Merge tag 'nios2-v4.1-rc1' of git://git.rocketboards.org/linux-socfpga-next
[deliverable/linux.git] / drivers / rtc / interface.c
1 /*
2 * RTC subsystem, interface functions
3 *
4 * Copyright (C) 2005 Tower Technologies
5 * Author: Alessandro Zummo <a.zummo@towertech.it>
6 *
7 * based on arch/arm/common/rtctime.c
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
12 */
13
14 #include <linux/rtc.h>
15 #include <linux/sched.h>
16 #include <linux/module.h>
17 #include <linux/log2.h>
18 #include <linux/workqueue.h>
19
20 static int rtc_timer_enqueue(struct rtc_device *rtc, struct rtc_timer *timer);
21 static void rtc_timer_remove(struct rtc_device *rtc, struct rtc_timer *timer);
22
23 static int __rtc_read_time(struct rtc_device *rtc, struct rtc_time *tm)
24 {
25 int err;
26 if (!rtc->ops)
27 err = -ENODEV;
28 else if (!rtc->ops->read_time)
29 err = -EINVAL;
30 else {
31 memset(tm, 0, sizeof(struct rtc_time));
32 err = rtc->ops->read_time(rtc->dev.parent, tm);
33 if (err < 0) {
34 dev_dbg(&rtc->dev, "read_time: fail to read: %d\n",
35 err);
36 return err;
37 }
38
39 err = rtc_valid_tm(tm);
40 if (err < 0)
41 dev_dbg(&rtc->dev, "read_time: rtc_time isn't valid\n");
42 }
43 return err;
44 }
45
46 int rtc_read_time(struct rtc_device *rtc, struct rtc_time *tm)
47 {
48 int err;
49
50 err = mutex_lock_interruptible(&rtc->ops_lock);
51 if (err)
52 return err;
53
54 err = __rtc_read_time(rtc, tm);
55 mutex_unlock(&rtc->ops_lock);
56 return err;
57 }
58 EXPORT_SYMBOL_GPL(rtc_read_time);
59
60 int rtc_set_time(struct rtc_device *rtc, struct rtc_time *tm)
61 {
62 int err;
63
64 err = rtc_valid_tm(tm);
65 if (err != 0)
66 return err;
67
68 err = mutex_lock_interruptible(&rtc->ops_lock);
69 if (err)
70 return err;
71
72 if (!rtc->ops)
73 err = -ENODEV;
74 else if (rtc->ops->set_time)
75 err = rtc->ops->set_time(rtc->dev.parent, tm);
76 else if (rtc->ops->set_mmss64) {
77 time64_t secs64 = rtc_tm_to_time64(tm);
78
79 err = rtc->ops->set_mmss64(rtc->dev.parent, secs64);
80 } else if (rtc->ops->set_mmss) {
81 time64_t secs64 = rtc_tm_to_time64(tm);
82 err = rtc->ops->set_mmss(rtc->dev.parent, secs64);
83 } else
84 err = -EINVAL;
85
86 pm_stay_awake(rtc->dev.parent);
87 mutex_unlock(&rtc->ops_lock);
88 /* A timer might have just expired */
89 schedule_work(&rtc->irqwork);
90 return err;
91 }
92 EXPORT_SYMBOL_GPL(rtc_set_time);
93
94 int rtc_set_mmss(struct rtc_device *rtc, unsigned long secs)
95 {
96 int err;
97
98 err = mutex_lock_interruptible(&rtc->ops_lock);
99 if (err)
100 return err;
101
102 if (!rtc->ops)
103 err = -ENODEV;
104 else if (rtc->ops->set_mmss64)
105 err = rtc->ops->set_mmss64(rtc->dev.parent, secs);
106 else if (rtc->ops->set_mmss)
107 err = rtc->ops->set_mmss(rtc->dev.parent, secs);
108 else if (rtc->ops->read_time && rtc->ops->set_time) {
109 struct rtc_time new, old;
110
111 err = rtc->ops->read_time(rtc->dev.parent, &old);
112 if (err == 0) {
113 rtc_time64_to_tm(secs, &new);
114
115 /*
116 * avoid writing when we're going to change the day of
117 * the month. We will retry in the next minute. This
118 * basically means that if the RTC must not drift
119 * by more than 1 minute in 11 minutes.
120 */
121 if (!((old.tm_hour == 23 && old.tm_min == 59) ||
122 (new.tm_hour == 23 && new.tm_min == 59)))
123 err = rtc->ops->set_time(rtc->dev.parent,
124 &new);
125 }
126 } else {
127 err = -EINVAL;
128 }
129
130 pm_stay_awake(rtc->dev.parent);
131 mutex_unlock(&rtc->ops_lock);
132 /* A timer might have just expired */
133 schedule_work(&rtc->irqwork);
134
135 return err;
136 }
137 EXPORT_SYMBOL_GPL(rtc_set_mmss);
138
139 static int rtc_read_alarm_internal(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
140 {
141 int err;
142
143 err = mutex_lock_interruptible(&rtc->ops_lock);
144 if (err)
145 return err;
146
147 if (rtc->ops == NULL)
148 err = -ENODEV;
149 else if (!rtc->ops->read_alarm)
150 err = -EINVAL;
151 else {
152 memset(alarm, 0, sizeof(struct rtc_wkalrm));
153 err = rtc->ops->read_alarm(rtc->dev.parent, alarm);
154 }
155
156 mutex_unlock(&rtc->ops_lock);
157 return err;
158 }
159
160 int __rtc_read_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
161 {
162 int err;
163 struct rtc_time before, now;
164 int first_time = 1;
165 time64_t t_now, t_alm;
166 enum { none, day, month, year } missing = none;
167 unsigned days;
168
169 /* The lower level RTC driver may return -1 in some fields,
170 * creating invalid alarm->time values, for reasons like:
171 *
172 * - The hardware may not be capable of filling them in;
173 * many alarms match only on time-of-day fields, not
174 * day/month/year calendar data.
175 *
176 * - Some hardware uses illegal values as "wildcard" match
177 * values, which non-Linux firmware (like a BIOS) may try
178 * to set up as e.g. "alarm 15 minutes after each hour".
179 * Linux uses only oneshot alarms.
180 *
181 * When we see that here, we deal with it by using values from
182 * a current RTC timestamp for any missing (-1) values. The
183 * RTC driver prevents "periodic alarm" modes.
184 *
185 * But this can be racey, because some fields of the RTC timestamp
186 * may have wrapped in the interval since we read the RTC alarm,
187 * which would lead to us inserting inconsistent values in place
188 * of the -1 fields.
189 *
190 * Reading the alarm and timestamp in the reverse sequence
191 * would have the same race condition, and not solve the issue.
192 *
193 * So, we must first read the RTC timestamp,
194 * then read the RTC alarm value,
195 * and then read a second RTC timestamp.
196 *
197 * If any fields of the second timestamp have changed
198 * when compared with the first timestamp, then we know
199 * our timestamp may be inconsistent with that used by
200 * the low-level rtc_read_alarm_internal() function.
201 *
202 * So, when the two timestamps disagree, we just loop and do
203 * the process again to get a fully consistent set of values.
204 *
205 * This could all instead be done in the lower level driver,
206 * but since more than one lower level RTC implementation needs it,
207 * then it's probably best best to do it here instead of there..
208 */
209
210 /* Get the "before" timestamp */
211 err = rtc_read_time(rtc, &before);
212 if (err < 0)
213 return err;
214 do {
215 if (!first_time)
216 memcpy(&before, &now, sizeof(struct rtc_time));
217 first_time = 0;
218
219 /* get the RTC alarm values, which may be incomplete */
220 err = rtc_read_alarm_internal(rtc, alarm);
221 if (err)
222 return err;
223
224 /* full-function RTCs won't have such missing fields */
225 if (rtc_valid_tm(&alarm->time) == 0)
226 return 0;
227
228 /* get the "after" timestamp, to detect wrapped fields */
229 err = rtc_read_time(rtc, &now);
230 if (err < 0)
231 return err;
232
233 /* note that tm_sec is a "don't care" value here: */
234 } while ( before.tm_min != now.tm_min
235 || before.tm_hour != now.tm_hour
236 || before.tm_mon != now.tm_mon
237 || before.tm_year != now.tm_year);
238
239 /* Fill in the missing alarm fields using the timestamp; we
240 * know there's at least one since alarm->time is invalid.
241 */
242 if (alarm->time.tm_sec == -1)
243 alarm->time.tm_sec = now.tm_sec;
244 if (alarm->time.tm_min == -1)
245 alarm->time.tm_min = now.tm_min;
246 if (alarm->time.tm_hour == -1)
247 alarm->time.tm_hour = now.tm_hour;
248
249 /* For simplicity, only support date rollover for now */
250 if (alarm->time.tm_mday < 1 || alarm->time.tm_mday > 31) {
251 alarm->time.tm_mday = now.tm_mday;
252 missing = day;
253 }
254 if ((unsigned)alarm->time.tm_mon >= 12) {
255 alarm->time.tm_mon = now.tm_mon;
256 if (missing == none)
257 missing = month;
258 }
259 if (alarm->time.tm_year == -1) {
260 alarm->time.tm_year = now.tm_year;
261 if (missing == none)
262 missing = year;
263 }
264
265 /* with luck, no rollover is needed */
266 t_now = rtc_tm_to_time64(&now);
267 t_alm = rtc_tm_to_time64(&alarm->time);
268 if (t_now < t_alm)
269 goto done;
270
271 switch (missing) {
272
273 /* 24 hour rollover ... if it's now 10am Monday, an alarm that
274 * that will trigger at 5am will do so at 5am Tuesday, which
275 * could also be in the next month or year. This is a common
276 * case, especially for PCs.
277 */
278 case day:
279 dev_dbg(&rtc->dev, "alarm rollover: %s\n", "day");
280 t_alm += 24 * 60 * 60;
281 rtc_time64_to_tm(t_alm, &alarm->time);
282 break;
283
284 /* Month rollover ... if it's the 31th, an alarm on the 3rd will
285 * be next month. An alarm matching on the 30th, 29th, or 28th
286 * may end up in the month after that! Many newer PCs support
287 * this type of alarm.
288 */
289 case month:
290 dev_dbg(&rtc->dev, "alarm rollover: %s\n", "month");
291 do {
292 if (alarm->time.tm_mon < 11)
293 alarm->time.tm_mon++;
294 else {
295 alarm->time.tm_mon = 0;
296 alarm->time.tm_year++;
297 }
298 days = rtc_month_days(alarm->time.tm_mon,
299 alarm->time.tm_year);
300 } while (days < alarm->time.tm_mday);
301 break;
302
303 /* Year rollover ... easy except for leap years! */
304 case year:
305 dev_dbg(&rtc->dev, "alarm rollover: %s\n", "year");
306 do {
307 alarm->time.tm_year++;
308 } while (!is_leap_year(alarm->time.tm_year + 1900)
309 && rtc_valid_tm(&alarm->time) != 0);
310 break;
311
312 default:
313 dev_warn(&rtc->dev, "alarm rollover not handled\n");
314 }
315
316 done:
317 err = rtc_valid_tm(&alarm->time);
318
319 if (err) {
320 dev_warn(&rtc->dev, "invalid alarm value: %d-%d-%d %d:%d:%d\n",
321 alarm->time.tm_year + 1900, alarm->time.tm_mon + 1,
322 alarm->time.tm_mday, alarm->time.tm_hour, alarm->time.tm_min,
323 alarm->time.tm_sec);
324 }
325
326 return err;
327 }
328
329 int rtc_read_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
330 {
331 int err;
332
333 err = mutex_lock_interruptible(&rtc->ops_lock);
334 if (err)
335 return err;
336 if (rtc->ops == NULL)
337 err = -ENODEV;
338 else if (!rtc->ops->read_alarm)
339 err = -EINVAL;
340 else {
341 memset(alarm, 0, sizeof(struct rtc_wkalrm));
342 alarm->enabled = rtc->aie_timer.enabled;
343 alarm->time = rtc_ktime_to_tm(rtc->aie_timer.node.expires);
344 }
345 mutex_unlock(&rtc->ops_lock);
346
347 return err;
348 }
349 EXPORT_SYMBOL_GPL(rtc_read_alarm);
350
351 static int __rtc_set_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
352 {
353 struct rtc_time tm;
354 time64_t now, scheduled;
355 int err;
356
357 err = rtc_valid_tm(&alarm->time);
358 if (err)
359 return err;
360 scheduled = rtc_tm_to_time64(&alarm->time);
361
362 /* Make sure we're not setting alarms in the past */
363 err = __rtc_read_time(rtc, &tm);
364 if (err)
365 return err;
366 now = rtc_tm_to_time64(&tm);
367 if (scheduled <= now)
368 return -ETIME;
369 /*
370 * XXX - We just checked to make sure the alarm time is not
371 * in the past, but there is still a race window where if
372 * the is alarm set for the next second and the second ticks
373 * over right here, before we set the alarm.
374 */
375
376 if (!rtc->ops)
377 err = -ENODEV;
378 else if (!rtc->ops->set_alarm)
379 err = -EINVAL;
380 else
381 err = rtc->ops->set_alarm(rtc->dev.parent, alarm);
382
383 return err;
384 }
385
386 int rtc_set_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
387 {
388 int err;
389
390 err = rtc_valid_tm(&alarm->time);
391 if (err != 0)
392 return err;
393
394 err = mutex_lock_interruptible(&rtc->ops_lock);
395 if (err)
396 return err;
397 if (rtc->aie_timer.enabled)
398 rtc_timer_remove(rtc, &rtc->aie_timer);
399
400 rtc->aie_timer.node.expires = rtc_tm_to_ktime(alarm->time);
401 rtc->aie_timer.period = ktime_set(0, 0);
402 if (alarm->enabled)
403 err = rtc_timer_enqueue(rtc, &rtc->aie_timer);
404
405 mutex_unlock(&rtc->ops_lock);
406 return err;
407 }
408 EXPORT_SYMBOL_GPL(rtc_set_alarm);
409
410 /* Called once per device from rtc_device_register */
411 int rtc_initialize_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
412 {
413 int err;
414 struct rtc_time now;
415
416 err = rtc_valid_tm(&alarm->time);
417 if (err != 0)
418 return err;
419
420 err = rtc_read_time(rtc, &now);
421 if (err)
422 return err;
423
424 err = mutex_lock_interruptible(&rtc->ops_lock);
425 if (err)
426 return err;
427
428 rtc->aie_timer.node.expires = rtc_tm_to_ktime(alarm->time);
429 rtc->aie_timer.period = ktime_set(0, 0);
430
431 /* Alarm has to be enabled & in the futrure for us to enqueue it */
432 if (alarm->enabled && (rtc_tm_to_ktime(now).tv64 <
433 rtc->aie_timer.node.expires.tv64)) {
434
435 rtc->aie_timer.enabled = 1;
436 timerqueue_add(&rtc->timerqueue, &rtc->aie_timer.node);
437 }
438 mutex_unlock(&rtc->ops_lock);
439 return err;
440 }
441 EXPORT_SYMBOL_GPL(rtc_initialize_alarm);
442
443
444
445 int rtc_alarm_irq_enable(struct rtc_device *rtc, unsigned int enabled)
446 {
447 int err = mutex_lock_interruptible(&rtc->ops_lock);
448 if (err)
449 return err;
450
451 if (rtc->aie_timer.enabled != enabled) {
452 if (enabled)
453 err = rtc_timer_enqueue(rtc, &rtc->aie_timer);
454 else
455 rtc_timer_remove(rtc, &rtc->aie_timer);
456 }
457
458 if (err)
459 /* nothing */;
460 else if (!rtc->ops)
461 err = -ENODEV;
462 else if (!rtc->ops->alarm_irq_enable)
463 err = -EINVAL;
464 else
465 err = rtc->ops->alarm_irq_enable(rtc->dev.parent, enabled);
466
467 mutex_unlock(&rtc->ops_lock);
468 return err;
469 }
470 EXPORT_SYMBOL_GPL(rtc_alarm_irq_enable);
471
472 int rtc_update_irq_enable(struct rtc_device *rtc, unsigned int enabled)
473 {
474 int err = mutex_lock_interruptible(&rtc->ops_lock);
475 if (err)
476 return err;
477
478 #ifdef CONFIG_RTC_INTF_DEV_UIE_EMUL
479 if (enabled == 0 && rtc->uie_irq_active) {
480 mutex_unlock(&rtc->ops_lock);
481 return rtc_dev_update_irq_enable_emul(rtc, 0);
482 }
483 #endif
484 /* make sure we're changing state */
485 if (rtc->uie_rtctimer.enabled == enabled)
486 goto out;
487
488 if (rtc->uie_unsupported) {
489 err = -EINVAL;
490 goto out;
491 }
492
493 if (enabled) {
494 struct rtc_time tm;
495 ktime_t now, onesec;
496
497 __rtc_read_time(rtc, &tm);
498 onesec = ktime_set(1, 0);
499 now = rtc_tm_to_ktime(tm);
500 rtc->uie_rtctimer.node.expires = ktime_add(now, onesec);
501 rtc->uie_rtctimer.period = ktime_set(1, 0);
502 err = rtc_timer_enqueue(rtc, &rtc->uie_rtctimer);
503 } else
504 rtc_timer_remove(rtc, &rtc->uie_rtctimer);
505
506 out:
507 mutex_unlock(&rtc->ops_lock);
508 #ifdef CONFIG_RTC_INTF_DEV_UIE_EMUL
509 /*
510 * Enable emulation if the driver did not provide
511 * the update_irq_enable function pointer or if returned
512 * -EINVAL to signal that it has been configured without
513 * interrupts or that are not available at the moment.
514 */
515 if (err == -EINVAL)
516 err = rtc_dev_update_irq_enable_emul(rtc, enabled);
517 #endif
518 return err;
519
520 }
521 EXPORT_SYMBOL_GPL(rtc_update_irq_enable);
522
523
524 /**
525 * rtc_handle_legacy_irq - AIE, UIE and PIE event hook
526 * @rtc: pointer to the rtc device
527 *
528 * This function is called when an AIE, UIE or PIE mode interrupt
529 * has occurred (or been emulated).
530 *
531 * Triggers the registered irq_task function callback.
532 */
533 void rtc_handle_legacy_irq(struct rtc_device *rtc, int num, int mode)
534 {
535 unsigned long flags;
536
537 /* mark one irq of the appropriate mode */
538 spin_lock_irqsave(&rtc->irq_lock, flags);
539 rtc->irq_data = (rtc->irq_data + (num << 8)) | (RTC_IRQF|mode);
540 spin_unlock_irqrestore(&rtc->irq_lock, flags);
541
542 /* call the task func */
543 spin_lock_irqsave(&rtc->irq_task_lock, flags);
544 if (rtc->irq_task)
545 rtc->irq_task->func(rtc->irq_task->private_data);
546 spin_unlock_irqrestore(&rtc->irq_task_lock, flags);
547
548 wake_up_interruptible(&rtc->irq_queue);
549 kill_fasync(&rtc->async_queue, SIGIO, POLL_IN);
550 }
551
552
553 /**
554 * rtc_aie_update_irq - AIE mode rtctimer hook
555 * @private: pointer to the rtc_device
556 *
557 * This functions is called when the aie_timer expires.
558 */
559 void rtc_aie_update_irq(void *private)
560 {
561 struct rtc_device *rtc = (struct rtc_device *)private;
562 rtc_handle_legacy_irq(rtc, 1, RTC_AF);
563 }
564
565
566 /**
567 * rtc_uie_update_irq - UIE mode rtctimer hook
568 * @private: pointer to the rtc_device
569 *
570 * This functions is called when the uie_timer expires.
571 */
572 void rtc_uie_update_irq(void *private)
573 {
574 struct rtc_device *rtc = (struct rtc_device *)private;
575 rtc_handle_legacy_irq(rtc, 1, RTC_UF);
576 }
577
578
579 /**
580 * rtc_pie_update_irq - PIE mode hrtimer hook
581 * @timer: pointer to the pie mode hrtimer
582 *
583 * This function is used to emulate PIE mode interrupts
584 * using an hrtimer. This function is called when the periodic
585 * hrtimer expires.
586 */
587 enum hrtimer_restart rtc_pie_update_irq(struct hrtimer *timer)
588 {
589 struct rtc_device *rtc;
590 ktime_t period;
591 int count;
592 rtc = container_of(timer, struct rtc_device, pie_timer);
593
594 period = ktime_set(0, NSEC_PER_SEC/rtc->irq_freq);
595 count = hrtimer_forward_now(timer, period);
596
597 rtc_handle_legacy_irq(rtc, count, RTC_PF);
598
599 return HRTIMER_RESTART;
600 }
601
602 /**
603 * rtc_update_irq - Triggered when a RTC interrupt occurs.
604 * @rtc: the rtc device
605 * @num: how many irqs are being reported (usually one)
606 * @events: mask of RTC_IRQF with one or more of RTC_PF, RTC_AF, RTC_UF
607 * Context: any
608 */
609 void rtc_update_irq(struct rtc_device *rtc,
610 unsigned long num, unsigned long events)
611 {
612 if (unlikely(IS_ERR_OR_NULL(rtc)))
613 return;
614
615 pm_stay_awake(rtc->dev.parent);
616 schedule_work(&rtc->irqwork);
617 }
618 EXPORT_SYMBOL_GPL(rtc_update_irq);
619
620 static int __rtc_match(struct device *dev, const void *data)
621 {
622 const char *name = data;
623
624 if (strcmp(dev_name(dev), name) == 0)
625 return 1;
626 return 0;
627 }
628
629 struct rtc_device *rtc_class_open(const char *name)
630 {
631 struct device *dev;
632 struct rtc_device *rtc = NULL;
633
634 dev = class_find_device(rtc_class, NULL, name, __rtc_match);
635 if (dev)
636 rtc = to_rtc_device(dev);
637
638 if (rtc) {
639 if (!try_module_get(rtc->owner)) {
640 put_device(dev);
641 rtc = NULL;
642 }
643 }
644
645 return rtc;
646 }
647 EXPORT_SYMBOL_GPL(rtc_class_open);
648
649 void rtc_class_close(struct rtc_device *rtc)
650 {
651 module_put(rtc->owner);
652 put_device(&rtc->dev);
653 }
654 EXPORT_SYMBOL_GPL(rtc_class_close);
655
656 int rtc_irq_register(struct rtc_device *rtc, struct rtc_task *task)
657 {
658 int retval = -EBUSY;
659
660 if (task == NULL || task->func == NULL)
661 return -EINVAL;
662
663 /* Cannot register while the char dev is in use */
664 if (test_and_set_bit_lock(RTC_DEV_BUSY, &rtc->flags))
665 return -EBUSY;
666
667 spin_lock_irq(&rtc->irq_task_lock);
668 if (rtc->irq_task == NULL) {
669 rtc->irq_task = task;
670 retval = 0;
671 }
672 spin_unlock_irq(&rtc->irq_task_lock);
673
674 clear_bit_unlock(RTC_DEV_BUSY, &rtc->flags);
675
676 return retval;
677 }
678 EXPORT_SYMBOL_GPL(rtc_irq_register);
679
680 void rtc_irq_unregister(struct rtc_device *rtc, struct rtc_task *task)
681 {
682 spin_lock_irq(&rtc->irq_task_lock);
683 if (rtc->irq_task == task)
684 rtc->irq_task = NULL;
685 spin_unlock_irq(&rtc->irq_task_lock);
686 }
687 EXPORT_SYMBOL_GPL(rtc_irq_unregister);
688
689 static int rtc_update_hrtimer(struct rtc_device *rtc, int enabled)
690 {
691 /*
692 * We always cancel the timer here first, because otherwise
693 * we could run into BUG_ON(timer->state != HRTIMER_STATE_CALLBACK);
694 * when we manage to start the timer before the callback
695 * returns HRTIMER_RESTART.
696 *
697 * We cannot use hrtimer_cancel() here as a running callback
698 * could be blocked on rtc->irq_task_lock and hrtimer_cancel()
699 * would spin forever.
700 */
701 if (hrtimer_try_to_cancel(&rtc->pie_timer) < 0)
702 return -1;
703
704 if (enabled) {
705 ktime_t period = ktime_set(0, NSEC_PER_SEC / rtc->irq_freq);
706
707 hrtimer_start(&rtc->pie_timer, period, HRTIMER_MODE_REL);
708 }
709 return 0;
710 }
711
712 /**
713 * rtc_irq_set_state - enable/disable 2^N Hz periodic IRQs
714 * @rtc: the rtc device
715 * @task: currently registered with rtc_irq_register()
716 * @enabled: true to enable periodic IRQs
717 * Context: any
718 *
719 * Note that rtc_irq_set_freq() should previously have been used to
720 * specify the desired frequency of periodic IRQ task->func() callbacks.
721 */
722 int rtc_irq_set_state(struct rtc_device *rtc, struct rtc_task *task, int enabled)
723 {
724 int err = 0;
725 unsigned long flags;
726
727 retry:
728 spin_lock_irqsave(&rtc->irq_task_lock, flags);
729 if (rtc->irq_task != NULL && task == NULL)
730 err = -EBUSY;
731 else if (rtc->irq_task != task)
732 err = -EACCES;
733 else {
734 if (rtc_update_hrtimer(rtc, enabled) < 0) {
735 spin_unlock_irqrestore(&rtc->irq_task_lock, flags);
736 cpu_relax();
737 goto retry;
738 }
739 rtc->pie_enabled = enabled;
740 }
741 spin_unlock_irqrestore(&rtc->irq_task_lock, flags);
742 return err;
743 }
744 EXPORT_SYMBOL_GPL(rtc_irq_set_state);
745
746 /**
747 * rtc_irq_set_freq - set 2^N Hz periodic IRQ frequency for IRQ
748 * @rtc: the rtc device
749 * @task: currently registered with rtc_irq_register()
750 * @freq: positive frequency with which task->func() will be called
751 * Context: any
752 *
753 * Note that rtc_irq_set_state() is used to enable or disable the
754 * periodic IRQs.
755 */
756 int rtc_irq_set_freq(struct rtc_device *rtc, struct rtc_task *task, int freq)
757 {
758 int err = 0;
759 unsigned long flags;
760
761 if (freq <= 0 || freq > RTC_MAX_FREQ)
762 return -EINVAL;
763 retry:
764 spin_lock_irqsave(&rtc->irq_task_lock, flags);
765 if (rtc->irq_task != NULL && task == NULL)
766 err = -EBUSY;
767 else if (rtc->irq_task != task)
768 err = -EACCES;
769 else {
770 rtc->irq_freq = freq;
771 if (rtc->pie_enabled && rtc_update_hrtimer(rtc, 1) < 0) {
772 spin_unlock_irqrestore(&rtc->irq_task_lock, flags);
773 cpu_relax();
774 goto retry;
775 }
776 }
777 spin_unlock_irqrestore(&rtc->irq_task_lock, flags);
778 return err;
779 }
780 EXPORT_SYMBOL_GPL(rtc_irq_set_freq);
781
782 /**
783 * rtc_timer_enqueue - Adds a rtc_timer to the rtc_device timerqueue
784 * @rtc rtc device
785 * @timer timer being added.
786 *
787 * Enqueues a timer onto the rtc devices timerqueue and sets
788 * the next alarm event appropriately.
789 *
790 * Sets the enabled bit on the added timer.
791 *
792 * Must hold ops_lock for proper serialization of timerqueue
793 */
794 static int rtc_timer_enqueue(struct rtc_device *rtc, struct rtc_timer *timer)
795 {
796 timer->enabled = 1;
797 timerqueue_add(&rtc->timerqueue, &timer->node);
798 if (&timer->node == timerqueue_getnext(&rtc->timerqueue)) {
799 struct rtc_wkalrm alarm;
800 int err;
801 alarm.time = rtc_ktime_to_tm(timer->node.expires);
802 alarm.enabled = 1;
803 err = __rtc_set_alarm(rtc, &alarm);
804 if (err == -ETIME) {
805 pm_stay_awake(rtc->dev.parent);
806 schedule_work(&rtc->irqwork);
807 } else if (err) {
808 timerqueue_del(&rtc->timerqueue, &timer->node);
809 timer->enabled = 0;
810 return err;
811 }
812 }
813 return 0;
814 }
815
816 static void rtc_alarm_disable(struct rtc_device *rtc)
817 {
818 if (!rtc->ops || !rtc->ops->alarm_irq_enable)
819 return;
820
821 rtc->ops->alarm_irq_enable(rtc->dev.parent, false);
822 }
823
824 /**
825 * rtc_timer_remove - Removes a rtc_timer from the rtc_device timerqueue
826 * @rtc rtc device
827 * @timer timer being removed.
828 *
829 * Removes a timer onto the rtc devices timerqueue and sets
830 * the next alarm event appropriately.
831 *
832 * Clears the enabled bit on the removed timer.
833 *
834 * Must hold ops_lock for proper serialization of timerqueue
835 */
836 static void rtc_timer_remove(struct rtc_device *rtc, struct rtc_timer *timer)
837 {
838 struct timerqueue_node *next = timerqueue_getnext(&rtc->timerqueue);
839 timerqueue_del(&rtc->timerqueue, &timer->node);
840 timer->enabled = 0;
841 if (next == &timer->node) {
842 struct rtc_wkalrm alarm;
843 int err;
844 next = timerqueue_getnext(&rtc->timerqueue);
845 if (!next) {
846 rtc_alarm_disable(rtc);
847 return;
848 }
849 alarm.time = rtc_ktime_to_tm(next->expires);
850 alarm.enabled = 1;
851 err = __rtc_set_alarm(rtc, &alarm);
852 if (err == -ETIME) {
853 pm_stay_awake(rtc->dev.parent);
854 schedule_work(&rtc->irqwork);
855 }
856 }
857 }
858
859 /**
860 * rtc_timer_do_work - Expires rtc timers
861 * @rtc rtc device
862 * @timer timer being removed.
863 *
864 * Expires rtc timers. Reprograms next alarm event if needed.
865 * Called via worktask.
866 *
867 * Serializes access to timerqueue via ops_lock mutex
868 */
869 void rtc_timer_do_work(struct work_struct *work)
870 {
871 struct rtc_timer *timer;
872 struct timerqueue_node *next;
873 ktime_t now;
874 struct rtc_time tm;
875
876 struct rtc_device *rtc =
877 container_of(work, struct rtc_device, irqwork);
878
879 mutex_lock(&rtc->ops_lock);
880 again:
881 __rtc_read_time(rtc, &tm);
882 now = rtc_tm_to_ktime(tm);
883 while ((next = timerqueue_getnext(&rtc->timerqueue))) {
884 if (next->expires.tv64 > now.tv64)
885 break;
886
887 /* expire timer */
888 timer = container_of(next, struct rtc_timer, node);
889 timerqueue_del(&rtc->timerqueue, &timer->node);
890 timer->enabled = 0;
891 if (timer->task.func)
892 timer->task.func(timer->task.private_data);
893
894 /* Re-add/fwd periodic timers */
895 if (ktime_to_ns(timer->period)) {
896 timer->node.expires = ktime_add(timer->node.expires,
897 timer->period);
898 timer->enabled = 1;
899 timerqueue_add(&rtc->timerqueue, &timer->node);
900 }
901 }
902
903 /* Set next alarm */
904 if (next) {
905 struct rtc_wkalrm alarm;
906 int err;
907 int retry = 3;
908
909 alarm.time = rtc_ktime_to_tm(next->expires);
910 alarm.enabled = 1;
911 reprogram:
912 err = __rtc_set_alarm(rtc, &alarm);
913 if (err == -ETIME)
914 goto again;
915 else if (err) {
916 if (retry-- > 0)
917 goto reprogram;
918
919 timer = container_of(next, struct rtc_timer, node);
920 timerqueue_del(&rtc->timerqueue, &timer->node);
921 timer->enabled = 0;
922 dev_err(&rtc->dev, "__rtc_set_alarm: err=%d\n", err);
923 goto again;
924 }
925 } else
926 rtc_alarm_disable(rtc);
927
928 pm_relax(rtc->dev.parent);
929 mutex_unlock(&rtc->ops_lock);
930 }
931
932
933 /* rtc_timer_init - Initializes an rtc_timer
934 * @timer: timer to be intiialized
935 * @f: function pointer to be called when timer fires
936 * @data: private data passed to function pointer
937 *
938 * Kernel interface to initializing an rtc_timer.
939 */
940 void rtc_timer_init(struct rtc_timer *timer, void (*f)(void *p), void *data)
941 {
942 timerqueue_init(&timer->node);
943 timer->enabled = 0;
944 timer->task.func = f;
945 timer->task.private_data = data;
946 }
947
948 /* rtc_timer_start - Sets an rtc_timer to fire in the future
949 * @ rtc: rtc device to be used
950 * @ timer: timer being set
951 * @ expires: time at which to expire the timer
952 * @ period: period that the timer will recur
953 *
954 * Kernel interface to set an rtc_timer
955 */
956 int rtc_timer_start(struct rtc_device *rtc, struct rtc_timer *timer,
957 ktime_t expires, ktime_t period)
958 {
959 int ret = 0;
960 mutex_lock(&rtc->ops_lock);
961 if (timer->enabled)
962 rtc_timer_remove(rtc, timer);
963
964 timer->node.expires = expires;
965 timer->period = period;
966
967 ret = rtc_timer_enqueue(rtc, timer);
968
969 mutex_unlock(&rtc->ops_lock);
970 return ret;
971 }
972
973 /* rtc_timer_cancel - Stops an rtc_timer
974 * @ rtc: rtc device to be used
975 * @ timer: timer being set
976 *
977 * Kernel interface to cancel an rtc_timer
978 */
979 int rtc_timer_cancel(struct rtc_device *rtc, struct rtc_timer *timer)
980 {
981 int ret = 0;
982 mutex_lock(&rtc->ops_lock);
983 if (timer->enabled)
984 rtc_timer_remove(rtc, timer);
985 mutex_unlock(&rtc->ops_lock);
986 return ret;
987 }
988
989
This page took 0.115761 seconds and 6 git commands to generate.