Merge tag 'ktest-v3.6' of git://git.kernel.org/pub/scm/linux/kernel/git/rostedt/linux...
[deliverable/linux.git] / drivers / rtc / rtc-mxc.c
1 /*
2 * Copyright 2004-2008 Freescale Semiconductor, Inc. All Rights Reserved.
3 *
4 * The code contained herein is licensed under the GNU General Public
5 * License. You may obtain a copy of the GNU General Public License
6 * Version 2 or later at the following locations:
7 *
8 * http://www.opensource.org/licenses/gpl-license.html
9 * http://www.gnu.org/copyleft/gpl.html
10 */
11
12 #include <linux/io.h>
13 #include <linux/rtc.h>
14 #include <linux/module.h>
15 #include <linux/slab.h>
16 #include <linux/interrupt.h>
17 #include <linux/platform_device.h>
18 #include <linux/clk.h>
19
20 #include <mach/hardware.h>
21
22 #define RTC_INPUT_CLK_32768HZ (0x00 << 5)
23 #define RTC_INPUT_CLK_32000HZ (0x01 << 5)
24 #define RTC_INPUT_CLK_38400HZ (0x02 << 5)
25
26 #define RTC_SW_BIT (1 << 0)
27 #define RTC_ALM_BIT (1 << 2)
28 #define RTC_1HZ_BIT (1 << 4)
29 #define RTC_2HZ_BIT (1 << 7)
30 #define RTC_SAM0_BIT (1 << 8)
31 #define RTC_SAM1_BIT (1 << 9)
32 #define RTC_SAM2_BIT (1 << 10)
33 #define RTC_SAM3_BIT (1 << 11)
34 #define RTC_SAM4_BIT (1 << 12)
35 #define RTC_SAM5_BIT (1 << 13)
36 #define RTC_SAM6_BIT (1 << 14)
37 #define RTC_SAM7_BIT (1 << 15)
38 #define PIT_ALL_ON (RTC_2HZ_BIT | RTC_SAM0_BIT | RTC_SAM1_BIT | \
39 RTC_SAM2_BIT | RTC_SAM3_BIT | RTC_SAM4_BIT | \
40 RTC_SAM5_BIT | RTC_SAM6_BIT | RTC_SAM7_BIT)
41
42 #define RTC_ENABLE_BIT (1 << 7)
43
44 #define MAX_PIE_NUM 9
45 #define MAX_PIE_FREQ 512
46 static const u32 PIE_BIT_DEF[MAX_PIE_NUM][2] = {
47 { 2, RTC_2HZ_BIT },
48 { 4, RTC_SAM0_BIT },
49 { 8, RTC_SAM1_BIT },
50 { 16, RTC_SAM2_BIT },
51 { 32, RTC_SAM3_BIT },
52 { 64, RTC_SAM4_BIT },
53 { 128, RTC_SAM5_BIT },
54 { 256, RTC_SAM6_BIT },
55 { MAX_PIE_FREQ, RTC_SAM7_BIT },
56 };
57
58 #define MXC_RTC_TIME 0
59 #define MXC_RTC_ALARM 1
60
61 #define RTC_HOURMIN 0x00 /* 32bit rtc hour/min counter reg */
62 #define RTC_SECOND 0x04 /* 32bit rtc seconds counter reg */
63 #define RTC_ALRM_HM 0x08 /* 32bit rtc alarm hour/min reg */
64 #define RTC_ALRM_SEC 0x0C /* 32bit rtc alarm seconds reg */
65 #define RTC_RTCCTL 0x10 /* 32bit rtc control reg */
66 #define RTC_RTCISR 0x14 /* 32bit rtc interrupt status reg */
67 #define RTC_RTCIENR 0x18 /* 32bit rtc interrupt enable reg */
68 #define RTC_STPWCH 0x1C /* 32bit rtc stopwatch min reg */
69 #define RTC_DAYR 0x20 /* 32bit rtc days counter reg */
70 #define RTC_DAYALARM 0x24 /* 32bit rtc day alarm reg */
71 #define RTC_TEST1 0x28 /* 32bit rtc test reg 1 */
72 #define RTC_TEST2 0x2C /* 32bit rtc test reg 2 */
73 #define RTC_TEST3 0x30 /* 32bit rtc test reg 3 */
74
75 struct rtc_plat_data {
76 struct rtc_device *rtc;
77 void __iomem *ioaddr;
78 int irq;
79 struct clk *clk;
80 struct rtc_time g_rtc_alarm;
81 };
82
83 /*
84 * This function is used to obtain the RTC time or the alarm value in
85 * second.
86 */
87 static u32 get_alarm_or_time(struct device *dev, int time_alarm)
88 {
89 struct platform_device *pdev = to_platform_device(dev);
90 struct rtc_plat_data *pdata = platform_get_drvdata(pdev);
91 void __iomem *ioaddr = pdata->ioaddr;
92 u32 day = 0, hr = 0, min = 0, sec = 0, hr_min = 0;
93
94 switch (time_alarm) {
95 case MXC_RTC_TIME:
96 day = readw(ioaddr + RTC_DAYR);
97 hr_min = readw(ioaddr + RTC_HOURMIN);
98 sec = readw(ioaddr + RTC_SECOND);
99 break;
100 case MXC_RTC_ALARM:
101 day = readw(ioaddr + RTC_DAYALARM);
102 hr_min = readw(ioaddr + RTC_ALRM_HM) & 0xffff;
103 sec = readw(ioaddr + RTC_ALRM_SEC);
104 break;
105 }
106
107 hr = hr_min >> 8;
108 min = hr_min & 0xff;
109
110 return (((day * 24 + hr) * 60) + min) * 60 + sec;
111 }
112
113 /*
114 * This function sets the RTC alarm value or the time value.
115 */
116 static void set_alarm_or_time(struct device *dev, int time_alarm, u32 time)
117 {
118 u32 day, hr, min, sec, temp;
119 struct platform_device *pdev = to_platform_device(dev);
120 struct rtc_plat_data *pdata = platform_get_drvdata(pdev);
121 void __iomem *ioaddr = pdata->ioaddr;
122
123 day = time / 86400;
124 time -= day * 86400;
125
126 /* time is within a day now */
127 hr = time / 3600;
128 time -= hr * 3600;
129
130 /* time is within an hour now */
131 min = time / 60;
132 sec = time - min * 60;
133
134 temp = (hr << 8) + min;
135
136 switch (time_alarm) {
137 case MXC_RTC_TIME:
138 writew(day, ioaddr + RTC_DAYR);
139 writew(sec, ioaddr + RTC_SECOND);
140 writew(temp, ioaddr + RTC_HOURMIN);
141 break;
142 case MXC_RTC_ALARM:
143 writew(day, ioaddr + RTC_DAYALARM);
144 writew(sec, ioaddr + RTC_ALRM_SEC);
145 writew(temp, ioaddr + RTC_ALRM_HM);
146 break;
147 }
148 }
149
150 /*
151 * This function updates the RTC alarm registers and then clears all the
152 * interrupt status bits.
153 */
154 static int rtc_update_alarm(struct device *dev, struct rtc_time *alrm)
155 {
156 struct rtc_time alarm_tm, now_tm;
157 unsigned long now, time;
158 struct platform_device *pdev = to_platform_device(dev);
159 struct rtc_plat_data *pdata = platform_get_drvdata(pdev);
160 void __iomem *ioaddr = pdata->ioaddr;
161
162 now = get_alarm_or_time(dev, MXC_RTC_TIME);
163 rtc_time_to_tm(now, &now_tm);
164 alarm_tm.tm_year = now_tm.tm_year;
165 alarm_tm.tm_mon = now_tm.tm_mon;
166 alarm_tm.tm_mday = now_tm.tm_mday;
167 alarm_tm.tm_hour = alrm->tm_hour;
168 alarm_tm.tm_min = alrm->tm_min;
169 alarm_tm.tm_sec = alrm->tm_sec;
170 rtc_tm_to_time(&alarm_tm, &time);
171
172 /* clear all the interrupt status bits */
173 writew(readw(ioaddr + RTC_RTCISR), ioaddr + RTC_RTCISR);
174 set_alarm_or_time(dev, MXC_RTC_ALARM, time);
175
176 return 0;
177 }
178
179 static void mxc_rtc_irq_enable(struct device *dev, unsigned int bit,
180 unsigned int enabled)
181 {
182 struct platform_device *pdev = to_platform_device(dev);
183 struct rtc_plat_data *pdata = platform_get_drvdata(pdev);
184 void __iomem *ioaddr = pdata->ioaddr;
185 u32 reg;
186
187 spin_lock_irq(&pdata->rtc->irq_lock);
188 reg = readw(ioaddr + RTC_RTCIENR);
189
190 if (enabled)
191 reg |= bit;
192 else
193 reg &= ~bit;
194
195 writew(reg, ioaddr + RTC_RTCIENR);
196 spin_unlock_irq(&pdata->rtc->irq_lock);
197 }
198
199 /* This function is the RTC interrupt service routine. */
200 static irqreturn_t mxc_rtc_interrupt(int irq, void *dev_id)
201 {
202 struct platform_device *pdev = dev_id;
203 struct rtc_plat_data *pdata = platform_get_drvdata(pdev);
204 void __iomem *ioaddr = pdata->ioaddr;
205 unsigned long flags;
206 u32 status;
207 u32 events = 0;
208
209 spin_lock_irqsave(&pdata->rtc->irq_lock, flags);
210 status = readw(ioaddr + RTC_RTCISR) & readw(ioaddr + RTC_RTCIENR);
211 /* clear interrupt sources */
212 writew(status, ioaddr + RTC_RTCISR);
213
214 /* update irq data & counter */
215 if (status & RTC_ALM_BIT) {
216 events |= (RTC_AF | RTC_IRQF);
217 /* RTC alarm should be one-shot */
218 mxc_rtc_irq_enable(&pdev->dev, RTC_ALM_BIT, 0);
219 }
220
221 if (status & RTC_1HZ_BIT)
222 events |= (RTC_UF | RTC_IRQF);
223
224 if (status & PIT_ALL_ON)
225 events |= (RTC_PF | RTC_IRQF);
226
227 rtc_update_irq(pdata->rtc, 1, events);
228 spin_unlock_irqrestore(&pdata->rtc->irq_lock, flags);
229
230 return IRQ_HANDLED;
231 }
232
233 /*
234 * Clear all interrupts and release the IRQ
235 */
236 static void mxc_rtc_release(struct device *dev)
237 {
238 struct platform_device *pdev = to_platform_device(dev);
239 struct rtc_plat_data *pdata = platform_get_drvdata(pdev);
240 void __iomem *ioaddr = pdata->ioaddr;
241
242 spin_lock_irq(&pdata->rtc->irq_lock);
243
244 /* Disable all rtc interrupts */
245 writew(0, ioaddr + RTC_RTCIENR);
246
247 /* Clear all interrupt status */
248 writew(0xffffffff, ioaddr + RTC_RTCISR);
249
250 spin_unlock_irq(&pdata->rtc->irq_lock);
251 }
252
253 static int mxc_rtc_alarm_irq_enable(struct device *dev, unsigned int enabled)
254 {
255 mxc_rtc_irq_enable(dev, RTC_ALM_BIT, enabled);
256 return 0;
257 }
258
259 /*
260 * This function reads the current RTC time into tm in Gregorian date.
261 */
262 static int mxc_rtc_read_time(struct device *dev, struct rtc_time *tm)
263 {
264 u32 val;
265
266 /* Avoid roll-over from reading the different registers */
267 do {
268 val = get_alarm_or_time(dev, MXC_RTC_TIME);
269 } while (val != get_alarm_or_time(dev, MXC_RTC_TIME));
270
271 rtc_time_to_tm(val, tm);
272
273 return 0;
274 }
275
276 /*
277 * This function sets the internal RTC time based on tm in Gregorian date.
278 */
279 static int mxc_rtc_set_mmss(struct device *dev, unsigned long time)
280 {
281 /*
282 * TTC_DAYR register is 9-bit in MX1 SoC, save time and day of year only
283 */
284 if (cpu_is_mx1()) {
285 struct rtc_time tm;
286
287 rtc_time_to_tm(time, &tm);
288 tm.tm_year = 70;
289 rtc_tm_to_time(&tm, &time);
290 }
291
292 /* Avoid roll-over from reading the different registers */
293 do {
294 set_alarm_or_time(dev, MXC_RTC_TIME, time);
295 } while (time != get_alarm_or_time(dev, MXC_RTC_TIME));
296
297 return 0;
298 }
299
300 /*
301 * This function reads the current alarm value into the passed in 'alrm'
302 * argument. It updates the alrm's pending field value based on the whether
303 * an alarm interrupt occurs or not.
304 */
305 static int mxc_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *alrm)
306 {
307 struct platform_device *pdev = to_platform_device(dev);
308 struct rtc_plat_data *pdata = platform_get_drvdata(pdev);
309 void __iomem *ioaddr = pdata->ioaddr;
310
311 rtc_time_to_tm(get_alarm_or_time(dev, MXC_RTC_ALARM), &alrm->time);
312 alrm->pending = ((readw(ioaddr + RTC_RTCISR) & RTC_ALM_BIT)) ? 1 : 0;
313
314 return 0;
315 }
316
317 /*
318 * This function sets the RTC alarm based on passed in alrm.
319 */
320 static int mxc_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *alrm)
321 {
322 struct platform_device *pdev = to_platform_device(dev);
323 struct rtc_plat_data *pdata = platform_get_drvdata(pdev);
324 int ret;
325
326 ret = rtc_update_alarm(dev, &alrm->time);
327 if (ret)
328 return ret;
329
330 memcpy(&pdata->g_rtc_alarm, &alrm->time, sizeof(struct rtc_time));
331 mxc_rtc_irq_enable(dev, RTC_ALM_BIT, alrm->enabled);
332
333 return 0;
334 }
335
336 /* RTC layer */
337 static struct rtc_class_ops mxc_rtc_ops = {
338 .release = mxc_rtc_release,
339 .read_time = mxc_rtc_read_time,
340 .set_mmss = mxc_rtc_set_mmss,
341 .read_alarm = mxc_rtc_read_alarm,
342 .set_alarm = mxc_rtc_set_alarm,
343 .alarm_irq_enable = mxc_rtc_alarm_irq_enable,
344 };
345
346 static int __init mxc_rtc_probe(struct platform_device *pdev)
347 {
348 struct resource *res;
349 struct rtc_device *rtc;
350 struct rtc_plat_data *pdata = NULL;
351 u32 reg;
352 unsigned long rate;
353 int ret;
354
355 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
356 if (!res)
357 return -ENODEV;
358
359 pdata = devm_kzalloc(&pdev->dev, sizeof(*pdata), GFP_KERNEL);
360 if (!pdata)
361 return -ENOMEM;
362
363 if (!devm_request_mem_region(&pdev->dev, res->start,
364 resource_size(res), pdev->name))
365 return -EBUSY;
366
367 pdata->ioaddr = devm_ioremap(&pdev->dev, res->start,
368 resource_size(res));
369
370 pdata->clk = clk_get(&pdev->dev, "rtc");
371 if (IS_ERR(pdata->clk)) {
372 dev_err(&pdev->dev, "unable to get clock!\n");
373 ret = PTR_ERR(pdata->clk);
374 goto exit_free_pdata;
375 }
376
377 clk_enable(pdata->clk);
378 rate = clk_get_rate(pdata->clk);
379
380 if (rate == 32768)
381 reg = RTC_INPUT_CLK_32768HZ;
382 else if (rate == 32000)
383 reg = RTC_INPUT_CLK_32000HZ;
384 else if (rate == 38400)
385 reg = RTC_INPUT_CLK_38400HZ;
386 else {
387 dev_err(&pdev->dev, "rtc clock is not valid (%lu)\n", rate);
388 ret = -EINVAL;
389 goto exit_put_clk;
390 }
391
392 reg |= RTC_ENABLE_BIT;
393 writew(reg, (pdata->ioaddr + RTC_RTCCTL));
394 if (((readw(pdata->ioaddr + RTC_RTCCTL)) & RTC_ENABLE_BIT) == 0) {
395 dev_err(&pdev->dev, "hardware module can't be enabled!\n");
396 ret = -EIO;
397 goto exit_put_clk;
398 }
399
400 platform_set_drvdata(pdev, pdata);
401
402 /* Configure and enable the RTC */
403 pdata->irq = platform_get_irq(pdev, 0);
404
405 if (pdata->irq >= 0 &&
406 devm_request_irq(&pdev->dev, pdata->irq, mxc_rtc_interrupt,
407 IRQF_SHARED, pdev->name, pdev) < 0) {
408 dev_warn(&pdev->dev, "interrupt not available.\n");
409 pdata->irq = -1;
410 }
411
412 if (pdata->irq >=0)
413 device_init_wakeup(&pdev->dev, 1);
414
415 rtc = rtc_device_register(pdev->name, &pdev->dev, &mxc_rtc_ops,
416 THIS_MODULE);
417 if (IS_ERR(rtc)) {
418 ret = PTR_ERR(rtc);
419 goto exit_clr_drvdata;
420 }
421
422 pdata->rtc = rtc;
423
424 return 0;
425
426 exit_clr_drvdata:
427 platform_set_drvdata(pdev, NULL);
428 exit_put_clk:
429 clk_disable(pdata->clk);
430 clk_put(pdata->clk);
431
432 exit_free_pdata:
433
434 return ret;
435 }
436
437 static int __exit mxc_rtc_remove(struct platform_device *pdev)
438 {
439 struct rtc_plat_data *pdata = platform_get_drvdata(pdev);
440
441 rtc_device_unregister(pdata->rtc);
442
443 clk_disable(pdata->clk);
444 clk_put(pdata->clk);
445 platform_set_drvdata(pdev, NULL);
446
447 return 0;
448 }
449
450 #ifdef CONFIG_PM
451 static int mxc_rtc_suspend(struct device *dev)
452 {
453 struct rtc_plat_data *pdata = dev_get_drvdata(dev);
454
455 if (device_may_wakeup(dev))
456 enable_irq_wake(pdata->irq);
457
458 return 0;
459 }
460
461 static int mxc_rtc_resume(struct device *dev)
462 {
463 struct rtc_plat_data *pdata = dev_get_drvdata(dev);
464
465 if (device_may_wakeup(dev))
466 disable_irq_wake(pdata->irq);
467
468 return 0;
469 }
470
471 static struct dev_pm_ops mxc_rtc_pm_ops = {
472 .suspend = mxc_rtc_suspend,
473 .resume = mxc_rtc_resume,
474 };
475 #endif
476
477 static struct platform_driver mxc_rtc_driver = {
478 .driver = {
479 .name = "mxc_rtc",
480 #ifdef CONFIG_PM
481 .pm = &mxc_rtc_pm_ops,
482 #endif
483 .owner = THIS_MODULE,
484 },
485 .remove = __exit_p(mxc_rtc_remove),
486 };
487
488 static int __init mxc_rtc_init(void)
489 {
490 return platform_driver_probe(&mxc_rtc_driver, mxc_rtc_probe);
491 }
492
493 static void __exit mxc_rtc_exit(void)
494 {
495 platform_driver_unregister(&mxc_rtc_driver);
496 }
497
498 module_init(mxc_rtc_init);
499 module_exit(mxc_rtc_exit);
500
501 MODULE_AUTHOR("Daniel Mack <daniel@caiaq.de>");
502 MODULE_DESCRIPTION("RTC driver for Freescale MXC");
503 MODULE_LICENSE("GPL");
504
This page took 0.041452 seconds and 5 git commands to generate.