Merge tag 'regulator-v3.13' of git://git.kernel.org/pub/scm/linux/kernel/git/broonie...
[deliverable/linux.git] / drivers / scsi / hpsa.c
1 /*
2 * Disk Array driver for HP Smart Array SAS controllers
3 * Copyright 2000, 2009 Hewlett-Packard Development Company, L.P.
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; version 2 of the License.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
12 * NON INFRINGEMENT. See the GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
17 *
18 * Questions/Comments/Bugfixes to iss_storagedev@hp.com
19 *
20 */
21
22 #include <linux/module.h>
23 #include <linux/interrupt.h>
24 #include <linux/types.h>
25 #include <linux/pci.h>
26 #include <linux/pci-aspm.h>
27 #include <linux/kernel.h>
28 #include <linux/slab.h>
29 #include <linux/delay.h>
30 #include <linux/fs.h>
31 #include <linux/timer.h>
32 #include <linux/seq_file.h>
33 #include <linux/init.h>
34 #include <linux/spinlock.h>
35 #include <linux/compat.h>
36 #include <linux/blktrace_api.h>
37 #include <linux/uaccess.h>
38 #include <linux/io.h>
39 #include <linux/dma-mapping.h>
40 #include <linux/completion.h>
41 #include <linux/moduleparam.h>
42 #include <scsi/scsi.h>
43 #include <scsi/scsi_cmnd.h>
44 #include <scsi/scsi_device.h>
45 #include <scsi/scsi_host.h>
46 #include <scsi/scsi_tcq.h>
47 #include <linux/cciss_ioctl.h>
48 #include <linux/string.h>
49 #include <linux/bitmap.h>
50 #include <linux/atomic.h>
51 #include <linux/kthread.h>
52 #include <linux/jiffies.h>
53 #include "hpsa_cmd.h"
54 #include "hpsa.h"
55
56 /* HPSA_DRIVER_VERSION must be 3 byte values (0-255) separated by '.' */
57 #define HPSA_DRIVER_VERSION "3.4.0-1"
58 #define DRIVER_NAME "HP HPSA Driver (v " HPSA_DRIVER_VERSION ")"
59 #define HPSA "hpsa"
60
61 /* How long to wait (in milliseconds) for board to go into simple mode */
62 #define MAX_CONFIG_WAIT 30000
63 #define MAX_IOCTL_CONFIG_WAIT 1000
64
65 /*define how many times we will try a command because of bus resets */
66 #define MAX_CMD_RETRIES 3
67
68 /* Embedded module documentation macros - see modules.h */
69 MODULE_AUTHOR("Hewlett-Packard Company");
70 MODULE_DESCRIPTION("Driver for HP Smart Array Controller version " \
71 HPSA_DRIVER_VERSION);
72 MODULE_SUPPORTED_DEVICE("HP Smart Array Controllers");
73 MODULE_VERSION(HPSA_DRIVER_VERSION);
74 MODULE_LICENSE("GPL");
75
76 static int hpsa_allow_any;
77 module_param(hpsa_allow_any, int, S_IRUGO|S_IWUSR);
78 MODULE_PARM_DESC(hpsa_allow_any,
79 "Allow hpsa driver to access unknown HP Smart Array hardware");
80 static int hpsa_simple_mode;
81 module_param(hpsa_simple_mode, int, S_IRUGO|S_IWUSR);
82 MODULE_PARM_DESC(hpsa_simple_mode,
83 "Use 'simple mode' rather than 'performant mode'");
84
85 /* define the PCI info for the cards we can control */
86 static const struct pci_device_id hpsa_pci_device_id[] = {
87 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3241},
88 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3243},
89 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3245},
90 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3247},
91 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3249},
92 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x324A},
93 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x324B},
94 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3233},
95 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3350},
96 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3351},
97 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3352},
98 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3353},
99 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x334D},
100 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3354},
101 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3355},
102 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3356},
103 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSH, 0x103C, 0x1920},
104 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSH, 0x103C, 0x1921},
105 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSH, 0x103C, 0x1922},
106 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSH, 0x103C, 0x1923},
107 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSH, 0x103C, 0x1924},
108 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSH, 0x103C, 0x1925},
109 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSH, 0x103C, 0x1926},
110 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSH, 0x103C, 0x1928},
111 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSH, 0x103C, 0x1929},
112 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21BD},
113 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21BE},
114 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21BF},
115 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C0},
116 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C1},
117 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C2},
118 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C3},
119 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C4},
120 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C5},
121 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C7},
122 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C8},
123 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSI, 0x103C, 0x21C9},
124 {PCI_VENDOR_ID_HP, PCI_ANY_ID, PCI_ANY_ID, PCI_ANY_ID,
125 PCI_CLASS_STORAGE_RAID << 8, 0xffff << 8, 0},
126 {0,}
127 };
128
129 MODULE_DEVICE_TABLE(pci, hpsa_pci_device_id);
130
131 /* board_id = Subsystem Device ID & Vendor ID
132 * product = Marketing Name for the board
133 * access = Address of the struct of function pointers
134 */
135 static struct board_type products[] = {
136 {0x3241103C, "Smart Array P212", &SA5_access},
137 {0x3243103C, "Smart Array P410", &SA5_access},
138 {0x3245103C, "Smart Array P410i", &SA5_access},
139 {0x3247103C, "Smart Array P411", &SA5_access},
140 {0x3249103C, "Smart Array P812", &SA5_access},
141 {0x324A103C, "Smart Array P712m", &SA5_access},
142 {0x324B103C, "Smart Array P711m", &SA5_access},
143 {0x3350103C, "Smart Array P222", &SA5_access},
144 {0x3351103C, "Smart Array P420", &SA5_access},
145 {0x3352103C, "Smart Array P421", &SA5_access},
146 {0x3353103C, "Smart Array P822", &SA5_access},
147 {0x334D103C, "Smart Array P822se", &SA5_access},
148 {0x3354103C, "Smart Array P420i", &SA5_access},
149 {0x3355103C, "Smart Array P220i", &SA5_access},
150 {0x3356103C, "Smart Array P721m", &SA5_access},
151 {0x1921103C, "Smart Array P830i", &SA5_access},
152 {0x1922103C, "Smart Array P430", &SA5_access},
153 {0x1923103C, "Smart Array P431", &SA5_access},
154 {0x1924103C, "Smart Array P830", &SA5_access},
155 {0x1926103C, "Smart Array P731m", &SA5_access},
156 {0x1928103C, "Smart Array P230i", &SA5_access},
157 {0x1929103C, "Smart Array P530", &SA5_access},
158 {0x21BD103C, "Smart Array", &SA5_access},
159 {0x21BE103C, "Smart Array", &SA5_access},
160 {0x21BF103C, "Smart Array", &SA5_access},
161 {0x21C0103C, "Smart Array", &SA5_access},
162 {0x21C1103C, "Smart Array", &SA5_access},
163 {0x21C2103C, "Smart Array", &SA5_access},
164 {0x21C3103C, "Smart Array", &SA5_access},
165 {0x21C4103C, "Smart Array", &SA5_access},
166 {0x21C5103C, "Smart Array", &SA5_access},
167 {0x21C7103C, "Smart Array", &SA5_access},
168 {0x21C8103C, "Smart Array", &SA5_access},
169 {0x21C9103C, "Smart Array", &SA5_access},
170 {0xFFFF103C, "Unknown Smart Array", &SA5_access},
171 };
172
173 static int number_of_controllers;
174
175 static struct list_head hpsa_ctlr_list = LIST_HEAD_INIT(hpsa_ctlr_list);
176 static spinlock_t lockup_detector_lock;
177 static struct task_struct *hpsa_lockup_detector;
178
179 static irqreturn_t do_hpsa_intr_intx(int irq, void *dev_id);
180 static irqreturn_t do_hpsa_intr_msi(int irq, void *dev_id);
181 static int hpsa_ioctl(struct scsi_device *dev, int cmd, void *arg);
182 static void start_io(struct ctlr_info *h);
183
184 #ifdef CONFIG_COMPAT
185 static int hpsa_compat_ioctl(struct scsi_device *dev, int cmd, void *arg);
186 #endif
187
188 static void cmd_free(struct ctlr_info *h, struct CommandList *c);
189 static void cmd_special_free(struct ctlr_info *h, struct CommandList *c);
190 static struct CommandList *cmd_alloc(struct ctlr_info *h);
191 static struct CommandList *cmd_special_alloc(struct ctlr_info *h);
192 static int fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
193 void *buff, size_t size, u8 page_code, unsigned char *scsi3addr,
194 int cmd_type);
195
196 static int hpsa_scsi_queue_command(struct Scsi_Host *h, struct scsi_cmnd *cmd);
197 static void hpsa_scan_start(struct Scsi_Host *);
198 static int hpsa_scan_finished(struct Scsi_Host *sh,
199 unsigned long elapsed_time);
200 static int hpsa_change_queue_depth(struct scsi_device *sdev,
201 int qdepth, int reason);
202
203 static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd);
204 static int hpsa_eh_abort_handler(struct scsi_cmnd *scsicmd);
205 static int hpsa_slave_alloc(struct scsi_device *sdev);
206 static void hpsa_slave_destroy(struct scsi_device *sdev);
207
208 static void hpsa_update_scsi_devices(struct ctlr_info *h, int hostno);
209 static int check_for_unit_attention(struct ctlr_info *h,
210 struct CommandList *c);
211 static void check_ioctl_unit_attention(struct ctlr_info *h,
212 struct CommandList *c);
213 /* performant mode helper functions */
214 static void calc_bucket_map(int *bucket, int num_buckets,
215 int nsgs, int *bucket_map);
216 static void hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h);
217 static inline u32 next_command(struct ctlr_info *h, u8 q);
218 static int hpsa_find_cfg_addrs(struct pci_dev *pdev, void __iomem *vaddr,
219 u32 *cfg_base_addr, u64 *cfg_base_addr_index,
220 u64 *cfg_offset);
221 static int hpsa_pci_find_memory_BAR(struct pci_dev *pdev,
222 unsigned long *memory_bar);
223 static int hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id);
224 static int hpsa_wait_for_board_state(struct pci_dev *pdev, void __iomem *vaddr,
225 int wait_for_ready);
226 static inline void finish_cmd(struct CommandList *c);
227 #define BOARD_NOT_READY 0
228 #define BOARD_READY 1
229
230 static inline struct ctlr_info *sdev_to_hba(struct scsi_device *sdev)
231 {
232 unsigned long *priv = shost_priv(sdev->host);
233 return (struct ctlr_info *) *priv;
234 }
235
236 static inline struct ctlr_info *shost_to_hba(struct Scsi_Host *sh)
237 {
238 unsigned long *priv = shost_priv(sh);
239 return (struct ctlr_info *) *priv;
240 }
241
242 static int check_for_unit_attention(struct ctlr_info *h,
243 struct CommandList *c)
244 {
245 if (c->err_info->SenseInfo[2] != UNIT_ATTENTION)
246 return 0;
247
248 switch (c->err_info->SenseInfo[12]) {
249 case STATE_CHANGED:
250 dev_warn(&h->pdev->dev, HPSA "%d: a state change "
251 "detected, command retried\n", h->ctlr);
252 break;
253 case LUN_FAILED:
254 dev_warn(&h->pdev->dev, HPSA "%d: LUN failure "
255 "detected, action required\n", h->ctlr);
256 break;
257 case REPORT_LUNS_CHANGED:
258 dev_warn(&h->pdev->dev, HPSA "%d: report LUN data "
259 "changed, action required\n", h->ctlr);
260 /*
261 * Note: this REPORT_LUNS_CHANGED condition only occurs on the external
262 * target (array) devices.
263 */
264 break;
265 case POWER_OR_RESET:
266 dev_warn(&h->pdev->dev, HPSA "%d: a power on "
267 "or device reset detected\n", h->ctlr);
268 break;
269 case UNIT_ATTENTION_CLEARED:
270 dev_warn(&h->pdev->dev, HPSA "%d: unit attention "
271 "cleared by another initiator\n", h->ctlr);
272 break;
273 default:
274 dev_warn(&h->pdev->dev, HPSA "%d: unknown "
275 "unit attention detected\n", h->ctlr);
276 break;
277 }
278 return 1;
279 }
280
281 static int check_for_busy(struct ctlr_info *h, struct CommandList *c)
282 {
283 if (c->err_info->CommandStatus != CMD_TARGET_STATUS ||
284 (c->err_info->ScsiStatus != SAM_STAT_BUSY &&
285 c->err_info->ScsiStatus != SAM_STAT_TASK_SET_FULL))
286 return 0;
287 dev_warn(&h->pdev->dev, HPSA "device busy");
288 return 1;
289 }
290
291 static ssize_t host_store_rescan(struct device *dev,
292 struct device_attribute *attr,
293 const char *buf, size_t count)
294 {
295 struct ctlr_info *h;
296 struct Scsi_Host *shost = class_to_shost(dev);
297 h = shost_to_hba(shost);
298 hpsa_scan_start(h->scsi_host);
299 return count;
300 }
301
302 static ssize_t host_show_firmware_revision(struct device *dev,
303 struct device_attribute *attr, char *buf)
304 {
305 struct ctlr_info *h;
306 struct Scsi_Host *shost = class_to_shost(dev);
307 unsigned char *fwrev;
308
309 h = shost_to_hba(shost);
310 if (!h->hba_inquiry_data)
311 return 0;
312 fwrev = &h->hba_inquiry_data[32];
313 return snprintf(buf, 20, "%c%c%c%c\n",
314 fwrev[0], fwrev[1], fwrev[2], fwrev[3]);
315 }
316
317 static ssize_t host_show_commands_outstanding(struct device *dev,
318 struct device_attribute *attr, char *buf)
319 {
320 struct Scsi_Host *shost = class_to_shost(dev);
321 struct ctlr_info *h = shost_to_hba(shost);
322
323 return snprintf(buf, 20, "%d\n", h->commands_outstanding);
324 }
325
326 static ssize_t host_show_transport_mode(struct device *dev,
327 struct device_attribute *attr, char *buf)
328 {
329 struct ctlr_info *h;
330 struct Scsi_Host *shost = class_to_shost(dev);
331
332 h = shost_to_hba(shost);
333 return snprintf(buf, 20, "%s\n",
334 h->transMethod & CFGTBL_Trans_Performant ?
335 "performant" : "simple");
336 }
337
338 /* List of controllers which cannot be hard reset on kexec with reset_devices */
339 static u32 unresettable_controller[] = {
340 0x324a103C, /* Smart Array P712m */
341 0x324b103C, /* SmartArray P711m */
342 0x3223103C, /* Smart Array P800 */
343 0x3234103C, /* Smart Array P400 */
344 0x3235103C, /* Smart Array P400i */
345 0x3211103C, /* Smart Array E200i */
346 0x3212103C, /* Smart Array E200 */
347 0x3213103C, /* Smart Array E200i */
348 0x3214103C, /* Smart Array E200i */
349 0x3215103C, /* Smart Array E200i */
350 0x3237103C, /* Smart Array E500 */
351 0x323D103C, /* Smart Array P700m */
352 0x40800E11, /* Smart Array 5i */
353 0x409C0E11, /* Smart Array 6400 */
354 0x409D0E11, /* Smart Array 6400 EM */
355 0x40700E11, /* Smart Array 5300 */
356 0x40820E11, /* Smart Array 532 */
357 0x40830E11, /* Smart Array 5312 */
358 0x409A0E11, /* Smart Array 641 */
359 0x409B0E11, /* Smart Array 642 */
360 0x40910E11, /* Smart Array 6i */
361 };
362
363 /* List of controllers which cannot even be soft reset */
364 static u32 soft_unresettable_controller[] = {
365 0x40800E11, /* Smart Array 5i */
366 0x40700E11, /* Smart Array 5300 */
367 0x40820E11, /* Smart Array 532 */
368 0x40830E11, /* Smart Array 5312 */
369 0x409A0E11, /* Smart Array 641 */
370 0x409B0E11, /* Smart Array 642 */
371 0x40910E11, /* Smart Array 6i */
372 /* Exclude 640x boards. These are two pci devices in one slot
373 * which share a battery backed cache module. One controls the
374 * cache, the other accesses the cache through the one that controls
375 * it. If we reset the one controlling the cache, the other will
376 * likely not be happy. Just forbid resetting this conjoined mess.
377 * The 640x isn't really supported by hpsa anyway.
378 */
379 0x409C0E11, /* Smart Array 6400 */
380 0x409D0E11, /* Smart Array 6400 EM */
381 };
382
383 static int ctlr_is_hard_resettable(u32 board_id)
384 {
385 int i;
386
387 for (i = 0; i < ARRAY_SIZE(unresettable_controller); i++)
388 if (unresettable_controller[i] == board_id)
389 return 0;
390 return 1;
391 }
392
393 static int ctlr_is_soft_resettable(u32 board_id)
394 {
395 int i;
396
397 for (i = 0; i < ARRAY_SIZE(soft_unresettable_controller); i++)
398 if (soft_unresettable_controller[i] == board_id)
399 return 0;
400 return 1;
401 }
402
403 static int ctlr_is_resettable(u32 board_id)
404 {
405 return ctlr_is_hard_resettable(board_id) ||
406 ctlr_is_soft_resettable(board_id);
407 }
408
409 static ssize_t host_show_resettable(struct device *dev,
410 struct device_attribute *attr, char *buf)
411 {
412 struct ctlr_info *h;
413 struct Scsi_Host *shost = class_to_shost(dev);
414
415 h = shost_to_hba(shost);
416 return snprintf(buf, 20, "%d\n", ctlr_is_resettable(h->board_id));
417 }
418
419 static inline int is_logical_dev_addr_mode(unsigned char scsi3addr[])
420 {
421 return (scsi3addr[3] & 0xC0) == 0x40;
422 }
423
424 static const char *raid_label[] = { "0", "4", "1(1+0)", "5", "5+1", "ADG",
425 "1(ADM)", "UNKNOWN"
426 };
427 #define RAID_UNKNOWN (ARRAY_SIZE(raid_label) - 1)
428
429 static ssize_t raid_level_show(struct device *dev,
430 struct device_attribute *attr, char *buf)
431 {
432 ssize_t l = 0;
433 unsigned char rlevel;
434 struct ctlr_info *h;
435 struct scsi_device *sdev;
436 struct hpsa_scsi_dev_t *hdev;
437 unsigned long flags;
438
439 sdev = to_scsi_device(dev);
440 h = sdev_to_hba(sdev);
441 spin_lock_irqsave(&h->lock, flags);
442 hdev = sdev->hostdata;
443 if (!hdev) {
444 spin_unlock_irqrestore(&h->lock, flags);
445 return -ENODEV;
446 }
447
448 /* Is this even a logical drive? */
449 if (!is_logical_dev_addr_mode(hdev->scsi3addr)) {
450 spin_unlock_irqrestore(&h->lock, flags);
451 l = snprintf(buf, PAGE_SIZE, "N/A\n");
452 return l;
453 }
454
455 rlevel = hdev->raid_level;
456 spin_unlock_irqrestore(&h->lock, flags);
457 if (rlevel > RAID_UNKNOWN)
458 rlevel = RAID_UNKNOWN;
459 l = snprintf(buf, PAGE_SIZE, "RAID %s\n", raid_label[rlevel]);
460 return l;
461 }
462
463 static ssize_t lunid_show(struct device *dev,
464 struct device_attribute *attr, char *buf)
465 {
466 struct ctlr_info *h;
467 struct scsi_device *sdev;
468 struct hpsa_scsi_dev_t *hdev;
469 unsigned long flags;
470 unsigned char lunid[8];
471
472 sdev = to_scsi_device(dev);
473 h = sdev_to_hba(sdev);
474 spin_lock_irqsave(&h->lock, flags);
475 hdev = sdev->hostdata;
476 if (!hdev) {
477 spin_unlock_irqrestore(&h->lock, flags);
478 return -ENODEV;
479 }
480 memcpy(lunid, hdev->scsi3addr, sizeof(lunid));
481 spin_unlock_irqrestore(&h->lock, flags);
482 return snprintf(buf, 20, "0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
483 lunid[0], lunid[1], lunid[2], lunid[3],
484 lunid[4], lunid[5], lunid[6], lunid[7]);
485 }
486
487 static ssize_t unique_id_show(struct device *dev,
488 struct device_attribute *attr, char *buf)
489 {
490 struct ctlr_info *h;
491 struct scsi_device *sdev;
492 struct hpsa_scsi_dev_t *hdev;
493 unsigned long flags;
494 unsigned char sn[16];
495
496 sdev = to_scsi_device(dev);
497 h = sdev_to_hba(sdev);
498 spin_lock_irqsave(&h->lock, flags);
499 hdev = sdev->hostdata;
500 if (!hdev) {
501 spin_unlock_irqrestore(&h->lock, flags);
502 return -ENODEV;
503 }
504 memcpy(sn, hdev->device_id, sizeof(sn));
505 spin_unlock_irqrestore(&h->lock, flags);
506 return snprintf(buf, 16 * 2 + 2,
507 "%02X%02X%02X%02X%02X%02X%02X%02X"
508 "%02X%02X%02X%02X%02X%02X%02X%02X\n",
509 sn[0], sn[1], sn[2], sn[3],
510 sn[4], sn[5], sn[6], sn[7],
511 sn[8], sn[9], sn[10], sn[11],
512 sn[12], sn[13], sn[14], sn[15]);
513 }
514
515 static DEVICE_ATTR(raid_level, S_IRUGO, raid_level_show, NULL);
516 static DEVICE_ATTR(lunid, S_IRUGO, lunid_show, NULL);
517 static DEVICE_ATTR(unique_id, S_IRUGO, unique_id_show, NULL);
518 static DEVICE_ATTR(rescan, S_IWUSR, NULL, host_store_rescan);
519 static DEVICE_ATTR(firmware_revision, S_IRUGO,
520 host_show_firmware_revision, NULL);
521 static DEVICE_ATTR(commands_outstanding, S_IRUGO,
522 host_show_commands_outstanding, NULL);
523 static DEVICE_ATTR(transport_mode, S_IRUGO,
524 host_show_transport_mode, NULL);
525 static DEVICE_ATTR(resettable, S_IRUGO,
526 host_show_resettable, NULL);
527
528 static struct device_attribute *hpsa_sdev_attrs[] = {
529 &dev_attr_raid_level,
530 &dev_attr_lunid,
531 &dev_attr_unique_id,
532 NULL,
533 };
534
535 static struct device_attribute *hpsa_shost_attrs[] = {
536 &dev_attr_rescan,
537 &dev_attr_firmware_revision,
538 &dev_attr_commands_outstanding,
539 &dev_attr_transport_mode,
540 &dev_attr_resettable,
541 NULL,
542 };
543
544 static struct scsi_host_template hpsa_driver_template = {
545 .module = THIS_MODULE,
546 .name = HPSA,
547 .proc_name = HPSA,
548 .queuecommand = hpsa_scsi_queue_command,
549 .scan_start = hpsa_scan_start,
550 .scan_finished = hpsa_scan_finished,
551 .change_queue_depth = hpsa_change_queue_depth,
552 .this_id = -1,
553 .use_clustering = ENABLE_CLUSTERING,
554 .eh_abort_handler = hpsa_eh_abort_handler,
555 .eh_device_reset_handler = hpsa_eh_device_reset_handler,
556 .ioctl = hpsa_ioctl,
557 .slave_alloc = hpsa_slave_alloc,
558 .slave_destroy = hpsa_slave_destroy,
559 #ifdef CONFIG_COMPAT
560 .compat_ioctl = hpsa_compat_ioctl,
561 #endif
562 .sdev_attrs = hpsa_sdev_attrs,
563 .shost_attrs = hpsa_shost_attrs,
564 .max_sectors = 8192,
565 };
566
567
568 /* Enqueuing and dequeuing functions for cmdlists. */
569 static inline void addQ(struct list_head *list, struct CommandList *c)
570 {
571 list_add_tail(&c->list, list);
572 }
573
574 static inline u32 next_command(struct ctlr_info *h, u8 q)
575 {
576 u32 a;
577 struct reply_pool *rq = &h->reply_queue[q];
578 unsigned long flags;
579
580 if (unlikely(!(h->transMethod & CFGTBL_Trans_Performant)))
581 return h->access.command_completed(h, q);
582
583 if ((rq->head[rq->current_entry] & 1) == rq->wraparound) {
584 a = rq->head[rq->current_entry];
585 rq->current_entry++;
586 spin_lock_irqsave(&h->lock, flags);
587 h->commands_outstanding--;
588 spin_unlock_irqrestore(&h->lock, flags);
589 } else {
590 a = FIFO_EMPTY;
591 }
592 /* Check for wraparound */
593 if (rq->current_entry == h->max_commands) {
594 rq->current_entry = 0;
595 rq->wraparound ^= 1;
596 }
597 return a;
598 }
599
600 /* set_performant_mode: Modify the tag for cciss performant
601 * set bit 0 for pull model, bits 3-1 for block fetch
602 * register number
603 */
604 static void set_performant_mode(struct ctlr_info *h, struct CommandList *c)
605 {
606 if (likely(h->transMethod & CFGTBL_Trans_Performant)) {
607 c->busaddr |= 1 | (h->blockFetchTable[c->Header.SGList] << 1);
608 if (likely(h->msix_vector))
609 c->Header.ReplyQueue =
610 raw_smp_processor_id() % h->nreply_queues;
611 }
612 }
613
614 static int is_firmware_flash_cmd(u8 *cdb)
615 {
616 return cdb[0] == BMIC_WRITE && cdb[6] == BMIC_FLASH_FIRMWARE;
617 }
618
619 /*
620 * During firmware flash, the heartbeat register may not update as frequently
621 * as it should. So we dial down lockup detection during firmware flash. and
622 * dial it back up when firmware flash completes.
623 */
624 #define HEARTBEAT_SAMPLE_INTERVAL_DURING_FLASH (240 * HZ)
625 #define HEARTBEAT_SAMPLE_INTERVAL (30 * HZ)
626 static void dial_down_lockup_detection_during_fw_flash(struct ctlr_info *h,
627 struct CommandList *c)
628 {
629 if (!is_firmware_flash_cmd(c->Request.CDB))
630 return;
631 atomic_inc(&h->firmware_flash_in_progress);
632 h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL_DURING_FLASH;
633 }
634
635 static void dial_up_lockup_detection_on_fw_flash_complete(struct ctlr_info *h,
636 struct CommandList *c)
637 {
638 if (is_firmware_flash_cmd(c->Request.CDB) &&
639 atomic_dec_and_test(&h->firmware_flash_in_progress))
640 h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL;
641 }
642
643 static void enqueue_cmd_and_start_io(struct ctlr_info *h,
644 struct CommandList *c)
645 {
646 unsigned long flags;
647
648 set_performant_mode(h, c);
649 dial_down_lockup_detection_during_fw_flash(h, c);
650 spin_lock_irqsave(&h->lock, flags);
651 addQ(&h->reqQ, c);
652 h->Qdepth++;
653 spin_unlock_irqrestore(&h->lock, flags);
654 start_io(h);
655 }
656
657 static inline void removeQ(struct CommandList *c)
658 {
659 if (WARN_ON(list_empty(&c->list)))
660 return;
661 list_del_init(&c->list);
662 }
663
664 static inline int is_hba_lunid(unsigned char scsi3addr[])
665 {
666 return memcmp(scsi3addr, RAID_CTLR_LUNID, 8) == 0;
667 }
668
669 static inline int is_scsi_rev_5(struct ctlr_info *h)
670 {
671 if (!h->hba_inquiry_data)
672 return 0;
673 if ((h->hba_inquiry_data[2] & 0x07) == 5)
674 return 1;
675 return 0;
676 }
677
678 static int hpsa_find_target_lun(struct ctlr_info *h,
679 unsigned char scsi3addr[], int bus, int *target, int *lun)
680 {
681 /* finds an unused bus, target, lun for a new physical device
682 * assumes h->devlock is held
683 */
684 int i, found = 0;
685 DECLARE_BITMAP(lun_taken, HPSA_MAX_DEVICES);
686
687 bitmap_zero(lun_taken, HPSA_MAX_DEVICES);
688
689 for (i = 0; i < h->ndevices; i++) {
690 if (h->dev[i]->bus == bus && h->dev[i]->target != -1)
691 __set_bit(h->dev[i]->target, lun_taken);
692 }
693
694 i = find_first_zero_bit(lun_taken, HPSA_MAX_DEVICES);
695 if (i < HPSA_MAX_DEVICES) {
696 /* *bus = 1; */
697 *target = i;
698 *lun = 0;
699 found = 1;
700 }
701 return !found;
702 }
703
704 /* Add an entry into h->dev[] array. */
705 static int hpsa_scsi_add_entry(struct ctlr_info *h, int hostno,
706 struct hpsa_scsi_dev_t *device,
707 struct hpsa_scsi_dev_t *added[], int *nadded)
708 {
709 /* assumes h->devlock is held */
710 int n = h->ndevices;
711 int i;
712 unsigned char addr1[8], addr2[8];
713 struct hpsa_scsi_dev_t *sd;
714
715 if (n >= HPSA_MAX_DEVICES) {
716 dev_err(&h->pdev->dev, "too many devices, some will be "
717 "inaccessible.\n");
718 return -1;
719 }
720
721 /* physical devices do not have lun or target assigned until now. */
722 if (device->lun != -1)
723 /* Logical device, lun is already assigned. */
724 goto lun_assigned;
725
726 /* If this device a non-zero lun of a multi-lun device
727 * byte 4 of the 8-byte LUN addr will contain the logical
728 * unit no, zero otherise.
729 */
730 if (device->scsi3addr[4] == 0) {
731 /* This is not a non-zero lun of a multi-lun device */
732 if (hpsa_find_target_lun(h, device->scsi3addr,
733 device->bus, &device->target, &device->lun) != 0)
734 return -1;
735 goto lun_assigned;
736 }
737
738 /* This is a non-zero lun of a multi-lun device.
739 * Search through our list and find the device which
740 * has the same 8 byte LUN address, excepting byte 4.
741 * Assign the same bus and target for this new LUN.
742 * Use the logical unit number from the firmware.
743 */
744 memcpy(addr1, device->scsi3addr, 8);
745 addr1[4] = 0;
746 for (i = 0; i < n; i++) {
747 sd = h->dev[i];
748 memcpy(addr2, sd->scsi3addr, 8);
749 addr2[4] = 0;
750 /* differ only in byte 4? */
751 if (memcmp(addr1, addr2, 8) == 0) {
752 device->bus = sd->bus;
753 device->target = sd->target;
754 device->lun = device->scsi3addr[4];
755 break;
756 }
757 }
758 if (device->lun == -1) {
759 dev_warn(&h->pdev->dev, "physical device with no LUN=0,"
760 " suspect firmware bug or unsupported hardware "
761 "configuration.\n");
762 return -1;
763 }
764
765 lun_assigned:
766
767 h->dev[n] = device;
768 h->ndevices++;
769 added[*nadded] = device;
770 (*nadded)++;
771
772 /* initially, (before registering with scsi layer) we don't
773 * know our hostno and we don't want to print anything first
774 * time anyway (the scsi layer's inquiries will show that info)
775 */
776 /* if (hostno != -1) */
777 dev_info(&h->pdev->dev, "%s device c%db%dt%dl%d added.\n",
778 scsi_device_type(device->devtype), hostno,
779 device->bus, device->target, device->lun);
780 return 0;
781 }
782
783 /* Update an entry in h->dev[] array. */
784 static void hpsa_scsi_update_entry(struct ctlr_info *h, int hostno,
785 int entry, struct hpsa_scsi_dev_t *new_entry)
786 {
787 /* assumes h->devlock is held */
788 BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
789
790 /* Raid level changed. */
791 h->dev[entry]->raid_level = new_entry->raid_level;
792 dev_info(&h->pdev->dev, "%s device c%db%dt%dl%d updated.\n",
793 scsi_device_type(new_entry->devtype), hostno, new_entry->bus,
794 new_entry->target, new_entry->lun);
795 }
796
797 /* Replace an entry from h->dev[] array. */
798 static void hpsa_scsi_replace_entry(struct ctlr_info *h, int hostno,
799 int entry, struct hpsa_scsi_dev_t *new_entry,
800 struct hpsa_scsi_dev_t *added[], int *nadded,
801 struct hpsa_scsi_dev_t *removed[], int *nremoved)
802 {
803 /* assumes h->devlock is held */
804 BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
805 removed[*nremoved] = h->dev[entry];
806 (*nremoved)++;
807
808 /*
809 * New physical devices won't have target/lun assigned yet
810 * so we need to preserve the values in the slot we are replacing.
811 */
812 if (new_entry->target == -1) {
813 new_entry->target = h->dev[entry]->target;
814 new_entry->lun = h->dev[entry]->lun;
815 }
816
817 h->dev[entry] = new_entry;
818 added[*nadded] = new_entry;
819 (*nadded)++;
820 dev_info(&h->pdev->dev, "%s device c%db%dt%dl%d changed.\n",
821 scsi_device_type(new_entry->devtype), hostno, new_entry->bus,
822 new_entry->target, new_entry->lun);
823 }
824
825 /* Remove an entry from h->dev[] array. */
826 static void hpsa_scsi_remove_entry(struct ctlr_info *h, int hostno, int entry,
827 struct hpsa_scsi_dev_t *removed[], int *nremoved)
828 {
829 /* assumes h->devlock is held */
830 int i;
831 struct hpsa_scsi_dev_t *sd;
832
833 BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
834
835 sd = h->dev[entry];
836 removed[*nremoved] = h->dev[entry];
837 (*nremoved)++;
838
839 for (i = entry; i < h->ndevices-1; i++)
840 h->dev[i] = h->dev[i+1];
841 h->ndevices--;
842 dev_info(&h->pdev->dev, "%s device c%db%dt%dl%d removed.\n",
843 scsi_device_type(sd->devtype), hostno, sd->bus, sd->target,
844 sd->lun);
845 }
846
847 #define SCSI3ADDR_EQ(a, b) ( \
848 (a)[7] == (b)[7] && \
849 (a)[6] == (b)[6] && \
850 (a)[5] == (b)[5] && \
851 (a)[4] == (b)[4] && \
852 (a)[3] == (b)[3] && \
853 (a)[2] == (b)[2] && \
854 (a)[1] == (b)[1] && \
855 (a)[0] == (b)[0])
856
857 static void fixup_botched_add(struct ctlr_info *h,
858 struct hpsa_scsi_dev_t *added)
859 {
860 /* called when scsi_add_device fails in order to re-adjust
861 * h->dev[] to match the mid layer's view.
862 */
863 unsigned long flags;
864 int i, j;
865
866 spin_lock_irqsave(&h->lock, flags);
867 for (i = 0; i < h->ndevices; i++) {
868 if (h->dev[i] == added) {
869 for (j = i; j < h->ndevices-1; j++)
870 h->dev[j] = h->dev[j+1];
871 h->ndevices--;
872 break;
873 }
874 }
875 spin_unlock_irqrestore(&h->lock, flags);
876 kfree(added);
877 }
878
879 static inline int device_is_the_same(struct hpsa_scsi_dev_t *dev1,
880 struct hpsa_scsi_dev_t *dev2)
881 {
882 /* we compare everything except lun and target as these
883 * are not yet assigned. Compare parts likely
884 * to differ first
885 */
886 if (memcmp(dev1->scsi3addr, dev2->scsi3addr,
887 sizeof(dev1->scsi3addr)) != 0)
888 return 0;
889 if (memcmp(dev1->device_id, dev2->device_id,
890 sizeof(dev1->device_id)) != 0)
891 return 0;
892 if (memcmp(dev1->model, dev2->model, sizeof(dev1->model)) != 0)
893 return 0;
894 if (memcmp(dev1->vendor, dev2->vendor, sizeof(dev1->vendor)) != 0)
895 return 0;
896 if (dev1->devtype != dev2->devtype)
897 return 0;
898 if (dev1->bus != dev2->bus)
899 return 0;
900 return 1;
901 }
902
903 static inline int device_updated(struct hpsa_scsi_dev_t *dev1,
904 struct hpsa_scsi_dev_t *dev2)
905 {
906 /* Device attributes that can change, but don't mean
907 * that the device is a different device, nor that the OS
908 * needs to be told anything about the change.
909 */
910 if (dev1->raid_level != dev2->raid_level)
911 return 1;
912 return 0;
913 }
914
915 /* Find needle in haystack. If exact match found, return DEVICE_SAME,
916 * and return needle location in *index. If scsi3addr matches, but not
917 * vendor, model, serial num, etc. return DEVICE_CHANGED, and return needle
918 * location in *index.
919 * In the case of a minor device attribute change, such as RAID level, just
920 * return DEVICE_UPDATED, along with the updated device's location in index.
921 * If needle not found, return DEVICE_NOT_FOUND.
922 */
923 static int hpsa_scsi_find_entry(struct hpsa_scsi_dev_t *needle,
924 struct hpsa_scsi_dev_t *haystack[], int haystack_size,
925 int *index)
926 {
927 int i;
928 #define DEVICE_NOT_FOUND 0
929 #define DEVICE_CHANGED 1
930 #define DEVICE_SAME 2
931 #define DEVICE_UPDATED 3
932 for (i = 0; i < haystack_size; i++) {
933 if (haystack[i] == NULL) /* previously removed. */
934 continue;
935 if (SCSI3ADDR_EQ(needle->scsi3addr, haystack[i]->scsi3addr)) {
936 *index = i;
937 if (device_is_the_same(needle, haystack[i])) {
938 if (device_updated(needle, haystack[i]))
939 return DEVICE_UPDATED;
940 return DEVICE_SAME;
941 } else {
942 return DEVICE_CHANGED;
943 }
944 }
945 }
946 *index = -1;
947 return DEVICE_NOT_FOUND;
948 }
949
950 static void adjust_hpsa_scsi_table(struct ctlr_info *h, int hostno,
951 struct hpsa_scsi_dev_t *sd[], int nsds)
952 {
953 /* sd contains scsi3 addresses and devtypes, and inquiry
954 * data. This function takes what's in sd to be the current
955 * reality and updates h->dev[] to reflect that reality.
956 */
957 int i, entry, device_change, changes = 0;
958 struct hpsa_scsi_dev_t *csd;
959 unsigned long flags;
960 struct hpsa_scsi_dev_t **added, **removed;
961 int nadded, nremoved;
962 struct Scsi_Host *sh = NULL;
963
964 added = kzalloc(sizeof(*added) * HPSA_MAX_DEVICES, GFP_KERNEL);
965 removed = kzalloc(sizeof(*removed) * HPSA_MAX_DEVICES, GFP_KERNEL);
966
967 if (!added || !removed) {
968 dev_warn(&h->pdev->dev, "out of memory in "
969 "adjust_hpsa_scsi_table\n");
970 goto free_and_out;
971 }
972
973 spin_lock_irqsave(&h->devlock, flags);
974
975 /* find any devices in h->dev[] that are not in
976 * sd[] and remove them from h->dev[], and for any
977 * devices which have changed, remove the old device
978 * info and add the new device info.
979 * If minor device attributes change, just update
980 * the existing device structure.
981 */
982 i = 0;
983 nremoved = 0;
984 nadded = 0;
985 while (i < h->ndevices) {
986 csd = h->dev[i];
987 device_change = hpsa_scsi_find_entry(csd, sd, nsds, &entry);
988 if (device_change == DEVICE_NOT_FOUND) {
989 changes++;
990 hpsa_scsi_remove_entry(h, hostno, i,
991 removed, &nremoved);
992 continue; /* remove ^^^, hence i not incremented */
993 } else if (device_change == DEVICE_CHANGED) {
994 changes++;
995 hpsa_scsi_replace_entry(h, hostno, i, sd[entry],
996 added, &nadded, removed, &nremoved);
997 /* Set it to NULL to prevent it from being freed
998 * at the bottom of hpsa_update_scsi_devices()
999 */
1000 sd[entry] = NULL;
1001 } else if (device_change == DEVICE_UPDATED) {
1002 hpsa_scsi_update_entry(h, hostno, i, sd[entry]);
1003 }
1004 i++;
1005 }
1006
1007 /* Now, make sure every device listed in sd[] is also
1008 * listed in h->dev[], adding them if they aren't found
1009 */
1010
1011 for (i = 0; i < nsds; i++) {
1012 if (!sd[i]) /* if already added above. */
1013 continue;
1014 device_change = hpsa_scsi_find_entry(sd[i], h->dev,
1015 h->ndevices, &entry);
1016 if (device_change == DEVICE_NOT_FOUND) {
1017 changes++;
1018 if (hpsa_scsi_add_entry(h, hostno, sd[i],
1019 added, &nadded) != 0)
1020 break;
1021 sd[i] = NULL; /* prevent from being freed later. */
1022 } else if (device_change == DEVICE_CHANGED) {
1023 /* should never happen... */
1024 changes++;
1025 dev_warn(&h->pdev->dev,
1026 "device unexpectedly changed.\n");
1027 /* but if it does happen, we just ignore that device */
1028 }
1029 }
1030 spin_unlock_irqrestore(&h->devlock, flags);
1031
1032 /* Don't notify scsi mid layer of any changes the first time through
1033 * (or if there are no changes) scsi_scan_host will do it later the
1034 * first time through.
1035 */
1036 if (hostno == -1 || !changes)
1037 goto free_and_out;
1038
1039 sh = h->scsi_host;
1040 /* Notify scsi mid layer of any removed devices */
1041 for (i = 0; i < nremoved; i++) {
1042 struct scsi_device *sdev =
1043 scsi_device_lookup(sh, removed[i]->bus,
1044 removed[i]->target, removed[i]->lun);
1045 if (sdev != NULL) {
1046 scsi_remove_device(sdev);
1047 scsi_device_put(sdev);
1048 } else {
1049 /* We don't expect to get here.
1050 * future cmds to this device will get selection
1051 * timeout as if the device was gone.
1052 */
1053 dev_warn(&h->pdev->dev, "didn't find c%db%dt%dl%d "
1054 " for removal.", hostno, removed[i]->bus,
1055 removed[i]->target, removed[i]->lun);
1056 }
1057 kfree(removed[i]);
1058 removed[i] = NULL;
1059 }
1060
1061 /* Notify scsi mid layer of any added devices */
1062 for (i = 0; i < nadded; i++) {
1063 if (scsi_add_device(sh, added[i]->bus,
1064 added[i]->target, added[i]->lun) == 0)
1065 continue;
1066 dev_warn(&h->pdev->dev, "scsi_add_device c%db%dt%dl%d failed, "
1067 "device not added.\n", hostno, added[i]->bus,
1068 added[i]->target, added[i]->lun);
1069 /* now we have to remove it from h->dev,
1070 * since it didn't get added to scsi mid layer
1071 */
1072 fixup_botched_add(h, added[i]);
1073 }
1074
1075 free_and_out:
1076 kfree(added);
1077 kfree(removed);
1078 }
1079
1080 /*
1081 * Lookup bus/target/lun and return corresponding struct hpsa_scsi_dev_t *
1082 * Assume's h->devlock is held.
1083 */
1084 static struct hpsa_scsi_dev_t *lookup_hpsa_scsi_dev(struct ctlr_info *h,
1085 int bus, int target, int lun)
1086 {
1087 int i;
1088 struct hpsa_scsi_dev_t *sd;
1089
1090 for (i = 0; i < h->ndevices; i++) {
1091 sd = h->dev[i];
1092 if (sd->bus == bus && sd->target == target && sd->lun == lun)
1093 return sd;
1094 }
1095 return NULL;
1096 }
1097
1098 /* link sdev->hostdata to our per-device structure. */
1099 static int hpsa_slave_alloc(struct scsi_device *sdev)
1100 {
1101 struct hpsa_scsi_dev_t *sd;
1102 unsigned long flags;
1103 struct ctlr_info *h;
1104
1105 h = sdev_to_hba(sdev);
1106 spin_lock_irqsave(&h->devlock, flags);
1107 sd = lookup_hpsa_scsi_dev(h, sdev_channel(sdev),
1108 sdev_id(sdev), sdev->lun);
1109 if (sd != NULL)
1110 sdev->hostdata = sd;
1111 spin_unlock_irqrestore(&h->devlock, flags);
1112 return 0;
1113 }
1114
1115 static void hpsa_slave_destroy(struct scsi_device *sdev)
1116 {
1117 /* nothing to do. */
1118 }
1119
1120 static void hpsa_free_sg_chain_blocks(struct ctlr_info *h)
1121 {
1122 int i;
1123
1124 if (!h->cmd_sg_list)
1125 return;
1126 for (i = 0; i < h->nr_cmds; i++) {
1127 kfree(h->cmd_sg_list[i]);
1128 h->cmd_sg_list[i] = NULL;
1129 }
1130 kfree(h->cmd_sg_list);
1131 h->cmd_sg_list = NULL;
1132 }
1133
1134 static int hpsa_allocate_sg_chain_blocks(struct ctlr_info *h)
1135 {
1136 int i;
1137
1138 if (h->chainsize <= 0)
1139 return 0;
1140
1141 h->cmd_sg_list = kzalloc(sizeof(*h->cmd_sg_list) * h->nr_cmds,
1142 GFP_KERNEL);
1143 if (!h->cmd_sg_list)
1144 return -ENOMEM;
1145 for (i = 0; i < h->nr_cmds; i++) {
1146 h->cmd_sg_list[i] = kmalloc(sizeof(*h->cmd_sg_list[i]) *
1147 h->chainsize, GFP_KERNEL);
1148 if (!h->cmd_sg_list[i])
1149 goto clean;
1150 }
1151 return 0;
1152
1153 clean:
1154 hpsa_free_sg_chain_blocks(h);
1155 return -ENOMEM;
1156 }
1157
1158 static int hpsa_map_sg_chain_block(struct ctlr_info *h,
1159 struct CommandList *c)
1160 {
1161 struct SGDescriptor *chain_sg, *chain_block;
1162 u64 temp64;
1163
1164 chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
1165 chain_block = h->cmd_sg_list[c->cmdindex];
1166 chain_sg->Ext = HPSA_SG_CHAIN;
1167 chain_sg->Len = sizeof(*chain_sg) *
1168 (c->Header.SGTotal - h->max_cmd_sg_entries);
1169 temp64 = pci_map_single(h->pdev, chain_block, chain_sg->Len,
1170 PCI_DMA_TODEVICE);
1171 if (dma_mapping_error(&h->pdev->dev, temp64)) {
1172 /* prevent subsequent unmapping */
1173 chain_sg->Addr.lower = 0;
1174 chain_sg->Addr.upper = 0;
1175 return -1;
1176 }
1177 chain_sg->Addr.lower = (u32) (temp64 & 0x0FFFFFFFFULL);
1178 chain_sg->Addr.upper = (u32) ((temp64 >> 32) & 0x0FFFFFFFFULL);
1179 return 0;
1180 }
1181
1182 static void hpsa_unmap_sg_chain_block(struct ctlr_info *h,
1183 struct CommandList *c)
1184 {
1185 struct SGDescriptor *chain_sg;
1186 union u64bit temp64;
1187
1188 if (c->Header.SGTotal <= h->max_cmd_sg_entries)
1189 return;
1190
1191 chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
1192 temp64.val32.lower = chain_sg->Addr.lower;
1193 temp64.val32.upper = chain_sg->Addr.upper;
1194 pci_unmap_single(h->pdev, temp64.val, chain_sg->Len, PCI_DMA_TODEVICE);
1195 }
1196
1197 static void complete_scsi_command(struct CommandList *cp)
1198 {
1199 struct scsi_cmnd *cmd;
1200 struct ctlr_info *h;
1201 struct ErrorInfo *ei;
1202
1203 unsigned char sense_key;
1204 unsigned char asc; /* additional sense code */
1205 unsigned char ascq; /* additional sense code qualifier */
1206 unsigned long sense_data_size;
1207
1208 ei = cp->err_info;
1209 cmd = (struct scsi_cmnd *) cp->scsi_cmd;
1210 h = cp->h;
1211
1212 scsi_dma_unmap(cmd); /* undo the DMA mappings */
1213 if (cp->Header.SGTotal > h->max_cmd_sg_entries)
1214 hpsa_unmap_sg_chain_block(h, cp);
1215
1216 cmd->result = (DID_OK << 16); /* host byte */
1217 cmd->result |= (COMMAND_COMPLETE << 8); /* msg byte */
1218 cmd->result |= ei->ScsiStatus;
1219
1220 /* copy the sense data whether we need to or not. */
1221 if (SCSI_SENSE_BUFFERSIZE < sizeof(ei->SenseInfo))
1222 sense_data_size = SCSI_SENSE_BUFFERSIZE;
1223 else
1224 sense_data_size = sizeof(ei->SenseInfo);
1225 if (ei->SenseLen < sense_data_size)
1226 sense_data_size = ei->SenseLen;
1227
1228 memcpy(cmd->sense_buffer, ei->SenseInfo, sense_data_size);
1229 scsi_set_resid(cmd, ei->ResidualCnt);
1230
1231 if (ei->CommandStatus == 0) {
1232 cmd_free(h, cp);
1233 cmd->scsi_done(cmd);
1234 return;
1235 }
1236
1237 /* an error has occurred */
1238 switch (ei->CommandStatus) {
1239
1240 case CMD_TARGET_STATUS:
1241 if (ei->ScsiStatus) {
1242 /* Get sense key */
1243 sense_key = 0xf & ei->SenseInfo[2];
1244 /* Get additional sense code */
1245 asc = ei->SenseInfo[12];
1246 /* Get addition sense code qualifier */
1247 ascq = ei->SenseInfo[13];
1248 }
1249
1250 if (ei->ScsiStatus == SAM_STAT_CHECK_CONDITION) {
1251 if (check_for_unit_attention(h, cp)) {
1252 cmd->result = DID_SOFT_ERROR << 16;
1253 break;
1254 }
1255 if (sense_key == ILLEGAL_REQUEST) {
1256 /*
1257 * SCSI REPORT_LUNS is commonly unsupported on
1258 * Smart Array. Suppress noisy complaint.
1259 */
1260 if (cp->Request.CDB[0] == REPORT_LUNS)
1261 break;
1262
1263 /* If ASC/ASCQ indicate Logical Unit
1264 * Not Supported condition,
1265 */
1266 if ((asc == 0x25) && (ascq == 0x0)) {
1267 dev_warn(&h->pdev->dev, "cp %p "
1268 "has check condition\n", cp);
1269 break;
1270 }
1271 }
1272
1273 if (sense_key == NOT_READY) {
1274 /* If Sense is Not Ready, Logical Unit
1275 * Not ready, Manual Intervention
1276 * required
1277 */
1278 if ((asc == 0x04) && (ascq == 0x03)) {
1279 dev_warn(&h->pdev->dev, "cp %p "
1280 "has check condition: unit "
1281 "not ready, manual "
1282 "intervention required\n", cp);
1283 break;
1284 }
1285 }
1286 if (sense_key == ABORTED_COMMAND) {
1287 /* Aborted command is retryable */
1288 dev_warn(&h->pdev->dev, "cp %p "
1289 "has check condition: aborted command: "
1290 "ASC: 0x%x, ASCQ: 0x%x\n",
1291 cp, asc, ascq);
1292 cmd->result = DID_SOFT_ERROR << 16;
1293 break;
1294 }
1295 /* Must be some other type of check condition */
1296 dev_dbg(&h->pdev->dev, "cp %p has check condition: "
1297 "unknown type: "
1298 "Sense: 0x%x, ASC: 0x%x, ASCQ: 0x%x, "
1299 "Returning result: 0x%x, "
1300 "cmd=[%02x %02x %02x %02x %02x "
1301 "%02x %02x %02x %02x %02x %02x "
1302 "%02x %02x %02x %02x %02x]\n",
1303 cp, sense_key, asc, ascq,
1304 cmd->result,
1305 cmd->cmnd[0], cmd->cmnd[1],
1306 cmd->cmnd[2], cmd->cmnd[3],
1307 cmd->cmnd[4], cmd->cmnd[5],
1308 cmd->cmnd[6], cmd->cmnd[7],
1309 cmd->cmnd[8], cmd->cmnd[9],
1310 cmd->cmnd[10], cmd->cmnd[11],
1311 cmd->cmnd[12], cmd->cmnd[13],
1312 cmd->cmnd[14], cmd->cmnd[15]);
1313 break;
1314 }
1315
1316
1317 /* Problem was not a check condition
1318 * Pass it up to the upper layers...
1319 */
1320 if (ei->ScsiStatus) {
1321 dev_warn(&h->pdev->dev, "cp %p has status 0x%x "
1322 "Sense: 0x%x, ASC: 0x%x, ASCQ: 0x%x, "
1323 "Returning result: 0x%x\n",
1324 cp, ei->ScsiStatus,
1325 sense_key, asc, ascq,
1326 cmd->result);
1327 } else { /* scsi status is zero??? How??? */
1328 dev_warn(&h->pdev->dev, "cp %p SCSI status was 0. "
1329 "Returning no connection.\n", cp),
1330
1331 /* Ordinarily, this case should never happen,
1332 * but there is a bug in some released firmware
1333 * revisions that allows it to happen if, for
1334 * example, a 4100 backplane loses power and
1335 * the tape drive is in it. We assume that
1336 * it's a fatal error of some kind because we
1337 * can't show that it wasn't. We will make it
1338 * look like selection timeout since that is
1339 * the most common reason for this to occur,
1340 * and it's severe enough.
1341 */
1342
1343 cmd->result = DID_NO_CONNECT << 16;
1344 }
1345 break;
1346
1347 case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
1348 break;
1349 case CMD_DATA_OVERRUN:
1350 dev_warn(&h->pdev->dev, "cp %p has"
1351 " completed with data overrun "
1352 "reported\n", cp);
1353 break;
1354 case CMD_INVALID: {
1355 /* print_bytes(cp, sizeof(*cp), 1, 0);
1356 print_cmd(cp); */
1357 /* We get CMD_INVALID if you address a non-existent device
1358 * instead of a selection timeout (no response). You will
1359 * see this if you yank out a drive, then try to access it.
1360 * This is kind of a shame because it means that any other
1361 * CMD_INVALID (e.g. driver bug) will get interpreted as a
1362 * missing target. */
1363 cmd->result = DID_NO_CONNECT << 16;
1364 }
1365 break;
1366 case CMD_PROTOCOL_ERR:
1367 cmd->result = DID_ERROR << 16;
1368 dev_warn(&h->pdev->dev, "cp %p has "
1369 "protocol error\n", cp);
1370 break;
1371 case CMD_HARDWARE_ERR:
1372 cmd->result = DID_ERROR << 16;
1373 dev_warn(&h->pdev->dev, "cp %p had hardware error\n", cp);
1374 break;
1375 case CMD_CONNECTION_LOST:
1376 cmd->result = DID_ERROR << 16;
1377 dev_warn(&h->pdev->dev, "cp %p had connection lost\n", cp);
1378 break;
1379 case CMD_ABORTED:
1380 cmd->result = DID_ABORT << 16;
1381 dev_warn(&h->pdev->dev, "cp %p was aborted with status 0x%x\n",
1382 cp, ei->ScsiStatus);
1383 break;
1384 case CMD_ABORT_FAILED:
1385 cmd->result = DID_ERROR << 16;
1386 dev_warn(&h->pdev->dev, "cp %p reports abort failed\n", cp);
1387 break;
1388 case CMD_UNSOLICITED_ABORT:
1389 cmd->result = DID_SOFT_ERROR << 16; /* retry the command */
1390 dev_warn(&h->pdev->dev, "cp %p aborted due to an unsolicited "
1391 "abort\n", cp);
1392 break;
1393 case CMD_TIMEOUT:
1394 cmd->result = DID_TIME_OUT << 16;
1395 dev_warn(&h->pdev->dev, "cp %p timedout\n", cp);
1396 break;
1397 case CMD_UNABORTABLE:
1398 cmd->result = DID_ERROR << 16;
1399 dev_warn(&h->pdev->dev, "Command unabortable\n");
1400 break;
1401 default:
1402 cmd->result = DID_ERROR << 16;
1403 dev_warn(&h->pdev->dev, "cp %p returned unknown status %x\n",
1404 cp, ei->CommandStatus);
1405 }
1406 cmd_free(h, cp);
1407 cmd->scsi_done(cmd);
1408 }
1409
1410 static void hpsa_pci_unmap(struct pci_dev *pdev,
1411 struct CommandList *c, int sg_used, int data_direction)
1412 {
1413 int i;
1414 union u64bit addr64;
1415
1416 for (i = 0; i < sg_used; i++) {
1417 addr64.val32.lower = c->SG[i].Addr.lower;
1418 addr64.val32.upper = c->SG[i].Addr.upper;
1419 pci_unmap_single(pdev, (dma_addr_t) addr64.val, c->SG[i].Len,
1420 data_direction);
1421 }
1422 }
1423
1424 static int hpsa_map_one(struct pci_dev *pdev,
1425 struct CommandList *cp,
1426 unsigned char *buf,
1427 size_t buflen,
1428 int data_direction)
1429 {
1430 u64 addr64;
1431
1432 if (buflen == 0 || data_direction == PCI_DMA_NONE) {
1433 cp->Header.SGList = 0;
1434 cp->Header.SGTotal = 0;
1435 return 0;
1436 }
1437
1438 addr64 = (u64) pci_map_single(pdev, buf, buflen, data_direction);
1439 if (dma_mapping_error(&pdev->dev, addr64)) {
1440 /* Prevent subsequent unmap of something never mapped */
1441 cp->Header.SGList = 0;
1442 cp->Header.SGTotal = 0;
1443 return -1;
1444 }
1445 cp->SG[0].Addr.lower =
1446 (u32) (addr64 & (u64) 0x00000000FFFFFFFF);
1447 cp->SG[0].Addr.upper =
1448 (u32) ((addr64 >> 32) & (u64) 0x00000000FFFFFFFF);
1449 cp->SG[0].Len = buflen;
1450 cp->Header.SGList = (u8) 1; /* no. SGs contig in this cmd */
1451 cp->Header.SGTotal = (u16) 1; /* total sgs in this cmd list */
1452 return 0;
1453 }
1454
1455 static inline void hpsa_scsi_do_simple_cmd_core(struct ctlr_info *h,
1456 struct CommandList *c)
1457 {
1458 DECLARE_COMPLETION_ONSTACK(wait);
1459
1460 c->waiting = &wait;
1461 enqueue_cmd_and_start_io(h, c);
1462 wait_for_completion(&wait);
1463 }
1464
1465 static void hpsa_scsi_do_simple_cmd_core_if_no_lockup(struct ctlr_info *h,
1466 struct CommandList *c)
1467 {
1468 unsigned long flags;
1469
1470 /* If controller lockup detected, fake a hardware error. */
1471 spin_lock_irqsave(&h->lock, flags);
1472 if (unlikely(h->lockup_detected)) {
1473 spin_unlock_irqrestore(&h->lock, flags);
1474 c->err_info->CommandStatus = CMD_HARDWARE_ERR;
1475 } else {
1476 spin_unlock_irqrestore(&h->lock, flags);
1477 hpsa_scsi_do_simple_cmd_core(h, c);
1478 }
1479 }
1480
1481 #define MAX_DRIVER_CMD_RETRIES 25
1482 static void hpsa_scsi_do_simple_cmd_with_retry(struct ctlr_info *h,
1483 struct CommandList *c, int data_direction)
1484 {
1485 int backoff_time = 10, retry_count = 0;
1486
1487 do {
1488 memset(c->err_info, 0, sizeof(*c->err_info));
1489 hpsa_scsi_do_simple_cmd_core(h, c);
1490 retry_count++;
1491 if (retry_count > 3) {
1492 msleep(backoff_time);
1493 if (backoff_time < 1000)
1494 backoff_time *= 2;
1495 }
1496 } while ((check_for_unit_attention(h, c) ||
1497 check_for_busy(h, c)) &&
1498 retry_count <= MAX_DRIVER_CMD_RETRIES);
1499 hpsa_pci_unmap(h->pdev, c, 1, data_direction);
1500 }
1501
1502 static void hpsa_scsi_interpret_error(struct CommandList *cp)
1503 {
1504 struct ErrorInfo *ei;
1505 struct device *d = &cp->h->pdev->dev;
1506
1507 ei = cp->err_info;
1508 switch (ei->CommandStatus) {
1509 case CMD_TARGET_STATUS:
1510 dev_warn(d, "cmd %p has completed with errors\n", cp);
1511 dev_warn(d, "cmd %p has SCSI Status = %x\n", cp,
1512 ei->ScsiStatus);
1513 if (ei->ScsiStatus == 0)
1514 dev_warn(d, "SCSI status is abnormally zero. "
1515 "(probably indicates selection timeout "
1516 "reported incorrectly due to a known "
1517 "firmware bug, circa July, 2001.)\n");
1518 break;
1519 case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
1520 dev_info(d, "UNDERRUN\n");
1521 break;
1522 case CMD_DATA_OVERRUN:
1523 dev_warn(d, "cp %p has completed with data overrun\n", cp);
1524 break;
1525 case CMD_INVALID: {
1526 /* controller unfortunately reports SCSI passthru's
1527 * to non-existent targets as invalid commands.
1528 */
1529 dev_warn(d, "cp %p is reported invalid (probably means "
1530 "target device no longer present)\n", cp);
1531 /* print_bytes((unsigned char *) cp, sizeof(*cp), 1, 0);
1532 print_cmd(cp); */
1533 }
1534 break;
1535 case CMD_PROTOCOL_ERR:
1536 dev_warn(d, "cp %p has protocol error \n", cp);
1537 break;
1538 case CMD_HARDWARE_ERR:
1539 /* cmd->result = DID_ERROR << 16; */
1540 dev_warn(d, "cp %p had hardware error\n", cp);
1541 break;
1542 case CMD_CONNECTION_LOST:
1543 dev_warn(d, "cp %p had connection lost\n", cp);
1544 break;
1545 case CMD_ABORTED:
1546 dev_warn(d, "cp %p was aborted\n", cp);
1547 break;
1548 case CMD_ABORT_FAILED:
1549 dev_warn(d, "cp %p reports abort failed\n", cp);
1550 break;
1551 case CMD_UNSOLICITED_ABORT:
1552 dev_warn(d, "cp %p aborted due to an unsolicited abort\n", cp);
1553 break;
1554 case CMD_TIMEOUT:
1555 dev_warn(d, "cp %p timed out\n", cp);
1556 break;
1557 case CMD_UNABORTABLE:
1558 dev_warn(d, "Command unabortable\n");
1559 break;
1560 default:
1561 dev_warn(d, "cp %p returned unknown status %x\n", cp,
1562 ei->CommandStatus);
1563 }
1564 }
1565
1566 static int hpsa_scsi_do_inquiry(struct ctlr_info *h, unsigned char *scsi3addr,
1567 unsigned char page, unsigned char *buf,
1568 unsigned char bufsize)
1569 {
1570 int rc = IO_OK;
1571 struct CommandList *c;
1572 struct ErrorInfo *ei;
1573
1574 c = cmd_special_alloc(h);
1575
1576 if (c == NULL) { /* trouble... */
1577 dev_warn(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
1578 return -ENOMEM;
1579 }
1580
1581 if (fill_cmd(c, HPSA_INQUIRY, h, buf, bufsize,
1582 page, scsi3addr, TYPE_CMD)) {
1583 rc = -1;
1584 goto out;
1585 }
1586 hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE);
1587 ei = c->err_info;
1588 if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
1589 hpsa_scsi_interpret_error(c);
1590 rc = -1;
1591 }
1592 out:
1593 cmd_special_free(h, c);
1594 return rc;
1595 }
1596
1597 static int hpsa_send_reset(struct ctlr_info *h, unsigned char *scsi3addr)
1598 {
1599 int rc = IO_OK;
1600 struct CommandList *c;
1601 struct ErrorInfo *ei;
1602
1603 c = cmd_special_alloc(h);
1604
1605 if (c == NULL) { /* trouble... */
1606 dev_warn(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
1607 return -ENOMEM;
1608 }
1609
1610 /* fill_cmd can't fail here, no data buffer to map. */
1611 (void) fill_cmd(c, HPSA_DEVICE_RESET_MSG, h,
1612 NULL, 0, 0, scsi3addr, TYPE_MSG);
1613 hpsa_scsi_do_simple_cmd_core(h, c);
1614 /* no unmap needed here because no data xfer. */
1615
1616 ei = c->err_info;
1617 if (ei->CommandStatus != 0) {
1618 hpsa_scsi_interpret_error(c);
1619 rc = -1;
1620 }
1621 cmd_special_free(h, c);
1622 return rc;
1623 }
1624
1625 static void hpsa_get_raid_level(struct ctlr_info *h,
1626 unsigned char *scsi3addr, unsigned char *raid_level)
1627 {
1628 int rc;
1629 unsigned char *buf;
1630
1631 *raid_level = RAID_UNKNOWN;
1632 buf = kzalloc(64, GFP_KERNEL);
1633 if (!buf)
1634 return;
1635 rc = hpsa_scsi_do_inquiry(h, scsi3addr, 0xC1, buf, 64);
1636 if (rc == 0)
1637 *raid_level = buf[8];
1638 if (*raid_level > RAID_UNKNOWN)
1639 *raid_level = RAID_UNKNOWN;
1640 kfree(buf);
1641 return;
1642 }
1643
1644 /* Get the device id from inquiry page 0x83 */
1645 static int hpsa_get_device_id(struct ctlr_info *h, unsigned char *scsi3addr,
1646 unsigned char *device_id, int buflen)
1647 {
1648 int rc;
1649 unsigned char *buf;
1650
1651 if (buflen > 16)
1652 buflen = 16;
1653 buf = kzalloc(64, GFP_KERNEL);
1654 if (!buf)
1655 return -1;
1656 rc = hpsa_scsi_do_inquiry(h, scsi3addr, 0x83, buf, 64);
1657 if (rc == 0)
1658 memcpy(device_id, &buf[8], buflen);
1659 kfree(buf);
1660 return rc != 0;
1661 }
1662
1663 static int hpsa_scsi_do_report_luns(struct ctlr_info *h, int logical,
1664 struct ReportLUNdata *buf, int bufsize,
1665 int extended_response)
1666 {
1667 int rc = IO_OK;
1668 struct CommandList *c;
1669 unsigned char scsi3addr[8];
1670 struct ErrorInfo *ei;
1671
1672 c = cmd_special_alloc(h);
1673 if (c == NULL) { /* trouble... */
1674 dev_err(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
1675 return -1;
1676 }
1677 /* address the controller */
1678 memset(scsi3addr, 0, sizeof(scsi3addr));
1679 if (fill_cmd(c, logical ? HPSA_REPORT_LOG : HPSA_REPORT_PHYS, h,
1680 buf, bufsize, 0, scsi3addr, TYPE_CMD)) {
1681 rc = -1;
1682 goto out;
1683 }
1684 if (extended_response)
1685 c->Request.CDB[1] = extended_response;
1686 hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE);
1687 ei = c->err_info;
1688 if (ei->CommandStatus != 0 &&
1689 ei->CommandStatus != CMD_DATA_UNDERRUN) {
1690 hpsa_scsi_interpret_error(c);
1691 rc = -1;
1692 }
1693 out:
1694 cmd_special_free(h, c);
1695 return rc;
1696 }
1697
1698 static inline int hpsa_scsi_do_report_phys_luns(struct ctlr_info *h,
1699 struct ReportLUNdata *buf,
1700 int bufsize, int extended_response)
1701 {
1702 return hpsa_scsi_do_report_luns(h, 0, buf, bufsize, extended_response);
1703 }
1704
1705 static inline int hpsa_scsi_do_report_log_luns(struct ctlr_info *h,
1706 struct ReportLUNdata *buf, int bufsize)
1707 {
1708 return hpsa_scsi_do_report_luns(h, 1, buf, bufsize, 0);
1709 }
1710
1711 static inline void hpsa_set_bus_target_lun(struct hpsa_scsi_dev_t *device,
1712 int bus, int target, int lun)
1713 {
1714 device->bus = bus;
1715 device->target = target;
1716 device->lun = lun;
1717 }
1718
1719 static int hpsa_update_device_info(struct ctlr_info *h,
1720 unsigned char scsi3addr[], struct hpsa_scsi_dev_t *this_device,
1721 unsigned char *is_OBDR_device)
1722 {
1723
1724 #define OBDR_SIG_OFFSET 43
1725 #define OBDR_TAPE_SIG "$DR-10"
1726 #define OBDR_SIG_LEN (sizeof(OBDR_TAPE_SIG) - 1)
1727 #define OBDR_TAPE_INQ_SIZE (OBDR_SIG_OFFSET + OBDR_SIG_LEN)
1728
1729 unsigned char *inq_buff;
1730 unsigned char *obdr_sig;
1731
1732 inq_buff = kzalloc(OBDR_TAPE_INQ_SIZE, GFP_KERNEL);
1733 if (!inq_buff)
1734 goto bail_out;
1735
1736 /* Do an inquiry to the device to see what it is. */
1737 if (hpsa_scsi_do_inquiry(h, scsi3addr, 0, inq_buff,
1738 (unsigned char) OBDR_TAPE_INQ_SIZE) != 0) {
1739 /* Inquiry failed (msg printed already) */
1740 dev_err(&h->pdev->dev,
1741 "hpsa_update_device_info: inquiry failed\n");
1742 goto bail_out;
1743 }
1744
1745 this_device->devtype = (inq_buff[0] & 0x1f);
1746 memcpy(this_device->scsi3addr, scsi3addr, 8);
1747 memcpy(this_device->vendor, &inq_buff[8],
1748 sizeof(this_device->vendor));
1749 memcpy(this_device->model, &inq_buff[16],
1750 sizeof(this_device->model));
1751 memset(this_device->device_id, 0,
1752 sizeof(this_device->device_id));
1753 hpsa_get_device_id(h, scsi3addr, this_device->device_id,
1754 sizeof(this_device->device_id));
1755
1756 if (this_device->devtype == TYPE_DISK &&
1757 is_logical_dev_addr_mode(scsi3addr))
1758 hpsa_get_raid_level(h, scsi3addr, &this_device->raid_level);
1759 else
1760 this_device->raid_level = RAID_UNKNOWN;
1761
1762 if (is_OBDR_device) {
1763 /* See if this is a One-Button-Disaster-Recovery device
1764 * by looking for "$DR-10" at offset 43 in inquiry data.
1765 */
1766 obdr_sig = &inq_buff[OBDR_SIG_OFFSET];
1767 *is_OBDR_device = (this_device->devtype == TYPE_ROM &&
1768 strncmp(obdr_sig, OBDR_TAPE_SIG,
1769 OBDR_SIG_LEN) == 0);
1770 }
1771
1772 kfree(inq_buff);
1773 return 0;
1774
1775 bail_out:
1776 kfree(inq_buff);
1777 return 1;
1778 }
1779
1780 static unsigned char *ext_target_model[] = {
1781 "MSA2012",
1782 "MSA2024",
1783 "MSA2312",
1784 "MSA2324",
1785 "P2000 G3 SAS",
1786 NULL,
1787 };
1788
1789 static int is_ext_target(struct ctlr_info *h, struct hpsa_scsi_dev_t *device)
1790 {
1791 int i;
1792
1793 for (i = 0; ext_target_model[i]; i++)
1794 if (strncmp(device->model, ext_target_model[i],
1795 strlen(ext_target_model[i])) == 0)
1796 return 1;
1797 return 0;
1798 }
1799
1800 /* Helper function to assign bus, target, lun mapping of devices.
1801 * Puts non-external target logical volumes on bus 0, external target logical
1802 * volumes on bus 1, physical devices on bus 2. and the hba on bus 3.
1803 * Logical drive target and lun are assigned at this time, but
1804 * physical device lun and target assignment are deferred (assigned
1805 * in hpsa_find_target_lun, called by hpsa_scsi_add_entry.)
1806 */
1807 static void figure_bus_target_lun(struct ctlr_info *h,
1808 u8 *lunaddrbytes, struct hpsa_scsi_dev_t *device)
1809 {
1810 u32 lunid = le32_to_cpu(*((__le32 *) lunaddrbytes));
1811
1812 if (!is_logical_dev_addr_mode(lunaddrbytes)) {
1813 /* physical device, target and lun filled in later */
1814 if (is_hba_lunid(lunaddrbytes))
1815 hpsa_set_bus_target_lun(device, 3, 0, lunid & 0x3fff);
1816 else
1817 /* defer target, lun assignment for physical devices */
1818 hpsa_set_bus_target_lun(device, 2, -1, -1);
1819 return;
1820 }
1821 /* It's a logical device */
1822 if (is_ext_target(h, device)) {
1823 /* external target way, put logicals on bus 1
1824 * and match target/lun numbers box
1825 * reports, other smart array, bus 0, target 0, match lunid
1826 */
1827 hpsa_set_bus_target_lun(device,
1828 1, (lunid >> 16) & 0x3fff, lunid & 0x00ff);
1829 return;
1830 }
1831 hpsa_set_bus_target_lun(device, 0, 0, lunid & 0x3fff);
1832 }
1833
1834 /*
1835 * If there is no lun 0 on a target, linux won't find any devices.
1836 * For the external targets (arrays), we have to manually detect the enclosure
1837 * which is at lun zero, as CCISS_REPORT_PHYSICAL_LUNS doesn't report
1838 * it for some reason. *tmpdevice is the target we're adding,
1839 * this_device is a pointer into the current element of currentsd[]
1840 * that we're building up in update_scsi_devices(), below.
1841 * lunzerobits is a bitmap that tracks which targets already have a
1842 * lun 0 assigned.
1843 * Returns 1 if an enclosure was added, 0 if not.
1844 */
1845 static int add_ext_target_dev(struct ctlr_info *h,
1846 struct hpsa_scsi_dev_t *tmpdevice,
1847 struct hpsa_scsi_dev_t *this_device, u8 *lunaddrbytes,
1848 unsigned long lunzerobits[], int *n_ext_target_devs)
1849 {
1850 unsigned char scsi3addr[8];
1851
1852 if (test_bit(tmpdevice->target, lunzerobits))
1853 return 0; /* There is already a lun 0 on this target. */
1854
1855 if (!is_logical_dev_addr_mode(lunaddrbytes))
1856 return 0; /* It's the logical targets that may lack lun 0. */
1857
1858 if (!is_ext_target(h, tmpdevice))
1859 return 0; /* Only external target devices have this problem. */
1860
1861 if (tmpdevice->lun == 0) /* if lun is 0, then we have a lun 0. */
1862 return 0;
1863
1864 memset(scsi3addr, 0, 8);
1865 scsi3addr[3] = tmpdevice->target;
1866 if (is_hba_lunid(scsi3addr))
1867 return 0; /* Don't add the RAID controller here. */
1868
1869 if (is_scsi_rev_5(h))
1870 return 0; /* p1210m doesn't need to do this. */
1871
1872 if (*n_ext_target_devs >= MAX_EXT_TARGETS) {
1873 dev_warn(&h->pdev->dev, "Maximum number of external "
1874 "target devices exceeded. Check your hardware "
1875 "configuration.");
1876 return 0;
1877 }
1878
1879 if (hpsa_update_device_info(h, scsi3addr, this_device, NULL))
1880 return 0;
1881 (*n_ext_target_devs)++;
1882 hpsa_set_bus_target_lun(this_device,
1883 tmpdevice->bus, tmpdevice->target, 0);
1884 set_bit(tmpdevice->target, lunzerobits);
1885 return 1;
1886 }
1887
1888 /*
1889 * Do CISS_REPORT_PHYS and CISS_REPORT_LOG. Data is returned in physdev,
1890 * logdev. The number of luns in physdev and logdev are returned in
1891 * *nphysicals and *nlogicals, respectively.
1892 * Returns 0 on success, -1 otherwise.
1893 */
1894 static int hpsa_gather_lun_info(struct ctlr_info *h,
1895 int reportlunsize,
1896 struct ReportLUNdata *physdev, u32 *nphysicals,
1897 struct ReportLUNdata *logdev, u32 *nlogicals)
1898 {
1899 if (hpsa_scsi_do_report_phys_luns(h, physdev, reportlunsize, 0)) {
1900 dev_err(&h->pdev->dev, "report physical LUNs failed.\n");
1901 return -1;
1902 }
1903 *nphysicals = be32_to_cpu(*((__be32 *)physdev->LUNListLength)) / 8;
1904 if (*nphysicals > HPSA_MAX_PHYS_LUN) {
1905 dev_warn(&h->pdev->dev, "maximum physical LUNs (%d) exceeded."
1906 " %d LUNs ignored.\n", HPSA_MAX_PHYS_LUN,
1907 *nphysicals - HPSA_MAX_PHYS_LUN);
1908 *nphysicals = HPSA_MAX_PHYS_LUN;
1909 }
1910 if (hpsa_scsi_do_report_log_luns(h, logdev, reportlunsize)) {
1911 dev_err(&h->pdev->dev, "report logical LUNs failed.\n");
1912 return -1;
1913 }
1914 *nlogicals = be32_to_cpu(*((__be32 *) logdev->LUNListLength)) / 8;
1915 /* Reject Logicals in excess of our max capability. */
1916 if (*nlogicals > HPSA_MAX_LUN) {
1917 dev_warn(&h->pdev->dev,
1918 "maximum logical LUNs (%d) exceeded. "
1919 "%d LUNs ignored.\n", HPSA_MAX_LUN,
1920 *nlogicals - HPSA_MAX_LUN);
1921 *nlogicals = HPSA_MAX_LUN;
1922 }
1923 if (*nlogicals + *nphysicals > HPSA_MAX_PHYS_LUN) {
1924 dev_warn(&h->pdev->dev,
1925 "maximum logical + physical LUNs (%d) exceeded. "
1926 "%d LUNs ignored.\n", HPSA_MAX_PHYS_LUN,
1927 *nphysicals + *nlogicals - HPSA_MAX_PHYS_LUN);
1928 *nlogicals = HPSA_MAX_PHYS_LUN - *nphysicals;
1929 }
1930 return 0;
1931 }
1932
1933 u8 *figure_lunaddrbytes(struct ctlr_info *h, int raid_ctlr_position, int i,
1934 int nphysicals, int nlogicals, struct ReportLUNdata *physdev_list,
1935 struct ReportLUNdata *logdev_list)
1936 {
1937 /* Helper function, figure out where the LUN ID info is coming from
1938 * given index i, lists of physical and logical devices, where in
1939 * the list the raid controller is supposed to appear (first or last)
1940 */
1941
1942 int logicals_start = nphysicals + (raid_ctlr_position == 0);
1943 int last_device = nphysicals + nlogicals + (raid_ctlr_position == 0);
1944
1945 if (i == raid_ctlr_position)
1946 return RAID_CTLR_LUNID;
1947
1948 if (i < logicals_start)
1949 return &physdev_list->LUN[i - (raid_ctlr_position == 0)][0];
1950
1951 if (i < last_device)
1952 return &logdev_list->LUN[i - nphysicals -
1953 (raid_ctlr_position == 0)][0];
1954 BUG();
1955 return NULL;
1956 }
1957
1958 static void hpsa_update_scsi_devices(struct ctlr_info *h, int hostno)
1959 {
1960 /* the idea here is we could get notified
1961 * that some devices have changed, so we do a report
1962 * physical luns and report logical luns cmd, and adjust
1963 * our list of devices accordingly.
1964 *
1965 * The scsi3addr's of devices won't change so long as the
1966 * adapter is not reset. That means we can rescan and
1967 * tell which devices we already know about, vs. new
1968 * devices, vs. disappearing devices.
1969 */
1970 struct ReportLUNdata *physdev_list = NULL;
1971 struct ReportLUNdata *logdev_list = NULL;
1972 u32 nphysicals = 0;
1973 u32 nlogicals = 0;
1974 u32 ndev_allocated = 0;
1975 struct hpsa_scsi_dev_t **currentsd, *this_device, *tmpdevice;
1976 int ncurrent = 0;
1977 int reportlunsize = sizeof(*physdev_list) + HPSA_MAX_PHYS_LUN * 8;
1978 int i, n_ext_target_devs, ndevs_to_allocate;
1979 int raid_ctlr_position;
1980 DECLARE_BITMAP(lunzerobits, MAX_EXT_TARGETS);
1981
1982 currentsd = kzalloc(sizeof(*currentsd) * HPSA_MAX_DEVICES, GFP_KERNEL);
1983 physdev_list = kzalloc(reportlunsize, GFP_KERNEL);
1984 logdev_list = kzalloc(reportlunsize, GFP_KERNEL);
1985 tmpdevice = kzalloc(sizeof(*tmpdevice), GFP_KERNEL);
1986
1987 if (!currentsd || !physdev_list || !logdev_list || !tmpdevice) {
1988 dev_err(&h->pdev->dev, "out of memory\n");
1989 goto out;
1990 }
1991 memset(lunzerobits, 0, sizeof(lunzerobits));
1992
1993 if (hpsa_gather_lun_info(h, reportlunsize, physdev_list, &nphysicals,
1994 logdev_list, &nlogicals))
1995 goto out;
1996
1997 /* We might see up to the maximum number of logical and physical disks
1998 * plus external target devices, and a device for the local RAID
1999 * controller.
2000 */
2001 ndevs_to_allocate = nphysicals + nlogicals + MAX_EXT_TARGETS + 1;
2002
2003 /* Allocate the per device structures */
2004 for (i = 0; i < ndevs_to_allocate; i++) {
2005 if (i >= HPSA_MAX_DEVICES) {
2006 dev_warn(&h->pdev->dev, "maximum devices (%d) exceeded."
2007 " %d devices ignored.\n", HPSA_MAX_DEVICES,
2008 ndevs_to_allocate - HPSA_MAX_DEVICES);
2009 break;
2010 }
2011
2012 currentsd[i] = kzalloc(sizeof(*currentsd[i]), GFP_KERNEL);
2013 if (!currentsd[i]) {
2014 dev_warn(&h->pdev->dev, "out of memory at %s:%d\n",
2015 __FILE__, __LINE__);
2016 goto out;
2017 }
2018 ndev_allocated++;
2019 }
2020
2021 if (unlikely(is_scsi_rev_5(h)))
2022 raid_ctlr_position = 0;
2023 else
2024 raid_ctlr_position = nphysicals + nlogicals;
2025
2026 /* adjust our table of devices */
2027 n_ext_target_devs = 0;
2028 for (i = 0; i < nphysicals + nlogicals + 1; i++) {
2029 u8 *lunaddrbytes, is_OBDR = 0;
2030
2031 /* Figure out where the LUN ID info is coming from */
2032 lunaddrbytes = figure_lunaddrbytes(h, raid_ctlr_position,
2033 i, nphysicals, nlogicals, physdev_list, logdev_list);
2034 /* skip masked physical devices. */
2035 if (lunaddrbytes[3] & 0xC0 &&
2036 i < nphysicals + (raid_ctlr_position == 0))
2037 continue;
2038
2039 /* Get device type, vendor, model, device id */
2040 if (hpsa_update_device_info(h, lunaddrbytes, tmpdevice,
2041 &is_OBDR))
2042 continue; /* skip it if we can't talk to it. */
2043 figure_bus_target_lun(h, lunaddrbytes, tmpdevice);
2044 this_device = currentsd[ncurrent];
2045
2046 /*
2047 * For external target devices, we have to insert a LUN 0 which
2048 * doesn't show up in CCISS_REPORT_PHYSICAL data, but there
2049 * is nonetheless an enclosure device there. We have to
2050 * present that otherwise linux won't find anything if
2051 * there is no lun 0.
2052 */
2053 if (add_ext_target_dev(h, tmpdevice, this_device,
2054 lunaddrbytes, lunzerobits,
2055 &n_ext_target_devs)) {
2056 ncurrent++;
2057 this_device = currentsd[ncurrent];
2058 }
2059
2060 *this_device = *tmpdevice;
2061
2062 switch (this_device->devtype) {
2063 case TYPE_ROM:
2064 /* We don't *really* support actual CD-ROM devices,
2065 * just "One Button Disaster Recovery" tape drive
2066 * which temporarily pretends to be a CD-ROM drive.
2067 * So we check that the device is really an OBDR tape
2068 * device by checking for "$DR-10" in bytes 43-48 of
2069 * the inquiry data.
2070 */
2071 if (is_OBDR)
2072 ncurrent++;
2073 break;
2074 case TYPE_DISK:
2075 if (i < nphysicals)
2076 break;
2077 ncurrent++;
2078 break;
2079 case TYPE_TAPE:
2080 case TYPE_MEDIUM_CHANGER:
2081 ncurrent++;
2082 break;
2083 case TYPE_RAID:
2084 /* Only present the Smartarray HBA as a RAID controller.
2085 * If it's a RAID controller other than the HBA itself
2086 * (an external RAID controller, MSA500 or similar)
2087 * don't present it.
2088 */
2089 if (!is_hba_lunid(lunaddrbytes))
2090 break;
2091 ncurrent++;
2092 break;
2093 default:
2094 break;
2095 }
2096 if (ncurrent >= HPSA_MAX_DEVICES)
2097 break;
2098 }
2099 adjust_hpsa_scsi_table(h, hostno, currentsd, ncurrent);
2100 out:
2101 kfree(tmpdevice);
2102 for (i = 0; i < ndev_allocated; i++)
2103 kfree(currentsd[i]);
2104 kfree(currentsd);
2105 kfree(physdev_list);
2106 kfree(logdev_list);
2107 }
2108
2109 /* hpsa_scatter_gather takes a struct scsi_cmnd, (cmd), and does the pci
2110 * dma mapping and fills in the scatter gather entries of the
2111 * hpsa command, cp.
2112 */
2113 static int hpsa_scatter_gather(struct ctlr_info *h,
2114 struct CommandList *cp,
2115 struct scsi_cmnd *cmd)
2116 {
2117 unsigned int len;
2118 struct scatterlist *sg;
2119 u64 addr64;
2120 int use_sg, i, sg_index, chained;
2121 struct SGDescriptor *curr_sg;
2122
2123 BUG_ON(scsi_sg_count(cmd) > h->maxsgentries);
2124
2125 use_sg = scsi_dma_map(cmd);
2126 if (use_sg < 0)
2127 return use_sg;
2128
2129 if (!use_sg)
2130 goto sglist_finished;
2131
2132 curr_sg = cp->SG;
2133 chained = 0;
2134 sg_index = 0;
2135 scsi_for_each_sg(cmd, sg, use_sg, i) {
2136 if (i == h->max_cmd_sg_entries - 1 &&
2137 use_sg > h->max_cmd_sg_entries) {
2138 chained = 1;
2139 curr_sg = h->cmd_sg_list[cp->cmdindex];
2140 sg_index = 0;
2141 }
2142 addr64 = (u64) sg_dma_address(sg);
2143 len = sg_dma_len(sg);
2144 curr_sg->Addr.lower = (u32) (addr64 & 0x0FFFFFFFFULL);
2145 curr_sg->Addr.upper = (u32) ((addr64 >> 32) & 0x0FFFFFFFFULL);
2146 curr_sg->Len = len;
2147 curr_sg->Ext = 0; /* we are not chaining */
2148 curr_sg++;
2149 }
2150
2151 if (use_sg + chained > h->maxSG)
2152 h->maxSG = use_sg + chained;
2153
2154 if (chained) {
2155 cp->Header.SGList = h->max_cmd_sg_entries;
2156 cp->Header.SGTotal = (u16) (use_sg + 1);
2157 if (hpsa_map_sg_chain_block(h, cp)) {
2158 scsi_dma_unmap(cmd);
2159 return -1;
2160 }
2161 return 0;
2162 }
2163
2164 sglist_finished:
2165
2166 cp->Header.SGList = (u8) use_sg; /* no. SGs contig in this cmd */
2167 cp->Header.SGTotal = (u16) use_sg; /* total sgs in this cmd list */
2168 return 0;
2169 }
2170
2171
2172 static int hpsa_scsi_queue_command_lck(struct scsi_cmnd *cmd,
2173 void (*done)(struct scsi_cmnd *))
2174 {
2175 struct ctlr_info *h;
2176 struct hpsa_scsi_dev_t *dev;
2177 unsigned char scsi3addr[8];
2178 struct CommandList *c;
2179 unsigned long flags;
2180
2181 /* Get the ptr to our adapter structure out of cmd->host. */
2182 h = sdev_to_hba(cmd->device);
2183 dev = cmd->device->hostdata;
2184 if (!dev) {
2185 cmd->result = DID_NO_CONNECT << 16;
2186 done(cmd);
2187 return 0;
2188 }
2189 memcpy(scsi3addr, dev->scsi3addr, sizeof(scsi3addr));
2190
2191 spin_lock_irqsave(&h->lock, flags);
2192 if (unlikely(h->lockup_detected)) {
2193 spin_unlock_irqrestore(&h->lock, flags);
2194 cmd->result = DID_ERROR << 16;
2195 done(cmd);
2196 return 0;
2197 }
2198 spin_unlock_irqrestore(&h->lock, flags);
2199 c = cmd_alloc(h);
2200 if (c == NULL) { /* trouble... */
2201 dev_err(&h->pdev->dev, "cmd_alloc returned NULL!\n");
2202 return SCSI_MLQUEUE_HOST_BUSY;
2203 }
2204
2205 /* Fill in the command list header */
2206
2207 cmd->scsi_done = done; /* save this for use by completion code */
2208
2209 /* save c in case we have to abort it */
2210 cmd->host_scribble = (unsigned char *) c;
2211
2212 c->cmd_type = CMD_SCSI;
2213 c->scsi_cmd = cmd;
2214 c->Header.ReplyQueue = 0; /* unused in simple mode */
2215 memcpy(&c->Header.LUN.LunAddrBytes[0], &scsi3addr[0], 8);
2216 c->Header.Tag.lower = (c->cmdindex << DIRECT_LOOKUP_SHIFT);
2217 c->Header.Tag.lower |= DIRECT_LOOKUP_BIT;
2218
2219 /* Fill in the request block... */
2220
2221 c->Request.Timeout = 0;
2222 memset(c->Request.CDB, 0, sizeof(c->Request.CDB));
2223 BUG_ON(cmd->cmd_len > sizeof(c->Request.CDB));
2224 c->Request.CDBLen = cmd->cmd_len;
2225 memcpy(c->Request.CDB, cmd->cmnd, cmd->cmd_len);
2226 c->Request.Type.Type = TYPE_CMD;
2227 c->Request.Type.Attribute = ATTR_SIMPLE;
2228 switch (cmd->sc_data_direction) {
2229 case DMA_TO_DEVICE:
2230 c->Request.Type.Direction = XFER_WRITE;
2231 break;
2232 case DMA_FROM_DEVICE:
2233 c->Request.Type.Direction = XFER_READ;
2234 break;
2235 case DMA_NONE:
2236 c->Request.Type.Direction = XFER_NONE;
2237 break;
2238 case DMA_BIDIRECTIONAL:
2239 /* This can happen if a buggy application does a scsi passthru
2240 * and sets both inlen and outlen to non-zero. ( see
2241 * ../scsi/scsi_ioctl.c:scsi_ioctl_send_command() )
2242 */
2243
2244 c->Request.Type.Direction = XFER_RSVD;
2245 /* This is technically wrong, and hpsa controllers should
2246 * reject it with CMD_INVALID, which is the most correct
2247 * response, but non-fibre backends appear to let it
2248 * slide by, and give the same results as if this field
2249 * were set correctly. Either way is acceptable for
2250 * our purposes here.
2251 */
2252
2253 break;
2254
2255 default:
2256 dev_err(&h->pdev->dev, "unknown data direction: %d\n",
2257 cmd->sc_data_direction);
2258 BUG();
2259 break;
2260 }
2261
2262 if (hpsa_scatter_gather(h, c, cmd) < 0) { /* Fill SG list */
2263 cmd_free(h, c);
2264 return SCSI_MLQUEUE_HOST_BUSY;
2265 }
2266 enqueue_cmd_and_start_io(h, c);
2267 /* the cmd'll come back via intr handler in complete_scsi_command() */
2268 return 0;
2269 }
2270
2271 static DEF_SCSI_QCMD(hpsa_scsi_queue_command)
2272
2273 static void hpsa_scan_start(struct Scsi_Host *sh)
2274 {
2275 struct ctlr_info *h = shost_to_hba(sh);
2276 unsigned long flags;
2277
2278 /* wait until any scan already in progress is finished. */
2279 while (1) {
2280 spin_lock_irqsave(&h->scan_lock, flags);
2281 if (h->scan_finished)
2282 break;
2283 spin_unlock_irqrestore(&h->scan_lock, flags);
2284 wait_event(h->scan_wait_queue, h->scan_finished);
2285 /* Note: We don't need to worry about a race between this
2286 * thread and driver unload because the midlayer will
2287 * have incremented the reference count, so unload won't
2288 * happen if we're in here.
2289 */
2290 }
2291 h->scan_finished = 0; /* mark scan as in progress */
2292 spin_unlock_irqrestore(&h->scan_lock, flags);
2293
2294 hpsa_update_scsi_devices(h, h->scsi_host->host_no);
2295
2296 spin_lock_irqsave(&h->scan_lock, flags);
2297 h->scan_finished = 1; /* mark scan as finished. */
2298 wake_up_all(&h->scan_wait_queue);
2299 spin_unlock_irqrestore(&h->scan_lock, flags);
2300 }
2301
2302 static int hpsa_scan_finished(struct Scsi_Host *sh,
2303 unsigned long elapsed_time)
2304 {
2305 struct ctlr_info *h = shost_to_hba(sh);
2306 unsigned long flags;
2307 int finished;
2308
2309 spin_lock_irqsave(&h->scan_lock, flags);
2310 finished = h->scan_finished;
2311 spin_unlock_irqrestore(&h->scan_lock, flags);
2312 return finished;
2313 }
2314
2315 static int hpsa_change_queue_depth(struct scsi_device *sdev,
2316 int qdepth, int reason)
2317 {
2318 struct ctlr_info *h = sdev_to_hba(sdev);
2319
2320 if (reason != SCSI_QDEPTH_DEFAULT)
2321 return -ENOTSUPP;
2322
2323 if (qdepth < 1)
2324 qdepth = 1;
2325 else
2326 if (qdepth > h->nr_cmds)
2327 qdepth = h->nr_cmds;
2328 scsi_adjust_queue_depth(sdev, scsi_get_tag_type(sdev), qdepth);
2329 return sdev->queue_depth;
2330 }
2331
2332 static void hpsa_unregister_scsi(struct ctlr_info *h)
2333 {
2334 /* we are being forcibly unloaded, and may not refuse. */
2335 scsi_remove_host(h->scsi_host);
2336 scsi_host_put(h->scsi_host);
2337 h->scsi_host = NULL;
2338 }
2339
2340 static int hpsa_register_scsi(struct ctlr_info *h)
2341 {
2342 struct Scsi_Host *sh;
2343 int error;
2344
2345 sh = scsi_host_alloc(&hpsa_driver_template, sizeof(h));
2346 if (sh == NULL)
2347 goto fail;
2348
2349 sh->io_port = 0;
2350 sh->n_io_port = 0;
2351 sh->this_id = -1;
2352 sh->max_channel = 3;
2353 sh->max_cmd_len = MAX_COMMAND_SIZE;
2354 sh->max_lun = HPSA_MAX_LUN;
2355 sh->max_id = HPSA_MAX_LUN;
2356 sh->can_queue = h->nr_cmds;
2357 sh->cmd_per_lun = h->nr_cmds;
2358 sh->sg_tablesize = h->maxsgentries;
2359 h->scsi_host = sh;
2360 sh->hostdata[0] = (unsigned long) h;
2361 sh->irq = h->intr[h->intr_mode];
2362 sh->unique_id = sh->irq;
2363 error = scsi_add_host(sh, &h->pdev->dev);
2364 if (error)
2365 goto fail_host_put;
2366 scsi_scan_host(sh);
2367 return 0;
2368
2369 fail_host_put:
2370 dev_err(&h->pdev->dev, "%s: scsi_add_host"
2371 " failed for controller %d\n", __func__, h->ctlr);
2372 scsi_host_put(sh);
2373 return error;
2374 fail:
2375 dev_err(&h->pdev->dev, "%s: scsi_host_alloc"
2376 " failed for controller %d\n", __func__, h->ctlr);
2377 return -ENOMEM;
2378 }
2379
2380 static int wait_for_device_to_become_ready(struct ctlr_info *h,
2381 unsigned char lunaddr[])
2382 {
2383 int rc = 0;
2384 int count = 0;
2385 int waittime = 1; /* seconds */
2386 struct CommandList *c;
2387
2388 c = cmd_special_alloc(h);
2389 if (!c) {
2390 dev_warn(&h->pdev->dev, "out of memory in "
2391 "wait_for_device_to_become_ready.\n");
2392 return IO_ERROR;
2393 }
2394
2395 /* Send test unit ready until device ready, or give up. */
2396 while (count < HPSA_TUR_RETRY_LIMIT) {
2397
2398 /* Wait for a bit. do this first, because if we send
2399 * the TUR right away, the reset will just abort it.
2400 */
2401 msleep(1000 * waittime);
2402 count++;
2403
2404 /* Increase wait time with each try, up to a point. */
2405 if (waittime < HPSA_MAX_WAIT_INTERVAL_SECS)
2406 waittime = waittime * 2;
2407
2408 /* Send the Test Unit Ready, fill_cmd can't fail, no mapping */
2409 (void) fill_cmd(c, TEST_UNIT_READY, h,
2410 NULL, 0, 0, lunaddr, TYPE_CMD);
2411 hpsa_scsi_do_simple_cmd_core(h, c);
2412 /* no unmap needed here because no data xfer. */
2413
2414 if (c->err_info->CommandStatus == CMD_SUCCESS)
2415 break;
2416
2417 if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
2418 c->err_info->ScsiStatus == SAM_STAT_CHECK_CONDITION &&
2419 (c->err_info->SenseInfo[2] == NO_SENSE ||
2420 c->err_info->SenseInfo[2] == UNIT_ATTENTION))
2421 break;
2422
2423 dev_warn(&h->pdev->dev, "waiting %d secs "
2424 "for device to become ready.\n", waittime);
2425 rc = 1; /* device not ready. */
2426 }
2427
2428 if (rc)
2429 dev_warn(&h->pdev->dev, "giving up on device.\n");
2430 else
2431 dev_warn(&h->pdev->dev, "device is ready.\n");
2432
2433 cmd_special_free(h, c);
2434 return rc;
2435 }
2436
2437 /* Need at least one of these error handlers to keep ../scsi/hosts.c from
2438 * complaining. Doing a host- or bus-reset can't do anything good here.
2439 */
2440 static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd)
2441 {
2442 int rc;
2443 struct ctlr_info *h;
2444 struct hpsa_scsi_dev_t *dev;
2445
2446 /* find the controller to which the command to be aborted was sent */
2447 h = sdev_to_hba(scsicmd->device);
2448 if (h == NULL) /* paranoia */
2449 return FAILED;
2450 dev = scsicmd->device->hostdata;
2451 if (!dev) {
2452 dev_err(&h->pdev->dev, "hpsa_eh_device_reset_handler: "
2453 "device lookup failed.\n");
2454 return FAILED;
2455 }
2456 dev_warn(&h->pdev->dev, "resetting device %d:%d:%d:%d\n",
2457 h->scsi_host->host_no, dev->bus, dev->target, dev->lun);
2458 /* send a reset to the SCSI LUN which the command was sent to */
2459 rc = hpsa_send_reset(h, dev->scsi3addr);
2460 if (rc == 0 && wait_for_device_to_become_ready(h, dev->scsi3addr) == 0)
2461 return SUCCESS;
2462
2463 dev_warn(&h->pdev->dev, "resetting device failed.\n");
2464 return FAILED;
2465 }
2466
2467 static void swizzle_abort_tag(u8 *tag)
2468 {
2469 u8 original_tag[8];
2470
2471 memcpy(original_tag, tag, 8);
2472 tag[0] = original_tag[3];
2473 tag[1] = original_tag[2];
2474 tag[2] = original_tag[1];
2475 tag[3] = original_tag[0];
2476 tag[4] = original_tag[7];
2477 tag[5] = original_tag[6];
2478 tag[6] = original_tag[5];
2479 tag[7] = original_tag[4];
2480 }
2481
2482 static int hpsa_send_abort(struct ctlr_info *h, unsigned char *scsi3addr,
2483 struct CommandList *abort, int swizzle)
2484 {
2485 int rc = IO_OK;
2486 struct CommandList *c;
2487 struct ErrorInfo *ei;
2488
2489 c = cmd_special_alloc(h);
2490 if (c == NULL) { /* trouble... */
2491 dev_warn(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
2492 return -ENOMEM;
2493 }
2494
2495 /* fill_cmd can't fail here, no buffer to map */
2496 (void) fill_cmd(c, HPSA_ABORT_MSG, h, abort,
2497 0, 0, scsi3addr, TYPE_MSG);
2498 if (swizzle)
2499 swizzle_abort_tag(&c->Request.CDB[4]);
2500 hpsa_scsi_do_simple_cmd_core(h, c);
2501 dev_dbg(&h->pdev->dev, "%s: Tag:0x%08x:%08x: do_simple_cmd_core completed.\n",
2502 __func__, abort->Header.Tag.upper, abort->Header.Tag.lower);
2503 /* no unmap needed here because no data xfer. */
2504
2505 ei = c->err_info;
2506 switch (ei->CommandStatus) {
2507 case CMD_SUCCESS:
2508 break;
2509 case CMD_UNABORTABLE: /* Very common, don't make noise. */
2510 rc = -1;
2511 break;
2512 default:
2513 dev_dbg(&h->pdev->dev, "%s: Tag:0x%08x:%08x: interpreting error.\n",
2514 __func__, abort->Header.Tag.upper,
2515 abort->Header.Tag.lower);
2516 hpsa_scsi_interpret_error(c);
2517 rc = -1;
2518 break;
2519 }
2520 cmd_special_free(h, c);
2521 dev_dbg(&h->pdev->dev, "%s: Tag:0x%08x:%08x: Finished.\n", __func__,
2522 abort->Header.Tag.upper, abort->Header.Tag.lower);
2523 return rc;
2524 }
2525
2526 /*
2527 * hpsa_find_cmd_in_queue
2528 *
2529 * Used to determine whether a command (find) is still present
2530 * in queue_head. Optionally excludes the last element of queue_head.
2531 *
2532 * This is used to avoid unnecessary aborts. Commands in h->reqQ have
2533 * not yet been submitted, and so can be aborted by the driver without
2534 * sending an abort to the hardware.
2535 *
2536 * Returns pointer to command if found in queue, NULL otherwise.
2537 */
2538 static struct CommandList *hpsa_find_cmd_in_queue(struct ctlr_info *h,
2539 struct scsi_cmnd *find, struct list_head *queue_head)
2540 {
2541 unsigned long flags;
2542 struct CommandList *c = NULL; /* ptr into cmpQ */
2543
2544 if (!find)
2545 return 0;
2546 spin_lock_irqsave(&h->lock, flags);
2547 list_for_each_entry(c, queue_head, list) {
2548 if (c->scsi_cmd == NULL) /* e.g.: passthru ioctl */
2549 continue;
2550 if (c->scsi_cmd == find) {
2551 spin_unlock_irqrestore(&h->lock, flags);
2552 return c;
2553 }
2554 }
2555 spin_unlock_irqrestore(&h->lock, flags);
2556 return NULL;
2557 }
2558
2559 static struct CommandList *hpsa_find_cmd_in_queue_by_tag(struct ctlr_info *h,
2560 u8 *tag, struct list_head *queue_head)
2561 {
2562 unsigned long flags;
2563 struct CommandList *c;
2564
2565 spin_lock_irqsave(&h->lock, flags);
2566 list_for_each_entry(c, queue_head, list) {
2567 if (memcmp(&c->Header.Tag, tag, 8) != 0)
2568 continue;
2569 spin_unlock_irqrestore(&h->lock, flags);
2570 return c;
2571 }
2572 spin_unlock_irqrestore(&h->lock, flags);
2573 return NULL;
2574 }
2575
2576 /* Some Smart Arrays need the abort tag swizzled, and some don't. It's hard to
2577 * tell which kind we're dealing with, so we send the abort both ways. There
2578 * shouldn't be any collisions between swizzled and unswizzled tags due to the
2579 * way we construct our tags but we check anyway in case the assumptions which
2580 * make this true someday become false.
2581 */
2582 static int hpsa_send_abort_both_ways(struct ctlr_info *h,
2583 unsigned char *scsi3addr, struct CommandList *abort)
2584 {
2585 u8 swizzled_tag[8];
2586 struct CommandList *c;
2587 int rc = 0, rc2 = 0;
2588
2589 /* we do not expect to find the swizzled tag in our queue, but
2590 * check anyway just to be sure the assumptions which make this
2591 * the case haven't become wrong.
2592 */
2593 memcpy(swizzled_tag, &abort->Request.CDB[4], 8);
2594 swizzle_abort_tag(swizzled_tag);
2595 c = hpsa_find_cmd_in_queue_by_tag(h, swizzled_tag, &h->cmpQ);
2596 if (c != NULL) {
2597 dev_warn(&h->pdev->dev, "Unexpectedly found byte-swapped tag in completion queue.\n");
2598 return hpsa_send_abort(h, scsi3addr, abort, 0);
2599 }
2600 rc = hpsa_send_abort(h, scsi3addr, abort, 0);
2601
2602 /* if the command is still in our queue, we can't conclude that it was
2603 * aborted (it might have just completed normally) but in any case
2604 * we don't need to try to abort it another way.
2605 */
2606 c = hpsa_find_cmd_in_queue(h, abort->scsi_cmd, &h->cmpQ);
2607 if (c)
2608 rc2 = hpsa_send_abort(h, scsi3addr, abort, 1);
2609 return rc && rc2;
2610 }
2611
2612 /* Send an abort for the specified command.
2613 * If the device and controller support it,
2614 * send a task abort request.
2615 */
2616 static int hpsa_eh_abort_handler(struct scsi_cmnd *sc)
2617 {
2618
2619 int i, rc;
2620 struct ctlr_info *h;
2621 struct hpsa_scsi_dev_t *dev;
2622 struct CommandList *abort; /* pointer to command to be aborted */
2623 struct CommandList *found;
2624 struct scsi_cmnd *as; /* ptr to scsi cmd inside aborted command. */
2625 char msg[256]; /* For debug messaging. */
2626 int ml = 0;
2627
2628 /* Find the controller of the command to be aborted */
2629 h = sdev_to_hba(sc->device);
2630 if (WARN(h == NULL,
2631 "ABORT REQUEST FAILED, Controller lookup failed.\n"))
2632 return FAILED;
2633
2634 /* Check that controller supports some kind of task abort */
2635 if (!(HPSATMF_PHYS_TASK_ABORT & h->TMFSupportFlags) &&
2636 !(HPSATMF_LOG_TASK_ABORT & h->TMFSupportFlags))
2637 return FAILED;
2638
2639 memset(msg, 0, sizeof(msg));
2640 ml += sprintf(msg+ml, "ABORT REQUEST on C%d:B%d:T%d:L%d ",
2641 h->scsi_host->host_no, sc->device->channel,
2642 sc->device->id, sc->device->lun);
2643
2644 /* Find the device of the command to be aborted */
2645 dev = sc->device->hostdata;
2646 if (!dev) {
2647 dev_err(&h->pdev->dev, "%s FAILED, Device lookup failed.\n",
2648 msg);
2649 return FAILED;
2650 }
2651
2652 /* Get SCSI command to be aborted */
2653 abort = (struct CommandList *) sc->host_scribble;
2654 if (abort == NULL) {
2655 dev_err(&h->pdev->dev, "%s FAILED, Command to abort is NULL.\n",
2656 msg);
2657 return FAILED;
2658 }
2659
2660 ml += sprintf(msg+ml, "Tag:0x%08x:%08x ",
2661 abort->Header.Tag.upper, abort->Header.Tag.lower);
2662 as = (struct scsi_cmnd *) abort->scsi_cmd;
2663 if (as != NULL)
2664 ml += sprintf(msg+ml, "Command:0x%x SN:0x%lx ",
2665 as->cmnd[0], as->serial_number);
2666 dev_dbg(&h->pdev->dev, "%s\n", msg);
2667 dev_warn(&h->pdev->dev, "Abort request on C%d:B%d:T%d:L%d\n",
2668 h->scsi_host->host_no, dev->bus, dev->target, dev->lun);
2669
2670 /* Search reqQ to See if command is queued but not submitted,
2671 * if so, complete the command with aborted status and remove
2672 * it from the reqQ.
2673 */
2674 found = hpsa_find_cmd_in_queue(h, sc, &h->reqQ);
2675 if (found) {
2676 found->err_info->CommandStatus = CMD_ABORTED;
2677 finish_cmd(found);
2678 dev_info(&h->pdev->dev, "%s Request SUCCEEDED (driver queue).\n",
2679 msg);
2680 return SUCCESS;
2681 }
2682
2683 /* not in reqQ, if also not in cmpQ, must have already completed */
2684 found = hpsa_find_cmd_in_queue(h, sc, &h->cmpQ);
2685 if (!found) {
2686 dev_dbg(&h->pdev->dev, "%s Request SUCCEEDED (not known to driver).\n",
2687 msg);
2688 return SUCCESS;
2689 }
2690
2691 /*
2692 * Command is in flight, or possibly already completed
2693 * by the firmware (but not to the scsi mid layer) but we can't
2694 * distinguish which. Send the abort down.
2695 */
2696 rc = hpsa_send_abort_both_ways(h, dev->scsi3addr, abort);
2697 if (rc != 0) {
2698 dev_dbg(&h->pdev->dev, "%s Request FAILED.\n", msg);
2699 dev_warn(&h->pdev->dev, "FAILED abort on device C%d:B%d:T%d:L%d\n",
2700 h->scsi_host->host_no,
2701 dev->bus, dev->target, dev->lun);
2702 return FAILED;
2703 }
2704 dev_info(&h->pdev->dev, "%s REQUEST SUCCEEDED.\n", msg);
2705
2706 /* If the abort(s) above completed and actually aborted the
2707 * command, then the command to be aborted should already be
2708 * completed. If not, wait around a bit more to see if they
2709 * manage to complete normally.
2710 */
2711 #define ABORT_COMPLETE_WAIT_SECS 30
2712 for (i = 0; i < ABORT_COMPLETE_WAIT_SECS * 10; i++) {
2713 found = hpsa_find_cmd_in_queue(h, sc, &h->cmpQ);
2714 if (!found)
2715 return SUCCESS;
2716 msleep(100);
2717 }
2718 dev_warn(&h->pdev->dev, "%s FAILED. Aborted command has not completed after %d seconds.\n",
2719 msg, ABORT_COMPLETE_WAIT_SECS);
2720 return FAILED;
2721 }
2722
2723
2724 /*
2725 * For operations that cannot sleep, a command block is allocated at init,
2726 * and managed by cmd_alloc() and cmd_free() using a simple bitmap to track
2727 * which ones are free or in use. Lock must be held when calling this.
2728 * cmd_free() is the complement.
2729 */
2730 static struct CommandList *cmd_alloc(struct ctlr_info *h)
2731 {
2732 struct CommandList *c;
2733 int i;
2734 union u64bit temp64;
2735 dma_addr_t cmd_dma_handle, err_dma_handle;
2736 unsigned long flags;
2737
2738 spin_lock_irqsave(&h->lock, flags);
2739 do {
2740 i = find_first_zero_bit(h->cmd_pool_bits, h->nr_cmds);
2741 if (i == h->nr_cmds) {
2742 spin_unlock_irqrestore(&h->lock, flags);
2743 return NULL;
2744 }
2745 } while (test_and_set_bit
2746 (i & (BITS_PER_LONG - 1),
2747 h->cmd_pool_bits + (i / BITS_PER_LONG)) != 0);
2748 spin_unlock_irqrestore(&h->lock, flags);
2749
2750 c = h->cmd_pool + i;
2751 memset(c, 0, sizeof(*c));
2752 cmd_dma_handle = h->cmd_pool_dhandle
2753 + i * sizeof(*c);
2754 c->err_info = h->errinfo_pool + i;
2755 memset(c->err_info, 0, sizeof(*c->err_info));
2756 err_dma_handle = h->errinfo_pool_dhandle
2757 + i * sizeof(*c->err_info);
2758
2759 c->cmdindex = i;
2760
2761 INIT_LIST_HEAD(&c->list);
2762 c->busaddr = (u32) cmd_dma_handle;
2763 temp64.val = (u64) err_dma_handle;
2764 c->ErrDesc.Addr.lower = temp64.val32.lower;
2765 c->ErrDesc.Addr.upper = temp64.val32.upper;
2766 c->ErrDesc.Len = sizeof(*c->err_info);
2767
2768 c->h = h;
2769 return c;
2770 }
2771
2772 /* For operations that can wait for kmalloc to possibly sleep,
2773 * this routine can be called. Lock need not be held to call
2774 * cmd_special_alloc. cmd_special_free() is the complement.
2775 */
2776 static struct CommandList *cmd_special_alloc(struct ctlr_info *h)
2777 {
2778 struct CommandList *c;
2779 union u64bit temp64;
2780 dma_addr_t cmd_dma_handle, err_dma_handle;
2781
2782 c = pci_alloc_consistent(h->pdev, sizeof(*c), &cmd_dma_handle);
2783 if (c == NULL)
2784 return NULL;
2785 memset(c, 0, sizeof(*c));
2786
2787 c->cmdindex = -1;
2788
2789 c->err_info = pci_alloc_consistent(h->pdev, sizeof(*c->err_info),
2790 &err_dma_handle);
2791
2792 if (c->err_info == NULL) {
2793 pci_free_consistent(h->pdev,
2794 sizeof(*c), c, cmd_dma_handle);
2795 return NULL;
2796 }
2797 memset(c->err_info, 0, sizeof(*c->err_info));
2798
2799 INIT_LIST_HEAD(&c->list);
2800 c->busaddr = (u32) cmd_dma_handle;
2801 temp64.val = (u64) err_dma_handle;
2802 c->ErrDesc.Addr.lower = temp64.val32.lower;
2803 c->ErrDesc.Addr.upper = temp64.val32.upper;
2804 c->ErrDesc.Len = sizeof(*c->err_info);
2805
2806 c->h = h;
2807 return c;
2808 }
2809
2810 static void cmd_free(struct ctlr_info *h, struct CommandList *c)
2811 {
2812 int i;
2813 unsigned long flags;
2814
2815 i = c - h->cmd_pool;
2816 spin_lock_irqsave(&h->lock, flags);
2817 clear_bit(i & (BITS_PER_LONG - 1),
2818 h->cmd_pool_bits + (i / BITS_PER_LONG));
2819 spin_unlock_irqrestore(&h->lock, flags);
2820 }
2821
2822 static void cmd_special_free(struct ctlr_info *h, struct CommandList *c)
2823 {
2824 union u64bit temp64;
2825
2826 temp64.val32.lower = c->ErrDesc.Addr.lower;
2827 temp64.val32.upper = c->ErrDesc.Addr.upper;
2828 pci_free_consistent(h->pdev, sizeof(*c->err_info),
2829 c->err_info, (dma_addr_t) temp64.val);
2830 pci_free_consistent(h->pdev, sizeof(*c),
2831 c, (dma_addr_t) (c->busaddr & DIRECT_LOOKUP_MASK));
2832 }
2833
2834 #ifdef CONFIG_COMPAT
2835
2836 static int hpsa_ioctl32_passthru(struct scsi_device *dev, int cmd, void *arg)
2837 {
2838 IOCTL32_Command_struct __user *arg32 =
2839 (IOCTL32_Command_struct __user *) arg;
2840 IOCTL_Command_struct arg64;
2841 IOCTL_Command_struct __user *p = compat_alloc_user_space(sizeof(arg64));
2842 int err;
2843 u32 cp;
2844
2845 memset(&arg64, 0, sizeof(arg64));
2846 err = 0;
2847 err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
2848 sizeof(arg64.LUN_info));
2849 err |= copy_from_user(&arg64.Request, &arg32->Request,
2850 sizeof(arg64.Request));
2851 err |= copy_from_user(&arg64.error_info, &arg32->error_info,
2852 sizeof(arg64.error_info));
2853 err |= get_user(arg64.buf_size, &arg32->buf_size);
2854 err |= get_user(cp, &arg32->buf);
2855 arg64.buf = compat_ptr(cp);
2856 err |= copy_to_user(p, &arg64, sizeof(arg64));
2857
2858 if (err)
2859 return -EFAULT;
2860
2861 err = hpsa_ioctl(dev, CCISS_PASSTHRU, (void *)p);
2862 if (err)
2863 return err;
2864 err |= copy_in_user(&arg32->error_info, &p->error_info,
2865 sizeof(arg32->error_info));
2866 if (err)
2867 return -EFAULT;
2868 return err;
2869 }
2870
2871 static int hpsa_ioctl32_big_passthru(struct scsi_device *dev,
2872 int cmd, void *arg)
2873 {
2874 BIG_IOCTL32_Command_struct __user *arg32 =
2875 (BIG_IOCTL32_Command_struct __user *) arg;
2876 BIG_IOCTL_Command_struct arg64;
2877 BIG_IOCTL_Command_struct __user *p =
2878 compat_alloc_user_space(sizeof(arg64));
2879 int err;
2880 u32 cp;
2881
2882 memset(&arg64, 0, sizeof(arg64));
2883 err = 0;
2884 err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
2885 sizeof(arg64.LUN_info));
2886 err |= copy_from_user(&arg64.Request, &arg32->Request,
2887 sizeof(arg64.Request));
2888 err |= copy_from_user(&arg64.error_info, &arg32->error_info,
2889 sizeof(arg64.error_info));
2890 err |= get_user(arg64.buf_size, &arg32->buf_size);
2891 err |= get_user(arg64.malloc_size, &arg32->malloc_size);
2892 err |= get_user(cp, &arg32->buf);
2893 arg64.buf = compat_ptr(cp);
2894 err |= copy_to_user(p, &arg64, sizeof(arg64));
2895
2896 if (err)
2897 return -EFAULT;
2898
2899 err = hpsa_ioctl(dev, CCISS_BIG_PASSTHRU, (void *)p);
2900 if (err)
2901 return err;
2902 err |= copy_in_user(&arg32->error_info, &p->error_info,
2903 sizeof(arg32->error_info));
2904 if (err)
2905 return -EFAULT;
2906 return err;
2907 }
2908
2909 static int hpsa_compat_ioctl(struct scsi_device *dev, int cmd, void *arg)
2910 {
2911 switch (cmd) {
2912 case CCISS_GETPCIINFO:
2913 case CCISS_GETINTINFO:
2914 case CCISS_SETINTINFO:
2915 case CCISS_GETNODENAME:
2916 case CCISS_SETNODENAME:
2917 case CCISS_GETHEARTBEAT:
2918 case CCISS_GETBUSTYPES:
2919 case CCISS_GETFIRMVER:
2920 case CCISS_GETDRIVVER:
2921 case CCISS_REVALIDVOLS:
2922 case CCISS_DEREGDISK:
2923 case CCISS_REGNEWDISK:
2924 case CCISS_REGNEWD:
2925 case CCISS_RESCANDISK:
2926 case CCISS_GETLUNINFO:
2927 return hpsa_ioctl(dev, cmd, arg);
2928
2929 case CCISS_PASSTHRU32:
2930 return hpsa_ioctl32_passthru(dev, cmd, arg);
2931 case CCISS_BIG_PASSTHRU32:
2932 return hpsa_ioctl32_big_passthru(dev, cmd, arg);
2933
2934 default:
2935 return -ENOIOCTLCMD;
2936 }
2937 }
2938 #endif
2939
2940 static int hpsa_getpciinfo_ioctl(struct ctlr_info *h, void __user *argp)
2941 {
2942 struct hpsa_pci_info pciinfo;
2943
2944 if (!argp)
2945 return -EINVAL;
2946 pciinfo.domain = pci_domain_nr(h->pdev->bus);
2947 pciinfo.bus = h->pdev->bus->number;
2948 pciinfo.dev_fn = h->pdev->devfn;
2949 pciinfo.board_id = h->board_id;
2950 if (copy_to_user(argp, &pciinfo, sizeof(pciinfo)))
2951 return -EFAULT;
2952 return 0;
2953 }
2954
2955 static int hpsa_getdrivver_ioctl(struct ctlr_info *h, void __user *argp)
2956 {
2957 DriverVer_type DriverVer;
2958 unsigned char vmaj, vmin, vsubmin;
2959 int rc;
2960
2961 rc = sscanf(HPSA_DRIVER_VERSION, "%hhu.%hhu.%hhu",
2962 &vmaj, &vmin, &vsubmin);
2963 if (rc != 3) {
2964 dev_info(&h->pdev->dev, "driver version string '%s' "
2965 "unrecognized.", HPSA_DRIVER_VERSION);
2966 vmaj = 0;
2967 vmin = 0;
2968 vsubmin = 0;
2969 }
2970 DriverVer = (vmaj << 16) | (vmin << 8) | vsubmin;
2971 if (!argp)
2972 return -EINVAL;
2973 if (copy_to_user(argp, &DriverVer, sizeof(DriverVer_type)))
2974 return -EFAULT;
2975 return 0;
2976 }
2977
2978 static int hpsa_passthru_ioctl(struct ctlr_info *h, void __user *argp)
2979 {
2980 IOCTL_Command_struct iocommand;
2981 struct CommandList *c;
2982 char *buff = NULL;
2983 union u64bit temp64;
2984 int rc = 0;
2985
2986 if (!argp)
2987 return -EINVAL;
2988 if (!capable(CAP_SYS_RAWIO))
2989 return -EPERM;
2990 if (copy_from_user(&iocommand, argp, sizeof(iocommand)))
2991 return -EFAULT;
2992 if ((iocommand.buf_size < 1) &&
2993 (iocommand.Request.Type.Direction != XFER_NONE)) {
2994 return -EINVAL;
2995 }
2996 if (iocommand.buf_size > 0) {
2997 buff = kmalloc(iocommand.buf_size, GFP_KERNEL);
2998 if (buff == NULL)
2999 return -EFAULT;
3000 if (iocommand.Request.Type.Direction == XFER_WRITE) {
3001 /* Copy the data into the buffer we created */
3002 if (copy_from_user(buff, iocommand.buf,
3003 iocommand.buf_size)) {
3004 rc = -EFAULT;
3005 goto out_kfree;
3006 }
3007 } else {
3008 memset(buff, 0, iocommand.buf_size);
3009 }
3010 }
3011 c = cmd_special_alloc(h);
3012 if (c == NULL) {
3013 rc = -ENOMEM;
3014 goto out_kfree;
3015 }
3016 /* Fill in the command type */
3017 c->cmd_type = CMD_IOCTL_PEND;
3018 /* Fill in Command Header */
3019 c->Header.ReplyQueue = 0; /* unused in simple mode */
3020 if (iocommand.buf_size > 0) { /* buffer to fill */
3021 c->Header.SGList = 1;
3022 c->Header.SGTotal = 1;
3023 } else { /* no buffers to fill */
3024 c->Header.SGList = 0;
3025 c->Header.SGTotal = 0;
3026 }
3027 memcpy(&c->Header.LUN, &iocommand.LUN_info, sizeof(c->Header.LUN));
3028 /* use the kernel address the cmd block for tag */
3029 c->Header.Tag.lower = c->busaddr;
3030
3031 /* Fill in Request block */
3032 memcpy(&c->Request, &iocommand.Request,
3033 sizeof(c->Request));
3034
3035 /* Fill in the scatter gather information */
3036 if (iocommand.buf_size > 0) {
3037 temp64.val = pci_map_single(h->pdev, buff,
3038 iocommand.buf_size, PCI_DMA_BIDIRECTIONAL);
3039 if (dma_mapping_error(&h->pdev->dev, temp64.val)) {
3040 c->SG[0].Addr.lower = 0;
3041 c->SG[0].Addr.upper = 0;
3042 c->SG[0].Len = 0;
3043 rc = -ENOMEM;
3044 goto out;
3045 }
3046 c->SG[0].Addr.lower = temp64.val32.lower;
3047 c->SG[0].Addr.upper = temp64.val32.upper;
3048 c->SG[0].Len = iocommand.buf_size;
3049 c->SG[0].Ext = 0; /* we are not chaining*/
3050 }
3051 hpsa_scsi_do_simple_cmd_core_if_no_lockup(h, c);
3052 if (iocommand.buf_size > 0)
3053 hpsa_pci_unmap(h->pdev, c, 1, PCI_DMA_BIDIRECTIONAL);
3054 check_ioctl_unit_attention(h, c);
3055
3056 /* Copy the error information out */
3057 memcpy(&iocommand.error_info, c->err_info,
3058 sizeof(iocommand.error_info));
3059 if (copy_to_user(argp, &iocommand, sizeof(iocommand))) {
3060 rc = -EFAULT;
3061 goto out;
3062 }
3063 if (iocommand.Request.Type.Direction == XFER_READ &&
3064 iocommand.buf_size > 0) {
3065 /* Copy the data out of the buffer we created */
3066 if (copy_to_user(iocommand.buf, buff, iocommand.buf_size)) {
3067 rc = -EFAULT;
3068 goto out;
3069 }
3070 }
3071 out:
3072 cmd_special_free(h, c);
3073 out_kfree:
3074 kfree(buff);
3075 return rc;
3076 }
3077
3078 static int hpsa_big_passthru_ioctl(struct ctlr_info *h, void __user *argp)
3079 {
3080 BIG_IOCTL_Command_struct *ioc;
3081 struct CommandList *c;
3082 unsigned char **buff = NULL;
3083 int *buff_size = NULL;
3084 union u64bit temp64;
3085 BYTE sg_used = 0;
3086 int status = 0;
3087 int i;
3088 u32 left;
3089 u32 sz;
3090 BYTE __user *data_ptr;
3091
3092 if (!argp)
3093 return -EINVAL;
3094 if (!capable(CAP_SYS_RAWIO))
3095 return -EPERM;
3096 ioc = (BIG_IOCTL_Command_struct *)
3097 kmalloc(sizeof(*ioc), GFP_KERNEL);
3098 if (!ioc) {
3099 status = -ENOMEM;
3100 goto cleanup1;
3101 }
3102 if (copy_from_user(ioc, argp, sizeof(*ioc))) {
3103 status = -EFAULT;
3104 goto cleanup1;
3105 }
3106 if ((ioc->buf_size < 1) &&
3107 (ioc->Request.Type.Direction != XFER_NONE)) {
3108 status = -EINVAL;
3109 goto cleanup1;
3110 }
3111 /* Check kmalloc limits using all SGs */
3112 if (ioc->malloc_size > MAX_KMALLOC_SIZE) {
3113 status = -EINVAL;
3114 goto cleanup1;
3115 }
3116 if (ioc->buf_size > ioc->malloc_size * SG_ENTRIES_IN_CMD) {
3117 status = -EINVAL;
3118 goto cleanup1;
3119 }
3120 buff = kzalloc(SG_ENTRIES_IN_CMD * sizeof(char *), GFP_KERNEL);
3121 if (!buff) {
3122 status = -ENOMEM;
3123 goto cleanup1;
3124 }
3125 buff_size = kmalloc(SG_ENTRIES_IN_CMD * sizeof(int), GFP_KERNEL);
3126 if (!buff_size) {
3127 status = -ENOMEM;
3128 goto cleanup1;
3129 }
3130 left = ioc->buf_size;
3131 data_ptr = ioc->buf;
3132 while (left) {
3133 sz = (left > ioc->malloc_size) ? ioc->malloc_size : left;
3134 buff_size[sg_used] = sz;
3135 buff[sg_used] = kmalloc(sz, GFP_KERNEL);
3136 if (buff[sg_used] == NULL) {
3137 status = -ENOMEM;
3138 goto cleanup1;
3139 }
3140 if (ioc->Request.Type.Direction == XFER_WRITE) {
3141 if (copy_from_user(buff[sg_used], data_ptr, sz)) {
3142 status = -ENOMEM;
3143 goto cleanup1;
3144 }
3145 } else
3146 memset(buff[sg_used], 0, sz);
3147 left -= sz;
3148 data_ptr += sz;
3149 sg_used++;
3150 }
3151 c = cmd_special_alloc(h);
3152 if (c == NULL) {
3153 status = -ENOMEM;
3154 goto cleanup1;
3155 }
3156 c->cmd_type = CMD_IOCTL_PEND;
3157 c->Header.ReplyQueue = 0;
3158 c->Header.SGList = c->Header.SGTotal = sg_used;
3159 memcpy(&c->Header.LUN, &ioc->LUN_info, sizeof(c->Header.LUN));
3160 c->Header.Tag.lower = c->busaddr;
3161 memcpy(&c->Request, &ioc->Request, sizeof(c->Request));
3162 if (ioc->buf_size > 0) {
3163 int i;
3164 for (i = 0; i < sg_used; i++) {
3165 temp64.val = pci_map_single(h->pdev, buff[i],
3166 buff_size[i], PCI_DMA_BIDIRECTIONAL);
3167 if (dma_mapping_error(&h->pdev->dev, temp64.val)) {
3168 c->SG[i].Addr.lower = 0;
3169 c->SG[i].Addr.upper = 0;
3170 c->SG[i].Len = 0;
3171 hpsa_pci_unmap(h->pdev, c, i,
3172 PCI_DMA_BIDIRECTIONAL);
3173 status = -ENOMEM;
3174 goto cleanup1;
3175 }
3176 c->SG[i].Addr.lower = temp64.val32.lower;
3177 c->SG[i].Addr.upper = temp64.val32.upper;
3178 c->SG[i].Len = buff_size[i];
3179 /* we are not chaining */
3180 c->SG[i].Ext = 0;
3181 }
3182 }
3183 hpsa_scsi_do_simple_cmd_core_if_no_lockup(h, c);
3184 if (sg_used)
3185 hpsa_pci_unmap(h->pdev, c, sg_used, PCI_DMA_BIDIRECTIONAL);
3186 check_ioctl_unit_attention(h, c);
3187 /* Copy the error information out */
3188 memcpy(&ioc->error_info, c->err_info, sizeof(ioc->error_info));
3189 if (copy_to_user(argp, ioc, sizeof(*ioc))) {
3190 cmd_special_free(h, c);
3191 status = -EFAULT;
3192 goto cleanup1;
3193 }
3194 if (ioc->Request.Type.Direction == XFER_READ && ioc->buf_size > 0) {
3195 /* Copy the data out of the buffer we created */
3196 BYTE __user *ptr = ioc->buf;
3197 for (i = 0; i < sg_used; i++) {
3198 if (copy_to_user(ptr, buff[i], buff_size[i])) {
3199 cmd_special_free(h, c);
3200 status = -EFAULT;
3201 goto cleanup1;
3202 }
3203 ptr += buff_size[i];
3204 }
3205 }
3206 cmd_special_free(h, c);
3207 status = 0;
3208 cleanup1:
3209 if (buff) {
3210 for (i = 0; i < sg_used; i++)
3211 kfree(buff[i]);
3212 kfree(buff);
3213 }
3214 kfree(buff_size);
3215 kfree(ioc);
3216 return status;
3217 }
3218
3219 static void check_ioctl_unit_attention(struct ctlr_info *h,
3220 struct CommandList *c)
3221 {
3222 if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
3223 c->err_info->ScsiStatus != SAM_STAT_CHECK_CONDITION)
3224 (void) check_for_unit_attention(h, c);
3225 }
3226 /*
3227 * ioctl
3228 */
3229 static int hpsa_ioctl(struct scsi_device *dev, int cmd, void *arg)
3230 {
3231 struct ctlr_info *h;
3232 void __user *argp = (void __user *)arg;
3233
3234 h = sdev_to_hba(dev);
3235
3236 switch (cmd) {
3237 case CCISS_DEREGDISK:
3238 case CCISS_REGNEWDISK:
3239 case CCISS_REGNEWD:
3240 hpsa_scan_start(h->scsi_host);
3241 return 0;
3242 case CCISS_GETPCIINFO:
3243 return hpsa_getpciinfo_ioctl(h, argp);
3244 case CCISS_GETDRIVVER:
3245 return hpsa_getdrivver_ioctl(h, argp);
3246 case CCISS_PASSTHRU:
3247 return hpsa_passthru_ioctl(h, argp);
3248 case CCISS_BIG_PASSTHRU:
3249 return hpsa_big_passthru_ioctl(h, argp);
3250 default:
3251 return -ENOTTY;
3252 }
3253 }
3254
3255 static int hpsa_send_host_reset(struct ctlr_info *h, unsigned char *scsi3addr,
3256 u8 reset_type)
3257 {
3258 struct CommandList *c;
3259
3260 c = cmd_alloc(h);
3261 if (!c)
3262 return -ENOMEM;
3263 /* fill_cmd can't fail here, no data buffer to map */
3264 (void) fill_cmd(c, HPSA_DEVICE_RESET_MSG, h, NULL, 0, 0,
3265 RAID_CTLR_LUNID, TYPE_MSG);
3266 c->Request.CDB[1] = reset_type; /* fill_cmd defaults to target reset */
3267 c->waiting = NULL;
3268 enqueue_cmd_and_start_io(h, c);
3269 /* Don't wait for completion, the reset won't complete. Don't free
3270 * the command either. This is the last command we will send before
3271 * re-initializing everything, so it doesn't matter and won't leak.
3272 */
3273 return 0;
3274 }
3275
3276 static int fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
3277 void *buff, size_t size, u8 page_code, unsigned char *scsi3addr,
3278 int cmd_type)
3279 {
3280 int pci_dir = XFER_NONE;
3281 struct CommandList *a; /* for commands to be aborted */
3282
3283 c->cmd_type = CMD_IOCTL_PEND;
3284 c->Header.ReplyQueue = 0;
3285 if (buff != NULL && size > 0) {
3286 c->Header.SGList = 1;
3287 c->Header.SGTotal = 1;
3288 } else {
3289 c->Header.SGList = 0;
3290 c->Header.SGTotal = 0;
3291 }
3292 c->Header.Tag.lower = c->busaddr;
3293 memcpy(c->Header.LUN.LunAddrBytes, scsi3addr, 8);
3294
3295 c->Request.Type.Type = cmd_type;
3296 if (cmd_type == TYPE_CMD) {
3297 switch (cmd) {
3298 case HPSA_INQUIRY:
3299 /* are we trying to read a vital product page */
3300 if (page_code != 0) {
3301 c->Request.CDB[1] = 0x01;
3302 c->Request.CDB[2] = page_code;
3303 }
3304 c->Request.CDBLen = 6;
3305 c->Request.Type.Attribute = ATTR_SIMPLE;
3306 c->Request.Type.Direction = XFER_READ;
3307 c->Request.Timeout = 0;
3308 c->Request.CDB[0] = HPSA_INQUIRY;
3309 c->Request.CDB[4] = size & 0xFF;
3310 break;
3311 case HPSA_REPORT_LOG:
3312 case HPSA_REPORT_PHYS:
3313 /* Talking to controller so It's a physical command
3314 mode = 00 target = 0. Nothing to write.
3315 */
3316 c->Request.CDBLen = 12;
3317 c->Request.Type.Attribute = ATTR_SIMPLE;
3318 c->Request.Type.Direction = XFER_READ;
3319 c->Request.Timeout = 0;
3320 c->Request.CDB[0] = cmd;
3321 c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */
3322 c->Request.CDB[7] = (size >> 16) & 0xFF;
3323 c->Request.CDB[8] = (size >> 8) & 0xFF;
3324 c->Request.CDB[9] = size & 0xFF;
3325 break;
3326 case HPSA_CACHE_FLUSH:
3327 c->Request.CDBLen = 12;
3328 c->Request.Type.Attribute = ATTR_SIMPLE;
3329 c->Request.Type.Direction = XFER_WRITE;
3330 c->Request.Timeout = 0;
3331 c->Request.CDB[0] = BMIC_WRITE;
3332 c->Request.CDB[6] = BMIC_CACHE_FLUSH;
3333 c->Request.CDB[7] = (size >> 8) & 0xFF;
3334 c->Request.CDB[8] = size & 0xFF;
3335 break;
3336 case TEST_UNIT_READY:
3337 c->Request.CDBLen = 6;
3338 c->Request.Type.Attribute = ATTR_SIMPLE;
3339 c->Request.Type.Direction = XFER_NONE;
3340 c->Request.Timeout = 0;
3341 break;
3342 default:
3343 dev_warn(&h->pdev->dev, "unknown command 0x%c\n", cmd);
3344 BUG();
3345 return -1;
3346 }
3347 } else if (cmd_type == TYPE_MSG) {
3348 switch (cmd) {
3349
3350 case HPSA_DEVICE_RESET_MSG:
3351 c->Request.CDBLen = 16;
3352 c->Request.Type.Type = 1; /* It is a MSG not a CMD */
3353 c->Request.Type.Attribute = ATTR_SIMPLE;
3354 c->Request.Type.Direction = XFER_NONE;
3355 c->Request.Timeout = 0; /* Don't time out */
3356 memset(&c->Request.CDB[0], 0, sizeof(c->Request.CDB));
3357 c->Request.CDB[0] = cmd;
3358 c->Request.CDB[1] = HPSA_RESET_TYPE_LUN;
3359 /* If bytes 4-7 are zero, it means reset the */
3360 /* LunID device */
3361 c->Request.CDB[4] = 0x00;
3362 c->Request.CDB[5] = 0x00;
3363 c->Request.CDB[6] = 0x00;
3364 c->Request.CDB[7] = 0x00;
3365 break;
3366 case HPSA_ABORT_MSG:
3367 a = buff; /* point to command to be aborted */
3368 dev_dbg(&h->pdev->dev, "Abort Tag:0x%08x:%08x using request Tag:0x%08x:%08x\n",
3369 a->Header.Tag.upper, a->Header.Tag.lower,
3370 c->Header.Tag.upper, c->Header.Tag.lower);
3371 c->Request.CDBLen = 16;
3372 c->Request.Type.Type = TYPE_MSG;
3373 c->Request.Type.Attribute = ATTR_SIMPLE;
3374 c->Request.Type.Direction = XFER_WRITE;
3375 c->Request.Timeout = 0; /* Don't time out */
3376 c->Request.CDB[0] = HPSA_TASK_MANAGEMENT;
3377 c->Request.CDB[1] = HPSA_TMF_ABORT_TASK;
3378 c->Request.CDB[2] = 0x00; /* reserved */
3379 c->Request.CDB[3] = 0x00; /* reserved */
3380 /* Tag to abort goes in CDB[4]-CDB[11] */
3381 c->Request.CDB[4] = a->Header.Tag.lower & 0xFF;
3382 c->Request.CDB[5] = (a->Header.Tag.lower >> 8) & 0xFF;
3383 c->Request.CDB[6] = (a->Header.Tag.lower >> 16) & 0xFF;
3384 c->Request.CDB[7] = (a->Header.Tag.lower >> 24) & 0xFF;
3385 c->Request.CDB[8] = a->Header.Tag.upper & 0xFF;
3386 c->Request.CDB[9] = (a->Header.Tag.upper >> 8) & 0xFF;
3387 c->Request.CDB[10] = (a->Header.Tag.upper >> 16) & 0xFF;
3388 c->Request.CDB[11] = (a->Header.Tag.upper >> 24) & 0xFF;
3389 c->Request.CDB[12] = 0x00; /* reserved */
3390 c->Request.CDB[13] = 0x00; /* reserved */
3391 c->Request.CDB[14] = 0x00; /* reserved */
3392 c->Request.CDB[15] = 0x00; /* reserved */
3393 break;
3394 default:
3395 dev_warn(&h->pdev->dev, "unknown message type %d\n",
3396 cmd);
3397 BUG();
3398 }
3399 } else {
3400 dev_warn(&h->pdev->dev, "unknown command type %d\n", cmd_type);
3401 BUG();
3402 }
3403
3404 switch (c->Request.Type.Direction) {
3405 case XFER_READ:
3406 pci_dir = PCI_DMA_FROMDEVICE;
3407 break;
3408 case XFER_WRITE:
3409 pci_dir = PCI_DMA_TODEVICE;
3410 break;
3411 case XFER_NONE:
3412 pci_dir = PCI_DMA_NONE;
3413 break;
3414 default:
3415 pci_dir = PCI_DMA_BIDIRECTIONAL;
3416 }
3417 if (hpsa_map_one(h->pdev, c, buff, size, pci_dir))
3418 return -1;
3419 return 0;
3420 }
3421
3422 /*
3423 * Map (physical) PCI mem into (virtual) kernel space
3424 */
3425 static void __iomem *remap_pci_mem(ulong base, ulong size)
3426 {
3427 ulong page_base = ((ulong) base) & PAGE_MASK;
3428 ulong page_offs = ((ulong) base) - page_base;
3429 void __iomem *page_remapped = ioremap_nocache(page_base,
3430 page_offs + size);
3431
3432 return page_remapped ? (page_remapped + page_offs) : NULL;
3433 }
3434
3435 /* Takes cmds off the submission queue and sends them to the hardware,
3436 * then puts them on the queue of cmds waiting for completion.
3437 */
3438 static void start_io(struct ctlr_info *h)
3439 {
3440 struct CommandList *c;
3441 unsigned long flags;
3442
3443 spin_lock_irqsave(&h->lock, flags);
3444 while (!list_empty(&h->reqQ)) {
3445 c = list_entry(h->reqQ.next, struct CommandList, list);
3446 /* can't do anything if fifo is full */
3447 if ((h->access.fifo_full(h))) {
3448 dev_warn(&h->pdev->dev, "fifo full\n");
3449 break;
3450 }
3451
3452 /* Get the first entry from the Request Q */
3453 removeQ(c);
3454 h->Qdepth--;
3455
3456 /* Put job onto the completed Q */
3457 addQ(&h->cmpQ, c);
3458
3459 /* Must increment commands_outstanding before unlocking
3460 * and submitting to avoid race checking for fifo full
3461 * condition.
3462 */
3463 h->commands_outstanding++;
3464 if (h->commands_outstanding > h->max_outstanding)
3465 h->max_outstanding = h->commands_outstanding;
3466
3467 /* Tell the controller execute command */
3468 spin_unlock_irqrestore(&h->lock, flags);
3469 h->access.submit_command(h, c);
3470 spin_lock_irqsave(&h->lock, flags);
3471 }
3472 spin_unlock_irqrestore(&h->lock, flags);
3473 }
3474
3475 static inline unsigned long get_next_completion(struct ctlr_info *h, u8 q)
3476 {
3477 return h->access.command_completed(h, q);
3478 }
3479
3480 static inline bool interrupt_pending(struct ctlr_info *h)
3481 {
3482 return h->access.intr_pending(h);
3483 }
3484
3485 static inline long interrupt_not_for_us(struct ctlr_info *h)
3486 {
3487 return (h->access.intr_pending(h) == 0) ||
3488 (h->interrupts_enabled == 0);
3489 }
3490
3491 static inline int bad_tag(struct ctlr_info *h, u32 tag_index,
3492 u32 raw_tag)
3493 {
3494 if (unlikely(tag_index >= h->nr_cmds)) {
3495 dev_warn(&h->pdev->dev, "bad tag 0x%08x ignored.\n", raw_tag);
3496 return 1;
3497 }
3498 return 0;
3499 }
3500
3501 static inline void finish_cmd(struct CommandList *c)
3502 {
3503 unsigned long flags;
3504
3505 spin_lock_irqsave(&c->h->lock, flags);
3506 removeQ(c);
3507 spin_unlock_irqrestore(&c->h->lock, flags);
3508 dial_up_lockup_detection_on_fw_flash_complete(c->h, c);
3509 if (likely(c->cmd_type == CMD_SCSI))
3510 complete_scsi_command(c);
3511 else if (c->cmd_type == CMD_IOCTL_PEND)
3512 complete(c->waiting);
3513 }
3514
3515 static inline u32 hpsa_tag_contains_index(u32 tag)
3516 {
3517 return tag & DIRECT_LOOKUP_BIT;
3518 }
3519
3520 static inline u32 hpsa_tag_to_index(u32 tag)
3521 {
3522 return tag >> DIRECT_LOOKUP_SHIFT;
3523 }
3524
3525
3526 static inline u32 hpsa_tag_discard_error_bits(struct ctlr_info *h, u32 tag)
3527 {
3528 #define HPSA_PERF_ERROR_BITS ((1 << DIRECT_LOOKUP_SHIFT) - 1)
3529 #define HPSA_SIMPLE_ERROR_BITS 0x03
3530 if (unlikely(!(h->transMethod & CFGTBL_Trans_Performant)))
3531 return tag & ~HPSA_SIMPLE_ERROR_BITS;
3532 return tag & ~HPSA_PERF_ERROR_BITS;
3533 }
3534
3535 /* process completion of an indexed ("direct lookup") command */
3536 static inline void process_indexed_cmd(struct ctlr_info *h,
3537 u32 raw_tag)
3538 {
3539 u32 tag_index;
3540 struct CommandList *c;
3541
3542 tag_index = hpsa_tag_to_index(raw_tag);
3543 if (!bad_tag(h, tag_index, raw_tag)) {
3544 c = h->cmd_pool + tag_index;
3545 finish_cmd(c);
3546 }
3547 }
3548
3549 /* process completion of a non-indexed command */
3550 static inline void process_nonindexed_cmd(struct ctlr_info *h,
3551 u32 raw_tag)
3552 {
3553 u32 tag;
3554 struct CommandList *c = NULL;
3555 unsigned long flags;
3556
3557 tag = hpsa_tag_discard_error_bits(h, raw_tag);
3558 spin_lock_irqsave(&h->lock, flags);
3559 list_for_each_entry(c, &h->cmpQ, list) {
3560 if ((c->busaddr & 0xFFFFFFE0) == (tag & 0xFFFFFFE0)) {
3561 spin_unlock_irqrestore(&h->lock, flags);
3562 finish_cmd(c);
3563 return;
3564 }
3565 }
3566 spin_unlock_irqrestore(&h->lock, flags);
3567 bad_tag(h, h->nr_cmds + 1, raw_tag);
3568 }
3569
3570 /* Some controllers, like p400, will give us one interrupt
3571 * after a soft reset, even if we turned interrupts off.
3572 * Only need to check for this in the hpsa_xxx_discard_completions
3573 * functions.
3574 */
3575 static int ignore_bogus_interrupt(struct ctlr_info *h)
3576 {
3577 if (likely(!reset_devices))
3578 return 0;
3579
3580 if (likely(h->interrupts_enabled))
3581 return 0;
3582
3583 dev_info(&h->pdev->dev, "Received interrupt while interrupts disabled "
3584 "(known firmware bug.) Ignoring.\n");
3585
3586 return 1;
3587 }
3588
3589 /*
3590 * Convert &h->q[x] (passed to interrupt handlers) back to h.
3591 * Relies on (h-q[x] == x) being true for x such that
3592 * 0 <= x < MAX_REPLY_QUEUES.
3593 */
3594 static struct ctlr_info *queue_to_hba(u8 *queue)
3595 {
3596 return container_of((queue - *queue), struct ctlr_info, q[0]);
3597 }
3598
3599 static irqreturn_t hpsa_intx_discard_completions(int irq, void *queue)
3600 {
3601 struct ctlr_info *h = queue_to_hba(queue);
3602 u8 q = *(u8 *) queue;
3603 u32 raw_tag;
3604
3605 if (ignore_bogus_interrupt(h))
3606 return IRQ_NONE;
3607
3608 if (interrupt_not_for_us(h))
3609 return IRQ_NONE;
3610 h->last_intr_timestamp = get_jiffies_64();
3611 while (interrupt_pending(h)) {
3612 raw_tag = get_next_completion(h, q);
3613 while (raw_tag != FIFO_EMPTY)
3614 raw_tag = next_command(h, q);
3615 }
3616 return IRQ_HANDLED;
3617 }
3618
3619 static irqreturn_t hpsa_msix_discard_completions(int irq, void *queue)
3620 {
3621 struct ctlr_info *h = queue_to_hba(queue);
3622 u32 raw_tag;
3623 u8 q = *(u8 *) queue;
3624
3625 if (ignore_bogus_interrupt(h))
3626 return IRQ_NONE;
3627
3628 h->last_intr_timestamp = get_jiffies_64();
3629 raw_tag = get_next_completion(h, q);
3630 while (raw_tag != FIFO_EMPTY)
3631 raw_tag = next_command(h, q);
3632 return IRQ_HANDLED;
3633 }
3634
3635 static irqreturn_t do_hpsa_intr_intx(int irq, void *queue)
3636 {
3637 struct ctlr_info *h = queue_to_hba((u8 *) queue);
3638 u32 raw_tag;
3639 u8 q = *(u8 *) queue;
3640
3641 if (interrupt_not_for_us(h))
3642 return IRQ_NONE;
3643 h->last_intr_timestamp = get_jiffies_64();
3644 while (interrupt_pending(h)) {
3645 raw_tag = get_next_completion(h, q);
3646 while (raw_tag != FIFO_EMPTY) {
3647 if (likely(hpsa_tag_contains_index(raw_tag)))
3648 process_indexed_cmd(h, raw_tag);
3649 else
3650 process_nonindexed_cmd(h, raw_tag);
3651 raw_tag = next_command(h, q);
3652 }
3653 }
3654 return IRQ_HANDLED;
3655 }
3656
3657 static irqreturn_t do_hpsa_intr_msi(int irq, void *queue)
3658 {
3659 struct ctlr_info *h = queue_to_hba(queue);
3660 u32 raw_tag;
3661 u8 q = *(u8 *) queue;
3662
3663 h->last_intr_timestamp = get_jiffies_64();
3664 raw_tag = get_next_completion(h, q);
3665 while (raw_tag != FIFO_EMPTY) {
3666 if (likely(hpsa_tag_contains_index(raw_tag)))
3667 process_indexed_cmd(h, raw_tag);
3668 else
3669 process_nonindexed_cmd(h, raw_tag);
3670 raw_tag = next_command(h, q);
3671 }
3672 return IRQ_HANDLED;
3673 }
3674
3675 /* Send a message CDB to the firmware. Careful, this only works
3676 * in simple mode, not performant mode due to the tag lookup.
3677 * We only ever use this immediately after a controller reset.
3678 */
3679 static int hpsa_message(struct pci_dev *pdev, unsigned char opcode,
3680 unsigned char type)
3681 {
3682 struct Command {
3683 struct CommandListHeader CommandHeader;
3684 struct RequestBlock Request;
3685 struct ErrDescriptor ErrorDescriptor;
3686 };
3687 struct Command *cmd;
3688 static const size_t cmd_sz = sizeof(*cmd) +
3689 sizeof(cmd->ErrorDescriptor);
3690 dma_addr_t paddr64;
3691 uint32_t paddr32, tag;
3692 void __iomem *vaddr;
3693 int i, err;
3694
3695 vaddr = pci_ioremap_bar(pdev, 0);
3696 if (vaddr == NULL)
3697 return -ENOMEM;
3698
3699 /* The Inbound Post Queue only accepts 32-bit physical addresses for the
3700 * CCISS commands, so they must be allocated from the lower 4GiB of
3701 * memory.
3702 */
3703 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
3704 if (err) {
3705 iounmap(vaddr);
3706 return -ENOMEM;
3707 }
3708
3709 cmd = pci_alloc_consistent(pdev, cmd_sz, &paddr64);
3710 if (cmd == NULL) {
3711 iounmap(vaddr);
3712 return -ENOMEM;
3713 }
3714
3715 /* This must fit, because of the 32-bit consistent DMA mask. Also,
3716 * although there's no guarantee, we assume that the address is at
3717 * least 4-byte aligned (most likely, it's page-aligned).
3718 */
3719 paddr32 = paddr64;
3720
3721 cmd->CommandHeader.ReplyQueue = 0;
3722 cmd->CommandHeader.SGList = 0;
3723 cmd->CommandHeader.SGTotal = 0;
3724 cmd->CommandHeader.Tag.lower = paddr32;
3725 cmd->CommandHeader.Tag.upper = 0;
3726 memset(&cmd->CommandHeader.LUN.LunAddrBytes, 0, 8);
3727
3728 cmd->Request.CDBLen = 16;
3729 cmd->Request.Type.Type = TYPE_MSG;
3730 cmd->Request.Type.Attribute = ATTR_HEADOFQUEUE;
3731 cmd->Request.Type.Direction = XFER_NONE;
3732 cmd->Request.Timeout = 0; /* Don't time out */
3733 cmd->Request.CDB[0] = opcode;
3734 cmd->Request.CDB[1] = type;
3735 memset(&cmd->Request.CDB[2], 0, 14); /* rest of the CDB is reserved */
3736 cmd->ErrorDescriptor.Addr.lower = paddr32 + sizeof(*cmd);
3737 cmd->ErrorDescriptor.Addr.upper = 0;
3738 cmd->ErrorDescriptor.Len = sizeof(struct ErrorInfo);
3739
3740 writel(paddr32, vaddr + SA5_REQUEST_PORT_OFFSET);
3741
3742 for (i = 0; i < HPSA_MSG_SEND_RETRY_LIMIT; i++) {
3743 tag = readl(vaddr + SA5_REPLY_PORT_OFFSET);
3744 if ((tag & ~HPSA_SIMPLE_ERROR_BITS) == paddr32)
3745 break;
3746 msleep(HPSA_MSG_SEND_RETRY_INTERVAL_MSECS);
3747 }
3748
3749 iounmap(vaddr);
3750
3751 /* we leak the DMA buffer here ... no choice since the controller could
3752 * still complete the command.
3753 */
3754 if (i == HPSA_MSG_SEND_RETRY_LIMIT) {
3755 dev_err(&pdev->dev, "controller message %02x:%02x timed out\n",
3756 opcode, type);
3757 return -ETIMEDOUT;
3758 }
3759
3760 pci_free_consistent(pdev, cmd_sz, cmd, paddr64);
3761
3762 if (tag & HPSA_ERROR_BIT) {
3763 dev_err(&pdev->dev, "controller message %02x:%02x failed\n",
3764 opcode, type);
3765 return -EIO;
3766 }
3767
3768 dev_info(&pdev->dev, "controller message %02x:%02x succeeded\n",
3769 opcode, type);
3770 return 0;
3771 }
3772
3773 #define hpsa_noop(p) hpsa_message(p, 3, 0)
3774
3775 static int hpsa_controller_hard_reset(struct pci_dev *pdev,
3776 void * __iomem vaddr, u32 use_doorbell)
3777 {
3778 u16 pmcsr;
3779 int pos;
3780
3781 if (use_doorbell) {
3782 /* For everything after the P600, the PCI power state method
3783 * of resetting the controller doesn't work, so we have this
3784 * other way using the doorbell register.
3785 */
3786 dev_info(&pdev->dev, "using doorbell to reset controller\n");
3787 writel(use_doorbell, vaddr + SA5_DOORBELL);
3788 } else { /* Try to do it the PCI power state way */
3789
3790 /* Quoting from the Open CISS Specification: "The Power
3791 * Management Control/Status Register (CSR) controls the power
3792 * state of the device. The normal operating state is D0,
3793 * CSR=00h. The software off state is D3, CSR=03h. To reset
3794 * the controller, place the interface device in D3 then to D0,
3795 * this causes a secondary PCI reset which will reset the
3796 * controller." */
3797
3798 pos = pci_find_capability(pdev, PCI_CAP_ID_PM);
3799 if (pos == 0) {
3800 dev_err(&pdev->dev,
3801 "hpsa_reset_controller: "
3802 "PCI PM not supported\n");
3803 return -ENODEV;
3804 }
3805 dev_info(&pdev->dev, "using PCI PM to reset controller\n");
3806 /* enter the D3hot power management state */
3807 pci_read_config_word(pdev, pos + PCI_PM_CTRL, &pmcsr);
3808 pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
3809 pmcsr |= PCI_D3hot;
3810 pci_write_config_word(pdev, pos + PCI_PM_CTRL, pmcsr);
3811
3812 msleep(500);
3813
3814 /* enter the D0 power management state */
3815 pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
3816 pmcsr |= PCI_D0;
3817 pci_write_config_word(pdev, pos + PCI_PM_CTRL, pmcsr);
3818
3819 /*
3820 * The P600 requires a small delay when changing states.
3821 * Otherwise we may think the board did not reset and we bail.
3822 * This for kdump only and is particular to the P600.
3823 */
3824 msleep(500);
3825 }
3826 return 0;
3827 }
3828
3829 static void init_driver_version(char *driver_version, int len)
3830 {
3831 memset(driver_version, 0, len);
3832 strncpy(driver_version, HPSA " " HPSA_DRIVER_VERSION, len - 1);
3833 }
3834
3835 static int write_driver_ver_to_cfgtable(struct CfgTable __iomem *cfgtable)
3836 {
3837 char *driver_version;
3838 int i, size = sizeof(cfgtable->driver_version);
3839
3840 driver_version = kmalloc(size, GFP_KERNEL);
3841 if (!driver_version)
3842 return -ENOMEM;
3843
3844 init_driver_version(driver_version, size);
3845 for (i = 0; i < size; i++)
3846 writeb(driver_version[i], &cfgtable->driver_version[i]);
3847 kfree(driver_version);
3848 return 0;
3849 }
3850
3851 static void read_driver_ver_from_cfgtable(struct CfgTable __iomem *cfgtable,
3852 unsigned char *driver_ver)
3853 {
3854 int i;
3855
3856 for (i = 0; i < sizeof(cfgtable->driver_version); i++)
3857 driver_ver[i] = readb(&cfgtable->driver_version[i]);
3858 }
3859
3860 static int controller_reset_failed(struct CfgTable __iomem *cfgtable)
3861 {
3862
3863 char *driver_ver, *old_driver_ver;
3864 int rc, size = sizeof(cfgtable->driver_version);
3865
3866 old_driver_ver = kmalloc(2 * size, GFP_KERNEL);
3867 if (!old_driver_ver)
3868 return -ENOMEM;
3869 driver_ver = old_driver_ver + size;
3870
3871 /* After a reset, the 32 bytes of "driver version" in the cfgtable
3872 * should have been changed, otherwise we know the reset failed.
3873 */
3874 init_driver_version(old_driver_ver, size);
3875 read_driver_ver_from_cfgtable(cfgtable, driver_ver);
3876 rc = !memcmp(driver_ver, old_driver_ver, size);
3877 kfree(old_driver_ver);
3878 return rc;
3879 }
3880 /* This does a hard reset of the controller using PCI power management
3881 * states or the using the doorbell register.
3882 */
3883 static int hpsa_kdump_hard_reset_controller(struct pci_dev *pdev)
3884 {
3885 u64 cfg_offset;
3886 u32 cfg_base_addr;
3887 u64 cfg_base_addr_index;
3888 void __iomem *vaddr;
3889 unsigned long paddr;
3890 u32 misc_fw_support;
3891 int rc;
3892 struct CfgTable __iomem *cfgtable;
3893 u32 use_doorbell;
3894 u32 board_id;
3895 u16 command_register;
3896
3897 /* For controllers as old as the P600, this is very nearly
3898 * the same thing as
3899 *
3900 * pci_save_state(pci_dev);
3901 * pci_set_power_state(pci_dev, PCI_D3hot);
3902 * pci_set_power_state(pci_dev, PCI_D0);
3903 * pci_restore_state(pci_dev);
3904 *
3905 * For controllers newer than the P600, the pci power state
3906 * method of resetting doesn't work so we have another way
3907 * using the doorbell register.
3908 */
3909
3910 rc = hpsa_lookup_board_id(pdev, &board_id);
3911 if (rc < 0 || !ctlr_is_resettable(board_id)) {
3912 dev_warn(&pdev->dev, "Not resetting device.\n");
3913 return -ENODEV;
3914 }
3915
3916 /* if controller is soft- but not hard resettable... */
3917 if (!ctlr_is_hard_resettable(board_id))
3918 return -ENOTSUPP; /* try soft reset later. */
3919
3920 /* Save the PCI command register */
3921 pci_read_config_word(pdev, 4, &command_register);
3922 /* Turn the board off. This is so that later pci_restore_state()
3923 * won't turn the board on before the rest of config space is ready.
3924 */
3925 pci_disable_device(pdev);
3926 pci_save_state(pdev);
3927
3928 /* find the first memory BAR, so we can find the cfg table */
3929 rc = hpsa_pci_find_memory_BAR(pdev, &paddr);
3930 if (rc)
3931 return rc;
3932 vaddr = remap_pci_mem(paddr, 0x250);
3933 if (!vaddr)
3934 return -ENOMEM;
3935
3936 /* find cfgtable in order to check if reset via doorbell is supported */
3937 rc = hpsa_find_cfg_addrs(pdev, vaddr, &cfg_base_addr,
3938 &cfg_base_addr_index, &cfg_offset);
3939 if (rc)
3940 goto unmap_vaddr;
3941 cfgtable = remap_pci_mem(pci_resource_start(pdev,
3942 cfg_base_addr_index) + cfg_offset, sizeof(*cfgtable));
3943 if (!cfgtable) {
3944 rc = -ENOMEM;
3945 goto unmap_vaddr;
3946 }
3947 rc = write_driver_ver_to_cfgtable(cfgtable);
3948 if (rc)
3949 goto unmap_vaddr;
3950
3951 /* If reset via doorbell register is supported, use that.
3952 * There are two such methods. Favor the newest method.
3953 */
3954 misc_fw_support = readl(&cfgtable->misc_fw_support);
3955 use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET2;
3956 if (use_doorbell) {
3957 use_doorbell = DOORBELL_CTLR_RESET2;
3958 } else {
3959 use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET;
3960 if (use_doorbell) {
3961 dev_warn(&pdev->dev, "Soft reset not supported. "
3962 "Firmware update is required.\n");
3963 rc = -ENOTSUPP; /* try soft reset */
3964 goto unmap_cfgtable;
3965 }
3966 }
3967
3968 rc = hpsa_controller_hard_reset(pdev, vaddr, use_doorbell);
3969 if (rc)
3970 goto unmap_cfgtable;
3971
3972 pci_restore_state(pdev);
3973 rc = pci_enable_device(pdev);
3974 if (rc) {
3975 dev_warn(&pdev->dev, "failed to enable device.\n");
3976 goto unmap_cfgtable;
3977 }
3978 pci_write_config_word(pdev, 4, command_register);
3979
3980 /* Some devices (notably the HP Smart Array 5i Controller)
3981 need a little pause here */
3982 msleep(HPSA_POST_RESET_PAUSE_MSECS);
3983
3984 /* Wait for board to become not ready, then ready. */
3985 dev_info(&pdev->dev, "Waiting for board to reset.\n");
3986 rc = hpsa_wait_for_board_state(pdev, vaddr, BOARD_NOT_READY);
3987 if (rc) {
3988 dev_warn(&pdev->dev,
3989 "failed waiting for board to reset."
3990 " Will try soft reset.\n");
3991 rc = -ENOTSUPP; /* Not expected, but try soft reset later */
3992 goto unmap_cfgtable;
3993 }
3994 rc = hpsa_wait_for_board_state(pdev, vaddr, BOARD_READY);
3995 if (rc) {
3996 dev_warn(&pdev->dev,
3997 "failed waiting for board to become ready "
3998 "after hard reset\n");
3999 goto unmap_cfgtable;
4000 }
4001
4002 rc = controller_reset_failed(vaddr);
4003 if (rc < 0)
4004 goto unmap_cfgtable;
4005 if (rc) {
4006 dev_warn(&pdev->dev, "Unable to successfully reset "
4007 "controller. Will try soft reset.\n");
4008 rc = -ENOTSUPP;
4009 } else {
4010 dev_info(&pdev->dev, "board ready after hard reset.\n");
4011 }
4012
4013 unmap_cfgtable:
4014 iounmap(cfgtable);
4015
4016 unmap_vaddr:
4017 iounmap(vaddr);
4018 return rc;
4019 }
4020
4021 /*
4022 * We cannot read the structure directly, for portability we must use
4023 * the io functions.
4024 * This is for debug only.
4025 */
4026 static void print_cfg_table(struct device *dev, struct CfgTable *tb)
4027 {
4028 #ifdef HPSA_DEBUG
4029 int i;
4030 char temp_name[17];
4031
4032 dev_info(dev, "Controller Configuration information\n");
4033 dev_info(dev, "------------------------------------\n");
4034 for (i = 0; i < 4; i++)
4035 temp_name[i] = readb(&(tb->Signature[i]));
4036 temp_name[4] = '\0';
4037 dev_info(dev, " Signature = %s\n", temp_name);
4038 dev_info(dev, " Spec Number = %d\n", readl(&(tb->SpecValence)));
4039 dev_info(dev, " Transport methods supported = 0x%x\n",
4040 readl(&(tb->TransportSupport)));
4041 dev_info(dev, " Transport methods active = 0x%x\n",
4042 readl(&(tb->TransportActive)));
4043 dev_info(dev, " Requested transport Method = 0x%x\n",
4044 readl(&(tb->HostWrite.TransportRequest)));
4045 dev_info(dev, " Coalesce Interrupt Delay = 0x%x\n",
4046 readl(&(tb->HostWrite.CoalIntDelay)));
4047 dev_info(dev, " Coalesce Interrupt Count = 0x%x\n",
4048 readl(&(tb->HostWrite.CoalIntCount)));
4049 dev_info(dev, " Max outstanding commands = 0x%d\n",
4050 readl(&(tb->CmdsOutMax)));
4051 dev_info(dev, " Bus Types = 0x%x\n", readl(&(tb->BusTypes)));
4052 for (i = 0; i < 16; i++)
4053 temp_name[i] = readb(&(tb->ServerName[i]));
4054 temp_name[16] = '\0';
4055 dev_info(dev, " Server Name = %s\n", temp_name);
4056 dev_info(dev, " Heartbeat Counter = 0x%x\n\n\n",
4057 readl(&(tb->HeartBeat)));
4058 #endif /* HPSA_DEBUG */
4059 }
4060
4061 static int find_PCI_BAR_index(struct pci_dev *pdev, unsigned long pci_bar_addr)
4062 {
4063 int i, offset, mem_type, bar_type;
4064
4065 if (pci_bar_addr == PCI_BASE_ADDRESS_0) /* looking for BAR zero? */
4066 return 0;
4067 offset = 0;
4068 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
4069 bar_type = pci_resource_flags(pdev, i) & PCI_BASE_ADDRESS_SPACE;
4070 if (bar_type == PCI_BASE_ADDRESS_SPACE_IO)
4071 offset += 4;
4072 else {
4073 mem_type = pci_resource_flags(pdev, i) &
4074 PCI_BASE_ADDRESS_MEM_TYPE_MASK;
4075 switch (mem_type) {
4076 case PCI_BASE_ADDRESS_MEM_TYPE_32:
4077 case PCI_BASE_ADDRESS_MEM_TYPE_1M:
4078 offset += 4; /* 32 bit */
4079 break;
4080 case PCI_BASE_ADDRESS_MEM_TYPE_64:
4081 offset += 8;
4082 break;
4083 default: /* reserved in PCI 2.2 */
4084 dev_warn(&pdev->dev,
4085 "base address is invalid\n");
4086 return -1;
4087 break;
4088 }
4089 }
4090 if (offset == pci_bar_addr - PCI_BASE_ADDRESS_0)
4091 return i + 1;
4092 }
4093 return -1;
4094 }
4095
4096 /* If MSI/MSI-X is supported by the kernel we will try to enable it on
4097 * controllers that are capable. If not, we use IO-APIC mode.
4098 */
4099
4100 static void hpsa_interrupt_mode(struct ctlr_info *h)
4101 {
4102 #ifdef CONFIG_PCI_MSI
4103 int err, i;
4104 struct msix_entry hpsa_msix_entries[MAX_REPLY_QUEUES];
4105
4106 for (i = 0; i < MAX_REPLY_QUEUES; i++) {
4107 hpsa_msix_entries[i].vector = 0;
4108 hpsa_msix_entries[i].entry = i;
4109 }
4110
4111 /* Some boards advertise MSI but don't really support it */
4112 if ((h->board_id == 0x40700E11) || (h->board_id == 0x40800E11) ||
4113 (h->board_id == 0x40820E11) || (h->board_id == 0x40830E11))
4114 goto default_int_mode;
4115 if (pci_find_capability(h->pdev, PCI_CAP_ID_MSIX)) {
4116 dev_info(&h->pdev->dev, "MSIX\n");
4117 err = pci_enable_msix(h->pdev, hpsa_msix_entries,
4118 MAX_REPLY_QUEUES);
4119 if (!err) {
4120 for (i = 0; i < MAX_REPLY_QUEUES; i++)
4121 h->intr[i] = hpsa_msix_entries[i].vector;
4122 h->msix_vector = 1;
4123 return;
4124 }
4125 if (err > 0) {
4126 dev_warn(&h->pdev->dev, "only %d MSI-X vectors "
4127 "available\n", err);
4128 goto default_int_mode;
4129 } else {
4130 dev_warn(&h->pdev->dev, "MSI-X init failed %d\n",
4131 err);
4132 goto default_int_mode;
4133 }
4134 }
4135 if (pci_find_capability(h->pdev, PCI_CAP_ID_MSI)) {
4136 dev_info(&h->pdev->dev, "MSI\n");
4137 if (!pci_enable_msi(h->pdev))
4138 h->msi_vector = 1;
4139 else
4140 dev_warn(&h->pdev->dev, "MSI init failed\n");
4141 }
4142 default_int_mode:
4143 #endif /* CONFIG_PCI_MSI */
4144 /* if we get here we're going to use the default interrupt mode */
4145 h->intr[h->intr_mode] = h->pdev->irq;
4146 }
4147
4148 static int hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id)
4149 {
4150 int i;
4151 u32 subsystem_vendor_id, subsystem_device_id;
4152
4153 subsystem_vendor_id = pdev->subsystem_vendor;
4154 subsystem_device_id = pdev->subsystem_device;
4155 *board_id = ((subsystem_device_id << 16) & 0xffff0000) |
4156 subsystem_vendor_id;
4157
4158 for (i = 0; i < ARRAY_SIZE(products); i++)
4159 if (*board_id == products[i].board_id)
4160 return i;
4161
4162 if ((subsystem_vendor_id != PCI_VENDOR_ID_HP &&
4163 subsystem_vendor_id != PCI_VENDOR_ID_COMPAQ) ||
4164 !hpsa_allow_any) {
4165 dev_warn(&pdev->dev, "unrecognized board ID: "
4166 "0x%08x, ignoring.\n", *board_id);
4167 return -ENODEV;
4168 }
4169 return ARRAY_SIZE(products) - 1; /* generic unknown smart array */
4170 }
4171
4172 static int hpsa_pci_find_memory_BAR(struct pci_dev *pdev,
4173 unsigned long *memory_bar)
4174 {
4175 int i;
4176
4177 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
4178 if (pci_resource_flags(pdev, i) & IORESOURCE_MEM) {
4179 /* addressing mode bits already removed */
4180 *memory_bar = pci_resource_start(pdev, i);
4181 dev_dbg(&pdev->dev, "memory BAR = %lx\n",
4182 *memory_bar);
4183 return 0;
4184 }
4185 dev_warn(&pdev->dev, "no memory BAR found\n");
4186 return -ENODEV;
4187 }
4188
4189 static int hpsa_wait_for_board_state(struct pci_dev *pdev, void __iomem *vaddr,
4190 int wait_for_ready)
4191 {
4192 int i, iterations;
4193 u32 scratchpad;
4194 if (wait_for_ready)
4195 iterations = HPSA_BOARD_READY_ITERATIONS;
4196 else
4197 iterations = HPSA_BOARD_NOT_READY_ITERATIONS;
4198
4199 for (i = 0; i < iterations; i++) {
4200 scratchpad = readl(vaddr + SA5_SCRATCHPAD_OFFSET);
4201 if (wait_for_ready) {
4202 if (scratchpad == HPSA_FIRMWARE_READY)
4203 return 0;
4204 } else {
4205 if (scratchpad != HPSA_FIRMWARE_READY)
4206 return 0;
4207 }
4208 msleep(HPSA_BOARD_READY_POLL_INTERVAL_MSECS);
4209 }
4210 dev_warn(&pdev->dev, "board not ready, timed out.\n");
4211 return -ENODEV;
4212 }
4213
4214 static int hpsa_find_cfg_addrs(struct pci_dev *pdev, void __iomem *vaddr,
4215 u32 *cfg_base_addr, u64 *cfg_base_addr_index,
4216 u64 *cfg_offset)
4217 {
4218 *cfg_base_addr = readl(vaddr + SA5_CTCFG_OFFSET);
4219 *cfg_offset = readl(vaddr + SA5_CTMEM_OFFSET);
4220 *cfg_base_addr &= (u32) 0x0000ffff;
4221 *cfg_base_addr_index = find_PCI_BAR_index(pdev, *cfg_base_addr);
4222 if (*cfg_base_addr_index == -1) {
4223 dev_warn(&pdev->dev, "cannot find cfg_base_addr_index\n");
4224 return -ENODEV;
4225 }
4226 return 0;
4227 }
4228
4229 static int hpsa_find_cfgtables(struct ctlr_info *h)
4230 {
4231 u64 cfg_offset;
4232 u32 cfg_base_addr;
4233 u64 cfg_base_addr_index;
4234 u32 trans_offset;
4235 int rc;
4236
4237 rc = hpsa_find_cfg_addrs(h->pdev, h->vaddr, &cfg_base_addr,
4238 &cfg_base_addr_index, &cfg_offset);
4239 if (rc)
4240 return rc;
4241 h->cfgtable = remap_pci_mem(pci_resource_start(h->pdev,
4242 cfg_base_addr_index) + cfg_offset, sizeof(*h->cfgtable));
4243 if (!h->cfgtable)
4244 return -ENOMEM;
4245 rc = write_driver_ver_to_cfgtable(h->cfgtable);
4246 if (rc)
4247 return rc;
4248 /* Find performant mode table. */
4249 trans_offset = readl(&h->cfgtable->TransMethodOffset);
4250 h->transtable = remap_pci_mem(pci_resource_start(h->pdev,
4251 cfg_base_addr_index)+cfg_offset+trans_offset,
4252 sizeof(*h->transtable));
4253 if (!h->transtable)
4254 return -ENOMEM;
4255 return 0;
4256 }
4257
4258 static void hpsa_get_max_perf_mode_cmds(struct ctlr_info *h)
4259 {
4260 h->max_commands = readl(&(h->cfgtable->MaxPerformantModeCommands));
4261
4262 /* Limit commands in memory limited kdump scenario. */
4263 if (reset_devices && h->max_commands > 32)
4264 h->max_commands = 32;
4265
4266 if (h->max_commands < 16) {
4267 dev_warn(&h->pdev->dev, "Controller reports "
4268 "max supported commands of %d, an obvious lie. "
4269 "Using 16. Ensure that firmware is up to date.\n",
4270 h->max_commands);
4271 h->max_commands = 16;
4272 }
4273 }
4274
4275 /* Interrogate the hardware for some limits:
4276 * max commands, max SG elements without chaining, and with chaining,
4277 * SG chain block size, etc.
4278 */
4279 static void hpsa_find_board_params(struct ctlr_info *h)
4280 {
4281 hpsa_get_max_perf_mode_cmds(h);
4282 h->nr_cmds = h->max_commands - 4; /* Allow room for some ioctls */
4283 h->maxsgentries = readl(&(h->cfgtable->MaxScatterGatherElements));
4284 /*
4285 * Limit in-command s/g elements to 32 save dma'able memory.
4286 * Howvever spec says if 0, use 31
4287 */
4288 h->max_cmd_sg_entries = 31;
4289 if (h->maxsgentries > 512) {
4290 h->max_cmd_sg_entries = 32;
4291 h->chainsize = h->maxsgentries - h->max_cmd_sg_entries + 1;
4292 h->maxsgentries--; /* save one for chain pointer */
4293 } else {
4294 h->maxsgentries = 31; /* default to traditional values */
4295 h->chainsize = 0;
4296 }
4297
4298 /* Find out what task management functions are supported and cache */
4299 h->TMFSupportFlags = readl(&(h->cfgtable->TMFSupportFlags));
4300 }
4301
4302 static inline bool hpsa_CISS_signature_present(struct ctlr_info *h)
4303 {
4304 if (!check_signature(h->cfgtable->Signature, "CISS", 4)) {
4305 dev_warn(&h->pdev->dev, "not a valid CISS config table\n");
4306 return false;
4307 }
4308 return true;
4309 }
4310
4311 /* Need to enable prefetch in the SCSI core for 6400 in x86 */
4312 static inline void hpsa_enable_scsi_prefetch(struct ctlr_info *h)
4313 {
4314 #ifdef CONFIG_X86
4315 u32 prefetch;
4316
4317 prefetch = readl(&(h->cfgtable->SCSI_Prefetch));
4318 prefetch |= 0x100;
4319 writel(prefetch, &(h->cfgtable->SCSI_Prefetch));
4320 #endif
4321 }
4322
4323 /* Disable DMA prefetch for the P600. Otherwise an ASIC bug may result
4324 * in a prefetch beyond physical memory.
4325 */
4326 static inline void hpsa_p600_dma_prefetch_quirk(struct ctlr_info *h)
4327 {
4328 u32 dma_prefetch;
4329
4330 if (h->board_id != 0x3225103C)
4331 return;
4332 dma_prefetch = readl(h->vaddr + I2O_DMA1_CFG);
4333 dma_prefetch |= 0x8000;
4334 writel(dma_prefetch, h->vaddr + I2O_DMA1_CFG);
4335 }
4336
4337 static void hpsa_wait_for_mode_change_ack(struct ctlr_info *h)
4338 {
4339 int i;
4340 u32 doorbell_value;
4341 unsigned long flags;
4342
4343 /* under certain very rare conditions, this can take awhile.
4344 * (e.g.: hot replace a failed 144GB drive in a RAID 5 set right
4345 * as we enter this code.)
4346 */
4347 for (i = 0; i < MAX_CONFIG_WAIT; i++) {
4348 spin_lock_irqsave(&h->lock, flags);
4349 doorbell_value = readl(h->vaddr + SA5_DOORBELL);
4350 spin_unlock_irqrestore(&h->lock, flags);
4351 if (!(doorbell_value & CFGTBL_ChangeReq))
4352 break;
4353 /* delay and try again */
4354 usleep_range(10000, 20000);
4355 }
4356 }
4357
4358 static int hpsa_enter_simple_mode(struct ctlr_info *h)
4359 {
4360 u32 trans_support;
4361
4362 trans_support = readl(&(h->cfgtable->TransportSupport));
4363 if (!(trans_support & SIMPLE_MODE))
4364 return -ENOTSUPP;
4365
4366 h->max_commands = readl(&(h->cfgtable->CmdsOutMax));
4367 /* Update the field, and then ring the doorbell */
4368 writel(CFGTBL_Trans_Simple, &(h->cfgtable->HostWrite.TransportRequest));
4369 writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
4370 hpsa_wait_for_mode_change_ack(h);
4371 print_cfg_table(&h->pdev->dev, h->cfgtable);
4372 if (!(readl(&(h->cfgtable->TransportActive)) & CFGTBL_Trans_Simple)) {
4373 dev_warn(&h->pdev->dev,
4374 "unable to get board into simple mode\n");
4375 return -ENODEV;
4376 }
4377 h->transMethod = CFGTBL_Trans_Simple;
4378 return 0;
4379 }
4380
4381 static int hpsa_pci_init(struct ctlr_info *h)
4382 {
4383 int prod_index, err;
4384
4385 prod_index = hpsa_lookup_board_id(h->pdev, &h->board_id);
4386 if (prod_index < 0)
4387 return -ENODEV;
4388 h->product_name = products[prod_index].product_name;
4389 h->access = *(products[prod_index].access);
4390
4391 pci_disable_link_state(h->pdev, PCIE_LINK_STATE_L0S |
4392 PCIE_LINK_STATE_L1 | PCIE_LINK_STATE_CLKPM);
4393
4394 err = pci_enable_device(h->pdev);
4395 if (err) {
4396 dev_warn(&h->pdev->dev, "unable to enable PCI device\n");
4397 return err;
4398 }
4399
4400 /* Enable bus mastering (pci_disable_device may disable this) */
4401 pci_set_master(h->pdev);
4402
4403 err = pci_request_regions(h->pdev, HPSA);
4404 if (err) {
4405 dev_err(&h->pdev->dev,
4406 "cannot obtain PCI resources, aborting\n");
4407 return err;
4408 }
4409 hpsa_interrupt_mode(h);
4410 err = hpsa_pci_find_memory_BAR(h->pdev, &h->paddr);
4411 if (err)
4412 goto err_out_free_res;
4413 h->vaddr = remap_pci_mem(h->paddr, 0x250);
4414 if (!h->vaddr) {
4415 err = -ENOMEM;
4416 goto err_out_free_res;
4417 }
4418 err = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY);
4419 if (err)
4420 goto err_out_free_res;
4421 err = hpsa_find_cfgtables(h);
4422 if (err)
4423 goto err_out_free_res;
4424 hpsa_find_board_params(h);
4425
4426 if (!hpsa_CISS_signature_present(h)) {
4427 err = -ENODEV;
4428 goto err_out_free_res;
4429 }
4430 hpsa_enable_scsi_prefetch(h);
4431 hpsa_p600_dma_prefetch_quirk(h);
4432 err = hpsa_enter_simple_mode(h);
4433 if (err)
4434 goto err_out_free_res;
4435 return 0;
4436
4437 err_out_free_res:
4438 if (h->transtable)
4439 iounmap(h->transtable);
4440 if (h->cfgtable)
4441 iounmap(h->cfgtable);
4442 if (h->vaddr)
4443 iounmap(h->vaddr);
4444 pci_disable_device(h->pdev);
4445 pci_release_regions(h->pdev);
4446 return err;
4447 }
4448
4449 static void hpsa_hba_inquiry(struct ctlr_info *h)
4450 {
4451 int rc;
4452
4453 #define HBA_INQUIRY_BYTE_COUNT 64
4454 h->hba_inquiry_data = kmalloc(HBA_INQUIRY_BYTE_COUNT, GFP_KERNEL);
4455 if (!h->hba_inquiry_data)
4456 return;
4457 rc = hpsa_scsi_do_inquiry(h, RAID_CTLR_LUNID, 0,
4458 h->hba_inquiry_data, HBA_INQUIRY_BYTE_COUNT);
4459 if (rc != 0) {
4460 kfree(h->hba_inquiry_data);
4461 h->hba_inquiry_data = NULL;
4462 }
4463 }
4464
4465 static int hpsa_init_reset_devices(struct pci_dev *pdev)
4466 {
4467 int rc, i;
4468
4469 if (!reset_devices)
4470 return 0;
4471
4472 /* Reset the controller with a PCI power-cycle or via doorbell */
4473 rc = hpsa_kdump_hard_reset_controller(pdev);
4474
4475 /* -ENOTSUPP here means we cannot reset the controller
4476 * but it's already (and still) up and running in
4477 * "performant mode". Or, it might be 640x, which can't reset
4478 * due to concerns about shared bbwc between 6402/6404 pair.
4479 */
4480 if (rc == -ENOTSUPP)
4481 return rc; /* just try to do the kdump anyhow. */
4482 if (rc)
4483 return -ENODEV;
4484
4485 /* Now try to get the controller to respond to a no-op */
4486 dev_warn(&pdev->dev, "Waiting for controller to respond to no-op\n");
4487 for (i = 0; i < HPSA_POST_RESET_NOOP_RETRIES; i++) {
4488 if (hpsa_noop(pdev) == 0)
4489 break;
4490 else
4491 dev_warn(&pdev->dev, "no-op failed%s\n",
4492 (i < 11 ? "; re-trying" : ""));
4493 }
4494 return 0;
4495 }
4496
4497 static int hpsa_allocate_cmd_pool(struct ctlr_info *h)
4498 {
4499 h->cmd_pool_bits = kzalloc(
4500 DIV_ROUND_UP(h->nr_cmds, BITS_PER_LONG) *
4501 sizeof(unsigned long), GFP_KERNEL);
4502 h->cmd_pool = pci_alloc_consistent(h->pdev,
4503 h->nr_cmds * sizeof(*h->cmd_pool),
4504 &(h->cmd_pool_dhandle));
4505 h->errinfo_pool = pci_alloc_consistent(h->pdev,
4506 h->nr_cmds * sizeof(*h->errinfo_pool),
4507 &(h->errinfo_pool_dhandle));
4508 if ((h->cmd_pool_bits == NULL)
4509 || (h->cmd_pool == NULL)
4510 || (h->errinfo_pool == NULL)) {
4511 dev_err(&h->pdev->dev, "out of memory in %s", __func__);
4512 return -ENOMEM;
4513 }
4514 return 0;
4515 }
4516
4517 static void hpsa_free_cmd_pool(struct ctlr_info *h)
4518 {
4519 kfree(h->cmd_pool_bits);
4520 if (h->cmd_pool)
4521 pci_free_consistent(h->pdev,
4522 h->nr_cmds * sizeof(struct CommandList),
4523 h->cmd_pool, h->cmd_pool_dhandle);
4524 if (h->errinfo_pool)
4525 pci_free_consistent(h->pdev,
4526 h->nr_cmds * sizeof(struct ErrorInfo),
4527 h->errinfo_pool,
4528 h->errinfo_pool_dhandle);
4529 }
4530
4531 static int hpsa_request_irq(struct ctlr_info *h,
4532 irqreturn_t (*msixhandler)(int, void *),
4533 irqreturn_t (*intxhandler)(int, void *))
4534 {
4535 int rc, i;
4536
4537 /*
4538 * initialize h->q[x] = x so that interrupt handlers know which
4539 * queue to process.
4540 */
4541 for (i = 0; i < MAX_REPLY_QUEUES; i++)
4542 h->q[i] = (u8) i;
4543
4544 if (h->intr_mode == PERF_MODE_INT && h->msix_vector) {
4545 /* If performant mode and MSI-X, use multiple reply queues */
4546 for (i = 0; i < MAX_REPLY_QUEUES; i++)
4547 rc = request_irq(h->intr[i], msixhandler,
4548 0, h->devname,
4549 &h->q[i]);
4550 } else {
4551 /* Use single reply pool */
4552 if (h->msix_vector || h->msi_vector) {
4553 rc = request_irq(h->intr[h->intr_mode],
4554 msixhandler, 0, h->devname,
4555 &h->q[h->intr_mode]);
4556 } else {
4557 rc = request_irq(h->intr[h->intr_mode],
4558 intxhandler, IRQF_SHARED, h->devname,
4559 &h->q[h->intr_mode]);
4560 }
4561 }
4562 if (rc) {
4563 dev_err(&h->pdev->dev, "unable to get irq %d for %s\n",
4564 h->intr[h->intr_mode], h->devname);
4565 return -ENODEV;
4566 }
4567 return 0;
4568 }
4569
4570 static int hpsa_kdump_soft_reset(struct ctlr_info *h)
4571 {
4572 if (hpsa_send_host_reset(h, RAID_CTLR_LUNID,
4573 HPSA_RESET_TYPE_CONTROLLER)) {
4574 dev_warn(&h->pdev->dev, "Resetting array controller failed.\n");
4575 return -EIO;
4576 }
4577
4578 dev_info(&h->pdev->dev, "Waiting for board to soft reset.\n");
4579 if (hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_NOT_READY)) {
4580 dev_warn(&h->pdev->dev, "Soft reset had no effect.\n");
4581 return -1;
4582 }
4583
4584 dev_info(&h->pdev->dev, "Board reset, awaiting READY status.\n");
4585 if (hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY)) {
4586 dev_warn(&h->pdev->dev, "Board failed to become ready "
4587 "after soft reset.\n");
4588 return -1;
4589 }
4590
4591 return 0;
4592 }
4593
4594 static void free_irqs(struct ctlr_info *h)
4595 {
4596 int i;
4597
4598 if (!h->msix_vector || h->intr_mode != PERF_MODE_INT) {
4599 /* Single reply queue, only one irq to free */
4600 i = h->intr_mode;
4601 free_irq(h->intr[i], &h->q[i]);
4602 return;
4603 }
4604
4605 for (i = 0; i < MAX_REPLY_QUEUES; i++)
4606 free_irq(h->intr[i], &h->q[i]);
4607 }
4608
4609 static void hpsa_free_irqs_and_disable_msix(struct ctlr_info *h)
4610 {
4611 free_irqs(h);
4612 #ifdef CONFIG_PCI_MSI
4613 if (h->msix_vector) {
4614 if (h->pdev->msix_enabled)
4615 pci_disable_msix(h->pdev);
4616 } else if (h->msi_vector) {
4617 if (h->pdev->msi_enabled)
4618 pci_disable_msi(h->pdev);
4619 }
4620 #endif /* CONFIG_PCI_MSI */
4621 }
4622
4623 static void hpsa_undo_allocations_after_kdump_soft_reset(struct ctlr_info *h)
4624 {
4625 hpsa_free_irqs_and_disable_msix(h);
4626 hpsa_free_sg_chain_blocks(h);
4627 hpsa_free_cmd_pool(h);
4628 kfree(h->blockFetchTable);
4629 pci_free_consistent(h->pdev, h->reply_pool_size,
4630 h->reply_pool, h->reply_pool_dhandle);
4631 if (h->vaddr)
4632 iounmap(h->vaddr);
4633 if (h->transtable)
4634 iounmap(h->transtable);
4635 if (h->cfgtable)
4636 iounmap(h->cfgtable);
4637 pci_release_regions(h->pdev);
4638 kfree(h);
4639 }
4640
4641 static void remove_ctlr_from_lockup_detector_list(struct ctlr_info *h)
4642 {
4643 assert_spin_locked(&lockup_detector_lock);
4644 if (!hpsa_lockup_detector)
4645 return;
4646 if (h->lockup_detected)
4647 return; /* already stopped the lockup detector */
4648 list_del(&h->lockup_list);
4649 }
4650
4651 /* Called when controller lockup detected. */
4652 static void fail_all_cmds_on_list(struct ctlr_info *h, struct list_head *list)
4653 {
4654 struct CommandList *c = NULL;
4655
4656 assert_spin_locked(&h->lock);
4657 /* Mark all outstanding commands as failed and complete them. */
4658 while (!list_empty(list)) {
4659 c = list_entry(list->next, struct CommandList, list);
4660 c->err_info->CommandStatus = CMD_HARDWARE_ERR;
4661 finish_cmd(c);
4662 }
4663 }
4664
4665 static void controller_lockup_detected(struct ctlr_info *h)
4666 {
4667 unsigned long flags;
4668
4669 assert_spin_locked(&lockup_detector_lock);
4670 remove_ctlr_from_lockup_detector_list(h);
4671 h->access.set_intr_mask(h, HPSA_INTR_OFF);
4672 spin_lock_irqsave(&h->lock, flags);
4673 h->lockup_detected = readl(h->vaddr + SA5_SCRATCHPAD_OFFSET);
4674 spin_unlock_irqrestore(&h->lock, flags);
4675 dev_warn(&h->pdev->dev, "Controller lockup detected: 0x%08x\n",
4676 h->lockup_detected);
4677 pci_disable_device(h->pdev);
4678 spin_lock_irqsave(&h->lock, flags);
4679 fail_all_cmds_on_list(h, &h->cmpQ);
4680 fail_all_cmds_on_list(h, &h->reqQ);
4681 spin_unlock_irqrestore(&h->lock, flags);
4682 }
4683
4684 static void detect_controller_lockup(struct ctlr_info *h)
4685 {
4686 u64 now;
4687 u32 heartbeat;
4688 unsigned long flags;
4689
4690 assert_spin_locked(&lockup_detector_lock);
4691 now = get_jiffies_64();
4692 /* If we've received an interrupt recently, we're ok. */
4693 if (time_after64(h->last_intr_timestamp +
4694 (h->heartbeat_sample_interval), now))
4695 return;
4696
4697 /*
4698 * If we've already checked the heartbeat recently, we're ok.
4699 * This could happen if someone sends us a signal. We
4700 * otherwise don't care about signals in this thread.
4701 */
4702 if (time_after64(h->last_heartbeat_timestamp +
4703 (h->heartbeat_sample_interval), now))
4704 return;
4705
4706 /* If heartbeat has not changed since we last looked, we're not ok. */
4707 spin_lock_irqsave(&h->lock, flags);
4708 heartbeat = readl(&h->cfgtable->HeartBeat);
4709 spin_unlock_irqrestore(&h->lock, flags);
4710 if (h->last_heartbeat == heartbeat) {
4711 controller_lockup_detected(h);
4712 return;
4713 }
4714
4715 /* We're ok. */
4716 h->last_heartbeat = heartbeat;
4717 h->last_heartbeat_timestamp = now;
4718 }
4719
4720 static int detect_controller_lockup_thread(void *notused)
4721 {
4722 struct ctlr_info *h;
4723 unsigned long flags;
4724
4725 while (1) {
4726 struct list_head *this, *tmp;
4727
4728 schedule_timeout_interruptible(HEARTBEAT_SAMPLE_INTERVAL);
4729 if (kthread_should_stop())
4730 break;
4731 spin_lock_irqsave(&lockup_detector_lock, flags);
4732 list_for_each_safe(this, tmp, &hpsa_ctlr_list) {
4733 h = list_entry(this, struct ctlr_info, lockup_list);
4734 detect_controller_lockup(h);
4735 }
4736 spin_unlock_irqrestore(&lockup_detector_lock, flags);
4737 }
4738 return 0;
4739 }
4740
4741 static void add_ctlr_to_lockup_detector_list(struct ctlr_info *h)
4742 {
4743 unsigned long flags;
4744
4745 h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL;
4746 spin_lock_irqsave(&lockup_detector_lock, flags);
4747 list_add_tail(&h->lockup_list, &hpsa_ctlr_list);
4748 spin_unlock_irqrestore(&lockup_detector_lock, flags);
4749 }
4750
4751 static void start_controller_lockup_detector(struct ctlr_info *h)
4752 {
4753 /* Start the lockup detector thread if not already started */
4754 if (!hpsa_lockup_detector) {
4755 spin_lock_init(&lockup_detector_lock);
4756 hpsa_lockup_detector =
4757 kthread_run(detect_controller_lockup_thread,
4758 NULL, HPSA);
4759 }
4760 if (!hpsa_lockup_detector) {
4761 dev_warn(&h->pdev->dev,
4762 "Could not start lockup detector thread\n");
4763 return;
4764 }
4765 add_ctlr_to_lockup_detector_list(h);
4766 }
4767
4768 static void stop_controller_lockup_detector(struct ctlr_info *h)
4769 {
4770 unsigned long flags;
4771
4772 spin_lock_irqsave(&lockup_detector_lock, flags);
4773 remove_ctlr_from_lockup_detector_list(h);
4774 /* If the list of ctlr's to monitor is empty, stop the thread */
4775 if (list_empty(&hpsa_ctlr_list)) {
4776 spin_unlock_irqrestore(&lockup_detector_lock, flags);
4777 kthread_stop(hpsa_lockup_detector);
4778 spin_lock_irqsave(&lockup_detector_lock, flags);
4779 hpsa_lockup_detector = NULL;
4780 }
4781 spin_unlock_irqrestore(&lockup_detector_lock, flags);
4782 }
4783
4784 static int hpsa_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
4785 {
4786 int dac, rc;
4787 struct ctlr_info *h;
4788 int try_soft_reset = 0;
4789 unsigned long flags;
4790
4791 if (number_of_controllers == 0)
4792 printk(KERN_INFO DRIVER_NAME "\n");
4793
4794 rc = hpsa_init_reset_devices(pdev);
4795 if (rc) {
4796 if (rc != -ENOTSUPP)
4797 return rc;
4798 /* If the reset fails in a particular way (it has no way to do
4799 * a proper hard reset, so returns -ENOTSUPP) we can try to do
4800 * a soft reset once we get the controller configured up to the
4801 * point that it can accept a command.
4802 */
4803 try_soft_reset = 1;
4804 rc = 0;
4805 }
4806
4807 reinit_after_soft_reset:
4808
4809 /* Command structures must be aligned on a 32-byte boundary because
4810 * the 5 lower bits of the address are used by the hardware. and by
4811 * the driver. See comments in hpsa.h for more info.
4812 */
4813 #define COMMANDLIST_ALIGNMENT 32
4814 BUILD_BUG_ON(sizeof(struct CommandList) % COMMANDLIST_ALIGNMENT);
4815 h = kzalloc(sizeof(*h), GFP_KERNEL);
4816 if (!h)
4817 return -ENOMEM;
4818
4819 h->pdev = pdev;
4820 h->intr_mode = hpsa_simple_mode ? SIMPLE_MODE_INT : PERF_MODE_INT;
4821 INIT_LIST_HEAD(&h->cmpQ);
4822 INIT_LIST_HEAD(&h->reqQ);
4823 spin_lock_init(&h->lock);
4824 spin_lock_init(&h->scan_lock);
4825 rc = hpsa_pci_init(h);
4826 if (rc != 0)
4827 goto clean1;
4828
4829 sprintf(h->devname, HPSA "%d", number_of_controllers);
4830 h->ctlr = number_of_controllers;
4831 number_of_controllers++;
4832
4833 /* configure PCI DMA stuff */
4834 rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(64));
4835 if (rc == 0) {
4836 dac = 1;
4837 } else {
4838 rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
4839 if (rc == 0) {
4840 dac = 0;
4841 } else {
4842 dev_err(&pdev->dev, "no suitable DMA available\n");
4843 goto clean1;
4844 }
4845 }
4846
4847 /* make sure the board interrupts are off */
4848 h->access.set_intr_mask(h, HPSA_INTR_OFF);
4849
4850 if (hpsa_request_irq(h, do_hpsa_intr_msi, do_hpsa_intr_intx))
4851 goto clean2;
4852 dev_info(&pdev->dev, "%s: <0x%x> at IRQ %d%s using DAC\n",
4853 h->devname, pdev->device,
4854 h->intr[h->intr_mode], dac ? "" : " not");
4855 if (hpsa_allocate_cmd_pool(h))
4856 goto clean4;
4857 if (hpsa_allocate_sg_chain_blocks(h))
4858 goto clean4;
4859 init_waitqueue_head(&h->scan_wait_queue);
4860 h->scan_finished = 1; /* no scan currently in progress */
4861
4862 pci_set_drvdata(pdev, h);
4863 h->ndevices = 0;
4864 h->scsi_host = NULL;
4865 spin_lock_init(&h->devlock);
4866 hpsa_put_ctlr_into_performant_mode(h);
4867
4868 /* At this point, the controller is ready to take commands.
4869 * Now, if reset_devices and the hard reset didn't work, try
4870 * the soft reset and see if that works.
4871 */
4872 if (try_soft_reset) {
4873
4874 /* This is kind of gross. We may or may not get a completion
4875 * from the soft reset command, and if we do, then the value
4876 * from the fifo may or may not be valid. So, we wait 10 secs
4877 * after the reset throwing away any completions we get during
4878 * that time. Unregister the interrupt handler and register
4879 * fake ones to scoop up any residual completions.
4880 */
4881 spin_lock_irqsave(&h->lock, flags);
4882 h->access.set_intr_mask(h, HPSA_INTR_OFF);
4883 spin_unlock_irqrestore(&h->lock, flags);
4884 free_irqs(h);
4885 rc = hpsa_request_irq(h, hpsa_msix_discard_completions,
4886 hpsa_intx_discard_completions);
4887 if (rc) {
4888 dev_warn(&h->pdev->dev, "Failed to request_irq after "
4889 "soft reset.\n");
4890 goto clean4;
4891 }
4892
4893 rc = hpsa_kdump_soft_reset(h);
4894 if (rc)
4895 /* Neither hard nor soft reset worked, we're hosed. */
4896 goto clean4;
4897
4898 dev_info(&h->pdev->dev, "Board READY.\n");
4899 dev_info(&h->pdev->dev,
4900 "Waiting for stale completions to drain.\n");
4901 h->access.set_intr_mask(h, HPSA_INTR_ON);
4902 msleep(10000);
4903 h->access.set_intr_mask(h, HPSA_INTR_OFF);
4904
4905 rc = controller_reset_failed(h->cfgtable);
4906 if (rc)
4907 dev_info(&h->pdev->dev,
4908 "Soft reset appears to have failed.\n");
4909
4910 /* since the controller's reset, we have to go back and re-init
4911 * everything. Easiest to just forget what we've done and do it
4912 * all over again.
4913 */
4914 hpsa_undo_allocations_after_kdump_soft_reset(h);
4915 try_soft_reset = 0;
4916 if (rc)
4917 /* don't go to clean4, we already unallocated */
4918 return -ENODEV;
4919
4920 goto reinit_after_soft_reset;
4921 }
4922
4923 /* Turn the interrupts on so we can service requests */
4924 h->access.set_intr_mask(h, HPSA_INTR_ON);
4925
4926 hpsa_hba_inquiry(h);
4927 hpsa_register_scsi(h); /* hook ourselves into SCSI subsystem */
4928 start_controller_lockup_detector(h);
4929 return 1;
4930
4931 clean4:
4932 hpsa_free_sg_chain_blocks(h);
4933 hpsa_free_cmd_pool(h);
4934 free_irqs(h);
4935 clean2:
4936 clean1:
4937 kfree(h);
4938 return rc;
4939 }
4940
4941 static void hpsa_flush_cache(struct ctlr_info *h)
4942 {
4943 char *flush_buf;
4944 struct CommandList *c;
4945
4946 flush_buf = kzalloc(4, GFP_KERNEL);
4947 if (!flush_buf)
4948 return;
4949
4950 c = cmd_special_alloc(h);
4951 if (!c) {
4952 dev_warn(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
4953 goto out_of_memory;
4954 }
4955 if (fill_cmd(c, HPSA_CACHE_FLUSH, h, flush_buf, 4, 0,
4956 RAID_CTLR_LUNID, TYPE_CMD)) {
4957 goto out;
4958 }
4959 hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_TODEVICE);
4960 if (c->err_info->CommandStatus != 0)
4961 out:
4962 dev_warn(&h->pdev->dev,
4963 "error flushing cache on controller\n");
4964 cmd_special_free(h, c);
4965 out_of_memory:
4966 kfree(flush_buf);
4967 }
4968
4969 static void hpsa_shutdown(struct pci_dev *pdev)
4970 {
4971 struct ctlr_info *h;
4972
4973 h = pci_get_drvdata(pdev);
4974 /* Turn board interrupts off and send the flush cache command
4975 * sendcmd will turn off interrupt, and send the flush...
4976 * To write all data in the battery backed cache to disks
4977 */
4978 hpsa_flush_cache(h);
4979 h->access.set_intr_mask(h, HPSA_INTR_OFF);
4980 hpsa_free_irqs_and_disable_msix(h);
4981 }
4982
4983 static void hpsa_free_device_info(struct ctlr_info *h)
4984 {
4985 int i;
4986
4987 for (i = 0; i < h->ndevices; i++)
4988 kfree(h->dev[i]);
4989 }
4990
4991 static void hpsa_remove_one(struct pci_dev *pdev)
4992 {
4993 struct ctlr_info *h;
4994
4995 if (pci_get_drvdata(pdev) == NULL) {
4996 dev_err(&pdev->dev, "unable to remove device\n");
4997 return;
4998 }
4999 h = pci_get_drvdata(pdev);
5000 stop_controller_lockup_detector(h);
5001 hpsa_unregister_scsi(h); /* unhook from SCSI subsystem */
5002 hpsa_shutdown(pdev);
5003 iounmap(h->vaddr);
5004 iounmap(h->transtable);
5005 iounmap(h->cfgtable);
5006 hpsa_free_device_info(h);
5007 hpsa_free_sg_chain_blocks(h);
5008 pci_free_consistent(h->pdev,
5009 h->nr_cmds * sizeof(struct CommandList),
5010 h->cmd_pool, h->cmd_pool_dhandle);
5011 pci_free_consistent(h->pdev,
5012 h->nr_cmds * sizeof(struct ErrorInfo),
5013 h->errinfo_pool, h->errinfo_pool_dhandle);
5014 pci_free_consistent(h->pdev, h->reply_pool_size,
5015 h->reply_pool, h->reply_pool_dhandle);
5016 kfree(h->cmd_pool_bits);
5017 kfree(h->blockFetchTable);
5018 kfree(h->hba_inquiry_data);
5019 pci_disable_device(pdev);
5020 pci_release_regions(pdev);
5021 pci_set_drvdata(pdev, NULL);
5022 kfree(h);
5023 }
5024
5025 static int hpsa_suspend(__attribute__((unused)) struct pci_dev *pdev,
5026 __attribute__((unused)) pm_message_t state)
5027 {
5028 return -ENOSYS;
5029 }
5030
5031 static int hpsa_resume(__attribute__((unused)) struct pci_dev *pdev)
5032 {
5033 return -ENOSYS;
5034 }
5035
5036 static struct pci_driver hpsa_pci_driver = {
5037 .name = HPSA,
5038 .probe = hpsa_init_one,
5039 .remove = hpsa_remove_one,
5040 .id_table = hpsa_pci_device_id, /* id_table */
5041 .shutdown = hpsa_shutdown,
5042 .suspend = hpsa_suspend,
5043 .resume = hpsa_resume,
5044 };
5045
5046 /* Fill in bucket_map[], given nsgs (the max number of
5047 * scatter gather elements supported) and bucket[],
5048 * which is an array of 8 integers. The bucket[] array
5049 * contains 8 different DMA transfer sizes (in 16
5050 * byte increments) which the controller uses to fetch
5051 * commands. This function fills in bucket_map[], which
5052 * maps a given number of scatter gather elements to one of
5053 * the 8 DMA transfer sizes. The point of it is to allow the
5054 * controller to only do as much DMA as needed to fetch the
5055 * command, with the DMA transfer size encoded in the lower
5056 * bits of the command address.
5057 */
5058 static void calc_bucket_map(int bucket[], int num_buckets,
5059 int nsgs, int *bucket_map)
5060 {
5061 int i, j, b, size;
5062
5063 /* even a command with 0 SGs requires 4 blocks */
5064 #define MINIMUM_TRANSFER_BLOCKS 4
5065 #define NUM_BUCKETS 8
5066 /* Note, bucket_map must have nsgs+1 entries. */
5067 for (i = 0; i <= nsgs; i++) {
5068 /* Compute size of a command with i SG entries */
5069 size = i + MINIMUM_TRANSFER_BLOCKS;
5070 b = num_buckets; /* Assume the biggest bucket */
5071 /* Find the bucket that is just big enough */
5072 for (j = 0; j < 8; j++) {
5073 if (bucket[j] >= size) {
5074 b = j;
5075 break;
5076 }
5077 }
5078 /* for a command with i SG entries, use bucket b. */
5079 bucket_map[i] = b;
5080 }
5081 }
5082
5083 static void hpsa_enter_performant_mode(struct ctlr_info *h, u32 use_short_tags)
5084 {
5085 int i;
5086 unsigned long register_value;
5087
5088 /* This is a bit complicated. There are 8 registers on
5089 * the controller which we write to to tell it 8 different
5090 * sizes of commands which there may be. It's a way of
5091 * reducing the DMA done to fetch each command. Encoded into
5092 * each command's tag are 3 bits which communicate to the controller
5093 * which of the eight sizes that command fits within. The size of
5094 * each command depends on how many scatter gather entries there are.
5095 * Each SG entry requires 16 bytes. The eight registers are programmed
5096 * with the number of 16-byte blocks a command of that size requires.
5097 * The smallest command possible requires 5 such 16 byte blocks.
5098 * the largest command possible requires SG_ENTRIES_IN_CMD + 4 16-byte
5099 * blocks. Note, this only extends to the SG entries contained
5100 * within the command block, and does not extend to chained blocks
5101 * of SG elements. bft[] contains the eight values we write to
5102 * the registers. They are not evenly distributed, but have more
5103 * sizes for small commands, and fewer sizes for larger commands.
5104 */
5105 int bft[8] = {5, 6, 8, 10, 12, 20, 28, SG_ENTRIES_IN_CMD + 4};
5106 BUILD_BUG_ON(28 > SG_ENTRIES_IN_CMD + 4);
5107 /* 5 = 1 s/g entry or 4k
5108 * 6 = 2 s/g entry or 8k
5109 * 8 = 4 s/g entry or 16k
5110 * 10 = 6 s/g entry or 24k
5111 */
5112
5113 /* Controller spec: zero out this buffer. */
5114 memset(h->reply_pool, 0, h->reply_pool_size);
5115
5116 bft[7] = SG_ENTRIES_IN_CMD + 4;
5117 calc_bucket_map(bft, ARRAY_SIZE(bft),
5118 SG_ENTRIES_IN_CMD, h->blockFetchTable);
5119 for (i = 0; i < 8; i++)
5120 writel(bft[i], &h->transtable->BlockFetch[i]);
5121
5122 /* size of controller ring buffer */
5123 writel(h->max_commands, &h->transtable->RepQSize);
5124 writel(h->nreply_queues, &h->transtable->RepQCount);
5125 writel(0, &h->transtable->RepQCtrAddrLow32);
5126 writel(0, &h->transtable->RepQCtrAddrHigh32);
5127
5128 for (i = 0; i < h->nreply_queues; i++) {
5129 writel(0, &h->transtable->RepQAddr[i].upper);
5130 writel(h->reply_pool_dhandle +
5131 (h->max_commands * sizeof(u64) * i),
5132 &h->transtable->RepQAddr[i].lower);
5133 }
5134
5135 writel(CFGTBL_Trans_Performant | use_short_tags |
5136 CFGTBL_Trans_enable_directed_msix,
5137 &(h->cfgtable->HostWrite.TransportRequest));
5138 writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
5139 hpsa_wait_for_mode_change_ack(h);
5140 register_value = readl(&(h->cfgtable->TransportActive));
5141 if (!(register_value & CFGTBL_Trans_Performant)) {
5142 dev_warn(&h->pdev->dev, "unable to get board into"
5143 " performant mode\n");
5144 return;
5145 }
5146 /* Change the access methods to the performant access methods */
5147 h->access = SA5_performant_access;
5148 h->transMethod = CFGTBL_Trans_Performant;
5149 }
5150
5151 static void hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h)
5152 {
5153 u32 trans_support;
5154 int i;
5155
5156 if (hpsa_simple_mode)
5157 return;
5158
5159 trans_support = readl(&(h->cfgtable->TransportSupport));
5160 if (!(trans_support & PERFORMANT_MODE))
5161 return;
5162
5163 h->nreply_queues = h->msix_vector ? MAX_REPLY_QUEUES : 1;
5164 hpsa_get_max_perf_mode_cmds(h);
5165 /* Performant mode ring buffer and supporting data structures */
5166 h->reply_pool_size = h->max_commands * sizeof(u64) * h->nreply_queues;
5167 h->reply_pool = pci_alloc_consistent(h->pdev, h->reply_pool_size,
5168 &(h->reply_pool_dhandle));
5169
5170 for (i = 0; i < h->nreply_queues; i++) {
5171 h->reply_queue[i].head = &h->reply_pool[h->max_commands * i];
5172 h->reply_queue[i].size = h->max_commands;
5173 h->reply_queue[i].wraparound = 1; /* spec: init to 1 */
5174 h->reply_queue[i].current_entry = 0;
5175 }
5176
5177 /* Need a block fetch table for performant mode */
5178 h->blockFetchTable = kmalloc(((SG_ENTRIES_IN_CMD + 1) *
5179 sizeof(u32)), GFP_KERNEL);
5180
5181 if ((h->reply_pool == NULL)
5182 || (h->blockFetchTable == NULL))
5183 goto clean_up;
5184
5185 hpsa_enter_performant_mode(h,
5186 trans_support & CFGTBL_Trans_use_short_tags);
5187
5188 return;
5189
5190 clean_up:
5191 if (h->reply_pool)
5192 pci_free_consistent(h->pdev, h->reply_pool_size,
5193 h->reply_pool, h->reply_pool_dhandle);
5194 kfree(h->blockFetchTable);
5195 }
5196
5197 /*
5198 * This is it. Register the PCI driver information for the cards we control
5199 * the OS will call our registered routines when it finds one of our cards.
5200 */
5201 static int __init hpsa_init(void)
5202 {
5203 return pci_register_driver(&hpsa_pci_driver);
5204 }
5205
5206 static void __exit hpsa_cleanup(void)
5207 {
5208 pci_unregister_driver(&hpsa_pci_driver);
5209 }
5210
5211 module_init(hpsa_init);
5212 module_exit(hpsa_cleanup);
This page took 0.22289 seconds and 5 git commands to generate.