00018705582bb3231474408b3a619fbc41d46c68
[deliverable/linux.git] / drivers / scsi / libata-core.c
1 /*
2 * libata-core.c - helper library for ATA
3 *
4 * Maintained by: Jeff Garzik <jgarzik@pobox.com>
5 * Please ALWAYS copy linux-ide@vger.kernel.org
6 * on emails.
7 *
8 * Copyright 2003-2004 Red Hat, Inc. All rights reserved.
9 * Copyright 2003-2004 Jeff Garzik
10 *
11 *
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2, or (at your option)
15 * any later version.
16 *
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
21 *
22 * You should have received a copy of the GNU General Public License
23 * along with this program; see the file COPYING. If not, write to
24 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
25 *
26 *
27 * libata documentation is available via 'make {ps|pdf}docs',
28 * as Documentation/DocBook/libata.*
29 *
30 * Hardware documentation available from http://www.t13.org/ and
31 * http://www.sata-io.org/
32 *
33 */
34
35 #include <linux/config.h>
36 #include <linux/kernel.h>
37 #include <linux/module.h>
38 #include <linux/pci.h>
39 #include <linux/init.h>
40 #include <linux/list.h>
41 #include <linux/mm.h>
42 #include <linux/highmem.h>
43 #include <linux/spinlock.h>
44 #include <linux/blkdev.h>
45 #include <linux/delay.h>
46 #include <linux/timer.h>
47 #include <linux/interrupt.h>
48 #include <linux/completion.h>
49 #include <linux/suspend.h>
50 #include <linux/workqueue.h>
51 #include <linux/jiffies.h>
52 #include <linux/scatterlist.h>
53 #include <scsi/scsi.h>
54 #include "scsi_priv.h"
55 #include <scsi/scsi_cmnd.h>
56 #include <scsi/scsi_host.h>
57 #include <linux/libata.h>
58 #include <asm/io.h>
59 #include <asm/semaphore.h>
60 #include <asm/byteorder.h>
61
62 #include "libata.h"
63
64 static unsigned int ata_dev_init_params(struct ata_port *ap,
65 struct ata_device *dev,
66 u16 heads,
67 u16 sectors);
68 static int ata_down_xfermask_limit(struct ata_port *ap, struct ata_device *dev,
69 int force_pio0);
70 static int ata_down_sata_spd_limit(struct ata_port *ap);
71 static int ata_set_mode(struct ata_port *ap, struct ata_device **r_failed_dev);
72 static unsigned int ata_dev_set_xfermode(struct ata_port *ap,
73 struct ata_device *dev);
74 static void ata_dev_xfermask(struct ata_port *ap, struct ata_device *dev);
75
76 static unsigned int ata_unique_id = 1;
77 static struct workqueue_struct *ata_wq;
78
79 int atapi_enabled = 1;
80 module_param(atapi_enabled, int, 0444);
81 MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on)");
82
83 int libata_fua = 0;
84 module_param_named(fua, libata_fua, int, 0444);
85 MODULE_PARM_DESC(fua, "FUA support (0=off, 1=on)");
86
87 MODULE_AUTHOR("Jeff Garzik");
88 MODULE_DESCRIPTION("Library module for ATA devices");
89 MODULE_LICENSE("GPL");
90 MODULE_VERSION(DRV_VERSION);
91
92
93 /**
94 * ata_tf_to_fis - Convert ATA taskfile to SATA FIS structure
95 * @tf: Taskfile to convert
96 * @fis: Buffer into which data will output
97 * @pmp: Port multiplier port
98 *
99 * Converts a standard ATA taskfile to a Serial ATA
100 * FIS structure (Register - Host to Device).
101 *
102 * LOCKING:
103 * Inherited from caller.
104 */
105
106 void ata_tf_to_fis(const struct ata_taskfile *tf, u8 *fis, u8 pmp)
107 {
108 fis[0] = 0x27; /* Register - Host to Device FIS */
109 fis[1] = (pmp & 0xf) | (1 << 7); /* Port multiplier number,
110 bit 7 indicates Command FIS */
111 fis[2] = tf->command;
112 fis[3] = tf->feature;
113
114 fis[4] = tf->lbal;
115 fis[5] = tf->lbam;
116 fis[6] = tf->lbah;
117 fis[7] = tf->device;
118
119 fis[8] = tf->hob_lbal;
120 fis[9] = tf->hob_lbam;
121 fis[10] = tf->hob_lbah;
122 fis[11] = tf->hob_feature;
123
124 fis[12] = tf->nsect;
125 fis[13] = tf->hob_nsect;
126 fis[14] = 0;
127 fis[15] = tf->ctl;
128
129 fis[16] = 0;
130 fis[17] = 0;
131 fis[18] = 0;
132 fis[19] = 0;
133 }
134
135 /**
136 * ata_tf_from_fis - Convert SATA FIS to ATA taskfile
137 * @fis: Buffer from which data will be input
138 * @tf: Taskfile to output
139 *
140 * Converts a serial ATA FIS structure to a standard ATA taskfile.
141 *
142 * LOCKING:
143 * Inherited from caller.
144 */
145
146 void ata_tf_from_fis(const u8 *fis, struct ata_taskfile *tf)
147 {
148 tf->command = fis[2]; /* status */
149 tf->feature = fis[3]; /* error */
150
151 tf->lbal = fis[4];
152 tf->lbam = fis[5];
153 tf->lbah = fis[6];
154 tf->device = fis[7];
155
156 tf->hob_lbal = fis[8];
157 tf->hob_lbam = fis[9];
158 tf->hob_lbah = fis[10];
159
160 tf->nsect = fis[12];
161 tf->hob_nsect = fis[13];
162 }
163
164 static const u8 ata_rw_cmds[] = {
165 /* pio multi */
166 ATA_CMD_READ_MULTI,
167 ATA_CMD_WRITE_MULTI,
168 ATA_CMD_READ_MULTI_EXT,
169 ATA_CMD_WRITE_MULTI_EXT,
170 0,
171 0,
172 0,
173 ATA_CMD_WRITE_MULTI_FUA_EXT,
174 /* pio */
175 ATA_CMD_PIO_READ,
176 ATA_CMD_PIO_WRITE,
177 ATA_CMD_PIO_READ_EXT,
178 ATA_CMD_PIO_WRITE_EXT,
179 0,
180 0,
181 0,
182 0,
183 /* dma */
184 ATA_CMD_READ,
185 ATA_CMD_WRITE,
186 ATA_CMD_READ_EXT,
187 ATA_CMD_WRITE_EXT,
188 0,
189 0,
190 0,
191 ATA_CMD_WRITE_FUA_EXT
192 };
193
194 /**
195 * ata_rwcmd_protocol - set taskfile r/w commands and protocol
196 * @qc: command to examine and configure
197 *
198 * Examine the device configuration and tf->flags to calculate
199 * the proper read/write commands and protocol to use.
200 *
201 * LOCKING:
202 * caller.
203 */
204 int ata_rwcmd_protocol(struct ata_queued_cmd *qc)
205 {
206 struct ata_taskfile *tf = &qc->tf;
207 struct ata_device *dev = qc->dev;
208 u8 cmd;
209
210 int index, fua, lba48, write;
211
212 fua = (tf->flags & ATA_TFLAG_FUA) ? 4 : 0;
213 lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0;
214 write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0;
215
216 if (dev->flags & ATA_DFLAG_PIO) {
217 tf->protocol = ATA_PROT_PIO;
218 index = dev->multi_count ? 0 : 8;
219 } else if (lba48 && (qc->ap->flags & ATA_FLAG_PIO_LBA48)) {
220 /* Unable to use DMA due to host limitation */
221 tf->protocol = ATA_PROT_PIO;
222 index = dev->multi_count ? 0 : 8;
223 } else {
224 tf->protocol = ATA_PROT_DMA;
225 index = 16;
226 }
227
228 cmd = ata_rw_cmds[index + fua + lba48 + write];
229 if (cmd) {
230 tf->command = cmd;
231 return 0;
232 }
233 return -1;
234 }
235
236 /**
237 * ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask
238 * @pio_mask: pio_mask
239 * @mwdma_mask: mwdma_mask
240 * @udma_mask: udma_mask
241 *
242 * Pack @pio_mask, @mwdma_mask and @udma_mask into a single
243 * unsigned int xfer_mask.
244 *
245 * LOCKING:
246 * None.
247 *
248 * RETURNS:
249 * Packed xfer_mask.
250 */
251 static unsigned int ata_pack_xfermask(unsigned int pio_mask,
252 unsigned int mwdma_mask,
253 unsigned int udma_mask)
254 {
255 return ((pio_mask << ATA_SHIFT_PIO) & ATA_MASK_PIO) |
256 ((mwdma_mask << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA) |
257 ((udma_mask << ATA_SHIFT_UDMA) & ATA_MASK_UDMA);
258 }
259
260 /**
261 * ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks
262 * @xfer_mask: xfer_mask to unpack
263 * @pio_mask: resulting pio_mask
264 * @mwdma_mask: resulting mwdma_mask
265 * @udma_mask: resulting udma_mask
266 *
267 * Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask.
268 * Any NULL distination masks will be ignored.
269 */
270 static void ata_unpack_xfermask(unsigned int xfer_mask,
271 unsigned int *pio_mask,
272 unsigned int *mwdma_mask,
273 unsigned int *udma_mask)
274 {
275 if (pio_mask)
276 *pio_mask = (xfer_mask & ATA_MASK_PIO) >> ATA_SHIFT_PIO;
277 if (mwdma_mask)
278 *mwdma_mask = (xfer_mask & ATA_MASK_MWDMA) >> ATA_SHIFT_MWDMA;
279 if (udma_mask)
280 *udma_mask = (xfer_mask & ATA_MASK_UDMA) >> ATA_SHIFT_UDMA;
281 }
282
283 static const struct ata_xfer_ent {
284 int shift, bits;
285 u8 base;
286 } ata_xfer_tbl[] = {
287 { ATA_SHIFT_PIO, ATA_BITS_PIO, XFER_PIO_0 },
288 { ATA_SHIFT_MWDMA, ATA_BITS_MWDMA, XFER_MW_DMA_0 },
289 { ATA_SHIFT_UDMA, ATA_BITS_UDMA, XFER_UDMA_0 },
290 { -1, },
291 };
292
293 /**
294 * ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask
295 * @xfer_mask: xfer_mask of interest
296 *
297 * Return matching XFER_* value for @xfer_mask. Only the highest
298 * bit of @xfer_mask is considered.
299 *
300 * LOCKING:
301 * None.
302 *
303 * RETURNS:
304 * Matching XFER_* value, 0 if no match found.
305 */
306 static u8 ata_xfer_mask2mode(unsigned int xfer_mask)
307 {
308 int highbit = fls(xfer_mask) - 1;
309 const struct ata_xfer_ent *ent;
310
311 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
312 if (highbit >= ent->shift && highbit < ent->shift + ent->bits)
313 return ent->base + highbit - ent->shift;
314 return 0;
315 }
316
317 /**
318 * ata_xfer_mode2mask - Find matching xfer_mask for XFER_*
319 * @xfer_mode: XFER_* of interest
320 *
321 * Return matching xfer_mask for @xfer_mode.
322 *
323 * LOCKING:
324 * None.
325 *
326 * RETURNS:
327 * Matching xfer_mask, 0 if no match found.
328 */
329 static unsigned int ata_xfer_mode2mask(u8 xfer_mode)
330 {
331 const struct ata_xfer_ent *ent;
332
333 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
334 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
335 return 1 << (ent->shift + xfer_mode - ent->base);
336 return 0;
337 }
338
339 /**
340 * ata_xfer_mode2shift - Find matching xfer_shift for XFER_*
341 * @xfer_mode: XFER_* of interest
342 *
343 * Return matching xfer_shift for @xfer_mode.
344 *
345 * LOCKING:
346 * None.
347 *
348 * RETURNS:
349 * Matching xfer_shift, -1 if no match found.
350 */
351 static int ata_xfer_mode2shift(unsigned int xfer_mode)
352 {
353 const struct ata_xfer_ent *ent;
354
355 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
356 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
357 return ent->shift;
358 return -1;
359 }
360
361 /**
362 * ata_mode_string - convert xfer_mask to string
363 * @xfer_mask: mask of bits supported; only highest bit counts.
364 *
365 * Determine string which represents the highest speed
366 * (highest bit in @modemask).
367 *
368 * LOCKING:
369 * None.
370 *
371 * RETURNS:
372 * Constant C string representing highest speed listed in
373 * @mode_mask, or the constant C string "<n/a>".
374 */
375 static const char *ata_mode_string(unsigned int xfer_mask)
376 {
377 static const char * const xfer_mode_str[] = {
378 "PIO0",
379 "PIO1",
380 "PIO2",
381 "PIO3",
382 "PIO4",
383 "MWDMA0",
384 "MWDMA1",
385 "MWDMA2",
386 "UDMA/16",
387 "UDMA/25",
388 "UDMA/33",
389 "UDMA/44",
390 "UDMA/66",
391 "UDMA/100",
392 "UDMA/133",
393 "UDMA7",
394 };
395 int highbit;
396
397 highbit = fls(xfer_mask) - 1;
398 if (highbit >= 0 && highbit < ARRAY_SIZE(xfer_mode_str))
399 return xfer_mode_str[highbit];
400 return "<n/a>";
401 }
402
403 static const char *sata_spd_string(unsigned int spd)
404 {
405 static const char * const spd_str[] = {
406 "1.5 Gbps",
407 "3.0 Gbps",
408 };
409
410 if (spd == 0 || (spd - 1) >= ARRAY_SIZE(spd_str))
411 return "<unknown>";
412 return spd_str[spd - 1];
413 }
414
415 static void ata_dev_disable(struct ata_port *ap, struct ata_device *dev)
416 {
417 if (ata_dev_enabled(dev)) {
418 printk(KERN_WARNING "ata%u: dev %u disabled\n",
419 ap->id, dev->devno);
420 dev->class++;
421 }
422 }
423
424 /**
425 * ata_pio_devchk - PATA device presence detection
426 * @ap: ATA channel to examine
427 * @device: Device to examine (starting at zero)
428 *
429 * This technique was originally described in
430 * Hale Landis's ATADRVR (www.ata-atapi.com), and
431 * later found its way into the ATA/ATAPI spec.
432 *
433 * Write a pattern to the ATA shadow registers,
434 * and if a device is present, it will respond by
435 * correctly storing and echoing back the
436 * ATA shadow register contents.
437 *
438 * LOCKING:
439 * caller.
440 */
441
442 static unsigned int ata_pio_devchk(struct ata_port *ap,
443 unsigned int device)
444 {
445 struct ata_ioports *ioaddr = &ap->ioaddr;
446 u8 nsect, lbal;
447
448 ap->ops->dev_select(ap, device);
449
450 outb(0x55, ioaddr->nsect_addr);
451 outb(0xaa, ioaddr->lbal_addr);
452
453 outb(0xaa, ioaddr->nsect_addr);
454 outb(0x55, ioaddr->lbal_addr);
455
456 outb(0x55, ioaddr->nsect_addr);
457 outb(0xaa, ioaddr->lbal_addr);
458
459 nsect = inb(ioaddr->nsect_addr);
460 lbal = inb(ioaddr->lbal_addr);
461
462 if ((nsect == 0x55) && (lbal == 0xaa))
463 return 1; /* we found a device */
464
465 return 0; /* nothing found */
466 }
467
468 /**
469 * ata_mmio_devchk - PATA device presence detection
470 * @ap: ATA channel to examine
471 * @device: Device to examine (starting at zero)
472 *
473 * This technique was originally described in
474 * Hale Landis's ATADRVR (www.ata-atapi.com), and
475 * later found its way into the ATA/ATAPI spec.
476 *
477 * Write a pattern to the ATA shadow registers,
478 * and if a device is present, it will respond by
479 * correctly storing and echoing back the
480 * ATA shadow register contents.
481 *
482 * LOCKING:
483 * caller.
484 */
485
486 static unsigned int ata_mmio_devchk(struct ata_port *ap,
487 unsigned int device)
488 {
489 struct ata_ioports *ioaddr = &ap->ioaddr;
490 u8 nsect, lbal;
491
492 ap->ops->dev_select(ap, device);
493
494 writeb(0x55, (void __iomem *) ioaddr->nsect_addr);
495 writeb(0xaa, (void __iomem *) ioaddr->lbal_addr);
496
497 writeb(0xaa, (void __iomem *) ioaddr->nsect_addr);
498 writeb(0x55, (void __iomem *) ioaddr->lbal_addr);
499
500 writeb(0x55, (void __iomem *) ioaddr->nsect_addr);
501 writeb(0xaa, (void __iomem *) ioaddr->lbal_addr);
502
503 nsect = readb((void __iomem *) ioaddr->nsect_addr);
504 lbal = readb((void __iomem *) ioaddr->lbal_addr);
505
506 if ((nsect == 0x55) && (lbal == 0xaa))
507 return 1; /* we found a device */
508
509 return 0; /* nothing found */
510 }
511
512 /**
513 * ata_devchk - PATA device presence detection
514 * @ap: ATA channel to examine
515 * @device: Device to examine (starting at zero)
516 *
517 * Dispatch ATA device presence detection, depending
518 * on whether we are using PIO or MMIO to talk to the
519 * ATA shadow registers.
520 *
521 * LOCKING:
522 * caller.
523 */
524
525 static unsigned int ata_devchk(struct ata_port *ap,
526 unsigned int device)
527 {
528 if (ap->flags & ATA_FLAG_MMIO)
529 return ata_mmio_devchk(ap, device);
530 return ata_pio_devchk(ap, device);
531 }
532
533 /**
534 * ata_dev_classify - determine device type based on ATA-spec signature
535 * @tf: ATA taskfile register set for device to be identified
536 *
537 * Determine from taskfile register contents whether a device is
538 * ATA or ATAPI, as per "Signature and persistence" section
539 * of ATA/PI spec (volume 1, sect 5.14).
540 *
541 * LOCKING:
542 * None.
543 *
544 * RETURNS:
545 * Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, or %ATA_DEV_UNKNOWN
546 * the event of failure.
547 */
548
549 unsigned int ata_dev_classify(const struct ata_taskfile *tf)
550 {
551 /* Apple's open source Darwin code hints that some devices only
552 * put a proper signature into the LBA mid/high registers,
553 * So, we only check those. It's sufficient for uniqueness.
554 */
555
556 if (((tf->lbam == 0) && (tf->lbah == 0)) ||
557 ((tf->lbam == 0x3c) && (tf->lbah == 0xc3))) {
558 DPRINTK("found ATA device by sig\n");
559 return ATA_DEV_ATA;
560 }
561
562 if (((tf->lbam == 0x14) && (tf->lbah == 0xeb)) ||
563 ((tf->lbam == 0x69) && (tf->lbah == 0x96))) {
564 DPRINTK("found ATAPI device by sig\n");
565 return ATA_DEV_ATAPI;
566 }
567
568 DPRINTK("unknown device\n");
569 return ATA_DEV_UNKNOWN;
570 }
571
572 /**
573 * ata_dev_try_classify - Parse returned ATA device signature
574 * @ap: ATA channel to examine
575 * @device: Device to examine (starting at zero)
576 * @r_err: Value of error register on completion
577 *
578 * After an event -- SRST, E.D.D., or SATA COMRESET -- occurs,
579 * an ATA/ATAPI-defined set of values is placed in the ATA
580 * shadow registers, indicating the results of device detection
581 * and diagnostics.
582 *
583 * Select the ATA device, and read the values from the ATA shadow
584 * registers. Then parse according to the Error register value,
585 * and the spec-defined values examined by ata_dev_classify().
586 *
587 * LOCKING:
588 * caller.
589 *
590 * RETURNS:
591 * Device type - %ATA_DEV_ATA, %ATA_DEV_ATAPI or %ATA_DEV_NONE.
592 */
593
594 static unsigned int
595 ata_dev_try_classify(struct ata_port *ap, unsigned int device, u8 *r_err)
596 {
597 struct ata_taskfile tf;
598 unsigned int class;
599 u8 err;
600
601 ap->ops->dev_select(ap, device);
602
603 memset(&tf, 0, sizeof(tf));
604
605 ap->ops->tf_read(ap, &tf);
606 err = tf.feature;
607 if (r_err)
608 *r_err = err;
609
610 /* see if device passed diags */
611 if (err == 1)
612 /* do nothing */ ;
613 else if ((device == 0) && (err == 0x81))
614 /* do nothing */ ;
615 else
616 return ATA_DEV_NONE;
617
618 /* determine if device is ATA or ATAPI */
619 class = ata_dev_classify(&tf);
620
621 if (class == ATA_DEV_UNKNOWN)
622 return ATA_DEV_NONE;
623 if ((class == ATA_DEV_ATA) && (ata_chk_status(ap) == 0))
624 return ATA_DEV_NONE;
625 return class;
626 }
627
628 /**
629 * ata_id_string - Convert IDENTIFY DEVICE page into string
630 * @id: IDENTIFY DEVICE results we will examine
631 * @s: string into which data is output
632 * @ofs: offset into identify device page
633 * @len: length of string to return. must be an even number.
634 *
635 * The strings in the IDENTIFY DEVICE page are broken up into
636 * 16-bit chunks. Run through the string, and output each
637 * 8-bit chunk linearly, regardless of platform.
638 *
639 * LOCKING:
640 * caller.
641 */
642
643 void ata_id_string(const u16 *id, unsigned char *s,
644 unsigned int ofs, unsigned int len)
645 {
646 unsigned int c;
647
648 while (len > 0) {
649 c = id[ofs] >> 8;
650 *s = c;
651 s++;
652
653 c = id[ofs] & 0xff;
654 *s = c;
655 s++;
656
657 ofs++;
658 len -= 2;
659 }
660 }
661
662 /**
663 * ata_id_c_string - Convert IDENTIFY DEVICE page into C string
664 * @id: IDENTIFY DEVICE results we will examine
665 * @s: string into which data is output
666 * @ofs: offset into identify device page
667 * @len: length of string to return. must be an odd number.
668 *
669 * This function is identical to ata_id_string except that it
670 * trims trailing spaces and terminates the resulting string with
671 * null. @len must be actual maximum length (even number) + 1.
672 *
673 * LOCKING:
674 * caller.
675 */
676 void ata_id_c_string(const u16 *id, unsigned char *s,
677 unsigned int ofs, unsigned int len)
678 {
679 unsigned char *p;
680
681 WARN_ON(!(len & 1));
682
683 ata_id_string(id, s, ofs, len - 1);
684
685 p = s + strnlen(s, len - 1);
686 while (p > s && p[-1] == ' ')
687 p--;
688 *p = '\0';
689 }
690
691 static u64 ata_id_n_sectors(const u16 *id)
692 {
693 if (ata_id_has_lba(id)) {
694 if (ata_id_has_lba48(id))
695 return ata_id_u64(id, 100);
696 else
697 return ata_id_u32(id, 60);
698 } else {
699 if (ata_id_current_chs_valid(id))
700 return ata_id_u32(id, 57);
701 else
702 return id[1] * id[3] * id[6];
703 }
704 }
705
706 /**
707 * ata_noop_dev_select - Select device 0/1 on ATA bus
708 * @ap: ATA channel to manipulate
709 * @device: ATA device (numbered from zero) to select
710 *
711 * This function performs no actual function.
712 *
713 * May be used as the dev_select() entry in ata_port_operations.
714 *
715 * LOCKING:
716 * caller.
717 */
718 void ata_noop_dev_select (struct ata_port *ap, unsigned int device)
719 {
720 }
721
722
723 /**
724 * ata_std_dev_select - Select device 0/1 on ATA bus
725 * @ap: ATA channel to manipulate
726 * @device: ATA device (numbered from zero) to select
727 *
728 * Use the method defined in the ATA specification to
729 * make either device 0, or device 1, active on the
730 * ATA channel. Works with both PIO and MMIO.
731 *
732 * May be used as the dev_select() entry in ata_port_operations.
733 *
734 * LOCKING:
735 * caller.
736 */
737
738 void ata_std_dev_select (struct ata_port *ap, unsigned int device)
739 {
740 u8 tmp;
741
742 if (device == 0)
743 tmp = ATA_DEVICE_OBS;
744 else
745 tmp = ATA_DEVICE_OBS | ATA_DEV1;
746
747 if (ap->flags & ATA_FLAG_MMIO) {
748 writeb(tmp, (void __iomem *) ap->ioaddr.device_addr);
749 } else {
750 outb(tmp, ap->ioaddr.device_addr);
751 }
752 ata_pause(ap); /* needed; also flushes, for mmio */
753 }
754
755 /**
756 * ata_dev_select - Select device 0/1 on ATA bus
757 * @ap: ATA channel to manipulate
758 * @device: ATA device (numbered from zero) to select
759 * @wait: non-zero to wait for Status register BSY bit to clear
760 * @can_sleep: non-zero if context allows sleeping
761 *
762 * Use the method defined in the ATA specification to
763 * make either device 0, or device 1, active on the
764 * ATA channel.
765 *
766 * This is a high-level version of ata_std_dev_select(),
767 * which additionally provides the services of inserting
768 * the proper pauses and status polling, where needed.
769 *
770 * LOCKING:
771 * caller.
772 */
773
774 void ata_dev_select(struct ata_port *ap, unsigned int device,
775 unsigned int wait, unsigned int can_sleep)
776 {
777 VPRINTK("ENTER, ata%u: device %u, wait %u\n",
778 ap->id, device, wait);
779
780 if (wait)
781 ata_wait_idle(ap);
782
783 ap->ops->dev_select(ap, device);
784
785 if (wait) {
786 if (can_sleep && ap->device[device].class == ATA_DEV_ATAPI)
787 msleep(150);
788 ata_wait_idle(ap);
789 }
790 }
791
792 /**
793 * ata_dump_id - IDENTIFY DEVICE info debugging output
794 * @id: IDENTIFY DEVICE page to dump
795 *
796 * Dump selected 16-bit words from the given IDENTIFY DEVICE
797 * page.
798 *
799 * LOCKING:
800 * caller.
801 */
802
803 static inline void ata_dump_id(const u16 *id)
804 {
805 DPRINTK("49==0x%04x "
806 "53==0x%04x "
807 "63==0x%04x "
808 "64==0x%04x "
809 "75==0x%04x \n",
810 id[49],
811 id[53],
812 id[63],
813 id[64],
814 id[75]);
815 DPRINTK("80==0x%04x "
816 "81==0x%04x "
817 "82==0x%04x "
818 "83==0x%04x "
819 "84==0x%04x \n",
820 id[80],
821 id[81],
822 id[82],
823 id[83],
824 id[84]);
825 DPRINTK("88==0x%04x "
826 "93==0x%04x\n",
827 id[88],
828 id[93]);
829 }
830
831 /**
832 * ata_id_xfermask - Compute xfermask from the given IDENTIFY data
833 * @id: IDENTIFY data to compute xfer mask from
834 *
835 * Compute the xfermask for this device. This is not as trivial
836 * as it seems if we must consider early devices correctly.
837 *
838 * FIXME: pre IDE drive timing (do we care ?).
839 *
840 * LOCKING:
841 * None.
842 *
843 * RETURNS:
844 * Computed xfermask
845 */
846 static unsigned int ata_id_xfermask(const u16 *id)
847 {
848 unsigned int pio_mask, mwdma_mask, udma_mask;
849
850 /* Usual case. Word 53 indicates word 64 is valid */
851 if (id[ATA_ID_FIELD_VALID] & (1 << 1)) {
852 pio_mask = id[ATA_ID_PIO_MODES] & 0x03;
853 pio_mask <<= 3;
854 pio_mask |= 0x7;
855 } else {
856 /* If word 64 isn't valid then Word 51 high byte holds
857 * the PIO timing number for the maximum. Turn it into
858 * a mask.
859 */
860 pio_mask = (2 << (id[ATA_ID_OLD_PIO_MODES] & 0xFF)) - 1 ;
861
862 /* But wait.. there's more. Design your standards by
863 * committee and you too can get a free iordy field to
864 * process. However its the speeds not the modes that
865 * are supported... Note drivers using the timing API
866 * will get this right anyway
867 */
868 }
869
870 mwdma_mask = id[ATA_ID_MWDMA_MODES] & 0x07;
871
872 udma_mask = 0;
873 if (id[ATA_ID_FIELD_VALID] & (1 << 2))
874 udma_mask = id[ATA_ID_UDMA_MODES] & 0xff;
875
876 return ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
877 }
878
879 /**
880 * ata_port_queue_task - Queue port_task
881 * @ap: The ata_port to queue port_task for
882 *
883 * Schedule @fn(@data) for execution after @delay jiffies using
884 * port_task. There is one port_task per port and it's the
885 * user(low level driver)'s responsibility to make sure that only
886 * one task is active at any given time.
887 *
888 * libata core layer takes care of synchronization between
889 * port_task and EH. ata_port_queue_task() may be ignored for EH
890 * synchronization.
891 *
892 * LOCKING:
893 * Inherited from caller.
894 */
895 void ata_port_queue_task(struct ata_port *ap, void (*fn)(void *), void *data,
896 unsigned long delay)
897 {
898 int rc;
899
900 if (ap->flags & ATA_FLAG_FLUSH_PORT_TASK)
901 return;
902
903 PREPARE_WORK(&ap->port_task, fn, data);
904
905 if (!delay)
906 rc = queue_work(ata_wq, &ap->port_task);
907 else
908 rc = queue_delayed_work(ata_wq, &ap->port_task, delay);
909
910 /* rc == 0 means that another user is using port task */
911 WARN_ON(rc == 0);
912 }
913
914 /**
915 * ata_port_flush_task - Flush port_task
916 * @ap: The ata_port to flush port_task for
917 *
918 * After this function completes, port_task is guranteed not to
919 * be running or scheduled.
920 *
921 * LOCKING:
922 * Kernel thread context (may sleep)
923 */
924 void ata_port_flush_task(struct ata_port *ap)
925 {
926 unsigned long flags;
927
928 DPRINTK("ENTER\n");
929
930 spin_lock_irqsave(&ap->host_set->lock, flags);
931 ap->flags |= ATA_FLAG_FLUSH_PORT_TASK;
932 spin_unlock_irqrestore(&ap->host_set->lock, flags);
933
934 DPRINTK("flush #1\n");
935 flush_workqueue(ata_wq);
936
937 /*
938 * At this point, if a task is running, it's guaranteed to see
939 * the FLUSH flag; thus, it will never queue pio tasks again.
940 * Cancel and flush.
941 */
942 if (!cancel_delayed_work(&ap->port_task)) {
943 DPRINTK("flush #2\n");
944 flush_workqueue(ata_wq);
945 }
946
947 spin_lock_irqsave(&ap->host_set->lock, flags);
948 ap->flags &= ~ATA_FLAG_FLUSH_PORT_TASK;
949 spin_unlock_irqrestore(&ap->host_set->lock, flags);
950
951 DPRINTK("EXIT\n");
952 }
953
954 void ata_qc_complete_internal(struct ata_queued_cmd *qc)
955 {
956 struct completion *waiting = qc->private_data;
957
958 qc->ap->ops->tf_read(qc->ap, &qc->tf);
959 complete(waiting);
960 }
961
962 /**
963 * ata_exec_internal - execute libata internal command
964 * @ap: Port to which the command is sent
965 * @dev: Device to which the command is sent
966 * @tf: Taskfile registers for the command and the result
967 * @dma_dir: Data tranfer direction of the command
968 * @buf: Data buffer of the command
969 * @buflen: Length of data buffer
970 *
971 * Executes libata internal command with timeout. @tf contains
972 * command on entry and result on return. Timeout and error
973 * conditions are reported via return value. No recovery action
974 * is taken after a command times out. It's caller's duty to
975 * clean up after timeout.
976 *
977 * LOCKING:
978 * None. Should be called with kernel context, might sleep.
979 */
980
981 static unsigned
982 ata_exec_internal(struct ata_port *ap, struct ata_device *dev,
983 struct ata_taskfile *tf,
984 int dma_dir, void *buf, unsigned int buflen)
985 {
986 u8 command = tf->command;
987 struct ata_queued_cmd *qc;
988 DECLARE_COMPLETION(wait);
989 unsigned long flags;
990 unsigned int err_mask;
991
992 spin_lock_irqsave(&ap->host_set->lock, flags);
993
994 qc = ata_qc_new_init(ap, dev);
995 BUG_ON(qc == NULL);
996
997 qc->tf = *tf;
998 qc->dma_dir = dma_dir;
999 if (dma_dir != DMA_NONE) {
1000 ata_sg_init_one(qc, buf, buflen);
1001 qc->nsect = buflen / ATA_SECT_SIZE;
1002 }
1003
1004 qc->private_data = &wait;
1005 qc->complete_fn = ata_qc_complete_internal;
1006
1007 ata_qc_issue(qc);
1008
1009 spin_unlock_irqrestore(&ap->host_set->lock, flags);
1010
1011 if (!wait_for_completion_timeout(&wait, ATA_TMOUT_INTERNAL)) {
1012 ata_port_flush_task(ap);
1013
1014 spin_lock_irqsave(&ap->host_set->lock, flags);
1015
1016 /* We're racing with irq here. If we lose, the
1017 * following test prevents us from completing the qc
1018 * again. If completion irq occurs after here but
1019 * before the caller cleans up, it will result in a
1020 * spurious interrupt. We can live with that.
1021 */
1022 if (qc->flags & ATA_QCFLAG_ACTIVE) {
1023 qc->err_mask = AC_ERR_TIMEOUT;
1024 ata_qc_complete(qc);
1025 printk(KERN_WARNING "ata%u: qc timeout (cmd 0x%x)\n",
1026 ap->id, command);
1027 }
1028
1029 spin_unlock_irqrestore(&ap->host_set->lock, flags);
1030 }
1031
1032 *tf = qc->tf;
1033 err_mask = qc->err_mask;
1034
1035 ata_qc_free(qc);
1036
1037 /* XXX - Some LLDDs (sata_mv) disable port on command failure.
1038 * Until those drivers are fixed, we detect the condition
1039 * here, fail the command with AC_ERR_SYSTEM and reenable the
1040 * port.
1041 *
1042 * Note that this doesn't change any behavior as internal
1043 * command failure results in disabling the device in the
1044 * higher layer for LLDDs without new reset/EH callbacks.
1045 *
1046 * Kill the following code as soon as those drivers are fixed.
1047 */
1048 if (ap->flags & ATA_FLAG_PORT_DISABLED) {
1049 err_mask |= AC_ERR_SYSTEM;
1050 ata_port_probe(ap);
1051 }
1052
1053 return err_mask;
1054 }
1055
1056 /**
1057 * ata_pio_need_iordy - check if iordy needed
1058 * @adev: ATA device
1059 *
1060 * Check if the current speed of the device requires IORDY. Used
1061 * by various controllers for chip configuration.
1062 */
1063
1064 unsigned int ata_pio_need_iordy(const struct ata_device *adev)
1065 {
1066 int pio;
1067 int speed = adev->pio_mode - XFER_PIO_0;
1068
1069 if (speed < 2)
1070 return 0;
1071 if (speed > 2)
1072 return 1;
1073
1074 /* If we have no drive specific rule, then PIO 2 is non IORDY */
1075
1076 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE */
1077 pio = adev->id[ATA_ID_EIDE_PIO];
1078 /* Is the speed faster than the drive allows non IORDY ? */
1079 if (pio) {
1080 /* This is cycle times not frequency - watch the logic! */
1081 if (pio > 240) /* PIO2 is 240nS per cycle */
1082 return 1;
1083 return 0;
1084 }
1085 }
1086 return 0;
1087 }
1088
1089 /**
1090 * ata_dev_read_id - Read ID data from the specified device
1091 * @ap: port on which target device resides
1092 * @dev: target device
1093 * @p_class: pointer to class of the target device (may be changed)
1094 * @post_reset: is this read ID post-reset?
1095 * @p_id: read IDENTIFY page (newly allocated)
1096 *
1097 * Read ID data from the specified device. ATA_CMD_ID_ATA is
1098 * performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI
1099 * devices. This function also issues ATA_CMD_INIT_DEV_PARAMS
1100 * for pre-ATA4 drives.
1101 *
1102 * LOCKING:
1103 * Kernel thread context (may sleep)
1104 *
1105 * RETURNS:
1106 * 0 on success, -errno otherwise.
1107 */
1108 static int ata_dev_read_id(struct ata_port *ap, struct ata_device *dev,
1109 unsigned int *p_class, int post_reset, u16 **p_id)
1110 {
1111 unsigned int class = *p_class;
1112 struct ata_taskfile tf;
1113 unsigned int err_mask = 0;
1114 u16 *id;
1115 const char *reason;
1116 int rc;
1117
1118 DPRINTK("ENTER, host %u, dev %u\n", ap->id, dev->devno);
1119
1120 ata_dev_select(ap, dev->devno, 1, 1); /* select device 0/1 */
1121
1122 id = kmalloc(sizeof(id[0]) * ATA_ID_WORDS, GFP_KERNEL);
1123 if (id == NULL) {
1124 rc = -ENOMEM;
1125 reason = "out of memory";
1126 goto err_out;
1127 }
1128
1129 retry:
1130 ata_tf_init(ap, &tf, dev->devno);
1131
1132 switch (class) {
1133 case ATA_DEV_ATA:
1134 tf.command = ATA_CMD_ID_ATA;
1135 break;
1136 case ATA_DEV_ATAPI:
1137 tf.command = ATA_CMD_ID_ATAPI;
1138 break;
1139 default:
1140 rc = -ENODEV;
1141 reason = "unsupported class";
1142 goto err_out;
1143 }
1144
1145 tf.protocol = ATA_PROT_PIO;
1146
1147 err_mask = ata_exec_internal(ap, dev, &tf, DMA_FROM_DEVICE,
1148 id, sizeof(id[0]) * ATA_ID_WORDS);
1149 if (err_mask) {
1150 rc = -EIO;
1151 reason = "I/O error";
1152 goto err_out;
1153 }
1154
1155 swap_buf_le16(id, ATA_ID_WORDS);
1156
1157 /* sanity check */
1158 if ((class == ATA_DEV_ATA) != (ata_id_is_ata(id) | ata_id_is_cfa(id))) {
1159 rc = -EINVAL;
1160 reason = "device reports illegal type";
1161 goto err_out;
1162 }
1163
1164 if (post_reset && class == ATA_DEV_ATA) {
1165 /*
1166 * The exact sequence expected by certain pre-ATA4 drives is:
1167 * SRST RESET
1168 * IDENTIFY
1169 * INITIALIZE DEVICE PARAMETERS
1170 * anything else..
1171 * Some drives were very specific about that exact sequence.
1172 */
1173 if (ata_id_major_version(id) < 4 || !ata_id_has_lba(id)) {
1174 err_mask = ata_dev_init_params(ap, dev, id[3], id[6]);
1175 if (err_mask) {
1176 rc = -EIO;
1177 reason = "INIT_DEV_PARAMS failed";
1178 goto err_out;
1179 }
1180
1181 /* current CHS translation info (id[53-58]) might be
1182 * changed. reread the identify device info.
1183 */
1184 post_reset = 0;
1185 goto retry;
1186 }
1187 }
1188
1189 *p_class = class;
1190 *p_id = id;
1191 return 0;
1192
1193 err_out:
1194 printk(KERN_WARNING "ata%u: dev %u failed to IDENTIFY (%s)\n",
1195 ap->id, dev->devno, reason);
1196 kfree(id);
1197 return rc;
1198 }
1199
1200 static inline u8 ata_dev_knobble(const struct ata_port *ap,
1201 struct ata_device *dev)
1202 {
1203 return ((ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(dev->id)));
1204 }
1205
1206 /**
1207 * ata_dev_configure - Configure the specified ATA/ATAPI device
1208 * @ap: Port on which target device resides
1209 * @dev: Target device to configure
1210 * @print_info: Enable device info printout
1211 *
1212 * Configure @dev according to @dev->id. Generic and low-level
1213 * driver specific fixups are also applied.
1214 *
1215 * LOCKING:
1216 * Kernel thread context (may sleep)
1217 *
1218 * RETURNS:
1219 * 0 on success, -errno otherwise
1220 */
1221 static int ata_dev_configure(struct ata_port *ap, struct ata_device *dev,
1222 int print_info)
1223 {
1224 const u16 *id = dev->id;
1225 unsigned int xfer_mask;
1226 int i, rc;
1227
1228 if (!ata_dev_enabled(dev)) {
1229 DPRINTK("ENTER/EXIT (host %u, dev %u) -- nodev\n",
1230 ap->id, dev->devno);
1231 return 0;
1232 }
1233
1234 DPRINTK("ENTER, host %u, dev %u\n", ap->id, dev->devno);
1235
1236 /* print device capabilities */
1237 if (print_info)
1238 printk(KERN_DEBUG "ata%u: dev %u cfg 49:%04x 82:%04x 83:%04x "
1239 "84:%04x 85:%04x 86:%04x 87:%04x 88:%04x\n",
1240 ap->id, dev->devno, id[49], id[82], id[83],
1241 id[84], id[85], id[86], id[87], id[88]);
1242
1243 /* initialize to-be-configured parameters */
1244 dev->flags = 0;
1245 dev->max_sectors = 0;
1246 dev->cdb_len = 0;
1247 dev->n_sectors = 0;
1248 dev->cylinders = 0;
1249 dev->heads = 0;
1250 dev->sectors = 0;
1251
1252 /*
1253 * common ATA, ATAPI feature tests
1254 */
1255
1256 /* find max transfer mode; for printk only */
1257 xfer_mask = ata_id_xfermask(id);
1258
1259 ata_dump_id(id);
1260
1261 /* ATA-specific feature tests */
1262 if (dev->class == ATA_DEV_ATA) {
1263 dev->n_sectors = ata_id_n_sectors(id);
1264
1265 if (ata_id_has_lba(id)) {
1266 const char *lba_desc;
1267
1268 lba_desc = "LBA";
1269 dev->flags |= ATA_DFLAG_LBA;
1270 if (ata_id_has_lba48(id)) {
1271 dev->flags |= ATA_DFLAG_LBA48;
1272 lba_desc = "LBA48";
1273 }
1274
1275 /* print device info to dmesg */
1276 if (print_info)
1277 printk(KERN_INFO "ata%u: dev %u ATA-%d, "
1278 "max %s, %Lu sectors: %s\n",
1279 ap->id, dev->devno,
1280 ata_id_major_version(id),
1281 ata_mode_string(xfer_mask),
1282 (unsigned long long)dev->n_sectors,
1283 lba_desc);
1284 } else {
1285 /* CHS */
1286
1287 /* Default translation */
1288 dev->cylinders = id[1];
1289 dev->heads = id[3];
1290 dev->sectors = id[6];
1291
1292 if (ata_id_current_chs_valid(id)) {
1293 /* Current CHS translation is valid. */
1294 dev->cylinders = id[54];
1295 dev->heads = id[55];
1296 dev->sectors = id[56];
1297 }
1298
1299 /* print device info to dmesg */
1300 if (print_info)
1301 printk(KERN_INFO "ata%u: dev %u ATA-%d, "
1302 "max %s, %Lu sectors: CHS %u/%u/%u\n",
1303 ap->id, dev->devno,
1304 ata_id_major_version(id),
1305 ata_mode_string(xfer_mask),
1306 (unsigned long long)dev->n_sectors,
1307 dev->cylinders, dev->heads, dev->sectors);
1308 }
1309
1310 dev->cdb_len = 16;
1311 }
1312
1313 /* ATAPI-specific feature tests */
1314 else if (dev->class == ATA_DEV_ATAPI) {
1315 rc = atapi_cdb_len(id);
1316 if ((rc < 12) || (rc > ATAPI_CDB_LEN)) {
1317 printk(KERN_WARNING "ata%u: unsupported CDB len\n", ap->id);
1318 rc = -EINVAL;
1319 goto err_out_nosup;
1320 }
1321 dev->cdb_len = (unsigned int) rc;
1322
1323 /* print device info to dmesg */
1324 if (print_info)
1325 printk(KERN_INFO "ata%u: dev %u ATAPI, max %s\n",
1326 ap->id, dev->devno, ata_mode_string(xfer_mask));
1327 }
1328
1329 ap->host->max_cmd_len = 0;
1330 for (i = 0; i < ATA_MAX_DEVICES; i++)
1331 ap->host->max_cmd_len = max_t(unsigned int,
1332 ap->host->max_cmd_len,
1333 ap->device[i].cdb_len);
1334
1335 /* limit bridge transfers to udma5, 200 sectors */
1336 if (ata_dev_knobble(ap, dev)) {
1337 if (print_info)
1338 printk(KERN_INFO "ata%u(%u): applying bridge limits\n",
1339 ap->id, dev->devno);
1340 dev->udma_mask &= ATA_UDMA5;
1341 dev->max_sectors = ATA_MAX_SECTORS;
1342 }
1343
1344 if (ap->ops->dev_config)
1345 ap->ops->dev_config(ap, dev);
1346
1347 DPRINTK("EXIT, drv_stat = 0x%x\n", ata_chk_status(ap));
1348 return 0;
1349
1350 err_out_nosup:
1351 DPRINTK("EXIT, err\n");
1352 return rc;
1353 }
1354
1355 /**
1356 * ata_bus_probe - Reset and probe ATA bus
1357 * @ap: Bus to probe
1358 *
1359 * Master ATA bus probing function. Initiates a hardware-dependent
1360 * bus reset, then attempts to identify any devices found on
1361 * the bus.
1362 *
1363 * LOCKING:
1364 * PCI/etc. bus probe sem.
1365 *
1366 * RETURNS:
1367 * Zero on success, negative errno otherwise.
1368 */
1369
1370 static int ata_bus_probe(struct ata_port *ap)
1371 {
1372 unsigned int classes[ATA_MAX_DEVICES];
1373 int tries[ATA_MAX_DEVICES];
1374 int i, rc, down_xfermask;
1375 struct ata_device *dev;
1376
1377 ata_port_probe(ap);
1378
1379 for (i = 0; i < ATA_MAX_DEVICES; i++)
1380 tries[i] = ATA_PROBE_MAX_TRIES;
1381
1382 retry:
1383 down_xfermask = 0;
1384
1385 /* reset and determine device classes */
1386 for (i = 0; i < ATA_MAX_DEVICES; i++)
1387 classes[i] = ATA_DEV_UNKNOWN;
1388
1389 if (ap->ops->probe_reset) {
1390 rc = ap->ops->probe_reset(ap, classes);
1391 if (rc) {
1392 printk("ata%u: reset failed (errno=%d)\n", ap->id, rc);
1393 return rc;
1394 }
1395 } else {
1396 ap->ops->phy_reset(ap);
1397
1398 if (!(ap->flags & ATA_FLAG_PORT_DISABLED))
1399 for (i = 0; i < ATA_MAX_DEVICES; i++)
1400 classes[i] = ap->device[i].class;
1401
1402 ata_port_probe(ap);
1403 }
1404
1405 for (i = 0; i < ATA_MAX_DEVICES; i++)
1406 if (classes[i] == ATA_DEV_UNKNOWN)
1407 classes[i] = ATA_DEV_NONE;
1408
1409 /* read IDENTIFY page and configure devices */
1410 for (i = 0; i < ATA_MAX_DEVICES; i++) {
1411 dev = &ap->device[i];
1412 dev->class = classes[i];
1413
1414 if (!tries[i]) {
1415 ata_down_xfermask_limit(ap, dev, 1);
1416 ata_dev_disable(ap, dev);
1417 }
1418
1419 if (!ata_dev_enabled(dev))
1420 continue;
1421
1422 kfree(dev->id);
1423 dev->id = NULL;
1424 rc = ata_dev_read_id(ap, dev, &dev->class, 1, &dev->id);
1425 if (rc)
1426 goto fail;
1427
1428 rc = ata_dev_configure(ap, dev, 1);
1429 if (rc)
1430 goto fail;
1431 }
1432
1433 /* configure transfer mode */
1434 if (ap->ops->set_mode) {
1435 /* FIXME: make ->set_mode handle no device case and
1436 * return error code and failing device on failure as
1437 * ata_set_mode() does.
1438 */
1439 for (i = 0; i < ATA_MAX_DEVICES; i++)
1440 if (ata_dev_enabled(&ap->device[i])) {
1441 ap->ops->set_mode(ap);
1442 break;
1443 }
1444 rc = 0;
1445 } else {
1446 rc = ata_set_mode(ap, &dev);
1447 if (rc) {
1448 down_xfermask = 1;
1449 goto fail;
1450 }
1451 }
1452
1453 for (i = 0; i < ATA_MAX_DEVICES; i++)
1454 if (ata_dev_enabled(&ap->device[i]))
1455 return 0;
1456
1457 /* no device present, disable port */
1458 ata_port_disable(ap);
1459 ap->ops->port_disable(ap);
1460 return -ENODEV;
1461
1462 fail:
1463 switch (rc) {
1464 case -EINVAL:
1465 case -ENODEV:
1466 tries[dev->devno] = 0;
1467 break;
1468 case -EIO:
1469 ata_down_sata_spd_limit(ap);
1470 /* fall through */
1471 default:
1472 tries[dev->devno]--;
1473 if (down_xfermask &&
1474 ata_down_xfermask_limit(ap, dev, tries[dev->devno] == 1))
1475 tries[dev->devno] = 0;
1476 }
1477
1478 goto retry;
1479 }
1480
1481 /**
1482 * ata_port_probe - Mark port as enabled
1483 * @ap: Port for which we indicate enablement
1484 *
1485 * Modify @ap data structure such that the system
1486 * thinks that the entire port is enabled.
1487 *
1488 * LOCKING: host_set lock, or some other form of
1489 * serialization.
1490 */
1491
1492 void ata_port_probe(struct ata_port *ap)
1493 {
1494 ap->flags &= ~ATA_FLAG_PORT_DISABLED;
1495 }
1496
1497 /**
1498 * sata_print_link_status - Print SATA link status
1499 * @ap: SATA port to printk link status about
1500 *
1501 * This function prints link speed and status of a SATA link.
1502 *
1503 * LOCKING:
1504 * None.
1505 */
1506 static void sata_print_link_status(struct ata_port *ap)
1507 {
1508 u32 sstatus, tmp;
1509
1510 if (!ap->ops->scr_read)
1511 return;
1512
1513 sstatus = scr_read(ap, SCR_STATUS);
1514
1515 if (sata_dev_present(ap)) {
1516 tmp = (sstatus >> 4) & 0xf;
1517 printk(KERN_INFO "ata%u: SATA link up %s (SStatus %X)\n",
1518 ap->id, sata_spd_string(tmp), sstatus);
1519 } else {
1520 printk(KERN_INFO "ata%u: SATA link down (SStatus %X)\n",
1521 ap->id, sstatus);
1522 }
1523 }
1524
1525 /**
1526 * __sata_phy_reset - Wake/reset a low-level SATA PHY
1527 * @ap: SATA port associated with target SATA PHY.
1528 *
1529 * This function issues commands to standard SATA Sxxx
1530 * PHY registers, to wake up the phy (and device), and
1531 * clear any reset condition.
1532 *
1533 * LOCKING:
1534 * PCI/etc. bus probe sem.
1535 *
1536 */
1537 void __sata_phy_reset(struct ata_port *ap)
1538 {
1539 u32 sstatus;
1540 unsigned long timeout = jiffies + (HZ * 5);
1541
1542 if (ap->flags & ATA_FLAG_SATA_RESET) {
1543 /* issue phy wake/reset */
1544 scr_write_flush(ap, SCR_CONTROL, 0x301);
1545 /* Couldn't find anything in SATA I/II specs, but
1546 * AHCI-1.1 10.4.2 says at least 1 ms. */
1547 mdelay(1);
1548 }
1549 scr_write_flush(ap, SCR_CONTROL, 0x300); /* phy wake/clear reset */
1550
1551 /* wait for phy to become ready, if necessary */
1552 do {
1553 msleep(200);
1554 sstatus = scr_read(ap, SCR_STATUS);
1555 if ((sstatus & 0xf) != 1)
1556 break;
1557 } while (time_before(jiffies, timeout));
1558
1559 /* print link status */
1560 sata_print_link_status(ap);
1561
1562 /* TODO: phy layer with polling, timeouts, etc. */
1563 if (sata_dev_present(ap))
1564 ata_port_probe(ap);
1565 else
1566 ata_port_disable(ap);
1567
1568 if (ap->flags & ATA_FLAG_PORT_DISABLED)
1569 return;
1570
1571 if (ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT)) {
1572 ata_port_disable(ap);
1573 return;
1574 }
1575
1576 ap->cbl = ATA_CBL_SATA;
1577 }
1578
1579 /**
1580 * sata_phy_reset - Reset SATA bus.
1581 * @ap: SATA port associated with target SATA PHY.
1582 *
1583 * This function resets the SATA bus, and then probes
1584 * the bus for devices.
1585 *
1586 * LOCKING:
1587 * PCI/etc. bus probe sem.
1588 *
1589 */
1590 void sata_phy_reset(struct ata_port *ap)
1591 {
1592 __sata_phy_reset(ap);
1593 if (ap->flags & ATA_FLAG_PORT_DISABLED)
1594 return;
1595 ata_bus_reset(ap);
1596 }
1597
1598 /**
1599 * ata_dev_pair - return other device on cable
1600 * @ap: port
1601 * @adev: device
1602 *
1603 * Obtain the other device on the same cable, or if none is
1604 * present NULL is returned
1605 */
1606
1607 struct ata_device *ata_dev_pair(struct ata_port *ap, struct ata_device *adev)
1608 {
1609 struct ata_device *pair = &ap->device[1 - adev->devno];
1610 if (!ata_dev_enabled(pair))
1611 return NULL;
1612 return pair;
1613 }
1614
1615 /**
1616 * ata_port_disable - Disable port.
1617 * @ap: Port to be disabled.
1618 *
1619 * Modify @ap data structure such that the system
1620 * thinks that the entire port is disabled, and should
1621 * never attempt to probe or communicate with devices
1622 * on this port.
1623 *
1624 * LOCKING: host_set lock, or some other form of
1625 * serialization.
1626 */
1627
1628 void ata_port_disable(struct ata_port *ap)
1629 {
1630 ap->device[0].class = ATA_DEV_NONE;
1631 ap->device[1].class = ATA_DEV_NONE;
1632 ap->flags |= ATA_FLAG_PORT_DISABLED;
1633 }
1634
1635 /**
1636 * ata_down_sata_spd_limit - adjust SATA spd limit downward
1637 * @ap: Port to adjust SATA spd limit for
1638 *
1639 * Adjust SATA spd limit of @ap downward. Note that this
1640 * function only adjusts the limit. The change must be applied
1641 * using ata_set_sata_spd().
1642 *
1643 * LOCKING:
1644 * Inherited from caller.
1645 *
1646 * RETURNS:
1647 * 0 on success, negative errno on failure
1648 */
1649 static int ata_down_sata_spd_limit(struct ata_port *ap)
1650 {
1651 u32 spd, mask;
1652 int highbit;
1653
1654 if (ap->cbl != ATA_CBL_SATA || !ap->ops->scr_read)
1655 return -EOPNOTSUPP;
1656
1657 mask = ap->sata_spd_limit;
1658 if (mask <= 1)
1659 return -EINVAL;
1660 highbit = fls(mask) - 1;
1661 mask &= ~(1 << highbit);
1662
1663 spd = (scr_read(ap, SCR_STATUS) >> 4) & 0xf;
1664 if (spd <= 1)
1665 return -EINVAL;
1666 spd--;
1667 mask &= (1 << spd) - 1;
1668 if (!mask)
1669 return -EINVAL;
1670
1671 ap->sata_spd_limit = mask;
1672
1673 printk(KERN_WARNING "ata%u: limiting SATA link speed to %s\n",
1674 ap->id, sata_spd_string(fls(mask)));
1675
1676 return 0;
1677 }
1678
1679 static int __ata_set_sata_spd_needed(struct ata_port *ap, u32 *scontrol)
1680 {
1681 u32 spd, limit;
1682
1683 if (ap->sata_spd_limit == UINT_MAX)
1684 limit = 0;
1685 else
1686 limit = fls(ap->sata_spd_limit);
1687
1688 spd = (*scontrol >> 4) & 0xf;
1689 *scontrol = (*scontrol & ~0xf0) | ((limit & 0xf) << 4);
1690
1691 return spd != limit;
1692 }
1693
1694 /**
1695 * ata_set_sata_spd_needed - is SATA spd configuration needed
1696 * @ap: Port in question
1697 *
1698 * Test whether the spd limit in SControl matches
1699 * @ap->sata_spd_limit. This function is used to determine
1700 * whether hardreset is necessary to apply SATA spd
1701 * configuration.
1702 *
1703 * LOCKING:
1704 * Inherited from caller.
1705 *
1706 * RETURNS:
1707 * 1 if SATA spd configuration is needed, 0 otherwise.
1708 */
1709 static int ata_set_sata_spd_needed(struct ata_port *ap)
1710 {
1711 u32 scontrol;
1712
1713 if (ap->cbl != ATA_CBL_SATA || !ap->ops->scr_read)
1714 return 0;
1715
1716 scontrol = scr_read(ap, SCR_CONTROL);
1717
1718 return __ata_set_sata_spd_needed(ap, &scontrol);
1719 }
1720
1721 /**
1722 * ata_set_sata_spd - set SATA spd according to spd limit
1723 * @ap: Port to set SATA spd for
1724 *
1725 * Set SATA spd of @ap according to sata_spd_limit.
1726 *
1727 * LOCKING:
1728 * Inherited from caller.
1729 *
1730 * RETURNS:
1731 * 0 if spd doesn't need to be changed, 1 if spd has been
1732 * changed. -EOPNOTSUPP if SCR registers are inaccessible.
1733 */
1734 static int ata_set_sata_spd(struct ata_port *ap)
1735 {
1736 u32 scontrol;
1737
1738 if (ap->cbl != ATA_CBL_SATA || !ap->ops->scr_read)
1739 return -EOPNOTSUPP;
1740
1741 scontrol = scr_read(ap, SCR_CONTROL);
1742 if (!__ata_set_sata_spd_needed(ap, &scontrol))
1743 return 0;
1744
1745 scr_write(ap, SCR_CONTROL, scontrol);
1746 return 1;
1747 }
1748
1749 /*
1750 * This mode timing computation functionality is ported over from
1751 * drivers/ide/ide-timing.h and was originally written by Vojtech Pavlik
1752 */
1753 /*
1754 * PIO 0-5, MWDMA 0-2 and UDMA 0-6 timings (in nanoseconds).
1755 * These were taken from ATA/ATAPI-6 standard, rev 0a, except
1756 * for PIO 5, which is a nonstandard extension and UDMA6, which
1757 * is currently supported only by Maxtor drives.
1758 */
1759
1760 static const struct ata_timing ata_timing[] = {
1761
1762 { XFER_UDMA_6, 0, 0, 0, 0, 0, 0, 0, 15 },
1763 { XFER_UDMA_5, 0, 0, 0, 0, 0, 0, 0, 20 },
1764 { XFER_UDMA_4, 0, 0, 0, 0, 0, 0, 0, 30 },
1765 { XFER_UDMA_3, 0, 0, 0, 0, 0, 0, 0, 45 },
1766
1767 { XFER_UDMA_2, 0, 0, 0, 0, 0, 0, 0, 60 },
1768 { XFER_UDMA_1, 0, 0, 0, 0, 0, 0, 0, 80 },
1769 { XFER_UDMA_0, 0, 0, 0, 0, 0, 0, 0, 120 },
1770
1771 /* { XFER_UDMA_SLOW, 0, 0, 0, 0, 0, 0, 0, 150 }, */
1772
1773 { XFER_MW_DMA_2, 25, 0, 0, 0, 70, 25, 120, 0 },
1774 { XFER_MW_DMA_1, 45, 0, 0, 0, 80, 50, 150, 0 },
1775 { XFER_MW_DMA_0, 60, 0, 0, 0, 215, 215, 480, 0 },
1776
1777 { XFER_SW_DMA_2, 60, 0, 0, 0, 120, 120, 240, 0 },
1778 { XFER_SW_DMA_1, 90, 0, 0, 0, 240, 240, 480, 0 },
1779 { XFER_SW_DMA_0, 120, 0, 0, 0, 480, 480, 960, 0 },
1780
1781 /* { XFER_PIO_5, 20, 50, 30, 100, 50, 30, 100, 0 }, */
1782 { XFER_PIO_4, 25, 70, 25, 120, 70, 25, 120, 0 },
1783 { XFER_PIO_3, 30, 80, 70, 180, 80, 70, 180, 0 },
1784
1785 { XFER_PIO_2, 30, 290, 40, 330, 100, 90, 240, 0 },
1786 { XFER_PIO_1, 50, 290, 93, 383, 125, 100, 383, 0 },
1787 { XFER_PIO_0, 70, 290, 240, 600, 165, 150, 600, 0 },
1788
1789 /* { XFER_PIO_SLOW, 120, 290, 240, 960, 290, 240, 960, 0 }, */
1790
1791 { 0xFF }
1792 };
1793
1794 #define ENOUGH(v,unit) (((v)-1)/(unit)+1)
1795 #define EZ(v,unit) ((v)?ENOUGH(v,unit):0)
1796
1797 static void ata_timing_quantize(const struct ata_timing *t, struct ata_timing *q, int T, int UT)
1798 {
1799 q->setup = EZ(t->setup * 1000, T);
1800 q->act8b = EZ(t->act8b * 1000, T);
1801 q->rec8b = EZ(t->rec8b * 1000, T);
1802 q->cyc8b = EZ(t->cyc8b * 1000, T);
1803 q->active = EZ(t->active * 1000, T);
1804 q->recover = EZ(t->recover * 1000, T);
1805 q->cycle = EZ(t->cycle * 1000, T);
1806 q->udma = EZ(t->udma * 1000, UT);
1807 }
1808
1809 void ata_timing_merge(const struct ata_timing *a, const struct ata_timing *b,
1810 struct ata_timing *m, unsigned int what)
1811 {
1812 if (what & ATA_TIMING_SETUP ) m->setup = max(a->setup, b->setup);
1813 if (what & ATA_TIMING_ACT8B ) m->act8b = max(a->act8b, b->act8b);
1814 if (what & ATA_TIMING_REC8B ) m->rec8b = max(a->rec8b, b->rec8b);
1815 if (what & ATA_TIMING_CYC8B ) m->cyc8b = max(a->cyc8b, b->cyc8b);
1816 if (what & ATA_TIMING_ACTIVE ) m->active = max(a->active, b->active);
1817 if (what & ATA_TIMING_RECOVER) m->recover = max(a->recover, b->recover);
1818 if (what & ATA_TIMING_CYCLE ) m->cycle = max(a->cycle, b->cycle);
1819 if (what & ATA_TIMING_UDMA ) m->udma = max(a->udma, b->udma);
1820 }
1821
1822 static const struct ata_timing* ata_timing_find_mode(unsigned short speed)
1823 {
1824 const struct ata_timing *t;
1825
1826 for (t = ata_timing; t->mode != speed; t++)
1827 if (t->mode == 0xFF)
1828 return NULL;
1829 return t;
1830 }
1831
1832 int ata_timing_compute(struct ata_device *adev, unsigned short speed,
1833 struct ata_timing *t, int T, int UT)
1834 {
1835 const struct ata_timing *s;
1836 struct ata_timing p;
1837
1838 /*
1839 * Find the mode.
1840 */
1841
1842 if (!(s = ata_timing_find_mode(speed)))
1843 return -EINVAL;
1844
1845 memcpy(t, s, sizeof(*s));
1846
1847 /*
1848 * If the drive is an EIDE drive, it can tell us it needs extended
1849 * PIO/MW_DMA cycle timing.
1850 */
1851
1852 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE drive */
1853 memset(&p, 0, sizeof(p));
1854 if(speed >= XFER_PIO_0 && speed <= XFER_SW_DMA_0) {
1855 if (speed <= XFER_PIO_2) p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO];
1856 else p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO_IORDY];
1857 } else if(speed >= XFER_MW_DMA_0 && speed <= XFER_MW_DMA_2) {
1858 p.cycle = adev->id[ATA_ID_EIDE_DMA_MIN];
1859 }
1860 ata_timing_merge(&p, t, t, ATA_TIMING_CYCLE | ATA_TIMING_CYC8B);
1861 }
1862
1863 /*
1864 * Convert the timing to bus clock counts.
1865 */
1866
1867 ata_timing_quantize(t, t, T, UT);
1868
1869 /*
1870 * Even in DMA/UDMA modes we still use PIO access for IDENTIFY,
1871 * S.M.A.R.T * and some other commands. We have to ensure that the
1872 * DMA cycle timing is slower/equal than the fastest PIO timing.
1873 */
1874
1875 if (speed > XFER_PIO_4) {
1876 ata_timing_compute(adev, adev->pio_mode, &p, T, UT);
1877 ata_timing_merge(&p, t, t, ATA_TIMING_ALL);
1878 }
1879
1880 /*
1881 * Lengthen active & recovery time so that cycle time is correct.
1882 */
1883
1884 if (t->act8b + t->rec8b < t->cyc8b) {
1885 t->act8b += (t->cyc8b - (t->act8b + t->rec8b)) / 2;
1886 t->rec8b = t->cyc8b - t->act8b;
1887 }
1888
1889 if (t->active + t->recover < t->cycle) {
1890 t->active += (t->cycle - (t->active + t->recover)) / 2;
1891 t->recover = t->cycle - t->active;
1892 }
1893
1894 return 0;
1895 }
1896
1897 /**
1898 * ata_down_xfermask_limit - adjust dev xfer masks downward
1899 * @ap: Port associated with device @dev
1900 * @dev: Device to adjust xfer masks
1901 * @force_pio0: Force PIO0
1902 *
1903 * Adjust xfer masks of @dev downward. Note that this function
1904 * does not apply the change. Invoking ata_set_mode() afterwards
1905 * will apply the limit.
1906 *
1907 * LOCKING:
1908 * Inherited from caller.
1909 *
1910 * RETURNS:
1911 * 0 on success, negative errno on failure
1912 */
1913 static int ata_down_xfermask_limit(struct ata_port *ap, struct ata_device *dev,
1914 int force_pio0)
1915 {
1916 unsigned long xfer_mask;
1917 int highbit;
1918
1919 xfer_mask = ata_pack_xfermask(dev->pio_mask, dev->mwdma_mask,
1920 dev->udma_mask);
1921
1922 if (!xfer_mask)
1923 goto fail;
1924 /* don't gear down to MWDMA from UDMA, go directly to PIO */
1925 if (xfer_mask & ATA_MASK_UDMA)
1926 xfer_mask &= ~ATA_MASK_MWDMA;
1927
1928 highbit = fls(xfer_mask) - 1;
1929 xfer_mask &= ~(1 << highbit);
1930 if (force_pio0)
1931 xfer_mask &= 1 << ATA_SHIFT_PIO;
1932 if (!xfer_mask)
1933 goto fail;
1934
1935 ata_unpack_xfermask(xfer_mask, &dev->pio_mask, &dev->mwdma_mask,
1936 &dev->udma_mask);
1937
1938 printk(KERN_WARNING "ata%u: dev %u limiting speed to %s\n",
1939 ap->id, dev->devno, ata_mode_string(xfer_mask));
1940
1941 return 0;
1942
1943 fail:
1944 return -EINVAL;
1945 }
1946
1947 static int ata_dev_set_mode(struct ata_port *ap, struct ata_device *dev)
1948 {
1949 unsigned int err_mask;
1950 int rc;
1951
1952 if (dev->xfer_shift == ATA_SHIFT_PIO)
1953 dev->flags |= ATA_DFLAG_PIO;
1954
1955 err_mask = ata_dev_set_xfermode(ap, dev);
1956 if (err_mask) {
1957 printk(KERN_ERR
1958 "ata%u: failed to set xfermode (err_mask=0x%x)\n",
1959 ap->id, err_mask);
1960 return -EIO;
1961 }
1962
1963 rc = ata_dev_revalidate(ap, dev, 0);
1964 if (rc) {
1965 printk(KERN_ERR
1966 "ata%u: failed to revalidate after set xfermode\n",
1967 ap->id);
1968 return rc;
1969 }
1970
1971 DPRINTK("xfer_shift=%u, xfer_mode=0x%x\n",
1972 dev->xfer_shift, (int)dev->xfer_mode);
1973
1974 printk(KERN_INFO "ata%u: dev %u configured for %s\n",
1975 ap->id, dev->devno,
1976 ata_mode_string(ata_xfer_mode2mask(dev->xfer_mode)));
1977 return 0;
1978 }
1979
1980 /**
1981 * ata_set_mode - Program timings and issue SET FEATURES - XFER
1982 * @ap: port on which timings will be programmed
1983 * @r_failed_dev: out paramter for failed device
1984 *
1985 * Set ATA device disk transfer mode (PIO3, UDMA6, etc.). If
1986 * ata_set_mode() fails, pointer to the failing device is
1987 * returned in @r_failed_dev.
1988 *
1989 * LOCKING:
1990 * PCI/etc. bus probe sem.
1991 *
1992 * RETURNS:
1993 * 0 on success, negative errno otherwise
1994 */
1995 static int ata_set_mode(struct ata_port *ap, struct ata_device **r_failed_dev)
1996 {
1997 struct ata_device *dev;
1998 int i, rc = 0, used_dma = 0, found = 0;
1999
2000 /* step 1: calculate xfer_mask */
2001 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2002 unsigned int pio_mask, dma_mask;
2003
2004 dev = &ap->device[i];
2005
2006 if (!ata_dev_enabled(dev))
2007 continue;
2008
2009 ata_dev_xfermask(ap, dev);
2010
2011 pio_mask = ata_pack_xfermask(dev->pio_mask, 0, 0);
2012 dma_mask = ata_pack_xfermask(0, dev->mwdma_mask, dev->udma_mask);
2013 dev->pio_mode = ata_xfer_mask2mode(pio_mask);
2014 dev->dma_mode = ata_xfer_mask2mode(dma_mask);
2015
2016 found = 1;
2017 if (dev->dma_mode)
2018 used_dma = 1;
2019 }
2020 if (!found)
2021 goto out;
2022
2023 /* step 2: always set host PIO timings */
2024 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2025 dev = &ap->device[i];
2026 if (!ata_dev_enabled(dev))
2027 continue;
2028
2029 if (!dev->pio_mode) {
2030 printk(KERN_WARNING "ata%u: dev %u no PIO support\n",
2031 ap->id, dev->devno);
2032 rc = -EINVAL;
2033 goto out;
2034 }
2035
2036 dev->xfer_mode = dev->pio_mode;
2037 dev->xfer_shift = ATA_SHIFT_PIO;
2038 if (ap->ops->set_piomode)
2039 ap->ops->set_piomode(ap, dev);
2040 }
2041
2042 /* step 3: set host DMA timings */
2043 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2044 dev = &ap->device[i];
2045
2046 if (!ata_dev_enabled(dev) || !dev->dma_mode)
2047 continue;
2048
2049 dev->xfer_mode = dev->dma_mode;
2050 dev->xfer_shift = ata_xfer_mode2shift(dev->dma_mode);
2051 if (ap->ops->set_dmamode)
2052 ap->ops->set_dmamode(ap, dev);
2053 }
2054
2055 /* step 4: update devices' xfer mode */
2056 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2057 dev = &ap->device[i];
2058
2059 if (!ata_dev_enabled(dev))
2060 continue;
2061
2062 rc = ata_dev_set_mode(ap, dev);
2063 if (rc)
2064 goto out;
2065 }
2066
2067 /* Record simplex status. If we selected DMA then the other
2068 * host channels are not permitted to do so.
2069 */
2070 if (used_dma && (ap->host_set->flags & ATA_HOST_SIMPLEX))
2071 ap->host_set->simplex_claimed = 1;
2072
2073 /* step5: chip specific finalisation */
2074 if (ap->ops->post_set_mode)
2075 ap->ops->post_set_mode(ap);
2076
2077 out:
2078 if (rc)
2079 *r_failed_dev = dev;
2080 return rc;
2081 }
2082
2083 /**
2084 * ata_tf_to_host - issue ATA taskfile to host controller
2085 * @ap: port to which command is being issued
2086 * @tf: ATA taskfile register set
2087 *
2088 * Issues ATA taskfile register set to ATA host controller,
2089 * with proper synchronization with interrupt handler and
2090 * other threads.
2091 *
2092 * LOCKING:
2093 * spin_lock_irqsave(host_set lock)
2094 */
2095
2096 static inline void ata_tf_to_host(struct ata_port *ap,
2097 const struct ata_taskfile *tf)
2098 {
2099 ap->ops->tf_load(ap, tf);
2100 ap->ops->exec_command(ap, tf);
2101 }
2102
2103 /**
2104 * ata_busy_sleep - sleep until BSY clears, or timeout
2105 * @ap: port containing status register to be polled
2106 * @tmout_pat: impatience timeout
2107 * @tmout: overall timeout
2108 *
2109 * Sleep until ATA Status register bit BSY clears,
2110 * or a timeout occurs.
2111 *
2112 * LOCKING: None.
2113 */
2114
2115 unsigned int ata_busy_sleep (struct ata_port *ap,
2116 unsigned long tmout_pat, unsigned long tmout)
2117 {
2118 unsigned long timer_start, timeout;
2119 u8 status;
2120
2121 status = ata_busy_wait(ap, ATA_BUSY, 300);
2122 timer_start = jiffies;
2123 timeout = timer_start + tmout_pat;
2124 while ((status & ATA_BUSY) && (time_before(jiffies, timeout))) {
2125 msleep(50);
2126 status = ata_busy_wait(ap, ATA_BUSY, 3);
2127 }
2128
2129 if (status & ATA_BUSY)
2130 printk(KERN_WARNING "ata%u is slow to respond, "
2131 "please be patient\n", ap->id);
2132
2133 timeout = timer_start + tmout;
2134 while ((status & ATA_BUSY) && (time_before(jiffies, timeout))) {
2135 msleep(50);
2136 status = ata_chk_status(ap);
2137 }
2138
2139 if (status & ATA_BUSY) {
2140 printk(KERN_ERR "ata%u failed to respond (%lu secs)\n",
2141 ap->id, tmout / HZ);
2142 return 1;
2143 }
2144
2145 return 0;
2146 }
2147
2148 static void ata_bus_post_reset(struct ata_port *ap, unsigned int devmask)
2149 {
2150 struct ata_ioports *ioaddr = &ap->ioaddr;
2151 unsigned int dev0 = devmask & (1 << 0);
2152 unsigned int dev1 = devmask & (1 << 1);
2153 unsigned long timeout;
2154
2155 /* if device 0 was found in ata_devchk, wait for its
2156 * BSY bit to clear
2157 */
2158 if (dev0)
2159 ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT);
2160
2161 /* if device 1 was found in ata_devchk, wait for
2162 * register access, then wait for BSY to clear
2163 */
2164 timeout = jiffies + ATA_TMOUT_BOOT;
2165 while (dev1) {
2166 u8 nsect, lbal;
2167
2168 ap->ops->dev_select(ap, 1);
2169 if (ap->flags & ATA_FLAG_MMIO) {
2170 nsect = readb((void __iomem *) ioaddr->nsect_addr);
2171 lbal = readb((void __iomem *) ioaddr->lbal_addr);
2172 } else {
2173 nsect = inb(ioaddr->nsect_addr);
2174 lbal = inb(ioaddr->lbal_addr);
2175 }
2176 if ((nsect == 1) && (lbal == 1))
2177 break;
2178 if (time_after(jiffies, timeout)) {
2179 dev1 = 0;
2180 break;
2181 }
2182 msleep(50); /* give drive a breather */
2183 }
2184 if (dev1)
2185 ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT);
2186
2187 /* is all this really necessary? */
2188 ap->ops->dev_select(ap, 0);
2189 if (dev1)
2190 ap->ops->dev_select(ap, 1);
2191 if (dev0)
2192 ap->ops->dev_select(ap, 0);
2193 }
2194
2195 static unsigned int ata_bus_softreset(struct ata_port *ap,
2196 unsigned int devmask)
2197 {
2198 struct ata_ioports *ioaddr = &ap->ioaddr;
2199
2200 DPRINTK("ata%u: bus reset via SRST\n", ap->id);
2201
2202 /* software reset. causes dev0 to be selected */
2203 if (ap->flags & ATA_FLAG_MMIO) {
2204 writeb(ap->ctl, (void __iomem *) ioaddr->ctl_addr);
2205 udelay(20); /* FIXME: flush */
2206 writeb(ap->ctl | ATA_SRST, (void __iomem *) ioaddr->ctl_addr);
2207 udelay(20); /* FIXME: flush */
2208 writeb(ap->ctl, (void __iomem *) ioaddr->ctl_addr);
2209 } else {
2210 outb(ap->ctl, ioaddr->ctl_addr);
2211 udelay(10);
2212 outb(ap->ctl | ATA_SRST, ioaddr->ctl_addr);
2213 udelay(10);
2214 outb(ap->ctl, ioaddr->ctl_addr);
2215 }
2216
2217 /* spec mandates ">= 2ms" before checking status.
2218 * We wait 150ms, because that was the magic delay used for
2219 * ATAPI devices in Hale Landis's ATADRVR, for the period of time
2220 * between when the ATA command register is written, and then
2221 * status is checked. Because waiting for "a while" before
2222 * checking status is fine, post SRST, we perform this magic
2223 * delay here as well.
2224 *
2225 * Old drivers/ide uses the 2mS rule and then waits for ready
2226 */
2227 msleep(150);
2228
2229 /* Before we perform post reset processing we want to see if
2230 * the bus shows 0xFF because the odd clown forgets the D7
2231 * pulldown resistor.
2232 */
2233 if (ata_check_status(ap) == 0xFF)
2234 return AC_ERR_OTHER;
2235
2236 ata_bus_post_reset(ap, devmask);
2237
2238 return 0;
2239 }
2240
2241 /**
2242 * ata_bus_reset - reset host port and associated ATA channel
2243 * @ap: port to reset
2244 *
2245 * This is typically the first time we actually start issuing
2246 * commands to the ATA channel. We wait for BSY to clear, then
2247 * issue EXECUTE DEVICE DIAGNOSTIC command, polling for its
2248 * result. Determine what devices, if any, are on the channel
2249 * by looking at the device 0/1 error register. Look at the signature
2250 * stored in each device's taskfile registers, to determine if
2251 * the device is ATA or ATAPI.
2252 *
2253 * LOCKING:
2254 * PCI/etc. bus probe sem.
2255 * Obtains host_set lock.
2256 *
2257 * SIDE EFFECTS:
2258 * Sets ATA_FLAG_PORT_DISABLED if bus reset fails.
2259 */
2260
2261 void ata_bus_reset(struct ata_port *ap)
2262 {
2263 struct ata_ioports *ioaddr = &ap->ioaddr;
2264 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
2265 u8 err;
2266 unsigned int dev0, dev1 = 0, devmask = 0;
2267
2268 DPRINTK("ENTER, host %u, port %u\n", ap->id, ap->port_no);
2269
2270 /* determine if device 0/1 are present */
2271 if (ap->flags & ATA_FLAG_SATA_RESET)
2272 dev0 = 1;
2273 else {
2274 dev0 = ata_devchk(ap, 0);
2275 if (slave_possible)
2276 dev1 = ata_devchk(ap, 1);
2277 }
2278
2279 if (dev0)
2280 devmask |= (1 << 0);
2281 if (dev1)
2282 devmask |= (1 << 1);
2283
2284 /* select device 0 again */
2285 ap->ops->dev_select(ap, 0);
2286
2287 /* issue bus reset */
2288 if (ap->flags & ATA_FLAG_SRST)
2289 if (ata_bus_softreset(ap, devmask))
2290 goto err_out;
2291
2292 /*
2293 * determine by signature whether we have ATA or ATAPI devices
2294 */
2295 ap->device[0].class = ata_dev_try_classify(ap, 0, &err);
2296 if ((slave_possible) && (err != 0x81))
2297 ap->device[1].class = ata_dev_try_classify(ap, 1, &err);
2298
2299 /* re-enable interrupts */
2300 if (ap->ioaddr.ctl_addr) /* FIXME: hack. create a hook instead */
2301 ata_irq_on(ap);
2302
2303 /* is double-select really necessary? */
2304 if (ap->device[1].class != ATA_DEV_NONE)
2305 ap->ops->dev_select(ap, 1);
2306 if (ap->device[0].class != ATA_DEV_NONE)
2307 ap->ops->dev_select(ap, 0);
2308
2309 /* if no devices were detected, disable this port */
2310 if ((ap->device[0].class == ATA_DEV_NONE) &&
2311 (ap->device[1].class == ATA_DEV_NONE))
2312 goto err_out;
2313
2314 if (ap->flags & (ATA_FLAG_SATA_RESET | ATA_FLAG_SRST)) {
2315 /* set up device control for ATA_FLAG_SATA_RESET */
2316 if (ap->flags & ATA_FLAG_MMIO)
2317 writeb(ap->ctl, (void __iomem *) ioaddr->ctl_addr);
2318 else
2319 outb(ap->ctl, ioaddr->ctl_addr);
2320 }
2321
2322 DPRINTK("EXIT\n");
2323 return;
2324
2325 err_out:
2326 printk(KERN_ERR "ata%u: disabling port\n", ap->id);
2327 ap->ops->port_disable(ap);
2328
2329 DPRINTK("EXIT\n");
2330 }
2331
2332 static int sata_phy_resume(struct ata_port *ap)
2333 {
2334 unsigned long timeout = jiffies + (HZ * 5);
2335 u32 scontrol, sstatus;
2336
2337 scontrol = scr_read(ap, SCR_CONTROL);
2338 scontrol = (scontrol & 0x0f0) | 0x300;
2339 scr_write_flush(ap, SCR_CONTROL, scontrol);
2340
2341 /* Wait for phy to become ready, if necessary. */
2342 do {
2343 msleep(200);
2344 sstatus = scr_read(ap, SCR_STATUS);
2345 if ((sstatus & 0xf) != 1)
2346 return 0;
2347 } while (time_before(jiffies, timeout));
2348
2349 return -1;
2350 }
2351
2352 /**
2353 * ata_std_probeinit - initialize probing
2354 * @ap: port to be probed
2355 *
2356 * @ap is about to be probed. Initialize it. This function is
2357 * to be used as standard callback for ata_drive_probe_reset().
2358 *
2359 * NOTE!!! Do not use this function as probeinit if a low level
2360 * driver implements only hardreset. Just pass NULL as probeinit
2361 * in that case. Using this function is probably okay but doing
2362 * so makes reset sequence different from the original
2363 * ->phy_reset implementation and Jeff nervous. :-P
2364 */
2365 void ata_std_probeinit(struct ata_port *ap)
2366 {
2367 if ((ap->flags & ATA_FLAG_SATA) && ap->ops->scr_read) {
2368 u32 spd;
2369
2370 sata_phy_resume(ap);
2371
2372 spd = (scr_read(ap, SCR_CONTROL) & 0xf0) >> 4;
2373 if (spd)
2374 ap->sata_spd_limit &= (1 << spd) - 1;
2375
2376 if (sata_dev_present(ap))
2377 ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT);
2378 }
2379 }
2380
2381 /**
2382 * ata_std_softreset - reset host port via ATA SRST
2383 * @ap: port to reset
2384 * @verbose: fail verbosely
2385 * @classes: resulting classes of attached devices
2386 *
2387 * Reset host port using ATA SRST. This function is to be used
2388 * as standard callback for ata_drive_*_reset() functions.
2389 *
2390 * LOCKING:
2391 * Kernel thread context (may sleep)
2392 *
2393 * RETURNS:
2394 * 0 on success, -errno otherwise.
2395 */
2396 int ata_std_softreset(struct ata_port *ap, int verbose, unsigned int *classes)
2397 {
2398 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
2399 unsigned int devmask = 0, err_mask;
2400 u8 err;
2401
2402 DPRINTK("ENTER\n");
2403
2404 if (ap->ops->scr_read && !sata_dev_present(ap)) {
2405 classes[0] = ATA_DEV_NONE;
2406 goto out;
2407 }
2408
2409 /* determine if device 0/1 are present */
2410 if (ata_devchk(ap, 0))
2411 devmask |= (1 << 0);
2412 if (slave_possible && ata_devchk(ap, 1))
2413 devmask |= (1 << 1);
2414
2415 /* select device 0 again */
2416 ap->ops->dev_select(ap, 0);
2417
2418 /* issue bus reset */
2419 DPRINTK("about to softreset, devmask=%x\n", devmask);
2420 err_mask = ata_bus_softreset(ap, devmask);
2421 if (err_mask) {
2422 if (verbose)
2423 printk(KERN_ERR "ata%u: SRST failed (err_mask=0x%x)\n",
2424 ap->id, err_mask);
2425 else
2426 DPRINTK("EXIT, softreset failed (err_mask=0x%x)\n",
2427 err_mask);
2428 return -EIO;
2429 }
2430
2431 /* determine by signature whether we have ATA or ATAPI devices */
2432 classes[0] = ata_dev_try_classify(ap, 0, &err);
2433 if (slave_possible && err != 0x81)
2434 classes[1] = ata_dev_try_classify(ap, 1, &err);
2435
2436 out:
2437 DPRINTK("EXIT, classes[0]=%u [1]=%u\n", classes[0], classes[1]);
2438 return 0;
2439 }
2440
2441 /**
2442 * sata_std_hardreset - reset host port via SATA phy reset
2443 * @ap: port to reset
2444 * @verbose: fail verbosely
2445 * @class: resulting class of attached device
2446 *
2447 * SATA phy-reset host port using DET bits of SControl register.
2448 * This function is to be used as standard callback for
2449 * ata_drive_*_reset().
2450 *
2451 * LOCKING:
2452 * Kernel thread context (may sleep)
2453 *
2454 * RETURNS:
2455 * 0 on success, -errno otherwise.
2456 */
2457 int sata_std_hardreset(struct ata_port *ap, int verbose, unsigned int *class)
2458 {
2459 u32 scontrol;
2460
2461 DPRINTK("ENTER\n");
2462
2463 if (ata_set_sata_spd_needed(ap)) {
2464 /* SATA spec says nothing about how to reconfigure
2465 * spd. To be on the safe side, turn off phy during
2466 * reconfiguration. This works for at least ICH7 AHCI
2467 * and Sil3124.
2468 */
2469 scontrol = scr_read(ap, SCR_CONTROL);
2470 scontrol = (scontrol & 0x0f0) | 0x302;
2471 scr_write_flush(ap, SCR_CONTROL, scontrol);
2472
2473 ata_set_sata_spd(ap);
2474 }
2475
2476 /* issue phy wake/reset */
2477 scontrol = scr_read(ap, SCR_CONTROL);
2478 scontrol = (scontrol & 0x0f0) | 0x301;
2479 scr_write_flush(ap, SCR_CONTROL, scontrol);
2480
2481 /* Couldn't find anything in SATA I/II specs, but AHCI-1.1
2482 * 10.4.2 says at least 1 ms.
2483 */
2484 msleep(1);
2485
2486 /* bring phy back */
2487 sata_phy_resume(ap);
2488
2489 /* TODO: phy layer with polling, timeouts, etc. */
2490 if (!sata_dev_present(ap)) {
2491 *class = ATA_DEV_NONE;
2492 DPRINTK("EXIT, link offline\n");
2493 return 0;
2494 }
2495
2496 if (ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT)) {
2497 if (verbose)
2498 printk(KERN_ERR "ata%u: COMRESET failed "
2499 "(device not ready)\n", ap->id);
2500 else
2501 DPRINTK("EXIT, device not ready\n");
2502 return -EIO;
2503 }
2504
2505 ap->ops->dev_select(ap, 0); /* probably unnecessary */
2506
2507 *class = ata_dev_try_classify(ap, 0, NULL);
2508
2509 DPRINTK("EXIT, class=%u\n", *class);
2510 return 0;
2511 }
2512
2513 /**
2514 * ata_std_postreset - standard postreset callback
2515 * @ap: the target ata_port
2516 * @classes: classes of attached devices
2517 *
2518 * This function is invoked after a successful reset. Note that
2519 * the device might have been reset more than once using
2520 * different reset methods before postreset is invoked.
2521 *
2522 * This function is to be used as standard callback for
2523 * ata_drive_*_reset().
2524 *
2525 * LOCKING:
2526 * Kernel thread context (may sleep)
2527 */
2528 void ata_std_postreset(struct ata_port *ap, unsigned int *classes)
2529 {
2530 DPRINTK("ENTER\n");
2531
2532 /* set cable type if it isn't already set */
2533 if (ap->cbl == ATA_CBL_NONE && ap->flags & ATA_FLAG_SATA)
2534 ap->cbl = ATA_CBL_SATA;
2535
2536 /* print link status */
2537 if (ap->cbl == ATA_CBL_SATA)
2538 sata_print_link_status(ap);
2539
2540 /* re-enable interrupts */
2541 if (ap->ioaddr.ctl_addr) /* FIXME: hack. create a hook instead */
2542 ata_irq_on(ap);
2543
2544 /* is double-select really necessary? */
2545 if (classes[0] != ATA_DEV_NONE)
2546 ap->ops->dev_select(ap, 1);
2547 if (classes[1] != ATA_DEV_NONE)
2548 ap->ops->dev_select(ap, 0);
2549
2550 /* bail out if no device is present */
2551 if (classes[0] == ATA_DEV_NONE && classes[1] == ATA_DEV_NONE) {
2552 DPRINTK("EXIT, no device\n");
2553 return;
2554 }
2555
2556 /* set up device control */
2557 if (ap->ioaddr.ctl_addr) {
2558 if (ap->flags & ATA_FLAG_MMIO)
2559 writeb(ap->ctl, (void __iomem *) ap->ioaddr.ctl_addr);
2560 else
2561 outb(ap->ctl, ap->ioaddr.ctl_addr);
2562 }
2563
2564 DPRINTK("EXIT\n");
2565 }
2566
2567 /**
2568 * ata_std_probe_reset - standard probe reset method
2569 * @ap: prot to perform probe-reset
2570 * @classes: resulting classes of attached devices
2571 *
2572 * The stock off-the-shelf ->probe_reset method.
2573 *
2574 * LOCKING:
2575 * Kernel thread context (may sleep)
2576 *
2577 * RETURNS:
2578 * 0 on success, -errno otherwise.
2579 */
2580 int ata_std_probe_reset(struct ata_port *ap, unsigned int *classes)
2581 {
2582 ata_reset_fn_t hardreset;
2583
2584 hardreset = NULL;
2585 if (ap->flags & ATA_FLAG_SATA && ap->ops->scr_read)
2586 hardreset = sata_std_hardreset;
2587
2588 return ata_drive_probe_reset(ap, ata_std_probeinit,
2589 ata_std_softreset, hardreset,
2590 ata_std_postreset, classes);
2591 }
2592
2593 static int ata_do_reset(struct ata_port *ap,
2594 ata_reset_fn_t reset, ata_postreset_fn_t postreset,
2595 int verbose, unsigned int *classes)
2596 {
2597 int i, rc;
2598
2599 for (i = 0; i < ATA_MAX_DEVICES; i++)
2600 classes[i] = ATA_DEV_UNKNOWN;
2601
2602 rc = reset(ap, verbose, classes);
2603 if (rc)
2604 return rc;
2605
2606 /* If any class isn't ATA_DEV_UNKNOWN, consider classification
2607 * is complete and convert all ATA_DEV_UNKNOWN to
2608 * ATA_DEV_NONE.
2609 */
2610 for (i = 0; i < ATA_MAX_DEVICES; i++)
2611 if (classes[i] != ATA_DEV_UNKNOWN)
2612 break;
2613
2614 if (i < ATA_MAX_DEVICES)
2615 for (i = 0; i < ATA_MAX_DEVICES; i++)
2616 if (classes[i] == ATA_DEV_UNKNOWN)
2617 classes[i] = ATA_DEV_NONE;
2618
2619 if (postreset)
2620 postreset(ap, classes);
2621
2622 return 0;
2623 }
2624
2625 /**
2626 * ata_drive_probe_reset - Perform probe reset with given methods
2627 * @ap: port to reset
2628 * @probeinit: probeinit method (can be NULL)
2629 * @softreset: softreset method (can be NULL)
2630 * @hardreset: hardreset method (can be NULL)
2631 * @postreset: postreset method (can be NULL)
2632 * @classes: resulting classes of attached devices
2633 *
2634 * Reset the specified port and classify attached devices using
2635 * given methods. This function prefers softreset but tries all
2636 * possible reset sequences to reset and classify devices. This
2637 * function is intended to be used for constructing ->probe_reset
2638 * callback by low level drivers.
2639 *
2640 * Reset methods should follow the following rules.
2641 *
2642 * - Return 0 on sucess, -errno on failure.
2643 * - If classification is supported, fill classes[] with
2644 * recognized class codes.
2645 * - If classification is not supported, leave classes[] alone.
2646 * - If verbose is non-zero, print error message on failure;
2647 * otherwise, shut up.
2648 *
2649 * LOCKING:
2650 * Kernel thread context (may sleep)
2651 *
2652 * RETURNS:
2653 * 0 on success, -EINVAL if no reset method is avaliable, -ENODEV
2654 * if classification fails, and any error code from reset
2655 * methods.
2656 */
2657 int ata_drive_probe_reset(struct ata_port *ap, ata_probeinit_fn_t probeinit,
2658 ata_reset_fn_t softreset, ata_reset_fn_t hardreset,
2659 ata_postreset_fn_t postreset, unsigned int *classes)
2660 {
2661 int rc = -EINVAL;
2662
2663 if (probeinit)
2664 probeinit(ap);
2665
2666 if (softreset && !ata_set_sata_spd_needed(ap)) {
2667 rc = ata_do_reset(ap, softreset, postreset, 0, classes);
2668 if (rc == 0 && classes[0] != ATA_DEV_UNKNOWN)
2669 goto done;
2670 printk(KERN_INFO "ata%u: softreset failed, will try "
2671 "hardreset in 5 secs\n", ap->id);
2672 ssleep(5);
2673 }
2674
2675 if (!hardreset)
2676 goto done;
2677
2678 while (1) {
2679 rc = ata_do_reset(ap, hardreset, postreset, 0, classes);
2680 if (rc == 0) {
2681 if (classes[0] != ATA_DEV_UNKNOWN)
2682 goto done;
2683 break;
2684 }
2685
2686 if (ata_down_sata_spd_limit(ap))
2687 goto done;
2688
2689 printk(KERN_INFO "ata%u: hardreset failed, will retry "
2690 "in 5 secs\n", ap->id);
2691 ssleep(5);
2692 }
2693
2694 if (softreset) {
2695 printk(KERN_INFO "ata%u: hardreset succeeded without "
2696 "classification, will retry softreset in 5 secs\n",
2697 ap->id);
2698 ssleep(5);
2699
2700 rc = ata_do_reset(ap, softreset, postreset, 0, classes);
2701 }
2702
2703 done:
2704 if (rc == 0 && classes[0] == ATA_DEV_UNKNOWN)
2705 rc = -ENODEV;
2706 return rc;
2707 }
2708
2709 /**
2710 * ata_dev_same_device - Determine whether new ID matches configured device
2711 * @ap: port on which the device to compare against resides
2712 * @dev: device to compare against
2713 * @new_class: class of the new device
2714 * @new_id: IDENTIFY page of the new device
2715 *
2716 * Compare @new_class and @new_id against @dev and determine
2717 * whether @dev is the device indicated by @new_class and
2718 * @new_id.
2719 *
2720 * LOCKING:
2721 * None.
2722 *
2723 * RETURNS:
2724 * 1 if @dev matches @new_class and @new_id, 0 otherwise.
2725 */
2726 static int ata_dev_same_device(struct ata_port *ap, struct ata_device *dev,
2727 unsigned int new_class, const u16 *new_id)
2728 {
2729 const u16 *old_id = dev->id;
2730 unsigned char model[2][41], serial[2][21];
2731 u64 new_n_sectors;
2732
2733 if (dev->class != new_class) {
2734 printk(KERN_INFO
2735 "ata%u: dev %u class mismatch %d != %d\n",
2736 ap->id, dev->devno, dev->class, new_class);
2737 return 0;
2738 }
2739
2740 ata_id_c_string(old_id, model[0], ATA_ID_PROD_OFS, sizeof(model[0]));
2741 ata_id_c_string(new_id, model[1], ATA_ID_PROD_OFS, sizeof(model[1]));
2742 ata_id_c_string(old_id, serial[0], ATA_ID_SERNO_OFS, sizeof(serial[0]));
2743 ata_id_c_string(new_id, serial[1], ATA_ID_SERNO_OFS, sizeof(serial[1]));
2744 new_n_sectors = ata_id_n_sectors(new_id);
2745
2746 if (strcmp(model[0], model[1])) {
2747 printk(KERN_INFO
2748 "ata%u: dev %u model number mismatch '%s' != '%s'\n",
2749 ap->id, dev->devno, model[0], model[1]);
2750 return 0;
2751 }
2752
2753 if (strcmp(serial[0], serial[1])) {
2754 printk(KERN_INFO
2755 "ata%u: dev %u serial number mismatch '%s' != '%s'\n",
2756 ap->id, dev->devno, serial[0], serial[1]);
2757 return 0;
2758 }
2759
2760 if (dev->class == ATA_DEV_ATA && dev->n_sectors != new_n_sectors) {
2761 printk(KERN_INFO
2762 "ata%u: dev %u n_sectors mismatch %llu != %llu\n",
2763 ap->id, dev->devno, (unsigned long long)dev->n_sectors,
2764 (unsigned long long)new_n_sectors);
2765 return 0;
2766 }
2767
2768 return 1;
2769 }
2770
2771 /**
2772 * ata_dev_revalidate - Revalidate ATA device
2773 * @ap: port on which the device to revalidate resides
2774 * @dev: device to revalidate
2775 * @post_reset: is this revalidation after reset?
2776 *
2777 * Re-read IDENTIFY page and make sure @dev is still attached to
2778 * the port.
2779 *
2780 * LOCKING:
2781 * Kernel thread context (may sleep)
2782 *
2783 * RETURNS:
2784 * 0 on success, negative errno otherwise
2785 */
2786 int ata_dev_revalidate(struct ata_port *ap, struct ata_device *dev,
2787 int post_reset)
2788 {
2789 unsigned int class;
2790 u16 *id;
2791 int rc;
2792
2793 if (!ata_dev_enabled(dev))
2794 return -ENODEV;
2795
2796 class = dev->class;
2797 id = NULL;
2798
2799 /* allocate & read ID data */
2800 rc = ata_dev_read_id(ap, dev, &class, post_reset, &id);
2801 if (rc)
2802 goto fail;
2803
2804 /* is the device still there? */
2805 if (!ata_dev_same_device(ap, dev, class, id)) {
2806 rc = -ENODEV;
2807 goto fail;
2808 }
2809
2810 kfree(dev->id);
2811 dev->id = id;
2812
2813 /* configure device according to the new ID */
2814 return ata_dev_configure(ap, dev, 0);
2815
2816 fail:
2817 printk(KERN_ERR "ata%u: dev %u revalidation failed (errno=%d)\n",
2818 ap->id, dev->devno, rc);
2819 kfree(id);
2820 return rc;
2821 }
2822
2823 static const char * const ata_dma_blacklist [] = {
2824 "WDC AC11000H", NULL,
2825 "WDC AC22100H", NULL,
2826 "WDC AC32500H", NULL,
2827 "WDC AC33100H", NULL,
2828 "WDC AC31600H", NULL,
2829 "WDC AC32100H", "24.09P07",
2830 "WDC AC23200L", "21.10N21",
2831 "Compaq CRD-8241B", NULL,
2832 "CRD-8400B", NULL,
2833 "CRD-8480B", NULL,
2834 "CRD-8482B", NULL,
2835 "CRD-84", NULL,
2836 "SanDisk SDP3B", NULL,
2837 "SanDisk SDP3B-64", NULL,
2838 "SANYO CD-ROM CRD", NULL,
2839 "HITACHI CDR-8", NULL,
2840 "HITACHI CDR-8335", NULL,
2841 "HITACHI CDR-8435", NULL,
2842 "Toshiba CD-ROM XM-6202B", NULL,
2843 "TOSHIBA CD-ROM XM-1702BC", NULL,
2844 "CD-532E-A", NULL,
2845 "E-IDE CD-ROM CR-840", NULL,
2846 "CD-ROM Drive/F5A", NULL,
2847 "WPI CDD-820", NULL,
2848 "SAMSUNG CD-ROM SC-148C", NULL,
2849 "SAMSUNG CD-ROM SC", NULL,
2850 "SanDisk SDP3B-64", NULL,
2851 "ATAPI CD-ROM DRIVE 40X MAXIMUM",NULL,
2852 "_NEC DV5800A", NULL,
2853 "SAMSUNG CD-ROM SN-124", "N001"
2854 };
2855
2856 static int ata_strim(char *s, size_t len)
2857 {
2858 len = strnlen(s, len);
2859
2860 /* ATAPI specifies that empty space is blank-filled; remove blanks */
2861 while ((len > 0) && (s[len - 1] == ' ')) {
2862 len--;
2863 s[len] = 0;
2864 }
2865 return len;
2866 }
2867
2868 static int ata_dma_blacklisted(const struct ata_device *dev)
2869 {
2870 unsigned char model_num[40];
2871 unsigned char model_rev[16];
2872 unsigned int nlen, rlen;
2873 int i;
2874
2875 ata_id_string(dev->id, model_num, ATA_ID_PROD_OFS,
2876 sizeof(model_num));
2877 ata_id_string(dev->id, model_rev, ATA_ID_FW_REV_OFS,
2878 sizeof(model_rev));
2879 nlen = ata_strim(model_num, sizeof(model_num));
2880 rlen = ata_strim(model_rev, sizeof(model_rev));
2881
2882 for (i = 0; i < ARRAY_SIZE(ata_dma_blacklist); i += 2) {
2883 if (!strncmp(ata_dma_blacklist[i], model_num, nlen)) {
2884 if (ata_dma_blacklist[i+1] == NULL)
2885 return 1;
2886 if (!strncmp(ata_dma_blacklist[i], model_rev, rlen))
2887 return 1;
2888 }
2889 }
2890 return 0;
2891 }
2892
2893 /**
2894 * ata_dev_xfermask - Compute supported xfermask of the given device
2895 * @ap: Port on which the device to compute xfermask for resides
2896 * @dev: Device to compute xfermask for
2897 *
2898 * Compute supported xfermask of @dev and store it in
2899 * dev->*_mask. This function is responsible for applying all
2900 * known limits including host controller limits, device
2901 * blacklist, etc...
2902 *
2903 * FIXME: The current implementation limits all transfer modes to
2904 * the fastest of the lowested device on the port. This is not
2905 * required on most controllers.
2906 *
2907 * LOCKING:
2908 * None.
2909 */
2910 static void ata_dev_xfermask(struct ata_port *ap, struct ata_device *dev)
2911 {
2912 struct ata_host_set *hs = ap->host_set;
2913 unsigned long xfer_mask;
2914 int i;
2915
2916 xfer_mask = ata_pack_xfermask(ap->pio_mask,
2917 ap->mwdma_mask, ap->udma_mask);
2918
2919 /* Apply cable rule here. Don't apply it early because when
2920 * we handle hot plug the cable type can itself change.
2921 */
2922 if (ap->cbl == ATA_CBL_PATA40)
2923 xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA);
2924
2925 /* FIXME: Use port-wide xfermask for now */
2926 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2927 struct ata_device *d = &ap->device[i];
2928
2929 if (ata_dev_absent(d))
2930 continue;
2931
2932 if (ata_dev_disabled(d)) {
2933 /* to avoid violating device selection timing */
2934 xfer_mask &= ata_pack_xfermask(d->pio_mask,
2935 UINT_MAX, UINT_MAX);
2936 continue;
2937 }
2938
2939 xfer_mask &= ata_pack_xfermask(d->pio_mask,
2940 d->mwdma_mask, d->udma_mask);
2941 xfer_mask &= ata_id_xfermask(d->id);
2942 if (ata_dma_blacklisted(d))
2943 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
2944 }
2945
2946 if (ata_dma_blacklisted(dev))
2947 printk(KERN_WARNING "ata%u: dev %u is on DMA blacklist, "
2948 "disabling DMA\n", ap->id, dev->devno);
2949
2950 if (hs->flags & ATA_HOST_SIMPLEX) {
2951 if (hs->simplex_claimed)
2952 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
2953 }
2954
2955 if (ap->ops->mode_filter)
2956 xfer_mask = ap->ops->mode_filter(ap, dev, xfer_mask);
2957
2958 ata_unpack_xfermask(xfer_mask, &dev->pio_mask,
2959 &dev->mwdma_mask, &dev->udma_mask);
2960 }
2961
2962 /**
2963 * ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command
2964 * @ap: Port associated with device @dev
2965 * @dev: Device to which command will be sent
2966 *
2967 * Issue SET FEATURES - XFER MODE command to device @dev
2968 * on port @ap.
2969 *
2970 * LOCKING:
2971 * PCI/etc. bus probe sem.
2972 *
2973 * RETURNS:
2974 * 0 on success, AC_ERR_* mask otherwise.
2975 */
2976
2977 static unsigned int ata_dev_set_xfermode(struct ata_port *ap,
2978 struct ata_device *dev)
2979 {
2980 struct ata_taskfile tf;
2981 unsigned int err_mask;
2982
2983 /* set up set-features taskfile */
2984 DPRINTK("set features - xfer mode\n");
2985
2986 ata_tf_init(ap, &tf, dev->devno);
2987 tf.command = ATA_CMD_SET_FEATURES;
2988 tf.feature = SETFEATURES_XFER;
2989 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
2990 tf.protocol = ATA_PROT_NODATA;
2991 tf.nsect = dev->xfer_mode;
2992
2993 err_mask = ata_exec_internal(ap, dev, &tf, DMA_NONE, NULL, 0);
2994
2995 DPRINTK("EXIT, err_mask=%x\n", err_mask);
2996 return err_mask;
2997 }
2998
2999 /**
3000 * ata_dev_init_params - Issue INIT DEV PARAMS command
3001 * @ap: Port associated with device @dev
3002 * @dev: Device to which command will be sent
3003 *
3004 * LOCKING:
3005 * Kernel thread context (may sleep)
3006 *
3007 * RETURNS:
3008 * 0 on success, AC_ERR_* mask otherwise.
3009 */
3010
3011 static unsigned int ata_dev_init_params(struct ata_port *ap,
3012 struct ata_device *dev,
3013 u16 heads,
3014 u16 sectors)
3015 {
3016 struct ata_taskfile tf;
3017 unsigned int err_mask;
3018
3019 /* Number of sectors per track 1-255. Number of heads 1-16 */
3020 if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16)
3021 return AC_ERR_INVALID;
3022
3023 /* set up init dev params taskfile */
3024 DPRINTK("init dev params \n");
3025
3026 ata_tf_init(ap, &tf, dev->devno);
3027 tf.command = ATA_CMD_INIT_DEV_PARAMS;
3028 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
3029 tf.protocol = ATA_PROT_NODATA;
3030 tf.nsect = sectors;
3031 tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */
3032
3033 err_mask = ata_exec_internal(ap, dev, &tf, DMA_NONE, NULL, 0);
3034
3035 DPRINTK("EXIT, err_mask=%x\n", err_mask);
3036 return err_mask;
3037 }
3038
3039 /**
3040 * ata_sg_clean - Unmap DMA memory associated with command
3041 * @qc: Command containing DMA memory to be released
3042 *
3043 * Unmap all mapped DMA memory associated with this command.
3044 *
3045 * LOCKING:
3046 * spin_lock_irqsave(host_set lock)
3047 */
3048
3049 static void ata_sg_clean(struct ata_queued_cmd *qc)
3050 {
3051 struct ata_port *ap = qc->ap;
3052 struct scatterlist *sg = qc->__sg;
3053 int dir = qc->dma_dir;
3054 void *pad_buf = NULL;
3055
3056 WARN_ON(!(qc->flags & ATA_QCFLAG_DMAMAP));
3057 WARN_ON(sg == NULL);
3058
3059 if (qc->flags & ATA_QCFLAG_SINGLE)
3060 WARN_ON(qc->n_elem > 1);
3061
3062 VPRINTK("unmapping %u sg elements\n", qc->n_elem);
3063
3064 /* if we padded the buffer out to 32-bit bound, and data
3065 * xfer direction is from-device, we must copy from the
3066 * pad buffer back into the supplied buffer
3067 */
3068 if (qc->pad_len && !(qc->tf.flags & ATA_TFLAG_WRITE))
3069 pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
3070
3071 if (qc->flags & ATA_QCFLAG_SG) {
3072 if (qc->n_elem)
3073 dma_unmap_sg(ap->dev, sg, qc->n_elem, dir);
3074 /* restore last sg */
3075 sg[qc->orig_n_elem - 1].length += qc->pad_len;
3076 if (pad_buf) {
3077 struct scatterlist *psg = &qc->pad_sgent;
3078 void *addr = kmap_atomic(psg->page, KM_IRQ0);
3079 memcpy(addr + psg->offset, pad_buf, qc->pad_len);
3080 kunmap_atomic(addr, KM_IRQ0);
3081 }
3082 } else {
3083 if (qc->n_elem)
3084 dma_unmap_single(ap->dev,
3085 sg_dma_address(&sg[0]), sg_dma_len(&sg[0]),
3086 dir);
3087 /* restore sg */
3088 sg->length += qc->pad_len;
3089 if (pad_buf)
3090 memcpy(qc->buf_virt + sg->length - qc->pad_len,
3091 pad_buf, qc->pad_len);
3092 }
3093
3094 qc->flags &= ~ATA_QCFLAG_DMAMAP;
3095 qc->__sg = NULL;
3096 }
3097
3098 /**
3099 * ata_fill_sg - Fill PCI IDE PRD table
3100 * @qc: Metadata associated with taskfile to be transferred
3101 *
3102 * Fill PCI IDE PRD (scatter-gather) table with segments
3103 * associated with the current disk command.
3104 *
3105 * LOCKING:
3106 * spin_lock_irqsave(host_set lock)
3107 *
3108 */
3109 static void ata_fill_sg(struct ata_queued_cmd *qc)
3110 {
3111 struct ata_port *ap = qc->ap;
3112 struct scatterlist *sg;
3113 unsigned int idx;
3114
3115 WARN_ON(qc->__sg == NULL);
3116 WARN_ON(qc->n_elem == 0 && qc->pad_len == 0);
3117
3118 idx = 0;
3119 ata_for_each_sg(sg, qc) {
3120 u32 addr, offset;
3121 u32 sg_len, len;
3122
3123 /* determine if physical DMA addr spans 64K boundary.
3124 * Note h/w doesn't support 64-bit, so we unconditionally
3125 * truncate dma_addr_t to u32.
3126 */
3127 addr = (u32) sg_dma_address(sg);
3128 sg_len = sg_dma_len(sg);
3129
3130 while (sg_len) {
3131 offset = addr & 0xffff;
3132 len = sg_len;
3133 if ((offset + sg_len) > 0x10000)
3134 len = 0x10000 - offset;
3135
3136 ap->prd[idx].addr = cpu_to_le32(addr);
3137 ap->prd[idx].flags_len = cpu_to_le32(len & 0xffff);
3138 VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", idx, addr, len);
3139
3140 idx++;
3141 sg_len -= len;
3142 addr += len;
3143 }
3144 }
3145
3146 if (idx)
3147 ap->prd[idx - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT);
3148 }
3149 /**
3150 * ata_check_atapi_dma - Check whether ATAPI DMA can be supported
3151 * @qc: Metadata associated with taskfile to check
3152 *
3153 * Allow low-level driver to filter ATA PACKET commands, returning
3154 * a status indicating whether or not it is OK to use DMA for the
3155 * supplied PACKET command.
3156 *
3157 * LOCKING:
3158 * spin_lock_irqsave(host_set lock)
3159 *
3160 * RETURNS: 0 when ATAPI DMA can be used
3161 * nonzero otherwise
3162 */
3163 int ata_check_atapi_dma(struct ata_queued_cmd *qc)
3164 {
3165 struct ata_port *ap = qc->ap;
3166 int rc = 0; /* Assume ATAPI DMA is OK by default */
3167
3168 if (ap->ops->check_atapi_dma)
3169 rc = ap->ops->check_atapi_dma(qc);
3170
3171 return rc;
3172 }
3173 /**
3174 * ata_qc_prep - Prepare taskfile for submission
3175 * @qc: Metadata associated with taskfile to be prepared
3176 *
3177 * Prepare ATA taskfile for submission.
3178 *
3179 * LOCKING:
3180 * spin_lock_irqsave(host_set lock)
3181 */
3182 void ata_qc_prep(struct ata_queued_cmd *qc)
3183 {
3184 if (!(qc->flags & ATA_QCFLAG_DMAMAP))
3185 return;
3186
3187 ata_fill_sg(qc);
3188 }
3189
3190 void ata_noop_qc_prep(struct ata_queued_cmd *qc) { }
3191
3192 /**
3193 * ata_sg_init_one - Associate command with memory buffer
3194 * @qc: Command to be associated
3195 * @buf: Memory buffer
3196 * @buflen: Length of memory buffer, in bytes.
3197 *
3198 * Initialize the data-related elements of queued_cmd @qc
3199 * to point to a single memory buffer, @buf of byte length @buflen.
3200 *
3201 * LOCKING:
3202 * spin_lock_irqsave(host_set lock)
3203 */
3204
3205 void ata_sg_init_one(struct ata_queued_cmd *qc, void *buf, unsigned int buflen)
3206 {
3207 struct scatterlist *sg;
3208
3209 qc->flags |= ATA_QCFLAG_SINGLE;
3210
3211 memset(&qc->sgent, 0, sizeof(qc->sgent));
3212 qc->__sg = &qc->sgent;
3213 qc->n_elem = 1;
3214 qc->orig_n_elem = 1;
3215 qc->buf_virt = buf;
3216
3217 sg = qc->__sg;
3218 sg_init_one(sg, buf, buflen);
3219 }
3220
3221 /**
3222 * ata_sg_init - Associate command with scatter-gather table.
3223 * @qc: Command to be associated
3224 * @sg: Scatter-gather table.
3225 * @n_elem: Number of elements in s/g table.
3226 *
3227 * Initialize the data-related elements of queued_cmd @qc
3228 * to point to a scatter-gather table @sg, containing @n_elem
3229 * elements.
3230 *
3231 * LOCKING:
3232 * spin_lock_irqsave(host_set lock)
3233 */
3234
3235 void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg,
3236 unsigned int n_elem)
3237 {
3238 qc->flags |= ATA_QCFLAG_SG;
3239 qc->__sg = sg;
3240 qc->n_elem = n_elem;
3241 qc->orig_n_elem = n_elem;
3242 }
3243
3244 /**
3245 * ata_sg_setup_one - DMA-map the memory buffer associated with a command.
3246 * @qc: Command with memory buffer to be mapped.
3247 *
3248 * DMA-map the memory buffer associated with queued_cmd @qc.
3249 *
3250 * LOCKING:
3251 * spin_lock_irqsave(host_set lock)
3252 *
3253 * RETURNS:
3254 * Zero on success, negative on error.
3255 */
3256
3257 static int ata_sg_setup_one(struct ata_queued_cmd *qc)
3258 {
3259 struct ata_port *ap = qc->ap;
3260 int dir = qc->dma_dir;
3261 struct scatterlist *sg = qc->__sg;
3262 dma_addr_t dma_address;
3263 int trim_sg = 0;
3264
3265 /* we must lengthen transfers to end on a 32-bit boundary */
3266 qc->pad_len = sg->length & 3;
3267 if (qc->pad_len) {
3268 void *pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
3269 struct scatterlist *psg = &qc->pad_sgent;
3270
3271 WARN_ON(qc->dev->class != ATA_DEV_ATAPI);
3272
3273 memset(pad_buf, 0, ATA_DMA_PAD_SZ);
3274
3275 if (qc->tf.flags & ATA_TFLAG_WRITE)
3276 memcpy(pad_buf, qc->buf_virt + sg->length - qc->pad_len,
3277 qc->pad_len);
3278
3279 sg_dma_address(psg) = ap->pad_dma + (qc->tag * ATA_DMA_PAD_SZ);
3280 sg_dma_len(psg) = ATA_DMA_PAD_SZ;
3281 /* trim sg */
3282 sg->length -= qc->pad_len;
3283 if (sg->length == 0)
3284 trim_sg = 1;
3285
3286 DPRINTK("padding done, sg->length=%u pad_len=%u\n",
3287 sg->length, qc->pad_len);
3288 }
3289
3290 if (trim_sg) {
3291 qc->n_elem--;
3292 goto skip_map;
3293 }
3294
3295 dma_address = dma_map_single(ap->dev, qc->buf_virt,
3296 sg->length, dir);
3297 if (dma_mapping_error(dma_address)) {
3298 /* restore sg */
3299 sg->length += qc->pad_len;
3300 return -1;
3301 }
3302
3303 sg_dma_address(sg) = dma_address;
3304 sg_dma_len(sg) = sg->length;
3305
3306 skip_map:
3307 DPRINTK("mapped buffer of %d bytes for %s\n", sg_dma_len(sg),
3308 qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
3309
3310 return 0;
3311 }
3312
3313 /**
3314 * ata_sg_setup - DMA-map the scatter-gather table associated with a command.
3315 * @qc: Command with scatter-gather table to be mapped.
3316 *
3317 * DMA-map the scatter-gather table associated with queued_cmd @qc.
3318 *
3319 * LOCKING:
3320 * spin_lock_irqsave(host_set lock)
3321 *
3322 * RETURNS:
3323 * Zero on success, negative on error.
3324 *
3325 */
3326
3327 static int ata_sg_setup(struct ata_queued_cmd *qc)
3328 {
3329 struct ata_port *ap = qc->ap;
3330 struct scatterlist *sg = qc->__sg;
3331 struct scatterlist *lsg = &sg[qc->n_elem - 1];
3332 int n_elem, pre_n_elem, dir, trim_sg = 0;
3333
3334 VPRINTK("ENTER, ata%u\n", ap->id);
3335 WARN_ON(!(qc->flags & ATA_QCFLAG_SG));
3336
3337 /* we must lengthen transfers to end on a 32-bit boundary */
3338 qc->pad_len = lsg->length & 3;
3339 if (qc->pad_len) {
3340 void *pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
3341 struct scatterlist *psg = &qc->pad_sgent;
3342 unsigned int offset;
3343
3344 WARN_ON(qc->dev->class != ATA_DEV_ATAPI);
3345
3346 memset(pad_buf, 0, ATA_DMA_PAD_SZ);
3347
3348 /*
3349 * psg->page/offset are used to copy to-be-written
3350 * data in this function or read data in ata_sg_clean.
3351 */
3352 offset = lsg->offset + lsg->length - qc->pad_len;
3353 psg->page = nth_page(lsg->page, offset >> PAGE_SHIFT);
3354 psg->offset = offset_in_page(offset);
3355
3356 if (qc->tf.flags & ATA_TFLAG_WRITE) {
3357 void *addr = kmap_atomic(psg->page, KM_IRQ0);
3358 memcpy(pad_buf, addr + psg->offset, qc->pad_len);
3359 kunmap_atomic(addr, KM_IRQ0);
3360 }
3361
3362 sg_dma_address(psg) = ap->pad_dma + (qc->tag * ATA_DMA_PAD_SZ);
3363 sg_dma_len(psg) = ATA_DMA_PAD_SZ;
3364 /* trim last sg */
3365 lsg->length -= qc->pad_len;
3366 if (lsg->length == 0)
3367 trim_sg = 1;
3368
3369 DPRINTK("padding done, sg[%d].length=%u pad_len=%u\n",
3370 qc->n_elem - 1, lsg->length, qc->pad_len);
3371 }
3372
3373 pre_n_elem = qc->n_elem;
3374 if (trim_sg && pre_n_elem)
3375 pre_n_elem--;
3376
3377 if (!pre_n_elem) {
3378 n_elem = 0;
3379 goto skip_map;
3380 }
3381
3382 dir = qc->dma_dir;
3383 n_elem = dma_map_sg(ap->dev, sg, pre_n_elem, dir);
3384 if (n_elem < 1) {
3385 /* restore last sg */
3386 lsg->length += qc->pad_len;
3387 return -1;
3388 }
3389
3390 DPRINTK("%d sg elements mapped\n", n_elem);
3391
3392 skip_map:
3393 qc->n_elem = n_elem;
3394
3395 return 0;
3396 }
3397
3398 /**
3399 * ata_poll_qc_complete - turn irq back on and finish qc
3400 * @qc: Command to complete
3401 * @err_mask: ATA status register content
3402 *
3403 * LOCKING:
3404 * None. (grabs host lock)
3405 */
3406
3407 void ata_poll_qc_complete(struct ata_queued_cmd *qc)
3408 {
3409 struct ata_port *ap = qc->ap;
3410 unsigned long flags;
3411
3412 spin_lock_irqsave(&ap->host_set->lock, flags);
3413 ap->flags &= ~ATA_FLAG_NOINTR;
3414 ata_irq_on(ap);
3415 ata_qc_complete(qc);
3416 spin_unlock_irqrestore(&ap->host_set->lock, flags);
3417 }
3418
3419 /**
3420 * ata_pio_poll - poll using PIO, depending on current state
3421 * @ap: the target ata_port
3422 *
3423 * LOCKING:
3424 * None. (executing in kernel thread context)
3425 *
3426 * RETURNS:
3427 * timeout value to use
3428 */
3429
3430 static unsigned long ata_pio_poll(struct ata_port *ap)
3431 {
3432 struct ata_queued_cmd *qc;
3433 u8 status;
3434 unsigned int poll_state = HSM_ST_UNKNOWN;
3435 unsigned int reg_state = HSM_ST_UNKNOWN;
3436
3437 qc = ata_qc_from_tag(ap, ap->active_tag);
3438 WARN_ON(qc == NULL);
3439
3440 switch (ap->hsm_task_state) {
3441 case HSM_ST:
3442 case HSM_ST_POLL:
3443 poll_state = HSM_ST_POLL;
3444 reg_state = HSM_ST;
3445 break;
3446 case HSM_ST_LAST:
3447 case HSM_ST_LAST_POLL:
3448 poll_state = HSM_ST_LAST_POLL;
3449 reg_state = HSM_ST_LAST;
3450 break;
3451 default:
3452 BUG();
3453 break;
3454 }
3455
3456 status = ata_chk_status(ap);
3457 if (status & ATA_BUSY) {
3458 if (time_after(jiffies, ap->pio_task_timeout)) {
3459 qc->err_mask |= AC_ERR_TIMEOUT;
3460 ap->hsm_task_state = HSM_ST_TMOUT;
3461 return 0;
3462 }
3463 ap->hsm_task_state = poll_state;
3464 return ATA_SHORT_PAUSE;
3465 }
3466
3467 ap->hsm_task_state = reg_state;
3468 return 0;
3469 }
3470
3471 /**
3472 * ata_pio_complete - check if drive is busy or idle
3473 * @ap: the target ata_port
3474 *
3475 * LOCKING:
3476 * None. (executing in kernel thread context)
3477 *
3478 * RETURNS:
3479 * Non-zero if qc completed, zero otherwise.
3480 */
3481
3482 static int ata_pio_complete (struct ata_port *ap)
3483 {
3484 struct ata_queued_cmd *qc;
3485 u8 drv_stat;
3486
3487 /*
3488 * This is purely heuristic. This is a fast path. Sometimes when
3489 * we enter, BSY will be cleared in a chk-status or two. If not,
3490 * the drive is probably seeking or something. Snooze for a couple
3491 * msecs, then chk-status again. If still busy, fall back to
3492 * HSM_ST_POLL state.
3493 */
3494 drv_stat = ata_busy_wait(ap, ATA_BUSY, 10);
3495 if (drv_stat & ATA_BUSY) {
3496 msleep(2);
3497 drv_stat = ata_busy_wait(ap, ATA_BUSY, 10);
3498 if (drv_stat & ATA_BUSY) {
3499 ap->hsm_task_state = HSM_ST_LAST_POLL;
3500 ap->pio_task_timeout = jiffies + ATA_TMOUT_PIO;
3501 return 0;
3502 }
3503 }
3504
3505 qc = ata_qc_from_tag(ap, ap->active_tag);
3506 WARN_ON(qc == NULL);
3507
3508 drv_stat = ata_wait_idle(ap);
3509 if (!ata_ok(drv_stat)) {
3510 qc->err_mask |= __ac_err_mask(drv_stat);
3511 ap->hsm_task_state = HSM_ST_ERR;
3512 return 0;
3513 }
3514
3515 ap->hsm_task_state = HSM_ST_IDLE;
3516
3517 WARN_ON(qc->err_mask);
3518 ata_poll_qc_complete(qc);
3519
3520 /* another command may start at this point */
3521
3522 return 1;
3523 }
3524
3525
3526 /**
3527 * swap_buf_le16 - swap halves of 16-bit words in place
3528 * @buf: Buffer to swap
3529 * @buf_words: Number of 16-bit words in buffer.
3530 *
3531 * Swap halves of 16-bit words if needed to convert from
3532 * little-endian byte order to native cpu byte order, or
3533 * vice-versa.
3534 *
3535 * LOCKING:
3536 * Inherited from caller.
3537 */
3538 void swap_buf_le16(u16 *buf, unsigned int buf_words)
3539 {
3540 #ifdef __BIG_ENDIAN
3541 unsigned int i;
3542
3543 for (i = 0; i < buf_words; i++)
3544 buf[i] = le16_to_cpu(buf[i]);
3545 #endif /* __BIG_ENDIAN */
3546 }
3547
3548 /**
3549 * ata_mmio_data_xfer - Transfer data by MMIO
3550 * @ap: port to read/write
3551 * @buf: data buffer
3552 * @buflen: buffer length
3553 * @write_data: read/write
3554 *
3555 * Transfer data from/to the device data register by MMIO.
3556 *
3557 * LOCKING:
3558 * Inherited from caller.
3559 */
3560
3561 static void ata_mmio_data_xfer(struct ata_port *ap, unsigned char *buf,
3562 unsigned int buflen, int write_data)
3563 {
3564 unsigned int i;
3565 unsigned int words = buflen >> 1;
3566 u16 *buf16 = (u16 *) buf;
3567 void __iomem *mmio = (void __iomem *)ap->ioaddr.data_addr;
3568
3569 /* Transfer multiple of 2 bytes */
3570 if (write_data) {
3571 for (i = 0; i < words; i++)
3572 writew(le16_to_cpu(buf16[i]), mmio);
3573 } else {
3574 for (i = 0; i < words; i++)
3575 buf16[i] = cpu_to_le16(readw(mmio));
3576 }
3577
3578 /* Transfer trailing 1 byte, if any. */
3579 if (unlikely(buflen & 0x01)) {
3580 u16 align_buf[1] = { 0 };
3581 unsigned char *trailing_buf = buf + buflen - 1;
3582
3583 if (write_data) {
3584 memcpy(align_buf, trailing_buf, 1);
3585 writew(le16_to_cpu(align_buf[0]), mmio);
3586 } else {
3587 align_buf[0] = cpu_to_le16(readw(mmio));
3588 memcpy(trailing_buf, align_buf, 1);
3589 }
3590 }
3591 }
3592
3593 /**
3594 * ata_pio_data_xfer - Transfer data by PIO
3595 * @ap: port to read/write
3596 * @buf: data buffer
3597 * @buflen: buffer length
3598 * @write_data: read/write
3599 *
3600 * Transfer data from/to the device data register by PIO.
3601 *
3602 * LOCKING:
3603 * Inherited from caller.
3604 */
3605
3606 static void ata_pio_data_xfer(struct ata_port *ap, unsigned char *buf,
3607 unsigned int buflen, int write_data)
3608 {
3609 unsigned int words = buflen >> 1;
3610
3611 /* Transfer multiple of 2 bytes */
3612 if (write_data)
3613 outsw(ap->ioaddr.data_addr, buf, words);
3614 else
3615 insw(ap->ioaddr.data_addr, buf, words);
3616
3617 /* Transfer trailing 1 byte, if any. */
3618 if (unlikely(buflen & 0x01)) {
3619 u16 align_buf[1] = { 0 };
3620 unsigned char *trailing_buf = buf + buflen - 1;
3621
3622 if (write_data) {
3623 memcpy(align_buf, trailing_buf, 1);
3624 outw(le16_to_cpu(align_buf[0]), ap->ioaddr.data_addr);
3625 } else {
3626 align_buf[0] = cpu_to_le16(inw(ap->ioaddr.data_addr));
3627 memcpy(trailing_buf, align_buf, 1);
3628 }
3629 }
3630 }
3631
3632 /**
3633 * ata_data_xfer - Transfer data from/to the data register.
3634 * @ap: port to read/write
3635 * @buf: data buffer
3636 * @buflen: buffer length
3637 * @do_write: read/write
3638 *
3639 * Transfer data from/to the device data register.
3640 *
3641 * LOCKING:
3642 * Inherited from caller.
3643 */
3644
3645 static void ata_data_xfer(struct ata_port *ap, unsigned char *buf,
3646 unsigned int buflen, int do_write)
3647 {
3648 /* Make the crap hardware pay the costs not the good stuff */
3649 if (unlikely(ap->flags & ATA_FLAG_IRQ_MASK)) {
3650 unsigned long flags;
3651 local_irq_save(flags);
3652 if (ap->flags & ATA_FLAG_MMIO)
3653 ata_mmio_data_xfer(ap, buf, buflen, do_write);
3654 else
3655 ata_pio_data_xfer(ap, buf, buflen, do_write);
3656 local_irq_restore(flags);
3657 } else {
3658 if (ap->flags & ATA_FLAG_MMIO)
3659 ata_mmio_data_xfer(ap, buf, buflen, do_write);
3660 else
3661 ata_pio_data_xfer(ap, buf, buflen, do_write);
3662 }
3663 }
3664
3665 /**
3666 * ata_pio_sector - Transfer ATA_SECT_SIZE (512 bytes) of data.
3667 * @qc: Command on going
3668 *
3669 * Transfer ATA_SECT_SIZE of data from/to the ATA device.
3670 *
3671 * LOCKING:
3672 * Inherited from caller.
3673 */
3674
3675 static void ata_pio_sector(struct ata_queued_cmd *qc)
3676 {
3677 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
3678 struct scatterlist *sg = qc->__sg;
3679 struct ata_port *ap = qc->ap;
3680 struct page *page;
3681 unsigned int offset;
3682 unsigned char *buf;
3683
3684 if (qc->cursect == (qc->nsect - 1))
3685 ap->hsm_task_state = HSM_ST_LAST;
3686
3687 page = sg[qc->cursg].page;
3688 offset = sg[qc->cursg].offset + qc->cursg_ofs * ATA_SECT_SIZE;
3689
3690 /* get the current page and offset */
3691 page = nth_page(page, (offset >> PAGE_SHIFT));
3692 offset %= PAGE_SIZE;
3693
3694 buf = kmap(page) + offset;
3695
3696 qc->cursect++;
3697 qc->cursg_ofs++;
3698
3699 if ((qc->cursg_ofs * ATA_SECT_SIZE) == (&sg[qc->cursg])->length) {
3700 qc->cursg++;
3701 qc->cursg_ofs = 0;
3702 }
3703
3704 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
3705
3706 /* do the actual data transfer */
3707 do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
3708 ata_data_xfer(ap, buf, ATA_SECT_SIZE, do_write);
3709
3710 kunmap(page);
3711 }
3712
3713 /**
3714 * __atapi_pio_bytes - Transfer data from/to the ATAPI device.
3715 * @qc: Command on going
3716 * @bytes: number of bytes
3717 *
3718 * Transfer Transfer data from/to the ATAPI device.
3719 *
3720 * LOCKING:
3721 * Inherited from caller.
3722 *
3723 */
3724
3725 static void __atapi_pio_bytes(struct ata_queued_cmd *qc, unsigned int bytes)
3726 {
3727 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
3728 struct scatterlist *sg = qc->__sg;
3729 struct ata_port *ap = qc->ap;
3730 struct page *page;
3731 unsigned char *buf;
3732 unsigned int offset, count;
3733
3734 if (qc->curbytes + bytes >= qc->nbytes)
3735 ap->hsm_task_state = HSM_ST_LAST;
3736
3737 next_sg:
3738 if (unlikely(qc->cursg >= qc->n_elem)) {
3739 /*
3740 * The end of qc->sg is reached and the device expects
3741 * more data to transfer. In order not to overrun qc->sg
3742 * and fulfill length specified in the byte count register,
3743 * - for read case, discard trailing data from the device
3744 * - for write case, padding zero data to the device
3745 */
3746 u16 pad_buf[1] = { 0 };
3747 unsigned int words = bytes >> 1;
3748 unsigned int i;
3749
3750 if (words) /* warning if bytes > 1 */
3751 printk(KERN_WARNING "ata%u: %u bytes trailing data\n",
3752 ap->id, bytes);
3753
3754 for (i = 0; i < words; i++)
3755 ata_data_xfer(ap, (unsigned char*)pad_buf, 2, do_write);
3756
3757 ap->hsm_task_state = HSM_ST_LAST;
3758 return;
3759 }
3760
3761 sg = &qc->__sg[qc->cursg];
3762
3763 page = sg->page;
3764 offset = sg->offset + qc->cursg_ofs;
3765
3766 /* get the current page and offset */
3767 page = nth_page(page, (offset >> PAGE_SHIFT));
3768 offset %= PAGE_SIZE;
3769
3770 /* don't overrun current sg */
3771 count = min(sg->length - qc->cursg_ofs, bytes);
3772
3773 /* don't cross page boundaries */
3774 count = min(count, (unsigned int)PAGE_SIZE - offset);
3775
3776 buf = kmap(page) + offset;
3777
3778 bytes -= count;
3779 qc->curbytes += count;
3780 qc->cursg_ofs += count;
3781
3782 if (qc->cursg_ofs == sg->length) {
3783 qc->cursg++;
3784 qc->cursg_ofs = 0;
3785 }
3786
3787 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
3788
3789 /* do the actual data transfer */
3790 ata_data_xfer(ap, buf, count, do_write);
3791
3792 kunmap(page);
3793
3794 if (bytes)
3795 goto next_sg;
3796 }
3797
3798 /**
3799 * atapi_pio_bytes - Transfer data from/to the ATAPI device.
3800 * @qc: Command on going
3801 *
3802 * Transfer Transfer data from/to the ATAPI device.
3803 *
3804 * LOCKING:
3805 * Inherited from caller.
3806 */
3807
3808 static void atapi_pio_bytes(struct ata_queued_cmd *qc)
3809 {
3810 struct ata_port *ap = qc->ap;
3811 struct ata_device *dev = qc->dev;
3812 unsigned int ireason, bc_lo, bc_hi, bytes;
3813 int i_write, do_write = (qc->tf.flags & ATA_TFLAG_WRITE) ? 1 : 0;
3814
3815 ap->ops->tf_read(ap, &qc->tf);
3816 ireason = qc->tf.nsect;
3817 bc_lo = qc->tf.lbam;
3818 bc_hi = qc->tf.lbah;
3819 bytes = (bc_hi << 8) | bc_lo;
3820
3821 /* shall be cleared to zero, indicating xfer of data */
3822 if (ireason & (1 << 0))
3823 goto err_out;
3824
3825 /* make sure transfer direction matches expected */
3826 i_write = ((ireason & (1 << 1)) == 0) ? 1 : 0;
3827 if (do_write != i_write)
3828 goto err_out;
3829
3830 __atapi_pio_bytes(qc, bytes);
3831
3832 return;
3833
3834 err_out:
3835 printk(KERN_INFO "ata%u: dev %u: ATAPI check failed\n",
3836 ap->id, dev->devno);
3837 qc->err_mask |= AC_ERR_HSM;
3838 ap->hsm_task_state = HSM_ST_ERR;
3839 }
3840
3841 /**
3842 * ata_pio_block - start PIO on a block
3843 * @ap: the target ata_port
3844 *
3845 * LOCKING:
3846 * None. (executing in kernel thread context)
3847 */
3848
3849 static void ata_pio_block(struct ata_port *ap)
3850 {
3851 struct ata_queued_cmd *qc;
3852 u8 status;
3853
3854 /*
3855 * This is purely heuristic. This is a fast path.
3856 * Sometimes when we enter, BSY will be cleared in
3857 * a chk-status or two. If not, the drive is probably seeking
3858 * or something. Snooze for a couple msecs, then
3859 * chk-status again. If still busy, fall back to
3860 * HSM_ST_POLL state.
3861 */
3862 status = ata_busy_wait(ap, ATA_BUSY, 5);
3863 if (status & ATA_BUSY) {
3864 msleep(2);
3865 status = ata_busy_wait(ap, ATA_BUSY, 10);
3866 if (status & ATA_BUSY) {
3867 ap->hsm_task_state = HSM_ST_POLL;
3868 ap->pio_task_timeout = jiffies + ATA_TMOUT_PIO;
3869 return;
3870 }
3871 }
3872
3873 qc = ata_qc_from_tag(ap, ap->active_tag);
3874 WARN_ON(qc == NULL);
3875
3876 /* check error */
3877 if (status & (ATA_ERR | ATA_DF)) {
3878 qc->err_mask |= AC_ERR_DEV;
3879 ap->hsm_task_state = HSM_ST_ERR;
3880 return;
3881 }
3882
3883 /* transfer data if any */
3884 if (is_atapi_taskfile(&qc->tf)) {
3885 /* DRQ=0 means no more data to transfer */
3886 if ((status & ATA_DRQ) == 0) {
3887 ap->hsm_task_state = HSM_ST_LAST;
3888 return;
3889 }
3890
3891 atapi_pio_bytes(qc);
3892 } else {
3893 /* handle BSY=0, DRQ=0 as error */
3894 if ((status & ATA_DRQ) == 0) {
3895 qc->err_mask |= AC_ERR_HSM;
3896 ap->hsm_task_state = HSM_ST_ERR;
3897 return;
3898 }
3899
3900 ata_pio_sector(qc);
3901 }
3902 }
3903
3904 static void ata_pio_error(struct ata_port *ap)
3905 {
3906 struct ata_queued_cmd *qc;
3907
3908 qc = ata_qc_from_tag(ap, ap->active_tag);
3909 WARN_ON(qc == NULL);
3910
3911 if (qc->tf.command != ATA_CMD_PACKET)
3912 printk(KERN_WARNING "ata%u: PIO error\n", ap->id);
3913
3914 /* make sure qc->err_mask is available to
3915 * know what's wrong and recover
3916 */
3917 WARN_ON(qc->err_mask == 0);
3918
3919 ap->hsm_task_state = HSM_ST_IDLE;
3920
3921 ata_poll_qc_complete(qc);
3922 }
3923
3924 static void ata_pio_task(void *_data)
3925 {
3926 struct ata_port *ap = _data;
3927 unsigned long timeout;
3928 int qc_completed;
3929
3930 fsm_start:
3931 timeout = 0;
3932 qc_completed = 0;
3933
3934 switch (ap->hsm_task_state) {
3935 case HSM_ST_IDLE:
3936 return;
3937
3938 case HSM_ST:
3939 ata_pio_block(ap);
3940 break;
3941
3942 case HSM_ST_LAST:
3943 qc_completed = ata_pio_complete(ap);
3944 break;
3945
3946 case HSM_ST_POLL:
3947 case HSM_ST_LAST_POLL:
3948 timeout = ata_pio_poll(ap);
3949 break;
3950
3951 case HSM_ST_TMOUT:
3952 case HSM_ST_ERR:
3953 ata_pio_error(ap);
3954 return;
3955 }
3956
3957 if (timeout)
3958 ata_port_queue_task(ap, ata_pio_task, ap, timeout);
3959 else if (!qc_completed)
3960 goto fsm_start;
3961 }
3962
3963 /**
3964 * atapi_packet_task - Write CDB bytes to hardware
3965 * @_data: Port to which ATAPI device is attached.
3966 *
3967 * When device has indicated its readiness to accept
3968 * a CDB, this function is called. Send the CDB.
3969 * If DMA is to be performed, exit immediately.
3970 * Otherwise, we are in polling mode, so poll
3971 * status under operation succeeds or fails.
3972 *
3973 * LOCKING:
3974 * Kernel thread context (may sleep)
3975 */
3976
3977 static void atapi_packet_task(void *_data)
3978 {
3979 struct ata_port *ap = _data;
3980 struct ata_queued_cmd *qc;
3981 u8 status;
3982
3983 qc = ata_qc_from_tag(ap, ap->active_tag);
3984 WARN_ON(qc == NULL);
3985 WARN_ON(!(qc->flags & ATA_QCFLAG_ACTIVE));
3986
3987 /* sleep-wait for BSY to clear */
3988 DPRINTK("busy wait\n");
3989 if (ata_busy_sleep(ap, ATA_TMOUT_CDB_QUICK, ATA_TMOUT_CDB)) {
3990 qc->err_mask |= AC_ERR_TIMEOUT;
3991 goto err_out;
3992 }
3993
3994 /* make sure DRQ is set */
3995 status = ata_chk_status(ap);
3996 if ((status & (ATA_BUSY | ATA_DRQ)) != ATA_DRQ) {
3997 qc->err_mask |= AC_ERR_HSM;
3998 goto err_out;
3999 }
4000
4001 /* send SCSI cdb */
4002 DPRINTK("send cdb\n");
4003 WARN_ON(qc->dev->cdb_len < 12);
4004
4005 if (qc->tf.protocol == ATA_PROT_ATAPI_DMA ||
4006 qc->tf.protocol == ATA_PROT_ATAPI_NODATA) {
4007 unsigned long flags;
4008
4009 /* Once we're done issuing command and kicking bmdma,
4010 * irq handler takes over. To not lose irq, we need
4011 * to clear NOINTR flag before sending cdb, but
4012 * interrupt handler shouldn't be invoked before we're
4013 * finished. Hence, the following locking.
4014 */
4015 spin_lock_irqsave(&ap->host_set->lock, flags);
4016 ap->flags &= ~ATA_FLAG_NOINTR;
4017 ata_data_xfer(ap, qc->cdb, qc->dev->cdb_len, 1);
4018 if (qc->tf.protocol == ATA_PROT_ATAPI_DMA)
4019 ap->ops->bmdma_start(qc); /* initiate bmdma */
4020 spin_unlock_irqrestore(&ap->host_set->lock, flags);
4021 } else {
4022 ata_data_xfer(ap, qc->cdb, qc->dev->cdb_len, 1);
4023
4024 /* PIO commands are handled by polling */
4025 ap->hsm_task_state = HSM_ST;
4026 ata_port_queue_task(ap, ata_pio_task, ap, 0);
4027 }
4028
4029 return;
4030
4031 err_out:
4032 ata_poll_qc_complete(qc);
4033 }
4034
4035 /**
4036 * ata_qc_timeout - Handle timeout of queued command
4037 * @qc: Command that timed out
4038 *
4039 * Some part of the kernel (currently, only the SCSI layer)
4040 * has noticed that the active command on port @ap has not
4041 * completed after a specified length of time. Handle this
4042 * condition by disabling DMA (if necessary) and completing
4043 * transactions, with error if necessary.
4044 *
4045 * This also handles the case of the "lost interrupt", where
4046 * for some reason (possibly hardware bug, possibly driver bug)
4047 * an interrupt was not delivered to the driver, even though the
4048 * transaction completed successfully.
4049 *
4050 * LOCKING:
4051 * Inherited from SCSI layer (none, can sleep)
4052 */
4053
4054 static void ata_qc_timeout(struct ata_queued_cmd *qc)
4055 {
4056 struct ata_port *ap = qc->ap;
4057 struct ata_host_set *host_set = ap->host_set;
4058 u8 host_stat = 0, drv_stat;
4059 unsigned long flags;
4060
4061 DPRINTK("ENTER\n");
4062
4063 ap->hsm_task_state = HSM_ST_IDLE;
4064
4065 spin_lock_irqsave(&host_set->lock, flags);
4066
4067 switch (qc->tf.protocol) {
4068
4069 case ATA_PROT_DMA:
4070 case ATA_PROT_ATAPI_DMA:
4071 host_stat = ap->ops->bmdma_status(ap);
4072
4073 /* before we do anything else, clear DMA-Start bit */
4074 ap->ops->bmdma_stop(qc);
4075
4076 /* fall through */
4077
4078 default:
4079 ata_altstatus(ap);
4080 drv_stat = ata_chk_status(ap);
4081
4082 /* ack bmdma irq events */
4083 ap->ops->irq_clear(ap);
4084
4085 printk(KERN_ERR "ata%u: command 0x%x timeout, stat 0x%x host_stat 0x%x\n",
4086 ap->id, qc->tf.command, drv_stat, host_stat);
4087
4088 /* complete taskfile transaction */
4089 qc->err_mask |= ac_err_mask(drv_stat);
4090 break;
4091 }
4092
4093 spin_unlock_irqrestore(&host_set->lock, flags);
4094
4095 ata_eh_qc_complete(qc);
4096
4097 DPRINTK("EXIT\n");
4098 }
4099
4100 /**
4101 * ata_eng_timeout - Handle timeout of queued command
4102 * @ap: Port on which timed-out command is active
4103 *
4104 * Some part of the kernel (currently, only the SCSI layer)
4105 * has noticed that the active command on port @ap has not
4106 * completed after a specified length of time. Handle this
4107 * condition by disabling DMA (if necessary) and completing
4108 * transactions, with error if necessary.
4109 *
4110 * This also handles the case of the "lost interrupt", where
4111 * for some reason (possibly hardware bug, possibly driver bug)
4112 * an interrupt was not delivered to the driver, even though the
4113 * transaction completed successfully.
4114 *
4115 * LOCKING:
4116 * Inherited from SCSI layer (none, can sleep)
4117 */
4118
4119 void ata_eng_timeout(struct ata_port *ap)
4120 {
4121 DPRINTK("ENTER\n");
4122
4123 ata_qc_timeout(ata_qc_from_tag(ap, ap->active_tag));
4124
4125 DPRINTK("EXIT\n");
4126 }
4127
4128 /**
4129 * ata_qc_new - Request an available ATA command, for queueing
4130 * @ap: Port associated with device @dev
4131 * @dev: Device from whom we request an available command structure
4132 *
4133 * LOCKING:
4134 * None.
4135 */
4136
4137 static struct ata_queued_cmd *ata_qc_new(struct ata_port *ap)
4138 {
4139 struct ata_queued_cmd *qc = NULL;
4140 unsigned int i;
4141
4142 for (i = 0; i < ATA_MAX_QUEUE; i++)
4143 if (!test_and_set_bit(i, &ap->qactive)) {
4144 qc = ata_qc_from_tag(ap, i);
4145 break;
4146 }
4147
4148 if (qc)
4149 qc->tag = i;
4150
4151 return qc;
4152 }
4153
4154 /**
4155 * ata_qc_new_init - Request an available ATA command, and initialize it
4156 * @ap: Port associated with device @dev
4157 * @dev: Device from whom we request an available command structure
4158 *
4159 * LOCKING:
4160 * None.
4161 */
4162
4163 struct ata_queued_cmd *ata_qc_new_init(struct ata_port *ap,
4164 struct ata_device *dev)
4165 {
4166 struct ata_queued_cmd *qc;
4167
4168 qc = ata_qc_new(ap);
4169 if (qc) {
4170 qc->scsicmd = NULL;
4171 qc->ap = ap;
4172 qc->dev = dev;
4173
4174 ata_qc_reinit(qc);
4175 }
4176
4177 return qc;
4178 }
4179
4180 /**
4181 * ata_qc_free - free unused ata_queued_cmd
4182 * @qc: Command to complete
4183 *
4184 * Designed to free unused ata_queued_cmd object
4185 * in case something prevents using it.
4186 *
4187 * LOCKING:
4188 * spin_lock_irqsave(host_set lock)
4189 */
4190 void ata_qc_free(struct ata_queued_cmd *qc)
4191 {
4192 struct ata_port *ap = qc->ap;
4193 unsigned int tag;
4194
4195 WARN_ON(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
4196
4197 qc->flags = 0;
4198 tag = qc->tag;
4199 if (likely(ata_tag_valid(tag))) {
4200 if (tag == ap->active_tag)
4201 ap->active_tag = ATA_TAG_POISON;
4202 qc->tag = ATA_TAG_POISON;
4203 clear_bit(tag, &ap->qactive);
4204 }
4205 }
4206
4207 void __ata_qc_complete(struct ata_queued_cmd *qc)
4208 {
4209 WARN_ON(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
4210 WARN_ON(!(qc->flags & ATA_QCFLAG_ACTIVE));
4211
4212 if (likely(qc->flags & ATA_QCFLAG_DMAMAP))
4213 ata_sg_clean(qc);
4214
4215 /* atapi: mark qc as inactive to prevent the interrupt handler
4216 * from completing the command twice later, before the error handler
4217 * is called. (when rc != 0 and atapi request sense is needed)
4218 */
4219 qc->flags &= ~ATA_QCFLAG_ACTIVE;
4220
4221 /* call completion callback */
4222 qc->complete_fn(qc);
4223 }
4224
4225 static inline int ata_should_dma_map(struct ata_queued_cmd *qc)
4226 {
4227 struct ata_port *ap = qc->ap;
4228
4229 switch (qc->tf.protocol) {
4230 case ATA_PROT_DMA:
4231 case ATA_PROT_ATAPI_DMA:
4232 return 1;
4233
4234 case ATA_PROT_ATAPI:
4235 case ATA_PROT_PIO:
4236 if (ap->flags & ATA_FLAG_PIO_DMA)
4237 return 1;
4238
4239 /* fall through */
4240
4241 default:
4242 return 0;
4243 }
4244
4245 /* never reached */
4246 }
4247
4248 /**
4249 * ata_qc_issue - issue taskfile to device
4250 * @qc: command to issue to device
4251 *
4252 * Prepare an ATA command to submission to device.
4253 * This includes mapping the data into a DMA-able
4254 * area, filling in the S/G table, and finally
4255 * writing the taskfile to hardware, starting the command.
4256 *
4257 * LOCKING:
4258 * spin_lock_irqsave(host_set lock)
4259 */
4260 void ata_qc_issue(struct ata_queued_cmd *qc)
4261 {
4262 struct ata_port *ap = qc->ap;
4263
4264 qc->ap->active_tag = qc->tag;
4265 qc->flags |= ATA_QCFLAG_ACTIVE;
4266
4267 if (ata_should_dma_map(qc)) {
4268 if (qc->flags & ATA_QCFLAG_SG) {
4269 if (ata_sg_setup(qc))
4270 goto sg_err;
4271 } else if (qc->flags & ATA_QCFLAG_SINGLE) {
4272 if (ata_sg_setup_one(qc))
4273 goto sg_err;
4274 }
4275 } else {
4276 qc->flags &= ~ATA_QCFLAG_DMAMAP;
4277 }
4278
4279 ap->ops->qc_prep(qc);
4280
4281 qc->err_mask |= ap->ops->qc_issue(qc);
4282 if (unlikely(qc->err_mask))
4283 goto err;
4284 return;
4285
4286 sg_err:
4287 qc->flags &= ~ATA_QCFLAG_DMAMAP;
4288 qc->err_mask |= AC_ERR_SYSTEM;
4289 err:
4290 ata_qc_complete(qc);
4291 }
4292
4293 /**
4294 * ata_qc_issue_prot - issue taskfile to device in proto-dependent manner
4295 * @qc: command to issue to device
4296 *
4297 * Using various libata functions and hooks, this function
4298 * starts an ATA command. ATA commands are grouped into
4299 * classes called "protocols", and issuing each type of protocol
4300 * is slightly different.
4301 *
4302 * May be used as the qc_issue() entry in ata_port_operations.
4303 *
4304 * LOCKING:
4305 * spin_lock_irqsave(host_set lock)
4306 *
4307 * RETURNS:
4308 * Zero on success, AC_ERR_* mask on failure
4309 */
4310
4311 unsigned int ata_qc_issue_prot(struct ata_queued_cmd *qc)
4312 {
4313 struct ata_port *ap = qc->ap;
4314
4315 ata_dev_select(ap, qc->dev->devno, 1, 0);
4316
4317 switch (qc->tf.protocol) {
4318 case ATA_PROT_NODATA:
4319 ata_tf_to_host(ap, &qc->tf);
4320 break;
4321
4322 case ATA_PROT_DMA:
4323 ap->ops->tf_load(ap, &qc->tf); /* load tf registers */
4324 ap->ops->bmdma_setup(qc); /* set up bmdma */
4325 ap->ops->bmdma_start(qc); /* initiate bmdma */
4326 break;
4327
4328 case ATA_PROT_PIO: /* load tf registers, initiate polling pio */
4329 ata_qc_set_polling(qc);
4330 ata_tf_to_host(ap, &qc->tf);
4331 ap->hsm_task_state = HSM_ST;
4332 ata_port_queue_task(ap, ata_pio_task, ap, 0);
4333 break;
4334
4335 case ATA_PROT_ATAPI:
4336 ata_qc_set_polling(qc);
4337 ata_tf_to_host(ap, &qc->tf);
4338 ata_port_queue_task(ap, atapi_packet_task, ap, 0);
4339 break;
4340
4341 case ATA_PROT_ATAPI_NODATA:
4342 ap->flags |= ATA_FLAG_NOINTR;
4343 ata_tf_to_host(ap, &qc->tf);
4344 ata_port_queue_task(ap, atapi_packet_task, ap, 0);
4345 break;
4346
4347 case ATA_PROT_ATAPI_DMA:
4348 ap->flags |= ATA_FLAG_NOINTR;
4349 ap->ops->tf_load(ap, &qc->tf); /* load tf registers */
4350 ap->ops->bmdma_setup(qc); /* set up bmdma */
4351 ata_port_queue_task(ap, atapi_packet_task, ap, 0);
4352 break;
4353
4354 default:
4355 WARN_ON(1);
4356 return AC_ERR_SYSTEM;
4357 }
4358
4359 return 0;
4360 }
4361
4362 /**
4363 * ata_host_intr - Handle host interrupt for given (port, task)
4364 * @ap: Port on which interrupt arrived (possibly...)
4365 * @qc: Taskfile currently active in engine
4366 *
4367 * Handle host interrupt for given queued command. Currently,
4368 * only DMA interrupts are handled. All other commands are
4369 * handled via polling with interrupts disabled (nIEN bit).
4370 *
4371 * LOCKING:
4372 * spin_lock_irqsave(host_set lock)
4373 *
4374 * RETURNS:
4375 * One if interrupt was handled, zero if not (shared irq).
4376 */
4377
4378 inline unsigned int ata_host_intr (struct ata_port *ap,
4379 struct ata_queued_cmd *qc)
4380 {
4381 u8 status, host_stat;
4382
4383 switch (qc->tf.protocol) {
4384
4385 case ATA_PROT_DMA:
4386 case ATA_PROT_ATAPI_DMA:
4387 case ATA_PROT_ATAPI:
4388 /* check status of DMA engine */
4389 host_stat = ap->ops->bmdma_status(ap);
4390 VPRINTK("ata%u: host_stat 0x%X\n", ap->id, host_stat);
4391
4392 /* if it's not our irq... */
4393 if (!(host_stat & ATA_DMA_INTR))
4394 goto idle_irq;
4395
4396 /* before we do anything else, clear DMA-Start bit */
4397 ap->ops->bmdma_stop(qc);
4398
4399 /* fall through */
4400
4401 case ATA_PROT_ATAPI_NODATA:
4402 case ATA_PROT_NODATA:
4403 /* check altstatus */
4404 status = ata_altstatus(ap);
4405 if (status & ATA_BUSY)
4406 goto idle_irq;
4407
4408 /* check main status, clearing INTRQ */
4409 status = ata_chk_status(ap);
4410 if (unlikely(status & ATA_BUSY))
4411 goto idle_irq;
4412 DPRINTK("ata%u: protocol %d (dev_stat 0x%X)\n",
4413 ap->id, qc->tf.protocol, status);
4414
4415 /* ack bmdma irq events */
4416 ap->ops->irq_clear(ap);
4417
4418 /* complete taskfile transaction */
4419 qc->err_mask |= ac_err_mask(status);
4420 ata_qc_complete(qc);
4421 break;
4422
4423 default:
4424 goto idle_irq;
4425 }
4426
4427 return 1; /* irq handled */
4428
4429 idle_irq:
4430 ap->stats.idle_irq++;
4431
4432 #ifdef ATA_IRQ_TRAP
4433 if ((ap->stats.idle_irq % 1000) == 0) {
4434 ata_irq_ack(ap, 0); /* debug trap */
4435 printk(KERN_WARNING "ata%d: irq trap\n", ap->id);
4436 return 1;
4437 }
4438 #endif
4439 return 0; /* irq not handled */
4440 }
4441
4442 /**
4443 * ata_interrupt - Default ATA host interrupt handler
4444 * @irq: irq line (unused)
4445 * @dev_instance: pointer to our ata_host_set information structure
4446 * @regs: unused
4447 *
4448 * Default interrupt handler for PCI IDE devices. Calls
4449 * ata_host_intr() for each port that is not disabled.
4450 *
4451 * LOCKING:
4452 * Obtains host_set lock during operation.
4453 *
4454 * RETURNS:
4455 * IRQ_NONE or IRQ_HANDLED.
4456 */
4457
4458 irqreturn_t ata_interrupt (int irq, void *dev_instance, struct pt_regs *regs)
4459 {
4460 struct ata_host_set *host_set = dev_instance;
4461 unsigned int i;
4462 unsigned int handled = 0;
4463 unsigned long flags;
4464
4465 /* TODO: make _irqsave conditional on x86 PCI IDE legacy mode */
4466 spin_lock_irqsave(&host_set->lock, flags);
4467
4468 for (i = 0; i < host_set->n_ports; i++) {
4469 struct ata_port *ap;
4470
4471 ap = host_set->ports[i];
4472 if (ap &&
4473 !(ap->flags & (ATA_FLAG_PORT_DISABLED | ATA_FLAG_NOINTR))) {
4474 struct ata_queued_cmd *qc;
4475
4476 qc = ata_qc_from_tag(ap, ap->active_tag);
4477 if (qc && (!(qc->tf.ctl & ATA_NIEN)) &&
4478 (qc->flags & ATA_QCFLAG_ACTIVE))
4479 handled |= ata_host_intr(ap, qc);
4480 }
4481 }
4482
4483 spin_unlock_irqrestore(&host_set->lock, flags);
4484
4485 return IRQ_RETVAL(handled);
4486 }
4487
4488
4489 /*
4490 * Execute a 'simple' command, that only consists of the opcode 'cmd' itself,
4491 * without filling any other registers
4492 */
4493 static int ata_do_simple_cmd(struct ata_port *ap, struct ata_device *dev,
4494 u8 cmd)
4495 {
4496 struct ata_taskfile tf;
4497 int err;
4498
4499 ata_tf_init(ap, &tf, dev->devno);
4500
4501 tf.command = cmd;
4502 tf.flags |= ATA_TFLAG_DEVICE;
4503 tf.protocol = ATA_PROT_NODATA;
4504
4505 err = ata_exec_internal(ap, dev, &tf, DMA_NONE, NULL, 0);
4506 if (err)
4507 printk(KERN_ERR "%s: ata command failed: %d\n",
4508 __FUNCTION__, err);
4509
4510 return err;
4511 }
4512
4513 static int ata_flush_cache(struct ata_port *ap, struct ata_device *dev)
4514 {
4515 u8 cmd;
4516
4517 if (!ata_try_flush_cache(dev))
4518 return 0;
4519
4520 if (ata_id_has_flush_ext(dev->id))
4521 cmd = ATA_CMD_FLUSH_EXT;
4522 else
4523 cmd = ATA_CMD_FLUSH;
4524
4525 return ata_do_simple_cmd(ap, dev, cmd);
4526 }
4527
4528 static int ata_standby_drive(struct ata_port *ap, struct ata_device *dev)
4529 {
4530 return ata_do_simple_cmd(ap, dev, ATA_CMD_STANDBYNOW1);
4531 }
4532
4533 static int ata_start_drive(struct ata_port *ap, struct ata_device *dev)
4534 {
4535 return ata_do_simple_cmd(ap, dev, ATA_CMD_IDLEIMMEDIATE);
4536 }
4537
4538 /**
4539 * ata_device_resume - wakeup a previously suspended devices
4540 * @ap: port the device is connected to
4541 * @dev: the device to resume
4542 *
4543 * Kick the drive back into action, by sending it an idle immediate
4544 * command and making sure its transfer mode matches between drive
4545 * and host.
4546 *
4547 */
4548 int ata_device_resume(struct ata_port *ap, struct ata_device *dev)
4549 {
4550 if (ap->flags & ATA_FLAG_SUSPENDED) {
4551 struct ata_device *failed_dev;
4552 ap->flags &= ~ATA_FLAG_SUSPENDED;
4553 while (ata_set_mode(ap, &failed_dev))
4554 ata_dev_disable(ap, failed_dev);
4555 }
4556 if (!ata_dev_enabled(dev))
4557 return 0;
4558 if (dev->class == ATA_DEV_ATA)
4559 ata_start_drive(ap, dev);
4560
4561 return 0;
4562 }
4563
4564 /**
4565 * ata_device_suspend - prepare a device for suspend
4566 * @ap: port the device is connected to
4567 * @dev: the device to suspend
4568 *
4569 * Flush the cache on the drive, if appropriate, then issue a
4570 * standbynow command.
4571 */
4572 int ata_device_suspend(struct ata_port *ap, struct ata_device *dev, pm_message_t state)
4573 {
4574 if (!ata_dev_enabled(dev))
4575 return 0;
4576 if (dev->class == ATA_DEV_ATA)
4577 ata_flush_cache(ap, dev);
4578
4579 if (state.event != PM_EVENT_FREEZE)
4580 ata_standby_drive(ap, dev);
4581 ap->flags |= ATA_FLAG_SUSPENDED;
4582 return 0;
4583 }
4584
4585 /**
4586 * ata_port_start - Set port up for dma.
4587 * @ap: Port to initialize
4588 *
4589 * Called just after data structures for each port are
4590 * initialized. Allocates space for PRD table.
4591 *
4592 * May be used as the port_start() entry in ata_port_operations.
4593 *
4594 * LOCKING:
4595 * Inherited from caller.
4596 */
4597
4598 int ata_port_start (struct ata_port *ap)
4599 {
4600 struct device *dev = ap->dev;
4601 int rc;
4602
4603 ap->prd = dma_alloc_coherent(dev, ATA_PRD_TBL_SZ, &ap->prd_dma, GFP_KERNEL);
4604 if (!ap->prd)
4605 return -ENOMEM;
4606
4607 rc = ata_pad_alloc(ap, dev);
4608 if (rc) {
4609 dma_free_coherent(dev, ATA_PRD_TBL_SZ, ap->prd, ap->prd_dma);
4610 return rc;
4611 }
4612
4613 DPRINTK("prd alloc, virt %p, dma %llx\n", ap->prd, (unsigned long long) ap->prd_dma);
4614
4615 return 0;
4616 }
4617
4618
4619 /**
4620 * ata_port_stop - Undo ata_port_start()
4621 * @ap: Port to shut down
4622 *
4623 * Frees the PRD table.
4624 *
4625 * May be used as the port_stop() entry in ata_port_operations.
4626 *
4627 * LOCKING:
4628 * Inherited from caller.
4629 */
4630
4631 void ata_port_stop (struct ata_port *ap)
4632 {
4633 struct device *dev = ap->dev;
4634
4635 dma_free_coherent(dev, ATA_PRD_TBL_SZ, ap->prd, ap->prd_dma);
4636 ata_pad_free(ap, dev);
4637 }
4638
4639 void ata_host_stop (struct ata_host_set *host_set)
4640 {
4641 if (host_set->mmio_base)
4642 iounmap(host_set->mmio_base);
4643 }
4644
4645
4646 /**
4647 * ata_host_remove - Unregister SCSI host structure with upper layers
4648 * @ap: Port to unregister
4649 * @do_unregister: 1 if we fully unregister, 0 to just stop the port
4650 *
4651 * LOCKING:
4652 * Inherited from caller.
4653 */
4654
4655 static void ata_host_remove(struct ata_port *ap, unsigned int do_unregister)
4656 {
4657 struct Scsi_Host *sh = ap->host;
4658
4659 DPRINTK("ENTER\n");
4660
4661 if (do_unregister)
4662 scsi_remove_host(sh);
4663
4664 ap->ops->port_stop(ap);
4665 }
4666
4667 /**
4668 * ata_host_init - Initialize an ata_port structure
4669 * @ap: Structure to initialize
4670 * @host: associated SCSI mid-layer structure
4671 * @host_set: Collection of hosts to which @ap belongs
4672 * @ent: Probe information provided by low-level driver
4673 * @port_no: Port number associated with this ata_port
4674 *
4675 * Initialize a new ata_port structure, and its associated
4676 * scsi_host.
4677 *
4678 * LOCKING:
4679 * Inherited from caller.
4680 */
4681
4682 static void ata_host_init(struct ata_port *ap, struct Scsi_Host *host,
4683 struct ata_host_set *host_set,
4684 const struct ata_probe_ent *ent, unsigned int port_no)
4685 {
4686 unsigned int i;
4687
4688 host->max_id = 16;
4689 host->max_lun = 1;
4690 host->max_channel = 1;
4691 host->unique_id = ata_unique_id++;
4692 host->max_cmd_len = 12;
4693
4694 ap->flags = ATA_FLAG_PORT_DISABLED;
4695 ap->id = host->unique_id;
4696 ap->host = host;
4697 ap->ctl = ATA_DEVCTL_OBS;
4698 ap->host_set = host_set;
4699 ap->dev = ent->dev;
4700 ap->port_no = port_no;
4701 ap->hard_port_no =
4702 ent->legacy_mode ? ent->hard_port_no : port_no;
4703 ap->pio_mask = ent->pio_mask;
4704 ap->mwdma_mask = ent->mwdma_mask;
4705 ap->udma_mask = ent->udma_mask;
4706 ap->flags |= ent->host_flags;
4707 ap->ops = ent->port_ops;
4708 ap->cbl = ATA_CBL_NONE;
4709 ap->sata_spd_limit = UINT_MAX;
4710 ap->active_tag = ATA_TAG_POISON;
4711 ap->last_ctl = 0xFF;
4712
4713 INIT_WORK(&ap->port_task, NULL, NULL);
4714 INIT_LIST_HEAD(&ap->eh_done_q);
4715
4716 for (i = 0; i < ATA_MAX_DEVICES; i++) {
4717 struct ata_device *dev = &ap->device[i];
4718 dev->devno = i;
4719 dev->pio_mask = UINT_MAX;
4720 dev->mwdma_mask = UINT_MAX;
4721 dev->udma_mask = UINT_MAX;
4722 }
4723
4724 #ifdef ATA_IRQ_TRAP
4725 ap->stats.unhandled_irq = 1;
4726 ap->stats.idle_irq = 1;
4727 #endif
4728
4729 memcpy(&ap->ioaddr, &ent->port[port_no], sizeof(struct ata_ioports));
4730 }
4731
4732 /**
4733 * ata_host_add - Attach low-level ATA driver to system
4734 * @ent: Information provided by low-level driver
4735 * @host_set: Collections of ports to which we add
4736 * @port_no: Port number associated with this host
4737 *
4738 * Attach low-level ATA driver to system.
4739 *
4740 * LOCKING:
4741 * PCI/etc. bus probe sem.
4742 *
4743 * RETURNS:
4744 * New ata_port on success, for NULL on error.
4745 */
4746
4747 static struct ata_port * ata_host_add(const struct ata_probe_ent *ent,
4748 struct ata_host_set *host_set,
4749 unsigned int port_no)
4750 {
4751 struct Scsi_Host *host;
4752 struct ata_port *ap;
4753 int rc;
4754
4755 DPRINTK("ENTER\n");
4756
4757 if (!ent->port_ops->probe_reset &&
4758 !(ent->host_flags & (ATA_FLAG_SATA_RESET | ATA_FLAG_SRST))) {
4759 printk(KERN_ERR "ata%u: no reset mechanism available\n",
4760 port_no);
4761 return NULL;
4762 }
4763
4764 host = scsi_host_alloc(ent->sht, sizeof(struct ata_port));
4765 if (!host)
4766 return NULL;
4767
4768 host->transportt = &ata_scsi_transport_template;
4769
4770 ap = (struct ata_port *) &host->hostdata[0];
4771
4772 ata_host_init(ap, host, host_set, ent, port_no);
4773
4774 rc = ap->ops->port_start(ap);
4775 if (rc)
4776 goto err_out;
4777
4778 return ap;
4779
4780 err_out:
4781 scsi_host_put(host);
4782 return NULL;
4783 }
4784
4785 /**
4786 * ata_device_add - Register hardware device with ATA and SCSI layers
4787 * @ent: Probe information describing hardware device to be registered
4788 *
4789 * This function processes the information provided in the probe
4790 * information struct @ent, allocates the necessary ATA and SCSI
4791 * host information structures, initializes them, and registers
4792 * everything with requisite kernel subsystems.
4793 *
4794 * This function requests irqs, probes the ATA bus, and probes
4795 * the SCSI bus.
4796 *
4797 * LOCKING:
4798 * PCI/etc. bus probe sem.
4799 *
4800 * RETURNS:
4801 * Number of ports registered. Zero on error (no ports registered).
4802 */
4803
4804 int ata_device_add(const struct ata_probe_ent *ent)
4805 {
4806 unsigned int count = 0, i;
4807 struct device *dev = ent->dev;
4808 struct ata_host_set *host_set;
4809
4810 DPRINTK("ENTER\n");
4811 /* alloc a container for our list of ATA ports (buses) */
4812 host_set = kzalloc(sizeof(struct ata_host_set) +
4813 (ent->n_ports * sizeof(void *)), GFP_KERNEL);
4814 if (!host_set)
4815 return 0;
4816 spin_lock_init(&host_set->lock);
4817
4818 host_set->dev = dev;
4819 host_set->n_ports = ent->n_ports;
4820 host_set->irq = ent->irq;
4821 host_set->mmio_base = ent->mmio_base;
4822 host_set->private_data = ent->private_data;
4823 host_set->ops = ent->port_ops;
4824 host_set->flags = ent->host_set_flags;
4825
4826 /* register each port bound to this device */
4827 for (i = 0; i < ent->n_ports; i++) {
4828 struct ata_port *ap;
4829 unsigned long xfer_mode_mask;
4830
4831 ap = ata_host_add(ent, host_set, i);
4832 if (!ap)
4833 goto err_out;
4834
4835 host_set->ports[i] = ap;
4836 xfer_mode_mask =(ap->udma_mask << ATA_SHIFT_UDMA) |
4837 (ap->mwdma_mask << ATA_SHIFT_MWDMA) |
4838 (ap->pio_mask << ATA_SHIFT_PIO);
4839
4840 /* print per-port info to dmesg */
4841 printk(KERN_INFO "ata%u: %cATA max %s cmd 0x%lX ctl 0x%lX "
4842 "bmdma 0x%lX irq %lu\n",
4843 ap->id,
4844 ap->flags & ATA_FLAG_SATA ? 'S' : 'P',
4845 ata_mode_string(xfer_mode_mask),
4846 ap->ioaddr.cmd_addr,
4847 ap->ioaddr.ctl_addr,
4848 ap->ioaddr.bmdma_addr,
4849 ent->irq);
4850
4851 ata_chk_status(ap);
4852 host_set->ops->irq_clear(ap);
4853 count++;
4854 }
4855
4856 if (!count)
4857 goto err_free_ret;
4858
4859 /* obtain irq, that is shared between channels */
4860 if (request_irq(ent->irq, ent->port_ops->irq_handler, ent->irq_flags,
4861 DRV_NAME, host_set))
4862 goto err_out;
4863
4864 /* perform each probe synchronously */
4865 DPRINTK("probe begin\n");
4866 for (i = 0; i < count; i++) {
4867 struct ata_port *ap;
4868 int rc;
4869
4870 ap = host_set->ports[i];
4871
4872 DPRINTK("ata%u: bus probe begin\n", ap->id);
4873 rc = ata_bus_probe(ap);
4874 DPRINTK("ata%u: bus probe end\n", ap->id);
4875
4876 if (rc) {
4877 /* FIXME: do something useful here?
4878 * Current libata behavior will
4879 * tear down everything when
4880 * the module is removed
4881 * or the h/w is unplugged.
4882 */
4883 }
4884
4885 rc = scsi_add_host(ap->host, dev);
4886 if (rc) {
4887 printk(KERN_ERR "ata%u: scsi_add_host failed\n",
4888 ap->id);
4889 /* FIXME: do something useful here */
4890 /* FIXME: handle unconditional calls to
4891 * scsi_scan_host and ata_host_remove, below,
4892 * at the very least
4893 */
4894 }
4895 }
4896
4897 /* probes are done, now scan each port's disk(s) */
4898 DPRINTK("host probe begin\n");
4899 for (i = 0; i < count; i++) {
4900 struct ata_port *ap = host_set->ports[i];
4901
4902 ata_scsi_scan_host(ap);
4903 }
4904
4905 dev_set_drvdata(dev, host_set);
4906
4907 VPRINTK("EXIT, returning %u\n", ent->n_ports);
4908 return ent->n_ports; /* success */
4909
4910 err_out:
4911 for (i = 0; i < count; i++) {
4912 ata_host_remove(host_set->ports[i], 1);
4913 scsi_host_put(host_set->ports[i]->host);
4914 }
4915 err_free_ret:
4916 kfree(host_set);
4917 VPRINTK("EXIT, returning 0\n");
4918 return 0;
4919 }
4920
4921 /**
4922 * ata_host_set_remove - PCI layer callback for device removal
4923 * @host_set: ATA host set that was removed
4924 *
4925 * Unregister all objects associated with this host set. Free those
4926 * objects.
4927 *
4928 * LOCKING:
4929 * Inherited from calling layer (may sleep).
4930 */
4931
4932 void ata_host_set_remove(struct ata_host_set *host_set)
4933 {
4934 struct ata_port *ap;
4935 unsigned int i;
4936
4937 for (i = 0; i < host_set->n_ports; i++) {
4938 ap = host_set->ports[i];
4939 scsi_remove_host(ap->host);
4940 }
4941
4942 free_irq(host_set->irq, host_set);
4943
4944 for (i = 0; i < host_set->n_ports; i++) {
4945 ap = host_set->ports[i];
4946
4947 ata_scsi_release(ap->host);
4948
4949 if ((ap->flags & ATA_FLAG_NO_LEGACY) == 0) {
4950 struct ata_ioports *ioaddr = &ap->ioaddr;
4951
4952 if (ioaddr->cmd_addr == 0x1f0)
4953 release_region(0x1f0, 8);
4954 else if (ioaddr->cmd_addr == 0x170)
4955 release_region(0x170, 8);
4956 }
4957
4958 scsi_host_put(ap->host);
4959 }
4960
4961 if (host_set->ops->host_stop)
4962 host_set->ops->host_stop(host_set);
4963
4964 kfree(host_set);
4965 }
4966
4967 /**
4968 * ata_scsi_release - SCSI layer callback hook for host unload
4969 * @host: libata host to be unloaded
4970 *
4971 * Performs all duties necessary to shut down a libata port...
4972 * Kill port kthread, disable port, and release resources.
4973 *
4974 * LOCKING:
4975 * Inherited from SCSI layer.
4976 *
4977 * RETURNS:
4978 * One.
4979 */
4980
4981 int ata_scsi_release(struct Scsi_Host *host)
4982 {
4983 struct ata_port *ap = (struct ata_port *) &host->hostdata[0];
4984 int i;
4985
4986 DPRINTK("ENTER\n");
4987
4988 ap->ops->port_disable(ap);
4989 ata_host_remove(ap, 0);
4990 for (i = 0; i < ATA_MAX_DEVICES; i++)
4991 kfree(ap->device[i].id);
4992
4993 DPRINTK("EXIT\n");
4994 return 1;
4995 }
4996
4997 /**
4998 * ata_std_ports - initialize ioaddr with standard port offsets.
4999 * @ioaddr: IO address structure to be initialized
5000 *
5001 * Utility function which initializes data_addr, error_addr,
5002 * feature_addr, nsect_addr, lbal_addr, lbam_addr, lbah_addr,
5003 * device_addr, status_addr, and command_addr to standard offsets
5004 * relative to cmd_addr.
5005 *
5006 * Does not set ctl_addr, altstatus_addr, bmdma_addr, or scr_addr.
5007 */
5008
5009 void ata_std_ports(struct ata_ioports *ioaddr)
5010 {
5011 ioaddr->data_addr = ioaddr->cmd_addr + ATA_REG_DATA;
5012 ioaddr->error_addr = ioaddr->cmd_addr + ATA_REG_ERR;
5013 ioaddr->feature_addr = ioaddr->cmd_addr + ATA_REG_FEATURE;
5014 ioaddr->nsect_addr = ioaddr->cmd_addr + ATA_REG_NSECT;
5015 ioaddr->lbal_addr = ioaddr->cmd_addr + ATA_REG_LBAL;
5016 ioaddr->lbam_addr = ioaddr->cmd_addr + ATA_REG_LBAM;
5017 ioaddr->lbah_addr = ioaddr->cmd_addr + ATA_REG_LBAH;
5018 ioaddr->device_addr = ioaddr->cmd_addr + ATA_REG_DEVICE;
5019 ioaddr->status_addr = ioaddr->cmd_addr + ATA_REG_STATUS;
5020 ioaddr->command_addr = ioaddr->cmd_addr + ATA_REG_CMD;
5021 }
5022
5023
5024 #ifdef CONFIG_PCI
5025
5026 void ata_pci_host_stop (struct ata_host_set *host_set)
5027 {
5028 struct pci_dev *pdev = to_pci_dev(host_set->dev);
5029
5030 pci_iounmap(pdev, host_set->mmio_base);
5031 }
5032
5033 /**
5034 * ata_pci_remove_one - PCI layer callback for device removal
5035 * @pdev: PCI device that was removed
5036 *
5037 * PCI layer indicates to libata via this hook that
5038 * hot-unplug or module unload event has occurred.
5039 * Handle this by unregistering all objects associated
5040 * with this PCI device. Free those objects. Then finally
5041 * release PCI resources and disable device.
5042 *
5043 * LOCKING:
5044 * Inherited from PCI layer (may sleep).
5045 */
5046
5047 void ata_pci_remove_one (struct pci_dev *pdev)
5048 {
5049 struct device *dev = pci_dev_to_dev(pdev);
5050 struct ata_host_set *host_set = dev_get_drvdata(dev);
5051
5052 ata_host_set_remove(host_set);
5053 pci_release_regions(pdev);
5054 pci_disable_device(pdev);
5055 dev_set_drvdata(dev, NULL);
5056 }
5057
5058 /* move to PCI subsystem */
5059 int pci_test_config_bits(struct pci_dev *pdev, const struct pci_bits *bits)
5060 {
5061 unsigned long tmp = 0;
5062
5063 switch (bits->width) {
5064 case 1: {
5065 u8 tmp8 = 0;
5066 pci_read_config_byte(pdev, bits->reg, &tmp8);
5067 tmp = tmp8;
5068 break;
5069 }
5070 case 2: {
5071 u16 tmp16 = 0;
5072 pci_read_config_word(pdev, bits->reg, &tmp16);
5073 tmp = tmp16;
5074 break;
5075 }
5076 case 4: {
5077 u32 tmp32 = 0;
5078 pci_read_config_dword(pdev, bits->reg, &tmp32);
5079 tmp = tmp32;
5080 break;
5081 }
5082
5083 default:
5084 return -EINVAL;
5085 }
5086
5087 tmp &= bits->mask;
5088
5089 return (tmp == bits->val) ? 1 : 0;
5090 }
5091
5092 int ata_pci_device_suspend(struct pci_dev *pdev, pm_message_t state)
5093 {
5094 pci_save_state(pdev);
5095 pci_disable_device(pdev);
5096 pci_set_power_state(pdev, PCI_D3hot);
5097 return 0;
5098 }
5099
5100 int ata_pci_device_resume(struct pci_dev *pdev)
5101 {
5102 pci_set_power_state(pdev, PCI_D0);
5103 pci_restore_state(pdev);
5104 pci_enable_device(pdev);
5105 pci_set_master(pdev);
5106 return 0;
5107 }
5108 #endif /* CONFIG_PCI */
5109
5110
5111 static int __init ata_init(void)
5112 {
5113 ata_wq = create_workqueue("ata");
5114 if (!ata_wq)
5115 return -ENOMEM;
5116
5117 printk(KERN_DEBUG "libata version " DRV_VERSION " loaded.\n");
5118 return 0;
5119 }
5120
5121 static void __exit ata_exit(void)
5122 {
5123 destroy_workqueue(ata_wq);
5124 }
5125
5126 module_init(ata_init);
5127 module_exit(ata_exit);
5128
5129 static unsigned long ratelimit_time;
5130 static spinlock_t ata_ratelimit_lock = SPIN_LOCK_UNLOCKED;
5131
5132 int ata_ratelimit(void)
5133 {
5134 int rc;
5135 unsigned long flags;
5136
5137 spin_lock_irqsave(&ata_ratelimit_lock, flags);
5138
5139 if (time_after(jiffies, ratelimit_time)) {
5140 rc = 1;
5141 ratelimit_time = jiffies + (HZ/5);
5142 } else
5143 rc = 0;
5144
5145 spin_unlock_irqrestore(&ata_ratelimit_lock, flags);
5146
5147 return rc;
5148 }
5149
5150 /*
5151 * libata is essentially a library of internal helper functions for
5152 * low-level ATA host controller drivers. As such, the API/ABI is
5153 * likely to change as new drivers are added and updated.
5154 * Do not depend on ABI/API stability.
5155 */
5156
5157 EXPORT_SYMBOL_GPL(ata_std_bios_param);
5158 EXPORT_SYMBOL_GPL(ata_std_ports);
5159 EXPORT_SYMBOL_GPL(ata_device_add);
5160 EXPORT_SYMBOL_GPL(ata_host_set_remove);
5161 EXPORT_SYMBOL_GPL(ata_sg_init);
5162 EXPORT_SYMBOL_GPL(ata_sg_init_one);
5163 EXPORT_SYMBOL_GPL(__ata_qc_complete);
5164 EXPORT_SYMBOL_GPL(ata_qc_issue_prot);
5165 EXPORT_SYMBOL_GPL(ata_eng_timeout);
5166 EXPORT_SYMBOL_GPL(ata_tf_load);
5167 EXPORT_SYMBOL_GPL(ata_tf_read);
5168 EXPORT_SYMBOL_GPL(ata_noop_dev_select);
5169 EXPORT_SYMBOL_GPL(ata_std_dev_select);
5170 EXPORT_SYMBOL_GPL(ata_tf_to_fis);
5171 EXPORT_SYMBOL_GPL(ata_tf_from_fis);
5172 EXPORT_SYMBOL_GPL(ata_check_status);
5173 EXPORT_SYMBOL_GPL(ata_altstatus);
5174 EXPORT_SYMBOL_GPL(ata_exec_command);
5175 EXPORT_SYMBOL_GPL(ata_port_start);
5176 EXPORT_SYMBOL_GPL(ata_port_stop);
5177 EXPORT_SYMBOL_GPL(ata_host_stop);
5178 EXPORT_SYMBOL_GPL(ata_interrupt);
5179 EXPORT_SYMBOL_GPL(ata_qc_prep);
5180 EXPORT_SYMBOL_GPL(ata_noop_qc_prep);
5181 EXPORT_SYMBOL_GPL(ata_bmdma_setup);
5182 EXPORT_SYMBOL_GPL(ata_bmdma_start);
5183 EXPORT_SYMBOL_GPL(ata_bmdma_irq_clear);
5184 EXPORT_SYMBOL_GPL(ata_bmdma_status);
5185 EXPORT_SYMBOL_GPL(ata_bmdma_stop);
5186 EXPORT_SYMBOL_GPL(ata_port_probe);
5187 EXPORT_SYMBOL_GPL(sata_phy_reset);
5188 EXPORT_SYMBOL_GPL(__sata_phy_reset);
5189 EXPORT_SYMBOL_GPL(ata_bus_reset);
5190 EXPORT_SYMBOL_GPL(ata_std_probeinit);
5191 EXPORT_SYMBOL_GPL(ata_std_softreset);
5192 EXPORT_SYMBOL_GPL(sata_std_hardreset);
5193 EXPORT_SYMBOL_GPL(ata_std_postreset);
5194 EXPORT_SYMBOL_GPL(ata_std_probe_reset);
5195 EXPORT_SYMBOL_GPL(ata_drive_probe_reset);
5196 EXPORT_SYMBOL_GPL(ata_dev_revalidate);
5197 EXPORT_SYMBOL_GPL(ata_dev_classify);
5198 EXPORT_SYMBOL_GPL(ata_dev_pair);
5199 EXPORT_SYMBOL_GPL(ata_port_disable);
5200 EXPORT_SYMBOL_GPL(ata_ratelimit);
5201 EXPORT_SYMBOL_GPL(ata_busy_sleep);
5202 EXPORT_SYMBOL_GPL(ata_port_queue_task);
5203 EXPORT_SYMBOL_GPL(ata_scsi_ioctl);
5204 EXPORT_SYMBOL_GPL(ata_scsi_queuecmd);
5205 EXPORT_SYMBOL_GPL(ata_scsi_error);
5206 EXPORT_SYMBOL_GPL(ata_scsi_slave_config);
5207 EXPORT_SYMBOL_GPL(ata_scsi_release);
5208 EXPORT_SYMBOL_GPL(ata_host_intr);
5209 EXPORT_SYMBOL_GPL(ata_id_string);
5210 EXPORT_SYMBOL_GPL(ata_id_c_string);
5211 EXPORT_SYMBOL_GPL(ata_scsi_simulate);
5212 EXPORT_SYMBOL_GPL(ata_eh_qc_complete);
5213 EXPORT_SYMBOL_GPL(ata_eh_qc_retry);
5214
5215 EXPORT_SYMBOL_GPL(ata_pio_need_iordy);
5216 EXPORT_SYMBOL_GPL(ata_timing_compute);
5217 EXPORT_SYMBOL_GPL(ata_timing_merge);
5218
5219 #ifdef CONFIG_PCI
5220 EXPORT_SYMBOL_GPL(pci_test_config_bits);
5221 EXPORT_SYMBOL_GPL(ata_pci_host_stop);
5222 EXPORT_SYMBOL_GPL(ata_pci_init_native_mode);
5223 EXPORT_SYMBOL_GPL(ata_pci_init_one);
5224 EXPORT_SYMBOL_GPL(ata_pci_remove_one);
5225 EXPORT_SYMBOL_GPL(ata_pci_device_suspend);
5226 EXPORT_SYMBOL_GPL(ata_pci_device_resume);
5227 EXPORT_SYMBOL_GPL(ata_pci_default_filter);
5228 EXPORT_SYMBOL_GPL(ata_pci_clear_simplex);
5229 #endif /* CONFIG_PCI */
5230
5231 EXPORT_SYMBOL_GPL(ata_device_suspend);
5232 EXPORT_SYMBOL_GPL(ata_device_resume);
5233 EXPORT_SYMBOL_GPL(ata_scsi_device_suspend);
5234 EXPORT_SYMBOL_GPL(ata_scsi_device_resume);
This page took 0.219712 seconds and 5 git commands to generate.