cxlflash: Remove unnecessary scsi_block_requests
[deliverable/linux.git] / drivers / scsi / cxlflash / main.c
1 /*
2 * CXL Flash Device Driver
3 *
4 * Written by: Manoj N. Kumar <manoj@linux.vnet.ibm.com>, IBM Corporation
5 * Matthew R. Ochs <mrochs@linux.vnet.ibm.com>, IBM Corporation
6 *
7 * Copyright (C) 2015 IBM Corporation
8 *
9 * This program is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU General Public License
11 * as published by the Free Software Foundation; either version
12 * 2 of the License, or (at your option) any later version.
13 */
14
15 #include <linux/delay.h>
16 #include <linux/list.h>
17 #include <linux/module.h>
18 #include <linux/pci.h>
19
20 #include <asm/unaligned.h>
21
22 #include <misc/cxl.h>
23
24 #include <scsi/scsi_cmnd.h>
25 #include <scsi/scsi_host.h>
26 #include <uapi/scsi/cxlflash_ioctl.h>
27
28 #include "main.h"
29 #include "sislite.h"
30 #include "common.h"
31
32 MODULE_DESCRIPTION(CXLFLASH_ADAPTER_NAME);
33 MODULE_AUTHOR("Manoj N. Kumar <manoj@linux.vnet.ibm.com>");
34 MODULE_AUTHOR("Matthew R. Ochs <mrochs@linux.vnet.ibm.com>");
35 MODULE_LICENSE("GPL");
36
37
38 /**
39 * cmd_checkout() - checks out an AFU command
40 * @afu: AFU to checkout from.
41 *
42 * Commands are checked out in a round-robin fashion. Note that since
43 * the command pool is larger than the hardware queue, the majority of
44 * times we will only loop once or twice before getting a command. The
45 * buffer and CDB within the command are initialized (zeroed) prior to
46 * returning.
47 *
48 * Return: The checked out command or NULL when command pool is empty.
49 */
50 static struct afu_cmd *cmd_checkout(struct afu *afu)
51 {
52 int k, dec = CXLFLASH_NUM_CMDS;
53 struct afu_cmd *cmd;
54
55 while (dec--) {
56 k = (afu->cmd_couts++ & (CXLFLASH_NUM_CMDS - 1));
57
58 cmd = &afu->cmd[k];
59
60 if (!atomic_dec_if_positive(&cmd->free)) {
61 pr_devel("%s: returning found index=%d cmd=%p\n",
62 __func__, cmd->slot, cmd);
63 memset(cmd->buf, 0, CMD_BUFSIZE);
64 memset(cmd->rcb.cdb, 0, sizeof(cmd->rcb.cdb));
65 return cmd;
66 }
67 }
68
69 return NULL;
70 }
71
72 /**
73 * cmd_checkin() - checks in an AFU command
74 * @cmd: AFU command to checkin.
75 *
76 * Safe to pass commands that have already been checked in. Several
77 * internal tracking fields are reset as part of the checkin. Note
78 * that these are intentionally reset prior to toggling the free bit
79 * to avoid clobbering values in the event that the command is checked
80 * out right away.
81 */
82 static void cmd_checkin(struct afu_cmd *cmd)
83 {
84 cmd->rcb.scp = NULL;
85 cmd->rcb.timeout = 0;
86 cmd->sa.ioasc = 0;
87 cmd->cmd_tmf = false;
88 cmd->sa.host_use[0] = 0; /* clears both completion and retry bytes */
89
90 if (unlikely(atomic_inc_return(&cmd->free) != 1)) {
91 pr_err("%s: Freeing cmd (%d) that is not in use!\n",
92 __func__, cmd->slot);
93 return;
94 }
95
96 pr_devel("%s: released cmd %p index=%d\n", __func__, cmd, cmd->slot);
97 }
98
99 /**
100 * process_cmd_err() - command error handler
101 * @cmd: AFU command that experienced the error.
102 * @scp: SCSI command associated with the AFU command in error.
103 *
104 * Translates error bits from AFU command to SCSI command results.
105 */
106 static void process_cmd_err(struct afu_cmd *cmd, struct scsi_cmnd *scp)
107 {
108 struct sisl_ioarcb *ioarcb;
109 struct sisl_ioasa *ioasa;
110 u32 resid;
111
112 if (unlikely(!cmd))
113 return;
114
115 ioarcb = &(cmd->rcb);
116 ioasa = &(cmd->sa);
117
118 if (ioasa->rc.flags & SISL_RC_FLAGS_UNDERRUN) {
119 resid = ioasa->resid;
120 scsi_set_resid(scp, resid);
121 pr_debug("%s: cmd underrun cmd = %p scp = %p, resid = %d\n",
122 __func__, cmd, scp, resid);
123 }
124
125 if (ioasa->rc.flags & SISL_RC_FLAGS_OVERRUN) {
126 pr_debug("%s: cmd underrun cmd = %p scp = %p\n",
127 __func__, cmd, scp);
128 scp->result = (DID_ERROR << 16);
129 }
130
131 pr_debug("%s: cmd failed afu_rc=%d scsi_rc=%d fc_rc=%d "
132 "afu_extra=0x%X, scsi_extra=0x%X, fc_extra=0x%X\n",
133 __func__, ioasa->rc.afu_rc, ioasa->rc.scsi_rc,
134 ioasa->rc.fc_rc, ioasa->afu_extra, ioasa->scsi_extra,
135 ioasa->fc_extra);
136
137 if (ioasa->rc.scsi_rc) {
138 /* We have a SCSI status */
139 if (ioasa->rc.flags & SISL_RC_FLAGS_SENSE_VALID) {
140 memcpy(scp->sense_buffer, ioasa->sense_data,
141 SISL_SENSE_DATA_LEN);
142 scp->result = ioasa->rc.scsi_rc;
143 } else
144 scp->result = ioasa->rc.scsi_rc | (DID_ERROR << 16);
145 }
146
147 /*
148 * We encountered an error. Set scp->result based on nature
149 * of error.
150 */
151 if (ioasa->rc.fc_rc) {
152 /* We have an FC status */
153 switch (ioasa->rc.fc_rc) {
154 case SISL_FC_RC_LINKDOWN:
155 scp->result = (DID_REQUEUE << 16);
156 break;
157 case SISL_FC_RC_RESID:
158 /* This indicates an FCP resid underrun */
159 if (!(ioasa->rc.flags & SISL_RC_FLAGS_OVERRUN)) {
160 /* If the SISL_RC_FLAGS_OVERRUN flag was set,
161 * then we will handle this error else where.
162 * If not then we must handle it here.
163 * This is probably an AFU bug.
164 */
165 scp->result = (DID_ERROR << 16);
166 }
167 break;
168 case SISL_FC_RC_RESIDERR:
169 /* Resid mismatch between adapter and device */
170 case SISL_FC_RC_TGTABORT:
171 case SISL_FC_RC_ABORTOK:
172 case SISL_FC_RC_ABORTFAIL:
173 case SISL_FC_RC_NOLOGI:
174 case SISL_FC_RC_ABORTPEND:
175 case SISL_FC_RC_WRABORTPEND:
176 case SISL_FC_RC_NOEXP:
177 case SISL_FC_RC_INUSE:
178 scp->result = (DID_ERROR << 16);
179 break;
180 }
181 }
182
183 if (ioasa->rc.afu_rc) {
184 /* We have an AFU error */
185 switch (ioasa->rc.afu_rc) {
186 case SISL_AFU_RC_NO_CHANNELS:
187 scp->result = (DID_NO_CONNECT << 16);
188 break;
189 case SISL_AFU_RC_DATA_DMA_ERR:
190 switch (ioasa->afu_extra) {
191 case SISL_AFU_DMA_ERR_PAGE_IN:
192 /* Retry */
193 scp->result = (DID_IMM_RETRY << 16);
194 break;
195 case SISL_AFU_DMA_ERR_INVALID_EA:
196 default:
197 scp->result = (DID_ERROR << 16);
198 }
199 break;
200 case SISL_AFU_RC_OUT_OF_DATA_BUFS:
201 /* Retry */
202 scp->result = (DID_ALLOC_FAILURE << 16);
203 break;
204 default:
205 scp->result = (DID_ERROR << 16);
206 }
207 }
208 }
209
210 /**
211 * cmd_complete() - command completion handler
212 * @cmd: AFU command that has completed.
213 *
214 * Prepares and submits command that has either completed or timed out to
215 * the SCSI stack. Checks AFU command back into command pool for non-internal
216 * (rcb.scp populated) commands.
217 */
218 static void cmd_complete(struct afu_cmd *cmd)
219 {
220 struct scsi_cmnd *scp;
221 ulong lock_flags;
222 struct afu *afu = cmd->parent;
223 struct cxlflash_cfg *cfg = afu->parent;
224 bool cmd_is_tmf;
225
226 spin_lock_irqsave(&cmd->slock, lock_flags);
227 cmd->sa.host_use_b[0] |= B_DONE;
228 spin_unlock_irqrestore(&cmd->slock, lock_flags);
229
230 if (cmd->rcb.scp) {
231 scp = cmd->rcb.scp;
232 if (unlikely(cmd->sa.ioasc))
233 process_cmd_err(cmd, scp);
234 else
235 scp->result = (DID_OK << 16);
236
237 cmd_is_tmf = cmd->cmd_tmf;
238 cmd_checkin(cmd); /* Don't use cmd after here */
239
240 pr_debug_ratelimited("%s: calling scsi_done scp=%p result=%X "
241 "ioasc=%d\n", __func__, scp, scp->result,
242 cmd->sa.ioasc);
243
244 scsi_dma_unmap(scp);
245 scp->scsi_done(scp);
246
247 if (cmd_is_tmf) {
248 spin_lock_irqsave(&cfg->tmf_slock, lock_flags);
249 cfg->tmf_active = false;
250 wake_up_all_locked(&cfg->tmf_waitq);
251 spin_unlock_irqrestore(&cfg->tmf_slock, lock_flags);
252 }
253 } else
254 complete(&cmd->cevent);
255 }
256
257 /**
258 * context_reset() - timeout handler for AFU commands
259 * @cmd: AFU command that timed out.
260 *
261 * Sends a reset to the AFU.
262 */
263 static void context_reset(struct afu_cmd *cmd)
264 {
265 int nretry = 0;
266 u64 rrin = 0x1;
267 u64 room = 0;
268 struct afu *afu = cmd->parent;
269 ulong lock_flags;
270
271 pr_debug("%s: cmd=%p\n", __func__, cmd);
272
273 spin_lock_irqsave(&cmd->slock, lock_flags);
274
275 /* Already completed? */
276 if (cmd->sa.host_use_b[0] & B_DONE) {
277 spin_unlock_irqrestore(&cmd->slock, lock_flags);
278 return;
279 }
280
281 cmd->sa.host_use_b[0] |= (B_DONE | B_ERROR | B_TIMEOUT);
282 spin_unlock_irqrestore(&cmd->slock, lock_flags);
283
284 /*
285 * We really want to send this reset at all costs, so spread
286 * out wait time on successive retries for available room.
287 */
288 do {
289 room = readq_be(&afu->host_map->cmd_room);
290 atomic64_set(&afu->room, room);
291 if (room)
292 goto write_rrin;
293 udelay(nretry);
294 } while (nretry++ < MC_ROOM_RETRY_CNT);
295
296 pr_err("%s: no cmd_room to send reset\n", __func__);
297 return;
298
299 write_rrin:
300 nretry = 0;
301 writeq_be(rrin, &afu->host_map->ioarrin);
302 do {
303 rrin = readq_be(&afu->host_map->ioarrin);
304 if (rrin != 0x1)
305 break;
306 /* Double delay each time */
307 udelay(2 ^ nretry);
308 } while (nretry++ < MC_ROOM_RETRY_CNT);
309 }
310
311 /**
312 * send_cmd() - sends an AFU command
313 * @afu: AFU associated with the host.
314 * @cmd: AFU command to send.
315 *
316 * Return:
317 * 0 on success or SCSI_MLQUEUE_HOST_BUSY
318 */
319 static int send_cmd(struct afu *afu, struct afu_cmd *cmd)
320 {
321 struct cxlflash_cfg *cfg = afu->parent;
322 struct device *dev = &cfg->dev->dev;
323 int nretry = 0;
324 int rc = 0;
325 u64 room;
326 long newval;
327
328 /*
329 * This routine is used by critical users such an AFU sync and to
330 * send a task management function (TMF). Thus we want to retry a
331 * bit before returning an error. To avoid the performance penalty
332 * of MMIO, we spread the update of 'room' over multiple commands.
333 */
334 retry:
335 newval = atomic64_dec_if_positive(&afu->room);
336 if (!newval) {
337 do {
338 room = readq_be(&afu->host_map->cmd_room);
339 atomic64_set(&afu->room, room);
340 if (room)
341 goto write_ioarrin;
342 udelay(nretry);
343 } while (nretry++ < MC_ROOM_RETRY_CNT);
344
345 dev_err(dev, "%s: no cmd_room to send 0x%X\n",
346 __func__, cmd->rcb.cdb[0]);
347
348 goto no_room;
349 } else if (unlikely(newval < 0)) {
350 /* This should be rare. i.e. Only if two threads race and
351 * decrement before the MMIO read is done. In this case
352 * just benefit from the other thread having updated
353 * afu->room.
354 */
355 if (nretry++ < MC_ROOM_RETRY_CNT) {
356 udelay(nretry);
357 goto retry;
358 }
359
360 goto no_room;
361 }
362
363 write_ioarrin:
364 writeq_be((u64)&cmd->rcb, &afu->host_map->ioarrin);
365 out:
366 pr_devel("%s: cmd=%p len=%d ea=%p rc=%d\n", __func__, cmd,
367 cmd->rcb.data_len, (void *)cmd->rcb.data_ea, rc);
368 return rc;
369
370 no_room:
371 afu->read_room = true;
372 schedule_work(&cfg->work_q);
373 rc = SCSI_MLQUEUE_HOST_BUSY;
374 goto out;
375 }
376
377 /**
378 * wait_resp() - polls for a response or timeout to a sent AFU command
379 * @afu: AFU associated with the host.
380 * @cmd: AFU command that was sent.
381 */
382 static void wait_resp(struct afu *afu, struct afu_cmd *cmd)
383 {
384 ulong timeout = msecs_to_jiffies(cmd->rcb.timeout * 2 * 1000);
385
386 timeout = wait_for_completion_timeout(&cmd->cevent, timeout);
387 if (!timeout)
388 context_reset(cmd);
389
390 if (unlikely(cmd->sa.ioasc != 0))
391 pr_err("%s: CMD 0x%X failed, IOASC: flags 0x%X, afu_rc 0x%X, "
392 "scsi_rc 0x%X, fc_rc 0x%X\n", __func__, cmd->rcb.cdb[0],
393 cmd->sa.rc.flags, cmd->sa.rc.afu_rc, cmd->sa.rc.scsi_rc,
394 cmd->sa.rc.fc_rc);
395 }
396
397 /**
398 * send_tmf() - sends a Task Management Function (TMF)
399 * @afu: AFU to checkout from.
400 * @scp: SCSI command from stack.
401 * @tmfcmd: TMF command to send.
402 *
403 * Return:
404 * 0 on success
405 * SCSI_MLQUEUE_HOST_BUSY when host is busy
406 */
407 static int send_tmf(struct afu *afu, struct scsi_cmnd *scp, u64 tmfcmd)
408 {
409 struct afu_cmd *cmd;
410
411 u32 port_sel = scp->device->channel + 1;
412 short lflag = 0;
413 struct Scsi_Host *host = scp->device->host;
414 struct cxlflash_cfg *cfg = (struct cxlflash_cfg *)host->hostdata;
415 struct device *dev = &cfg->dev->dev;
416 ulong lock_flags;
417 int rc = 0;
418 ulong to;
419
420 cmd = cmd_checkout(afu);
421 if (unlikely(!cmd)) {
422 dev_err(dev, "%s: could not get a free command\n", __func__);
423 rc = SCSI_MLQUEUE_HOST_BUSY;
424 goto out;
425 }
426
427 /* When Task Management Function is active do not send another */
428 spin_lock_irqsave(&cfg->tmf_slock, lock_flags);
429 if (cfg->tmf_active)
430 wait_event_interruptible_lock_irq(cfg->tmf_waitq,
431 !cfg->tmf_active,
432 cfg->tmf_slock);
433 cfg->tmf_active = true;
434 cmd->cmd_tmf = true;
435 spin_unlock_irqrestore(&cfg->tmf_slock, lock_flags);
436
437 cmd->rcb.ctx_id = afu->ctx_hndl;
438 cmd->rcb.port_sel = port_sel;
439 cmd->rcb.lun_id = lun_to_lunid(scp->device->lun);
440
441 lflag = SISL_REQ_FLAGS_TMF_CMD;
442
443 cmd->rcb.req_flags = (SISL_REQ_FLAGS_PORT_LUN_ID |
444 SISL_REQ_FLAGS_SUP_UNDERRUN | lflag);
445
446 /* Stash the scp in the reserved field, for reuse during interrupt */
447 cmd->rcb.scp = scp;
448
449 /* Copy the CDB from the cmd passed in */
450 memcpy(cmd->rcb.cdb, &tmfcmd, sizeof(tmfcmd));
451
452 /* Send the command */
453 rc = send_cmd(afu, cmd);
454 if (unlikely(rc)) {
455 cmd_checkin(cmd);
456 spin_lock_irqsave(&cfg->tmf_slock, lock_flags);
457 cfg->tmf_active = false;
458 spin_unlock_irqrestore(&cfg->tmf_slock, lock_flags);
459 goto out;
460 }
461
462 spin_lock_irqsave(&cfg->tmf_slock, lock_flags);
463 to = msecs_to_jiffies(5000);
464 to = wait_event_interruptible_lock_irq_timeout(cfg->tmf_waitq,
465 !cfg->tmf_active,
466 cfg->tmf_slock,
467 to);
468 if (!to) {
469 cfg->tmf_active = false;
470 dev_err(dev, "%s: TMF timed out!\n", __func__);
471 rc = -1;
472 }
473 spin_unlock_irqrestore(&cfg->tmf_slock, lock_flags);
474 out:
475 return rc;
476 }
477
478 /**
479 * cxlflash_driver_info() - information handler for this host driver
480 * @host: SCSI host associated with device.
481 *
482 * Return: A string describing the device.
483 */
484 static const char *cxlflash_driver_info(struct Scsi_Host *host)
485 {
486 return CXLFLASH_ADAPTER_NAME;
487 }
488
489 /**
490 * cxlflash_queuecommand() - sends a mid-layer request
491 * @host: SCSI host associated with device.
492 * @scp: SCSI command to send.
493 *
494 * Return:
495 * 0 on success
496 * SCSI_MLQUEUE_HOST_BUSY when host is busy
497 */
498 static int cxlflash_queuecommand(struct Scsi_Host *host, struct scsi_cmnd *scp)
499 {
500 struct cxlflash_cfg *cfg = (struct cxlflash_cfg *)host->hostdata;
501 struct afu *afu = cfg->afu;
502 struct device *dev = &cfg->dev->dev;
503 struct afu_cmd *cmd;
504 u32 port_sel = scp->device->channel + 1;
505 int nseg, i, ncount;
506 struct scatterlist *sg;
507 ulong lock_flags;
508 short lflag = 0;
509 int rc = 0;
510
511 dev_dbg_ratelimited(dev, "%s: (scp=%p) %d/%d/%d/%llu "
512 "cdb=(%08X-%08X-%08X-%08X)\n",
513 __func__, scp, host->host_no, scp->device->channel,
514 scp->device->id, scp->device->lun,
515 get_unaligned_be32(&((u32 *)scp->cmnd)[0]),
516 get_unaligned_be32(&((u32 *)scp->cmnd)[1]),
517 get_unaligned_be32(&((u32 *)scp->cmnd)[2]),
518 get_unaligned_be32(&((u32 *)scp->cmnd)[3]));
519
520 /*
521 * If a Task Management Function is active, wait for it to complete
522 * before continuing with regular commands.
523 */
524 spin_lock_irqsave(&cfg->tmf_slock, lock_flags);
525 if (cfg->tmf_active) {
526 spin_unlock_irqrestore(&cfg->tmf_slock, lock_flags);
527 rc = SCSI_MLQUEUE_HOST_BUSY;
528 goto out;
529 }
530 spin_unlock_irqrestore(&cfg->tmf_slock, lock_flags);
531
532 switch (cfg->state) {
533 case STATE_RESET:
534 dev_dbg_ratelimited(dev, "%s: device is in reset!\n", __func__);
535 rc = SCSI_MLQUEUE_HOST_BUSY;
536 goto out;
537 case STATE_FAILTERM:
538 dev_dbg_ratelimited(dev, "%s: device has failed!\n", __func__);
539 scp->result = (DID_NO_CONNECT << 16);
540 scp->scsi_done(scp);
541 rc = 0;
542 goto out;
543 default:
544 break;
545 }
546
547 cmd = cmd_checkout(afu);
548 if (unlikely(!cmd)) {
549 dev_err(dev, "%s: could not get a free command\n", __func__);
550 rc = SCSI_MLQUEUE_HOST_BUSY;
551 goto out;
552 }
553
554 cmd->rcb.ctx_id = afu->ctx_hndl;
555 cmd->rcb.port_sel = port_sel;
556 cmd->rcb.lun_id = lun_to_lunid(scp->device->lun);
557
558 if (scp->sc_data_direction == DMA_TO_DEVICE)
559 lflag = SISL_REQ_FLAGS_HOST_WRITE;
560 else
561 lflag = SISL_REQ_FLAGS_HOST_READ;
562
563 cmd->rcb.req_flags = (SISL_REQ_FLAGS_PORT_LUN_ID |
564 SISL_REQ_FLAGS_SUP_UNDERRUN | lflag);
565
566 /* Stash the scp in the reserved field, for reuse during interrupt */
567 cmd->rcb.scp = scp;
568
569 nseg = scsi_dma_map(scp);
570 if (unlikely(nseg < 0)) {
571 dev_err(dev, "%s: Fail DMA map! nseg=%d\n",
572 __func__, nseg);
573 rc = SCSI_MLQUEUE_HOST_BUSY;
574 goto out;
575 }
576
577 ncount = scsi_sg_count(scp);
578 scsi_for_each_sg(scp, sg, ncount, i) {
579 cmd->rcb.data_len = sg_dma_len(sg);
580 cmd->rcb.data_ea = sg_dma_address(sg);
581 }
582
583 /* Copy the CDB from the scsi_cmnd passed in */
584 memcpy(cmd->rcb.cdb, scp->cmnd, sizeof(cmd->rcb.cdb));
585
586 /* Send the command */
587 rc = send_cmd(afu, cmd);
588 if (unlikely(rc)) {
589 cmd_checkin(cmd);
590 scsi_dma_unmap(scp);
591 }
592
593 out:
594 pr_devel("%s: returning rc=%d\n", __func__, rc);
595 return rc;
596 }
597
598 /**
599 * cxlflash_wait_for_pci_err_recovery() - wait for error recovery during probe
600 * @cxlflash: Internal structure associated with the host.
601 */
602 static void cxlflash_wait_for_pci_err_recovery(struct cxlflash_cfg *cfg)
603 {
604 struct pci_dev *pdev = cfg->dev;
605
606 if (pci_channel_offline(pdev))
607 wait_event_timeout(cfg->reset_waitq,
608 !pci_channel_offline(pdev),
609 CXLFLASH_PCI_ERROR_RECOVERY_TIMEOUT);
610 }
611
612 /**
613 * free_mem() - free memory associated with the AFU
614 * @cxlflash: Internal structure associated with the host.
615 */
616 static void free_mem(struct cxlflash_cfg *cfg)
617 {
618 int i;
619 char *buf = NULL;
620 struct afu *afu = cfg->afu;
621
622 if (cfg->afu) {
623 for (i = 0; i < CXLFLASH_NUM_CMDS; i++) {
624 buf = afu->cmd[i].buf;
625 if (!((u64)buf & (PAGE_SIZE - 1)))
626 free_page((ulong)buf);
627 }
628
629 free_pages((ulong)afu, get_order(sizeof(struct afu)));
630 cfg->afu = NULL;
631 }
632 }
633
634 /**
635 * stop_afu() - stops the AFU command timers and unmaps the MMIO space
636 * @cxlflash: Internal structure associated with the host.
637 *
638 * Safe to call with AFU in a partially allocated/initialized state.
639 */
640 static void stop_afu(struct cxlflash_cfg *cfg)
641 {
642 int i;
643 struct afu *afu = cfg->afu;
644
645 if (likely(afu)) {
646 for (i = 0; i < CXLFLASH_NUM_CMDS; i++)
647 complete(&afu->cmd[i].cevent);
648
649 if (likely(afu->afu_map)) {
650 cxl_psa_unmap((void *)afu->afu_map);
651 afu->afu_map = NULL;
652 }
653 }
654 }
655
656 /**
657 * term_mc() - terminates the master context
658 * @cxlflash: Internal structure associated with the host.
659 * @level: Depth of allocation, where to begin waterfall tear down.
660 *
661 * Safe to call with AFU/MC in partially allocated/initialized state.
662 */
663 static void term_mc(struct cxlflash_cfg *cfg, enum undo_level level)
664 {
665 int rc = 0;
666 struct afu *afu = cfg->afu;
667 struct device *dev = &cfg->dev->dev;
668
669 if (!afu || !cfg->mcctx) {
670 dev_err(dev, "%s: returning from term_mc with NULL afu or MC\n",
671 __func__);
672 return;
673 }
674
675 switch (level) {
676 case UNDO_START:
677 rc = cxl_stop_context(cfg->mcctx);
678 BUG_ON(rc);
679 case UNMAP_THREE:
680 cxl_unmap_afu_irq(cfg->mcctx, 3, afu);
681 case UNMAP_TWO:
682 cxl_unmap_afu_irq(cfg->mcctx, 2, afu);
683 case UNMAP_ONE:
684 cxl_unmap_afu_irq(cfg->mcctx, 1, afu);
685 case FREE_IRQ:
686 cxl_free_afu_irqs(cfg->mcctx);
687 case RELEASE_CONTEXT:
688 cfg->mcctx = NULL;
689 }
690 }
691
692 /**
693 * term_afu() - terminates the AFU
694 * @cxlflash: Internal structure associated with the host.
695 *
696 * Safe to call with AFU/MC in partially allocated/initialized state.
697 */
698 static void term_afu(struct cxlflash_cfg *cfg)
699 {
700 term_mc(cfg, UNDO_START);
701
702 if (cfg->afu)
703 stop_afu(cfg);
704
705 pr_debug("%s: returning\n", __func__);
706 }
707
708 /**
709 * cxlflash_remove() - PCI entry point to tear down host
710 * @pdev: PCI device associated with the host.
711 *
712 * Safe to use as a cleanup in partially allocated/initialized state.
713 */
714 static void cxlflash_remove(struct pci_dev *pdev)
715 {
716 struct cxlflash_cfg *cfg = pci_get_drvdata(pdev);
717 ulong lock_flags;
718
719 /* If a Task Management Function is active, wait for it to complete
720 * before continuing with remove.
721 */
722 spin_lock_irqsave(&cfg->tmf_slock, lock_flags);
723 if (cfg->tmf_active)
724 wait_event_interruptible_lock_irq(cfg->tmf_waitq,
725 !cfg->tmf_active,
726 cfg->tmf_slock);
727 spin_unlock_irqrestore(&cfg->tmf_slock, lock_flags);
728
729 cfg->state = STATE_FAILTERM;
730 cxlflash_stop_term_user_contexts(cfg);
731
732 switch (cfg->init_state) {
733 case INIT_STATE_SCSI:
734 cxlflash_term_local_luns(cfg);
735 scsi_remove_host(cfg->host);
736 /* Fall through */
737 case INIT_STATE_AFU:
738 term_afu(cfg);
739 cancel_work_sync(&cfg->work_q);
740 case INIT_STATE_PCI:
741 pci_release_regions(cfg->dev);
742 pci_disable_device(pdev);
743 case INIT_STATE_NONE:
744 free_mem(cfg);
745 scsi_host_put(cfg->host);
746 break;
747 }
748
749 pr_debug("%s: returning\n", __func__);
750 }
751
752 /**
753 * alloc_mem() - allocates the AFU and its command pool
754 * @cxlflash: Internal structure associated with the host.
755 *
756 * A partially allocated state remains on failure.
757 *
758 * Return:
759 * 0 on success
760 * -ENOMEM on failure to allocate memory
761 */
762 static int alloc_mem(struct cxlflash_cfg *cfg)
763 {
764 int rc = 0;
765 int i;
766 char *buf = NULL;
767 struct device *dev = &cfg->dev->dev;
768
769 /* This allocation is about 12K, i.e. only 1 64k page
770 * and upto 4 4k pages
771 */
772 cfg->afu = (void *)__get_free_pages(GFP_KERNEL | __GFP_ZERO,
773 get_order(sizeof(struct afu)));
774 if (unlikely(!cfg->afu)) {
775 dev_err(dev, "%s: cannot get %d free pages\n",
776 __func__, get_order(sizeof(struct afu)));
777 rc = -ENOMEM;
778 goto out;
779 }
780 cfg->afu->parent = cfg;
781 cfg->afu->afu_map = NULL;
782
783 for (i = 0; i < CXLFLASH_NUM_CMDS; buf += CMD_BUFSIZE, i++) {
784 if (!((u64)buf & (PAGE_SIZE - 1))) {
785 buf = (void *)__get_free_page(GFP_KERNEL | __GFP_ZERO);
786 if (unlikely(!buf)) {
787 dev_err(dev,
788 "%s: Allocate command buffers fail!\n",
789 __func__);
790 rc = -ENOMEM;
791 free_mem(cfg);
792 goto out;
793 }
794 }
795
796 cfg->afu->cmd[i].buf = buf;
797 atomic_set(&cfg->afu->cmd[i].free, 1);
798 cfg->afu->cmd[i].slot = i;
799 }
800
801 out:
802 return rc;
803 }
804
805 /**
806 * init_pci() - initializes the host as a PCI device
807 * @cxlflash: Internal structure associated with the host.
808 *
809 * Return:
810 * 0 on success
811 * -EIO on unable to communicate with device
812 * A return code from the PCI sub-routines
813 */
814 static int init_pci(struct cxlflash_cfg *cfg)
815 {
816 struct pci_dev *pdev = cfg->dev;
817 int rc = 0;
818
819 cfg->cxlflash_regs_pci = pci_resource_start(pdev, 0);
820 rc = pci_request_regions(pdev, CXLFLASH_NAME);
821 if (rc < 0) {
822 dev_err(&pdev->dev,
823 "%s: Couldn't register memory range of registers\n",
824 __func__);
825 goto out;
826 }
827
828 rc = pci_enable_device(pdev);
829 if (rc || pci_channel_offline(pdev)) {
830 if (pci_channel_offline(pdev)) {
831 cxlflash_wait_for_pci_err_recovery(cfg);
832 rc = pci_enable_device(pdev);
833 }
834
835 if (rc) {
836 dev_err(&pdev->dev, "%s: Cannot enable adapter\n",
837 __func__);
838 cxlflash_wait_for_pci_err_recovery(cfg);
839 goto out_release_regions;
840 }
841 }
842
843 rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(64));
844 if (rc < 0) {
845 dev_dbg(&pdev->dev, "%s: Failed to set 64 bit PCI DMA mask\n",
846 __func__);
847 rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
848 }
849
850 if (rc < 0) {
851 dev_err(&pdev->dev, "%s: Failed to set PCI DMA mask\n",
852 __func__);
853 goto out_disable;
854 }
855
856 pci_set_master(pdev);
857
858 if (pci_channel_offline(pdev)) {
859 cxlflash_wait_for_pci_err_recovery(cfg);
860 if (pci_channel_offline(pdev)) {
861 rc = -EIO;
862 goto out_msi_disable;
863 }
864 }
865
866 rc = pci_save_state(pdev);
867
868 if (rc != PCIBIOS_SUCCESSFUL) {
869 dev_err(&pdev->dev, "%s: Failed to save PCI config space\n",
870 __func__);
871 rc = -EIO;
872 goto cleanup_nolog;
873 }
874
875 out:
876 pr_debug("%s: returning rc=%d\n", __func__, rc);
877 return rc;
878
879 cleanup_nolog:
880 out_msi_disable:
881 cxlflash_wait_for_pci_err_recovery(cfg);
882 out_disable:
883 pci_disable_device(pdev);
884 out_release_regions:
885 pci_release_regions(pdev);
886 goto out;
887
888 }
889
890 /**
891 * init_scsi() - adds the host to the SCSI stack and kicks off host scan
892 * @cxlflash: Internal structure associated with the host.
893 *
894 * Return:
895 * 0 on success
896 * A return code from adding the host
897 */
898 static int init_scsi(struct cxlflash_cfg *cfg)
899 {
900 struct pci_dev *pdev = cfg->dev;
901 int rc = 0;
902
903 rc = scsi_add_host(cfg->host, &pdev->dev);
904 if (rc) {
905 dev_err(&pdev->dev, "%s: scsi_add_host failed (rc=%d)\n",
906 __func__, rc);
907 goto out;
908 }
909
910 scsi_scan_host(cfg->host);
911
912 out:
913 pr_debug("%s: returning rc=%d\n", __func__, rc);
914 return rc;
915 }
916
917 /**
918 * set_port_online() - transitions the specified host FC port to online state
919 * @fc_regs: Top of MMIO region defined for specified port.
920 *
921 * The provided MMIO region must be mapped prior to call. Online state means
922 * that the FC link layer has synced, completed the handshaking process, and
923 * is ready for login to start.
924 */
925 static void set_port_online(u64 *fc_regs)
926 {
927 u64 cmdcfg;
928
929 cmdcfg = readq_be(&fc_regs[FC_MTIP_CMDCONFIG / 8]);
930 cmdcfg &= (~FC_MTIP_CMDCONFIG_OFFLINE); /* clear OFF_LINE */
931 cmdcfg |= (FC_MTIP_CMDCONFIG_ONLINE); /* set ON_LINE */
932 writeq_be(cmdcfg, &fc_regs[FC_MTIP_CMDCONFIG / 8]);
933 }
934
935 /**
936 * set_port_offline() - transitions the specified host FC port to offline state
937 * @fc_regs: Top of MMIO region defined for specified port.
938 *
939 * The provided MMIO region must be mapped prior to call.
940 */
941 static void set_port_offline(u64 *fc_regs)
942 {
943 u64 cmdcfg;
944
945 cmdcfg = readq_be(&fc_regs[FC_MTIP_CMDCONFIG / 8]);
946 cmdcfg &= (~FC_MTIP_CMDCONFIG_ONLINE); /* clear ON_LINE */
947 cmdcfg |= (FC_MTIP_CMDCONFIG_OFFLINE); /* set OFF_LINE */
948 writeq_be(cmdcfg, &fc_regs[FC_MTIP_CMDCONFIG / 8]);
949 }
950
951 /**
952 * wait_port_online() - waits for the specified host FC port come online
953 * @fc_regs: Top of MMIO region defined for specified port.
954 * @delay_us: Number of microseconds to delay between reading port status.
955 * @nretry: Number of cycles to retry reading port status.
956 *
957 * The provided MMIO region must be mapped prior to call. This will timeout
958 * when the cable is not plugged in.
959 *
960 * Return:
961 * TRUE (1) when the specified port is online
962 * FALSE (0) when the specified port fails to come online after timeout
963 * -EINVAL when @delay_us is less than 1000
964 */
965 static int wait_port_online(u64 *fc_regs, u32 delay_us, u32 nretry)
966 {
967 u64 status;
968
969 if (delay_us < 1000) {
970 pr_err("%s: invalid delay specified %d\n", __func__, delay_us);
971 return -EINVAL;
972 }
973
974 do {
975 msleep(delay_us / 1000);
976 status = readq_be(&fc_regs[FC_MTIP_STATUS / 8]);
977 } while ((status & FC_MTIP_STATUS_MASK) != FC_MTIP_STATUS_ONLINE &&
978 nretry--);
979
980 return ((status & FC_MTIP_STATUS_MASK) == FC_MTIP_STATUS_ONLINE);
981 }
982
983 /**
984 * wait_port_offline() - waits for the specified host FC port go offline
985 * @fc_regs: Top of MMIO region defined for specified port.
986 * @delay_us: Number of microseconds to delay between reading port status.
987 * @nretry: Number of cycles to retry reading port status.
988 *
989 * The provided MMIO region must be mapped prior to call.
990 *
991 * Return:
992 * TRUE (1) when the specified port is offline
993 * FALSE (0) when the specified port fails to go offline after timeout
994 * -EINVAL when @delay_us is less than 1000
995 */
996 static int wait_port_offline(u64 *fc_regs, u32 delay_us, u32 nretry)
997 {
998 u64 status;
999
1000 if (delay_us < 1000) {
1001 pr_err("%s: invalid delay specified %d\n", __func__, delay_us);
1002 return -EINVAL;
1003 }
1004
1005 do {
1006 msleep(delay_us / 1000);
1007 status = readq_be(&fc_regs[FC_MTIP_STATUS / 8]);
1008 } while ((status & FC_MTIP_STATUS_MASK) != FC_MTIP_STATUS_OFFLINE &&
1009 nretry--);
1010
1011 return ((status & FC_MTIP_STATUS_MASK) == FC_MTIP_STATUS_OFFLINE);
1012 }
1013
1014 /**
1015 * afu_set_wwpn() - configures the WWPN for the specified host FC port
1016 * @afu: AFU associated with the host that owns the specified FC port.
1017 * @port: Port number being configured.
1018 * @fc_regs: Top of MMIO region defined for specified port.
1019 * @wwpn: The world-wide-port-number previously discovered for port.
1020 *
1021 * The provided MMIO region must be mapped prior to call. As part of the
1022 * sequence to configure the WWPN, the port is toggled offline and then back
1023 * online. This toggling action can cause this routine to delay up to a few
1024 * seconds. When configured to use the internal LUN feature of the AFU, a
1025 * failure to come online is overridden.
1026 *
1027 * Return:
1028 * 0 when the WWPN is successfully written and the port comes back online
1029 * -1 when the port fails to go offline or come back up online
1030 */
1031 static int afu_set_wwpn(struct afu *afu, int port, u64 *fc_regs, u64 wwpn)
1032 {
1033 int rc = 0;
1034
1035 set_port_offline(fc_regs);
1036
1037 if (!wait_port_offline(fc_regs, FC_PORT_STATUS_RETRY_INTERVAL_US,
1038 FC_PORT_STATUS_RETRY_CNT)) {
1039 pr_debug("%s: wait on port %d to go offline timed out\n",
1040 __func__, port);
1041 rc = -1; /* but continue on to leave the port back online */
1042 }
1043
1044 if (rc == 0)
1045 writeq_be(wwpn, &fc_regs[FC_PNAME / 8]);
1046
1047 /* Always return success after programming WWPN */
1048 rc = 0;
1049
1050 set_port_online(fc_regs);
1051
1052 if (!wait_port_online(fc_regs, FC_PORT_STATUS_RETRY_INTERVAL_US,
1053 FC_PORT_STATUS_RETRY_CNT)) {
1054 pr_err("%s: wait on port %d to go online timed out\n",
1055 __func__, port);
1056 }
1057
1058 pr_debug("%s: returning rc=%d\n", __func__, rc);
1059
1060 return rc;
1061 }
1062
1063 /**
1064 * afu_link_reset() - resets the specified host FC port
1065 * @afu: AFU associated with the host that owns the specified FC port.
1066 * @port: Port number being configured.
1067 * @fc_regs: Top of MMIO region defined for specified port.
1068 *
1069 * The provided MMIO region must be mapped prior to call. The sequence to
1070 * reset the port involves toggling it offline and then back online. This
1071 * action can cause this routine to delay up to a few seconds. An effort
1072 * is made to maintain link with the device by switching to host to use
1073 * the alternate port exclusively while the reset takes place.
1074 * failure to come online is overridden.
1075 */
1076 static void afu_link_reset(struct afu *afu, int port, u64 *fc_regs)
1077 {
1078 u64 port_sel;
1079
1080 /* first switch the AFU to the other links, if any */
1081 port_sel = readq_be(&afu->afu_map->global.regs.afu_port_sel);
1082 port_sel &= ~(1ULL << port);
1083 writeq_be(port_sel, &afu->afu_map->global.regs.afu_port_sel);
1084 cxlflash_afu_sync(afu, 0, 0, AFU_GSYNC);
1085
1086 set_port_offline(fc_regs);
1087 if (!wait_port_offline(fc_regs, FC_PORT_STATUS_RETRY_INTERVAL_US,
1088 FC_PORT_STATUS_RETRY_CNT))
1089 pr_err("%s: wait on port %d to go offline timed out\n",
1090 __func__, port);
1091
1092 set_port_online(fc_regs);
1093 if (!wait_port_online(fc_regs, FC_PORT_STATUS_RETRY_INTERVAL_US,
1094 FC_PORT_STATUS_RETRY_CNT))
1095 pr_err("%s: wait on port %d to go online timed out\n",
1096 __func__, port);
1097
1098 /* switch back to include this port */
1099 port_sel |= (1ULL << port);
1100 writeq_be(port_sel, &afu->afu_map->global.regs.afu_port_sel);
1101 cxlflash_afu_sync(afu, 0, 0, AFU_GSYNC);
1102
1103 pr_debug("%s: returning port_sel=%lld\n", __func__, port_sel);
1104 }
1105
1106 /*
1107 * Asynchronous interrupt information table
1108 */
1109 static const struct asyc_intr_info ainfo[] = {
1110 {SISL_ASTATUS_FC0_OTHER, "other error", 0, CLR_FC_ERROR | LINK_RESET},
1111 {SISL_ASTATUS_FC0_LOGO, "target initiated LOGO", 0, 0},
1112 {SISL_ASTATUS_FC0_CRC_T, "CRC threshold exceeded", 0, LINK_RESET},
1113 {SISL_ASTATUS_FC0_LOGI_R, "login timed out, retrying", 0, 0},
1114 {SISL_ASTATUS_FC0_LOGI_F, "login failed", 0, CLR_FC_ERROR},
1115 {SISL_ASTATUS_FC0_LOGI_S, "login succeeded", 0, SCAN_HOST},
1116 {SISL_ASTATUS_FC0_LINK_DN, "link down", 0, 0},
1117 {SISL_ASTATUS_FC0_LINK_UP, "link up", 0, SCAN_HOST},
1118 {SISL_ASTATUS_FC1_OTHER, "other error", 1, CLR_FC_ERROR | LINK_RESET},
1119 {SISL_ASTATUS_FC1_LOGO, "target initiated LOGO", 1, 0},
1120 {SISL_ASTATUS_FC1_CRC_T, "CRC threshold exceeded", 1, LINK_RESET},
1121 {SISL_ASTATUS_FC1_LOGI_R, "login timed out, retrying", 1, 0},
1122 {SISL_ASTATUS_FC1_LOGI_F, "login failed", 1, CLR_FC_ERROR},
1123 {SISL_ASTATUS_FC1_LOGI_S, "login succeeded", 1, SCAN_HOST},
1124 {SISL_ASTATUS_FC1_LINK_DN, "link down", 1, 0},
1125 {SISL_ASTATUS_FC1_LINK_UP, "link up", 1, SCAN_HOST},
1126 {0x0, "", 0, 0} /* terminator */
1127 };
1128
1129 /**
1130 * find_ainfo() - locates and returns asynchronous interrupt information
1131 * @status: Status code set by AFU on error.
1132 *
1133 * Return: The located information or NULL when the status code is invalid.
1134 */
1135 static const struct asyc_intr_info *find_ainfo(u64 status)
1136 {
1137 const struct asyc_intr_info *info;
1138
1139 for (info = &ainfo[0]; info->status; info++)
1140 if (info->status == status)
1141 return info;
1142
1143 return NULL;
1144 }
1145
1146 /**
1147 * afu_err_intr_init() - clears and initializes the AFU for error interrupts
1148 * @afu: AFU associated with the host.
1149 */
1150 static void afu_err_intr_init(struct afu *afu)
1151 {
1152 int i;
1153 u64 reg;
1154
1155 /* global async interrupts: AFU clears afu_ctrl on context exit
1156 * if async interrupts were sent to that context. This prevents
1157 * the AFU form sending further async interrupts when
1158 * there is
1159 * nobody to receive them.
1160 */
1161
1162 /* mask all */
1163 writeq_be(-1ULL, &afu->afu_map->global.regs.aintr_mask);
1164 /* set LISN# to send and point to master context */
1165 reg = ((u64) (((afu->ctx_hndl << 8) | SISL_MSI_ASYNC_ERROR)) << 40);
1166
1167 if (afu->internal_lun)
1168 reg |= 1; /* Bit 63 indicates local lun */
1169 writeq_be(reg, &afu->afu_map->global.regs.afu_ctrl);
1170 /* clear all */
1171 writeq_be(-1ULL, &afu->afu_map->global.regs.aintr_clear);
1172 /* unmask bits that are of interest */
1173 /* note: afu can send an interrupt after this step */
1174 writeq_be(SISL_ASTATUS_MASK, &afu->afu_map->global.regs.aintr_mask);
1175 /* clear again in case a bit came on after previous clear but before */
1176 /* unmask */
1177 writeq_be(-1ULL, &afu->afu_map->global.regs.aintr_clear);
1178
1179 /* Clear/Set internal lun bits */
1180 reg = readq_be(&afu->afu_map->global.fc_regs[0][FC_CONFIG2 / 8]);
1181 reg &= SISL_FC_INTERNAL_MASK;
1182 if (afu->internal_lun)
1183 reg |= ((u64)(afu->internal_lun - 1) << SISL_FC_INTERNAL_SHIFT);
1184 writeq_be(reg, &afu->afu_map->global.fc_regs[0][FC_CONFIG2 / 8]);
1185
1186 /* now clear FC errors */
1187 for (i = 0; i < NUM_FC_PORTS; i++) {
1188 writeq_be(0xFFFFFFFFU,
1189 &afu->afu_map->global.fc_regs[i][FC_ERROR / 8]);
1190 writeq_be(0, &afu->afu_map->global.fc_regs[i][FC_ERRCAP / 8]);
1191 }
1192
1193 /* sync interrupts for master's IOARRIN write */
1194 /* note that unlike asyncs, there can be no pending sync interrupts */
1195 /* at this time (this is a fresh context and master has not written */
1196 /* IOARRIN yet), so there is nothing to clear. */
1197
1198 /* set LISN#, it is always sent to the context that wrote IOARRIN */
1199 writeq_be(SISL_MSI_SYNC_ERROR, &afu->host_map->ctx_ctrl);
1200 writeq_be(SISL_ISTATUS_MASK, &afu->host_map->intr_mask);
1201 }
1202
1203 /**
1204 * cxlflash_sync_err_irq() - interrupt handler for synchronous errors
1205 * @irq: Interrupt number.
1206 * @data: Private data provided at interrupt registration, the AFU.
1207 *
1208 * Return: Always return IRQ_HANDLED.
1209 */
1210 static irqreturn_t cxlflash_sync_err_irq(int irq, void *data)
1211 {
1212 struct afu *afu = (struct afu *)data;
1213 u64 reg;
1214 u64 reg_unmasked;
1215
1216 reg = readq_be(&afu->host_map->intr_status);
1217 reg_unmasked = (reg & SISL_ISTATUS_UNMASK);
1218
1219 if (reg_unmasked == 0UL) {
1220 pr_err("%s: %llX: spurious interrupt, intr_status %016llX\n",
1221 __func__, (u64)afu, reg);
1222 goto cxlflash_sync_err_irq_exit;
1223 }
1224
1225 pr_err("%s: %llX: unexpected interrupt, intr_status %016llX\n",
1226 __func__, (u64)afu, reg);
1227
1228 writeq_be(reg_unmasked, &afu->host_map->intr_clear);
1229
1230 cxlflash_sync_err_irq_exit:
1231 pr_debug("%s: returning rc=%d\n", __func__, IRQ_HANDLED);
1232 return IRQ_HANDLED;
1233 }
1234
1235 /**
1236 * cxlflash_rrq_irq() - interrupt handler for read-response queue (normal path)
1237 * @irq: Interrupt number.
1238 * @data: Private data provided at interrupt registration, the AFU.
1239 *
1240 * Return: Always return IRQ_HANDLED.
1241 */
1242 static irqreturn_t cxlflash_rrq_irq(int irq, void *data)
1243 {
1244 struct afu *afu = (struct afu *)data;
1245 struct afu_cmd *cmd;
1246 bool toggle = afu->toggle;
1247 u64 entry,
1248 *hrrq_start = afu->hrrq_start,
1249 *hrrq_end = afu->hrrq_end,
1250 *hrrq_curr = afu->hrrq_curr;
1251
1252 /* Process however many RRQ entries that are ready */
1253 while (true) {
1254 entry = *hrrq_curr;
1255
1256 if ((entry & SISL_RESP_HANDLE_T_BIT) != toggle)
1257 break;
1258
1259 cmd = (struct afu_cmd *)(entry & ~SISL_RESP_HANDLE_T_BIT);
1260 cmd_complete(cmd);
1261
1262 /* Advance to next entry or wrap and flip the toggle bit */
1263 if (hrrq_curr < hrrq_end)
1264 hrrq_curr++;
1265 else {
1266 hrrq_curr = hrrq_start;
1267 toggle ^= SISL_RESP_HANDLE_T_BIT;
1268 }
1269 }
1270
1271 afu->hrrq_curr = hrrq_curr;
1272 afu->toggle = toggle;
1273
1274 return IRQ_HANDLED;
1275 }
1276
1277 /**
1278 * cxlflash_async_err_irq() - interrupt handler for asynchronous errors
1279 * @irq: Interrupt number.
1280 * @data: Private data provided at interrupt registration, the AFU.
1281 *
1282 * Return: Always return IRQ_HANDLED.
1283 */
1284 static irqreturn_t cxlflash_async_err_irq(int irq, void *data)
1285 {
1286 struct afu *afu = (struct afu *)data;
1287 struct cxlflash_cfg *cfg = afu->parent;
1288 struct device *dev = &cfg->dev->dev;
1289 u64 reg_unmasked;
1290 const struct asyc_intr_info *info;
1291 struct sisl_global_map *global = &afu->afu_map->global;
1292 u64 reg;
1293 u8 port;
1294 int i;
1295
1296 reg = readq_be(&global->regs.aintr_status);
1297 reg_unmasked = (reg & SISL_ASTATUS_UNMASK);
1298
1299 if (reg_unmasked == 0) {
1300 dev_err(dev, "%s: spurious interrupt, aintr_status 0x%016llX\n",
1301 __func__, reg);
1302 goto out;
1303 }
1304
1305 /* it is OK to clear AFU status before FC_ERROR */
1306 writeq_be(reg_unmasked, &global->regs.aintr_clear);
1307
1308 /* check each bit that is on */
1309 for (i = 0; reg_unmasked; i++, reg_unmasked = (reg_unmasked >> 1)) {
1310 info = find_ainfo(1ULL << i);
1311 if (((reg_unmasked & 0x1) == 0) || !info)
1312 continue;
1313
1314 port = info->port;
1315
1316 dev_err(dev, "%s: FC Port %d -> %s, fc_status 0x%08llX\n",
1317 __func__, port, info->desc,
1318 readq_be(&global->fc_regs[port][FC_STATUS / 8]));
1319
1320 /*
1321 * do link reset first, some OTHER errors will set FC_ERROR
1322 * again if cleared before or w/o a reset
1323 */
1324 if (info->action & LINK_RESET) {
1325 dev_err(dev, "%s: FC Port %d: resetting link\n",
1326 __func__, port);
1327 cfg->lr_state = LINK_RESET_REQUIRED;
1328 cfg->lr_port = port;
1329 schedule_work(&cfg->work_q);
1330 }
1331
1332 if (info->action & CLR_FC_ERROR) {
1333 reg = readq_be(&global->fc_regs[port][FC_ERROR / 8]);
1334
1335 /*
1336 * since all errors are unmasked, FC_ERROR and FC_ERRCAP
1337 * should be the same and tracing one is sufficient.
1338 */
1339
1340 dev_err(dev, "%s: fc %d: clearing fc_error 0x%08llX\n",
1341 __func__, port, reg);
1342
1343 writeq_be(reg, &global->fc_regs[port][FC_ERROR / 8]);
1344 writeq_be(0, &global->fc_regs[port][FC_ERRCAP / 8]);
1345 }
1346
1347 if (info->action & SCAN_HOST) {
1348 atomic_inc(&cfg->scan_host_needed);
1349 schedule_work(&cfg->work_q);
1350 }
1351 }
1352
1353 out:
1354 dev_dbg(dev, "%s: returning IRQ_HANDLED, afu=%p\n", __func__, afu);
1355 return IRQ_HANDLED;
1356 }
1357
1358 /**
1359 * start_context() - starts the master context
1360 * @cxlflash: Internal structure associated with the host.
1361 *
1362 * Return: A success or failure value from CXL services.
1363 */
1364 static int start_context(struct cxlflash_cfg *cfg)
1365 {
1366 int rc = 0;
1367
1368 rc = cxl_start_context(cfg->mcctx,
1369 cfg->afu->work.work_element_descriptor,
1370 NULL);
1371
1372 pr_debug("%s: returning rc=%d\n", __func__, rc);
1373 return rc;
1374 }
1375
1376 /**
1377 * read_vpd() - obtains the WWPNs from VPD
1378 * @cxlflash: Internal structure associated with the host.
1379 * @wwpn: Array of size NUM_FC_PORTS to pass back WWPNs
1380 *
1381 * Return:
1382 * 0 on success
1383 * -ENODEV when VPD or WWPN keywords not found
1384 */
1385 static int read_vpd(struct cxlflash_cfg *cfg, u64 wwpn[])
1386 {
1387 struct pci_dev *dev = cfg->parent_dev;
1388 int rc = 0;
1389 int ro_start, ro_size, i, j, k;
1390 ssize_t vpd_size;
1391 char vpd_data[CXLFLASH_VPD_LEN];
1392 char tmp_buf[WWPN_BUF_LEN] = { 0 };
1393 char *wwpn_vpd_tags[NUM_FC_PORTS] = { "V5", "V6" };
1394
1395 /* Get the VPD data from the device */
1396 vpd_size = pci_read_vpd(dev, 0, sizeof(vpd_data), vpd_data);
1397 if (unlikely(vpd_size <= 0)) {
1398 dev_err(&dev->dev, "%s: Unable to read VPD (size = %ld)\n",
1399 __func__, vpd_size);
1400 rc = -ENODEV;
1401 goto out;
1402 }
1403
1404 /* Get the read only section offset */
1405 ro_start = pci_vpd_find_tag(vpd_data, 0, vpd_size,
1406 PCI_VPD_LRDT_RO_DATA);
1407 if (unlikely(ro_start < 0)) {
1408 dev_err(&dev->dev, "%s: VPD Read-only data not found\n",
1409 __func__);
1410 rc = -ENODEV;
1411 goto out;
1412 }
1413
1414 /* Get the read only section size, cap when extends beyond read VPD */
1415 ro_size = pci_vpd_lrdt_size(&vpd_data[ro_start]);
1416 j = ro_size;
1417 i = ro_start + PCI_VPD_LRDT_TAG_SIZE;
1418 if (unlikely((i + j) > vpd_size)) {
1419 pr_debug("%s: Might need to read more VPD (%d > %ld)\n",
1420 __func__, (i + j), vpd_size);
1421 ro_size = vpd_size - i;
1422 }
1423
1424 /*
1425 * Find the offset of the WWPN tag within the read only
1426 * VPD data and validate the found field (partials are
1427 * no good to us). Convert the ASCII data to an integer
1428 * value. Note that we must copy to a temporary buffer
1429 * because the conversion service requires that the ASCII
1430 * string be terminated.
1431 */
1432 for (k = 0; k < NUM_FC_PORTS; k++) {
1433 j = ro_size;
1434 i = ro_start + PCI_VPD_LRDT_TAG_SIZE;
1435
1436 i = pci_vpd_find_info_keyword(vpd_data, i, j, wwpn_vpd_tags[k]);
1437 if (unlikely(i < 0)) {
1438 dev_err(&dev->dev, "%s: Port %d WWPN not found "
1439 "in VPD\n", __func__, k);
1440 rc = -ENODEV;
1441 goto out;
1442 }
1443
1444 j = pci_vpd_info_field_size(&vpd_data[i]);
1445 i += PCI_VPD_INFO_FLD_HDR_SIZE;
1446 if (unlikely((i + j > vpd_size) || (j != WWPN_LEN))) {
1447 dev_err(&dev->dev, "%s: Port %d WWPN incomplete or "
1448 "VPD corrupt\n",
1449 __func__, k);
1450 rc = -ENODEV;
1451 goto out;
1452 }
1453
1454 memcpy(tmp_buf, &vpd_data[i], WWPN_LEN);
1455 rc = kstrtoul(tmp_buf, WWPN_LEN, (ulong *)&wwpn[k]);
1456 if (unlikely(rc)) {
1457 dev_err(&dev->dev, "%s: Fail to convert port %d WWPN "
1458 "to integer\n", __func__, k);
1459 rc = -ENODEV;
1460 goto out;
1461 }
1462 }
1463
1464 out:
1465 pr_debug("%s: returning rc=%d\n", __func__, rc);
1466 return rc;
1467 }
1468
1469 /**
1470 * init_pcr() - initialize the provisioning and control registers
1471 * @cxlflash: Internal structure associated with the host.
1472 *
1473 * Also sets up fast access to the mapped registers and initializes AFU
1474 * command fields that never change.
1475 */
1476 static void init_pcr(struct cxlflash_cfg *cfg)
1477 {
1478 struct afu *afu = cfg->afu;
1479 struct sisl_ctrl_map *ctrl_map;
1480 int i;
1481
1482 for (i = 0; i < MAX_CONTEXT; i++) {
1483 ctrl_map = &afu->afu_map->ctrls[i].ctrl;
1484 /* disrupt any clients that could be running */
1485 /* e. g. clients that survived a master restart */
1486 writeq_be(0, &ctrl_map->rht_start);
1487 writeq_be(0, &ctrl_map->rht_cnt_id);
1488 writeq_be(0, &ctrl_map->ctx_cap);
1489 }
1490
1491 /* copy frequently used fields into afu */
1492 afu->ctx_hndl = (u16) cxl_process_element(cfg->mcctx);
1493 /* ctx_hndl is 16 bits in CAIA */
1494 afu->host_map = &afu->afu_map->hosts[afu->ctx_hndl].host;
1495 afu->ctrl_map = &afu->afu_map->ctrls[afu->ctx_hndl].ctrl;
1496
1497 /* Program the Endian Control for the master context */
1498 writeq_be(SISL_ENDIAN_CTRL, &afu->host_map->endian_ctrl);
1499
1500 /* initialize cmd fields that never change */
1501 for (i = 0; i < CXLFLASH_NUM_CMDS; i++) {
1502 afu->cmd[i].rcb.ctx_id = afu->ctx_hndl;
1503 afu->cmd[i].rcb.msi = SISL_MSI_RRQ_UPDATED;
1504 afu->cmd[i].rcb.rrq = 0x0;
1505 }
1506 }
1507
1508 /**
1509 * init_global() - initialize AFU global registers
1510 * @cxlflash: Internal structure associated with the host.
1511 */
1512 static int init_global(struct cxlflash_cfg *cfg)
1513 {
1514 struct afu *afu = cfg->afu;
1515 struct device *dev = &cfg->dev->dev;
1516 u64 wwpn[NUM_FC_PORTS]; /* wwpn of AFU ports */
1517 int i = 0, num_ports = 0;
1518 int rc = 0;
1519 u64 reg;
1520
1521 rc = read_vpd(cfg, &wwpn[0]);
1522 if (rc) {
1523 dev_err(dev, "%s: could not read vpd rc=%d\n", __func__, rc);
1524 goto out;
1525 }
1526
1527 pr_debug("%s: wwpn0=0x%llX wwpn1=0x%llX\n", __func__, wwpn[0], wwpn[1]);
1528
1529 /* set up RRQ in AFU for master issued cmds */
1530 writeq_be((u64) afu->hrrq_start, &afu->host_map->rrq_start);
1531 writeq_be((u64) afu->hrrq_end, &afu->host_map->rrq_end);
1532
1533 /* AFU configuration */
1534 reg = readq_be(&afu->afu_map->global.regs.afu_config);
1535 reg |= SISL_AFUCONF_AR_ALL|SISL_AFUCONF_ENDIAN;
1536 /* enable all auto retry options and control endianness */
1537 /* leave others at default: */
1538 /* CTX_CAP write protected, mbox_r does not clear on read and */
1539 /* checker on if dual afu */
1540 writeq_be(reg, &afu->afu_map->global.regs.afu_config);
1541
1542 /* global port select: select either port */
1543 if (afu->internal_lun) {
1544 /* only use port 0 */
1545 writeq_be(PORT0, &afu->afu_map->global.regs.afu_port_sel);
1546 num_ports = NUM_FC_PORTS - 1;
1547 } else {
1548 writeq_be(BOTH_PORTS, &afu->afu_map->global.regs.afu_port_sel);
1549 num_ports = NUM_FC_PORTS;
1550 }
1551
1552 for (i = 0; i < num_ports; i++) {
1553 /* unmask all errors (but they are still masked at AFU) */
1554 writeq_be(0, &afu->afu_map->global.fc_regs[i][FC_ERRMSK / 8]);
1555 /* clear CRC error cnt & set a threshold */
1556 (void)readq_be(&afu->afu_map->global.
1557 fc_regs[i][FC_CNT_CRCERR / 8]);
1558 writeq_be(MC_CRC_THRESH, &afu->afu_map->global.fc_regs[i]
1559 [FC_CRC_THRESH / 8]);
1560
1561 /* set WWPNs. If already programmed, wwpn[i] is 0 */
1562 if (wwpn[i] != 0 &&
1563 afu_set_wwpn(afu, i,
1564 &afu->afu_map->global.fc_regs[i][0],
1565 wwpn[i])) {
1566 dev_err(dev, "%s: failed to set WWPN on port %d\n",
1567 __func__, i);
1568 rc = -EIO;
1569 goto out;
1570 }
1571 /* Programming WWPN back to back causes additional
1572 * offline/online transitions and a PLOGI
1573 */
1574 msleep(100);
1575
1576 }
1577
1578 /* set up master's own CTX_CAP to allow real mode, host translation */
1579 /* tbls, afu cmds and read/write GSCSI cmds. */
1580 /* First, unlock ctx_cap write by reading mbox */
1581 (void)readq_be(&afu->ctrl_map->mbox_r); /* unlock ctx_cap */
1582 writeq_be((SISL_CTX_CAP_REAL_MODE | SISL_CTX_CAP_HOST_XLATE |
1583 SISL_CTX_CAP_READ_CMD | SISL_CTX_CAP_WRITE_CMD |
1584 SISL_CTX_CAP_AFU_CMD | SISL_CTX_CAP_GSCSI_CMD),
1585 &afu->ctrl_map->ctx_cap);
1586 /* init heartbeat */
1587 afu->hb = readq_be(&afu->afu_map->global.regs.afu_hb);
1588
1589 out:
1590 return rc;
1591 }
1592
1593 /**
1594 * start_afu() - initializes and starts the AFU
1595 * @cxlflash: Internal structure associated with the host.
1596 */
1597 static int start_afu(struct cxlflash_cfg *cfg)
1598 {
1599 struct afu *afu = cfg->afu;
1600 struct afu_cmd *cmd;
1601
1602 int i = 0;
1603 int rc = 0;
1604
1605 for (i = 0; i < CXLFLASH_NUM_CMDS; i++) {
1606 cmd = &afu->cmd[i];
1607
1608 init_completion(&cmd->cevent);
1609 spin_lock_init(&cmd->slock);
1610 cmd->parent = afu;
1611 }
1612
1613 init_pcr(cfg);
1614
1615 /* initialize RRQ pointers */
1616 afu->hrrq_start = &afu->rrq_entry[0];
1617 afu->hrrq_end = &afu->rrq_entry[NUM_RRQ_ENTRY - 1];
1618 afu->hrrq_curr = afu->hrrq_start;
1619 afu->toggle = 1;
1620
1621 rc = init_global(cfg);
1622
1623 pr_debug("%s: returning rc=%d\n", __func__, rc);
1624 return rc;
1625 }
1626
1627 /**
1628 * init_mc() - create and register as the master context
1629 * @cxlflash: Internal structure associated with the host.
1630 *
1631 * Return:
1632 * 0 on success
1633 * -ENOMEM when unable to obtain a context from CXL services
1634 * A failure value from CXL services.
1635 */
1636 static int init_mc(struct cxlflash_cfg *cfg)
1637 {
1638 struct cxl_context *ctx;
1639 struct device *dev = &cfg->dev->dev;
1640 struct afu *afu = cfg->afu;
1641 int rc = 0;
1642 enum undo_level level;
1643
1644 ctx = cxl_get_context(cfg->dev);
1645 if (unlikely(!ctx))
1646 return -ENOMEM;
1647 cfg->mcctx = ctx;
1648
1649 /* Set it up as a master with the CXL */
1650 cxl_set_master(ctx);
1651
1652 /* During initialization reset the AFU to start from a clean slate */
1653 rc = cxl_afu_reset(cfg->mcctx);
1654 if (unlikely(rc)) {
1655 dev_err(dev, "%s: initial AFU reset failed rc=%d\n",
1656 __func__, rc);
1657 level = RELEASE_CONTEXT;
1658 goto out;
1659 }
1660
1661 rc = cxl_allocate_afu_irqs(ctx, 3);
1662 if (unlikely(rc)) {
1663 dev_err(dev, "%s: call to allocate_afu_irqs failed rc=%d!\n",
1664 __func__, rc);
1665 level = RELEASE_CONTEXT;
1666 goto out;
1667 }
1668
1669 rc = cxl_map_afu_irq(ctx, 1, cxlflash_sync_err_irq, afu,
1670 "SISL_MSI_SYNC_ERROR");
1671 if (unlikely(rc <= 0)) {
1672 dev_err(dev, "%s: IRQ 1 (SISL_MSI_SYNC_ERROR) map failed!\n",
1673 __func__);
1674 level = FREE_IRQ;
1675 goto out;
1676 }
1677
1678 rc = cxl_map_afu_irq(ctx, 2, cxlflash_rrq_irq, afu,
1679 "SISL_MSI_RRQ_UPDATED");
1680 if (unlikely(rc <= 0)) {
1681 dev_err(dev, "%s: IRQ 2 (SISL_MSI_RRQ_UPDATED) map failed!\n",
1682 __func__);
1683 level = UNMAP_ONE;
1684 goto out;
1685 }
1686
1687 rc = cxl_map_afu_irq(ctx, 3, cxlflash_async_err_irq, afu,
1688 "SISL_MSI_ASYNC_ERROR");
1689 if (unlikely(rc <= 0)) {
1690 dev_err(dev, "%s: IRQ 3 (SISL_MSI_ASYNC_ERROR) map failed!\n",
1691 __func__);
1692 level = UNMAP_TWO;
1693 goto out;
1694 }
1695
1696 rc = 0;
1697
1698 /* This performs the equivalent of the CXL_IOCTL_START_WORK.
1699 * The CXL_IOCTL_GET_PROCESS_ELEMENT is implicit in the process
1700 * element (pe) that is embedded in the context (ctx)
1701 */
1702 rc = start_context(cfg);
1703 if (unlikely(rc)) {
1704 dev_err(dev, "%s: start context failed rc=%d\n", __func__, rc);
1705 level = UNMAP_THREE;
1706 goto out;
1707 }
1708 ret:
1709 pr_debug("%s: returning rc=%d\n", __func__, rc);
1710 return rc;
1711 out:
1712 term_mc(cfg, level);
1713 goto ret;
1714 }
1715
1716 /**
1717 * init_afu() - setup as master context and start AFU
1718 * @cxlflash: Internal structure associated with the host.
1719 *
1720 * This routine is a higher level of control for configuring the
1721 * AFU on probe and reset paths.
1722 *
1723 * Return:
1724 * 0 on success
1725 * -ENOMEM when unable to map the AFU MMIO space
1726 * A failure value from internal services.
1727 */
1728 static int init_afu(struct cxlflash_cfg *cfg)
1729 {
1730 u64 reg;
1731 int rc = 0;
1732 struct afu *afu = cfg->afu;
1733 struct device *dev = &cfg->dev->dev;
1734
1735 cxl_perst_reloads_same_image(cfg->cxl_afu, true);
1736
1737 rc = init_mc(cfg);
1738 if (rc) {
1739 dev_err(dev, "%s: call to init_mc failed, rc=%d!\n",
1740 __func__, rc);
1741 goto err1;
1742 }
1743
1744 /* Map the entire MMIO space of the AFU.
1745 */
1746 afu->afu_map = cxl_psa_map(cfg->mcctx);
1747 if (!afu->afu_map) {
1748 rc = -ENOMEM;
1749 term_mc(cfg, UNDO_START);
1750 dev_err(dev, "%s: call to cxl_psa_map failed!\n", __func__);
1751 goto err1;
1752 }
1753
1754 /* No byte reverse on reading afu_version or string will be backwards */
1755 reg = readq(&afu->afu_map->global.regs.afu_version);
1756 memcpy(afu->version, &reg, sizeof(reg));
1757 afu->interface_version =
1758 readq_be(&afu->afu_map->global.regs.interface_version);
1759 if ((afu->interface_version + 1) == 0) {
1760 pr_err("Back level AFU, please upgrade. AFU version %s "
1761 "interface version 0x%llx\n", afu->version,
1762 afu->interface_version);
1763 rc = -EINVAL;
1764 goto err1;
1765 } else
1766 pr_debug("%s: afu version %s, interface version 0x%llX\n",
1767 __func__, afu->version, afu->interface_version);
1768
1769 rc = start_afu(cfg);
1770 if (rc) {
1771 dev_err(dev, "%s: call to start_afu failed, rc=%d!\n",
1772 __func__, rc);
1773 term_mc(cfg, UNDO_START);
1774 cxl_psa_unmap((void *)afu->afu_map);
1775 afu->afu_map = NULL;
1776 goto err1;
1777 }
1778
1779 afu_err_intr_init(cfg->afu);
1780 atomic64_set(&afu->room, readq_be(&afu->host_map->cmd_room));
1781
1782 /* Restore the LUN mappings */
1783 cxlflash_restore_luntable(cfg);
1784 err1:
1785 pr_debug("%s: returning rc=%d\n", __func__, rc);
1786 return rc;
1787 }
1788
1789 /**
1790 * cxlflash_afu_sync() - builds and sends an AFU sync command
1791 * @afu: AFU associated with the host.
1792 * @ctx_hndl_u: Identifies context requesting sync.
1793 * @res_hndl_u: Identifies resource requesting sync.
1794 * @mode: Type of sync to issue (lightweight, heavyweight, global).
1795 *
1796 * The AFU can only take 1 sync command at a time. This routine enforces this
1797 * limitation by using a mutex to provide exlusive access to the AFU during
1798 * the sync. This design point requires calling threads to not be on interrupt
1799 * context due to the possibility of sleeping during concurrent sync operations.
1800 *
1801 * AFU sync operations are only necessary and allowed when the device is
1802 * operating normally. When not operating normally, sync requests can occur as
1803 * part of cleaning up resources associated with an adapter prior to removal.
1804 * In this scenario, these requests are simply ignored (safe due to the AFU
1805 * going away).
1806 *
1807 * Return:
1808 * 0 on success
1809 * -1 on failure
1810 */
1811 int cxlflash_afu_sync(struct afu *afu, ctx_hndl_t ctx_hndl_u,
1812 res_hndl_t res_hndl_u, u8 mode)
1813 {
1814 struct cxlflash_cfg *cfg = afu->parent;
1815 struct device *dev = &cfg->dev->dev;
1816 struct afu_cmd *cmd = NULL;
1817 int rc = 0;
1818 int retry_cnt = 0;
1819 static DEFINE_MUTEX(sync_active);
1820
1821 if (cfg->state != STATE_NORMAL) {
1822 pr_debug("%s: Sync not required! (%u)\n", __func__, cfg->state);
1823 return 0;
1824 }
1825
1826 mutex_lock(&sync_active);
1827 retry:
1828 cmd = cmd_checkout(afu);
1829 if (unlikely(!cmd)) {
1830 retry_cnt++;
1831 udelay(1000 * retry_cnt);
1832 if (retry_cnt < MC_RETRY_CNT)
1833 goto retry;
1834 dev_err(dev, "%s: could not get a free command\n", __func__);
1835 rc = -1;
1836 goto out;
1837 }
1838
1839 pr_debug("%s: afu=%p cmd=%p %d\n", __func__, afu, cmd, ctx_hndl_u);
1840
1841 memset(cmd->rcb.cdb, 0, sizeof(cmd->rcb.cdb));
1842
1843 cmd->rcb.req_flags = SISL_REQ_FLAGS_AFU_CMD;
1844 cmd->rcb.port_sel = 0x0; /* NA */
1845 cmd->rcb.lun_id = 0x0; /* NA */
1846 cmd->rcb.data_len = 0x0;
1847 cmd->rcb.data_ea = 0x0;
1848 cmd->rcb.timeout = MC_AFU_SYNC_TIMEOUT;
1849
1850 cmd->rcb.cdb[0] = 0xC0; /* AFU Sync */
1851 cmd->rcb.cdb[1] = mode;
1852
1853 /* The cdb is aligned, no unaligned accessors required */
1854 *((u16 *)&cmd->rcb.cdb[2]) = swab16(ctx_hndl_u);
1855 *((u32 *)&cmd->rcb.cdb[4]) = swab32(res_hndl_u);
1856
1857 rc = send_cmd(afu, cmd);
1858 if (unlikely(rc))
1859 goto out;
1860
1861 wait_resp(afu, cmd);
1862
1863 /* set on timeout */
1864 if (unlikely((cmd->sa.ioasc != 0) ||
1865 (cmd->sa.host_use_b[0] & B_ERROR)))
1866 rc = -1;
1867 out:
1868 mutex_unlock(&sync_active);
1869 if (cmd)
1870 cmd_checkin(cmd);
1871 pr_debug("%s: returning rc=%d\n", __func__, rc);
1872 return rc;
1873 }
1874
1875 /**
1876 * afu_reset() - resets the AFU
1877 * @cfg: Internal structure associated with the host.
1878 *
1879 * Return:
1880 * 0 on success
1881 * A failure value from internal services.
1882 */
1883 static int afu_reset(struct cxlflash_cfg *cfg)
1884 {
1885 int rc = 0;
1886 /* Stop the context before the reset. Since the context is
1887 * no longer available restart it after the reset is complete
1888 */
1889
1890 term_afu(cfg);
1891
1892 rc = init_afu(cfg);
1893
1894 pr_debug("%s: returning rc=%d\n", __func__, rc);
1895 return rc;
1896 }
1897
1898 /**
1899 * cxlflash_eh_device_reset_handler() - reset a single LUN
1900 * @scp: SCSI command to send.
1901 *
1902 * Return:
1903 * SUCCESS as defined in scsi/scsi.h
1904 * FAILED as defined in scsi/scsi.h
1905 */
1906 static int cxlflash_eh_device_reset_handler(struct scsi_cmnd *scp)
1907 {
1908 int rc = SUCCESS;
1909 struct Scsi_Host *host = scp->device->host;
1910 struct cxlflash_cfg *cfg = (struct cxlflash_cfg *)host->hostdata;
1911 struct afu *afu = cfg->afu;
1912 int rcr = 0;
1913
1914 pr_debug("%s: (scp=%p) %d/%d/%d/%llu "
1915 "cdb=(%08X-%08X-%08X-%08X)\n", __func__, scp,
1916 host->host_no, scp->device->channel,
1917 scp->device->id, scp->device->lun,
1918 get_unaligned_be32(&((u32 *)scp->cmnd)[0]),
1919 get_unaligned_be32(&((u32 *)scp->cmnd)[1]),
1920 get_unaligned_be32(&((u32 *)scp->cmnd)[2]),
1921 get_unaligned_be32(&((u32 *)scp->cmnd)[3]));
1922
1923 retry:
1924 switch (cfg->state) {
1925 case STATE_NORMAL:
1926 rcr = send_tmf(afu, scp, TMF_LUN_RESET);
1927 if (unlikely(rcr))
1928 rc = FAILED;
1929 break;
1930 case STATE_RESET:
1931 wait_event(cfg->reset_waitq, cfg->state != STATE_RESET);
1932 goto retry;
1933 default:
1934 rc = FAILED;
1935 break;
1936 }
1937
1938 pr_debug("%s: returning rc=%d\n", __func__, rc);
1939 return rc;
1940 }
1941
1942 /**
1943 * cxlflash_eh_host_reset_handler() - reset the host adapter
1944 * @scp: SCSI command from stack identifying host.
1945 *
1946 * Return:
1947 * SUCCESS as defined in scsi/scsi.h
1948 * FAILED as defined in scsi/scsi.h
1949 */
1950 static int cxlflash_eh_host_reset_handler(struct scsi_cmnd *scp)
1951 {
1952 int rc = SUCCESS;
1953 int rcr = 0;
1954 struct Scsi_Host *host = scp->device->host;
1955 struct cxlflash_cfg *cfg = (struct cxlflash_cfg *)host->hostdata;
1956
1957 pr_debug("%s: (scp=%p) %d/%d/%d/%llu "
1958 "cdb=(%08X-%08X-%08X-%08X)\n", __func__, scp,
1959 host->host_no, scp->device->channel,
1960 scp->device->id, scp->device->lun,
1961 get_unaligned_be32(&((u32 *)scp->cmnd)[0]),
1962 get_unaligned_be32(&((u32 *)scp->cmnd)[1]),
1963 get_unaligned_be32(&((u32 *)scp->cmnd)[2]),
1964 get_unaligned_be32(&((u32 *)scp->cmnd)[3]));
1965
1966 switch (cfg->state) {
1967 case STATE_NORMAL:
1968 cfg->state = STATE_RESET;
1969 cxlflash_mark_contexts_error(cfg);
1970 rcr = afu_reset(cfg);
1971 if (rcr) {
1972 rc = FAILED;
1973 cfg->state = STATE_FAILTERM;
1974 } else
1975 cfg->state = STATE_NORMAL;
1976 wake_up_all(&cfg->reset_waitq);
1977 break;
1978 case STATE_RESET:
1979 wait_event(cfg->reset_waitq, cfg->state != STATE_RESET);
1980 if (cfg->state == STATE_NORMAL)
1981 break;
1982 /* fall through */
1983 default:
1984 rc = FAILED;
1985 break;
1986 }
1987
1988 pr_debug("%s: returning rc=%d\n", __func__, rc);
1989 return rc;
1990 }
1991
1992 /**
1993 * cxlflash_change_queue_depth() - change the queue depth for the device
1994 * @sdev: SCSI device destined for queue depth change.
1995 * @qdepth: Requested queue depth value to set.
1996 *
1997 * The requested queue depth is capped to the maximum supported value.
1998 *
1999 * Return: The actual queue depth set.
2000 */
2001 static int cxlflash_change_queue_depth(struct scsi_device *sdev, int qdepth)
2002 {
2003
2004 if (qdepth > CXLFLASH_MAX_CMDS_PER_LUN)
2005 qdepth = CXLFLASH_MAX_CMDS_PER_LUN;
2006
2007 scsi_change_queue_depth(sdev, qdepth);
2008 return sdev->queue_depth;
2009 }
2010
2011 /**
2012 * cxlflash_show_port_status() - queries and presents the current port status
2013 * @port: Desired port for status reporting.
2014 * @afu: AFU owning the specified port.
2015 * @buf: Buffer of length PAGE_SIZE to report back port status in ASCII.
2016 *
2017 * Return: The size of the ASCII string returned in @buf.
2018 */
2019 static ssize_t cxlflash_show_port_status(u32 port, struct afu *afu, char *buf)
2020 {
2021 char *disp_status;
2022 u64 status;
2023 __be64 __iomem *fc_regs;
2024
2025 if (port >= NUM_FC_PORTS)
2026 return 0;
2027
2028 fc_regs = &afu->afu_map->global.fc_regs[port][0];
2029 status = readq_be(&fc_regs[FC_MTIP_STATUS / 8]);
2030 status &= FC_MTIP_STATUS_MASK;
2031
2032 if (status == FC_MTIP_STATUS_ONLINE)
2033 disp_status = "online";
2034 else if (status == FC_MTIP_STATUS_OFFLINE)
2035 disp_status = "offline";
2036 else
2037 disp_status = "unknown";
2038
2039 return scnprintf(buf, PAGE_SIZE, "%s\n", disp_status);
2040 }
2041
2042 /**
2043 * port0_show() - queries and presents the current status of port 0
2044 * @dev: Generic device associated with the host owning the port.
2045 * @attr: Device attribute representing the port.
2046 * @buf: Buffer of length PAGE_SIZE to report back port status in ASCII.
2047 *
2048 * Return: The size of the ASCII string returned in @buf.
2049 */
2050 static ssize_t port0_show(struct device *dev,
2051 struct device_attribute *attr,
2052 char *buf)
2053 {
2054 struct Scsi_Host *shost = class_to_shost(dev);
2055 struct cxlflash_cfg *cfg = (struct cxlflash_cfg *)shost->hostdata;
2056 struct afu *afu = cfg->afu;
2057
2058 return cxlflash_show_port_status(0, afu, buf);
2059 }
2060
2061 /**
2062 * port1_show() - queries and presents the current status of port 1
2063 * @dev: Generic device associated with the host owning the port.
2064 * @attr: Device attribute representing the port.
2065 * @buf: Buffer of length PAGE_SIZE to report back port status in ASCII.
2066 *
2067 * Return: The size of the ASCII string returned in @buf.
2068 */
2069 static ssize_t port1_show(struct device *dev,
2070 struct device_attribute *attr,
2071 char *buf)
2072 {
2073 struct Scsi_Host *shost = class_to_shost(dev);
2074 struct cxlflash_cfg *cfg = (struct cxlflash_cfg *)shost->hostdata;
2075 struct afu *afu = cfg->afu;
2076
2077 return cxlflash_show_port_status(1, afu, buf);
2078 }
2079
2080 /**
2081 * lun_mode_show() - presents the current LUN mode of the host
2082 * @dev: Generic device associated with the host.
2083 * @attr: Device attribute representing the LUN mode.
2084 * @buf: Buffer of length PAGE_SIZE to report back the LUN mode in ASCII.
2085 *
2086 * Return: The size of the ASCII string returned in @buf.
2087 */
2088 static ssize_t lun_mode_show(struct device *dev,
2089 struct device_attribute *attr, char *buf)
2090 {
2091 struct Scsi_Host *shost = class_to_shost(dev);
2092 struct cxlflash_cfg *cfg = (struct cxlflash_cfg *)shost->hostdata;
2093 struct afu *afu = cfg->afu;
2094
2095 return scnprintf(buf, PAGE_SIZE, "%u\n", afu->internal_lun);
2096 }
2097
2098 /**
2099 * lun_mode_store() - sets the LUN mode of the host
2100 * @dev: Generic device associated with the host.
2101 * @attr: Device attribute representing the LUN mode.
2102 * @buf: Buffer of length PAGE_SIZE containing the LUN mode in ASCII.
2103 * @count: Length of data resizing in @buf.
2104 *
2105 * The CXL Flash AFU supports a dummy LUN mode where the external
2106 * links and storage are not required. Space on the FPGA is used
2107 * to create 1 or 2 small LUNs which are presented to the system
2108 * as if they were a normal storage device. This feature is useful
2109 * during development and also provides manufacturing with a way
2110 * to test the AFU without an actual device.
2111 *
2112 * 0 = external LUN[s] (default)
2113 * 1 = internal LUN (1 x 64K, 512B blocks, id 0)
2114 * 2 = internal LUN (1 x 64K, 4K blocks, id 0)
2115 * 3 = internal LUN (2 x 32K, 512B blocks, ids 0,1)
2116 * 4 = internal LUN (2 x 32K, 4K blocks, ids 0,1)
2117 *
2118 * Return: The size of the ASCII string returned in @buf.
2119 */
2120 static ssize_t lun_mode_store(struct device *dev,
2121 struct device_attribute *attr,
2122 const char *buf, size_t count)
2123 {
2124 struct Scsi_Host *shost = class_to_shost(dev);
2125 struct cxlflash_cfg *cfg = (struct cxlflash_cfg *)shost->hostdata;
2126 struct afu *afu = cfg->afu;
2127 int rc;
2128 u32 lun_mode;
2129
2130 rc = kstrtouint(buf, 10, &lun_mode);
2131 if (!rc && (lun_mode < 5) && (lun_mode != afu->internal_lun)) {
2132 afu->internal_lun = lun_mode;
2133 afu_reset(cfg);
2134 scsi_scan_host(cfg->host);
2135 }
2136
2137 return count;
2138 }
2139
2140 /**
2141 * ioctl_version_show() - presents the current ioctl version of the host
2142 * @dev: Generic device associated with the host.
2143 * @attr: Device attribute representing the ioctl version.
2144 * @buf: Buffer of length PAGE_SIZE to report back the ioctl version.
2145 *
2146 * Return: The size of the ASCII string returned in @buf.
2147 */
2148 static ssize_t ioctl_version_show(struct device *dev,
2149 struct device_attribute *attr, char *buf)
2150 {
2151 return scnprintf(buf, PAGE_SIZE, "%u\n", DK_CXLFLASH_VERSION_0);
2152 }
2153
2154 /**
2155 * cxlflash_show_port_lun_table() - queries and presents the port LUN table
2156 * @port: Desired port for status reporting.
2157 * @afu: AFU owning the specified port.
2158 * @buf: Buffer of length PAGE_SIZE to report back port status in ASCII.
2159 *
2160 * Return: The size of the ASCII string returned in @buf.
2161 */
2162 static ssize_t cxlflash_show_port_lun_table(u32 port,
2163 struct afu *afu,
2164 char *buf)
2165 {
2166 int i;
2167 ssize_t bytes = 0;
2168 __be64 __iomem *fc_port;
2169
2170 if (port >= NUM_FC_PORTS)
2171 return 0;
2172
2173 fc_port = &afu->afu_map->global.fc_port[port][0];
2174
2175 for (i = 0; i < CXLFLASH_NUM_VLUNS; i++)
2176 bytes += scnprintf(buf + bytes, PAGE_SIZE - bytes,
2177 "%03d: %016llX\n", i, readq_be(&fc_port[i]));
2178 return bytes;
2179 }
2180
2181 /**
2182 * port0_lun_table_show() - presents the current LUN table of port 0
2183 * @dev: Generic device associated with the host owning the port.
2184 * @attr: Device attribute representing the port.
2185 * @buf: Buffer of length PAGE_SIZE to report back port status in ASCII.
2186 *
2187 * Return: The size of the ASCII string returned in @buf.
2188 */
2189 static ssize_t port0_lun_table_show(struct device *dev,
2190 struct device_attribute *attr,
2191 char *buf)
2192 {
2193 struct Scsi_Host *shost = class_to_shost(dev);
2194 struct cxlflash_cfg *cfg = (struct cxlflash_cfg *)shost->hostdata;
2195 struct afu *afu = cfg->afu;
2196
2197 return cxlflash_show_port_lun_table(0, afu, buf);
2198 }
2199
2200 /**
2201 * port1_lun_table_show() - presents the current LUN table of port 1
2202 * @dev: Generic device associated with the host owning the port.
2203 * @attr: Device attribute representing the port.
2204 * @buf: Buffer of length PAGE_SIZE to report back port status in ASCII.
2205 *
2206 * Return: The size of the ASCII string returned in @buf.
2207 */
2208 static ssize_t port1_lun_table_show(struct device *dev,
2209 struct device_attribute *attr,
2210 char *buf)
2211 {
2212 struct Scsi_Host *shost = class_to_shost(dev);
2213 struct cxlflash_cfg *cfg = (struct cxlflash_cfg *)shost->hostdata;
2214 struct afu *afu = cfg->afu;
2215
2216 return cxlflash_show_port_lun_table(1, afu, buf);
2217 }
2218
2219 /**
2220 * mode_show() - presents the current mode of the device
2221 * @dev: Generic device associated with the device.
2222 * @attr: Device attribute representing the device mode.
2223 * @buf: Buffer of length PAGE_SIZE to report back the dev mode in ASCII.
2224 *
2225 * Return: The size of the ASCII string returned in @buf.
2226 */
2227 static ssize_t mode_show(struct device *dev,
2228 struct device_attribute *attr, char *buf)
2229 {
2230 struct scsi_device *sdev = to_scsi_device(dev);
2231
2232 return scnprintf(buf, PAGE_SIZE, "%s\n",
2233 sdev->hostdata ? "superpipe" : "legacy");
2234 }
2235
2236 /*
2237 * Host attributes
2238 */
2239 static DEVICE_ATTR_RO(port0);
2240 static DEVICE_ATTR_RO(port1);
2241 static DEVICE_ATTR_RW(lun_mode);
2242 static DEVICE_ATTR_RO(ioctl_version);
2243 static DEVICE_ATTR_RO(port0_lun_table);
2244 static DEVICE_ATTR_RO(port1_lun_table);
2245
2246 static struct device_attribute *cxlflash_host_attrs[] = {
2247 &dev_attr_port0,
2248 &dev_attr_port1,
2249 &dev_attr_lun_mode,
2250 &dev_attr_ioctl_version,
2251 &dev_attr_port0_lun_table,
2252 &dev_attr_port1_lun_table,
2253 NULL
2254 };
2255
2256 /*
2257 * Device attributes
2258 */
2259 static DEVICE_ATTR_RO(mode);
2260
2261 static struct device_attribute *cxlflash_dev_attrs[] = {
2262 &dev_attr_mode,
2263 NULL
2264 };
2265
2266 /*
2267 * Host template
2268 */
2269 static struct scsi_host_template driver_template = {
2270 .module = THIS_MODULE,
2271 .name = CXLFLASH_ADAPTER_NAME,
2272 .info = cxlflash_driver_info,
2273 .ioctl = cxlflash_ioctl,
2274 .proc_name = CXLFLASH_NAME,
2275 .queuecommand = cxlflash_queuecommand,
2276 .eh_device_reset_handler = cxlflash_eh_device_reset_handler,
2277 .eh_host_reset_handler = cxlflash_eh_host_reset_handler,
2278 .change_queue_depth = cxlflash_change_queue_depth,
2279 .cmd_per_lun = 16,
2280 .can_queue = CXLFLASH_MAX_CMDS,
2281 .this_id = -1,
2282 .sg_tablesize = SG_NONE, /* No scatter gather support. */
2283 .max_sectors = CXLFLASH_MAX_SECTORS,
2284 .use_clustering = ENABLE_CLUSTERING,
2285 .shost_attrs = cxlflash_host_attrs,
2286 .sdev_attrs = cxlflash_dev_attrs,
2287 };
2288
2289 /*
2290 * Device dependent values
2291 */
2292 static struct dev_dependent_vals dev_corsa_vals = { CXLFLASH_MAX_SECTORS };
2293
2294 /*
2295 * PCI device binding table
2296 */
2297 static struct pci_device_id cxlflash_pci_table[] = {
2298 {PCI_VENDOR_ID_IBM, PCI_DEVICE_ID_IBM_CORSA,
2299 PCI_ANY_ID, PCI_ANY_ID, 0, 0, (kernel_ulong_t)&dev_corsa_vals},
2300 {}
2301 };
2302
2303 MODULE_DEVICE_TABLE(pci, cxlflash_pci_table);
2304
2305 /**
2306 * cxlflash_worker_thread() - work thread handler for the AFU
2307 * @work: Work structure contained within cxlflash associated with host.
2308 *
2309 * Handles the following events:
2310 * - Link reset which cannot be performed on interrupt context due to
2311 * blocking up to a few seconds
2312 * - Read AFU command room
2313 * - Rescan the host
2314 */
2315 static void cxlflash_worker_thread(struct work_struct *work)
2316 {
2317 struct cxlflash_cfg *cfg = container_of(work, struct cxlflash_cfg,
2318 work_q);
2319 struct afu *afu = cfg->afu;
2320 struct device *dev = &cfg->dev->dev;
2321 int port;
2322 ulong lock_flags;
2323
2324 /* Avoid MMIO if the device has failed */
2325
2326 if (cfg->state != STATE_NORMAL)
2327 return;
2328
2329 spin_lock_irqsave(cfg->host->host_lock, lock_flags);
2330
2331 if (cfg->lr_state == LINK_RESET_REQUIRED) {
2332 port = cfg->lr_port;
2333 if (port < 0)
2334 dev_err(dev, "%s: invalid port index %d\n",
2335 __func__, port);
2336 else {
2337 spin_unlock_irqrestore(cfg->host->host_lock,
2338 lock_flags);
2339
2340 /* The reset can block... */
2341 afu_link_reset(afu, port,
2342 &afu->afu_map->
2343 global.fc_regs[port][0]);
2344 spin_lock_irqsave(cfg->host->host_lock, lock_flags);
2345 }
2346
2347 cfg->lr_state = LINK_RESET_COMPLETE;
2348 }
2349
2350 if (afu->read_room) {
2351 atomic64_set(&afu->room, readq_be(&afu->host_map->cmd_room));
2352 afu->read_room = false;
2353 }
2354
2355 spin_unlock_irqrestore(cfg->host->host_lock, lock_flags);
2356
2357 if (atomic_dec_if_positive(&cfg->scan_host_needed) >= 0)
2358 scsi_scan_host(cfg->host);
2359 }
2360
2361 /**
2362 * cxlflash_probe() - PCI entry point to add host
2363 * @pdev: PCI device associated with the host.
2364 * @dev_id: PCI device id associated with device.
2365 *
2366 * Return: 0 on success / non-zero on failure
2367 */
2368 static int cxlflash_probe(struct pci_dev *pdev,
2369 const struct pci_device_id *dev_id)
2370 {
2371 struct Scsi_Host *host;
2372 struct cxlflash_cfg *cfg = NULL;
2373 struct device *phys_dev;
2374 struct dev_dependent_vals *ddv;
2375 int rc = 0;
2376
2377 dev_dbg(&pdev->dev, "%s: Found CXLFLASH with IRQ: %d\n",
2378 __func__, pdev->irq);
2379
2380 ddv = (struct dev_dependent_vals *)dev_id->driver_data;
2381 driver_template.max_sectors = ddv->max_sectors;
2382
2383 host = scsi_host_alloc(&driver_template, sizeof(struct cxlflash_cfg));
2384 if (!host) {
2385 dev_err(&pdev->dev, "%s: call to scsi_host_alloc failed!\n",
2386 __func__);
2387 rc = -ENOMEM;
2388 goto out;
2389 }
2390
2391 host->max_id = CXLFLASH_MAX_NUM_TARGETS_PER_BUS;
2392 host->max_lun = CXLFLASH_MAX_NUM_LUNS_PER_TARGET;
2393 host->max_channel = NUM_FC_PORTS - 1;
2394 host->unique_id = host->host_no;
2395 host->max_cmd_len = CXLFLASH_MAX_CDB_LEN;
2396
2397 cfg = (struct cxlflash_cfg *)host->hostdata;
2398 cfg->host = host;
2399 rc = alloc_mem(cfg);
2400 if (rc) {
2401 dev_err(&pdev->dev, "%s: call to scsi_host_alloc failed!\n",
2402 __func__);
2403 rc = -ENOMEM;
2404 scsi_host_put(cfg->host);
2405 goto out;
2406 }
2407
2408 cfg->init_state = INIT_STATE_NONE;
2409 cfg->dev = pdev;
2410
2411 /*
2412 * The promoted LUNs move to the top of the LUN table. The rest stay
2413 * on the bottom half. The bottom half grows from the end
2414 * (index = 255), whereas the top half grows from the beginning
2415 * (index = 0).
2416 */
2417 cfg->promote_lun_index = 0;
2418 cfg->last_lun_index[0] = CXLFLASH_NUM_VLUNS/2 - 1;
2419 cfg->last_lun_index[1] = CXLFLASH_NUM_VLUNS/2 - 1;
2420
2421 cfg->dev_id = (struct pci_device_id *)dev_id;
2422 cfg->mcctx = NULL;
2423
2424 init_waitqueue_head(&cfg->tmf_waitq);
2425 init_waitqueue_head(&cfg->reset_waitq);
2426
2427 INIT_WORK(&cfg->work_q, cxlflash_worker_thread);
2428 cfg->lr_state = LINK_RESET_INVALID;
2429 cfg->lr_port = -1;
2430 mutex_init(&cfg->ctx_tbl_list_mutex);
2431 mutex_init(&cfg->ctx_recovery_mutex);
2432 init_rwsem(&cfg->ioctl_rwsem);
2433 INIT_LIST_HEAD(&cfg->ctx_err_recovery);
2434 INIT_LIST_HEAD(&cfg->lluns);
2435
2436 pci_set_drvdata(pdev, cfg);
2437
2438 /* Use the special service provided to look up the physical
2439 * PCI device, since we are called on the probe of the virtual
2440 * PCI host bus (vphb)
2441 */
2442 phys_dev = cxl_get_phys_dev(pdev);
2443 if (!dev_is_pci(phys_dev)) {
2444 dev_err(&pdev->dev, "%s: not a pci dev\n", __func__);
2445 rc = -ENODEV;
2446 goto out_remove;
2447 }
2448 cfg->parent_dev = to_pci_dev(phys_dev);
2449
2450 cfg->cxl_afu = cxl_pci_to_afu(pdev);
2451
2452 rc = init_pci(cfg);
2453 if (rc) {
2454 dev_err(&pdev->dev, "%s: call to init_pci "
2455 "failed rc=%d!\n", __func__, rc);
2456 goto out_remove;
2457 }
2458 cfg->init_state = INIT_STATE_PCI;
2459
2460 rc = init_afu(cfg);
2461 if (rc) {
2462 dev_err(&pdev->dev, "%s: call to init_afu "
2463 "failed rc=%d!\n", __func__, rc);
2464 goto out_remove;
2465 }
2466 cfg->init_state = INIT_STATE_AFU;
2467
2468
2469 rc = init_scsi(cfg);
2470 if (rc) {
2471 dev_err(&pdev->dev, "%s: call to init_scsi "
2472 "failed rc=%d!\n", __func__, rc);
2473 goto out_remove;
2474 }
2475 cfg->init_state = INIT_STATE_SCSI;
2476
2477 out:
2478 pr_debug("%s: returning rc=%d\n", __func__, rc);
2479 return rc;
2480
2481 out_remove:
2482 cxlflash_remove(pdev);
2483 goto out;
2484 }
2485
2486 /**
2487 * drain_ioctls() - wait until all currently executing ioctls have completed
2488 * @cfg: Internal structure associated with the host.
2489 *
2490 * Obtain write access to read/write semaphore that wraps ioctl
2491 * handling to 'drain' ioctls currently executing.
2492 */
2493 static void drain_ioctls(struct cxlflash_cfg *cfg)
2494 {
2495 down_write(&cfg->ioctl_rwsem);
2496 up_write(&cfg->ioctl_rwsem);
2497 }
2498
2499 /**
2500 * cxlflash_pci_error_detected() - called when a PCI error is detected
2501 * @pdev: PCI device struct.
2502 * @state: PCI channel state.
2503 *
2504 * Return: PCI_ERS_RESULT_NEED_RESET or PCI_ERS_RESULT_DISCONNECT
2505 */
2506 static pci_ers_result_t cxlflash_pci_error_detected(struct pci_dev *pdev,
2507 pci_channel_state_t state)
2508 {
2509 int rc = 0;
2510 struct cxlflash_cfg *cfg = pci_get_drvdata(pdev);
2511 struct device *dev = &cfg->dev->dev;
2512
2513 dev_dbg(dev, "%s: pdev=%p state=%u\n", __func__, pdev, state);
2514
2515 switch (state) {
2516 case pci_channel_io_frozen:
2517 cfg->state = STATE_RESET;
2518 scsi_block_requests(cfg->host);
2519 drain_ioctls(cfg);
2520 rc = cxlflash_mark_contexts_error(cfg);
2521 if (unlikely(rc))
2522 dev_err(dev, "%s: Failed to mark user contexts!(%d)\n",
2523 __func__, rc);
2524 term_mc(cfg, UNDO_START);
2525 stop_afu(cfg);
2526 return PCI_ERS_RESULT_NEED_RESET;
2527 case pci_channel_io_perm_failure:
2528 cfg->state = STATE_FAILTERM;
2529 wake_up_all(&cfg->reset_waitq);
2530 scsi_unblock_requests(cfg->host);
2531 return PCI_ERS_RESULT_DISCONNECT;
2532 default:
2533 break;
2534 }
2535 return PCI_ERS_RESULT_NEED_RESET;
2536 }
2537
2538 /**
2539 * cxlflash_pci_slot_reset() - called when PCI slot has been reset
2540 * @pdev: PCI device struct.
2541 *
2542 * This routine is called by the pci error recovery code after the PCI
2543 * slot has been reset, just before we should resume normal operations.
2544 *
2545 * Return: PCI_ERS_RESULT_RECOVERED or PCI_ERS_RESULT_DISCONNECT
2546 */
2547 static pci_ers_result_t cxlflash_pci_slot_reset(struct pci_dev *pdev)
2548 {
2549 int rc = 0;
2550 struct cxlflash_cfg *cfg = pci_get_drvdata(pdev);
2551 struct device *dev = &cfg->dev->dev;
2552
2553 dev_dbg(dev, "%s: pdev=%p\n", __func__, pdev);
2554
2555 rc = init_afu(cfg);
2556 if (unlikely(rc)) {
2557 dev_err(dev, "%s: EEH recovery failed! (%d)\n", __func__, rc);
2558 return PCI_ERS_RESULT_DISCONNECT;
2559 }
2560
2561 return PCI_ERS_RESULT_RECOVERED;
2562 }
2563
2564 /**
2565 * cxlflash_pci_resume() - called when normal operation can resume
2566 * @pdev: PCI device struct
2567 */
2568 static void cxlflash_pci_resume(struct pci_dev *pdev)
2569 {
2570 struct cxlflash_cfg *cfg = pci_get_drvdata(pdev);
2571 struct device *dev = &cfg->dev->dev;
2572
2573 dev_dbg(dev, "%s: pdev=%p\n", __func__, pdev);
2574
2575 cfg->state = STATE_NORMAL;
2576 wake_up_all(&cfg->reset_waitq);
2577 scsi_unblock_requests(cfg->host);
2578 }
2579
2580 static const struct pci_error_handlers cxlflash_err_handler = {
2581 .error_detected = cxlflash_pci_error_detected,
2582 .slot_reset = cxlflash_pci_slot_reset,
2583 .resume = cxlflash_pci_resume,
2584 };
2585
2586 /*
2587 * PCI device structure
2588 */
2589 static struct pci_driver cxlflash_driver = {
2590 .name = CXLFLASH_NAME,
2591 .id_table = cxlflash_pci_table,
2592 .probe = cxlflash_probe,
2593 .remove = cxlflash_remove,
2594 .err_handler = &cxlflash_err_handler,
2595 };
2596
2597 /**
2598 * init_cxlflash() - module entry point
2599 *
2600 * Return: 0 on success / non-zero on failure
2601 */
2602 static int __init init_cxlflash(void)
2603 {
2604 pr_info("%s: IBM Power CXL Flash Adapter: %s\n",
2605 __func__, CXLFLASH_DRIVER_DATE);
2606
2607 cxlflash_list_init();
2608
2609 return pci_register_driver(&cxlflash_driver);
2610 }
2611
2612 /**
2613 * exit_cxlflash() - module exit point
2614 */
2615 static void __exit exit_cxlflash(void)
2616 {
2617 cxlflash_term_global_luns();
2618 cxlflash_free_errpage();
2619
2620 pci_unregister_driver(&cxlflash_driver);
2621 }
2622
2623 module_init(init_cxlflash);
2624 module_exit(exit_cxlflash);
This page took 0.20961 seconds and 5 git commands to generate.