Merge branch 'x86-headers-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[deliverable/linux.git] / drivers / s390 / crypto / ap_bus.c
1 /*
2 * Copyright IBM Corp. 2006, 2012
3 * Author(s): Cornelia Huck <cornelia.huck@de.ibm.com>
4 * Martin Schwidefsky <schwidefsky@de.ibm.com>
5 * Ralph Wuerthner <rwuerthn@de.ibm.com>
6 * Felix Beck <felix.beck@de.ibm.com>
7 * Holger Dengler <hd@linux.vnet.ibm.com>
8 *
9 * Adjunct processor bus.
10 *
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; either version 2, or (at your option)
14 * any later version.
15 *
16 * This program is distributed in the hope that it will be useful,
17 * but WITHOUT ANY WARRANTY; without even the implied warranty of
18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 * GNU General Public License for more details.
20 *
21 * You should have received a copy of the GNU General Public License
22 * along with this program; if not, write to the Free Software
23 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
24 */
25
26 #define KMSG_COMPONENT "ap"
27 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
28
29 #include <linux/kernel_stat.h>
30 #include <linux/module.h>
31 #include <linux/init.h>
32 #include <linux/delay.h>
33 #include <linux/err.h>
34 #include <linux/interrupt.h>
35 #include <linux/workqueue.h>
36 #include <linux/slab.h>
37 #include <linux/notifier.h>
38 #include <linux/kthread.h>
39 #include <linux/mutex.h>
40 #include <linux/suspend.h>
41 #include <asm/reset.h>
42 #include <asm/airq.h>
43 #include <linux/atomic.h>
44 #include <asm/isc.h>
45 #include <linux/hrtimer.h>
46 #include <linux/ktime.h>
47 #include <asm/facility.h>
48 #include <linux/crypto.h>
49
50 #include "ap_bus.h"
51
52 /*
53 * Module description.
54 */
55 MODULE_AUTHOR("IBM Corporation");
56 MODULE_DESCRIPTION("Adjunct Processor Bus driver, " \
57 "Copyright IBM Corp. 2006, 2012");
58 MODULE_LICENSE("GPL");
59 MODULE_ALIAS_CRYPTO("z90crypt");
60
61 /*
62 * Module parameter
63 */
64 int ap_domain_index = -1; /* Adjunct Processor Domain Index */
65 module_param_named(domain, ap_domain_index, int, S_IRUSR|S_IRGRP);
66 MODULE_PARM_DESC(domain, "domain index for ap devices");
67 EXPORT_SYMBOL(ap_domain_index);
68
69 static int ap_thread_flag = 0;
70 module_param_named(poll_thread, ap_thread_flag, int, S_IRUSR|S_IRGRP);
71 MODULE_PARM_DESC(poll_thread, "Turn on/off poll thread, default is 0 (off).");
72
73 static struct device *ap_root_device = NULL;
74 static struct ap_config_info *ap_configuration;
75 static DEFINE_SPINLOCK(ap_device_list_lock);
76 static LIST_HEAD(ap_device_list);
77 static bool initialised;
78
79 /*
80 * Workqueue timer for bus rescan.
81 */
82 static struct timer_list ap_config_timer;
83 static int ap_config_time = AP_CONFIG_TIME;
84 static void ap_scan_bus(struct work_struct *);
85 static DECLARE_WORK(ap_scan_work, ap_scan_bus);
86
87 /*
88 * Tasklet & timer for AP request polling and interrupts
89 */
90 static void ap_tasklet_fn(unsigned long);
91 static DECLARE_TASKLET(ap_tasklet, ap_tasklet_fn, 0);
92 static atomic_t ap_poll_requests = ATOMIC_INIT(0);
93 static DECLARE_WAIT_QUEUE_HEAD(ap_poll_wait);
94 static struct task_struct *ap_poll_kthread = NULL;
95 static DEFINE_MUTEX(ap_poll_thread_mutex);
96 static DEFINE_SPINLOCK(ap_poll_timer_lock);
97 static struct hrtimer ap_poll_timer;
98 /* In LPAR poll with 4kHz frequency. Poll every 250000 nanoseconds.
99 * If z/VM change to 1500000 nanoseconds to adjust to z/VM polling.*/
100 static unsigned long long poll_timeout = 250000;
101
102 /* Suspend flag */
103 static int ap_suspend_flag;
104 /* Maximum domain id */
105 static int ap_max_domain_id;
106 /* Flag to check if domain was set through module parameter domain=. This is
107 * important when supsend and resume is done in a z/VM environment where the
108 * domain might change. */
109 static int user_set_domain = 0;
110 static struct bus_type ap_bus_type;
111
112 /* Adapter interrupt definitions */
113 static void ap_interrupt_handler(struct airq_struct *airq);
114
115 static int ap_airq_flag;
116
117 static struct airq_struct ap_airq = {
118 .handler = ap_interrupt_handler,
119 .isc = AP_ISC,
120 };
121
122 /**
123 * ap_using_interrupts() - Returns non-zero if interrupt support is
124 * available.
125 */
126 static inline int ap_using_interrupts(void)
127 {
128 return ap_airq_flag;
129 }
130
131 /**
132 * ap_intructions_available() - Test if AP instructions are available.
133 *
134 * Returns 0 if the AP instructions are installed.
135 */
136 static inline int ap_instructions_available(void)
137 {
138 register unsigned long reg0 asm ("0") = AP_MKQID(0,0);
139 register unsigned long reg1 asm ("1") = -ENODEV;
140 register unsigned long reg2 asm ("2") = 0UL;
141
142 asm volatile(
143 " .long 0xb2af0000\n" /* PQAP(TAPQ) */
144 "0: la %1,0\n"
145 "1:\n"
146 EX_TABLE(0b, 1b)
147 : "+d" (reg0), "+d" (reg1), "+d" (reg2) : : "cc" );
148 return reg1;
149 }
150
151 /**
152 * ap_interrupts_available(): Test if AP interrupts are available.
153 *
154 * Returns 1 if AP interrupts are available.
155 */
156 static int ap_interrupts_available(void)
157 {
158 return test_facility(65);
159 }
160
161 /**
162 * ap_configuration_available(): Test if AP configuration
163 * information is available.
164 *
165 * Returns 1 if AP configuration information is available.
166 */
167 static int ap_configuration_available(void)
168 {
169 return test_facility(12);
170 }
171
172 static inline struct ap_queue_status
173 __pqap_tapq(ap_qid_t qid, unsigned long *info)
174 {
175 register unsigned long reg0 asm ("0") = qid;
176 register struct ap_queue_status reg1 asm ("1");
177 register unsigned long reg2 asm ("2") = 0UL;
178
179 asm volatile(".long 0xb2af0000" /* PQAP(TAPQ) */
180 : "+d" (reg0), "=d" (reg1), "+d" (reg2) : : "cc");
181 *info = reg2;
182 return reg1;
183 }
184
185 /**
186 * ap_test_queue(): Test adjunct processor queue.
187 * @qid: The AP queue number
188 * @info: Pointer to queue descriptor
189 *
190 * Returns AP queue status structure.
191 */
192 static inline struct ap_queue_status
193 ap_test_queue(ap_qid_t qid, unsigned long *info)
194 {
195 struct ap_queue_status aqs;
196 unsigned long _info;
197
198 if (test_facility(15))
199 qid |= 1UL << 23; /* set APFT T bit*/
200 aqs = __pqap_tapq(qid, &_info);
201 if (info)
202 *info = _info;
203 return aqs;
204 }
205
206 /**
207 * ap_reset_queue(): Reset adjunct processor queue.
208 * @qid: The AP queue number
209 *
210 * Returns AP queue status structure.
211 */
212 static inline struct ap_queue_status ap_reset_queue(ap_qid_t qid)
213 {
214 register unsigned long reg0 asm ("0") = qid | 0x01000000UL;
215 register struct ap_queue_status reg1 asm ("1");
216 register unsigned long reg2 asm ("2") = 0UL;
217
218 asm volatile(
219 ".long 0xb2af0000" /* PQAP(RAPQ) */
220 : "+d" (reg0), "=d" (reg1), "+d" (reg2) : : "cc");
221 return reg1;
222 }
223
224 /**
225 * ap_queue_interruption_control(): Enable interruption for a specific AP.
226 * @qid: The AP queue number
227 * @ind: The notification indicator byte
228 *
229 * Returns AP queue status.
230 */
231 static inline struct ap_queue_status
232 ap_queue_interruption_control(ap_qid_t qid, void *ind)
233 {
234 register unsigned long reg0 asm ("0") = qid | 0x03000000UL;
235 register unsigned long reg1_in asm ("1") = 0x0000800000000000UL | AP_ISC;
236 register struct ap_queue_status reg1_out asm ("1");
237 register void *reg2 asm ("2") = ind;
238 asm volatile(
239 ".long 0xb2af0000" /* PQAP(AQIC) */
240 : "+d" (reg0), "+d" (reg1_in), "=d" (reg1_out), "+d" (reg2)
241 :
242 : "cc" );
243 return reg1_out;
244 }
245
246 /**
247 * ap_query_configuration(): Get AP configuration data
248 *
249 * Returns 0 on success, or -EOPNOTSUPP.
250 */
251 static inline int __ap_query_configuration(void)
252 {
253 register unsigned long reg0 asm ("0") = 0x04000000UL;
254 register unsigned long reg1 asm ("1") = -EINVAL;
255 register void *reg2 asm ("2") = (void *) ap_configuration;
256
257 asm volatile(
258 ".long 0xb2af0000\n" /* PQAP(QCI) */
259 "0: la %1,0\n"
260 "1:\n"
261 EX_TABLE(0b, 1b)
262 : "+d" (reg0), "+d" (reg1), "+d" (reg2)
263 :
264 : "cc");
265
266 return reg1;
267 }
268
269 static inline int ap_query_configuration(void)
270 {
271 if (!ap_configuration)
272 return -EOPNOTSUPP;
273 return __ap_query_configuration();
274 }
275
276 /**
277 * ap_init_configuration(): Allocate and query configuration array.
278 */
279 static void ap_init_configuration(void)
280 {
281 if (!ap_configuration_available())
282 return;
283
284 ap_configuration = kzalloc(sizeof(*ap_configuration), GFP_KERNEL);
285 if (!ap_configuration)
286 return;
287 if (ap_query_configuration() != 0) {
288 kfree(ap_configuration);
289 ap_configuration = NULL;
290 return;
291 }
292 }
293
294 /*
295 * ap_test_config(): helper function to extract the nrth bit
296 * within the unsigned int array field.
297 */
298 static inline int ap_test_config(unsigned int *field, unsigned int nr)
299 {
300 return ap_test_bit((field + (nr >> 5)), (nr & 0x1f));
301 }
302
303 /*
304 * ap_test_config_card_id(): Test, whether an AP card ID is configured.
305 * @id AP card ID
306 *
307 * Returns 0 if the card is not configured
308 * 1 if the card is configured or
309 * if the configuration information is not available
310 */
311 static inline int ap_test_config_card_id(unsigned int id)
312 {
313 if (!ap_configuration) /* QCI not supported */
314 return 1;
315 return ap_test_config(ap_configuration->apm, id);
316 }
317
318 /*
319 * ap_test_config_domain(): Test, whether an AP usage domain is configured.
320 * @domain AP usage domain ID
321 *
322 * Returns 0 if the usage domain is not configured
323 * 1 if the usage domain is configured or
324 * if the configuration information is not available
325 */
326 static inline int ap_test_config_domain(unsigned int domain)
327 {
328 if (!ap_configuration) /* QCI not supported */
329 return domain < 16;
330 return ap_test_config(ap_configuration->aqm, domain);
331 }
332
333 /**
334 * ap_queue_enable_interruption(): Enable interruption on an AP.
335 * @qid: The AP queue number
336 * @ind: the notification indicator byte
337 *
338 * Enables interruption on AP queue via ap_queue_interruption_control(). Based
339 * on the return value it waits a while and tests the AP queue if interrupts
340 * have been switched on using ap_test_queue().
341 */
342 static int ap_queue_enable_interruption(struct ap_device *ap_dev, void *ind)
343 {
344 struct ap_queue_status status;
345
346 status = ap_queue_interruption_control(ap_dev->qid, ind);
347 switch (status.response_code) {
348 case AP_RESPONSE_NORMAL:
349 case AP_RESPONSE_OTHERWISE_CHANGED:
350 return 0;
351 case AP_RESPONSE_Q_NOT_AVAIL:
352 case AP_RESPONSE_DECONFIGURED:
353 case AP_RESPONSE_CHECKSTOPPED:
354 case AP_RESPONSE_INVALID_ADDRESS:
355 pr_err("Registering adapter interrupts for AP %d failed\n",
356 AP_QID_DEVICE(ap_dev->qid));
357 return -EOPNOTSUPP;
358 case AP_RESPONSE_RESET_IN_PROGRESS:
359 case AP_RESPONSE_BUSY:
360 default:
361 return -EBUSY;
362 }
363 }
364
365 static inline struct ap_queue_status
366 __nqap(ap_qid_t qid, unsigned long long psmid, void *msg, size_t length)
367 {
368 typedef struct { char _[length]; } msgblock;
369 register unsigned long reg0 asm ("0") = qid | 0x40000000UL;
370 register struct ap_queue_status reg1 asm ("1");
371 register unsigned long reg2 asm ("2") = (unsigned long) msg;
372 register unsigned long reg3 asm ("3") = (unsigned long) length;
373 register unsigned long reg4 asm ("4") = (unsigned int) (psmid >> 32);
374 register unsigned long reg5 asm ("5") = psmid & 0xffffffff;
375
376 asm volatile (
377 "0: .long 0xb2ad0042\n" /* NQAP */
378 " brc 2,0b"
379 : "+d" (reg0), "=d" (reg1), "+d" (reg2), "+d" (reg3)
380 : "d" (reg4), "d" (reg5), "m" (*(msgblock *) msg)
381 : "cc");
382 return reg1;
383 }
384
385 /**
386 * __ap_send(): Send message to adjunct processor queue.
387 * @qid: The AP queue number
388 * @psmid: The program supplied message identifier
389 * @msg: The message text
390 * @length: The message length
391 * @special: Special Bit
392 *
393 * Returns AP queue status structure.
394 * Condition code 1 on NQAP can't happen because the L bit is 1.
395 * Condition code 2 on NQAP also means the send is incomplete,
396 * because a segment boundary was reached. The NQAP is repeated.
397 */
398 static inline struct ap_queue_status
399 __ap_send(ap_qid_t qid, unsigned long long psmid, void *msg, size_t length,
400 unsigned int special)
401 {
402 if (special == 1)
403 qid |= 0x400000UL;
404 return __nqap(qid, psmid, msg, length);
405 }
406
407 int ap_send(ap_qid_t qid, unsigned long long psmid, void *msg, size_t length)
408 {
409 struct ap_queue_status status;
410
411 status = __ap_send(qid, psmid, msg, length, 0);
412 switch (status.response_code) {
413 case AP_RESPONSE_NORMAL:
414 return 0;
415 case AP_RESPONSE_Q_FULL:
416 case AP_RESPONSE_RESET_IN_PROGRESS:
417 return -EBUSY;
418 case AP_RESPONSE_REQ_FAC_NOT_INST:
419 return -EINVAL;
420 default: /* Device is gone. */
421 return -ENODEV;
422 }
423 }
424 EXPORT_SYMBOL(ap_send);
425
426 /**
427 * __ap_recv(): Receive message from adjunct processor queue.
428 * @qid: The AP queue number
429 * @psmid: Pointer to program supplied message identifier
430 * @msg: The message text
431 * @length: The message length
432 *
433 * Returns AP queue status structure.
434 * Condition code 1 on DQAP means the receive has taken place
435 * but only partially. The response is incomplete, hence the
436 * DQAP is repeated.
437 * Condition code 2 on DQAP also means the receive is incomplete,
438 * this time because a segment boundary was reached. Again, the
439 * DQAP is repeated.
440 * Note that gpr2 is used by the DQAP instruction to keep track of
441 * any 'residual' length, in case the instruction gets interrupted.
442 * Hence it gets zeroed before the instruction.
443 */
444 static inline struct ap_queue_status
445 __ap_recv(ap_qid_t qid, unsigned long long *psmid, void *msg, size_t length)
446 {
447 typedef struct { char _[length]; } msgblock;
448 register unsigned long reg0 asm("0") = qid | 0x80000000UL;
449 register struct ap_queue_status reg1 asm ("1");
450 register unsigned long reg2 asm("2") = 0UL;
451 register unsigned long reg4 asm("4") = (unsigned long) msg;
452 register unsigned long reg5 asm("5") = (unsigned long) length;
453 register unsigned long reg6 asm("6") = 0UL;
454 register unsigned long reg7 asm("7") = 0UL;
455
456
457 asm volatile(
458 "0: .long 0xb2ae0064\n" /* DQAP */
459 " brc 6,0b\n"
460 : "+d" (reg0), "=d" (reg1), "+d" (reg2),
461 "+d" (reg4), "+d" (reg5), "+d" (reg6), "+d" (reg7),
462 "=m" (*(msgblock *) msg) : : "cc" );
463 *psmid = (((unsigned long long) reg6) << 32) + reg7;
464 return reg1;
465 }
466
467 int ap_recv(ap_qid_t qid, unsigned long long *psmid, void *msg, size_t length)
468 {
469 struct ap_queue_status status;
470
471 status = __ap_recv(qid, psmid, msg, length);
472 switch (status.response_code) {
473 case AP_RESPONSE_NORMAL:
474 return 0;
475 case AP_RESPONSE_NO_PENDING_REPLY:
476 if (status.queue_empty)
477 return -ENOENT;
478 return -EBUSY;
479 case AP_RESPONSE_RESET_IN_PROGRESS:
480 return -EBUSY;
481 default:
482 return -ENODEV;
483 }
484 }
485 EXPORT_SYMBOL(ap_recv);
486
487 /**
488 * ap_query_queue(): Check if an AP queue is available.
489 * @qid: The AP queue number
490 * @queue_depth: Pointer to queue depth value
491 * @device_type: Pointer to device type value
492 * @facilities: Pointer to facility indicator
493 */
494 static int ap_query_queue(ap_qid_t qid, int *queue_depth, int *device_type,
495 unsigned int *facilities)
496 {
497 struct ap_queue_status status;
498 unsigned long info;
499 int nd;
500
501 if (!ap_test_config_card_id(AP_QID_DEVICE(qid)))
502 return -ENODEV;
503
504 status = ap_test_queue(qid, &info);
505 switch (status.response_code) {
506 case AP_RESPONSE_NORMAL:
507 *queue_depth = (int)(info & 0xff);
508 *device_type = (int)((info >> 24) & 0xff);
509 *facilities = (unsigned int)(info >> 32);
510 /* Update maximum domain id */
511 nd = (info >> 16) & 0xff;
512 if ((info & (1UL << 57)) && nd > 0)
513 ap_max_domain_id = nd;
514 return 0;
515 case AP_RESPONSE_Q_NOT_AVAIL:
516 case AP_RESPONSE_DECONFIGURED:
517 case AP_RESPONSE_CHECKSTOPPED:
518 case AP_RESPONSE_INVALID_ADDRESS:
519 return -ENODEV;
520 case AP_RESPONSE_RESET_IN_PROGRESS:
521 case AP_RESPONSE_OTHERWISE_CHANGED:
522 case AP_RESPONSE_BUSY:
523 return -EBUSY;
524 default:
525 BUG();
526 }
527 }
528
529 /* State machine definitions and helpers */
530
531 static void ap_sm_wait(enum ap_wait wait)
532 {
533 ktime_t hr_time;
534
535 switch (wait) {
536 case AP_WAIT_AGAIN:
537 case AP_WAIT_INTERRUPT:
538 if (ap_using_interrupts())
539 break;
540 if (ap_poll_kthread) {
541 wake_up(&ap_poll_wait);
542 break;
543 }
544 /* Fall through */
545 case AP_WAIT_TIMEOUT:
546 spin_lock_bh(&ap_poll_timer_lock);
547 if (!hrtimer_is_queued(&ap_poll_timer)) {
548 hr_time = ktime_set(0, poll_timeout);
549 hrtimer_forward_now(&ap_poll_timer, hr_time);
550 hrtimer_restart(&ap_poll_timer);
551 }
552 spin_unlock_bh(&ap_poll_timer_lock);
553 break;
554 case AP_WAIT_NONE:
555 default:
556 break;
557 }
558 }
559
560 static enum ap_wait ap_sm_nop(struct ap_device *ap_dev)
561 {
562 return AP_WAIT_NONE;
563 }
564
565 /**
566 * ap_sm_recv(): Receive pending reply messages from an AP device but do
567 * not change the state of the device.
568 * @ap_dev: pointer to the AP device
569 *
570 * Returns AP_WAIT_NONE, AP_WAIT_AGAIN, or AP_WAIT_INTERRUPT
571 */
572 static struct ap_queue_status ap_sm_recv(struct ap_device *ap_dev)
573 {
574 struct ap_queue_status status;
575 struct ap_message *ap_msg;
576
577 status = __ap_recv(ap_dev->qid, &ap_dev->reply->psmid,
578 ap_dev->reply->message, ap_dev->reply->length);
579 switch (status.response_code) {
580 case AP_RESPONSE_NORMAL:
581 atomic_dec(&ap_poll_requests);
582 ap_dev->queue_count--;
583 if (ap_dev->queue_count > 0)
584 mod_timer(&ap_dev->timeout,
585 jiffies + ap_dev->drv->request_timeout);
586 list_for_each_entry(ap_msg, &ap_dev->pendingq, list) {
587 if (ap_msg->psmid != ap_dev->reply->psmid)
588 continue;
589 list_del_init(&ap_msg->list);
590 ap_dev->pendingq_count--;
591 ap_msg->receive(ap_dev, ap_msg, ap_dev->reply);
592 break;
593 }
594 case AP_RESPONSE_NO_PENDING_REPLY:
595 if (!status.queue_empty || ap_dev->queue_count <= 0)
596 break;
597 /* The card shouldn't forget requests but who knows. */
598 atomic_sub(ap_dev->queue_count, &ap_poll_requests);
599 ap_dev->queue_count = 0;
600 list_splice_init(&ap_dev->pendingq, &ap_dev->requestq);
601 ap_dev->requestq_count += ap_dev->pendingq_count;
602 ap_dev->pendingq_count = 0;
603 break;
604 default:
605 break;
606 }
607 return status;
608 }
609
610 /**
611 * ap_sm_read(): Receive pending reply messages from an AP device.
612 * @ap_dev: pointer to the AP device
613 *
614 * Returns AP_WAIT_NONE, AP_WAIT_AGAIN, or AP_WAIT_INTERRUPT
615 */
616 static enum ap_wait ap_sm_read(struct ap_device *ap_dev)
617 {
618 struct ap_queue_status status;
619
620 status = ap_sm_recv(ap_dev);
621 switch (status.response_code) {
622 case AP_RESPONSE_NORMAL:
623 if (ap_dev->queue_count > 0) {
624 ap_dev->state = AP_STATE_WORKING;
625 return AP_WAIT_AGAIN;
626 }
627 ap_dev->state = AP_STATE_IDLE;
628 return AP_WAIT_NONE;
629 case AP_RESPONSE_NO_PENDING_REPLY:
630 if (ap_dev->queue_count > 0)
631 return AP_WAIT_INTERRUPT;
632 ap_dev->state = AP_STATE_IDLE;
633 return AP_WAIT_NONE;
634 default:
635 ap_dev->state = AP_STATE_BORKED;
636 return AP_WAIT_NONE;
637 }
638 }
639
640 /**
641 * ap_sm_write(): Send messages from the request queue to an AP device.
642 * @ap_dev: pointer to the AP device
643 *
644 * Returns AP_WAIT_NONE, AP_WAIT_AGAIN, or AP_WAIT_INTERRUPT
645 */
646 static enum ap_wait ap_sm_write(struct ap_device *ap_dev)
647 {
648 struct ap_queue_status status;
649 struct ap_message *ap_msg;
650
651 if (ap_dev->requestq_count <= 0)
652 return AP_WAIT_NONE;
653 /* Start the next request on the queue. */
654 ap_msg = list_entry(ap_dev->requestq.next, struct ap_message, list);
655 status = __ap_send(ap_dev->qid, ap_msg->psmid,
656 ap_msg->message, ap_msg->length, ap_msg->special);
657 switch (status.response_code) {
658 case AP_RESPONSE_NORMAL:
659 atomic_inc(&ap_poll_requests);
660 ap_dev->queue_count++;
661 if (ap_dev->queue_count == 1)
662 mod_timer(&ap_dev->timeout,
663 jiffies + ap_dev->drv->request_timeout);
664 list_move_tail(&ap_msg->list, &ap_dev->pendingq);
665 ap_dev->requestq_count--;
666 ap_dev->pendingq_count++;
667 if (ap_dev->queue_count < ap_dev->queue_depth) {
668 ap_dev->state = AP_STATE_WORKING;
669 return AP_WAIT_AGAIN;
670 }
671 /* fall through */
672 case AP_RESPONSE_Q_FULL:
673 ap_dev->state = AP_STATE_QUEUE_FULL;
674 return AP_WAIT_INTERRUPT;
675 case AP_RESPONSE_RESET_IN_PROGRESS:
676 ap_dev->state = AP_STATE_RESET_WAIT;
677 return AP_WAIT_TIMEOUT;
678 case AP_RESPONSE_MESSAGE_TOO_BIG:
679 case AP_RESPONSE_REQ_FAC_NOT_INST:
680 list_del_init(&ap_msg->list);
681 ap_dev->requestq_count--;
682 ap_msg->rc = -EINVAL;
683 ap_msg->receive(ap_dev, ap_msg, NULL);
684 return AP_WAIT_AGAIN;
685 default:
686 ap_dev->state = AP_STATE_BORKED;
687 return AP_WAIT_NONE;
688 }
689 }
690
691 /**
692 * ap_sm_read_write(): Send and receive messages to/from an AP device.
693 * @ap_dev: pointer to the AP device
694 *
695 * Returns AP_WAIT_NONE, AP_WAIT_AGAIN, or AP_WAIT_INTERRUPT
696 */
697 static enum ap_wait ap_sm_read_write(struct ap_device *ap_dev)
698 {
699 return min(ap_sm_read(ap_dev), ap_sm_write(ap_dev));
700 }
701
702 /**
703 * ap_sm_reset(): Reset an AP queue.
704 * @qid: The AP queue number
705 *
706 * Submit the Reset command to an AP queue.
707 */
708 static enum ap_wait ap_sm_reset(struct ap_device *ap_dev)
709 {
710 struct ap_queue_status status;
711
712 status = ap_reset_queue(ap_dev->qid);
713 switch (status.response_code) {
714 case AP_RESPONSE_NORMAL:
715 case AP_RESPONSE_RESET_IN_PROGRESS:
716 ap_dev->state = AP_STATE_RESET_WAIT;
717 ap_dev->interrupt = AP_INTR_DISABLED;
718 return AP_WAIT_TIMEOUT;
719 case AP_RESPONSE_BUSY:
720 return AP_WAIT_TIMEOUT;
721 case AP_RESPONSE_Q_NOT_AVAIL:
722 case AP_RESPONSE_DECONFIGURED:
723 case AP_RESPONSE_CHECKSTOPPED:
724 default:
725 ap_dev->state = AP_STATE_BORKED;
726 return AP_WAIT_NONE;
727 }
728 }
729
730 /**
731 * ap_sm_reset_wait(): Test queue for completion of the reset operation
732 * @ap_dev: pointer to the AP device
733 *
734 * Returns AP_POLL_IMMEDIATELY, AP_POLL_AFTER_TIMEROUT or 0.
735 */
736 static enum ap_wait ap_sm_reset_wait(struct ap_device *ap_dev)
737 {
738 struct ap_queue_status status;
739 unsigned long info;
740
741 if (ap_dev->queue_count > 0)
742 /* Try to read a completed message and get the status */
743 status = ap_sm_recv(ap_dev);
744 else
745 /* Get the status with TAPQ */
746 status = ap_test_queue(ap_dev->qid, &info);
747
748 switch (status.response_code) {
749 case AP_RESPONSE_NORMAL:
750 if (ap_using_interrupts() &&
751 ap_queue_enable_interruption(ap_dev,
752 ap_airq.lsi_ptr) == 0)
753 ap_dev->state = AP_STATE_SETIRQ_WAIT;
754 else
755 ap_dev->state = (ap_dev->queue_count > 0) ?
756 AP_STATE_WORKING : AP_STATE_IDLE;
757 return AP_WAIT_AGAIN;
758 case AP_RESPONSE_BUSY:
759 case AP_RESPONSE_RESET_IN_PROGRESS:
760 return AP_WAIT_TIMEOUT;
761 case AP_RESPONSE_Q_NOT_AVAIL:
762 case AP_RESPONSE_DECONFIGURED:
763 case AP_RESPONSE_CHECKSTOPPED:
764 default:
765 ap_dev->state = AP_STATE_BORKED;
766 return AP_WAIT_NONE;
767 }
768 }
769
770 /**
771 * ap_sm_setirq_wait(): Test queue for completion of the irq enablement
772 * @ap_dev: pointer to the AP device
773 *
774 * Returns AP_POLL_IMMEDIATELY, AP_POLL_AFTER_TIMEROUT or 0.
775 */
776 static enum ap_wait ap_sm_setirq_wait(struct ap_device *ap_dev)
777 {
778 struct ap_queue_status status;
779 unsigned long info;
780
781 if (ap_dev->queue_count > 0)
782 /* Try to read a completed message and get the status */
783 status = ap_sm_recv(ap_dev);
784 else
785 /* Get the status with TAPQ */
786 status = ap_test_queue(ap_dev->qid, &info);
787
788 if (status.int_enabled == 1) {
789 /* Irqs are now enabled */
790 ap_dev->interrupt = AP_INTR_ENABLED;
791 ap_dev->state = (ap_dev->queue_count > 0) ?
792 AP_STATE_WORKING : AP_STATE_IDLE;
793 }
794
795 switch (status.response_code) {
796 case AP_RESPONSE_NORMAL:
797 if (ap_dev->queue_count > 0)
798 return AP_WAIT_AGAIN;
799 /* fallthrough */
800 case AP_RESPONSE_NO_PENDING_REPLY:
801 return AP_WAIT_TIMEOUT;
802 default:
803 ap_dev->state = AP_STATE_BORKED;
804 return AP_WAIT_NONE;
805 }
806 }
807
808 /*
809 * AP state machine jump table
810 */
811 static ap_func_t *ap_jumptable[NR_AP_STATES][NR_AP_EVENTS] = {
812 [AP_STATE_RESET_START] = {
813 [AP_EVENT_POLL] = ap_sm_reset,
814 [AP_EVENT_TIMEOUT] = ap_sm_nop,
815 },
816 [AP_STATE_RESET_WAIT] = {
817 [AP_EVENT_POLL] = ap_sm_reset_wait,
818 [AP_EVENT_TIMEOUT] = ap_sm_nop,
819 },
820 [AP_STATE_SETIRQ_WAIT] = {
821 [AP_EVENT_POLL] = ap_sm_setirq_wait,
822 [AP_EVENT_TIMEOUT] = ap_sm_nop,
823 },
824 [AP_STATE_IDLE] = {
825 [AP_EVENT_POLL] = ap_sm_write,
826 [AP_EVENT_TIMEOUT] = ap_sm_nop,
827 },
828 [AP_STATE_WORKING] = {
829 [AP_EVENT_POLL] = ap_sm_read_write,
830 [AP_EVENT_TIMEOUT] = ap_sm_reset,
831 },
832 [AP_STATE_QUEUE_FULL] = {
833 [AP_EVENT_POLL] = ap_sm_read,
834 [AP_EVENT_TIMEOUT] = ap_sm_reset,
835 },
836 [AP_STATE_SUSPEND_WAIT] = {
837 [AP_EVENT_POLL] = ap_sm_read,
838 [AP_EVENT_TIMEOUT] = ap_sm_nop,
839 },
840 [AP_STATE_BORKED] = {
841 [AP_EVENT_POLL] = ap_sm_nop,
842 [AP_EVENT_TIMEOUT] = ap_sm_nop,
843 },
844 };
845
846 static inline enum ap_wait ap_sm_event(struct ap_device *ap_dev,
847 enum ap_event event)
848 {
849 return ap_jumptable[ap_dev->state][event](ap_dev);
850 }
851
852 static inline enum ap_wait ap_sm_event_loop(struct ap_device *ap_dev,
853 enum ap_event event)
854 {
855 enum ap_wait wait;
856
857 while ((wait = ap_sm_event(ap_dev, event)) == AP_WAIT_AGAIN)
858 ;
859 return wait;
860 }
861
862 /**
863 * ap_request_timeout(): Handling of request timeouts
864 * @data: Holds the AP device.
865 *
866 * Handles request timeouts.
867 */
868 static void ap_request_timeout(unsigned long data)
869 {
870 struct ap_device *ap_dev = (struct ap_device *) data;
871
872 if (ap_suspend_flag)
873 return;
874 spin_lock_bh(&ap_dev->lock);
875 ap_sm_wait(ap_sm_event(ap_dev, AP_EVENT_TIMEOUT));
876 spin_unlock_bh(&ap_dev->lock);
877 }
878
879 /**
880 * ap_poll_timeout(): AP receive polling for finished AP requests.
881 * @unused: Unused pointer.
882 *
883 * Schedules the AP tasklet using a high resolution timer.
884 */
885 static enum hrtimer_restart ap_poll_timeout(struct hrtimer *unused)
886 {
887 if (!ap_suspend_flag)
888 tasklet_schedule(&ap_tasklet);
889 return HRTIMER_NORESTART;
890 }
891
892 /**
893 * ap_interrupt_handler() - Schedule ap_tasklet on interrupt
894 * @airq: pointer to adapter interrupt descriptor
895 */
896 static void ap_interrupt_handler(struct airq_struct *airq)
897 {
898 inc_irq_stat(IRQIO_APB);
899 if (!ap_suspend_flag)
900 tasklet_schedule(&ap_tasklet);
901 }
902
903 /**
904 * ap_tasklet_fn(): Tasklet to poll all AP devices.
905 * @dummy: Unused variable
906 *
907 * Poll all AP devices on the bus.
908 */
909 static void ap_tasklet_fn(unsigned long dummy)
910 {
911 struct ap_device *ap_dev;
912 enum ap_wait wait = AP_WAIT_NONE;
913
914 /* Reset the indicator if interrupts are used. Thus new interrupts can
915 * be received. Doing it in the beginning of the tasklet is therefor
916 * important that no requests on any AP get lost.
917 */
918 if (ap_using_interrupts())
919 xchg(ap_airq.lsi_ptr, 0);
920
921 spin_lock(&ap_device_list_lock);
922 list_for_each_entry(ap_dev, &ap_device_list, list) {
923 spin_lock_bh(&ap_dev->lock);
924 wait = min(wait, ap_sm_event_loop(ap_dev, AP_EVENT_POLL));
925 spin_unlock_bh(&ap_dev->lock);
926 }
927 spin_unlock(&ap_device_list_lock);
928 ap_sm_wait(wait);
929 }
930
931 /**
932 * ap_poll_thread(): Thread that polls for finished requests.
933 * @data: Unused pointer
934 *
935 * AP bus poll thread. The purpose of this thread is to poll for
936 * finished requests in a loop if there is a "free" cpu - that is
937 * a cpu that doesn't have anything better to do. The polling stops
938 * as soon as there is another task or if all messages have been
939 * delivered.
940 */
941 static int ap_poll_thread(void *data)
942 {
943 DECLARE_WAITQUEUE(wait, current);
944
945 set_user_nice(current, MAX_NICE);
946 set_freezable();
947 while (!kthread_should_stop()) {
948 add_wait_queue(&ap_poll_wait, &wait);
949 set_current_state(TASK_INTERRUPTIBLE);
950 if (ap_suspend_flag ||
951 atomic_read(&ap_poll_requests) <= 0) {
952 schedule();
953 try_to_freeze();
954 }
955 set_current_state(TASK_RUNNING);
956 remove_wait_queue(&ap_poll_wait, &wait);
957 if (need_resched()) {
958 schedule();
959 try_to_freeze();
960 continue;
961 }
962 ap_tasklet_fn(0);
963 } while (!kthread_should_stop());
964 return 0;
965 }
966
967 static int ap_poll_thread_start(void)
968 {
969 int rc;
970
971 if (ap_using_interrupts() || ap_poll_kthread)
972 return 0;
973 mutex_lock(&ap_poll_thread_mutex);
974 ap_poll_kthread = kthread_run(ap_poll_thread, NULL, "appoll");
975 rc = PTR_RET(ap_poll_kthread);
976 if (rc)
977 ap_poll_kthread = NULL;
978 mutex_unlock(&ap_poll_thread_mutex);
979 return rc;
980 }
981
982 static void ap_poll_thread_stop(void)
983 {
984 if (!ap_poll_kthread)
985 return;
986 mutex_lock(&ap_poll_thread_mutex);
987 kthread_stop(ap_poll_kthread);
988 ap_poll_kthread = NULL;
989 mutex_unlock(&ap_poll_thread_mutex);
990 }
991
992 /**
993 * ap_queue_message(): Queue a request to an AP device.
994 * @ap_dev: The AP device to queue the message to
995 * @ap_msg: The message that is to be added
996 */
997 void ap_queue_message(struct ap_device *ap_dev, struct ap_message *ap_msg)
998 {
999 /* For asynchronous message handling a valid receive-callback
1000 * is required. */
1001 BUG_ON(!ap_msg->receive);
1002
1003 spin_lock_bh(&ap_dev->lock);
1004 /* Queue the message. */
1005 list_add_tail(&ap_msg->list, &ap_dev->requestq);
1006 ap_dev->requestq_count++;
1007 ap_dev->total_request_count++;
1008 /* Send/receive as many request from the queue as possible. */
1009 ap_sm_wait(ap_sm_event_loop(ap_dev, AP_EVENT_POLL));
1010 spin_unlock_bh(&ap_dev->lock);
1011 }
1012 EXPORT_SYMBOL(ap_queue_message);
1013
1014 /**
1015 * ap_cancel_message(): Cancel a crypto request.
1016 * @ap_dev: The AP device that has the message queued
1017 * @ap_msg: The message that is to be removed
1018 *
1019 * Cancel a crypto request. This is done by removing the request
1020 * from the device pending or request queue. Note that the
1021 * request stays on the AP queue. When it finishes the message
1022 * reply will be discarded because the psmid can't be found.
1023 */
1024 void ap_cancel_message(struct ap_device *ap_dev, struct ap_message *ap_msg)
1025 {
1026 struct ap_message *tmp;
1027
1028 spin_lock_bh(&ap_dev->lock);
1029 if (!list_empty(&ap_msg->list)) {
1030 list_for_each_entry(tmp, &ap_dev->pendingq, list)
1031 if (tmp->psmid == ap_msg->psmid) {
1032 ap_dev->pendingq_count--;
1033 goto found;
1034 }
1035 ap_dev->requestq_count--;
1036 found:
1037 list_del_init(&ap_msg->list);
1038 }
1039 spin_unlock_bh(&ap_dev->lock);
1040 }
1041 EXPORT_SYMBOL(ap_cancel_message);
1042
1043 /*
1044 * AP device related attributes.
1045 */
1046 static ssize_t ap_hwtype_show(struct device *dev,
1047 struct device_attribute *attr, char *buf)
1048 {
1049 struct ap_device *ap_dev = to_ap_dev(dev);
1050 return snprintf(buf, PAGE_SIZE, "%d\n", ap_dev->device_type);
1051 }
1052
1053 static DEVICE_ATTR(hwtype, 0444, ap_hwtype_show, NULL);
1054
1055 static ssize_t ap_raw_hwtype_show(struct device *dev,
1056 struct device_attribute *attr, char *buf)
1057 {
1058 struct ap_device *ap_dev = to_ap_dev(dev);
1059
1060 return snprintf(buf, PAGE_SIZE, "%d\n", ap_dev->raw_hwtype);
1061 }
1062
1063 static DEVICE_ATTR(raw_hwtype, 0444, ap_raw_hwtype_show, NULL);
1064
1065 static ssize_t ap_depth_show(struct device *dev, struct device_attribute *attr,
1066 char *buf)
1067 {
1068 struct ap_device *ap_dev = to_ap_dev(dev);
1069 return snprintf(buf, PAGE_SIZE, "%d\n", ap_dev->queue_depth);
1070 }
1071
1072 static DEVICE_ATTR(depth, 0444, ap_depth_show, NULL);
1073 static ssize_t ap_request_count_show(struct device *dev,
1074 struct device_attribute *attr,
1075 char *buf)
1076 {
1077 struct ap_device *ap_dev = to_ap_dev(dev);
1078 int rc;
1079
1080 spin_lock_bh(&ap_dev->lock);
1081 rc = snprintf(buf, PAGE_SIZE, "%d\n", ap_dev->total_request_count);
1082 spin_unlock_bh(&ap_dev->lock);
1083 return rc;
1084 }
1085
1086 static DEVICE_ATTR(request_count, 0444, ap_request_count_show, NULL);
1087
1088 static ssize_t ap_requestq_count_show(struct device *dev,
1089 struct device_attribute *attr, char *buf)
1090 {
1091 struct ap_device *ap_dev = to_ap_dev(dev);
1092 int rc;
1093
1094 spin_lock_bh(&ap_dev->lock);
1095 rc = snprintf(buf, PAGE_SIZE, "%d\n", ap_dev->requestq_count);
1096 spin_unlock_bh(&ap_dev->lock);
1097 return rc;
1098 }
1099
1100 static DEVICE_ATTR(requestq_count, 0444, ap_requestq_count_show, NULL);
1101
1102 static ssize_t ap_pendingq_count_show(struct device *dev,
1103 struct device_attribute *attr, char *buf)
1104 {
1105 struct ap_device *ap_dev = to_ap_dev(dev);
1106 int rc;
1107
1108 spin_lock_bh(&ap_dev->lock);
1109 rc = snprintf(buf, PAGE_SIZE, "%d\n", ap_dev->pendingq_count);
1110 spin_unlock_bh(&ap_dev->lock);
1111 return rc;
1112 }
1113
1114 static DEVICE_ATTR(pendingq_count, 0444, ap_pendingq_count_show, NULL);
1115
1116 static ssize_t ap_reset_show(struct device *dev,
1117 struct device_attribute *attr, char *buf)
1118 {
1119 struct ap_device *ap_dev = to_ap_dev(dev);
1120 int rc = 0;
1121
1122 spin_lock_bh(&ap_dev->lock);
1123 switch (ap_dev->state) {
1124 case AP_STATE_RESET_START:
1125 case AP_STATE_RESET_WAIT:
1126 rc = snprintf(buf, PAGE_SIZE, "Reset in progress.\n");
1127 break;
1128 case AP_STATE_WORKING:
1129 case AP_STATE_QUEUE_FULL:
1130 rc = snprintf(buf, PAGE_SIZE, "Reset Timer armed.\n");
1131 break;
1132 default:
1133 rc = snprintf(buf, PAGE_SIZE, "No Reset Timer set.\n");
1134 }
1135 spin_unlock_bh(&ap_dev->lock);
1136 return rc;
1137 }
1138
1139 static DEVICE_ATTR(reset, 0444, ap_reset_show, NULL);
1140
1141 static ssize_t ap_interrupt_show(struct device *dev,
1142 struct device_attribute *attr, char *buf)
1143 {
1144 struct ap_device *ap_dev = to_ap_dev(dev);
1145 int rc = 0;
1146
1147 spin_lock_bh(&ap_dev->lock);
1148 if (ap_dev->state == AP_STATE_SETIRQ_WAIT)
1149 rc = snprintf(buf, PAGE_SIZE, "Enable Interrupt pending.\n");
1150 else if (ap_dev->interrupt == AP_INTR_ENABLED)
1151 rc = snprintf(buf, PAGE_SIZE, "Interrupts enabled.\n");
1152 else
1153 rc = snprintf(buf, PAGE_SIZE, "Interrupts disabled.\n");
1154 spin_unlock_bh(&ap_dev->lock);
1155 return rc;
1156 }
1157
1158 static DEVICE_ATTR(interrupt, 0444, ap_interrupt_show, NULL);
1159
1160 static ssize_t ap_modalias_show(struct device *dev,
1161 struct device_attribute *attr, char *buf)
1162 {
1163 return sprintf(buf, "ap:t%02X\n", to_ap_dev(dev)->device_type);
1164 }
1165
1166 static DEVICE_ATTR(modalias, 0444, ap_modalias_show, NULL);
1167
1168 static ssize_t ap_functions_show(struct device *dev,
1169 struct device_attribute *attr, char *buf)
1170 {
1171 struct ap_device *ap_dev = to_ap_dev(dev);
1172 return snprintf(buf, PAGE_SIZE, "0x%08X\n", ap_dev->functions);
1173 }
1174
1175 static DEVICE_ATTR(ap_functions, 0444, ap_functions_show, NULL);
1176
1177 static struct attribute *ap_dev_attrs[] = {
1178 &dev_attr_hwtype.attr,
1179 &dev_attr_raw_hwtype.attr,
1180 &dev_attr_depth.attr,
1181 &dev_attr_request_count.attr,
1182 &dev_attr_requestq_count.attr,
1183 &dev_attr_pendingq_count.attr,
1184 &dev_attr_reset.attr,
1185 &dev_attr_interrupt.attr,
1186 &dev_attr_modalias.attr,
1187 &dev_attr_ap_functions.attr,
1188 NULL
1189 };
1190 static struct attribute_group ap_dev_attr_group = {
1191 .attrs = ap_dev_attrs
1192 };
1193
1194 /**
1195 * ap_bus_match()
1196 * @dev: Pointer to device
1197 * @drv: Pointer to device_driver
1198 *
1199 * AP bus driver registration/unregistration.
1200 */
1201 static int ap_bus_match(struct device *dev, struct device_driver *drv)
1202 {
1203 struct ap_device *ap_dev = to_ap_dev(dev);
1204 struct ap_driver *ap_drv = to_ap_drv(drv);
1205 struct ap_device_id *id;
1206
1207 /*
1208 * Compare device type of the device with the list of
1209 * supported types of the device_driver.
1210 */
1211 for (id = ap_drv->ids; id->match_flags; id++) {
1212 if ((id->match_flags & AP_DEVICE_ID_MATCH_DEVICE_TYPE) &&
1213 (id->dev_type != ap_dev->device_type))
1214 continue;
1215 return 1;
1216 }
1217 return 0;
1218 }
1219
1220 /**
1221 * ap_uevent(): Uevent function for AP devices.
1222 * @dev: Pointer to device
1223 * @env: Pointer to kobj_uevent_env
1224 *
1225 * It sets up a single environment variable DEV_TYPE which contains the
1226 * hardware device type.
1227 */
1228 static int ap_uevent (struct device *dev, struct kobj_uevent_env *env)
1229 {
1230 struct ap_device *ap_dev = to_ap_dev(dev);
1231 int retval = 0;
1232
1233 if (!ap_dev)
1234 return -ENODEV;
1235
1236 /* Set up DEV_TYPE environment variable. */
1237 retval = add_uevent_var(env, "DEV_TYPE=%04X", ap_dev->device_type);
1238 if (retval)
1239 return retval;
1240
1241 /* Add MODALIAS= */
1242 retval = add_uevent_var(env, "MODALIAS=ap:t%02X", ap_dev->device_type);
1243
1244 return retval;
1245 }
1246
1247 static int ap_dev_suspend(struct device *dev, pm_message_t state)
1248 {
1249 struct ap_device *ap_dev = to_ap_dev(dev);
1250
1251 /* Poll on the device until all requests are finished. */
1252 spin_lock_bh(&ap_dev->lock);
1253 ap_dev->state = AP_STATE_SUSPEND_WAIT;
1254 while (ap_sm_event(ap_dev, AP_EVENT_POLL) != AP_WAIT_NONE)
1255 ;
1256 ap_dev->state = AP_STATE_BORKED;
1257 spin_unlock_bh(&ap_dev->lock);
1258 return 0;
1259 }
1260
1261 static int ap_dev_resume(struct device *dev)
1262 {
1263 return 0;
1264 }
1265
1266 static void ap_bus_suspend(void)
1267 {
1268 ap_suspend_flag = 1;
1269 /*
1270 * Disable scanning for devices, thus we do not want to scan
1271 * for them after removing.
1272 */
1273 flush_work(&ap_scan_work);
1274 tasklet_disable(&ap_tasklet);
1275 }
1276
1277 static int __ap_devices_unregister(struct device *dev, void *dummy)
1278 {
1279 device_unregister(dev);
1280 return 0;
1281 }
1282
1283 static void ap_bus_resume(void)
1284 {
1285 int rc;
1286
1287 /* Unconditionally remove all AP devices */
1288 bus_for_each_dev(&ap_bus_type, NULL, NULL, __ap_devices_unregister);
1289 /* Reset thin interrupt setting */
1290 if (ap_interrupts_available() && !ap_using_interrupts()) {
1291 rc = register_adapter_interrupt(&ap_airq);
1292 ap_airq_flag = (rc == 0);
1293 }
1294 if (!ap_interrupts_available() && ap_using_interrupts()) {
1295 unregister_adapter_interrupt(&ap_airq);
1296 ap_airq_flag = 0;
1297 }
1298 /* Reset domain */
1299 if (!user_set_domain)
1300 ap_domain_index = -1;
1301 /* Get things going again */
1302 ap_suspend_flag = 0;
1303 if (ap_airq_flag)
1304 xchg(ap_airq.lsi_ptr, 0);
1305 tasklet_enable(&ap_tasklet);
1306 queue_work(system_long_wq, &ap_scan_work);
1307 }
1308
1309 static int ap_power_event(struct notifier_block *this, unsigned long event,
1310 void *ptr)
1311 {
1312 switch (event) {
1313 case PM_HIBERNATION_PREPARE:
1314 case PM_SUSPEND_PREPARE:
1315 ap_bus_suspend();
1316 break;
1317 case PM_POST_HIBERNATION:
1318 case PM_POST_SUSPEND:
1319 ap_bus_resume();
1320 break;
1321 default:
1322 break;
1323 }
1324 return NOTIFY_DONE;
1325 }
1326 static struct notifier_block ap_power_notifier = {
1327 .notifier_call = ap_power_event,
1328 };
1329
1330 static struct bus_type ap_bus_type = {
1331 .name = "ap",
1332 .match = &ap_bus_match,
1333 .uevent = &ap_uevent,
1334 .suspend = ap_dev_suspend,
1335 .resume = ap_dev_resume,
1336 };
1337
1338 static int ap_device_probe(struct device *dev)
1339 {
1340 struct ap_device *ap_dev = to_ap_dev(dev);
1341 struct ap_driver *ap_drv = to_ap_drv(dev->driver);
1342 int rc;
1343
1344 ap_dev->drv = ap_drv;
1345 rc = ap_drv->probe ? ap_drv->probe(ap_dev) : -ENODEV;
1346 if (rc)
1347 ap_dev->drv = NULL;
1348 return rc;
1349 }
1350
1351 /**
1352 * __ap_flush_queue(): Flush requests.
1353 * @ap_dev: Pointer to the AP device
1354 *
1355 * Flush all requests from the request/pending queue of an AP device.
1356 */
1357 static void __ap_flush_queue(struct ap_device *ap_dev)
1358 {
1359 struct ap_message *ap_msg, *next;
1360
1361 list_for_each_entry_safe(ap_msg, next, &ap_dev->pendingq, list) {
1362 list_del_init(&ap_msg->list);
1363 ap_dev->pendingq_count--;
1364 ap_msg->rc = -EAGAIN;
1365 ap_msg->receive(ap_dev, ap_msg, NULL);
1366 }
1367 list_for_each_entry_safe(ap_msg, next, &ap_dev->requestq, list) {
1368 list_del_init(&ap_msg->list);
1369 ap_dev->requestq_count--;
1370 ap_msg->rc = -EAGAIN;
1371 ap_msg->receive(ap_dev, ap_msg, NULL);
1372 }
1373 }
1374
1375 void ap_flush_queue(struct ap_device *ap_dev)
1376 {
1377 spin_lock_bh(&ap_dev->lock);
1378 __ap_flush_queue(ap_dev);
1379 spin_unlock_bh(&ap_dev->lock);
1380 }
1381 EXPORT_SYMBOL(ap_flush_queue);
1382
1383 static int ap_device_remove(struct device *dev)
1384 {
1385 struct ap_device *ap_dev = to_ap_dev(dev);
1386 struct ap_driver *ap_drv = ap_dev->drv;
1387
1388 ap_flush_queue(ap_dev);
1389 del_timer_sync(&ap_dev->timeout);
1390 spin_lock_bh(&ap_device_list_lock);
1391 list_del_init(&ap_dev->list);
1392 spin_unlock_bh(&ap_device_list_lock);
1393 if (ap_drv->remove)
1394 ap_drv->remove(ap_dev);
1395 spin_lock_bh(&ap_dev->lock);
1396 atomic_sub(ap_dev->queue_count, &ap_poll_requests);
1397 spin_unlock_bh(&ap_dev->lock);
1398 return 0;
1399 }
1400
1401 static void ap_device_release(struct device *dev)
1402 {
1403 kfree(to_ap_dev(dev));
1404 }
1405
1406 int ap_driver_register(struct ap_driver *ap_drv, struct module *owner,
1407 char *name)
1408 {
1409 struct device_driver *drv = &ap_drv->driver;
1410
1411 if (!initialised)
1412 return -ENODEV;
1413
1414 drv->bus = &ap_bus_type;
1415 drv->probe = ap_device_probe;
1416 drv->remove = ap_device_remove;
1417 drv->owner = owner;
1418 drv->name = name;
1419 return driver_register(drv);
1420 }
1421 EXPORT_SYMBOL(ap_driver_register);
1422
1423 void ap_driver_unregister(struct ap_driver *ap_drv)
1424 {
1425 driver_unregister(&ap_drv->driver);
1426 }
1427 EXPORT_SYMBOL(ap_driver_unregister);
1428
1429 void ap_bus_force_rescan(void)
1430 {
1431 if (ap_suspend_flag)
1432 return;
1433 /* processing a asynchronous bus rescan */
1434 del_timer(&ap_config_timer);
1435 queue_work(system_long_wq, &ap_scan_work);
1436 flush_work(&ap_scan_work);
1437 }
1438 EXPORT_SYMBOL(ap_bus_force_rescan);
1439
1440 /*
1441 * AP bus attributes.
1442 */
1443 static ssize_t ap_domain_show(struct bus_type *bus, char *buf)
1444 {
1445 return snprintf(buf, PAGE_SIZE, "%d\n", ap_domain_index);
1446 }
1447
1448 static BUS_ATTR(ap_domain, 0444, ap_domain_show, NULL);
1449
1450 static ssize_t ap_control_domain_mask_show(struct bus_type *bus, char *buf)
1451 {
1452 if (!ap_configuration) /* QCI not supported */
1453 return snprintf(buf, PAGE_SIZE, "not supported\n");
1454 if (!test_facility(76))
1455 /* format 0 - 16 bit domain field */
1456 return snprintf(buf, PAGE_SIZE, "%08x%08x\n",
1457 ap_configuration->adm[0],
1458 ap_configuration->adm[1]);
1459 /* format 1 - 256 bit domain field */
1460 return snprintf(buf, PAGE_SIZE,
1461 "0x%08x%08x%08x%08x%08x%08x%08x%08x\n",
1462 ap_configuration->adm[0], ap_configuration->adm[1],
1463 ap_configuration->adm[2], ap_configuration->adm[3],
1464 ap_configuration->adm[4], ap_configuration->adm[5],
1465 ap_configuration->adm[6], ap_configuration->adm[7]);
1466 }
1467
1468 static BUS_ATTR(ap_control_domain_mask, 0444,
1469 ap_control_domain_mask_show, NULL);
1470
1471 static ssize_t ap_config_time_show(struct bus_type *bus, char *buf)
1472 {
1473 return snprintf(buf, PAGE_SIZE, "%d\n", ap_config_time);
1474 }
1475
1476 static ssize_t ap_interrupts_show(struct bus_type *bus, char *buf)
1477 {
1478 return snprintf(buf, PAGE_SIZE, "%d\n",
1479 ap_using_interrupts() ? 1 : 0);
1480 }
1481
1482 static BUS_ATTR(ap_interrupts, 0444, ap_interrupts_show, NULL);
1483
1484 static ssize_t ap_config_time_store(struct bus_type *bus,
1485 const char *buf, size_t count)
1486 {
1487 int time;
1488
1489 if (sscanf(buf, "%d\n", &time) != 1 || time < 5 || time > 120)
1490 return -EINVAL;
1491 ap_config_time = time;
1492 mod_timer(&ap_config_timer, jiffies + ap_config_time * HZ);
1493 return count;
1494 }
1495
1496 static BUS_ATTR(config_time, 0644, ap_config_time_show, ap_config_time_store);
1497
1498 static ssize_t ap_poll_thread_show(struct bus_type *bus, char *buf)
1499 {
1500 return snprintf(buf, PAGE_SIZE, "%d\n", ap_poll_kthread ? 1 : 0);
1501 }
1502
1503 static ssize_t ap_poll_thread_store(struct bus_type *bus,
1504 const char *buf, size_t count)
1505 {
1506 int flag, rc;
1507
1508 if (sscanf(buf, "%d\n", &flag) != 1)
1509 return -EINVAL;
1510 if (flag) {
1511 rc = ap_poll_thread_start();
1512 if (rc)
1513 count = rc;
1514 } else
1515 ap_poll_thread_stop();
1516 return count;
1517 }
1518
1519 static BUS_ATTR(poll_thread, 0644, ap_poll_thread_show, ap_poll_thread_store);
1520
1521 static ssize_t poll_timeout_show(struct bus_type *bus, char *buf)
1522 {
1523 return snprintf(buf, PAGE_SIZE, "%llu\n", poll_timeout);
1524 }
1525
1526 static ssize_t poll_timeout_store(struct bus_type *bus, const char *buf,
1527 size_t count)
1528 {
1529 unsigned long long time;
1530 ktime_t hr_time;
1531
1532 /* 120 seconds = maximum poll interval */
1533 if (sscanf(buf, "%llu\n", &time) != 1 || time < 1 ||
1534 time > 120000000000ULL)
1535 return -EINVAL;
1536 poll_timeout = time;
1537 hr_time = ktime_set(0, poll_timeout);
1538
1539 spin_lock_bh(&ap_poll_timer_lock);
1540 hrtimer_cancel(&ap_poll_timer);
1541 hrtimer_set_expires(&ap_poll_timer, hr_time);
1542 hrtimer_start_expires(&ap_poll_timer, HRTIMER_MODE_ABS);
1543 spin_unlock_bh(&ap_poll_timer_lock);
1544
1545 return count;
1546 }
1547
1548 static BUS_ATTR(poll_timeout, 0644, poll_timeout_show, poll_timeout_store);
1549
1550 static ssize_t ap_max_domain_id_show(struct bus_type *bus, char *buf)
1551 {
1552 int max_domain_id;
1553
1554 if (ap_configuration)
1555 max_domain_id = ap_max_domain_id ? : -1;
1556 else
1557 max_domain_id = 15;
1558 return snprintf(buf, PAGE_SIZE, "%d\n", max_domain_id);
1559 }
1560
1561 static BUS_ATTR(ap_max_domain_id, 0444, ap_max_domain_id_show, NULL);
1562
1563 static struct bus_attribute *const ap_bus_attrs[] = {
1564 &bus_attr_ap_domain,
1565 &bus_attr_ap_control_domain_mask,
1566 &bus_attr_config_time,
1567 &bus_attr_poll_thread,
1568 &bus_attr_ap_interrupts,
1569 &bus_attr_poll_timeout,
1570 &bus_attr_ap_max_domain_id,
1571 NULL,
1572 };
1573
1574 /**
1575 * ap_select_domain(): Select an AP domain.
1576 *
1577 * Pick one of the 16 AP domains.
1578 */
1579 static int ap_select_domain(void)
1580 {
1581 int count, max_count, best_domain;
1582 struct ap_queue_status status;
1583 int i, j;
1584
1585 /*
1586 * We want to use a single domain. Either the one specified with
1587 * the "domain=" parameter or the domain with the maximum number
1588 * of devices.
1589 */
1590 if (ap_domain_index >= 0)
1591 /* Domain has already been selected. */
1592 return 0;
1593 best_domain = -1;
1594 max_count = 0;
1595 for (i = 0; i < AP_DOMAINS; i++) {
1596 if (!ap_test_config_domain(i))
1597 continue;
1598 count = 0;
1599 for (j = 0; j < AP_DEVICES; j++) {
1600 if (!ap_test_config_card_id(j))
1601 continue;
1602 status = ap_test_queue(AP_MKQID(j, i), NULL);
1603 if (status.response_code != AP_RESPONSE_NORMAL)
1604 continue;
1605 count++;
1606 }
1607 if (count > max_count) {
1608 max_count = count;
1609 best_domain = i;
1610 }
1611 }
1612 if (best_domain >= 0){
1613 ap_domain_index = best_domain;
1614 return 0;
1615 }
1616 return -ENODEV;
1617 }
1618
1619 /**
1620 * __ap_scan_bus(): Scan the AP bus.
1621 * @dev: Pointer to device
1622 * @data: Pointer to data
1623 *
1624 * Scan the AP bus for new devices.
1625 */
1626 static int __ap_scan_bus(struct device *dev, void *data)
1627 {
1628 return to_ap_dev(dev)->qid == (ap_qid_t)(unsigned long) data;
1629 }
1630
1631 static void ap_scan_bus(struct work_struct *unused)
1632 {
1633 struct ap_device *ap_dev;
1634 struct device *dev;
1635 ap_qid_t qid;
1636 int queue_depth = 0, device_type = 0;
1637 unsigned int device_functions = 0;
1638 int rc, i, borked;
1639
1640 ap_query_configuration();
1641 if (ap_select_domain() != 0)
1642 goto out;
1643
1644 for (i = 0; i < AP_DEVICES; i++) {
1645 qid = AP_MKQID(i, ap_domain_index);
1646 dev = bus_find_device(&ap_bus_type, NULL,
1647 (void *)(unsigned long)qid,
1648 __ap_scan_bus);
1649 rc = ap_query_queue(qid, &queue_depth, &device_type,
1650 &device_functions);
1651 if (dev) {
1652 ap_dev = to_ap_dev(dev);
1653 spin_lock_bh(&ap_dev->lock);
1654 if (rc == -ENODEV)
1655 ap_dev->state = AP_STATE_BORKED;
1656 borked = ap_dev->state == AP_STATE_BORKED;
1657 spin_unlock_bh(&ap_dev->lock);
1658 if (borked) /* Remove broken device */
1659 device_unregister(dev);
1660 put_device(dev);
1661 if (!borked)
1662 continue;
1663 }
1664 if (rc)
1665 continue;
1666 ap_dev = kzalloc(sizeof(*ap_dev), GFP_KERNEL);
1667 if (!ap_dev)
1668 break;
1669 ap_dev->qid = qid;
1670 ap_dev->state = AP_STATE_RESET_START;
1671 ap_dev->interrupt = AP_INTR_DISABLED;
1672 ap_dev->queue_depth = queue_depth;
1673 ap_dev->raw_hwtype = device_type;
1674 ap_dev->device_type = device_type;
1675 ap_dev->functions = device_functions;
1676 spin_lock_init(&ap_dev->lock);
1677 INIT_LIST_HEAD(&ap_dev->pendingq);
1678 INIT_LIST_HEAD(&ap_dev->requestq);
1679 INIT_LIST_HEAD(&ap_dev->list);
1680 setup_timer(&ap_dev->timeout, ap_request_timeout,
1681 (unsigned long) ap_dev);
1682
1683 ap_dev->device.bus = &ap_bus_type;
1684 ap_dev->device.parent = ap_root_device;
1685 rc = dev_set_name(&ap_dev->device, "card%02x",
1686 AP_QID_DEVICE(ap_dev->qid));
1687 if (rc) {
1688 kfree(ap_dev);
1689 continue;
1690 }
1691 /* Add to list of devices */
1692 spin_lock_bh(&ap_device_list_lock);
1693 list_add(&ap_dev->list, &ap_device_list);
1694 spin_unlock_bh(&ap_device_list_lock);
1695 /* Start with a device reset */
1696 spin_lock_bh(&ap_dev->lock);
1697 ap_sm_wait(ap_sm_event(ap_dev, AP_EVENT_POLL));
1698 spin_unlock_bh(&ap_dev->lock);
1699 /* Register device */
1700 ap_dev->device.release = ap_device_release;
1701 rc = device_register(&ap_dev->device);
1702 if (rc) {
1703 spin_lock_bh(&ap_dev->lock);
1704 list_del_init(&ap_dev->list);
1705 spin_unlock_bh(&ap_dev->lock);
1706 put_device(&ap_dev->device);
1707 continue;
1708 }
1709 /* Add device attributes. */
1710 rc = sysfs_create_group(&ap_dev->device.kobj,
1711 &ap_dev_attr_group);
1712 if (rc) {
1713 device_unregister(&ap_dev->device);
1714 continue;
1715 }
1716 }
1717 out:
1718 mod_timer(&ap_config_timer, jiffies + ap_config_time * HZ);
1719 }
1720
1721 static void ap_config_timeout(unsigned long ptr)
1722 {
1723 if (ap_suspend_flag)
1724 return;
1725 queue_work(system_long_wq, &ap_scan_work);
1726 }
1727
1728 static void ap_reset_domain(void)
1729 {
1730 int i;
1731
1732 if (ap_domain_index == -1 || !ap_test_config_domain(ap_domain_index))
1733 return;
1734 for (i = 0; i < AP_DEVICES; i++)
1735 ap_reset_queue(AP_MKQID(i, ap_domain_index));
1736 }
1737
1738 static void ap_reset_all(void)
1739 {
1740 int i, j;
1741
1742 for (i = 0; i < AP_DOMAINS; i++) {
1743 if (!ap_test_config_domain(i))
1744 continue;
1745 for (j = 0; j < AP_DEVICES; j++) {
1746 if (!ap_test_config_card_id(j))
1747 continue;
1748 ap_reset_queue(AP_MKQID(j, i));
1749 }
1750 }
1751 }
1752
1753 static struct reset_call ap_reset_call = {
1754 .fn = ap_reset_all,
1755 };
1756
1757 /**
1758 * ap_module_init(): The module initialization code.
1759 *
1760 * Initializes the module.
1761 */
1762 int __init ap_module_init(void)
1763 {
1764 int max_domain_id;
1765 int rc, i;
1766
1767 if (ap_instructions_available() != 0) {
1768 pr_warn("The hardware system does not support AP instructions\n");
1769 return -ENODEV;
1770 }
1771
1772 /* Get AP configuration data if available */
1773 ap_init_configuration();
1774
1775 if (ap_configuration)
1776 max_domain_id = ap_max_domain_id ? : (AP_DOMAINS - 1);
1777 else
1778 max_domain_id = 15;
1779 if (ap_domain_index < -1 || ap_domain_index > max_domain_id) {
1780 pr_warn("%d is not a valid cryptographic domain\n",
1781 ap_domain_index);
1782 return -EINVAL;
1783 }
1784 /* In resume callback we need to know if the user had set the domain.
1785 * If so, we can not just reset it.
1786 */
1787 if (ap_domain_index >= 0)
1788 user_set_domain = 1;
1789
1790 if (ap_interrupts_available()) {
1791 rc = register_adapter_interrupt(&ap_airq);
1792 ap_airq_flag = (rc == 0);
1793 }
1794
1795 register_reset_call(&ap_reset_call);
1796
1797 /* Create /sys/bus/ap. */
1798 rc = bus_register(&ap_bus_type);
1799 if (rc)
1800 goto out;
1801 for (i = 0; ap_bus_attrs[i]; i++) {
1802 rc = bus_create_file(&ap_bus_type, ap_bus_attrs[i]);
1803 if (rc)
1804 goto out_bus;
1805 }
1806
1807 /* Create /sys/devices/ap. */
1808 ap_root_device = root_device_register("ap");
1809 rc = PTR_RET(ap_root_device);
1810 if (rc)
1811 goto out_bus;
1812
1813 /* Setup the AP bus rescan timer. */
1814 setup_timer(&ap_config_timer, ap_config_timeout, 0);
1815
1816 /*
1817 * Setup the high resultion poll timer.
1818 * If we are running under z/VM adjust polling to z/VM polling rate.
1819 */
1820 if (MACHINE_IS_VM)
1821 poll_timeout = 1500000;
1822 spin_lock_init(&ap_poll_timer_lock);
1823 hrtimer_init(&ap_poll_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
1824 ap_poll_timer.function = ap_poll_timeout;
1825
1826 /* Start the low priority AP bus poll thread. */
1827 if (ap_thread_flag) {
1828 rc = ap_poll_thread_start();
1829 if (rc)
1830 goto out_work;
1831 }
1832
1833 rc = register_pm_notifier(&ap_power_notifier);
1834 if (rc)
1835 goto out_pm;
1836
1837 queue_work(system_long_wq, &ap_scan_work);
1838 initialised = true;
1839
1840 return 0;
1841
1842 out_pm:
1843 ap_poll_thread_stop();
1844 out_work:
1845 hrtimer_cancel(&ap_poll_timer);
1846 root_device_unregister(ap_root_device);
1847 out_bus:
1848 while (i--)
1849 bus_remove_file(&ap_bus_type, ap_bus_attrs[i]);
1850 bus_unregister(&ap_bus_type);
1851 out:
1852 unregister_reset_call(&ap_reset_call);
1853 if (ap_using_interrupts())
1854 unregister_adapter_interrupt(&ap_airq);
1855 kfree(ap_configuration);
1856 return rc;
1857 }
1858
1859 /**
1860 * ap_modules_exit(): The module termination code
1861 *
1862 * Terminates the module.
1863 */
1864 void ap_module_exit(void)
1865 {
1866 int i;
1867
1868 initialised = false;
1869 ap_reset_domain();
1870 ap_poll_thread_stop();
1871 del_timer_sync(&ap_config_timer);
1872 hrtimer_cancel(&ap_poll_timer);
1873 tasklet_kill(&ap_tasklet);
1874 bus_for_each_dev(&ap_bus_type, NULL, NULL, __ap_devices_unregister);
1875 for (i = 0; ap_bus_attrs[i]; i++)
1876 bus_remove_file(&ap_bus_type, ap_bus_attrs[i]);
1877 unregister_pm_notifier(&ap_power_notifier);
1878 root_device_unregister(ap_root_device);
1879 bus_unregister(&ap_bus_type);
1880 kfree(ap_configuration);
1881 unregister_reset_call(&ap_reset_call);
1882 if (ap_using_interrupts())
1883 unregister_adapter_interrupt(&ap_airq);
1884 }
1885
1886 module_init(ap_module_init);
1887 module_exit(ap_module_exit);
This page took 0.096278 seconds and 6 git commands to generate.