Merge tag 'metag-for-v4.8' of git://git.kernel.org/pub/scm/linux/kernel/git/jhogan...
[deliverable/linux.git] / drivers / s390 / crypto / ap_bus.c
1 /*
2 * Copyright IBM Corp. 2006, 2012
3 * Author(s): Cornelia Huck <cornelia.huck@de.ibm.com>
4 * Martin Schwidefsky <schwidefsky@de.ibm.com>
5 * Ralph Wuerthner <rwuerthn@de.ibm.com>
6 * Felix Beck <felix.beck@de.ibm.com>
7 * Holger Dengler <hd@linux.vnet.ibm.com>
8 *
9 * Adjunct processor bus.
10 *
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; either version 2, or (at your option)
14 * any later version.
15 *
16 * This program is distributed in the hope that it will be useful,
17 * but WITHOUT ANY WARRANTY; without even the implied warranty of
18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 * GNU General Public License for more details.
20 *
21 * You should have received a copy of the GNU General Public License
22 * along with this program; if not, write to the Free Software
23 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
24 */
25
26 #define KMSG_COMPONENT "ap"
27 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
28
29 #include <linux/kernel_stat.h>
30 #include <linux/module.h>
31 #include <linux/init.h>
32 #include <linux/delay.h>
33 #include <linux/err.h>
34 #include <linux/interrupt.h>
35 #include <linux/workqueue.h>
36 #include <linux/slab.h>
37 #include <linux/notifier.h>
38 #include <linux/kthread.h>
39 #include <linux/mutex.h>
40 #include <linux/suspend.h>
41 #include <asm/reset.h>
42 #include <asm/airq.h>
43 #include <linux/atomic.h>
44 #include <asm/isc.h>
45 #include <linux/hrtimer.h>
46 #include <linux/ktime.h>
47 #include <asm/facility.h>
48 #include <linux/crypto.h>
49
50 #include "ap_bus.h"
51
52 /*
53 * Module description.
54 */
55 MODULE_AUTHOR("IBM Corporation");
56 MODULE_DESCRIPTION("Adjunct Processor Bus driver, " \
57 "Copyright IBM Corp. 2006, 2012");
58 MODULE_LICENSE("GPL");
59 MODULE_ALIAS_CRYPTO("z90crypt");
60
61 /*
62 * Module parameter
63 */
64 int ap_domain_index = -1; /* Adjunct Processor Domain Index */
65 module_param_named(domain, ap_domain_index, int, S_IRUSR|S_IRGRP);
66 MODULE_PARM_DESC(domain, "domain index for ap devices");
67 EXPORT_SYMBOL(ap_domain_index);
68
69 static int ap_thread_flag = 0;
70 module_param_named(poll_thread, ap_thread_flag, int, S_IRUSR|S_IRGRP);
71 MODULE_PARM_DESC(poll_thread, "Turn on/off poll thread, default is 0 (off).");
72
73 static struct device *ap_root_device = NULL;
74 static struct ap_config_info *ap_configuration;
75 static DEFINE_SPINLOCK(ap_device_list_lock);
76 static LIST_HEAD(ap_device_list);
77 static bool initialised;
78
79 /*
80 * Workqueue timer for bus rescan.
81 */
82 static struct timer_list ap_config_timer;
83 static int ap_config_time = AP_CONFIG_TIME;
84 static void ap_scan_bus(struct work_struct *);
85 static DECLARE_WORK(ap_scan_work, ap_scan_bus);
86
87 /*
88 * Tasklet & timer for AP request polling and interrupts
89 */
90 static void ap_tasklet_fn(unsigned long);
91 static DECLARE_TASKLET(ap_tasklet, ap_tasklet_fn, 0);
92 static atomic_t ap_poll_requests = ATOMIC_INIT(0);
93 static DECLARE_WAIT_QUEUE_HEAD(ap_poll_wait);
94 static struct task_struct *ap_poll_kthread = NULL;
95 static DEFINE_MUTEX(ap_poll_thread_mutex);
96 static DEFINE_SPINLOCK(ap_poll_timer_lock);
97 static struct hrtimer ap_poll_timer;
98 /* In LPAR poll with 4kHz frequency. Poll every 250000 nanoseconds.
99 * If z/VM change to 1500000 nanoseconds to adjust to z/VM polling.*/
100 static unsigned long long poll_timeout = 250000;
101
102 /* Suspend flag */
103 static int ap_suspend_flag;
104 /* Maximum domain id */
105 static int ap_max_domain_id;
106 /* Flag to check if domain was set through module parameter domain=. This is
107 * important when supsend and resume is done in a z/VM environment where the
108 * domain might change. */
109 static int user_set_domain = 0;
110 static struct bus_type ap_bus_type;
111
112 /* Adapter interrupt definitions */
113 static void ap_interrupt_handler(struct airq_struct *airq);
114
115 static int ap_airq_flag;
116
117 static struct airq_struct ap_airq = {
118 .handler = ap_interrupt_handler,
119 .isc = AP_ISC,
120 };
121
122 /**
123 * ap_using_interrupts() - Returns non-zero if interrupt support is
124 * available.
125 */
126 static inline int ap_using_interrupts(void)
127 {
128 return ap_airq_flag;
129 }
130
131 /**
132 * ap_intructions_available() - Test if AP instructions are available.
133 *
134 * Returns 0 if the AP instructions are installed.
135 */
136 static inline int ap_instructions_available(void)
137 {
138 register unsigned long reg0 asm ("0") = AP_MKQID(0,0);
139 register unsigned long reg1 asm ("1") = -ENODEV;
140 register unsigned long reg2 asm ("2") = 0UL;
141
142 asm volatile(
143 " .long 0xb2af0000\n" /* PQAP(TAPQ) */
144 "0: la %1,0\n"
145 "1:\n"
146 EX_TABLE(0b, 1b)
147 : "+d" (reg0), "+d" (reg1), "+d" (reg2) : : "cc" );
148 return reg1;
149 }
150
151 /**
152 * ap_interrupts_available(): Test if AP interrupts are available.
153 *
154 * Returns 1 if AP interrupts are available.
155 */
156 static int ap_interrupts_available(void)
157 {
158 return test_facility(65);
159 }
160
161 /**
162 * ap_configuration_available(): Test if AP configuration
163 * information is available.
164 *
165 * Returns 1 if AP configuration information is available.
166 */
167 static int ap_configuration_available(void)
168 {
169 return test_facility(12);
170 }
171
172 static inline struct ap_queue_status
173 __pqap_tapq(ap_qid_t qid, unsigned long *info)
174 {
175 register unsigned long reg0 asm ("0") = qid;
176 register struct ap_queue_status reg1 asm ("1");
177 register unsigned long reg2 asm ("2") = 0UL;
178
179 asm volatile(".long 0xb2af0000" /* PQAP(TAPQ) */
180 : "+d" (reg0), "=d" (reg1), "+d" (reg2) : : "cc");
181 *info = reg2;
182 return reg1;
183 }
184
185 /**
186 * ap_test_queue(): Test adjunct processor queue.
187 * @qid: The AP queue number
188 * @info: Pointer to queue descriptor
189 *
190 * Returns AP queue status structure.
191 */
192 static inline struct ap_queue_status
193 ap_test_queue(ap_qid_t qid, unsigned long *info)
194 {
195 struct ap_queue_status aqs;
196 unsigned long _info;
197
198 if (test_facility(15))
199 qid |= 1UL << 23; /* set APFT T bit*/
200 aqs = __pqap_tapq(qid, &_info);
201 if (info)
202 *info = _info;
203 return aqs;
204 }
205
206 /**
207 * ap_reset_queue(): Reset adjunct processor queue.
208 * @qid: The AP queue number
209 *
210 * Returns AP queue status structure.
211 */
212 static inline struct ap_queue_status ap_reset_queue(ap_qid_t qid)
213 {
214 register unsigned long reg0 asm ("0") = qid | 0x01000000UL;
215 register struct ap_queue_status reg1 asm ("1");
216 register unsigned long reg2 asm ("2") = 0UL;
217
218 asm volatile(
219 ".long 0xb2af0000" /* PQAP(RAPQ) */
220 : "+d" (reg0), "=d" (reg1), "+d" (reg2) : : "cc");
221 return reg1;
222 }
223
224 /**
225 * ap_queue_interruption_control(): Enable interruption for a specific AP.
226 * @qid: The AP queue number
227 * @ind: The notification indicator byte
228 *
229 * Returns AP queue status.
230 */
231 static inline struct ap_queue_status
232 ap_queue_interruption_control(ap_qid_t qid, void *ind)
233 {
234 register unsigned long reg0 asm ("0") = qid | 0x03000000UL;
235 register unsigned long reg1_in asm ("1") = 0x0000800000000000UL | AP_ISC;
236 register struct ap_queue_status reg1_out asm ("1");
237 register void *reg2 asm ("2") = ind;
238 asm volatile(
239 ".long 0xb2af0000" /* PQAP(AQIC) */
240 : "+d" (reg0), "+d" (reg1_in), "=d" (reg1_out), "+d" (reg2)
241 :
242 : "cc" );
243 return reg1_out;
244 }
245
246 /**
247 * ap_query_configuration(): Get AP configuration data
248 *
249 * Returns 0 on success, or -EOPNOTSUPP.
250 */
251 static inline int __ap_query_configuration(void)
252 {
253 register unsigned long reg0 asm ("0") = 0x04000000UL;
254 register unsigned long reg1 asm ("1") = -EINVAL;
255 register void *reg2 asm ("2") = (void *) ap_configuration;
256
257 asm volatile(
258 ".long 0xb2af0000\n" /* PQAP(QCI) */
259 "0: la %1,0\n"
260 "1:\n"
261 EX_TABLE(0b, 1b)
262 : "+d" (reg0), "+d" (reg1), "+d" (reg2)
263 :
264 : "cc");
265
266 return reg1;
267 }
268
269 static inline int ap_query_configuration(void)
270 {
271 if (!ap_configuration)
272 return -EOPNOTSUPP;
273 return __ap_query_configuration();
274 }
275
276 /**
277 * ap_init_configuration(): Allocate and query configuration array.
278 */
279 static void ap_init_configuration(void)
280 {
281 if (!ap_configuration_available())
282 return;
283
284 ap_configuration = kzalloc(sizeof(*ap_configuration), GFP_KERNEL);
285 if (!ap_configuration)
286 return;
287 if (ap_query_configuration() != 0) {
288 kfree(ap_configuration);
289 ap_configuration = NULL;
290 return;
291 }
292 }
293
294 /*
295 * ap_test_config(): helper function to extract the nrth bit
296 * within the unsigned int array field.
297 */
298 static inline int ap_test_config(unsigned int *field, unsigned int nr)
299 {
300 return ap_test_bit((field + (nr >> 5)), (nr & 0x1f));
301 }
302
303 /*
304 * ap_test_config_card_id(): Test, whether an AP card ID is configured.
305 * @id AP card ID
306 *
307 * Returns 0 if the card is not configured
308 * 1 if the card is configured or
309 * if the configuration information is not available
310 */
311 static inline int ap_test_config_card_id(unsigned int id)
312 {
313 if (!ap_configuration) /* QCI not supported */
314 return 1;
315 return ap_test_config(ap_configuration->apm, id);
316 }
317
318 /*
319 * ap_test_config_domain(): Test, whether an AP usage domain is configured.
320 * @domain AP usage domain ID
321 *
322 * Returns 0 if the usage domain is not configured
323 * 1 if the usage domain is configured or
324 * if the configuration information is not available
325 */
326 static inline int ap_test_config_domain(unsigned int domain)
327 {
328 if (!ap_configuration) /* QCI not supported */
329 return domain < 16;
330 return ap_test_config(ap_configuration->aqm, domain);
331 }
332
333 /**
334 * ap_queue_enable_interruption(): Enable interruption on an AP.
335 * @qid: The AP queue number
336 * @ind: the notification indicator byte
337 *
338 * Enables interruption on AP queue via ap_queue_interruption_control(). Based
339 * on the return value it waits a while and tests the AP queue if interrupts
340 * have been switched on using ap_test_queue().
341 */
342 static int ap_queue_enable_interruption(struct ap_device *ap_dev, void *ind)
343 {
344 struct ap_queue_status status;
345
346 status = ap_queue_interruption_control(ap_dev->qid, ind);
347 switch (status.response_code) {
348 case AP_RESPONSE_NORMAL:
349 case AP_RESPONSE_OTHERWISE_CHANGED:
350 return 0;
351 case AP_RESPONSE_Q_NOT_AVAIL:
352 case AP_RESPONSE_DECONFIGURED:
353 case AP_RESPONSE_CHECKSTOPPED:
354 case AP_RESPONSE_INVALID_ADDRESS:
355 pr_err("Registering adapter interrupts for AP %d failed\n",
356 AP_QID_DEVICE(ap_dev->qid));
357 return -EOPNOTSUPP;
358 case AP_RESPONSE_RESET_IN_PROGRESS:
359 case AP_RESPONSE_BUSY:
360 default:
361 return -EBUSY;
362 }
363 }
364
365 static inline struct ap_queue_status
366 __nqap(ap_qid_t qid, unsigned long long psmid, void *msg, size_t length)
367 {
368 typedef struct { char _[length]; } msgblock;
369 register unsigned long reg0 asm ("0") = qid | 0x40000000UL;
370 register struct ap_queue_status reg1 asm ("1");
371 register unsigned long reg2 asm ("2") = (unsigned long) msg;
372 register unsigned long reg3 asm ("3") = (unsigned long) length;
373 register unsigned long reg4 asm ("4") = (unsigned int) (psmid >> 32);
374 register unsigned long reg5 asm ("5") = psmid & 0xffffffff;
375
376 asm volatile (
377 "0: .long 0xb2ad0042\n" /* NQAP */
378 " brc 2,0b"
379 : "+d" (reg0), "=d" (reg1), "+d" (reg2), "+d" (reg3)
380 : "d" (reg4), "d" (reg5), "m" (*(msgblock *) msg)
381 : "cc");
382 return reg1;
383 }
384
385 /**
386 * __ap_send(): Send message to adjunct processor queue.
387 * @qid: The AP queue number
388 * @psmid: The program supplied message identifier
389 * @msg: The message text
390 * @length: The message length
391 * @special: Special Bit
392 *
393 * Returns AP queue status structure.
394 * Condition code 1 on NQAP can't happen because the L bit is 1.
395 * Condition code 2 on NQAP also means the send is incomplete,
396 * because a segment boundary was reached. The NQAP is repeated.
397 */
398 static inline struct ap_queue_status
399 __ap_send(ap_qid_t qid, unsigned long long psmid, void *msg, size_t length,
400 unsigned int special)
401 {
402 if (special == 1)
403 qid |= 0x400000UL;
404 return __nqap(qid, psmid, msg, length);
405 }
406
407 int ap_send(ap_qid_t qid, unsigned long long psmid, void *msg, size_t length)
408 {
409 struct ap_queue_status status;
410
411 status = __ap_send(qid, psmid, msg, length, 0);
412 switch (status.response_code) {
413 case AP_RESPONSE_NORMAL:
414 return 0;
415 case AP_RESPONSE_Q_FULL:
416 case AP_RESPONSE_RESET_IN_PROGRESS:
417 return -EBUSY;
418 case AP_RESPONSE_REQ_FAC_NOT_INST:
419 return -EINVAL;
420 default: /* Device is gone. */
421 return -ENODEV;
422 }
423 }
424 EXPORT_SYMBOL(ap_send);
425
426 /**
427 * __ap_recv(): Receive message from adjunct processor queue.
428 * @qid: The AP queue number
429 * @psmid: Pointer to program supplied message identifier
430 * @msg: The message text
431 * @length: The message length
432 *
433 * Returns AP queue status structure.
434 * Condition code 1 on DQAP means the receive has taken place
435 * but only partially. The response is incomplete, hence the
436 * DQAP is repeated.
437 * Condition code 2 on DQAP also means the receive is incomplete,
438 * this time because a segment boundary was reached. Again, the
439 * DQAP is repeated.
440 * Note that gpr2 is used by the DQAP instruction to keep track of
441 * any 'residual' length, in case the instruction gets interrupted.
442 * Hence it gets zeroed before the instruction.
443 */
444 static inline struct ap_queue_status
445 __ap_recv(ap_qid_t qid, unsigned long long *psmid, void *msg, size_t length)
446 {
447 typedef struct { char _[length]; } msgblock;
448 register unsigned long reg0 asm("0") = qid | 0x80000000UL;
449 register struct ap_queue_status reg1 asm ("1");
450 register unsigned long reg2 asm("2") = 0UL;
451 register unsigned long reg4 asm("4") = (unsigned long) msg;
452 register unsigned long reg5 asm("5") = (unsigned long) length;
453 register unsigned long reg6 asm("6") = 0UL;
454 register unsigned long reg7 asm("7") = 0UL;
455
456
457 asm volatile(
458 "0: .long 0xb2ae0064\n" /* DQAP */
459 " brc 6,0b\n"
460 : "+d" (reg0), "=d" (reg1), "+d" (reg2),
461 "+d" (reg4), "+d" (reg5), "+d" (reg6), "+d" (reg7),
462 "=m" (*(msgblock *) msg) : : "cc" );
463 *psmid = (((unsigned long long) reg6) << 32) + reg7;
464 return reg1;
465 }
466
467 int ap_recv(ap_qid_t qid, unsigned long long *psmid, void *msg, size_t length)
468 {
469 struct ap_queue_status status;
470
471 if (msg == NULL)
472 return -EINVAL;
473 status = __ap_recv(qid, psmid, msg, length);
474 switch (status.response_code) {
475 case AP_RESPONSE_NORMAL:
476 return 0;
477 case AP_RESPONSE_NO_PENDING_REPLY:
478 if (status.queue_empty)
479 return -ENOENT;
480 return -EBUSY;
481 case AP_RESPONSE_RESET_IN_PROGRESS:
482 return -EBUSY;
483 default:
484 return -ENODEV;
485 }
486 }
487 EXPORT_SYMBOL(ap_recv);
488
489 /**
490 * ap_query_queue(): Check if an AP queue is available.
491 * @qid: The AP queue number
492 * @queue_depth: Pointer to queue depth value
493 * @device_type: Pointer to device type value
494 * @facilities: Pointer to facility indicator
495 */
496 static int ap_query_queue(ap_qid_t qid, int *queue_depth, int *device_type,
497 unsigned int *facilities)
498 {
499 struct ap_queue_status status;
500 unsigned long info;
501 int nd;
502
503 if (!ap_test_config_card_id(AP_QID_DEVICE(qid)))
504 return -ENODEV;
505
506 status = ap_test_queue(qid, &info);
507 switch (status.response_code) {
508 case AP_RESPONSE_NORMAL:
509 *queue_depth = (int)(info & 0xff);
510 *device_type = (int)((info >> 24) & 0xff);
511 *facilities = (unsigned int)(info >> 32);
512 /* Update maximum domain id */
513 nd = (info >> 16) & 0xff;
514 if ((info & (1UL << 57)) && nd > 0)
515 ap_max_domain_id = nd;
516 return 0;
517 case AP_RESPONSE_Q_NOT_AVAIL:
518 case AP_RESPONSE_DECONFIGURED:
519 case AP_RESPONSE_CHECKSTOPPED:
520 case AP_RESPONSE_INVALID_ADDRESS:
521 return -ENODEV;
522 case AP_RESPONSE_RESET_IN_PROGRESS:
523 case AP_RESPONSE_OTHERWISE_CHANGED:
524 case AP_RESPONSE_BUSY:
525 return -EBUSY;
526 default:
527 BUG();
528 }
529 }
530
531 /* State machine definitions and helpers */
532
533 static void ap_sm_wait(enum ap_wait wait)
534 {
535 ktime_t hr_time;
536
537 switch (wait) {
538 case AP_WAIT_AGAIN:
539 case AP_WAIT_INTERRUPT:
540 if (ap_using_interrupts())
541 break;
542 if (ap_poll_kthread) {
543 wake_up(&ap_poll_wait);
544 break;
545 }
546 /* Fall through */
547 case AP_WAIT_TIMEOUT:
548 spin_lock_bh(&ap_poll_timer_lock);
549 if (!hrtimer_is_queued(&ap_poll_timer)) {
550 hr_time = ktime_set(0, poll_timeout);
551 hrtimer_forward_now(&ap_poll_timer, hr_time);
552 hrtimer_restart(&ap_poll_timer);
553 }
554 spin_unlock_bh(&ap_poll_timer_lock);
555 break;
556 case AP_WAIT_NONE:
557 default:
558 break;
559 }
560 }
561
562 static enum ap_wait ap_sm_nop(struct ap_device *ap_dev)
563 {
564 return AP_WAIT_NONE;
565 }
566
567 /**
568 * ap_sm_recv(): Receive pending reply messages from an AP device but do
569 * not change the state of the device.
570 * @ap_dev: pointer to the AP device
571 *
572 * Returns AP_WAIT_NONE, AP_WAIT_AGAIN, or AP_WAIT_INTERRUPT
573 */
574 static struct ap_queue_status ap_sm_recv(struct ap_device *ap_dev)
575 {
576 struct ap_queue_status status;
577 struct ap_message *ap_msg;
578
579 status = __ap_recv(ap_dev->qid, &ap_dev->reply->psmid,
580 ap_dev->reply->message, ap_dev->reply->length);
581 switch (status.response_code) {
582 case AP_RESPONSE_NORMAL:
583 atomic_dec(&ap_poll_requests);
584 ap_dev->queue_count--;
585 if (ap_dev->queue_count > 0)
586 mod_timer(&ap_dev->timeout,
587 jiffies + ap_dev->drv->request_timeout);
588 list_for_each_entry(ap_msg, &ap_dev->pendingq, list) {
589 if (ap_msg->psmid != ap_dev->reply->psmid)
590 continue;
591 list_del_init(&ap_msg->list);
592 ap_dev->pendingq_count--;
593 ap_msg->receive(ap_dev, ap_msg, ap_dev->reply);
594 break;
595 }
596 case AP_RESPONSE_NO_PENDING_REPLY:
597 if (!status.queue_empty || ap_dev->queue_count <= 0)
598 break;
599 /* The card shouldn't forget requests but who knows. */
600 atomic_sub(ap_dev->queue_count, &ap_poll_requests);
601 ap_dev->queue_count = 0;
602 list_splice_init(&ap_dev->pendingq, &ap_dev->requestq);
603 ap_dev->requestq_count += ap_dev->pendingq_count;
604 ap_dev->pendingq_count = 0;
605 break;
606 default:
607 break;
608 }
609 return status;
610 }
611
612 /**
613 * ap_sm_read(): Receive pending reply messages from an AP device.
614 * @ap_dev: pointer to the AP device
615 *
616 * Returns AP_WAIT_NONE, AP_WAIT_AGAIN, or AP_WAIT_INTERRUPT
617 */
618 static enum ap_wait ap_sm_read(struct ap_device *ap_dev)
619 {
620 struct ap_queue_status status;
621
622 if (!ap_dev->reply)
623 return AP_WAIT_NONE;
624 status = ap_sm_recv(ap_dev);
625 switch (status.response_code) {
626 case AP_RESPONSE_NORMAL:
627 if (ap_dev->queue_count > 0) {
628 ap_dev->state = AP_STATE_WORKING;
629 return AP_WAIT_AGAIN;
630 }
631 ap_dev->state = AP_STATE_IDLE;
632 return AP_WAIT_NONE;
633 case AP_RESPONSE_NO_PENDING_REPLY:
634 if (ap_dev->queue_count > 0)
635 return AP_WAIT_INTERRUPT;
636 ap_dev->state = AP_STATE_IDLE;
637 return AP_WAIT_NONE;
638 default:
639 ap_dev->state = AP_STATE_BORKED;
640 return AP_WAIT_NONE;
641 }
642 }
643
644 /**
645 * ap_sm_suspend_read(): Receive pending reply messages from an AP device
646 * without changing the device state in between. In suspend mode we don't
647 * allow sending new requests, therefore just fetch pending replies.
648 * @ap_dev: pointer to the AP device
649 *
650 * Returns AP_WAIT_NONE or AP_WAIT_AGAIN
651 */
652 static enum ap_wait ap_sm_suspend_read(struct ap_device *ap_dev)
653 {
654 struct ap_queue_status status;
655
656 if (!ap_dev->reply)
657 return AP_WAIT_NONE;
658 status = ap_sm_recv(ap_dev);
659 switch (status.response_code) {
660 case AP_RESPONSE_NORMAL:
661 if (ap_dev->queue_count > 0)
662 return AP_WAIT_AGAIN;
663 /* fall through */
664 default:
665 return AP_WAIT_NONE;
666 }
667 }
668
669 /**
670 * ap_sm_write(): Send messages from the request queue to an AP device.
671 * @ap_dev: pointer to the AP device
672 *
673 * Returns AP_WAIT_NONE, AP_WAIT_AGAIN, or AP_WAIT_INTERRUPT
674 */
675 static enum ap_wait ap_sm_write(struct ap_device *ap_dev)
676 {
677 struct ap_queue_status status;
678 struct ap_message *ap_msg;
679
680 if (ap_dev->requestq_count <= 0)
681 return AP_WAIT_NONE;
682 /* Start the next request on the queue. */
683 ap_msg = list_entry(ap_dev->requestq.next, struct ap_message, list);
684 status = __ap_send(ap_dev->qid, ap_msg->psmid,
685 ap_msg->message, ap_msg->length, ap_msg->special);
686 switch (status.response_code) {
687 case AP_RESPONSE_NORMAL:
688 atomic_inc(&ap_poll_requests);
689 ap_dev->queue_count++;
690 if (ap_dev->queue_count == 1)
691 mod_timer(&ap_dev->timeout,
692 jiffies + ap_dev->drv->request_timeout);
693 list_move_tail(&ap_msg->list, &ap_dev->pendingq);
694 ap_dev->requestq_count--;
695 ap_dev->pendingq_count++;
696 if (ap_dev->queue_count < ap_dev->queue_depth) {
697 ap_dev->state = AP_STATE_WORKING;
698 return AP_WAIT_AGAIN;
699 }
700 /* fall through */
701 case AP_RESPONSE_Q_FULL:
702 ap_dev->state = AP_STATE_QUEUE_FULL;
703 return AP_WAIT_INTERRUPT;
704 case AP_RESPONSE_RESET_IN_PROGRESS:
705 ap_dev->state = AP_STATE_RESET_WAIT;
706 return AP_WAIT_TIMEOUT;
707 case AP_RESPONSE_MESSAGE_TOO_BIG:
708 case AP_RESPONSE_REQ_FAC_NOT_INST:
709 list_del_init(&ap_msg->list);
710 ap_dev->requestq_count--;
711 ap_msg->rc = -EINVAL;
712 ap_msg->receive(ap_dev, ap_msg, NULL);
713 return AP_WAIT_AGAIN;
714 default:
715 ap_dev->state = AP_STATE_BORKED;
716 return AP_WAIT_NONE;
717 }
718 }
719
720 /**
721 * ap_sm_read_write(): Send and receive messages to/from an AP device.
722 * @ap_dev: pointer to the AP device
723 *
724 * Returns AP_WAIT_NONE, AP_WAIT_AGAIN, or AP_WAIT_INTERRUPT
725 */
726 static enum ap_wait ap_sm_read_write(struct ap_device *ap_dev)
727 {
728 return min(ap_sm_read(ap_dev), ap_sm_write(ap_dev));
729 }
730
731 /**
732 * ap_sm_reset(): Reset an AP queue.
733 * @qid: The AP queue number
734 *
735 * Submit the Reset command to an AP queue.
736 */
737 static enum ap_wait ap_sm_reset(struct ap_device *ap_dev)
738 {
739 struct ap_queue_status status;
740
741 status = ap_reset_queue(ap_dev->qid);
742 switch (status.response_code) {
743 case AP_RESPONSE_NORMAL:
744 case AP_RESPONSE_RESET_IN_PROGRESS:
745 ap_dev->state = AP_STATE_RESET_WAIT;
746 ap_dev->interrupt = AP_INTR_DISABLED;
747 return AP_WAIT_TIMEOUT;
748 case AP_RESPONSE_BUSY:
749 return AP_WAIT_TIMEOUT;
750 case AP_RESPONSE_Q_NOT_AVAIL:
751 case AP_RESPONSE_DECONFIGURED:
752 case AP_RESPONSE_CHECKSTOPPED:
753 default:
754 ap_dev->state = AP_STATE_BORKED;
755 return AP_WAIT_NONE;
756 }
757 }
758
759 /**
760 * ap_sm_reset_wait(): Test queue for completion of the reset operation
761 * @ap_dev: pointer to the AP device
762 *
763 * Returns AP_POLL_IMMEDIATELY, AP_POLL_AFTER_TIMEROUT or 0.
764 */
765 static enum ap_wait ap_sm_reset_wait(struct ap_device *ap_dev)
766 {
767 struct ap_queue_status status;
768 unsigned long info;
769
770 if (ap_dev->queue_count > 0 && ap_dev->reply)
771 /* Try to read a completed message and get the status */
772 status = ap_sm_recv(ap_dev);
773 else
774 /* Get the status with TAPQ */
775 status = ap_test_queue(ap_dev->qid, &info);
776
777 switch (status.response_code) {
778 case AP_RESPONSE_NORMAL:
779 if (ap_using_interrupts() &&
780 ap_queue_enable_interruption(ap_dev,
781 ap_airq.lsi_ptr) == 0)
782 ap_dev->state = AP_STATE_SETIRQ_WAIT;
783 else
784 ap_dev->state = (ap_dev->queue_count > 0) ?
785 AP_STATE_WORKING : AP_STATE_IDLE;
786 return AP_WAIT_AGAIN;
787 case AP_RESPONSE_BUSY:
788 case AP_RESPONSE_RESET_IN_PROGRESS:
789 return AP_WAIT_TIMEOUT;
790 case AP_RESPONSE_Q_NOT_AVAIL:
791 case AP_RESPONSE_DECONFIGURED:
792 case AP_RESPONSE_CHECKSTOPPED:
793 default:
794 ap_dev->state = AP_STATE_BORKED;
795 return AP_WAIT_NONE;
796 }
797 }
798
799 /**
800 * ap_sm_setirq_wait(): Test queue for completion of the irq enablement
801 * @ap_dev: pointer to the AP device
802 *
803 * Returns AP_POLL_IMMEDIATELY, AP_POLL_AFTER_TIMEROUT or 0.
804 */
805 static enum ap_wait ap_sm_setirq_wait(struct ap_device *ap_dev)
806 {
807 struct ap_queue_status status;
808 unsigned long info;
809
810 if (ap_dev->queue_count > 0 && ap_dev->reply)
811 /* Try to read a completed message and get the status */
812 status = ap_sm_recv(ap_dev);
813 else
814 /* Get the status with TAPQ */
815 status = ap_test_queue(ap_dev->qid, &info);
816
817 if (status.int_enabled == 1) {
818 /* Irqs are now enabled */
819 ap_dev->interrupt = AP_INTR_ENABLED;
820 ap_dev->state = (ap_dev->queue_count > 0) ?
821 AP_STATE_WORKING : AP_STATE_IDLE;
822 }
823
824 switch (status.response_code) {
825 case AP_RESPONSE_NORMAL:
826 if (ap_dev->queue_count > 0)
827 return AP_WAIT_AGAIN;
828 /* fallthrough */
829 case AP_RESPONSE_NO_PENDING_REPLY:
830 return AP_WAIT_TIMEOUT;
831 default:
832 ap_dev->state = AP_STATE_BORKED;
833 return AP_WAIT_NONE;
834 }
835 }
836
837 /*
838 * AP state machine jump table
839 */
840 static ap_func_t *ap_jumptable[NR_AP_STATES][NR_AP_EVENTS] = {
841 [AP_STATE_RESET_START] = {
842 [AP_EVENT_POLL] = ap_sm_reset,
843 [AP_EVENT_TIMEOUT] = ap_sm_nop,
844 },
845 [AP_STATE_RESET_WAIT] = {
846 [AP_EVENT_POLL] = ap_sm_reset_wait,
847 [AP_EVENT_TIMEOUT] = ap_sm_nop,
848 },
849 [AP_STATE_SETIRQ_WAIT] = {
850 [AP_EVENT_POLL] = ap_sm_setirq_wait,
851 [AP_EVENT_TIMEOUT] = ap_sm_nop,
852 },
853 [AP_STATE_IDLE] = {
854 [AP_EVENT_POLL] = ap_sm_write,
855 [AP_EVENT_TIMEOUT] = ap_sm_nop,
856 },
857 [AP_STATE_WORKING] = {
858 [AP_EVENT_POLL] = ap_sm_read_write,
859 [AP_EVENT_TIMEOUT] = ap_sm_reset,
860 },
861 [AP_STATE_QUEUE_FULL] = {
862 [AP_EVENT_POLL] = ap_sm_read,
863 [AP_EVENT_TIMEOUT] = ap_sm_reset,
864 },
865 [AP_STATE_SUSPEND_WAIT] = {
866 [AP_EVENT_POLL] = ap_sm_suspend_read,
867 [AP_EVENT_TIMEOUT] = ap_sm_nop,
868 },
869 [AP_STATE_BORKED] = {
870 [AP_EVENT_POLL] = ap_sm_nop,
871 [AP_EVENT_TIMEOUT] = ap_sm_nop,
872 },
873 };
874
875 static inline enum ap_wait ap_sm_event(struct ap_device *ap_dev,
876 enum ap_event event)
877 {
878 return ap_jumptable[ap_dev->state][event](ap_dev);
879 }
880
881 static inline enum ap_wait ap_sm_event_loop(struct ap_device *ap_dev,
882 enum ap_event event)
883 {
884 enum ap_wait wait;
885
886 while ((wait = ap_sm_event(ap_dev, event)) == AP_WAIT_AGAIN)
887 ;
888 return wait;
889 }
890
891 /**
892 * ap_request_timeout(): Handling of request timeouts
893 * @data: Holds the AP device.
894 *
895 * Handles request timeouts.
896 */
897 static void ap_request_timeout(unsigned long data)
898 {
899 struct ap_device *ap_dev = (struct ap_device *) data;
900
901 if (ap_suspend_flag)
902 return;
903 spin_lock_bh(&ap_dev->lock);
904 ap_sm_wait(ap_sm_event(ap_dev, AP_EVENT_TIMEOUT));
905 spin_unlock_bh(&ap_dev->lock);
906 }
907
908 /**
909 * ap_poll_timeout(): AP receive polling for finished AP requests.
910 * @unused: Unused pointer.
911 *
912 * Schedules the AP tasklet using a high resolution timer.
913 */
914 static enum hrtimer_restart ap_poll_timeout(struct hrtimer *unused)
915 {
916 if (!ap_suspend_flag)
917 tasklet_schedule(&ap_tasklet);
918 return HRTIMER_NORESTART;
919 }
920
921 /**
922 * ap_interrupt_handler() - Schedule ap_tasklet on interrupt
923 * @airq: pointer to adapter interrupt descriptor
924 */
925 static void ap_interrupt_handler(struct airq_struct *airq)
926 {
927 inc_irq_stat(IRQIO_APB);
928 if (!ap_suspend_flag)
929 tasklet_schedule(&ap_tasklet);
930 }
931
932 /**
933 * ap_tasklet_fn(): Tasklet to poll all AP devices.
934 * @dummy: Unused variable
935 *
936 * Poll all AP devices on the bus.
937 */
938 static void ap_tasklet_fn(unsigned long dummy)
939 {
940 struct ap_device *ap_dev;
941 enum ap_wait wait = AP_WAIT_NONE;
942
943 /* Reset the indicator if interrupts are used. Thus new interrupts can
944 * be received. Doing it in the beginning of the tasklet is therefor
945 * important that no requests on any AP get lost.
946 */
947 if (ap_using_interrupts())
948 xchg(ap_airq.lsi_ptr, 0);
949
950 spin_lock(&ap_device_list_lock);
951 list_for_each_entry(ap_dev, &ap_device_list, list) {
952 spin_lock_bh(&ap_dev->lock);
953 wait = min(wait, ap_sm_event_loop(ap_dev, AP_EVENT_POLL));
954 spin_unlock_bh(&ap_dev->lock);
955 }
956 spin_unlock(&ap_device_list_lock);
957 ap_sm_wait(wait);
958 }
959
960 /**
961 * ap_poll_thread(): Thread that polls for finished requests.
962 * @data: Unused pointer
963 *
964 * AP bus poll thread. The purpose of this thread is to poll for
965 * finished requests in a loop if there is a "free" cpu - that is
966 * a cpu that doesn't have anything better to do. The polling stops
967 * as soon as there is another task or if all messages have been
968 * delivered.
969 */
970 static int ap_poll_thread(void *data)
971 {
972 DECLARE_WAITQUEUE(wait, current);
973
974 set_user_nice(current, MAX_NICE);
975 set_freezable();
976 while (!kthread_should_stop()) {
977 add_wait_queue(&ap_poll_wait, &wait);
978 set_current_state(TASK_INTERRUPTIBLE);
979 if (ap_suspend_flag ||
980 atomic_read(&ap_poll_requests) <= 0) {
981 schedule();
982 try_to_freeze();
983 }
984 set_current_state(TASK_RUNNING);
985 remove_wait_queue(&ap_poll_wait, &wait);
986 if (need_resched()) {
987 schedule();
988 try_to_freeze();
989 continue;
990 }
991 ap_tasklet_fn(0);
992 } while (!kthread_should_stop());
993 return 0;
994 }
995
996 static int ap_poll_thread_start(void)
997 {
998 int rc;
999
1000 if (ap_using_interrupts() || ap_poll_kthread)
1001 return 0;
1002 mutex_lock(&ap_poll_thread_mutex);
1003 ap_poll_kthread = kthread_run(ap_poll_thread, NULL, "appoll");
1004 rc = PTR_RET(ap_poll_kthread);
1005 if (rc)
1006 ap_poll_kthread = NULL;
1007 mutex_unlock(&ap_poll_thread_mutex);
1008 return rc;
1009 }
1010
1011 static void ap_poll_thread_stop(void)
1012 {
1013 if (!ap_poll_kthread)
1014 return;
1015 mutex_lock(&ap_poll_thread_mutex);
1016 kthread_stop(ap_poll_kthread);
1017 ap_poll_kthread = NULL;
1018 mutex_unlock(&ap_poll_thread_mutex);
1019 }
1020
1021 /**
1022 * ap_queue_message(): Queue a request to an AP device.
1023 * @ap_dev: The AP device to queue the message to
1024 * @ap_msg: The message that is to be added
1025 */
1026 void ap_queue_message(struct ap_device *ap_dev, struct ap_message *ap_msg)
1027 {
1028 /* For asynchronous message handling a valid receive-callback
1029 * is required. */
1030 BUG_ON(!ap_msg->receive);
1031
1032 spin_lock_bh(&ap_dev->lock);
1033 /* Queue the message. */
1034 list_add_tail(&ap_msg->list, &ap_dev->requestq);
1035 ap_dev->requestq_count++;
1036 ap_dev->total_request_count++;
1037 /* Send/receive as many request from the queue as possible. */
1038 ap_sm_wait(ap_sm_event_loop(ap_dev, AP_EVENT_POLL));
1039 spin_unlock_bh(&ap_dev->lock);
1040 }
1041 EXPORT_SYMBOL(ap_queue_message);
1042
1043 /**
1044 * ap_cancel_message(): Cancel a crypto request.
1045 * @ap_dev: The AP device that has the message queued
1046 * @ap_msg: The message that is to be removed
1047 *
1048 * Cancel a crypto request. This is done by removing the request
1049 * from the device pending or request queue. Note that the
1050 * request stays on the AP queue. When it finishes the message
1051 * reply will be discarded because the psmid can't be found.
1052 */
1053 void ap_cancel_message(struct ap_device *ap_dev, struct ap_message *ap_msg)
1054 {
1055 struct ap_message *tmp;
1056
1057 spin_lock_bh(&ap_dev->lock);
1058 if (!list_empty(&ap_msg->list)) {
1059 list_for_each_entry(tmp, &ap_dev->pendingq, list)
1060 if (tmp->psmid == ap_msg->psmid) {
1061 ap_dev->pendingq_count--;
1062 goto found;
1063 }
1064 ap_dev->requestq_count--;
1065 found:
1066 list_del_init(&ap_msg->list);
1067 }
1068 spin_unlock_bh(&ap_dev->lock);
1069 }
1070 EXPORT_SYMBOL(ap_cancel_message);
1071
1072 /*
1073 * AP device related attributes.
1074 */
1075 static ssize_t ap_hwtype_show(struct device *dev,
1076 struct device_attribute *attr, char *buf)
1077 {
1078 struct ap_device *ap_dev = to_ap_dev(dev);
1079 return snprintf(buf, PAGE_SIZE, "%d\n", ap_dev->device_type);
1080 }
1081
1082 static DEVICE_ATTR(hwtype, 0444, ap_hwtype_show, NULL);
1083
1084 static ssize_t ap_raw_hwtype_show(struct device *dev,
1085 struct device_attribute *attr, char *buf)
1086 {
1087 struct ap_device *ap_dev = to_ap_dev(dev);
1088
1089 return snprintf(buf, PAGE_SIZE, "%d\n", ap_dev->raw_hwtype);
1090 }
1091
1092 static DEVICE_ATTR(raw_hwtype, 0444, ap_raw_hwtype_show, NULL);
1093
1094 static ssize_t ap_depth_show(struct device *dev, struct device_attribute *attr,
1095 char *buf)
1096 {
1097 struct ap_device *ap_dev = to_ap_dev(dev);
1098 return snprintf(buf, PAGE_SIZE, "%d\n", ap_dev->queue_depth);
1099 }
1100
1101 static DEVICE_ATTR(depth, 0444, ap_depth_show, NULL);
1102 static ssize_t ap_request_count_show(struct device *dev,
1103 struct device_attribute *attr,
1104 char *buf)
1105 {
1106 struct ap_device *ap_dev = to_ap_dev(dev);
1107 int rc;
1108
1109 spin_lock_bh(&ap_dev->lock);
1110 rc = snprintf(buf, PAGE_SIZE, "%d\n", ap_dev->total_request_count);
1111 spin_unlock_bh(&ap_dev->lock);
1112 return rc;
1113 }
1114
1115 static DEVICE_ATTR(request_count, 0444, ap_request_count_show, NULL);
1116
1117 static ssize_t ap_requestq_count_show(struct device *dev,
1118 struct device_attribute *attr, char *buf)
1119 {
1120 struct ap_device *ap_dev = to_ap_dev(dev);
1121 int rc;
1122
1123 spin_lock_bh(&ap_dev->lock);
1124 rc = snprintf(buf, PAGE_SIZE, "%d\n", ap_dev->requestq_count);
1125 spin_unlock_bh(&ap_dev->lock);
1126 return rc;
1127 }
1128
1129 static DEVICE_ATTR(requestq_count, 0444, ap_requestq_count_show, NULL);
1130
1131 static ssize_t ap_pendingq_count_show(struct device *dev,
1132 struct device_attribute *attr, char *buf)
1133 {
1134 struct ap_device *ap_dev = to_ap_dev(dev);
1135 int rc;
1136
1137 spin_lock_bh(&ap_dev->lock);
1138 rc = snprintf(buf, PAGE_SIZE, "%d\n", ap_dev->pendingq_count);
1139 spin_unlock_bh(&ap_dev->lock);
1140 return rc;
1141 }
1142
1143 static DEVICE_ATTR(pendingq_count, 0444, ap_pendingq_count_show, NULL);
1144
1145 static ssize_t ap_reset_show(struct device *dev,
1146 struct device_attribute *attr, char *buf)
1147 {
1148 struct ap_device *ap_dev = to_ap_dev(dev);
1149 int rc = 0;
1150
1151 spin_lock_bh(&ap_dev->lock);
1152 switch (ap_dev->state) {
1153 case AP_STATE_RESET_START:
1154 case AP_STATE_RESET_WAIT:
1155 rc = snprintf(buf, PAGE_SIZE, "Reset in progress.\n");
1156 break;
1157 case AP_STATE_WORKING:
1158 case AP_STATE_QUEUE_FULL:
1159 rc = snprintf(buf, PAGE_SIZE, "Reset Timer armed.\n");
1160 break;
1161 default:
1162 rc = snprintf(buf, PAGE_SIZE, "No Reset Timer set.\n");
1163 }
1164 spin_unlock_bh(&ap_dev->lock);
1165 return rc;
1166 }
1167
1168 static DEVICE_ATTR(reset, 0444, ap_reset_show, NULL);
1169
1170 static ssize_t ap_interrupt_show(struct device *dev,
1171 struct device_attribute *attr, char *buf)
1172 {
1173 struct ap_device *ap_dev = to_ap_dev(dev);
1174 int rc = 0;
1175
1176 spin_lock_bh(&ap_dev->lock);
1177 if (ap_dev->state == AP_STATE_SETIRQ_WAIT)
1178 rc = snprintf(buf, PAGE_SIZE, "Enable Interrupt pending.\n");
1179 else if (ap_dev->interrupt == AP_INTR_ENABLED)
1180 rc = snprintf(buf, PAGE_SIZE, "Interrupts enabled.\n");
1181 else
1182 rc = snprintf(buf, PAGE_SIZE, "Interrupts disabled.\n");
1183 spin_unlock_bh(&ap_dev->lock);
1184 return rc;
1185 }
1186
1187 static DEVICE_ATTR(interrupt, 0444, ap_interrupt_show, NULL);
1188
1189 static ssize_t ap_modalias_show(struct device *dev,
1190 struct device_attribute *attr, char *buf)
1191 {
1192 return sprintf(buf, "ap:t%02X\n", to_ap_dev(dev)->device_type);
1193 }
1194
1195 static DEVICE_ATTR(modalias, 0444, ap_modalias_show, NULL);
1196
1197 static ssize_t ap_functions_show(struct device *dev,
1198 struct device_attribute *attr, char *buf)
1199 {
1200 struct ap_device *ap_dev = to_ap_dev(dev);
1201 return snprintf(buf, PAGE_SIZE, "0x%08X\n", ap_dev->functions);
1202 }
1203
1204 static DEVICE_ATTR(ap_functions, 0444, ap_functions_show, NULL);
1205
1206 static struct attribute *ap_dev_attrs[] = {
1207 &dev_attr_hwtype.attr,
1208 &dev_attr_raw_hwtype.attr,
1209 &dev_attr_depth.attr,
1210 &dev_attr_request_count.attr,
1211 &dev_attr_requestq_count.attr,
1212 &dev_attr_pendingq_count.attr,
1213 &dev_attr_reset.attr,
1214 &dev_attr_interrupt.attr,
1215 &dev_attr_modalias.attr,
1216 &dev_attr_ap_functions.attr,
1217 NULL
1218 };
1219 static struct attribute_group ap_dev_attr_group = {
1220 .attrs = ap_dev_attrs
1221 };
1222
1223 /**
1224 * ap_bus_match()
1225 * @dev: Pointer to device
1226 * @drv: Pointer to device_driver
1227 *
1228 * AP bus driver registration/unregistration.
1229 */
1230 static int ap_bus_match(struct device *dev, struct device_driver *drv)
1231 {
1232 struct ap_device *ap_dev = to_ap_dev(dev);
1233 struct ap_driver *ap_drv = to_ap_drv(drv);
1234 struct ap_device_id *id;
1235
1236 /*
1237 * Compare device type of the device with the list of
1238 * supported types of the device_driver.
1239 */
1240 for (id = ap_drv->ids; id->match_flags; id++) {
1241 if ((id->match_flags & AP_DEVICE_ID_MATCH_DEVICE_TYPE) &&
1242 (id->dev_type != ap_dev->device_type))
1243 continue;
1244 return 1;
1245 }
1246 return 0;
1247 }
1248
1249 /**
1250 * ap_uevent(): Uevent function for AP devices.
1251 * @dev: Pointer to device
1252 * @env: Pointer to kobj_uevent_env
1253 *
1254 * It sets up a single environment variable DEV_TYPE which contains the
1255 * hardware device type.
1256 */
1257 static int ap_uevent (struct device *dev, struct kobj_uevent_env *env)
1258 {
1259 struct ap_device *ap_dev = to_ap_dev(dev);
1260 int retval = 0;
1261
1262 if (!ap_dev)
1263 return -ENODEV;
1264
1265 /* Set up DEV_TYPE environment variable. */
1266 retval = add_uevent_var(env, "DEV_TYPE=%04X", ap_dev->device_type);
1267 if (retval)
1268 return retval;
1269
1270 /* Add MODALIAS= */
1271 retval = add_uevent_var(env, "MODALIAS=ap:t%02X", ap_dev->device_type);
1272
1273 return retval;
1274 }
1275
1276 static int ap_dev_suspend(struct device *dev, pm_message_t state)
1277 {
1278 struct ap_device *ap_dev = to_ap_dev(dev);
1279
1280 /* Poll on the device until all requests are finished. */
1281 spin_lock_bh(&ap_dev->lock);
1282 ap_dev->state = AP_STATE_SUSPEND_WAIT;
1283 while (ap_sm_event(ap_dev, AP_EVENT_POLL) != AP_WAIT_NONE)
1284 ;
1285 ap_dev->state = AP_STATE_BORKED;
1286 spin_unlock_bh(&ap_dev->lock);
1287 return 0;
1288 }
1289
1290 static int ap_dev_resume(struct device *dev)
1291 {
1292 return 0;
1293 }
1294
1295 static void ap_bus_suspend(void)
1296 {
1297 ap_suspend_flag = 1;
1298 /*
1299 * Disable scanning for devices, thus we do not want to scan
1300 * for them after removing.
1301 */
1302 flush_work(&ap_scan_work);
1303 tasklet_disable(&ap_tasklet);
1304 }
1305
1306 static int __ap_devices_unregister(struct device *dev, void *dummy)
1307 {
1308 device_unregister(dev);
1309 return 0;
1310 }
1311
1312 static void ap_bus_resume(void)
1313 {
1314 int rc;
1315
1316 /* Unconditionally remove all AP devices */
1317 bus_for_each_dev(&ap_bus_type, NULL, NULL, __ap_devices_unregister);
1318 /* Reset thin interrupt setting */
1319 if (ap_interrupts_available() && !ap_using_interrupts()) {
1320 rc = register_adapter_interrupt(&ap_airq);
1321 ap_airq_flag = (rc == 0);
1322 }
1323 if (!ap_interrupts_available() && ap_using_interrupts()) {
1324 unregister_adapter_interrupt(&ap_airq);
1325 ap_airq_flag = 0;
1326 }
1327 /* Reset domain */
1328 if (!user_set_domain)
1329 ap_domain_index = -1;
1330 /* Get things going again */
1331 ap_suspend_flag = 0;
1332 if (ap_airq_flag)
1333 xchg(ap_airq.lsi_ptr, 0);
1334 tasklet_enable(&ap_tasklet);
1335 queue_work(system_long_wq, &ap_scan_work);
1336 }
1337
1338 static int ap_power_event(struct notifier_block *this, unsigned long event,
1339 void *ptr)
1340 {
1341 switch (event) {
1342 case PM_HIBERNATION_PREPARE:
1343 case PM_SUSPEND_PREPARE:
1344 ap_bus_suspend();
1345 break;
1346 case PM_POST_HIBERNATION:
1347 case PM_POST_SUSPEND:
1348 ap_bus_resume();
1349 break;
1350 default:
1351 break;
1352 }
1353 return NOTIFY_DONE;
1354 }
1355 static struct notifier_block ap_power_notifier = {
1356 .notifier_call = ap_power_event,
1357 };
1358
1359 static struct bus_type ap_bus_type = {
1360 .name = "ap",
1361 .match = &ap_bus_match,
1362 .uevent = &ap_uevent,
1363 .suspend = ap_dev_suspend,
1364 .resume = ap_dev_resume,
1365 };
1366
1367 void ap_device_init_reply(struct ap_device *ap_dev,
1368 struct ap_message *reply)
1369 {
1370 ap_dev->reply = reply;
1371
1372 spin_lock_bh(&ap_dev->lock);
1373 ap_sm_wait(ap_sm_event(ap_dev, AP_EVENT_POLL));
1374 spin_unlock_bh(&ap_dev->lock);
1375 }
1376 EXPORT_SYMBOL(ap_device_init_reply);
1377
1378 static int ap_device_probe(struct device *dev)
1379 {
1380 struct ap_device *ap_dev = to_ap_dev(dev);
1381 struct ap_driver *ap_drv = to_ap_drv(dev->driver);
1382 int rc;
1383
1384 ap_dev->drv = ap_drv;
1385 rc = ap_drv->probe ? ap_drv->probe(ap_dev) : -ENODEV;
1386 if (rc)
1387 ap_dev->drv = NULL;
1388 return rc;
1389 }
1390
1391 /**
1392 * __ap_flush_queue(): Flush requests.
1393 * @ap_dev: Pointer to the AP device
1394 *
1395 * Flush all requests from the request/pending queue of an AP device.
1396 */
1397 static void __ap_flush_queue(struct ap_device *ap_dev)
1398 {
1399 struct ap_message *ap_msg, *next;
1400
1401 list_for_each_entry_safe(ap_msg, next, &ap_dev->pendingq, list) {
1402 list_del_init(&ap_msg->list);
1403 ap_dev->pendingq_count--;
1404 ap_msg->rc = -EAGAIN;
1405 ap_msg->receive(ap_dev, ap_msg, NULL);
1406 }
1407 list_for_each_entry_safe(ap_msg, next, &ap_dev->requestq, list) {
1408 list_del_init(&ap_msg->list);
1409 ap_dev->requestq_count--;
1410 ap_msg->rc = -EAGAIN;
1411 ap_msg->receive(ap_dev, ap_msg, NULL);
1412 }
1413 }
1414
1415 void ap_flush_queue(struct ap_device *ap_dev)
1416 {
1417 spin_lock_bh(&ap_dev->lock);
1418 __ap_flush_queue(ap_dev);
1419 spin_unlock_bh(&ap_dev->lock);
1420 }
1421 EXPORT_SYMBOL(ap_flush_queue);
1422
1423 static int ap_device_remove(struct device *dev)
1424 {
1425 struct ap_device *ap_dev = to_ap_dev(dev);
1426 struct ap_driver *ap_drv = ap_dev->drv;
1427
1428 ap_flush_queue(ap_dev);
1429 del_timer_sync(&ap_dev->timeout);
1430 spin_lock_bh(&ap_device_list_lock);
1431 list_del_init(&ap_dev->list);
1432 spin_unlock_bh(&ap_device_list_lock);
1433 if (ap_drv->remove)
1434 ap_drv->remove(ap_dev);
1435 spin_lock_bh(&ap_dev->lock);
1436 atomic_sub(ap_dev->queue_count, &ap_poll_requests);
1437 spin_unlock_bh(&ap_dev->lock);
1438 return 0;
1439 }
1440
1441 static void ap_device_release(struct device *dev)
1442 {
1443 kfree(to_ap_dev(dev));
1444 }
1445
1446 int ap_driver_register(struct ap_driver *ap_drv, struct module *owner,
1447 char *name)
1448 {
1449 struct device_driver *drv = &ap_drv->driver;
1450
1451 if (!initialised)
1452 return -ENODEV;
1453
1454 drv->bus = &ap_bus_type;
1455 drv->probe = ap_device_probe;
1456 drv->remove = ap_device_remove;
1457 drv->owner = owner;
1458 drv->name = name;
1459 return driver_register(drv);
1460 }
1461 EXPORT_SYMBOL(ap_driver_register);
1462
1463 void ap_driver_unregister(struct ap_driver *ap_drv)
1464 {
1465 driver_unregister(&ap_drv->driver);
1466 }
1467 EXPORT_SYMBOL(ap_driver_unregister);
1468
1469 void ap_bus_force_rescan(void)
1470 {
1471 if (ap_suspend_flag)
1472 return;
1473 /* processing a asynchronous bus rescan */
1474 del_timer(&ap_config_timer);
1475 queue_work(system_long_wq, &ap_scan_work);
1476 flush_work(&ap_scan_work);
1477 }
1478 EXPORT_SYMBOL(ap_bus_force_rescan);
1479
1480 /*
1481 * AP bus attributes.
1482 */
1483 static ssize_t ap_domain_show(struct bus_type *bus, char *buf)
1484 {
1485 return snprintf(buf, PAGE_SIZE, "%d\n", ap_domain_index);
1486 }
1487
1488 static BUS_ATTR(ap_domain, 0444, ap_domain_show, NULL);
1489
1490 static ssize_t ap_control_domain_mask_show(struct bus_type *bus, char *buf)
1491 {
1492 if (!ap_configuration) /* QCI not supported */
1493 return snprintf(buf, PAGE_SIZE, "not supported\n");
1494 if (!test_facility(76))
1495 /* format 0 - 16 bit domain field */
1496 return snprintf(buf, PAGE_SIZE, "%08x%08x\n",
1497 ap_configuration->adm[0],
1498 ap_configuration->adm[1]);
1499 /* format 1 - 256 bit domain field */
1500 return snprintf(buf, PAGE_SIZE,
1501 "0x%08x%08x%08x%08x%08x%08x%08x%08x\n",
1502 ap_configuration->adm[0], ap_configuration->adm[1],
1503 ap_configuration->adm[2], ap_configuration->adm[3],
1504 ap_configuration->adm[4], ap_configuration->adm[5],
1505 ap_configuration->adm[6], ap_configuration->adm[7]);
1506 }
1507
1508 static BUS_ATTR(ap_control_domain_mask, 0444,
1509 ap_control_domain_mask_show, NULL);
1510
1511 static ssize_t ap_config_time_show(struct bus_type *bus, char *buf)
1512 {
1513 return snprintf(buf, PAGE_SIZE, "%d\n", ap_config_time);
1514 }
1515
1516 static ssize_t ap_interrupts_show(struct bus_type *bus, char *buf)
1517 {
1518 return snprintf(buf, PAGE_SIZE, "%d\n",
1519 ap_using_interrupts() ? 1 : 0);
1520 }
1521
1522 static BUS_ATTR(ap_interrupts, 0444, ap_interrupts_show, NULL);
1523
1524 static ssize_t ap_config_time_store(struct bus_type *bus,
1525 const char *buf, size_t count)
1526 {
1527 int time;
1528
1529 if (sscanf(buf, "%d\n", &time) != 1 || time < 5 || time > 120)
1530 return -EINVAL;
1531 ap_config_time = time;
1532 mod_timer(&ap_config_timer, jiffies + ap_config_time * HZ);
1533 return count;
1534 }
1535
1536 static BUS_ATTR(config_time, 0644, ap_config_time_show, ap_config_time_store);
1537
1538 static ssize_t ap_poll_thread_show(struct bus_type *bus, char *buf)
1539 {
1540 return snprintf(buf, PAGE_SIZE, "%d\n", ap_poll_kthread ? 1 : 0);
1541 }
1542
1543 static ssize_t ap_poll_thread_store(struct bus_type *bus,
1544 const char *buf, size_t count)
1545 {
1546 int flag, rc;
1547
1548 if (sscanf(buf, "%d\n", &flag) != 1)
1549 return -EINVAL;
1550 if (flag) {
1551 rc = ap_poll_thread_start();
1552 if (rc)
1553 count = rc;
1554 } else
1555 ap_poll_thread_stop();
1556 return count;
1557 }
1558
1559 static BUS_ATTR(poll_thread, 0644, ap_poll_thread_show, ap_poll_thread_store);
1560
1561 static ssize_t poll_timeout_show(struct bus_type *bus, char *buf)
1562 {
1563 return snprintf(buf, PAGE_SIZE, "%llu\n", poll_timeout);
1564 }
1565
1566 static ssize_t poll_timeout_store(struct bus_type *bus, const char *buf,
1567 size_t count)
1568 {
1569 unsigned long long time;
1570 ktime_t hr_time;
1571
1572 /* 120 seconds = maximum poll interval */
1573 if (sscanf(buf, "%llu\n", &time) != 1 || time < 1 ||
1574 time > 120000000000ULL)
1575 return -EINVAL;
1576 poll_timeout = time;
1577 hr_time = ktime_set(0, poll_timeout);
1578
1579 spin_lock_bh(&ap_poll_timer_lock);
1580 hrtimer_cancel(&ap_poll_timer);
1581 hrtimer_set_expires(&ap_poll_timer, hr_time);
1582 hrtimer_start_expires(&ap_poll_timer, HRTIMER_MODE_ABS);
1583 spin_unlock_bh(&ap_poll_timer_lock);
1584
1585 return count;
1586 }
1587
1588 static BUS_ATTR(poll_timeout, 0644, poll_timeout_show, poll_timeout_store);
1589
1590 static ssize_t ap_max_domain_id_show(struct bus_type *bus, char *buf)
1591 {
1592 int max_domain_id;
1593
1594 if (ap_configuration)
1595 max_domain_id = ap_max_domain_id ? : -1;
1596 else
1597 max_domain_id = 15;
1598 return snprintf(buf, PAGE_SIZE, "%d\n", max_domain_id);
1599 }
1600
1601 static BUS_ATTR(ap_max_domain_id, 0444, ap_max_domain_id_show, NULL);
1602
1603 static struct bus_attribute *const ap_bus_attrs[] = {
1604 &bus_attr_ap_domain,
1605 &bus_attr_ap_control_domain_mask,
1606 &bus_attr_config_time,
1607 &bus_attr_poll_thread,
1608 &bus_attr_ap_interrupts,
1609 &bus_attr_poll_timeout,
1610 &bus_attr_ap_max_domain_id,
1611 NULL,
1612 };
1613
1614 /**
1615 * ap_select_domain(): Select an AP domain.
1616 *
1617 * Pick one of the 16 AP domains.
1618 */
1619 static int ap_select_domain(void)
1620 {
1621 int count, max_count, best_domain;
1622 struct ap_queue_status status;
1623 int i, j;
1624
1625 /*
1626 * We want to use a single domain. Either the one specified with
1627 * the "domain=" parameter or the domain with the maximum number
1628 * of devices.
1629 */
1630 if (ap_domain_index >= 0)
1631 /* Domain has already been selected. */
1632 return 0;
1633 best_domain = -1;
1634 max_count = 0;
1635 for (i = 0; i < AP_DOMAINS; i++) {
1636 if (!ap_test_config_domain(i))
1637 continue;
1638 count = 0;
1639 for (j = 0; j < AP_DEVICES; j++) {
1640 if (!ap_test_config_card_id(j))
1641 continue;
1642 status = ap_test_queue(AP_MKQID(j, i), NULL);
1643 if (status.response_code != AP_RESPONSE_NORMAL)
1644 continue;
1645 count++;
1646 }
1647 if (count > max_count) {
1648 max_count = count;
1649 best_domain = i;
1650 }
1651 }
1652 if (best_domain >= 0){
1653 ap_domain_index = best_domain;
1654 return 0;
1655 }
1656 return -ENODEV;
1657 }
1658
1659 /**
1660 * __ap_scan_bus(): Scan the AP bus.
1661 * @dev: Pointer to device
1662 * @data: Pointer to data
1663 *
1664 * Scan the AP bus for new devices.
1665 */
1666 static int __ap_scan_bus(struct device *dev, void *data)
1667 {
1668 return to_ap_dev(dev)->qid == (ap_qid_t)(unsigned long) data;
1669 }
1670
1671 static void ap_scan_bus(struct work_struct *unused)
1672 {
1673 struct ap_device *ap_dev;
1674 struct device *dev;
1675 ap_qid_t qid;
1676 int queue_depth = 0, device_type = 0;
1677 unsigned int device_functions = 0;
1678 int rc, i, borked;
1679
1680 ap_query_configuration();
1681 if (ap_select_domain() != 0)
1682 goto out;
1683
1684 for (i = 0; i < AP_DEVICES; i++) {
1685 qid = AP_MKQID(i, ap_domain_index);
1686 dev = bus_find_device(&ap_bus_type, NULL,
1687 (void *)(unsigned long)qid,
1688 __ap_scan_bus);
1689 rc = ap_query_queue(qid, &queue_depth, &device_type,
1690 &device_functions);
1691 if (dev) {
1692 ap_dev = to_ap_dev(dev);
1693 spin_lock_bh(&ap_dev->lock);
1694 if (rc == -ENODEV)
1695 ap_dev->state = AP_STATE_BORKED;
1696 borked = ap_dev->state == AP_STATE_BORKED;
1697 spin_unlock_bh(&ap_dev->lock);
1698 if (borked) /* Remove broken device */
1699 device_unregister(dev);
1700 put_device(dev);
1701 if (!borked)
1702 continue;
1703 }
1704 if (rc)
1705 continue;
1706 ap_dev = kzalloc(sizeof(*ap_dev), GFP_KERNEL);
1707 if (!ap_dev)
1708 break;
1709 ap_dev->qid = qid;
1710 ap_dev->state = AP_STATE_RESET_START;
1711 ap_dev->interrupt = AP_INTR_DISABLED;
1712 ap_dev->queue_depth = queue_depth;
1713 ap_dev->raw_hwtype = device_type;
1714 ap_dev->device_type = device_type;
1715 ap_dev->functions = device_functions;
1716 spin_lock_init(&ap_dev->lock);
1717 INIT_LIST_HEAD(&ap_dev->pendingq);
1718 INIT_LIST_HEAD(&ap_dev->requestq);
1719 INIT_LIST_HEAD(&ap_dev->list);
1720 setup_timer(&ap_dev->timeout, ap_request_timeout,
1721 (unsigned long) ap_dev);
1722
1723 ap_dev->device.bus = &ap_bus_type;
1724 ap_dev->device.parent = ap_root_device;
1725 rc = dev_set_name(&ap_dev->device, "card%02x",
1726 AP_QID_DEVICE(ap_dev->qid));
1727 if (rc) {
1728 kfree(ap_dev);
1729 continue;
1730 }
1731 /* Add to list of devices */
1732 spin_lock_bh(&ap_device_list_lock);
1733 list_add(&ap_dev->list, &ap_device_list);
1734 spin_unlock_bh(&ap_device_list_lock);
1735 /* Start with a device reset */
1736 spin_lock_bh(&ap_dev->lock);
1737 ap_sm_wait(ap_sm_event(ap_dev, AP_EVENT_POLL));
1738 spin_unlock_bh(&ap_dev->lock);
1739 /* Register device */
1740 ap_dev->device.release = ap_device_release;
1741 rc = device_register(&ap_dev->device);
1742 if (rc) {
1743 spin_lock_bh(&ap_dev->lock);
1744 list_del_init(&ap_dev->list);
1745 spin_unlock_bh(&ap_dev->lock);
1746 put_device(&ap_dev->device);
1747 continue;
1748 }
1749 /* Add device attributes. */
1750 rc = sysfs_create_group(&ap_dev->device.kobj,
1751 &ap_dev_attr_group);
1752 if (rc) {
1753 device_unregister(&ap_dev->device);
1754 continue;
1755 }
1756 }
1757 out:
1758 mod_timer(&ap_config_timer, jiffies + ap_config_time * HZ);
1759 }
1760
1761 static void ap_config_timeout(unsigned long ptr)
1762 {
1763 if (ap_suspend_flag)
1764 return;
1765 queue_work(system_long_wq, &ap_scan_work);
1766 }
1767
1768 static void ap_reset_domain(void)
1769 {
1770 int i;
1771
1772 if (ap_domain_index == -1 || !ap_test_config_domain(ap_domain_index))
1773 return;
1774 for (i = 0; i < AP_DEVICES; i++)
1775 ap_reset_queue(AP_MKQID(i, ap_domain_index));
1776 }
1777
1778 static void ap_reset_all(void)
1779 {
1780 int i, j;
1781
1782 for (i = 0; i < AP_DOMAINS; i++) {
1783 if (!ap_test_config_domain(i))
1784 continue;
1785 for (j = 0; j < AP_DEVICES; j++) {
1786 if (!ap_test_config_card_id(j))
1787 continue;
1788 ap_reset_queue(AP_MKQID(j, i));
1789 }
1790 }
1791 }
1792
1793 static struct reset_call ap_reset_call = {
1794 .fn = ap_reset_all,
1795 };
1796
1797 /**
1798 * ap_module_init(): The module initialization code.
1799 *
1800 * Initializes the module.
1801 */
1802 int __init ap_module_init(void)
1803 {
1804 int max_domain_id;
1805 int rc, i;
1806
1807 if (ap_instructions_available() != 0) {
1808 pr_warn("The hardware system does not support AP instructions\n");
1809 return -ENODEV;
1810 }
1811
1812 /* Get AP configuration data if available */
1813 ap_init_configuration();
1814
1815 if (ap_configuration)
1816 max_domain_id = ap_max_domain_id ? : (AP_DOMAINS - 1);
1817 else
1818 max_domain_id = 15;
1819 if (ap_domain_index < -1 || ap_domain_index > max_domain_id) {
1820 pr_warn("%d is not a valid cryptographic domain\n",
1821 ap_domain_index);
1822 rc = -EINVAL;
1823 goto out_free;
1824 }
1825 /* In resume callback we need to know if the user had set the domain.
1826 * If so, we can not just reset it.
1827 */
1828 if (ap_domain_index >= 0)
1829 user_set_domain = 1;
1830
1831 if (ap_interrupts_available()) {
1832 rc = register_adapter_interrupt(&ap_airq);
1833 ap_airq_flag = (rc == 0);
1834 }
1835
1836 register_reset_call(&ap_reset_call);
1837
1838 /* Create /sys/bus/ap. */
1839 rc = bus_register(&ap_bus_type);
1840 if (rc)
1841 goto out;
1842 for (i = 0; ap_bus_attrs[i]; i++) {
1843 rc = bus_create_file(&ap_bus_type, ap_bus_attrs[i]);
1844 if (rc)
1845 goto out_bus;
1846 }
1847
1848 /* Create /sys/devices/ap. */
1849 ap_root_device = root_device_register("ap");
1850 rc = PTR_RET(ap_root_device);
1851 if (rc)
1852 goto out_bus;
1853
1854 /* Setup the AP bus rescan timer. */
1855 setup_timer(&ap_config_timer, ap_config_timeout, 0);
1856
1857 /*
1858 * Setup the high resultion poll timer.
1859 * If we are running under z/VM adjust polling to z/VM polling rate.
1860 */
1861 if (MACHINE_IS_VM)
1862 poll_timeout = 1500000;
1863 spin_lock_init(&ap_poll_timer_lock);
1864 hrtimer_init(&ap_poll_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
1865 ap_poll_timer.function = ap_poll_timeout;
1866
1867 /* Start the low priority AP bus poll thread. */
1868 if (ap_thread_flag) {
1869 rc = ap_poll_thread_start();
1870 if (rc)
1871 goto out_work;
1872 }
1873
1874 rc = register_pm_notifier(&ap_power_notifier);
1875 if (rc)
1876 goto out_pm;
1877
1878 queue_work(system_long_wq, &ap_scan_work);
1879 initialised = true;
1880
1881 return 0;
1882
1883 out_pm:
1884 ap_poll_thread_stop();
1885 out_work:
1886 hrtimer_cancel(&ap_poll_timer);
1887 root_device_unregister(ap_root_device);
1888 out_bus:
1889 while (i--)
1890 bus_remove_file(&ap_bus_type, ap_bus_attrs[i]);
1891 bus_unregister(&ap_bus_type);
1892 out:
1893 unregister_reset_call(&ap_reset_call);
1894 if (ap_using_interrupts())
1895 unregister_adapter_interrupt(&ap_airq);
1896 out_free:
1897 kfree(ap_configuration);
1898 return rc;
1899 }
1900
1901 /**
1902 * ap_modules_exit(): The module termination code
1903 *
1904 * Terminates the module.
1905 */
1906 void ap_module_exit(void)
1907 {
1908 int i;
1909
1910 initialised = false;
1911 ap_reset_domain();
1912 ap_poll_thread_stop();
1913 del_timer_sync(&ap_config_timer);
1914 hrtimer_cancel(&ap_poll_timer);
1915 tasklet_kill(&ap_tasklet);
1916 bus_for_each_dev(&ap_bus_type, NULL, NULL, __ap_devices_unregister);
1917 for (i = 0; ap_bus_attrs[i]; i++)
1918 bus_remove_file(&ap_bus_type, ap_bus_attrs[i]);
1919 unregister_pm_notifier(&ap_power_notifier);
1920 root_device_unregister(ap_root_device);
1921 bus_unregister(&ap_bus_type);
1922 kfree(ap_configuration);
1923 unregister_reset_call(&ap_reset_call);
1924 if (ap_using_interrupts())
1925 unregister_adapter_interrupt(&ap_airq);
1926 }
1927
1928 module_init(ap_module_init);
1929 module_exit(ap_module_exit);
This page took 0.070923 seconds and 6 git commands to generate.