Merge tag 'pwm/for-4.4-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/thierry...
[deliverable/linux.git] / drivers / s390 / crypto / ap_bus.c
1 /*
2 * Copyright IBM Corp. 2006, 2012
3 * Author(s): Cornelia Huck <cornelia.huck@de.ibm.com>
4 * Martin Schwidefsky <schwidefsky@de.ibm.com>
5 * Ralph Wuerthner <rwuerthn@de.ibm.com>
6 * Felix Beck <felix.beck@de.ibm.com>
7 * Holger Dengler <hd@linux.vnet.ibm.com>
8 *
9 * Adjunct processor bus.
10 *
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; either version 2, or (at your option)
14 * any later version.
15 *
16 * This program is distributed in the hope that it will be useful,
17 * but WITHOUT ANY WARRANTY; without even the implied warranty of
18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 * GNU General Public License for more details.
20 *
21 * You should have received a copy of the GNU General Public License
22 * along with this program; if not, write to the Free Software
23 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
24 */
25
26 #define KMSG_COMPONENT "ap"
27 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
28
29 #include <linux/kernel_stat.h>
30 #include <linux/module.h>
31 #include <linux/init.h>
32 #include <linux/delay.h>
33 #include <linux/err.h>
34 #include <linux/interrupt.h>
35 #include <linux/workqueue.h>
36 #include <linux/slab.h>
37 #include <linux/notifier.h>
38 #include <linux/kthread.h>
39 #include <linux/mutex.h>
40 #include <linux/suspend.h>
41 #include <asm/reset.h>
42 #include <asm/airq.h>
43 #include <linux/atomic.h>
44 #include <asm/isc.h>
45 #include <linux/hrtimer.h>
46 #include <linux/ktime.h>
47 #include <asm/facility.h>
48 #include <linux/crypto.h>
49
50 #include "ap_bus.h"
51
52 /*
53 * Module description.
54 */
55 MODULE_AUTHOR("IBM Corporation");
56 MODULE_DESCRIPTION("Adjunct Processor Bus driver, " \
57 "Copyright IBM Corp. 2006, 2012");
58 MODULE_LICENSE("GPL");
59 MODULE_ALIAS_CRYPTO("z90crypt");
60
61 /*
62 * Module parameter
63 */
64 int ap_domain_index = -1; /* Adjunct Processor Domain Index */
65 module_param_named(domain, ap_domain_index, int, S_IRUSR|S_IRGRP);
66 MODULE_PARM_DESC(domain, "domain index for ap devices");
67 EXPORT_SYMBOL(ap_domain_index);
68
69 static int ap_thread_flag = 0;
70 module_param_named(poll_thread, ap_thread_flag, int, S_IRUSR|S_IRGRP);
71 MODULE_PARM_DESC(poll_thread, "Turn on/off poll thread, default is 0 (off).");
72
73 static struct device *ap_root_device = NULL;
74 static struct ap_config_info *ap_configuration;
75 static DEFINE_SPINLOCK(ap_device_list_lock);
76 static LIST_HEAD(ap_device_list);
77
78 /*
79 * Workqueue timer for bus rescan.
80 */
81 static struct timer_list ap_config_timer;
82 static int ap_config_time = AP_CONFIG_TIME;
83 static void ap_scan_bus(struct work_struct *);
84 static DECLARE_WORK(ap_scan_work, ap_scan_bus);
85
86 /*
87 * Tasklet & timer for AP request polling and interrupts
88 */
89 static void ap_tasklet_fn(unsigned long);
90 static DECLARE_TASKLET(ap_tasklet, ap_tasklet_fn, 0);
91 static atomic_t ap_poll_requests = ATOMIC_INIT(0);
92 static DECLARE_WAIT_QUEUE_HEAD(ap_poll_wait);
93 static struct task_struct *ap_poll_kthread = NULL;
94 static DEFINE_MUTEX(ap_poll_thread_mutex);
95 static DEFINE_SPINLOCK(ap_poll_timer_lock);
96 static struct hrtimer ap_poll_timer;
97 /* In LPAR poll with 4kHz frequency. Poll every 250000 nanoseconds.
98 * If z/VM change to 1500000 nanoseconds to adjust to z/VM polling.*/
99 static unsigned long long poll_timeout = 250000;
100
101 /* Suspend flag */
102 static int ap_suspend_flag;
103 /* Maximum domain id */
104 static int ap_max_domain_id;
105 /* Flag to check if domain was set through module parameter domain=. This is
106 * important when supsend and resume is done in a z/VM environment where the
107 * domain might change. */
108 static int user_set_domain = 0;
109 static struct bus_type ap_bus_type;
110
111 /* Adapter interrupt definitions */
112 static void ap_interrupt_handler(struct airq_struct *airq);
113
114 static int ap_airq_flag;
115
116 static struct airq_struct ap_airq = {
117 .handler = ap_interrupt_handler,
118 .isc = AP_ISC,
119 };
120
121 /**
122 * ap_using_interrupts() - Returns non-zero if interrupt support is
123 * available.
124 */
125 static inline int ap_using_interrupts(void)
126 {
127 return ap_airq_flag;
128 }
129
130 /**
131 * ap_intructions_available() - Test if AP instructions are available.
132 *
133 * Returns 0 if the AP instructions are installed.
134 */
135 static inline int ap_instructions_available(void)
136 {
137 register unsigned long reg0 asm ("0") = AP_MKQID(0,0);
138 register unsigned long reg1 asm ("1") = -ENODEV;
139 register unsigned long reg2 asm ("2") = 0UL;
140
141 asm volatile(
142 " .long 0xb2af0000\n" /* PQAP(TAPQ) */
143 "0: la %1,0\n"
144 "1:\n"
145 EX_TABLE(0b, 1b)
146 : "+d" (reg0), "+d" (reg1), "+d" (reg2) : : "cc" );
147 return reg1;
148 }
149
150 /**
151 * ap_interrupts_available(): Test if AP interrupts are available.
152 *
153 * Returns 1 if AP interrupts are available.
154 */
155 static int ap_interrupts_available(void)
156 {
157 return test_facility(65);
158 }
159
160 /**
161 * ap_configuration_available(): Test if AP configuration
162 * information is available.
163 *
164 * Returns 1 if AP configuration information is available.
165 */
166 static int ap_configuration_available(void)
167 {
168 return test_facility(12);
169 }
170
171 /**
172 * ap_test_queue(): Test adjunct processor queue.
173 * @qid: The AP queue number
174 * @info: Pointer to queue descriptor
175 *
176 * Returns AP queue status structure.
177 */
178 static inline struct ap_queue_status
179 ap_test_queue(ap_qid_t qid, unsigned long *info)
180 {
181 register unsigned long reg0 asm ("0") = qid;
182 register struct ap_queue_status reg1 asm ("1");
183 register unsigned long reg2 asm ("2") = 0UL;
184
185 if (test_facility(15))
186 reg0 |= 1UL << 23; /* set APFT T bit*/
187 asm volatile(".long 0xb2af0000" /* PQAP(TAPQ) */
188 : "+d" (reg0), "=d" (reg1), "+d" (reg2) : : "cc");
189 if (info)
190 *info = reg2;
191 return reg1;
192 }
193
194 /**
195 * ap_reset_queue(): Reset adjunct processor queue.
196 * @qid: The AP queue number
197 *
198 * Returns AP queue status structure.
199 */
200 static inline struct ap_queue_status ap_reset_queue(ap_qid_t qid)
201 {
202 register unsigned long reg0 asm ("0") = qid | 0x01000000UL;
203 register struct ap_queue_status reg1 asm ("1");
204 register unsigned long reg2 asm ("2") = 0UL;
205
206 asm volatile(
207 ".long 0xb2af0000" /* PQAP(RAPQ) */
208 : "+d" (reg0), "=d" (reg1), "+d" (reg2) : : "cc");
209 return reg1;
210 }
211
212 /**
213 * ap_queue_interruption_control(): Enable interruption for a specific AP.
214 * @qid: The AP queue number
215 * @ind: The notification indicator byte
216 *
217 * Returns AP queue status.
218 */
219 static inline struct ap_queue_status
220 ap_queue_interruption_control(ap_qid_t qid, void *ind)
221 {
222 register unsigned long reg0 asm ("0") = qid | 0x03000000UL;
223 register unsigned long reg1_in asm ("1") = 0x0000800000000000UL | AP_ISC;
224 register struct ap_queue_status reg1_out asm ("1");
225 register void *reg2 asm ("2") = ind;
226 asm volatile(
227 ".long 0xb2af0000" /* PQAP(AQIC) */
228 : "+d" (reg0), "+d" (reg1_in), "=d" (reg1_out), "+d" (reg2)
229 :
230 : "cc" );
231 return reg1_out;
232 }
233
234 /**
235 * ap_query_configuration(): Get AP configuration data
236 *
237 * Returns 0 on success, or -EOPNOTSUPP.
238 */
239 static inline int ap_query_configuration(void)
240 {
241 register unsigned long reg0 asm ("0") = 0x04000000UL;
242 register unsigned long reg1 asm ("1") = -EINVAL;
243 register void *reg2 asm ("2") = (void *) ap_configuration;
244
245 if (!ap_configuration)
246 return -EOPNOTSUPP;
247 asm volatile(
248 ".long 0xb2af0000\n" /* PQAP(QCI) */
249 "0: la %1,0\n"
250 "1:\n"
251 EX_TABLE(0b, 1b)
252 : "+d" (reg0), "+d" (reg1), "+d" (reg2)
253 :
254 : "cc");
255
256 return reg1;
257 }
258
259 /**
260 * ap_init_configuration(): Allocate and query configuration array.
261 */
262 static void ap_init_configuration(void)
263 {
264 if (!ap_configuration_available())
265 return;
266
267 ap_configuration = kzalloc(sizeof(*ap_configuration), GFP_KERNEL);
268 if (!ap_configuration)
269 return;
270 if (ap_query_configuration() != 0) {
271 kfree(ap_configuration);
272 ap_configuration = NULL;
273 return;
274 }
275 }
276
277 /*
278 * ap_test_config(): helper function to extract the nrth bit
279 * within the unsigned int array field.
280 */
281 static inline int ap_test_config(unsigned int *field, unsigned int nr)
282 {
283 return ap_test_bit((field + (nr >> 5)), (nr & 0x1f));
284 }
285
286 /*
287 * ap_test_config_card_id(): Test, whether an AP card ID is configured.
288 * @id AP card ID
289 *
290 * Returns 0 if the card is not configured
291 * 1 if the card is configured or
292 * if the configuration information is not available
293 */
294 static inline int ap_test_config_card_id(unsigned int id)
295 {
296 if (!ap_configuration) /* QCI not supported */
297 return 1;
298 return ap_test_config(ap_configuration->apm, id);
299 }
300
301 /*
302 * ap_test_config_domain(): Test, whether an AP usage domain is configured.
303 * @domain AP usage domain ID
304 *
305 * Returns 0 if the usage domain is not configured
306 * 1 if the usage domain is configured or
307 * if the configuration information is not available
308 */
309 static inline int ap_test_config_domain(unsigned int domain)
310 {
311 if (!ap_configuration) /* QCI not supported */
312 return domain < 16;
313 return ap_test_config(ap_configuration->aqm, domain);
314 }
315
316 /**
317 * ap_queue_enable_interruption(): Enable interruption on an AP.
318 * @qid: The AP queue number
319 * @ind: the notification indicator byte
320 *
321 * Enables interruption on AP queue via ap_queue_interruption_control(). Based
322 * on the return value it waits a while and tests the AP queue if interrupts
323 * have been switched on using ap_test_queue().
324 */
325 static int ap_queue_enable_interruption(struct ap_device *ap_dev, void *ind)
326 {
327 struct ap_queue_status status;
328
329 status = ap_queue_interruption_control(ap_dev->qid, ind);
330 switch (status.response_code) {
331 case AP_RESPONSE_NORMAL:
332 case AP_RESPONSE_OTHERWISE_CHANGED:
333 return 0;
334 case AP_RESPONSE_Q_NOT_AVAIL:
335 case AP_RESPONSE_DECONFIGURED:
336 case AP_RESPONSE_CHECKSTOPPED:
337 case AP_RESPONSE_INVALID_ADDRESS:
338 pr_err("Registering adapter interrupts for AP %d failed\n",
339 AP_QID_DEVICE(ap_dev->qid));
340 return -EOPNOTSUPP;
341 case AP_RESPONSE_RESET_IN_PROGRESS:
342 case AP_RESPONSE_BUSY:
343 default:
344 return -EBUSY;
345 }
346 }
347
348 /**
349 * __ap_send(): Send message to adjunct processor queue.
350 * @qid: The AP queue number
351 * @psmid: The program supplied message identifier
352 * @msg: The message text
353 * @length: The message length
354 * @special: Special Bit
355 *
356 * Returns AP queue status structure.
357 * Condition code 1 on NQAP can't happen because the L bit is 1.
358 * Condition code 2 on NQAP also means the send is incomplete,
359 * because a segment boundary was reached. The NQAP is repeated.
360 */
361 static inline struct ap_queue_status
362 __ap_send(ap_qid_t qid, unsigned long long psmid, void *msg, size_t length,
363 unsigned int special)
364 {
365 typedef struct { char _[length]; } msgblock;
366 register unsigned long reg0 asm ("0") = qid | 0x40000000UL;
367 register struct ap_queue_status reg1 asm ("1");
368 register unsigned long reg2 asm ("2") = (unsigned long) msg;
369 register unsigned long reg3 asm ("3") = (unsigned long) length;
370 register unsigned long reg4 asm ("4") = (unsigned int) (psmid >> 32);
371 register unsigned long reg5 asm ("5") = psmid & 0xffffffff;
372
373 if (special == 1)
374 reg0 |= 0x400000UL;
375
376 asm volatile (
377 "0: .long 0xb2ad0042\n" /* NQAP */
378 " brc 2,0b"
379 : "+d" (reg0), "=d" (reg1), "+d" (reg2), "+d" (reg3)
380 : "d" (reg4), "d" (reg5), "m" (*(msgblock *) msg)
381 : "cc" );
382 return reg1;
383 }
384
385 int ap_send(ap_qid_t qid, unsigned long long psmid, void *msg, size_t length)
386 {
387 struct ap_queue_status status;
388
389 status = __ap_send(qid, psmid, msg, length, 0);
390 switch (status.response_code) {
391 case AP_RESPONSE_NORMAL:
392 return 0;
393 case AP_RESPONSE_Q_FULL:
394 case AP_RESPONSE_RESET_IN_PROGRESS:
395 return -EBUSY;
396 case AP_RESPONSE_REQ_FAC_NOT_INST:
397 return -EINVAL;
398 default: /* Device is gone. */
399 return -ENODEV;
400 }
401 }
402 EXPORT_SYMBOL(ap_send);
403
404 /**
405 * __ap_recv(): Receive message from adjunct processor queue.
406 * @qid: The AP queue number
407 * @psmid: Pointer to program supplied message identifier
408 * @msg: The message text
409 * @length: The message length
410 *
411 * Returns AP queue status structure.
412 * Condition code 1 on DQAP means the receive has taken place
413 * but only partially. The response is incomplete, hence the
414 * DQAP is repeated.
415 * Condition code 2 on DQAP also means the receive is incomplete,
416 * this time because a segment boundary was reached. Again, the
417 * DQAP is repeated.
418 * Note that gpr2 is used by the DQAP instruction to keep track of
419 * any 'residual' length, in case the instruction gets interrupted.
420 * Hence it gets zeroed before the instruction.
421 */
422 static inline struct ap_queue_status
423 __ap_recv(ap_qid_t qid, unsigned long long *psmid, void *msg, size_t length)
424 {
425 typedef struct { char _[length]; } msgblock;
426 register unsigned long reg0 asm("0") = qid | 0x80000000UL;
427 register struct ap_queue_status reg1 asm ("1");
428 register unsigned long reg2 asm("2") = 0UL;
429 register unsigned long reg4 asm("4") = (unsigned long) msg;
430 register unsigned long reg5 asm("5") = (unsigned long) length;
431 register unsigned long reg6 asm("6") = 0UL;
432 register unsigned long reg7 asm("7") = 0UL;
433
434
435 asm volatile(
436 "0: .long 0xb2ae0064\n" /* DQAP */
437 " brc 6,0b\n"
438 : "+d" (reg0), "=d" (reg1), "+d" (reg2),
439 "+d" (reg4), "+d" (reg5), "+d" (reg6), "+d" (reg7),
440 "=m" (*(msgblock *) msg) : : "cc" );
441 *psmid = (((unsigned long long) reg6) << 32) + reg7;
442 return reg1;
443 }
444
445 int ap_recv(ap_qid_t qid, unsigned long long *psmid, void *msg, size_t length)
446 {
447 struct ap_queue_status status;
448
449 status = __ap_recv(qid, psmid, msg, length);
450 switch (status.response_code) {
451 case AP_RESPONSE_NORMAL:
452 return 0;
453 case AP_RESPONSE_NO_PENDING_REPLY:
454 if (status.queue_empty)
455 return -ENOENT;
456 return -EBUSY;
457 case AP_RESPONSE_RESET_IN_PROGRESS:
458 return -EBUSY;
459 default:
460 return -ENODEV;
461 }
462 }
463 EXPORT_SYMBOL(ap_recv);
464
465 /**
466 * ap_query_queue(): Check if an AP queue is available.
467 * @qid: The AP queue number
468 * @queue_depth: Pointer to queue depth value
469 * @device_type: Pointer to device type value
470 * @facilities: Pointer to facility indicator
471 */
472 static int ap_query_queue(ap_qid_t qid, int *queue_depth, int *device_type,
473 unsigned int *facilities)
474 {
475 struct ap_queue_status status;
476 unsigned long info;
477 int nd;
478
479 if (!ap_test_config_card_id(AP_QID_DEVICE(qid)))
480 return -ENODEV;
481
482 status = ap_test_queue(qid, &info);
483 switch (status.response_code) {
484 case AP_RESPONSE_NORMAL:
485 *queue_depth = (int)(info & 0xff);
486 *device_type = (int)((info >> 24) & 0xff);
487 *facilities = (unsigned int)(info >> 32);
488 /* Update maximum domain id */
489 nd = (info >> 16) & 0xff;
490 if ((info & (1UL << 57)) && nd > 0)
491 ap_max_domain_id = nd;
492 return 0;
493 case AP_RESPONSE_Q_NOT_AVAIL:
494 case AP_RESPONSE_DECONFIGURED:
495 case AP_RESPONSE_CHECKSTOPPED:
496 case AP_RESPONSE_INVALID_ADDRESS:
497 return -ENODEV;
498 case AP_RESPONSE_RESET_IN_PROGRESS:
499 case AP_RESPONSE_OTHERWISE_CHANGED:
500 case AP_RESPONSE_BUSY:
501 return -EBUSY;
502 default:
503 BUG();
504 }
505 }
506
507 /* State machine definitions and helpers */
508
509 static void ap_sm_wait(enum ap_wait wait)
510 {
511 ktime_t hr_time;
512
513 switch (wait) {
514 case AP_WAIT_AGAIN:
515 case AP_WAIT_INTERRUPT:
516 if (ap_using_interrupts())
517 break;
518 if (ap_poll_kthread) {
519 wake_up(&ap_poll_wait);
520 break;
521 }
522 /* Fall through */
523 case AP_WAIT_TIMEOUT:
524 spin_lock_bh(&ap_poll_timer_lock);
525 if (!hrtimer_is_queued(&ap_poll_timer)) {
526 hr_time = ktime_set(0, poll_timeout);
527 hrtimer_forward_now(&ap_poll_timer, hr_time);
528 hrtimer_restart(&ap_poll_timer);
529 }
530 spin_unlock_bh(&ap_poll_timer_lock);
531 break;
532 case AP_WAIT_NONE:
533 default:
534 break;
535 }
536 }
537
538 static enum ap_wait ap_sm_nop(struct ap_device *ap_dev)
539 {
540 return AP_WAIT_NONE;
541 }
542
543 /**
544 * ap_sm_recv(): Receive pending reply messages from an AP device but do
545 * not change the state of the device.
546 * @ap_dev: pointer to the AP device
547 *
548 * Returns AP_WAIT_NONE, AP_WAIT_AGAIN, or AP_WAIT_INTERRUPT
549 */
550 static struct ap_queue_status ap_sm_recv(struct ap_device *ap_dev)
551 {
552 struct ap_queue_status status;
553 struct ap_message *ap_msg;
554
555 status = __ap_recv(ap_dev->qid, &ap_dev->reply->psmid,
556 ap_dev->reply->message, ap_dev->reply->length);
557 switch (status.response_code) {
558 case AP_RESPONSE_NORMAL:
559 atomic_dec(&ap_poll_requests);
560 ap_dev->queue_count--;
561 if (ap_dev->queue_count > 0)
562 mod_timer(&ap_dev->timeout,
563 jiffies + ap_dev->drv->request_timeout);
564 list_for_each_entry(ap_msg, &ap_dev->pendingq, list) {
565 if (ap_msg->psmid != ap_dev->reply->psmid)
566 continue;
567 list_del_init(&ap_msg->list);
568 ap_dev->pendingq_count--;
569 ap_msg->receive(ap_dev, ap_msg, ap_dev->reply);
570 break;
571 }
572 case AP_RESPONSE_NO_PENDING_REPLY:
573 if (!status.queue_empty || ap_dev->queue_count <= 0)
574 break;
575 /* The card shouldn't forget requests but who knows. */
576 atomic_sub(ap_dev->queue_count, &ap_poll_requests);
577 ap_dev->queue_count = 0;
578 list_splice_init(&ap_dev->pendingq, &ap_dev->requestq);
579 ap_dev->requestq_count += ap_dev->pendingq_count;
580 ap_dev->pendingq_count = 0;
581 break;
582 default:
583 break;
584 }
585 return status;
586 }
587
588 /**
589 * ap_sm_read(): Receive pending reply messages from an AP device.
590 * @ap_dev: pointer to the AP device
591 *
592 * Returns AP_WAIT_NONE, AP_WAIT_AGAIN, or AP_WAIT_INTERRUPT
593 */
594 static enum ap_wait ap_sm_read(struct ap_device *ap_dev)
595 {
596 struct ap_queue_status status;
597
598 status = ap_sm_recv(ap_dev);
599 switch (status.response_code) {
600 case AP_RESPONSE_NORMAL:
601 if (ap_dev->queue_count > 0)
602 return AP_WAIT_AGAIN;
603 ap_dev->state = AP_STATE_IDLE;
604 return AP_WAIT_NONE;
605 case AP_RESPONSE_NO_PENDING_REPLY:
606 if (ap_dev->queue_count > 0)
607 return AP_WAIT_INTERRUPT;
608 ap_dev->state = AP_STATE_IDLE;
609 return AP_WAIT_NONE;
610 default:
611 ap_dev->state = AP_STATE_BORKED;
612 return AP_WAIT_NONE;
613 }
614 }
615
616 /**
617 * ap_sm_write(): Send messages from the request queue to an AP device.
618 * @ap_dev: pointer to the AP device
619 *
620 * Returns AP_WAIT_NONE, AP_WAIT_AGAIN, or AP_WAIT_INTERRUPT
621 */
622 static enum ap_wait ap_sm_write(struct ap_device *ap_dev)
623 {
624 struct ap_queue_status status;
625 struct ap_message *ap_msg;
626
627 if (ap_dev->requestq_count <= 0)
628 return AP_WAIT_NONE;
629 /* Start the next request on the queue. */
630 ap_msg = list_entry(ap_dev->requestq.next, struct ap_message, list);
631 status = __ap_send(ap_dev->qid, ap_msg->psmid,
632 ap_msg->message, ap_msg->length, ap_msg->special);
633 switch (status.response_code) {
634 case AP_RESPONSE_NORMAL:
635 atomic_inc(&ap_poll_requests);
636 ap_dev->queue_count++;
637 if (ap_dev->queue_count == 1)
638 mod_timer(&ap_dev->timeout,
639 jiffies + ap_dev->drv->request_timeout);
640 list_move_tail(&ap_msg->list, &ap_dev->pendingq);
641 ap_dev->requestq_count--;
642 ap_dev->pendingq_count++;
643 if (ap_dev->queue_count < ap_dev->queue_depth) {
644 ap_dev->state = AP_STATE_WORKING;
645 return AP_WAIT_AGAIN;
646 }
647 /* fall through */
648 case AP_RESPONSE_Q_FULL:
649 ap_dev->state = AP_STATE_QUEUE_FULL;
650 return AP_WAIT_INTERRUPT;
651 case AP_RESPONSE_RESET_IN_PROGRESS:
652 ap_dev->state = AP_STATE_RESET_WAIT;
653 return AP_WAIT_TIMEOUT;
654 case AP_RESPONSE_MESSAGE_TOO_BIG:
655 case AP_RESPONSE_REQ_FAC_NOT_INST:
656 list_del_init(&ap_msg->list);
657 ap_dev->requestq_count--;
658 ap_msg->rc = -EINVAL;
659 ap_msg->receive(ap_dev, ap_msg, NULL);
660 return AP_WAIT_AGAIN;
661 default:
662 ap_dev->state = AP_STATE_BORKED;
663 return AP_WAIT_NONE;
664 }
665 }
666
667 /**
668 * ap_sm_read_write(): Send and receive messages to/from an AP device.
669 * @ap_dev: pointer to the AP device
670 *
671 * Returns AP_WAIT_NONE, AP_WAIT_AGAIN, or AP_WAIT_INTERRUPT
672 */
673 static enum ap_wait ap_sm_read_write(struct ap_device *ap_dev)
674 {
675 return min(ap_sm_read(ap_dev), ap_sm_write(ap_dev));
676 }
677
678 /**
679 * ap_sm_reset(): Reset an AP queue.
680 * @qid: The AP queue number
681 *
682 * Submit the Reset command to an AP queue.
683 */
684 static enum ap_wait ap_sm_reset(struct ap_device *ap_dev)
685 {
686 struct ap_queue_status status;
687
688 status = ap_reset_queue(ap_dev->qid);
689 switch (status.response_code) {
690 case AP_RESPONSE_NORMAL:
691 case AP_RESPONSE_RESET_IN_PROGRESS:
692 ap_dev->state = AP_STATE_RESET_WAIT;
693 ap_dev->interrupt = AP_INTR_DISABLED;
694 return AP_WAIT_TIMEOUT;
695 case AP_RESPONSE_BUSY:
696 return AP_WAIT_TIMEOUT;
697 case AP_RESPONSE_Q_NOT_AVAIL:
698 case AP_RESPONSE_DECONFIGURED:
699 case AP_RESPONSE_CHECKSTOPPED:
700 default:
701 ap_dev->state = AP_STATE_BORKED;
702 return AP_WAIT_NONE;
703 }
704 }
705
706 /**
707 * ap_sm_reset_wait(): Test queue for completion of the reset operation
708 * @ap_dev: pointer to the AP device
709 *
710 * Returns AP_POLL_IMMEDIATELY, AP_POLL_AFTER_TIMEROUT or 0.
711 */
712 static enum ap_wait ap_sm_reset_wait(struct ap_device *ap_dev)
713 {
714 struct ap_queue_status status;
715 unsigned long info;
716
717 if (ap_dev->queue_count > 0)
718 /* Try to read a completed message and get the status */
719 status = ap_sm_recv(ap_dev);
720 else
721 /* Get the status with TAPQ */
722 status = ap_test_queue(ap_dev->qid, &info);
723
724 switch (status.response_code) {
725 case AP_RESPONSE_NORMAL:
726 if (ap_using_interrupts() &&
727 ap_queue_enable_interruption(ap_dev,
728 ap_airq.lsi_ptr) == 0)
729 ap_dev->state = AP_STATE_SETIRQ_WAIT;
730 else
731 ap_dev->state = (ap_dev->queue_count > 0) ?
732 AP_STATE_WORKING : AP_STATE_IDLE;
733 return AP_WAIT_AGAIN;
734 case AP_RESPONSE_BUSY:
735 case AP_RESPONSE_RESET_IN_PROGRESS:
736 return AP_WAIT_TIMEOUT;
737 case AP_RESPONSE_Q_NOT_AVAIL:
738 case AP_RESPONSE_DECONFIGURED:
739 case AP_RESPONSE_CHECKSTOPPED:
740 default:
741 ap_dev->state = AP_STATE_BORKED;
742 return AP_WAIT_NONE;
743 }
744 }
745
746 /**
747 * ap_sm_setirq_wait(): Test queue for completion of the irq enablement
748 * @ap_dev: pointer to the AP device
749 *
750 * Returns AP_POLL_IMMEDIATELY, AP_POLL_AFTER_TIMEROUT or 0.
751 */
752 static enum ap_wait ap_sm_setirq_wait(struct ap_device *ap_dev)
753 {
754 struct ap_queue_status status;
755 unsigned long info;
756
757 if (ap_dev->queue_count > 0)
758 /* Try to read a completed message and get the status */
759 status = ap_sm_recv(ap_dev);
760 else
761 /* Get the status with TAPQ */
762 status = ap_test_queue(ap_dev->qid, &info);
763
764 if (status.int_enabled == 1) {
765 /* Irqs are now enabled */
766 ap_dev->interrupt = AP_INTR_ENABLED;
767 ap_dev->state = (ap_dev->queue_count > 0) ?
768 AP_STATE_WORKING : AP_STATE_IDLE;
769 }
770
771 switch (status.response_code) {
772 case AP_RESPONSE_NORMAL:
773 if (ap_dev->queue_count > 0)
774 return AP_WAIT_AGAIN;
775 /* fallthrough */
776 case AP_RESPONSE_NO_PENDING_REPLY:
777 return AP_WAIT_TIMEOUT;
778 default:
779 ap_dev->state = AP_STATE_BORKED;
780 return AP_WAIT_NONE;
781 }
782 }
783
784 /*
785 * AP state machine jump table
786 */
787 ap_func_t *ap_jumptable[NR_AP_STATES][NR_AP_EVENTS] = {
788 [AP_STATE_RESET_START] = {
789 [AP_EVENT_POLL] = ap_sm_reset,
790 [AP_EVENT_TIMEOUT] = ap_sm_nop,
791 },
792 [AP_STATE_RESET_WAIT] = {
793 [AP_EVENT_POLL] = ap_sm_reset_wait,
794 [AP_EVENT_TIMEOUT] = ap_sm_nop,
795 },
796 [AP_STATE_SETIRQ_WAIT] = {
797 [AP_EVENT_POLL] = ap_sm_setirq_wait,
798 [AP_EVENT_TIMEOUT] = ap_sm_nop,
799 },
800 [AP_STATE_IDLE] = {
801 [AP_EVENT_POLL] = ap_sm_write,
802 [AP_EVENT_TIMEOUT] = ap_sm_nop,
803 },
804 [AP_STATE_WORKING] = {
805 [AP_EVENT_POLL] = ap_sm_read_write,
806 [AP_EVENT_TIMEOUT] = ap_sm_reset,
807 },
808 [AP_STATE_QUEUE_FULL] = {
809 [AP_EVENT_POLL] = ap_sm_read,
810 [AP_EVENT_TIMEOUT] = ap_sm_reset,
811 },
812 [AP_STATE_SUSPEND_WAIT] = {
813 [AP_EVENT_POLL] = ap_sm_read,
814 [AP_EVENT_TIMEOUT] = ap_sm_nop,
815 },
816 [AP_STATE_BORKED] = {
817 [AP_EVENT_POLL] = ap_sm_nop,
818 [AP_EVENT_TIMEOUT] = ap_sm_nop,
819 },
820 };
821
822 static inline enum ap_wait ap_sm_event(struct ap_device *ap_dev,
823 enum ap_event event)
824 {
825 return ap_jumptable[ap_dev->state][event](ap_dev);
826 }
827
828 static inline enum ap_wait ap_sm_event_loop(struct ap_device *ap_dev,
829 enum ap_event event)
830 {
831 enum ap_wait wait;
832
833 while ((wait = ap_sm_event(ap_dev, event)) == AP_WAIT_AGAIN)
834 ;
835 return wait;
836 }
837
838 /**
839 * ap_request_timeout(): Handling of request timeouts
840 * @data: Holds the AP device.
841 *
842 * Handles request timeouts.
843 */
844 static void ap_request_timeout(unsigned long data)
845 {
846 struct ap_device *ap_dev = (struct ap_device *) data;
847
848 if (ap_suspend_flag)
849 return;
850 spin_lock_bh(&ap_dev->lock);
851 ap_sm_wait(ap_sm_event(ap_dev, AP_EVENT_TIMEOUT));
852 spin_unlock_bh(&ap_dev->lock);
853 }
854
855 /**
856 * ap_poll_timeout(): AP receive polling for finished AP requests.
857 * @unused: Unused pointer.
858 *
859 * Schedules the AP tasklet using a high resolution timer.
860 */
861 static enum hrtimer_restart ap_poll_timeout(struct hrtimer *unused)
862 {
863 if (!ap_suspend_flag)
864 tasklet_schedule(&ap_tasklet);
865 return HRTIMER_NORESTART;
866 }
867
868 /**
869 * ap_interrupt_handler() - Schedule ap_tasklet on interrupt
870 * @airq: pointer to adapter interrupt descriptor
871 */
872 static void ap_interrupt_handler(struct airq_struct *airq)
873 {
874 inc_irq_stat(IRQIO_APB);
875 if (!ap_suspend_flag)
876 tasklet_schedule(&ap_tasklet);
877 }
878
879 /**
880 * ap_tasklet_fn(): Tasklet to poll all AP devices.
881 * @dummy: Unused variable
882 *
883 * Poll all AP devices on the bus.
884 */
885 static void ap_tasklet_fn(unsigned long dummy)
886 {
887 struct ap_device *ap_dev;
888 enum ap_wait wait = AP_WAIT_NONE;
889
890 /* Reset the indicator if interrupts are used. Thus new interrupts can
891 * be received. Doing it in the beginning of the tasklet is therefor
892 * important that no requests on any AP get lost.
893 */
894 if (ap_using_interrupts())
895 xchg(ap_airq.lsi_ptr, 0);
896
897 spin_lock(&ap_device_list_lock);
898 list_for_each_entry(ap_dev, &ap_device_list, list) {
899 spin_lock_bh(&ap_dev->lock);
900 wait = min(wait, ap_sm_event_loop(ap_dev, AP_EVENT_POLL));
901 spin_unlock_bh(&ap_dev->lock);
902 }
903 spin_unlock(&ap_device_list_lock);
904 ap_sm_wait(wait);
905 }
906
907 /**
908 * ap_poll_thread(): Thread that polls for finished requests.
909 * @data: Unused pointer
910 *
911 * AP bus poll thread. The purpose of this thread is to poll for
912 * finished requests in a loop if there is a "free" cpu - that is
913 * a cpu that doesn't have anything better to do. The polling stops
914 * as soon as there is another task or if all messages have been
915 * delivered.
916 */
917 static int ap_poll_thread(void *data)
918 {
919 DECLARE_WAITQUEUE(wait, current);
920
921 set_user_nice(current, MAX_NICE);
922 set_freezable();
923 while (!kthread_should_stop()) {
924 add_wait_queue(&ap_poll_wait, &wait);
925 set_current_state(TASK_INTERRUPTIBLE);
926 if (ap_suspend_flag ||
927 atomic_read(&ap_poll_requests) <= 0) {
928 schedule();
929 try_to_freeze();
930 }
931 set_current_state(TASK_RUNNING);
932 remove_wait_queue(&ap_poll_wait, &wait);
933 if (need_resched()) {
934 schedule();
935 try_to_freeze();
936 continue;
937 }
938 ap_tasklet_fn(0);
939 } while (!kthread_should_stop());
940 return 0;
941 }
942
943 static int ap_poll_thread_start(void)
944 {
945 int rc;
946
947 if (ap_using_interrupts() || ap_poll_kthread)
948 return 0;
949 mutex_lock(&ap_poll_thread_mutex);
950 ap_poll_kthread = kthread_run(ap_poll_thread, NULL, "appoll");
951 rc = PTR_RET(ap_poll_kthread);
952 if (rc)
953 ap_poll_kthread = NULL;
954 mutex_unlock(&ap_poll_thread_mutex);
955 return rc;
956 }
957
958 static void ap_poll_thread_stop(void)
959 {
960 if (!ap_poll_kthread)
961 return;
962 mutex_lock(&ap_poll_thread_mutex);
963 kthread_stop(ap_poll_kthread);
964 ap_poll_kthread = NULL;
965 mutex_unlock(&ap_poll_thread_mutex);
966 }
967
968 /**
969 * ap_queue_message(): Queue a request to an AP device.
970 * @ap_dev: The AP device to queue the message to
971 * @ap_msg: The message that is to be added
972 */
973 void ap_queue_message(struct ap_device *ap_dev, struct ap_message *ap_msg)
974 {
975 /* For asynchronous message handling a valid receive-callback
976 * is required. */
977 BUG_ON(!ap_msg->receive);
978
979 spin_lock_bh(&ap_dev->lock);
980 /* Queue the message. */
981 list_add_tail(&ap_msg->list, &ap_dev->requestq);
982 ap_dev->requestq_count++;
983 ap_dev->total_request_count++;
984 /* Send/receive as many request from the queue as possible. */
985 ap_sm_wait(ap_sm_event_loop(ap_dev, AP_EVENT_POLL));
986 spin_unlock_bh(&ap_dev->lock);
987 }
988 EXPORT_SYMBOL(ap_queue_message);
989
990 /**
991 * ap_cancel_message(): Cancel a crypto request.
992 * @ap_dev: The AP device that has the message queued
993 * @ap_msg: The message that is to be removed
994 *
995 * Cancel a crypto request. This is done by removing the request
996 * from the device pending or request queue. Note that the
997 * request stays on the AP queue. When it finishes the message
998 * reply will be discarded because the psmid can't be found.
999 */
1000 void ap_cancel_message(struct ap_device *ap_dev, struct ap_message *ap_msg)
1001 {
1002 struct ap_message *tmp;
1003
1004 spin_lock_bh(&ap_dev->lock);
1005 if (!list_empty(&ap_msg->list)) {
1006 list_for_each_entry(tmp, &ap_dev->pendingq, list)
1007 if (tmp->psmid == ap_msg->psmid) {
1008 ap_dev->pendingq_count--;
1009 goto found;
1010 }
1011 ap_dev->requestq_count--;
1012 found:
1013 list_del_init(&ap_msg->list);
1014 }
1015 spin_unlock_bh(&ap_dev->lock);
1016 }
1017 EXPORT_SYMBOL(ap_cancel_message);
1018
1019 /*
1020 * AP device related attributes.
1021 */
1022 static ssize_t ap_hwtype_show(struct device *dev,
1023 struct device_attribute *attr, char *buf)
1024 {
1025 struct ap_device *ap_dev = to_ap_dev(dev);
1026 return snprintf(buf, PAGE_SIZE, "%d\n", ap_dev->device_type);
1027 }
1028
1029 static DEVICE_ATTR(hwtype, 0444, ap_hwtype_show, NULL);
1030
1031 static ssize_t ap_raw_hwtype_show(struct device *dev,
1032 struct device_attribute *attr, char *buf)
1033 {
1034 struct ap_device *ap_dev = to_ap_dev(dev);
1035
1036 return snprintf(buf, PAGE_SIZE, "%d\n", ap_dev->raw_hwtype);
1037 }
1038
1039 static DEVICE_ATTR(raw_hwtype, 0444, ap_raw_hwtype_show, NULL);
1040
1041 static ssize_t ap_depth_show(struct device *dev, struct device_attribute *attr,
1042 char *buf)
1043 {
1044 struct ap_device *ap_dev = to_ap_dev(dev);
1045 return snprintf(buf, PAGE_SIZE, "%d\n", ap_dev->queue_depth);
1046 }
1047
1048 static DEVICE_ATTR(depth, 0444, ap_depth_show, NULL);
1049 static ssize_t ap_request_count_show(struct device *dev,
1050 struct device_attribute *attr,
1051 char *buf)
1052 {
1053 struct ap_device *ap_dev = to_ap_dev(dev);
1054 int rc;
1055
1056 spin_lock_bh(&ap_dev->lock);
1057 rc = snprintf(buf, PAGE_SIZE, "%d\n", ap_dev->total_request_count);
1058 spin_unlock_bh(&ap_dev->lock);
1059 return rc;
1060 }
1061
1062 static DEVICE_ATTR(request_count, 0444, ap_request_count_show, NULL);
1063
1064 static ssize_t ap_requestq_count_show(struct device *dev,
1065 struct device_attribute *attr, char *buf)
1066 {
1067 struct ap_device *ap_dev = to_ap_dev(dev);
1068 int rc;
1069
1070 spin_lock_bh(&ap_dev->lock);
1071 rc = snprintf(buf, PAGE_SIZE, "%d\n", ap_dev->requestq_count);
1072 spin_unlock_bh(&ap_dev->lock);
1073 return rc;
1074 }
1075
1076 static DEVICE_ATTR(requestq_count, 0444, ap_requestq_count_show, NULL);
1077
1078 static ssize_t ap_pendingq_count_show(struct device *dev,
1079 struct device_attribute *attr, char *buf)
1080 {
1081 struct ap_device *ap_dev = to_ap_dev(dev);
1082 int rc;
1083
1084 spin_lock_bh(&ap_dev->lock);
1085 rc = snprintf(buf, PAGE_SIZE, "%d\n", ap_dev->pendingq_count);
1086 spin_unlock_bh(&ap_dev->lock);
1087 return rc;
1088 }
1089
1090 static DEVICE_ATTR(pendingq_count, 0444, ap_pendingq_count_show, NULL);
1091
1092 static ssize_t ap_reset_show(struct device *dev,
1093 struct device_attribute *attr, char *buf)
1094 {
1095 struct ap_device *ap_dev = to_ap_dev(dev);
1096 int rc = 0;
1097
1098 spin_lock_bh(&ap_dev->lock);
1099 switch (ap_dev->state) {
1100 case AP_STATE_RESET_START:
1101 case AP_STATE_RESET_WAIT:
1102 rc = snprintf(buf, PAGE_SIZE, "Reset in progress.\n");
1103 break;
1104 case AP_STATE_WORKING:
1105 case AP_STATE_QUEUE_FULL:
1106 rc = snprintf(buf, PAGE_SIZE, "Reset Timer armed.\n");
1107 break;
1108 default:
1109 rc = snprintf(buf, PAGE_SIZE, "No Reset Timer set.\n");
1110 }
1111 spin_unlock_bh(&ap_dev->lock);
1112 return rc;
1113 }
1114
1115 static DEVICE_ATTR(reset, 0444, ap_reset_show, NULL);
1116
1117 static ssize_t ap_interrupt_show(struct device *dev,
1118 struct device_attribute *attr, char *buf)
1119 {
1120 struct ap_device *ap_dev = to_ap_dev(dev);
1121 int rc = 0;
1122
1123 spin_lock_bh(&ap_dev->lock);
1124 if (ap_dev->state == AP_STATE_SETIRQ_WAIT)
1125 rc = snprintf(buf, PAGE_SIZE, "Enable Interrupt pending.\n");
1126 else if (ap_dev->interrupt == AP_INTR_ENABLED)
1127 rc = snprintf(buf, PAGE_SIZE, "Interrupts enabled.\n");
1128 else
1129 rc = snprintf(buf, PAGE_SIZE, "Interrupts disabled.\n");
1130 spin_unlock_bh(&ap_dev->lock);
1131 return rc;
1132 }
1133
1134 static DEVICE_ATTR(interrupt, 0444, ap_interrupt_show, NULL);
1135
1136 static ssize_t ap_modalias_show(struct device *dev,
1137 struct device_attribute *attr, char *buf)
1138 {
1139 return sprintf(buf, "ap:t%02X\n", to_ap_dev(dev)->device_type);
1140 }
1141
1142 static DEVICE_ATTR(modalias, 0444, ap_modalias_show, NULL);
1143
1144 static ssize_t ap_functions_show(struct device *dev,
1145 struct device_attribute *attr, char *buf)
1146 {
1147 struct ap_device *ap_dev = to_ap_dev(dev);
1148 return snprintf(buf, PAGE_SIZE, "0x%08X\n", ap_dev->functions);
1149 }
1150
1151 static DEVICE_ATTR(ap_functions, 0444, ap_functions_show, NULL);
1152
1153 static struct attribute *ap_dev_attrs[] = {
1154 &dev_attr_hwtype.attr,
1155 &dev_attr_raw_hwtype.attr,
1156 &dev_attr_depth.attr,
1157 &dev_attr_request_count.attr,
1158 &dev_attr_requestq_count.attr,
1159 &dev_attr_pendingq_count.attr,
1160 &dev_attr_reset.attr,
1161 &dev_attr_interrupt.attr,
1162 &dev_attr_modalias.attr,
1163 &dev_attr_ap_functions.attr,
1164 NULL
1165 };
1166 static struct attribute_group ap_dev_attr_group = {
1167 .attrs = ap_dev_attrs
1168 };
1169
1170 /**
1171 * ap_bus_match()
1172 * @dev: Pointer to device
1173 * @drv: Pointer to device_driver
1174 *
1175 * AP bus driver registration/unregistration.
1176 */
1177 static int ap_bus_match(struct device *dev, struct device_driver *drv)
1178 {
1179 struct ap_device *ap_dev = to_ap_dev(dev);
1180 struct ap_driver *ap_drv = to_ap_drv(drv);
1181 struct ap_device_id *id;
1182
1183 /*
1184 * Compare device type of the device with the list of
1185 * supported types of the device_driver.
1186 */
1187 for (id = ap_drv->ids; id->match_flags; id++) {
1188 if ((id->match_flags & AP_DEVICE_ID_MATCH_DEVICE_TYPE) &&
1189 (id->dev_type != ap_dev->device_type))
1190 continue;
1191 return 1;
1192 }
1193 return 0;
1194 }
1195
1196 /**
1197 * ap_uevent(): Uevent function for AP devices.
1198 * @dev: Pointer to device
1199 * @env: Pointer to kobj_uevent_env
1200 *
1201 * It sets up a single environment variable DEV_TYPE which contains the
1202 * hardware device type.
1203 */
1204 static int ap_uevent (struct device *dev, struct kobj_uevent_env *env)
1205 {
1206 struct ap_device *ap_dev = to_ap_dev(dev);
1207 int retval = 0;
1208
1209 if (!ap_dev)
1210 return -ENODEV;
1211
1212 /* Set up DEV_TYPE environment variable. */
1213 retval = add_uevent_var(env, "DEV_TYPE=%04X", ap_dev->device_type);
1214 if (retval)
1215 return retval;
1216
1217 /* Add MODALIAS= */
1218 retval = add_uevent_var(env, "MODALIAS=ap:t%02X", ap_dev->device_type);
1219
1220 return retval;
1221 }
1222
1223 static int ap_dev_suspend(struct device *dev, pm_message_t state)
1224 {
1225 struct ap_device *ap_dev = to_ap_dev(dev);
1226
1227 /* Poll on the device until all requests are finished. */
1228 spin_lock_bh(&ap_dev->lock);
1229 ap_dev->state = AP_STATE_SUSPEND_WAIT;
1230 while (ap_sm_event(ap_dev, AP_EVENT_POLL) != AP_WAIT_NONE)
1231 ;
1232 ap_dev->state = AP_STATE_BORKED;
1233 spin_unlock_bh(&ap_dev->lock);
1234 return 0;
1235 }
1236
1237 static int ap_dev_resume(struct device *dev)
1238 {
1239 return 0;
1240 }
1241
1242 static void ap_bus_suspend(void)
1243 {
1244 ap_suspend_flag = 1;
1245 /*
1246 * Disable scanning for devices, thus we do not want to scan
1247 * for them after removing.
1248 */
1249 flush_work(&ap_scan_work);
1250 tasklet_disable(&ap_tasklet);
1251 }
1252
1253 static int __ap_devices_unregister(struct device *dev, void *dummy)
1254 {
1255 device_unregister(dev);
1256 return 0;
1257 }
1258
1259 static void ap_bus_resume(void)
1260 {
1261 int rc;
1262
1263 /* Unconditionally remove all AP devices */
1264 bus_for_each_dev(&ap_bus_type, NULL, NULL, __ap_devices_unregister);
1265 /* Reset thin interrupt setting */
1266 if (ap_interrupts_available() && !ap_using_interrupts()) {
1267 rc = register_adapter_interrupt(&ap_airq);
1268 ap_airq_flag = (rc == 0);
1269 }
1270 if (!ap_interrupts_available() && ap_using_interrupts()) {
1271 unregister_adapter_interrupt(&ap_airq);
1272 ap_airq_flag = 0;
1273 }
1274 /* Reset domain */
1275 if (!user_set_domain)
1276 ap_domain_index = -1;
1277 /* Get things going again */
1278 ap_suspend_flag = 0;
1279 if (ap_airq_flag)
1280 xchg(ap_airq.lsi_ptr, 0);
1281 tasklet_enable(&ap_tasklet);
1282 queue_work(system_long_wq, &ap_scan_work);
1283 }
1284
1285 static int ap_power_event(struct notifier_block *this, unsigned long event,
1286 void *ptr)
1287 {
1288 switch (event) {
1289 case PM_HIBERNATION_PREPARE:
1290 case PM_SUSPEND_PREPARE:
1291 ap_bus_suspend();
1292 break;
1293 case PM_POST_HIBERNATION:
1294 case PM_POST_SUSPEND:
1295 ap_bus_resume();
1296 break;
1297 default:
1298 break;
1299 }
1300 return NOTIFY_DONE;
1301 }
1302 static struct notifier_block ap_power_notifier = {
1303 .notifier_call = ap_power_event,
1304 };
1305
1306 static struct bus_type ap_bus_type = {
1307 .name = "ap",
1308 .match = &ap_bus_match,
1309 .uevent = &ap_uevent,
1310 .suspend = ap_dev_suspend,
1311 .resume = ap_dev_resume,
1312 };
1313
1314 static int ap_device_probe(struct device *dev)
1315 {
1316 struct ap_device *ap_dev = to_ap_dev(dev);
1317 struct ap_driver *ap_drv = to_ap_drv(dev->driver);
1318 int rc;
1319
1320 ap_dev->drv = ap_drv;
1321 rc = ap_drv->probe ? ap_drv->probe(ap_dev) : -ENODEV;
1322 if (rc)
1323 ap_dev->drv = NULL;
1324 return rc;
1325 }
1326
1327 /**
1328 * __ap_flush_queue(): Flush requests.
1329 * @ap_dev: Pointer to the AP device
1330 *
1331 * Flush all requests from the request/pending queue of an AP device.
1332 */
1333 static void __ap_flush_queue(struct ap_device *ap_dev)
1334 {
1335 struct ap_message *ap_msg, *next;
1336
1337 list_for_each_entry_safe(ap_msg, next, &ap_dev->pendingq, list) {
1338 list_del_init(&ap_msg->list);
1339 ap_dev->pendingq_count--;
1340 ap_msg->rc = -EAGAIN;
1341 ap_msg->receive(ap_dev, ap_msg, NULL);
1342 }
1343 list_for_each_entry_safe(ap_msg, next, &ap_dev->requestq, list) {
1344 list_del_init(&ap_msg->list);
1345 ap_dev->requestq_count--;
1346 ap_msg->rc = -EAGAIN;
1347 ap_msg->receive(ap_dev, ap_msg, NULL);
1348 }
1349 }
1350
1351 void ap_flush_queue(struct ap_device *ap_dev)
1352 {
1353 spin_lock_bh(&ap_dev->lock);
1354 __ap_flush_queue(ap_dev);
1355 spin_unlock_bh(&ap_dev->lock);
1356 }
1357 EXPORT_SYMBOL(ap_flush_queue);
1358
1359 static int ap_device_remove(struct device *dev)
1360 {
1361 struct ap_device *ap_dev = to_ap_dev(dev);
1362 struct ap_driver *ap_drv = ap_dev->drv;
1363
1364 ap_flush_queue(ap_dev);
1365 del_timer_sync(&ap_dev->timeout);
1366 spin_lock_bh(&ap_device_list_lock);
1367 list_del_init(&ap_dev->list);
1368 spin_unlock_bh(&ap_device_list_lock);
1369 if (ap_drv->remove)
1370 ap_drv->remove(ap_dev);
1371 spin_lock_bh(&ap_dev->lock);
1372 atomic_sub(ap_dev->queue_count, &ap_poll_requests);
1373 spin_unlock_bh(&ap_dev->lock);
1374 return 0;
1375 }
1376
1377 static void ap_device_release(struct device *dev)
1378 {
1379 kfree(to_ap_dev(dev));
1380 }
1381
1382 int ap_driver_register(struct ap_driver *ap_drv, struct module *owner,
1383 char *name)
1384 {
1385 struct device_driver *drv = &ap_drv->driver;
1386
1387 drv->bus = &ap_bus_type;
1388 drv->probe = ap_device_probe;
1389 drv->remove = ap_device_remove;
1390 drv->owner = owner;
1391 drv->name = name;
1392 return driver_register(drv);
1393 }
1394 EXPORT_SYMBOL(ap_driver_register);
1395
1396 void ap_driver_unregister(struct ap_driver *ap_drv)
1397 {
1398 driver_unregister(&ap_drv->driver);
1399 }
1400 EXPORT_SYMBOL(ap_driver_unregister);
1401
1402 void ap_bus_force_rescan(void)
1403 {
1404 if (ap_suspend_flag)
1405 return;
1406 /* processing a asynchronous bus rescan */
1407 del_timer(&ap_config_timer);
1408 queue_work(system_long_wq, &ap_scan_work);
1409 flush_work(&ap_scan_work);
1410 }
1411 EXPORT_SYMBOL(ap_bus_force_rescan);
1412
1413 /*
1414 * AP bus attributes.
1415 */
1416 static ssize_t ap_domain_show(struct bus_type *bus, char *buf)
1417 {
1418 return snprintf(buf, PAGE_SIZE, "%d\n", ap_domain_index);
1419 }
1420
1421 static BUS_ATTR(ap_domain, 0444, ap_domain_show, NULL);
1422
1423 static ssize_t ap_control_domain_mask_show(struct bus_type *bus, char *buf)
1424 {
1425 if (!ap_configuration) /* QCI not supported */
1426 return snprintf(buf, PAGE_SIZE, "not supported\n");
1427 if (!test_facility(76))
1428 /* format 0 - 16 bit domain field */
1429 return snprintf(buf, PAGE_SIZE, "%08x%08x\n",
1430 ap_configuration->adm[0],
1431 ap_configuration->adm[1]);
1432 /* format 1 - 256 bit domain field */
1433 return snprintf(buf, PAGE_SIZE,
1434 "0x%08x%08x%08x%08x%08x%08x%08x%08x\n",
1435 ap_configuration->adm[0], ap_configuration->adm[1],
1436 ap_configuration->adm[2], ap_configuration->adm[3],
1437 ap_configuration->adm[4], ap_configuration->adm[5],
1438 ap_configuration->adm[6], ap_configuration->adm[7]);
1439 }
1440
1441 static BUS_ATTR(ap_control_domain_mask, 0444,
1442 ap_control_domain_mask_show, NULL);
1443
1444 static ssize_t ap_config_time_show(struct bus_type *bus, char *buf)
1445 {
1446 return snprintf(buf, PAGE_SIZE, "%d\n", ap_config_time);
1447 }
1448
1449 static ssize_t ap_interrupts_show(struct bus_type *bus, char *buf)
1450 {
1451 return snprintf(buf, PAGE_SIZE, "%d\n",
1452 ap_using_interrupts() ? 1 : 0);
1453 }
1454
1455 static BUS_ATTR(ap_interrupts, 0444, ap_interrupts_show, NULL);
1456
1457 static ssize_t ap_config_time_store(struct bus_type *bus,
1458 const char *buf, size_t count)
1459 {
1460 int time;
1461
1462 if (sscanf(buf, "%d\n", &time) != 1 || time < 5 || time > 120)
1463 return -EINVAL;
1464 ap_config_time = time;
1465 mod_timer(&ap_config_timer, jiffies + ap_config_time * HZ);
1466 return count;
1467 }
1468
1469 static BUS_ATTR(config_time, 0644, ap_config_time_show, ap_config_time_store);
1470
1471 static ssize_t ap_poll_thread_show(struct bus_type *bus, char *buf)
1472 {
1473 return snprintf(buf, PAGE_SIZE, "%d\n", ap_poll_kthread ? 1 : 0);
1474 }
1475
1476 static ssize_t ap_poll_thread_store(struct bus_type *bus,
1477 const char *buf, size_t count)
1478 {
1479 int flag, rc;
1480
1481 if (sscanf(buf, "%d\n", &flag) != 1)
1482 return -EINVAL;
1483 if (flag) {
1484 rc = ap_poll_thread_start();
1485 if (rc)
1486 count = rc;
1487 } else
1488 ap_poll_thread_stop();
1489 return count;
1490 }
1491
1492 static BUS_ATTR(poll_thread, 0644, ap_poll_thread_show, ap_poll_thread_store);
1493
1494 static ssize_t poll_timeout_show(struct bus_type *bus, char *buf)
1495 {
1496 return snprintf(buf, PAGE_SIZE, "%llu\n", poll_timeout);
1497 }
1498
1499 static ssize_t poll_timeout_store(struct bus_type *bus, const char *buf,
1500 size_t count)
1501 {
1502 unsigned long long time;
1503 ktime_t hr_time;
1504
1505 /* 120 seconds = maximum poll interval */
1506 if (sscanf(buf, "%llu\n", &time) != 1 || time < 1 ||
1507 time > 120000000000ULL)
1508 return -EINVAL;
1509 poll_timeout = time;
1510 hr_time = ktime_set(0, poll_timeout);
1511
1512 spin_lock_bh(&ap_poll_timer_lock);
1513 hrtimer_cancel(&ap_poll_timer);
1514 hrtimer_set_expires(&ap_poll_timer, hr_time);
1515 hrtimer_start_expires(&ap_poll_timer, HRTIMER_MODE_ABS);
1516 spin_unlock_bh(&ap_poll_timer_lock);
1517
1518 return count;
1519 }
1520
1521 static BUS_ATTR(poll_timeout, 0644, poll_timeout_show, poll_timeout_store);
1522
1523 static ssize_t ap_max_domain_id_show(struct bus_type *bus, char *buf)
1524 {
1525 int max_domain_id;
1526
1527 if (ap_configuration)
1528 max_domain_id = ap_max_domain_id ? : -1;
1529 else
1530 max_domain_id = 15;
1531 return snprintf(buf, PAGE_SIZE, "%d\n", max_domain_id);
1532 }
1533
1534 static BUS_ATTR(ap_max_domain_id, 0444, ap_max_domain_id_show, NULL);
1535
1536 static struct bus_attribute *const ap_bus_attrs[] = {
1537 &bus_attr_ap_domain,
1538 &bus_attr_ap_control_domain_mask,
1539 &bus_attr_config_time,
1540 &bus_attr_poll_thread,
1541 &bus_attr_ap_interrupts,
1542 &bus_attr_poll_timeout,
1543 &bus_attr_ap_max_domain_id,
1544 NULL,
1545 };
1546
1547 /**
1548 * ap_select_domain(): Select an AP domain.
1549 *
1550 * Pick one of the 16 AP domains.
1551 */
1552 static int ap_select_domain(void)
1553 {
1554 int count, max_count, best_domain;
1555 struct ap_queue_status status;
1556 int i, j;
1557
1558 /*
1559 * We want to use a single domain. Either the one specified with
1560 * the "domain=" parameter or the domain with the maximum number
1561 * of devices.
1562 */
1563 if (ap_domain_index >= 0)
1564 /* Domain has already been selected. */
1565 return 0;
1566 best_domain = -1;
1567 max_count = 0;
1568 for (i = 0; i < AP_DOMAINS; i++) {
1569 if (!ap_test_config_domain(i))
1570 continue;
1571 count = 0;
1572 for (j = 0; j < AP_DEVICES; j++) {
1573 if (!ap_test_config_card_id(j))
1574 continue;
1575 status = ap_test_queue(AP_MKQID(j, i), NULL);
1576 if (status.response_code != AP_RESPONSE_NORMAL)
1577 continue;
1578 count++;
1579 }
1580 if (count > max_count) {
1581 max_count = count;
1582 best_domain = i;
1583 }
1584 }
1585 if (best_domain >= 0){
1586 ap_domain_index = best_domain;
1587 return 0;
1588 }
1589 return -ENODEV;
1590 }
1591
1592 /**
1593 * __ap_scan_bus(): Scan the AP bus.
1594 * @dev: Pointer to device
1595 * @data: Pointer to data
1596 *
1597 * Scan the AP bus for new devices.
1598 */
1599 static int __ap_scan_bus(struct device *dev, void *data)
1600 {
1601 return to_ap_dev(dev)->qid == (ap_qid_t)(unsigned long) data;
1602 }
1603
1604 static void ap_scan_bus(struct work_struct *unused)
1605 {
1606 struct ap_device *ap_dev;
1607 struct device *dev;
1608 ap_qid_t qid;
1609 int queue_depth = 0, device_type = 0;
1610 unsigned int device_functions = 0;
1611 int rc, i, borked;
1612
1613 ap_query_configuration();
1614 if (ap_select_domain() != 0)
1615 goto out;
1616
1617 for (i = 0; i < AP_DEVICES; i++) {
1618 qid = AP_MKQID(i, ap_domain_index);
1619 dev = bus_find_device(&ap_bus_type, NULL,
1620 (void *)(unsigned long)qid,
1621 __ap_scan_bus);
1622 rc = ap_query_queue(qid, &queue_depth, &device_type,
1623 &device_functions);
1624 if (dev) {
1625 ap_dev = to_ap_dev(dev);
1626 spin_lock_bh(&ap_dev->lock);
1627 if (rc == -ENODEV)
1628 ap_dev->state = AP_STATE_BORKED;
1629 borked = ap_dev->state == AP_STATE_BORKED;
1630 spin_unlock_bh(&ap_dev->lock);
1631 if (borked) /* Remove broken device */
1632 device_unregister(dev);
1633 put_device(dev);
1634 if (!borked)
1635 continue;
1636 }
1637 if (rc)
1638 continue;
1639 ap_dev = kzalloc(sizeof(*ap_dev), GFP_KERNEL);
1640 if (!ap_dev)
1641 break;
1642 ap_dev->qid = qid;
1643 ap_dev->state = AP_STATE_RESET_START;
1644 ap_dev->interrupt = AP_INTR_DISABLED;
1645 ap_dev->queue_depth = queue_depth;
1646 ap_dev->raw_hwtype = device_type;
1647 ap_dev->device_type = device_type;
1648 ap_dev->functions = device_functions;
1649 spin_lock_init(&ap_dev->lock);
1650 INIT_LIST_HEAD(&ap_dev->pendingq);
1651 INIT_LIST_HEAD(&ap_dev->requestq);
1652 INIT_LIST_HEAD(&ap_dev->list);
1653 setup_timer(&ap_dev->timeout, ap_request_timeout,
1654 (unsigned long) ap_dev);
1655
1656 ap_dev->device.bus = &ap_bus_type;
1657 ap_dev->device.parent = ap_root_device;
1658 rc = dev_set_name(&ap_dev->device, "card%02x",
1659 AP_QID_DEVICE(ap_dev->qid));
1660 if (rc) {
1661 kfree(ap_dev);
1662 continue;
1663 }
1664 /* Add to list of devices */
1665 spin_lock_bh(&ap_device_list_lock);
1666 list_add(&ap_dev->list, &ap_device_list);
1667 spin_unlock_bh(&ap_device_list_lock);
1668 /* Start with a device reset */
1669 spin_lock_bh(&ap_dev->lock);
1670 ap_sm_wait(ap_sm_event(ap_dev, AP_EVENT_POLL));
1671 spin_unlock_bh(&ap_dev->lock);
1672 /* Register device */
1673 ap_dev->device.release = ap_device_release;
1674 rc = device_register(&ap_dev->device);
1675 if (rc) {
1676 spin_lock_bh(&ap_dev->lock);
1677 list_del_init(&ap_dev->list);
1678 spin_unlock_bh(&ap_dev->lock);
1679 put_device(&ap_dev->device);
1680 continue;
1681 }
1682 /* Add device attributes. */
1683 rc = sysfs_create_group(&ap_dev->device.kobj,
1684 &ap_dev_attr_group);
1685 if (rc) {
1686 device_unregister(&ap_dev->device);
1687 continue;
1688 }
1689 }
1690 out:
1691 mod_timer(&ap_config_timer, jiffies + ap_config_time * HZ);
1692 }
1693
1694 static void ap_config_timeout(unsigned long ptr)
1695 {
1696 if (ap_suspend_flag)
1697 return;
1698 queue_work(system_long_wq, &ap_scan_work);
1699 }
1700
1701 static void ap_reset_domain(void)
1702 {
1703 int i;
1704
1705 if (ap_domain_index == -1 || !ap_test_config_domain(ap_domain_index))
1706 return;
1707 for (i = 0; i < AP_DEVICES; i++)
1708 ap_reset_queue(AP_MKQID(i, ap_domain_index));
1709 }
1710
1711 static void ap_reset_all(void)
1712 {
1713 int i, j;
1714
1715 for (i = 0; i < AP_DOMAINS; i++) {
1716 if (!ap_test_config_domain(i))
1717 continue;
1718 for (j = 0; j < AP_DEVICES; j++) {
1719 if (!ap_test_config_card_id(j))
1720 continue;
1721 ap_reset_queue(AP_MKQID(j, i));
1722 }
1723 }
1724 }
1725
1726 static struct reset_call ap_reset_call = {
1727 .fn = ap_reset_all,
1728 };
1729
1730 /**
1731 * ap_module_init(): The module initialization code.
1732 *
1733 * Initializes the module.
1734 */
1735 int __init ap_module_init(void)
1736 {
1737 int max_domain_id;
1738 int rc, i;
1739
1740 if (ap_instructions_available() != 0) {
1741 pr_warn("The hardware system does not support AP instructions\n");
1742 return -ENODEV;
1743 }
1744
1745 /* Get AP configuration data if available */
1746 ap_init_configuration();
1747
1748 if (ap_configuration)
1749 max_domain_id = ap_max_domain_id ? : (AP_DOMAINS - 1);
1750 else
1751 max_domain_id = 15;
1752 if (ap_domain_index < -1 || ap_domain_index > max_domain_id) {
1753 pr_warn("%d is not a valid cryptographic domain\n",
1754 ap_domain_index);
1755 return -EINVAL;
1756 }
1757 /* In resume callback we need to know if the user had set the domain.
1758 * If so, we can not just reset it.
1759 */
1760 if (ap_domain_index >= 0)
1761 user_set_domain = 1;
1762
1763 if (ap_interrupts_available()) {
1764 rc = register_adapter_interrupt(&ap_airq);
1765 ap_airq_flag = (rc == 0);
1766 }
1767
1768 register_reset_call(&ap_reset_call);
1769
1770 /* Create /sys/bus/ap. */
1771 rc = bus_register(&ap_bus_type);
1772 if (rc)
1773 goto out;
1774 for (i = 0; ap_bus_attrs[i]; i++) {
1775 rc = bus_create_file(&ap_bus_type, ap_bus_attrs[i]);
1776 if (rc)
1777 goto out_bus;
1778 }
1779
1780 /* Create /sys/devices/ap. */
1781 ap_root_device = root_device_register("ap");
1782 rc = PTR_RET(ap_root_device);
1783 if (rc)
1784 goto out_bus;
1785
1786 /* Setup the AP bus rescan timer. */
1787 setup_timer(&ap_config_timer, ap_config_timeout, 0);
1788
1789 /*
1790 * Setup the high resultion poll timer.
1791 * If we are running under z/VM adjust polling to z/VM polling rate.
1792 */
1793 if (MACHINE_IS_VM)
1794 poll_timeout = 1500000;
1795 spin_lock_init(&ap_poll_timer_lock);
1796 hrtimer_init(&ap_poll_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
1797 ap_poll_timer.function = ap_poll_timeout;
1798
1799 /* Start the low priority AP bus poll thread. */
1800 if (ap_thread_flag) {
1801 rc = ap_poll_thread_start();
1802 if (rc)
1803 goto out_work;
1804 }
1805
1806 rc = register_pm_notifier(&ap_power_notifier);
1807 if (rc)
1808 goto out_pm;
1809
1810 queue_work(system_long_wq, &ap_scan_work);
1811
1812 return 0;
1813
1814 out_pm:
1815 ap_poll_thread_stop();
1816 out_work:
1817 hrtimer_cancel(&ap_poll_timer);
1818 root_device_unregister(ap_root_device);
1819 out_bus:
1820 while (i--)
1821 bus_remove_file(&ap_bus_type, ap_bus_attrs[i]);
1822 bus_unregister(&ap_bus_type);
1823 out:
1824 unregister_reset_call(&ap_reset_call);
1825 if (ap_using_interrupts())
1826 unregister_adapter_interrupt(&ap_airq);
1827 kfree(ap_configuration);
1828 return rc;
1829 }
1830
1831 /**
1832 * ap_modules_exit(): The module termination code
1833 *
1834 * Terminates the module.
1835 */
1836 void ap_module_exit(void)
1837 {
1838 int i;
1839
1840 ap_reset_domain();
1841 ap_poll_thread_stop();
1842 del_timer_sync(&ap_config_timer);
1843 hrtimer_cancel(&ap_poll_timer);
1844 tasklet_kill(&ap_tasklet);
1845 bus_for_each_dev(&ap_bus_type, NULL, NULL, __ap_devices_unregister);
1846 for (i = 0; ap_bus_attrs[i]; i++)
1847 bus_remove_file(&ap_bus_type, ap_bus_attrs[i]);
1848 unregister_pm_notifier(&ap_power_notifier);
1849 root_device_unregister(ap_root_device);
1850 bus_unregister(&ap_bus_type);
1851 kfree(ap_configuration);
1852 unregister_reset_call(&ap_reset_call);
1853 if (ap_using_interrupts())
1854 unregister_adapter_interrupt(&ap_airq);
1855 }
1856
1857 module_init(ap_module_init);
1858 module_exit(ap_module_exit);
This page took 0.110807 seconds and 6 git commands to generate.