Merge tag 'upstream-4.7-rc1' of git://git.infradead.org/linux-ubifs
[deliverable/linux.git] / drivers / sbus / char / bbc_envctrl.c
1 /* bbc_envctrl.c: UltraSPARC-III environment control driver.
2 *
3 * Copyright (C) 2001, 2008 David S. Miller (davem@davemloft.net)
4 */
5
6 #include <linux/kthread.h>
7 #include <linux/delay.h>
8 #include <linux/kmod.h>
9 #include <linux/reboot.h>
10 #include <linux/of.h>
11 #include <linux/slab.h>
12 #include <linux/of_device.h>
13 #include <asm/oplib.h>
14
15 #include "bbc_i2c.h"
16 #include "max1617.h"
17
18 #undef ENVCTRL_TRACE
19
20 /* WARNING: Making changes to this driver is very dangerous.
21 * If you misprogram the sensor chips they can
22 * cut the power on you instantly.
23 */
24
25 /* Two temperature sensors exist in the SunBLADE-1000 enclosure.
26 * Both are implemented using max1617 i2c devices. Each max1617
27 * monitors 2 temperatures, one for one of the cpu dies and the other
28 * for the ambient temperature.
29 *
30 * The max1617 is capable of being programmed with power-off
31 * temperature values, one low limit and one high limit. These
32 * can be controlled independently for the cpu or ambient temperature.
33 * If a limit is violated, the power is simply shut off. The frequency
34 * with which the max1617 does temperature sampling can be controlled
35 * as well.
36 *
37 * Three fans exist inside the machine, all three are controlled with
38 * an i2c digital to analog converter. There is a fan directed at the
39 * two processor slots, another for the rest of the enclosure, and the
40 * third is for the power supply. The first two fans may be speed
41 * controlled by changing the voltage fed to them. The third fan may
42 * only be completely off or on. The third fan is meant to only be
43 * disabled/enabled when entering/exiting the lowest power-saving
44 * mode of the machine.
45 *
46 * An environmental control kernel thread periodically monitors all
47 * temperature sensors. Based upon the samples it will adjust the
48 * fan speeds to try and keep the system within a certain temperature
49 * range (the goal being to make the fans as quiet as possible without
50 * allowing the system to get too hot).
51 *
52 * If the temperature begins to rise/fall outside of the acceptable
53 * operating range, a periodic warning will be sent to the kernel log.
54 * The fans will be put on full blast to attempt to deal with this
55 * situation. After exceeding the acceptable operating range by a
56 * certain threshold, the kernel thread will shut down the system.
57 * Here, the thread is attempting to shut the machine down cleanly
58 * before the hardware based power-off event is triggered.
59 */
60
61 /* These settings are in Celsius. We use these defaults only
62 * if we cannot interrogate the cpu-fru SEEPROM.
63 */
64 struct temp_limits {
65 s8 high_pwroff, high_shutdown, high_warn;
66 s8 low_warn, low_shutdown, low_pwroff;
67 };
68
69 static struct temp_limits cpu_temp_limits[2] = {
70 { 100, 85, 80, 5, -5, -10 },
71 { 100, 85, 80, 5, -5, -10 },
72 };
73
74 static struct temp_limits amb_temp_limits[2] = {
75 { 65, 55, 40, 5, -5, -10 },
76 { 65, 55, 40, 5, -5, -10 },
77 };
78
79 static LIST_HEAD(all_temps);
80 static LIST_HEAD(all_fans);
81
82 #define CPU_FAN_REG 0xf0
83 #define SYS_FAN_REG 0xf2
84 #define PSUPPLY_FAN_REG 0xf4
85
86 #define FAN_SPEED_MIN 0x0c
87 #define FAN_SPEED_MAX 0x3f
88
89 #define PSUPPLY_FAN_ON 0x1f
90 #define PSUPPLY_FAN_OFF 0x00
91
92 static void set_fan_speeds(struct bbc_fan_control *fp)
93 {
94 /* Put temperatures into range so we don't mis-program
95 * the hardware.
96 */
97 if (fp->cpu_fan_speed < FAN_SPEED_MIN)
98 fp->cpu_fan_speed = FAN_SPEED_MIN;
99 if (fp->cpu_fan_speed > FAN_SPEED_MAX)
100 fp->cpu_fan_speed = FAN_SPEED_MAX;
101 if (fp->system_fan_speed < FAN_SPEED_MIN)
102 fp->system_fan_speed = FAN_SPEED_MIN;
103 if (fp->system_fan_speed > FAN_SPEED_MAX)
104 fp->system_fan_speed = FAN_SPEED_MAX;
105 #ifdef ENVCTRL_TRACE
106 printk("fan%d: Changed fan speed to cpu(%02x) sys(%02x)\n",
107 fp->index,
108 fp->cpu_fan_speed, fp->system_fan_speed);
109 #endif
110
111 bbc_i2c_writeb(fp->client, fp->cpu_fan_speed, CPU_FAN_REG);
112 bbc_i2c_writeb(fp->client, fp->system_fan_speed, SYS_FAN_REG);
113 bbc_i2c_writeb(fp->client,
114 (fp->psupply_fan_on ?
115 PSUPPLY_FAN_ON : PSUPPLY_FAN_OFF),
116 PSUPPLY_FAN_REG);
117 }
118
119 static void get_current_temps(struct bbc_cpu_temperature *tp)
120 {
121 tp->prev_amb_temp = tp->curr_amb_temp;
122 bbc_i2c_readb(tp->client,
123 (unsigned char *) &tp->curr_amb_temp,
124 MAX1617_AMB_TEMP);
125 tp->prev_cpu_temp = tp->curr_cpu_temp;
126 bbc_i2c_readb(tp->client,
127 (unsigned char *) &tp->curr_cpu_temp,
128 MAX1617_CPU_TEMP);
129 #ifdef ENVCTRL_TRACE
130 printk("temp%d: cpu(%d C) amb(%d C)\n",
131 tp->index,
132 (int) tp->curr_cpu_temp, (int) tp->curr_amb_temp);
133 #endif
134 }
135
136
137 static void do_envctrl_shutdown(struct bbc_cpu_temperature *tp)
138 {
139 static int shutting_down = 0;
140 char *type = "???";
141 s8 val = -1;
142
143 if (shutting_down != 0)
144 return;
145
146 if (tp->curr_amb_temp >= amb_temp_limits[tp->index].high_shutdown ||
147 tp->curr_amb_temp < amb_temp_limits[tp->index].low_shutdown) {
148 type = "ambient";
149 val = tp->curr_amb_temp;
150 } else if (tp->curr_cpu_temp >= cpu_temp_limits[tp->index].high_shutdown ||
151 tp->curr_cpu_temp < cpu_temp_limits[tp->index].low_shutdown) {
152 type = "CPU";
153 val = tp->curr_cpu_temp;
154 }
155
156 printk(KERN_CRIT "temp%d: Outside of safe %s "
157 "operating temperature, %d C.\n",
158 tp->index, type, val);
159
160 printk(KERN_CRIT "kenvctrld: Shutting down the system now.\n");
161
162 shutting_down = 1;
163 orderly_poweroff(true);
164 }
165
166 #define WARN_INTERVAL (30 * HZ)
167
168 static void analyze_ambient_temp(struct bbc_cpu_temperature *tp, unsigned long *last_warn, int tick)
169 {
170 int ret = 0;
171
172 if (time_after(jiffies, (*last_warn + WARN_INTERVAL))) {
173 if (tp->curr_amb_temp >=
174 amb_temp_limits[tp->index].high_warn) {
175 printk(KERN_WARNING "temp%d: "
176 "Above safe ambient operating temperature, %d C.\n",
177 tp->index, (int) tp->curr_amb_temp);
178 ret = 1;
179 } else if (tp->curr_amb_temp <
180 amb_temp_limits[tp->index].low_warn) {
181 printk(KERN_WARNING "temp%d: "
182 "Below safe ambient operating temperature, %d C.\n",
183 tp->index, (int) tp->curr_amb_temp);
184 ret = 1;
185 }
186 if (ret)
187 *last_warn = jiffies;
188 } else if (tp->curr_amb_temp >= amb_temp_limits[tp->index].high_warn ||
189 tp->curr_amb_temp < amb_temp_limits[tp->index].low_warn)
190 ret = 1;
191
192 /* Now check the shutdown limits. */
193 if (tp->curr_amb_temp >= amb_temp_limits[tp->index].high_shutdown ||
194 tp->curr_amb_temp < amb_temp_limits[tp->index].low_shutdown) {
195 do_envctrl_shutdown(tp);
196 ret = 1;
197 }
198
199 if (ret) {
200 tp->fan_todo[FAN_AMBIENT] = FAN_FULLBLAST;
201 } else if ((tick & (8 - 1)) == 0) {
202 s8 amb_goal_hi = amb_temp_limits[tp->index].high_warn - 10;
203 s8 amb_goal_lo;
204
205 amb_goal_lo = amb_goal_hi - 3;
206
207 /* We do not try to avoid 'too cold' events. Basically we
208 * only try to deal with over-heating and fan noise reduction.
209 */
210 if (tp->avg_amb_temp < amb_goal_hi) {
211 if (tp->avg_amb_temp >= amb_goal_lo)
212 tp->fan_todo[FAN_AMBIENT] = FAN_SAME;
213 else
214 tp->fan_todo[FAN_AMBIENT] = FAN_SLOWER;
215 } else {
216 tp->fan_todo[FAN_AMBIENT] = FAN_FASTER;
217 }
218 } else {
219 tp->fan_todo[FAN_AMBIENT] = FAN_SAME;
220 }
221 }
222
223 static void analyze_cpu_temp(struct bbc_cpu_temperature *tp, unsigned long *last_warn, int tick)
224 {
225 int ret = 0;
226
227 if (time_after(jiffies, (*last_warn + WARN_INTERVAL))) {
228 if (tp->curr_cpu_temp >=
229 cpu_temp_limits[tp->index].high_warn) {
230 printk(KERN_WARNING "temp%d: "
231 "Above safe CPU operating temperature, %d C.\n",
232 tp->index, (int) tp->curr_cpu_temp);
233 ret = 1;
234 } else if (tp->curr_cpu_temp <
235 cpu_temp_limits[tp->index].low_warn) {
236 printk(KERN_WARNING "temp%d: "
237 "Below safe CPU operating temperature, %d C.\n",
238 tp->index, (int) tp->curr_cpu_temp);
239 ret = 1;
240 }
241 if (ret)
242 *last_warn = jiffies;
243 } else if (tp->curr_cpu_temp >= cpu_temp_limits[tp->index].high_warn ||
244 tp->curr_cpu_temp < cpu_temp_limits[tp->index].low_warn)
245 ret = 1;
246
247 /* Now check the shutdown limits. */
248 if (tp->curr_cpu_temp >= cpu_temp_limits[tp->index].high_shutdown ||
249 tp->curr_cpu_temp < cpu_temp_limits[tp->index].low_shutdown) {
250 do_envctrl_shutdown(tp);
251 ret = 1;
252 }
253
254 if (ret) {
255 tp->fan_todo[FAN_CPU] = FAN_FULLBLAST;
256 } else if ((tick & (8 - 1)) == 0) {
257 s8 cpu_goal_hi = cpu_temp_limits[tp->index].high_warn - 10;
258 s8 cpu_goal_lo;
259
260 cpu_goal_lo = cpu_goal_hi - 3;
261
262 /* We do not try to avoid 'too cold' events. Basically we
263 * only try to deal with over-heating and fan noise reduction.
264 */
265 if (tp->avg_cpu_temp < cpu_goal_hi) {
266 if (tp->avg_cpu_temp >= cpu_goal_lo)
267 tp->fan_todo[FAN_CPU] = FAN_SAME;
268 else
269 tp->fan_todo[FAN_CPU] = FAN_SLOWER;
270 } else {
271 tp->fan_todo[FAN_CPU] = FAN_FASTER;
272 }
273 } else {
274 tp->fan_todo[FAN_CPU] = FAN_SAME;
275 }
276 }
277
278 static void analyze_temps(struct bbc_cpu_temperature *tp, unsigned long *last_warn)
279 {
280 tp->avg_amb_temp = (s8)((int)((int)tp->avg_amb_temp + (int)tp->curr_amb_temp) / 2);
281 tp->avg_cpu_temp = (s8)((int)((int)tp->avg_cpu_temp + (int)tp->curr_cpu_temp) / 2);
282
283 analyze_ambient_temp(tp, last_warn, tp->sample_tick);
284 analyze_cpu_temp(tp, last_warn, tp->sample_tick);
285
286 tp->sample_tick++;
287 }
288
289 static enum fan_action prioritize_fan_action(int which_fan)
290 {
291 struct bbc_cpu_temperature *tp;
292 enum fan_action decision = FAN_STATE_MAX;
293
294 /* Basically, prioritize what the temperature sensors
295 * recommend we do, and perform that action on all the
296 * fans.
297 */
298 list_for_each_entry(tp, &all_temps, glob_list) {
299 if (tp->fan_todo[which_fan] == FAN_FULLBLAST) {
300 decision = FAN_FULLBLAST;
301 break;
302 }
303 if (tp->fan_todo[which_fan] == FAN_SAME &&
304 decision != FAN_FASTER)
305 decision = FAN_SAME;
306 else if (tp->fan_todo[which_fan] == FAN_FASTER)
307 decision = FAN_FASTER;
308 else if (decision != FAN_FASTER &&
309 decision != FAN_SAME &&
310 tp->fan_todo[which_fan] == FAN_SLOWER)
311 decision = FAN_SLOWER;
312 }
313 if (decision == FAN_STATE_MAX)
314 decision = FAN_SAME;
315
316 return decision;
317 }
318
319 static int maybe_new_ambient_fan_speed(struct bbc_fan_control *fp)
320 {
321 enum fan_action decision = prioritize_fan_action(FAN_AMBIENT);
322 int ret;
323
324 if (decision == FAN_SAME)
325 return 0;
326
327 ret = 1;
328 if (decision == FAN_FULLBLAST) {
329 if (fp->system_fan_speed >= FAN_SPEED_MAX)
330 ret = 0;
331 else
332 fp->system_fan_speed = FAN_SPEED_MAX;
333 } else {
334 if (decision == FAN_FASTER) {
335 if (fp->system_fan_speed >= FAN_SPEED_MAX)
336 ret = 0;
337 else
338 fp->system_fan_speed += 2;
339 } else {
340 int orig_speed = fp->system_fan_speed;
341
342 if (orig_speed <= FAN_SPEED_MIN ||
343 orig_speed <= (fp->cpu_fan_speed - 3))
344 ret = 0;
345 else
346 fp->system_fan_speed -= 1;
347 }
348 }
349
350 return ret;
351 }
352
353 static int maybe_new_cpu_fan_speed(struct bbc_fan_control *fp)
354 {
355 enum fan_action decision = prioritize_fan_action(FAN_CPU);
356 int ret;
357
358 if (decision == FAN_SAME)
359 return 0;
360
361 ret = 1;
362 if (decision == FAN_FULLBLAST) {
363 if (fp->cpu_fan_speed >= FAN_SPEED_MAX)
364 ret = 0;
365 else
366 fp->cpu_fan_speed = FAN_SPEED_MAX;
367 } else {
368 if (decision == FAN_FASTER) {
369 if (fp->cpu_fan_speed >= FAN_SPEED_MAX)
370 ret = 0;
371 else {
372 fp->cpu_fan_speed += 2;
373 if (fp->system_fan_speed <
374 (fp->cpu_fan_speed - 3))
375 fp->system_fan_speed =
376 fp->cpu_fan_speed - 3;
377 }
378 } else {
379 if (fp->cpu_fan_speed <= FAN_SPEED_MIN)
380 ret = 0;
381 else
382 fp->cpu_fan_speed -= 1;
383 }
384 }
385
386 return ret;
387 }
388
389 static void maybe_new_fan_speeds(struct bbc_fan_control *fp)
390 {
391 int new;
392
393 new = maybe_new_ambient_fan_speed(fp);
394 new |= maybe_new_cpu_fan_speed(fp);
395
396 if (new)
397 set_fan_speeds(fp);
398 }
399
400 static void fans_full_blast(void)
401 {
402 struct bbc_fan_control *fp;
403
404 /* Since we will not be monitoring things anymore, put
405 * the fans on full blast.
406 */
407 list_for_each_entry(fp, &all_fans, glob_list) {
408 fp->cpu_fan_speed = FAN_SPEED_MAX;
409 fp->system_fan_speed = FAN_SPEED_MAX;
410 fp->psupply_fan_on = 1;
411 set_fan_speeds(fp);
412 }
413 }
414
415 #define POLL_INTERVAL (5 * 1000)
416 static unsigned long last_warning_jiffies;
417 static struct task_struct *kenvctrld_task;
418
419 static int kenvctrld(void *__unused)
420 {
421 printk(KERN_INFO "bbc_envctrl: kenvctrld starting...\n");
422 last_warning_jiffies = jiffies - WARN_INTERVAL;
423 for (;;) {
424 struct bbc_cpu_temperature *tp;
425 struct bbc_fan_control *fp;
426
427 msleep_interruptible(POLL_INTERVAL);
428 if (kthread_should_stop())
429 break;
430
431 list_for_each_entry(tp, &all_temps, glob_list) {
432 get_current_temps(tp);
433 analyze_temps(tp, &last_warning_jiffies);
434 }
435 list_for_each_entry(fp, &all_fans, glob_list)
436 maybe_new_fan_speeds(fp);
437 }
438 printk(KERN_INFO "bbc_envctrl: kenvctrld exiting...\n");
439
440 fans_full_blast();
441
442 return 0;
443 }
444
445 static void attach_one_temp(struct bbc_i2c_bus *bp, struct platform_device *op,
446 int temp_idx)
447 {
448 struct bbc_cpu_temperature *tp;
449
450 tp = kzalloc(sizeof(*tp), GFP_KERNEL);
451 if (!tp)
452 return;
453
454 INIT_LIST_HEAD(&tp->bp_list);
455 INIT_LIST_HEAD(&tp->glob_list);
456
457 tp->client = bbc_i2c_attach(bp, op);
458 if (!tp->client) {
459 kfree(tp);
460 return;
461 }
462
463
464 tp->index = temp_idx;
465
466 list_add(&tp->glob_list, &all_temps);
467 list_add(&tp->bp_list, &bp->temps);
468
469 /* Tell it to convert once every 5 seconds, clear all cfg
470 * bits.
471 */
472 bbc_i2c_writeb(tp->client, 0x00, MAX1617_WR_CFG_BYTE);
473 bbc_i2c_writeb(tp->client, 0x02, MAX1617_WR_CVRATE_BYTE);
474
475 /* Program the hard temperature limits into the chip. */
476 bbc_i2c_writeb(tp->client, amb_temp_limits[tp->index].high_pwroff,
477 MAX1617_WR_AMB_HIGHLIM);
478 bbc_i2c_writeb(tp->client, amb_temp_limits[tp->index].low_pwroff,
479 MAX1617_WR_AMB_LOWLIM);
480 bbc_i2c_writeb(tp->client, cpu_temp_limits[tp->index].high_pwroff,
481 MAX1617_WR_CPU_HIGHLIM);
482 bbc_i2c_writeb(tp->client, cpu_temp_limits[tp->index].low_pwroff,
483 MAX1617_WR_CPU_LOWLIM);
484
485 get_current_temps(tp);
486 tp->prev_cpu_temp = tp->avg_cpu_temp = tp->curr_cpu_temp;
487 tp->prev_amb_temp = tp->avg_amb_temp = tp->curr_amb_temp;
488
489 tp->fan_todo[FAN_AMBIENT] = FAN_SAME;
490 tp->fan_todo[FAN_CPU] = FAN_SAME;
491 }
492
493 static void attach_one_fan(struct bbc_i2c_bus *bp, struct platform_device *op,
494 int fan_idx)
495 {
496 struct bbc_fan_control *fp;
497
498 fp = kzalloc(sizeof(*fp), GFP_KERNEL);
499 if (!fp)
500 return;
501
502 INIT_LIST_HEAD(&fp->bp_list);
503 INIT_LIST_HEAD(&fp->glob_list);
504
505 fp->client = bbc_i2c_attach(bp, op);
506 if (!fp->client) {
507 kfree(fp);
508 return;
509 }
510
511 fp->index = fan_idx;
512
513 list_add(&fp->glob_list, &all_fans);
514 list_add(&fp->bp_list, &bp->fans);
515
516 /* The i2c device controlling the fans is write-only.
517 * So the only way to keep track of the current power
518 * level fed to the fans is via software. Choose half
519 * power for cpu/system and 'on' fo the powersupply fan
520 * and set it now.
521 */
522 fp->psupply_fan_on = 1;
523 fp->cpu_fan_speed = (FAN_SPEED_MAX - FAN_SPEED_MIN) / 2;
524 fp->cpu_fan_speed += FAN_SPEED_MIN;
525 fp->system_fan_speed = (FAN_SPEED_MAX - FAN_SPEED_MIN) / 2;
526 fp->system_fan_speed += FAN_SPEED_MIN;
527
528 set_fan_speeds(fp);
529 }
530
531 static void destroy_one_temp(struct bbc_cpu_temperature *tp)
532 {
533 bbc_i2c_detach(tp->client);
534 kfree(tp);
535 }
536
537 static void destroy_all_temps(struct bbc_i2c_bus *bp)
538 {
539 struct bbc_cpu_temperature *tp, *tpos;
540
541 list_for_each_entry_safe(tp, tpos, &bp->temps, bp_list) {
542 list_del(&tp->bp_list);
543 list_del(&tp->glob_list);
544 destroy_one_temp(tp);
545 }
546 }
547
548 static void destroy_one_fan(struct bbc_fan_control *fp)
549 {
550 bbc_i2c_detach(fp->client);
551 kfree(fp);
552 }
553
554 static void destroy_all_fans(struct bbc_i2c_bus *bp)
555 {
556 struct bbc_fan_control *fp, *fpos;
557
558 list_for_each_entry_safe(fp, fpos, &bp->fans, bp_list) {
559 list_del(&fp->bp_list);
560 list_del(&fp->glob_list);
561 destroy_one_fan(fp);
562 }
563 }
564
565 int bbc_envctrl_init(struct bbc_i2c_bus *bp)
566 {
567 struct platform_device *op;
568 int temp_index = 0;
569 int fan_index = 0;
570 int devidx = 0;
571
572 while ((op = bbc_i2c_getdev(bp, devidx++)) != NULL) {
573 if (!strcmp(op->dev.of_node->name, "temperature"))
574 attach_one_temp(bp, op, temp_index++);
575 if (!strcmp(op->dev.of_node->name, "fan-control"))
576 attach_one_fan(bp, op, fan_index++);
577 }
578 if (temp_index != 0 && fan_index != 0) {
579 kenvctrld_task = kthread_run(kenvctrld, NULL, "kenvctrld");
580 if (IS_ERR(kenvctrld_task)) {
581 int err = PTR_ERR(kenvctrld_task);
582
583 kenvctrld_task = NULL;
584 destroy_all_temps(bp);
585 destroy_all_fans(bp);
586 return err;
587 }
588 }
589
590 return 0;
591 }
592
593 void bbc_envctrl_cleanup(struct bbc_i2c_bus *bp)
594 {
595 if (kenvctrld_task)
596 kthread_stop(kenvctrld_task);
597
598 destroy_all_temps(bp);
599 destroy_all_fans(bp);
600 }
This page took 0.089257 seconds and 5 git commands to generate.