alarm(rtc->dev.parent, alarm);
355
356 return err;
357 }
358
359 int rtc_set_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
360 {
361 int err;
362
363 err = rtc_valid_tm(&alarm->time);
364 if (err != 0)
365 return err;
366
367 err = mutex_lock_interruptible(&rtc->ops_lock);
368 if (err)
369 return err;
370 if (rtc->aie_timer.enabled) {
371 rtc_timer_remove(rtc, &rtc->aie_timer);
372 }
373 rtc->aie_timer.node.expires = rtc_tm_to_ktime(alarm->time);
374 rtc->aie_timer.period = ktime_set(0, 0);
375 if (alarm->enabled) {
376 err = rtc_timer_enqueue(rtc, &rtc->aie_timer);
377 }
378 mutex_unlock(&rtc->ops_lock);
379 return err;
380 }
381 EXPORT_SYMBOL_GPL(rtc_set_alarm);
382
383 /* Called once per device from rtc_device_register */
384 int rtc_initialize_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
385 {
386 int err;
387 struct rtc_time now;
388
389 err = rtc_valid_tm(&alarm->time);
390 if (err != 0)
391 return err;
392
393 err = rtc_read_time(rtc, &now);
394 if (err)
395 return err;
396
397 err = mutex_lock_interruptible(&rtc->ops_lock);
398 if (err)
399 return err;
400
401 rtc->aie_timer.node.expires = rtc_tm_to_ktime(alarm->time);
402 rtc->aie_timer.period = ktime_set(0, 0);
403
404 /* Alarm has to be enabled & in the futrure for us to enqueue it */
405 if (alarm->enabled && (rtc_tm_to_ktime(now).tv64 <
406 rtc->aie_timer.node.expires.tv64)) {
407
408 rtc->aie_timer.enabled = 1;
409 timerqueue_add(&rtc->timerqueue, &rtc->aie_timer.node);
410 }
411 mutex_unlock(&rtc->ops_lock);
412 return err;
413 }
414 EXPORT_SYMBOL_GPL(rtc_initialize_alarm);
415
416
417
418 int rtc_alarm_irq_enable(struct rtc_device *rtc, unsigned int enabled)
419 {
420 int err = mutex_lock_interruptible(&rtc->ops_lock);
421 if (err)
422 return err;
423
424 if (rtc->aie_timer.enabled != enabled) {
425 if (enabled)
426 err = rtc_timer_enqueue(rtc, &rtc->aie_timer);
427 else
428 rtc_timer_remove(rtc, &rtc->aie_timer);
429 }
430
431 if (err)
432 /* nothing */;
433 else if (!rtc->ops)
434 err = -ENODEV;
435 else if (!rtc->ops->alarm_irq_enable)
436 err = -EINVAL;
437 else
438 err = rtc->ops->alarm_irq_enable(rtc->dev.parent, enabled);
439
440 mutex_unlock(&rtc->ops_lock);
441 return err;
442 }
443 EXPORT_SYMBOL_GPL(rtc_alarm_irq_enable);
444
445 int rtc_update_irq_enable(struct rtc_device *rtc, unsigned int enabled)
446 {
447 int err = mutex_lock_interruptible(&rtc->ops_lock);
448 if (err)
449 return err;
450
451 #ifdef CONFIG_RTC_INTF_DEV_UIE_EMUL
452 if (enabled == 0 && rtc->uie_irq_active) {
453 mutex_unlock(&rtc->ops_lock);
454 return rtc_dev_update_irq_enable_emul(rtc, 0);
455 }
456 #endif
457 /* make sure we're changing state */
458 if (rtc->uie_rtctimer.enabled == enabled)
459 goto out;
460
461 if (enabled) {
462 struct rtc_time tm;
463 ktime_t now, onesec;
464
465 __rtc_read_time(rtc, &tm);
466 onesec = ktime_set(1, 0);
467 now = rtc_tm_to_ktime(tm);
468 rtc->uie_rtctimer.node.expires = ktime_add(now, onesec);
469 rtc->uie_rtctimer.period = ktime_set(1, 0);
470 err = rtc_timer_enqueue(rtc, &rtc->uie_rtctimer);
471 } else
472 rtc_timer_remove(rtc, &rtc->uie_rtctimer);
473
474 out:
475 mutex_unlock(&rtc->ops_lock);
476 #ifdef CONFIG_RTC_INTF_DEV_UIE_EMUL
477 /*
478 * Enable emulation if the driver did not provide
479 * the update_irq_enable function pointer or if returned
480 * -EINVAL to signal that it has been configured without
481 * interrupts or that are not available at the moment.
482 */
483 if (err == -EINVAL)
484 err = rtc_dev_update_irq_enable_emul(rtc, enabled);
485 #endif
486 return err;
487
488 }
489 EXPORT_SYMBOL_GPL(rtc_update_irq_enable);
490
491
492 /**
493 * rtc_handle_legacy_irq - AIE, UIE and PIE event hook
494 * @rtc: pointer to the rtc device
495 *
496 * This function is called when an AIE, UIE or PIE mode interrupt
497 * has occurred (or been emulated).
498 *
499 * Triggers the registered irq_task function callback.
500 */
501 void rtc_handle_legacy_irq(struct rtc_device *rtc, int num, int mode)
502 {
503 unsigned long flags;
504
505 /* mark one irq of the appropriate mode */
506 spin_lock_irqsave(&rtc->irq_lock, flags);
507 rtc->irq_data = (rtc->irq_data + (num << 8)) | (RTC_IRQF|mode);
508 spin_unlock_irqrestore(&rtc->irq_lock, flags);
509
510 /* call the task func */
511 spin_lock_irqsave(&rtc->irq_task_lock, flags);
512 if (rtc->irq_task)
513 rtc->irq_task->func(rtc->irq_task->private_data);
514 spin_unlock_irqrestore(&rtc->irq_task_lock, flags);
515
516 wake_up_interruptible(&rtc->irq_queue);
517 kill_fasync(&rtc->async_queue, SIGIO, POLL_IN);
518 }
519
520
521 /**
522 * rtc_aie_update_irq - AIE mode rtctimer hook
523 * @private: pointer to the rtc_device
524 *
525 * This functions is called when the aie_timer expires.
526 */
527 void rtc_aie_update_irq(void *private)
528 {
529 struct rtc_device *rtc = (struct rtc_device *)private;
530 rtc_handle_legacy_irq(rtc, 1, RTC_AF);
531 }
532
533
534 /**
535 * rtc_uie_update_irq - UIE mode rtctimer hook
536 * @private: pointer to the rtc_device
537 *
538 * This functions is called when the uie_timer expires.
539 */
540 void rtc_uie_update_irq(void *private)
541 {
542 struct rtc_device *rtc = (struct rtc_device *)private;
543 rtc_handle_legacy_irq(rtc, 1, RTC_UF);
544 }
545
546
547 /**
548 * rtc_pie_update_irq - PIE mode hrtimer hook
549 * @timer: pointer to the pie mode hrtimer
550 *
551 * This function is used to emulate PIE mode interrupts
552 * using an hrtimer. This function is called when the periodic
553 * hrtimer expires.
554 */
555 enum hrtimer_restart rtc_pie_update_irq(struct hrtimer *timer)
556 {
557 struct rtc_device *rtc;
558 ktime_t period;
559 int count;
560 rtc = container_of(timer, struct rtc_device, pie_timer);
561
562 period = ktime_set(0, NSEC_PER_SEC/rtc->irq_freq);
563 count = hrtimer_forward_now(timer, period);
564
565 rtc_handle_legacy_irq(rtc, count, RTC_PF);
566
567 return HRTIMER_RESTART;
568 }
569
570 /**
571 * rtc_update_irq - Triggered when a RTC interrupt occurs.
572 * @rtc: the rtc device
573 * @num: how many irqs are being reported (usually one)
574 * @events: mask of RTC_IRQF with one or more of RTC_PF, RTC_AF, RTC_UF
575 * Context: any
576 */
577 void rtc_update_irq(struct rtc_device *rtc,
578 unsigned long num, unsigned long events)
579 {
580 schedule_work(&rtc->irqwork);
581 }
582 EXPORT_SYMBOL_GPL(rtc_update_irq);
583
584 static int __rtc_match(struct device *dev, void *data)
585 {
586 char *name = (char *)data;
587
588 if (strcmp(dev_name(dev), name) == 0)
589 return 1;
590 return 0;
591 }
592
593 struct rtc_device *rtc_class_open(char *name)
594 {
595 struct device *dev;
596 struct rtc_device *rtc = NULL;
597
598 dev = class_find_device(rtc_class, NULL, name, __rtc_match);
599 if (dev)
600 rtc = to_rtc_device(dev);
601
602 if (rtc) {
603 if (!try_module_get(rtc->owner)) {
604 put_device(dev);
605 rtc = NULL;
606 }
607 }
608
609 return rtc;
610 }
611 EXPORT_SYMBOL_GPL(rtc_class_open);
612
613 void rtc_class_close(struct rtc_device *rtc)
614 {
615 module_put(rtc->owner);
616 put_device(&rtc->dev);
617 }
618 EXPORT_SYMBOL_GPL(rtc_class_close);
619
620 int rtc_irq_register(struct rtc_device *rtc, struct rtc_task *task)
621 {
622 int retval = -EBUSY;
623
624 if (task == NULL || task->func == NULL)
625 return -EINVAL;
626
627 /* Cannot register while the char dev is in use */
628 if (test_and_set_bit_lock(RTC_DEV_BUSY, &rtc->flags))
629 return -EBUSY;
630
631 spin_lock_irq(&rtc->irq_task_lock);
632 if (rtc->irq_task == NULL) {
633 rtc->irq_task = task;
634 retval = 0;
635 }
636 spin_unlock_irq(&rtc->irq_task_lock);
637
638 clear_bit_unlock(RTC_DEV_BUSY, &rtc->flags);
639
640 return retval;
641 }
642 EXPORT_SYMBOL_GPL(rtc_irq_register);
643
644 void rtc_irq_unregister(struct rtc_device *rtc, struct rtc_task *task)
645 {
646 spin_lock_irq(&rtc->irq_task_lock);
647 if (rtc->irq_task == task)
648 rtc->irq_task = NULL;
649 spin_unlock_irq(&rtc->irq_task_lock);
650 }
651 EXPORT_SYMBOL_GPL(rtc_irq_unregister);
652
653 static int rtc_update_hrtimer(struct rtc_device *rtc, int enabled)
654 {
655 /*
656 * We always cancel the timer here first, because otherwise
657 * we could run into BUG_ON(timer->state != HRTIMER_STATE_CALLBACK);
658 * when we manage to start the timer before the callback
659 * returns HRTIMER_RESTART.
660 *
661 * We cannot use hrtimer_cancel() here as a running callback
662 * could be blocked on rtc->irq_task_lock and hrtimer_cancel()
663 * would spin forever.
664 */
665 if (hrtimer_try_to_cancel(&rtc->pie_timer) < 0)
666 return -1;
667
668 if (enabled) {
669 ktime_t period = ktime_set(0, NSEC_PER_SEC / rtc->irq_freq);
670
671 hrtimer_start(&rtc->pie_timer, period, HRTIMER_MODE_REL);
672 }
673 return 0;
674 }
675
676 /**
677 * rtc_irq_set_state - enable/disable 2^N Hz periodic IRQs
678 * @rtc: the rtc device
679 * @task: currently registered with rtc_irq_register()
680 * @enabled: true to enable periodic IRQs
681 * Context: any
682 *
683 * Note that rtc_irq_set_freq() should previously have been used to
684 * specify the desired frequency of periodic IRQ task->func() callbacks.
685 */
686 int rtc_irq_set_state(struct rtc_device *rtc, struct rtc_task *task, int enabled)
687 {
688 int err = 0;
689 unsigned long flags;
690
691 retry:
692 spin_lock_irqsave(&rtc->irq_task_lock, flags);
693 if (rtc->irq_task != NULL && task == NULL)
694 err = -EBUSY;
695 if (rtc->irq_task != task)
696 err = -EACCES;
697 if (!err) {
698 if (rtc_update_hrtimer(rtc, enabled) < 0) {
699 spin_unlock_irqrestore(&rtc->irq_task_lock, flags);
700 cpu_relax();
701 goto retry;
702 }
703 rtc->pie_enabled = enabled;
704 }
705 spin_unlock_irqrestore(&rtc->irq_task_lock, flags);
706 return err;
707 }
708 EXPORT_SYMBOL_GPL(rtc_irq_set_state);
709
710 /**
711 * rtc_irq_set_freq - set 2^N Hz periodic IRQ frequency for IRQ
712 * @rtc: the rtc device
713 * @task: currently registered with rtc_irq_register()
714 * @freq: positive frequency with which task->func() will be called
715 * Context: any
716 *
717 * Note that rtc_irq_set_state() is used to enable or disable the
718 * periodic IRQs.
719 */
720 int rtc_irq_set_freq(struct rtc_device *rtc, struct rtc_task *task, int freq)
721 {
722 int err = 0;
723 unsigned long flags;
724
725 if (freq <= 0 || freq > RTC_MAX_FREQ)
726 return -EINVAL;
727 retry:
728 spin_lock_irqsave(&rtc->irq_task_lock, flags);
729 if (rtc->irq_task != NULL && task == NULL)
730 err = -EBUSY;
731 if (rtc->irq_task != task)
732 err = -EACCES;
733 if (!err) {
734 rtc->irq_freq = freq;
735 if (rtc->pie_enabled && rtc_update_hrtimer(rtc, 1) < 0) {
736 spin_unlock_irqrestore(&rtc->irq_task_lock, flags);
737 cpu_relax();
738 goto retry;
739 }
740 }
741 spin_unlock_irqrestore(&rtc->irq_task_lock, flags);
742 return err;
743 }
744 EXPORT_SYMBOL_GPL(rtc_irq_set_freq);
745
746 /**
747 * rtc_timer_enqueue - Adds a rtc_timer to the rtc_device timerqueue
748 * @rtc rtc device
749 * @timer timer being added.
750 *
751 * Enqueues a timer onto the rtc devices timerqueue and sets
752 * the next alarm event appropriately.
753 *
754 * Sets the enabled bit on the added timer.
755 *
756 * Must hold ops_lock for proper serialization of timerqueue
757 */
758 static int rtc_timer_enqueue(struct rtc_device *rtc, struct rtc_timer *timer)
759 {
760 timer->enabled = 1;
761 timerqueue_add(&rtc->timerqueue, &timer->node);
762 if (&timer->node == timerqueue_getnext(&rtc->timerqueue)) {
763 struct rtc_wkalrm alarm;
764 int err;
765 alarm.time = rtc_ktime_to_tm(timer->node.expires);
766 alarm.enabled = 1;
767 err = __rtc_set_alarm(rtc, &alarm);
768 if (err == -ETIME)
769 schedule_work(&rtc->irqwork);
770 else if (err) {
771 timerqueue_del(&rtc->timerqueue, &timer->node);
772 timer->enabled = 0;
773 return err;
774 }
775 }
776 return 0;
777 }
778
779 static void rtc_alarm_disable(struct rtc_device *rtc)
780 {
781 if (!rtc->ops || !rtc->ops->alarm_irq_enable)
782 return;
783
784 rtc->ops->alarm_irq_enable(rtc->dev.parent, false);
785 }
786
787 /**
788 * rtc_timer_remove - Removes a rtc_timer from the rtc_device timerqueue
789 * @rtc rtc device
790 * @timer timer being removed.
791 *
792 * Removes a timer onto the rtc devices timerqueue and sets
793 * the next alarm event appropriately.
794 *
795 * Clears the enabled bit on the removed timer.
796 *
797 * Must hold ops_lock for proper serialization of timerqueue
798 */
799 static void rtc_timer_remove(struct rtc_device *rtc, struct rtc_timer *timer)
800 {
801 struct timerqueue_node *next = timerqueue_getnext(&rtc->timerqueue);
802 timerqueue_del(&rtc->timerqueue, &timer->node);
803 timer->enabled = 0;
804 if (next == &timer->node) {
805 struct rtc_wkalrm alarm;
806 int err;
807 next = timerqueue_getnext(&rtc->timerqueue);
808 if (!next) {
809 rtc_alarm_disable(rtc);
810 return;
811 }
812 alarm.time = rtc_ktime_to_tm(next->expires);
813 alarm.enabled = 1;
814 err = __rtc_set_alarm(rtc, &alarm);
815 if (err == -ETIME)
816 schedule_work(&rtc->irqwork);
817 }
818 }
819
820 /**
821 * rtc_timer_do_work - Expires rtc timers
822 * @rtc rtc device
823 * @timer timer being removed.
824 *
825 * Expires rtc timers. Reprograms next alarm event if needed.
826 * Called via worktask.
827 *
828 * Serializes access to timerqueue via ops_lock mutex
829 */
830 void rtc_timer_do_work(struct work_struct *work)
831 {
832 struct rtc_timer *timer;
833 struct timerqueue_node *next;
834 ktime_t now;
835 struct rtc_time tm;
836
837 struct rtc_device *rtc =
838 container_of(work, struct rtc_device, irqwork);
839
840 mutex_lock(&rtc->ops_lock);
841 again:
842 __rtc_read_time(rtc, &tm);
843 now = rtc_tm_to_ktime(tm);
844 while ((next = timerqueue_getnext(&rtc->timerqueue))) {
845 if (next->expires.tv64 > now.tv64)
846 break;
847
848 /* expire timer */
849 timer = container_of(next, struct rtc_timer, node);
850 timerqueue_del(&rtc->timerqueue, &timer->node);
851 timer->enabled = 0;
852 if (timer->task.func)
853 timer->task.func(timer->task.private_data);
854
855 /* Re-add/fwd periodic timers */
856 if (ktime_to_ns(timer->period)) {
857 timer->node.expires = ktime_add(timer->node.expires,
858 timer->period);
859 timer->enabled = 1;
860 timerqueue_add(&rtc->timerqueue, &timer->node);
861 }
862 }
863
864 /* Set next alarm */
865 if (next) {
866 struct rtc_wkalrm alarm;
867 int err;
868 alarm.time = rtc_ktime_to_tm(next->expires);
869 alarm.enabled = 1;
870 err = __rtc_set_alarm(rtc, &alarm);
871 if (err == -ETIME)
872 goto again;
873 } else
874 rtc_alarm_disable(rtc);
875
876 mutex_unlock(&rtc->ops_lock);
877 }
878
879
880 /* rtc_timer_init - Initializes an rtc_timer
881 * @timer: timer to be intiialized
882 * @f: function pointer to be called when timer fires
883 * @data: private data passed to function pointer
884 *
885 * Kernel interface to initializing an rtc_timer.
886 */
887 void rtc_timer_init(struct rtc_timer *timer, void (*f)(void* p), void* data)
888 {
889 timerqueue_init(&timer->node);
890 timer->enabled = 0;
891 timer->task.func = f;
892 timer->task.private_data = data;
893 }
894
895 /* rtc_timer_start - Sets an rtc_timer to fire in the future
896 * @ rtc: rtc device to be used
897 * @ timer: timer being set
898 * @ expires: time at which to expire the timer
899 * @ period: period that the timer will recur
900 *
901 * Kernel interface to set an rtc_timer
902 */
903 int rtc_timer_start(struct rtc_device *rtc, struct rtc_timer* timer,
904 ktime_t expires, ktime_t period)
905 {
906 int ret = 0;
907 mutex_lock(&rtc->ops_lock);
908 if (timer->enabled)
909 rtc_timer_remove(rtc, timer);
910
911 timer->node.expires = expires;
912 timer->period = period;
913
914 ret = rtc_timer_enqueue(rtc, timer);
915
916 mutex_unlock(&rtc->ops_lock);
917 return ret;
918 }
919
920 /* rtc_timer_cancel - Stops an rtc_timer
921 * @ rtc: rtc device to be used
922 * @ timer: timer being set
923 *
924 * Kernel interface to cancel an rtc_timer
925 */
926 int rtc_timer_cancel(struct rtc_device *rtc, struct rtc_timer* timer)
927 {
928 int ret = 0;
929 mutex_lock(&rtc->ops_lock);
930 if (timer->enabled)
931 rtc_timer_remove(rtc, timer);
932 mutex_unlock(&rtc->ops_lock);
933 return ret;
934 }
935
936
This page took 0.049839 seconds and 5 git commands to generate.