rtc: initialize output parameter for read alarm to "uninitialized"
[deliverable/linux.git] / drivers / rtc / interface.c
1 /*
2 * RTC subsystem, interface functions
3 *
4 * Copyright (C) 2005 Tower Technologies
5 * Author: Alessandro Zummo <a.zummo@towertech.it>
6 *
7 * based on arch/arm/common/rtctime.c
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
12 */
13
14 #include <linux/rtc.h>
15 #include <linux/sched.h>
16 #include <linux/module.h>
17 #include <linux/log2.h>
18 #include <linux/workqueue.h>
19
20 static int rtc_timer_enqueue(struct rtc_device *rtc, struct rtc_timer *timer);
21 static void rtc_timer_remove(struct rtc_device *rtc, struct rtc_timer *timer);
22
23 static int __rtc_read_time(struct rtc_device *rtc, struct rtc_time *tm)
24 {
25 int err;
26 if (!rtc->ops)
27 err = -ENODEV;
28 else if (!rtc->ops->read_time)
29 err = -EINVAL;
30 else {
31 memset(tm, 0, sizeof(struct rtc_time));
32 err = rtc->ops->read_time(rtc->dev.parent, tm);
33 if (err < 0) {
34 dev_dbg(&rtc->dev, "read_time: fail to read: %d\n",
35 err);
36 return err;
37 }
38
39 err = rtc_valid_tm(tm);
40 if (err < 0)
41 dev_dbg(&rtc->dev, "read_time: rtc_time isn't valid\n");
42 }
43 return err;
44 }
45
46 int rtc_read_time(struct rtc_device *rtc, struct rtc_time *tm)
47 {
48 int err;
49
50 err = mutex_lock_interruptible(&rtc->ops_lock);
51 if (err)
52 return err;
53
54 err = __rtc_read_time(rtc, tm);
55 mutex_unlock(&rtc->ops_lock);
56 return err;
57 }
58 EXPORT_SYMBOL_GPL(rtc_read_time);
59
60 int rtc_set_time(struct rtc_device *rtc, struct rtc_time *tm)
61 {
62 int err;
63
64 err = rtc_valid_tm(tm);
65 if (err != 0)
66 return err;
67
68 err = mutex_lock_interruptible(&rtc->ops_lock);
69 if (err)
70 return err;
71
72 if (!rtc->ops)
73 err = -ENODEV;
74 else if (rtc->ops->set_time)
75 err = rtc->ops->set_time(rtc->dev.parent, tm);
76 else if (rtc->ops->set_mmss64) {
77 time64_t secs64 = rtc_tm_to_time64(tm);
78
79 err = rtc->ops->set_mmss64(rtc->dev.parent, secs64);
80 } else if (rtc->ops->set_mmss) {
81 time64_t secs64 = rtc_tm_to_time64(tm);
82 err = rtc->ops->set_mmss(rtc->dev.parent, secs64);
83 } else
84 err = -EINVAL;
85
86 pm_stay_awake(rtc->dev.parent);
87 mutex_unlock(&rtc->ops_lock);
88 /* A timer might have just expired */
89 schedule_work(&rtc->irqwork);
90 return err;
91 }
92 EXPORT_SYMBOL_GPL(rtc_set_time);
93
94 static int rtc_read_alarm_internal(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
95 {
96 int err;
97
98 err = mutex_lock_interruptible(&rtc->ops_lock);
99 if (err)
100 return err;
101
102 if (rtc->ops == NULL)
103 err = -ENODEV;
104 else if (!rtc->ops->read_alarm)
105 err = -EINVAL;
106 else {
107 alarm->enabled = 0;
108 alarm->pending = 0;
109 alarm->time.tm_sec = -1;
110 alarm->time.tm_min = -1;
111 alarm->time.tm_hour = -1;
112 alarm->time.tm_mday = -1;
113 alarm->time.tm_mon = -1;
114 alarm->time.tm_year = -1;
115 alarm->time.tm_wday = -1;
116 alarm->time.tm_yday = -1;
117 alarm->time.tm_isdst = -1;
118 err = rtc->ops->read_alarm(rtc->dev.parent, alarm);
119 }
120
121 mutex_unlock(&rtc->ops_lock);
122 return err;
123 }
124
125 int __rtc_read_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
126 {
127 int err;
128 struct rtc_time before, now;
129 int first_time = 1;
130 time64_t t_now, t_alm;
131 enum { none, day, month, year } missing = none;
132 unsigned days;
133
134 /* The lower level RTC driver may return -1 in some fields,
135 * creating invalid alarm->time values, for reasons like:
136 *
137 * - The hardware may not be capable of filling them in;
138 * many alarms match only on time-of-day fields, not
139 * day/month/year calendar data.
140 *
141 * - Some hardware uses illegal values as "wildcard" match
142 * values, which non-Linux firmware (like a BIOS) may try
143 * to set up as e.g. "alarm 15 minutes after each hour".
144 * Linux uses only oneshot alarms.
145 *
146 * When we see that here, we deal with it by using values from
147 * a current RTC timestamp for any missing (-1) values. The
148 * RTC driver prevents "periodic alarm" modes.
149 *
150 * But this can be racey, because some fields of the RTC timestamp
151 * may have wrapped in the interval since we read the RTC alarm,
152 * which would lead to us inserting inconsistent values in place
153 * of the -1 fields.
154 *
155 * Reading the alarm and timestamp in the reverse sequence
156 * would have the same race condition, and not solve the issue.
157 *
158 * So, we must first read the RTC timestamp,
159 * then read the RTC alarm value,
160 * and then read a second RTC timestamp.
161 *
162 * If any fields of the second timestamp have changed
163 * when compared with the first timestamp, then we know
164 * our timestamp may be inconsistent with that used by
165 * the low-level rtc_read_alarm_internal() function.
166 *
167 * So, when the two timestamps disagree, we just loop and do
168 * the process again to get a fully consistent set of values.
169 *
170 * This could all instead be done in the lower level driver,
171 * but since more than one lower level RTC implementation needs it,
172 * then it's probably best best to do it here instead of there..
173 */
174
175 /* Get the "before" timestamp */
176 err = rtc_read_time(rtc, &before);
177 if (err < 0)
178 return err;
179 do {
180 if (!first_time)
181 memcpy(&before, &now, sizeof(struct rtc_time));
182 first_time = 0;
183
184 /* get the RTC alarm values, which may be incomplete */
185 err = rtc_read_alarm_internal(rtc, alarm);
186 if (err)
187 return err;
188
189 /* full-function RTCs won't have such missing fields */
190 if (rtc_valid_tm(&alarm->time) == 0)
191 return 0;
192
193 /* get the "after" timestamp, to detect wrapped fields */
194 err = rtc_read_time(rtc, &now);
195 if (err < 0)
196 return err;
197
198 /* note that tm_sec is a "don't care" value here: */
199 } while ( before.tm_min != now.tm_min
200 || before.tm_hour != now.tm_hour
201 || before.tm_mon != now.tm_mon
202 || before.tm_year != now.tm_year);
203
204 /* Fill in the missing alarm fields using the timestamp; we
205 * know there's at least one since alarm->time is invalid.
206 */
207 if (alarm->time.tm_sec == -1)
208 alarm->time.tm_sec = now.tm_sec;
209 if (alarm->time.tm_min == -1)
210 alarm->time.tm_min = now.tm_min;
211 if (alarm->time.tm_hour == -1)
212 alarm->time.tm_hour = now.tm_hour;
213
214 /* For simplicity, only support date rollover for now */
215 if (alarm->time.tm_mday < 1 || alarm->time.tm_mday > 31) {
216 alarm->time.tm_mday = now.tm_mday;
217 missing = day;
218 }
219 if ((unsigned)alarm->time.tm_mon >= 12) {
220 alarm->time.tm_mon = now.tm_mon;
221 if (missing == none)
222 missing = month;
223 }
224 if (alarm->time.tm_year == -1) {
225 alarm->time.tm_year = now.tm_year;
226 if (missing == none)
227 missing = year;
228 }
229
230 /* with luck, no rollover is needed */
231 t_now = rtc_tm_to_time64(&now);
232 t_alm = rtc_tm_to_time64(&alarm->time);
233 if (t_now < t_alm)
234 goto done;
235
236 switch (missing) {
237
238 /* 24 hour rollover ... if it's now 10am Monday, an alarm that
239 * that will trigger at 5am will do so at 5am Tuesday, which
240 * could also be in the next month or year. This is a common
241 * case, especially for PCs.
242 */
243 case day:
244 dev_dbg(&rtc->dev, "alarm rollover: %s\n", "day");
245 t_alm += 24 * 60 * 60;
246 rtc_time64_to_tm(t_alm, &alarm->time);
247 break;
248
249 /* Month rollover ... if it's the 31th, an alarm on the 3rd will
250 * be next month. An alarm matching on the 30th, 29th, or 28th
251 * may end up in the month after that! Many newer PCs support
252 * this type of alarm.
253 */
254 case month:
255 dev_dbg(&rtc->dev, "alarm rollover: %s\n", "month");
256 do {
257 if (alarm->time.tm_mon < 11)
258 alarm->time.tm_mon++;
259 else {
260 alarm->time.tm_mon = 0;
261 alarm->time.tm_year++;
262 }
263 days = rtc_month_days(alarm->time.tm_mon,
264 alarm->time.tm_year);
265 } while (days < alarm->time.tm_mday);
266 break;
267
268 /* Year rollover ... easy except for leap years! */
269 case year:
270 dev_dbg(&rtc->dev, "alarm rollover: %s\n", "year");
271 do {
272 alarm->time.tm_year++;
273 } while (!is_leap_year(alarm->time.tm_year + 1900)
274 && rtc_valid_tm(&alarm->time) != 0);
275 break;
276
277 default:
278 dev_warn(&rtc->dev, "alarm rollover not handled\n");
279 }
280
281 done:
282 err = rtc_valid_tm(&alarm->time);
283
284 if (err) {
285 dev_warn(&rtc->dev, "invalid alarm value: %d-%d-%d %d:%d:%d\n",
286 alarm->time.tm_year + 1900, alarm->time.tm_mon + 1,
287 alarm->time.tm_mday, alarm->time.tm_hour, alarm->time.tm_min,
288 alarm->time.tm_sec);
289 }
290
291 return err;
292 }
293
294 int rtc_read_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
295 {
296 int err;
297
298 err = mutex_lock_interruptible(&rtc->ops_lock);
299 if (err)
300 return err;
301 if (rtc->ops == NULL)
302 err = -ENODEV;
303 else if (!rtc->ops->read_alarm)
304 err = -EINVAL;
305 else {
306 memset(alarm, 0, sizeof(struct rtc_wkalrm));
307 alarm->enabled = rtc->aie_timer.enabled;
308 alarm->time = rtc_ktime_to_tm(rtc->aie_timer.node.expires);
309 }
310 mutex_unlock(&rtc->ops_lock);
311
312 return err;
313 }
314 EXPORT_SYMBOL_GPL(rtc_read_alarm);
315
316 static int __rtc_set_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
317 {
318 struct rtc_time tm;
319 time64_t now, scheduled;
320 int err;
321
322 err = rtc_valid_tm(&alarm->time);
323 if (err)
324 return err;
325 scheduled = rtc_tm_to_time64(&alarm->time);
326
327 /* Make sure we're not setting alarms in the past */
328 err = __rtc_read_time(rtc, &tm);
329 if (err)
330 return err;
331 now = rtc_tm_to_time64(&tm);
332 if (scheduled <= now)
333 return -ETIME;
334 /*
335 * XXX - We just checked to make sure the alarm time is not
336 * in the past, but there is still a race window where if
337 * the is alarm set for the next second and the second ticks
338 * over right here, before we set the alarm.
339 */
340
341 if (!rtc->ops)
342 err = -ENODEV;
343 else if (!rtc->ops->set_alarm)
344 err = -EINVAL;
345 else
346 err = rtc->ops->set_alarm(rtc->dev.parent, alarm);
347
348 return err;
349 }
350
351 int rtc_set_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
352 {
353 int err;
354
355 err = rtc_valid_tm(&alarm->time);
356 if (err != 0)
357 return err;
358
359 err = mutex_lock_interruptible(&rtc->ops_lock);
360 if (err)
361 return err;
362 if (rtc->aie_timer.enabled)
363 rtc_timer_remove(rtc, &rtc->aie_timer);
364
365 rtc->aie_timer.node.expires = rtc_tm_to_ktime(alarm->time);
366 rtc->aie_timer.period = ktime_set(0, 0);
367 if (alarm->enabled)
368 err = rtc_timer_enqueue(rtc, &rtc->aie_timer);
369
370 mutex_unlock(&rtc->ops_lock);
371 return err;
372 }
373 EXPORT_SYMBOL_GPL(rtc_set_alarm);
374
375 /* Called once per device from rtc_device_register */
376 int rtc_initialize_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
377 {
378 int err;
379 struct rtc_time now;
380
381 err = rtc_valid_tm(&alarm->time);
382 if (err != 0)
383 return err;
384
385 err = rtc_read_time(rtc, &now);
386 if (err)
387 return err;
388
389 err = mutex_lock_interruptible(&rtc->ops_lock);
390 if (err)
391 return err;
392
393 rtc->aie_timer.node.expires = rtc_tm_to_ktime(alarm->time);
394 rtc->aie_timer.period = ktime_set(0, 0);
395
396 /* Alarm has to be enabled & in the futrure for us to enqueue it */
397 if (alarm->enabled && (rtc_tm_to_ktime(now).tv64 <
398 rtc->aie_timer.node.expires.tv64)) {
399
400 rtc->aie_timer.enabled = 1;
401 timerqueue_add(&rtc->timerqueue, &rtc->aie_timer.node);
402 }
403 mutex_unlock(&rtc->ops_lock);
404 return err;
405 }
406 EXPORT_SYMBOL_GPL(rtc_initialize_alarm);
407
408
409
410 int rtc_alarm_irq_enable(struct rtc_device *rtc, unsigned int enabled)
411 {
412 int err = mutex_lock_interruptible(&rtc->ops_lock);
413 if (err)
414 return err;
415
416 if (rtc->aie_timer.enabled != enabled) {
417 if (enabled)
418 err = rtc_timer_enqueue(rtc, &rtc->aie_timer);
419 else
420 rtc_timer_remove(rtc, &rtc->aie_timer);
421 }
422
423 if (err)
424 /* nothing */;
425 else if (!rtc->ops)
426 err = -ENODEV;
427 else if (!rtc->ops->alarm_irq_enable)
428 err = -EINVAL;
429 else
430 err = rtc->ops->alarm_irq_enable(rtc->dev.parent, enabled);
431
432 mutex_unlock(&rtc->ops_lock);
433 return err;
434 }
435 EXPORT_SYMBOL_GPL(rtc_alarm_irq_enable);
436
437 int rtc_update_irq_enable(struct rtc_device *rtc, unsigned int enabled)
438 {
439 int err = mutex_lock_interruptible(&rtc->ops_lock);
440 if (err)
441 return err;
442
443 #ifdef CONFIG_RTC_INTF_DEV_UIE_EMUL
444 if (enabled == 0 && rtc->uie_irq_active) {
445 mutex_unlock(&rtc->ops_lock);
446 return rtc_dev_update_irq_enable_emul(rtc, 0);
447 }
448 #endif
449 /* make sure we're changing state */
450 if (rtc->uie_rtctimer.enabled == enabled)
451 goto out;
452
453 if (rtc->uie_unsupported) {
454 err = -EINVAL;
455 goto out;
456 }
457
458 if (enabled) {
459 struct rtc_time tm;
460 ktime_t now, onesec;
461
462 __rtc_read_time(rtc, &tm);
463 onesec = ktime_set(1, 0);
464 now = rtc_tm_to_ktime(tm);
465 rtc->uie_rtctimer.node.expires = ktime_add(now, onesec);
466 rtc->uie_rtctimer.period = ktime_set(1, 0);
467 err = rtc_timer_enqueue(rtc, &rtc->uie_rtctimer);
468 } else
469 rtc_timer_remove(rtc, &rtc->uie_rtctimer);
470
471 out:
472 mutex_unlock(&rtc->ops_lock);
473 #ifdef CONFIG_RTC_INTF_DEV_UIE_EMUL
474 /*
475 * Enable emulation if the driver did not provide
476 * the update_irq_enable function pointer or if returned
477 * -EINVAL to signal that it has been configured without
478 * interrupts or that are not available at the moment.
479 */
480 if (err == -EINVAL)
481 err = rtc_dev_update_irq_enable_emul(rtc, enabled);
482 #endif
483 return err;
484
485 }
486 EXPORT_SYMBOL_GPL(rtc_update_irq_enable);
487
488
489 /**
490 * rtc_handle_legacy_irq - AIE, UIE and PIE event hook
491 * @rtc: pointer to the rtc device
492 *
493 * This function is called when an AIE, UIE or PIE mode interrupt
494 * has occurred (or been emulated).
495 *
496 * Triggers the registered irq_task function callback.
497 */
498 void rtc_handle_legacy_irq(struct rtc_device *rtc, int num, int mode)
499 {
500 unsigned long flags;
501
502 /* mark one irq of the appropriate mode */
503 spin_lock_irqsave(&rtc->irq_lock, flags);
504 rtc->irq_data = (rtc->irq_data + (num << 8)) | (RTC_IRQF|mode);
505 spin_unlock_irqrestore(&rtc->irq_lock, flags);
506
507 /* call the task func */
508 spin_lock_irqsave(&rtc->irq_task_lock, flags);
509 if (rtc->irq_task)
510 rtc->irq_task->func(rtc->irq_task->private_data);
511 spin_unlock_irqrestore(&rtc->irq_task_lock, flags);
512
513 wake_up_interruptible(&rtc->irq_queue);
514 kill_fasync(&rtc->async_queue, SIGIO, POLL_IN);
515 }
516
517
518 /**
519 * rtc_aie_update_irq - AIE mode rtctimer hook
520 * @private: pointer to the rtc_device
521 *
522 * This functions is called when the aie_timer expires.
523 */
524 void rtc_aie_update_irq(void *private)
525 {
526 struct rtc_device *rtc = (struct rtc_device *)private;
527 rtc_handle_legacy_irq(rtc, 1, RTC_AF);
528 }
529
530
531 /**
532 * rtc_uie_update_irq - UIE mode rtctimer hook
533 * @private: pointer to the rtc_device
534 *
535 * This functions is called when the uie_timer expires.
536 */
537 void rtc_uie_update_irq(void *private)
538 {
539 struct rtc_device *rtc = (struct rtc_device *)private;
540 rtc_handle_legacy_irq(rtc, 1, RTC_UF);
541 }
542
543
544 /**
545 * rtc_pie_update_irq - PIE mode hrtimer hook
546 * @timer: pointer to the pie mode hrtimer
547 *
548 * This function is used to emulate PIE mode interrupts
549 * using an hrtimer. This function is called when the periodic
550 * hrtimer expires.
551 */
552 enum hrtimer_restart rtc_pie_update_irq(struct hrtimer *timer)
553 {
554 struct rtc_device *rtc;
555 ktime_t period;
556 int count;
557 rtc = container_of(timer, struct rtc_device, pie_timer);
558
559 period = ktime_set(0, NSEC_PER_SEC/rtc->irq_freq);
560 count = hrtimer_forward_now(timer, period);
561
562 rtc_handle_legacy_irq(rtc, count, RTC_PF);
563
564 return HRTIMER_RESTART;
565 }
566
567 /**
568 * rtc_update_irq - Triggered when a RTC interrupt occurs.
569 * @rtc: the rtc device
570 * @num: how many irqs are being reported (usually one)
571 * @events: mask of RTC_IRQF with one or more of RTC_PF, RTC_AF, RTC_UF
572 * Context: any
573 */
574 void rtc_update_irq(struct rtc_device *rtc,
575 unsigned long num, unsigned long events)
576 {
577 if (IS_ERR_OR_NULL(rtc))
578 return;
579
580 pm_stay_awake(rtc->dev.parent);
581 schedule_work(&rtc->irqwork);
582 }
583 EXPORT_SYMBOL_GPL(rtc_update_irq);
584
585 static int __rtc_match(struct device *dev, const void *data)
586 {
587 const char *name = data;
588
589 if (strcmp(dev_name(dev), name) == 0)
590 return 1;
591 return 0;
592 }
593
594 struct rtc_device *rtc_class_open(const char *name)
595 {
596 struct device *dev;
597 struct rtc_device *rtc = NULL;
598
599 dev = class_find_device(rtc_class, NULL, name, __rtc_match);
600 if (dev)
601 rtc = to_rtc_device(dev);
602
603 if (rtc) {
604 if (!try_module_get(rtc->owner)) {
605 put_device(dev);
606 rtc = NULL;
607 }
608 }
609
610 return rtc;
611 }
612 EXPORT_SYMBOL_GPL(rtc_class_open);
613
614 void rtc_class_close(struct rtc_device *rtc)
615 {
616 module_put(rtc->owner);
617 put_device(&rtc->dev);
618 }
619 EXPORT_SYMBOL_GPL(rtc_class_close);
620
621 int rtc_irq_register(struct rtc_device *rtc, struct rtc_task *task)
622 {
623 int retval = -EBUSY;
624
625 if (task == NULL || task->func == NULL)
626 return -EINVAL;
627
628 /* Cannot register while the char dev is in use */
629 if (test_and_set_bit_lock(RTC_DEV_BUSY, &rtc->flags))
630 return -EBUSY;
631
632 spin_lock_irq(&rtc->irq_task_lock);
633 if (rtc->irq_task == NULL) {
634 rtc->irq_task = task;
635 retval = 0;
636 }
637 spin_unlock_irq(&rtc->irq_task_lock);
638
639 clear_bit_unlock(RTC_DEV_BUSY, &rtc->flags);
640
641 return retval;
642 }
643 EXPORT_SYMBOL_GPL(rtc_irq_register);
644
645 void rtc_irq_unregister(struct rtc_device *rtc, struct rtc_task *task)
646 {
647 spin_lock_irq(&rtc->irq_task_lock);
648 if (rtc->irq_task == task)
649 rtc->irq_task = NULL;
650 spin_unlock_irq(&rtc->irq_task_lock);
651 }
652 EXPORT_SYMBOL_GPL(rtc_irq_unregister);
653
654 static int rtc_update_hrtimer(struct rtc_device *rtc, int enabled)
655 {
656 /*
657 * We always cancel the timer here first, because otherwise
658 * we could run into BUG_ON(timer->state != HRTIMER_STATE_CALLBACK);
659 * when we manage to start the timer before the callback
660 * returns HRTIMER_RESTART.
661 *
662 * We cannot use hrtimer_cancel() here as a running callback
663 * could be blocked on rtc->irq_task_lock and hrtimer_cancel()
664 * would spin forever.
665 */
666 if (hrtimer_try_to_cancel(&rtc->pie_timer) < 0)
667 return -1;
668
669 if (enabled) {
670 ktime_t period = ktime_set(0, NSEC_PER_SEC / rtc->irq_freq);
671
672 hrtimer_start(&rtc->pie_timer, period, HRTIMER_MODE_REL);
673 }
674 return 0;
675 }
676
677 /**
678 * rtc_irq_set_state - enable/disable 2^N Hz periodic IRQs
679 * @rtc: the rtc device
680 * @task: currently registered with rtc_irq_register()
681 * @enabled: true to enable periodic IRQs
682 * Context: any
683 *
684 * Note that rtc_irq_set_freq() should previously have been used to
685 * specify the desired frequency of periodic IRQ task->func() callbacks.
686 */
687 int rtc_irq_set_state(struct rtc_device *rtc, struct rtc_task *task, int enabled)
688 {
689 int err = 0;
690 unsigned long flags;
691
692 retry:
693 spin_lock_irqsave(&rtc->irq_task_lock, flags);
694 if (rtc->irq_task != NULL && task == NULL)
695 err = -EBUSY;
696 else if (rtc->irq_task != task)
697 err = -EACCES;
698 else {
699 if (rtc_update_hrtimer(rtc, enabled) < 0) {
700 spin_unlock_irqrestore(&rtc->irq_task_lock, flags);
701 cpu_relax();
702 goto retry;
703 }
704 rtc->pie_enabled = enabled;
705 }
706 spin_unlock_irqrestore(&rtc->irq_task_lock, flags);
707 return err;
708 }
709 EXPORT_SYMBOL_GPL(rtc_irq_set_state);
710
711 /**
712 * rtc_irq_set_freq - set 2^N Hz periodic IRQ frequency for IRQ
713 * @rtc: the rtc device
714 * @task: currently registered with rtc_irq_register()
715 * @freq: positive frequency with which task->func() will be called
716 * Context: any
717 *
718 * Note that rtc_irq_set_state() is used to enable or disable the
719 * periodic IRQs.
720 */
721 int rtc_irq_set_freq(struct rtc_device *rtc, struct rtc_task *task, int freq)
722 {
723 int err = 0;
724 unsigned long flags;
725
726 if (freq <= 0 || freq > RTC_MAX_FREQ)
727 return -EINVAL;
728 retry:
729 spin_lock_irqsave(&rtc->irq_task_lock, flags);
730 if (rtc->irq_task != NULL && task == NULL)
731 err = -EBUSY;
732 else if (rtc->irq_task != task)
733 err = -EACCES;
734 else {
735 rtc->irq_freq = freq;
736 if (rtc->pie_enabled && rtc_update_hrtimer(rtc, 1) < 0) {
737 spin_unlock_irqrestore(&rtc->irq_task_lock, flags);
738 cpu_relax();
739 goto retry;
740 }
741 }
742 spin_unlock_irqrestore(&rtc->irq_task_lock, flags);
743 return err;
744 }
745 EXPORT_SYMBOL_GPL(rtc_irq_set_freq);
746
747 /**
748 * rtc_timer_enqueue - Adds a rtc_timer to the rtc_device timerqueue
749 * @rtc rtc device
750 * @timer timer being added.
751 *
752 * Enqueues a timer onto the rtc devices timerqueue and sets
753 * the next alarm event appropriately.
754 *
755 * Sets the enabled bit on the added timer.
756 *
757 * Must hold ops_lock for proper serialization of timerqueue
758 */
759 static int rtc_timer_enqueue(struct rtc_device *rtc, struct rtc_timer *timer)
760 {
761 timer->enabled = 1;
762 timerqueue_add(&rtc->timerqueue, &timer->node);
763 if (&timer->node == timerqueue_getnext(&rtc->timerqueue)) {
764 struct rtc_wkalrm alarm;
765 int err;
766 alarm.time = rtc_ktime_to_tm(timer->node.expires);
767 alarm.enabled = 1;
768 err = __rtc_set_alarm(rtc, &alarm);
769 if (err == -ETIME) {
770 pm_stay_awake(rtc->dev.parent);
771 schedule_work(&rtc->irqwork);
772 } else if (err) {
773 timerqueue_del(&rtc->timerqueue, &timer->node);
774 timer->enabled = 0;
775 return err;
776 }
777 }
778 return 0;
779 }
780
781 static void rtc_alarm_disable(struct rtc_device *rtc)
782 {
783 if (!rtc->ops || !rtc->ops->alarm_irq_enable)
784 return;
785
786 rtc->ops->alarm_irq_enable(rtc->dev.parent, false);
787 }
788
789 /**
790 * rtc_timer_remove - Removes a rtc_timer from the rtc_device timerqueue
791 * @rtc rtc device
792 * @timer timer being removed.
793 *
794 * Removes a timer onto the rtc devices timerqueue and sets
795 * the next alarm event appropriately.
796 *
797 * Clears the enabled bit on the removed timer.
798 *
799 * Must hold ops_lock for proper serialization of timerqueue
800 */
801 static void rtc_timer_remove(struct rtc_device *rtc, struct rtc_timer *timer)
802 {
803 struct timerqueue_node *next = timerqueue_getnext(&rtc->timerqueue);
804 timerqueue_del(&rtc->timerqueue, &timer->node);
805 timer->enabled = 0;
806 if (next == &timer->node) {
807 struct rtc_wkalrm alarm;
808 int err;
809 next = timerqueue_getnext(&rtc->timerqueue);
810 if (!next) {
811 rtc_alarm_disable(rtc);
812 return;
813 }
814 alarm.time = rtc_ktime_to_tm(next->expires);
815 alarm.enabled = 1;
816 err = __rtc_set_alarm(rtc, &alarm);
817 if (err == -ETIME) {
818 pm_stay_awake(rtc->dev.parent);
819 schedule_work(&rtc->irqwork);
820 }
821 }
822 }
823
824 /**
825 * rtc_timer_do_work - Expires rtc timers
826 * @rtc rtc device
827 * @timer timer being removed.
828 *
829 * Expires rtc timers. Reprograms next alarm event if needed.
830 * Called via worktask.
831 *
832 * Serializes access to timerqueue via ops_lock mutex
833 */
834 void rtc_timer_do_work(struct work_struct *work)
835 {
836 struct rtc_timer *timer;
837 struct timerqueue_node *next;
838 ktime_t now;
839 struct rtc_time tm;
840
841 struct rtc_device *rtc =
842 container_of(work, struct rtc_device, irqwork);
843
844 mutex_lock(&rtc->ops_lock);
845 again:
846 __rtc_read_time(rtc, &tm);
847 now = rtc_tm_to_ktime(tm);
848 while ((next = timerqueue_getnext(&rtc->timerqueue))) {
849 if (next->expires.tv64 > now.tv64)
850 break;
851
852 /* expire timer */
853 timer = container_of(next, struct rtc_timer, node);
854 timerqueue_del(&rtc->timerqueue, &timer->node);
855 timer->enabled = 0;
856 if (timer->task.func)
857 timer->task.func(timer->task.private_data);
858
859 /* Re-add/fwd periodic timers */
860 if (ktime_to_ns(timer->period)) {
861 timer->node.expires = ktime_add(timer->node.expires,
862 timer->period);
863 timer->enabled = 1;
864 timerqueue_add(&rtc->timerqueue, &timer->node);
865 }
866 }
867
868 /* Set next alarm */
869 if (next) {
870 struct rtc_wkalrm alarm;
871 int err;
872 int retry = 3;
873
874 alarm.time = rtc_ktime_to_tm(next->expires);
875 alarm.enabled = 1;
876 reprogram:
877 err = __rtc_set_alarm(rtc, &alarm);
878 if (err == -ETIME)
879 goto again;
880 else if (err) {
881 if (retry-- > 0)
882 goto reprogram;
883
884 timer = container_of(next, struct rtc_timer, node);
885 timerqueue_del(&rtc->timerqueue, &timer->node);
886 timer->enabled = 0;
887 dev_err(&rtc->dev, "__rtc_set_alarm: err=%d\n", err);
888 goto again;
889 }
890 } else
891 rtc_alarm_disable(rtc);
892
893 pm_relax(rtc->dev.parent);
894 mutex_unlock(&rtc->ops_lock);
895 }
896
897
898 /* rtc_timer_init - Initializes an rtc_timer
899 * @timer: timer to be intiialized
900 * @f: function pointer to be called when timer fires
901 * @data: private data passed to function pointer
902 *
903 * Kernel interface to initializing an rtc_timer.
904 */
905 void rtc_timer_init(struct rtc_timer *timer, void (*f)(void *p), void *data)
906 {
907 timerqueue_init(&timer->node);
908 timer->enabled = 0;
909 timer->task.func = f;
910 timer->task.private_data = data;
911 }
912
913 /* rtc_timer_start - Sets an rtc_timer to fire in the future
914 * @ rtc: rtc device to be used
915 * @ timer: timer being set
916 * @ expires: time at which to expire the timer
917 * @ period: period that the timer will recur
918 *
919 * Kernel interface to set an rtc_timer
920 */
921 int rtc_timer_start(struct rtc_device *rtc, struct rtc_timer *timer,
922 ktime_t expires, ktime_t period)
923 {
924 int ret = 0;
925 mutex_lock(&rtc->ops_lock);
926 if (timer->enabled)
927 rtc_timer_remove(rtc, timer);
928
929 timer->node.expires = expires;
930 timer->period = period;
931
932 ret = rtc_timer_enqueue(rtc, timer);
933
934 mutex_unlock(&rtc->ops_lock);
935 return ret;
936 }
937
938 /* rtc_timer_cancel - Stops an rtc_timer
939 * @ rtc: rtc device to be used
940 * @ timer: timer being set
941 *
942 * Kernel interface to cancel an rtc_timer
943 */
944 void rtc_timer_cancel(struct rtc_device *rtc, struct rtc_timer *timer)
945 {
946 mutex_lock(&rtc->ops_lock);
947 if (timer->enabled)
948 rtc_timer_remove(rtc, timer);
949 mutex_unlock(&rtc->ops_lock);
950 }
951
952 /**
953 * rtc_read_offset - Read the amount of rtc offset in parts per billion
954 * @ rtc: rtc device to be used
955 * @ offset: the offset in parts per billion
956 *
957 * see below for details.
958 *
959 * Kernel interface to read rtc clock offset
960 * Returns 0 on success, or a negative number on error.
961 * If read_offset() is not implemented for the rtc, return -EINVAL
962 */
963 int rtc_read_offset(struct rtc_device *rtc, long *offset)
964 {
965 int ret;
966
967 if (!rtc->ops)
968 return -ENODEV;
969
970 if (!rtc->ops->read_offset)
971 return -EINVAL;
972
973 mutex_lock(&rtc->ops_lock);
974 ret = rtc->ops->read_offset(rtc->dev.parent, offset);
975 mutex_unlock(&rtc->ops_lock);
976 return ret;
977 }
978
979 /**
980 * rtc_set_offset - Adjusts the duration of the average second
981 * @ rtc: rtc device to be used
982 * @ offset: the offset in parts per billion
983 *
984 * Some rtc's allow an adjustment to the average duration of a second
985 * to compensate for differences in the actual clock rate due to temperature,
986 * the crystal, capacitor, etc.
987 *
988 * Kernel interface to adjust an rtc clock offset.
989 * Return 0 on success, or a negative number on error.
990 * If the rtc offset is not setable (or not implemented), return -EINVAL
991 */
992 int rtc_set_offset(struct rtc_device *rtc, long offset)
993 {
994 int ret;
995
996 if (!rtc->ops)
997 return -ENODEV;
998
999 if (!rtc->ops->set_offset)
1000 return -EINVAL;
1001
1002 mutex_lock(&rtc->ops_lock);
1003 ret = rtc->ops->set_offset(rtc->dev.parent, offset);
1004 mutex_unlock(&rtc->ops_lock);
1005 return ret;
1006 }
This page took 0.072267 seconds and 6 git commands to generate.