014855e5a43ac514bff8b06c79fee9191b06d536
[deliverable/linux.git] / drivers / scsi / libata-core.c
1 /*
2 * libata-core.c - helper library for ATA
3 *
4 * Maintained by: Jeff Garzik <jgarzik@pobox.com>
5 * Please ALWAYS copy linux-ide@vger.kernel.org
6 * on emails.
7 *
8 * Copyright 2003-2004 Red Hat, Inc. All rights reserved.
9 * Copyright 2003-2004 Jeff Garzik
10 *
11 *
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2, or (at your option)
15 * any later version.
16 *
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
21 *
22 * You should have received a copy of the GNU General Public License
23 * along with this program; see the file COPYING. If not, write to
24 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
25 *
26 *
27 * libata documentation is available via 'make {ps|pdf}docs',
28 * as Documentation/DocBook/libata.*
29 *
30 * Hardware documentation available from http://www.t13.org/ and
31 * http://www.sata-io.org/
32 *
33 */
34
35 #include <linux/config.h>
36 #include <linux/kernel.h>
37 #include <linux/module.h>
38 #include <linux/pci.h>
39 #include <linux/init.h>
40 #include <linux/list.h>
41 #include <linux/mm.h>
42 #include <linux/highmem.h>
43 #include <linux/spinlock.h>
44 #include <linux/blkdev.h>
45 #include <linux/delay.h>
46 #include <linux/timer.h>
47 #include <linux/interrupt.h>
48 #include <linux/completion.h>
49 #include <linux/suspend.h>
50 #include <linux/workqueue.h>
51 #include <linux/jiffies.h>
52 #include <linux/scatterlist.h>
53 #include <scsi/scsi.h>
54 #include "scsi_priv.h"
55 #include <scsi/scsi_cmnd.h>
56 #include <scsi/scsi_host.h>
57 #include <linux/libata.h>
58 #include <asm/io.h>
59 #include <asm/semaphore.h>
60 #include <asm/byteorder.h>
61
62 #include "libata.h"
63
64 /* debounce timing parameters in msecs { interval, duration, timeout } */
65 const unsigned long sata_deb_timing_boot[] = { 5, 100, 2000 };
66 const unsigned long sata_deb_timing_eh[] = { 25, 500, 2000 };
67 const unsigned long sata_deb_timing_before_fsrst[] = { 100, 2000, 5000 };
68
69 static unsigned int ata_dev_init_params(struct ata_device *dev,
70 u16 heads, u16 sectors);
71 static unsigned int ata_dev_set_xfermode(struct ata_device *dev);
72 static void ata_dev_xfermask(struct ata_device *dev);
73
74 static unsigned int ata_unique_id = 1;
75 static struct workqueue_struct *ata_wq;
76
77 struct workqueue_struct *ata_aux_wq;
78
79 int atapi_enabled = 1;
80 module_param(atapi_enabled, int, 0444);
81 MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on)");
82
83 int atapi_dmadir = 0;
84 module_param(atapi_dmadir, int, 0444);
85 MODULE_PARM_DESC(atapi_dmadir, "Enable ATAPI DMADIR bridge support (0=off, 1=on)");
86
87 int libata_fua = 0;
88 module_param_named(fua, libata_fua, int, 0444);
89 MODULE_PARM_DESC(fua, "FUA support (0=off, 1=on)");
90
91 MODULE_AUTHOR("Jeff Garzik");
92 MODULE_DESCRIPTION("Library module for ATA devices");
93 MODULE_LICENSE("GPL");
94 MODULE_VERSION(DRV_VERSION);
95
96
97 /**
98 * ata_tf_to_fis - Convert ATA taskfile to SATA FIS structure
99 * @tf: Taskfile to convert
100 * @fis: Buffer into which data will output
101 * @pmp: Port multiplier port
102 *
103 * Converts a standard ATA taskfile to a Serial ATA
104 * FIS structure (Register - Host to Device).
105 *
106 * LOCKING:
107 * Inherited from caller.
108 */
109
110 void ata_tf_to_fis(const struct ata_taskfile *tf, u8 *fis, u8 pmp)
111 {
112 fis[0] = 0x27; /* Register - Host to Device FIS */
113 fis[1] = (pmp & 0xf) | (1 << 7); /* Port multiplier number,
114 bit 7 indicates Command FIS */
115 fis[2] = tf->command;
116 fis[3] = tf->feature;
117
118 fis[4] = tf->lbal;
119 fis[5] = tf->lbam;
120 fis[6] = tf->lbah;
121 fis[7] = tf->device;
122
123 fis[8] = tf->hob_lbal;
124 fis[9] = tf->hob_lbam;
125 fis[10] = tf->hob_lbah;
126 fis[11] = tf->hob_feature;
127
128 fis[12] = tf->nsect;
129 fis[13] = tf->hob_nsect;
130 fis[14] = 0;
131 fis[15] = tf->ctl;
132
133 fis[16] = 0;
134 fis[17] = 0;
135 fis[18] = 0;
136 fis[19] = 0;
137 }
138
139 /**
140 * ata_tf_from_fis - Convert SATA FIS to ATA taskfile
141 * @fis: Buffer from which data will be input
142 * @tf: Taskfile to output
143 *
144 * Converts a serial ATA FIS structure to a standard ATA taskfile.
145 *
146 * LOCKING:
147 * Inherited from caller.
148 */
149
150 void ata_tf_from_fis(const u8 *fis, struct ata_taskfile *tf)
151 {
152 tf->command = fis[2]; /* status */
153 tf->feature = fis[3]; /* error */
154
155 tf->lbal = fis[4];
156 tf->lbam = fis[5];
157 tf->lbah = fis[6];
158 tf->device = fis[7];
159
160 tf->hob_lbal = fis[8];
161 tf->hob_lbam = fis[9];
162 tf->hob_lbah = fis[10];
163
164 tf->nsect = fis[12];
165 tf->hob_nsect = fis[13];
166 }
167
168 static const u8 ata_rw_cmds[] = {
169 /* pio multi */
170 ATA_CMD_READ_MULTI,
171 ATA_CMD_WRITE_MULTI,
172 ATA_CMD_READ_MULTI_EXT,
173 ATA_CMD_WRITE_MULTI_EXT,
174 0,
175 0,
176 0,
177 ATA_CMD_WRITE_MULTI_FUA_EXT,
178 /* pio */
179 ATA_CMD_PIO_READ,
180 ATA_CMD_PIO_WRITE,
181 ATA_CMD_PIO_READ_EXT,
182 ATA_CMD_PIO_WRITE_EXT,
183 0,
184 0,
185 0,
186 0,
187 /* dma */
188 ATA_CMD_READ,
189 ATA_CMD_WRITE,
190 ATA_CMD_READ_EXT,
191 ATA_CMD_WRITE_EXT,
192 0,
193 0,
194 0,
195 ATA_CMD_WRITE_FUA_EXT
196 };
197
198 /**
199 * ata_rwcmd_protocol - set taskfile r/w commands and protocol
200 * @qc: command to examine and configure
201 *
202 * Examine the device configuration and tf->flags to calculate
203 * the proper read/write commands and protocol to use.
204 *
205 * LOCKING:
206 * caller.
207 */
208 int ata_rwcmd_protocol(struct ata_queued_cmd *qc)
209 {
210 struct ata_taskfile *tf = &qc->tf;
211 struct ata_device *dev = qc->dev;
212 u8 cmd;
213
214 int index, fua, lba48, write;
215
216 fua = (tf->flags & ATA_TFLAG_FUA) ? 4 : 0;
217 lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0;
218 write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0;
219
220 if (dev->flags & ATA_DFLAG_PIO) {
221 tf->protocol = ATA_PROT_PIO;
222 index = dev->multi_count ? 0 : 8;
223 } else if (lba48 && (qc->ap->flags & ATA_FLAG_PIO_LBA48)) {
224 /* Unable to use DMA due to host limitation */
225 tf->protocol = ATA_PROT_PIO;
226 index = dev->multi_count ? 0 : 8;
227 } else {
228 tf->protocol = ATA_PROT_DMA;
229 index = 16;
230 }
231
232 cmd = ata_rw_cmds[index + fua + lba48 + write];
233 if (cmd) {
234 tf->command = cmd;
235 return 0;
236 }
237 return -1;
238 }
239
240 /**
241 * ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask
242 * @pio_mask: pio_mask
243 * @mwdma_mask: mwdma_mask
244 * @udma_mask: udma_mask
245 *
246 * Pack @pio_mask, @mwdma_mask and @udma_mask into a single
247 * unsigned int xfer_mask.
248 *
249 * LOCKING:
250 * None.
251 *
252 * RETURNS:
253 * Packed xfer_mask.
254 */
255 static unsigned int ata_pack_xfermask(unsigned int pio_mask,
256 unsigned int mwdma_mask,
257 unsigned int udma_mask)
258 {
259 return ((pio_mask << ATA_SHIFT_PIO) & ATA_MASK_PIO) |
260 ((mwdma_mask << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA) |
261 ((udma_mask << ATA_SHIFT_UDMA) & ATA_MASK_UDMA);
262 }
263
264 /**
265 * ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks
266 * @xfer_mask: xfer_mask to unpack
267 * @pio_mask: resulting pio_mask
268 * @mwdma_mask: resulting mwdma_mask
269 * @udma_mask: resulting udma_mask
270 *
271 * Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask.
272 * Any NULL distination masks will be ignored.
273 */
274 static void ata_unpack_xfermask(unsigned int xfer_mask,
275 unsigned int *pio_mask,
276 unsigned int *mwdma_mask,
277 unsigned int *udma_mask)
278 {
279 if (pio_mask)
280 *pio_mask = (xfer_mask & ATA_MASK_PIO) >> ATA_SHIFT_PIO;
281 if (mwdma_mask)
282 *mwdma_mask = (xfer_mask & ATA_MASK_MWDMA) >> ATA_SHIFT_MWDMA;
283 if (udma_mask)
284 *udma_mask = (xfer_mask & ATA_MASK_UDMA) >> ATA_SHIFT_UDMA;
285 }
286
287 static const struct ata_xfer_ent {
288 int shift, bits;
289 u8 base;
290 } ata_xfer_tbl[] = {
291 { ATA_SHIFT_PIO, ATA_BITS_PIO, XFER_PIO_0 },
292 { ATA_SHIFT_MWDMA, ATA_BITS_MWDMA, XFER_MW_DMA_0 },
293 { ATA_SHIFT_UDMA, ATA_BITS_UDMA, XFER_UDMA_0 },
294 { -1, },
295 };
296
297 /**
298 * ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask
299 * @xfer_mask: xfer_mask of interest
300 *
301 * Return matching XFER_* value for @xfer_mask. Only the highest
302 * bit of @xfer_mask is considered.
303 *
304 * LOCKING:
305 * None.
306 *
307 * RETURNS:
308 * Matching XFER_* value, 0 if no match found.
309 */
310 static u8 ata_xfer_mask2mode(unsigned int xfer_mask)
311 {
312 int highbit = fls(xfer_mask) - 1;
313 const struct ata_xfer_ent *ent;
314
315 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
316 if (highbit >= ent->shift && highbit < ent->shift + ent->bits)
317 return ent->base + highbit - ent->shift;
318 return 0;
319 }
320
321 /**
322 * ata_xfer_mode2mask - Find matching xfer_mask for XFER_*
323 * @xfer_mode: XFER_* of interest
324 *
325 * Return matching xfer_mask for @xfer_mode.
326 *
327 * LOCKING:
328 * None.
329 *
330 * RETURNS:
331 * Matching xfer_mask, 0 if no match found.
332 */
333 static unsigned int ata_xfer_mode2mask(u8 xfer_mode)
334 {
335 const struct ata_xfer_ent *ent;
336
337 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
338 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
339 return 1 << (ent->shift + xfer_mode - ent->base);
340 return 0;
341 }
342
343 /**
344 * ata_xfer_mode2shift - Find matching xfer_shift for XFER_*
345 * @xfer_mode: XFER_* of interest
346 *
347 * Return matching xfer_shift for @xfer_mode.
348 *
349 * LOCKING:
350 * None.
351 *
352 * RETURNS:
353 * Matching xfer_shift, -1 if no match found.
354 */
355 static int ata_xfer_mode2shift(unsigned int xfer_mode)
356 {
357 const struct ata_xfer_ent *ent;
358
359 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
360 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
361 return ent->shift;
362 return -1;
363 }
364
365 /**
366 * ata_mode_string - convert xfer_mask to string
367 * @xfer_mask: mask of bits supported; only highest bit counts.
368 *
369 * Determine string which represents the highest speed
370 * (highest bit in @modemask).
371 *
372 * LOCKING:
373 * None.
374 *
375 * RETURNS:
376 * Constant C string representing highest speed listed in
377 * @mode_mask, or the constant C string "<n/a>".
378 */
379 static const char *ata_mode_string(unsigned int xfer_mask)
380 {
381 static const char * const xfer_mode_str[] = {
382 "PIO0",
383 "PIO1",
384 "PIO2",
385 "PIO3",
386 "PIO4",
387 "MWDMA0",
388 "MWDMA1",
389 "MWDMA2",
390 "UDMA/16",
391 "UDMA/25",
392 "UDMA/33",
393 "UDMA/44",
394 "UDMA/66",
395 "UDMA/100",
396 "UDMA/133",
397 "UDMA7",
398 };
399 int highbit;
400
401 highbit = fls(xfer_mask) - 1;
402 if (highbit >= 0 && highbit < ARRAY_SIZE(xfer_mode_str))
403 return xfer_mode_str[highbit];
404 return "<n/a>";
405 }
406
407 static const char *sata_spd_string(unsigned int spd)
408 {
409 static const char * const spd_str[] = {
410 "1.5 Gbps",
411 "3.0 Gbps",
412 };
413
414 if (spd == 0 || (spd - 1) >= ARRAY_SIZE(spd_str))
415 return "<unknown>";
416 return spd_str[spd - 1];
417 }
418
419 void ata_dev_disable(struct ata_device *dev)
420 {
421 if (ata_dev_enabled(dev)) {
422 ata_dev_printk(dev, KERN_WARNING, "disabled\n");
423 dev->class++;
424 }
425 }
426
427 /**
428 * ata_pio_devchk - PATA device presence detection
429 * @ap: ATA channel to examine
430 * @device: Device to examine (starting at zero)
431 *
432 * This technique was originally described in
433 * Hale Landis's ATADRVR (www.ata-atapi.com), and
434 * later found its way into the ATA/ATAPI spec.
435 *
436 * Write a pattern to the ATA shadow registers,
437 * and if a device is present, it will respond by
438 * correctly storing and echoing back the
439 * ATA shadow register contents.
440 *
441 * LOCKING:
442 * caller.
443 */
444
445 static unsigned int ata_pio_devchk(struct ata_port *ap,
446 unsigned int device)
447 {
448 struct ata_ioports *ioaddr = &ap->ioaddr;
449 u8 nsect, lbal;
450
451 ap->ops->dev_select(ap, device);
452
453 outb(0x55, ioaddr->nsect_addr);
454 outb(0xaa, ioaddr->lbal_addr);
455
456 outb(0xaa, ioaddr->nsect_addr);
457 outb(0x55, ioaddr->lbal_addr);
458
459 outb(0x55, ioaddr->nsect_addr);
460 outb(0xaa, ioaddr->lbal_addr);
461
462 nsect = inb(ioaddr->nsect_addr);
463 lbal = inb(ioaddr->lbal_addr);
464
465 if ((nsect == 0x55) && (lbal == 0xaa))
466 return 1; /* we found a device */
467
468 return 0; /* nothing found */
469 }
470
471 /**
472 * ata_mmio_devchk - PATA device presence detection
473 * @ap: ATA channel to examine
474 * @device: Device to examine (starting at zero)
475 *
476 * This technique was originally described in
477 * Hale Landis's ATADRVR (www.ata-atapi.com), and
478 * later found its way into the ATA/ATAPI spec.
479 *
480 * Write a pattern to the ATA shadow registers,
481 * and if a device is present, it will respond by
482 * correctly storing and echoing back the
483 * ATA shadow register contents.
484 *
485 * LOCKING:
486 * caller.
487 */
488
489 static unsigned int ata_mmio_devchk(struct ata_port *ap,
490 unsigned int device)
491 {
492 struct ata_ioports *ioaddr = &ap->ioaddr;
493 u8 nsect, lbal;
494
495 ap->ops->dev_select(ap, device);
496
497 writeb(0x55, (void __iomem *) ioaddr->nsect_addr);
498 writeb(0xaa, (void __iomem *) ioaddr->lbal_addr);
499
500 writeb(0xaa, (void __iomem *) ioaddr->nsect_addr);
501 writeb(0x55, (void __iomem *) ioaddr->lbal_addr);
502
503 writeb(0x55, (void __iomem *) ioaddr->nsect_addr);
504 writeb(0xaa, (void __iomem *) ioaddr->lbal_addr);
505
506 nsect = readb((void __iomem *) ioaddr->nsect_addr);
507 lbal = readb((void __iomem *) ioaddr->lbal_addr);
508
509 if ((nsect == 0x55) && (lbal == 0xaa))
510 return 1; /* we found a device */
511
512 return 0; /* nothing found */
513 }
514
515 /**
516 * ata_devchk - PATA device presence detection
517 * @ap: ATA channel to examine
518 * @device: Device to examine (starting at zero)
519 *
520 * Dispatch ATA device presence detection, depending
521 * on whether we are using PIO or MMIO to talk to the
522 * ATA shadow registers.
523 *
524 * LOCKING:
525 * caller.
526 */
527
528 static unsigned int ata_devchk(struct ata_port *ap,
529 unsigned int device)
530 {
531 if (ap->flags & ATA_FLAG_MMIO)
532 return ata_mmio_devchk(ap, device);
533 return ata_pio_devchk(ap, device);
534 }
535
536 /**
537 * ata_dev_classify - determine device type based on ATA-spec signature
538 * @tf: ATA taskfile register set for device to be identified
539 *
540 * Determine from taskfile register contents whether a device is
541 * ATA or ATAPI, as per "Signature and persistence" section
542 * of ATA/PI spec (volume 1, sect 5.14).
543 *
544 * LOCKING:
545 * None.
546 *
547 * RETURNS:
548 * Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, or %ATA_DEV_UNKNOWN
549 * the event of failure.
550 */
551
552 unsigned int ata_dev_classify(const struct ata_taskfile *tf)
553 {
554 /* Apple's open source Darwin code hints that some devices only
555 * put a proper signature into the LBA mid/high registers,
556 * So, we only check those. It's sufficient for uniqueness.
557 */
558
559 if (((tf->lbam == 0) && (tf->lbah == 0)) ||
560 ((tf->lbam == 0x3c) && (tf->lbah == 0xc3))) {
561 DPRINTK("found ATA device by sig\n");
562 return ATA_DEV_ATA;
563 }
564
565 if (((tf->lbam == 0x14) && (tf->lbah == 0xeb)) ||
566 ((tf->lbam == 0x69) && (tf->lbah == 0x96))) {
567 DPRINTK("found ATAPI device by sig\n");
568 return ATA_DEV_ATAPI;
569 }
570
571 DPRINTK("unknown device\n");
572 return ATA_DEV_UNKNOWN;
573 }
574
575 /**
576 * ata_dev_try_classify - Parse returned ATA device signature
577 * @ap: ATA channel to examine
578 * @device: Device to examine (starting at zero)
579 * @r_err: Value of error register on completion
580 *
581 * After an event -- SRST, E.D.D., or SATA COMRESET -- occurs,
582 * an ATA/ATAPI-defined set of values is placed in the ATA
583 * shadow registers, indicating the results of device detection
584 * and diagnostics.
585 *
586 * Select the ATA device, and read the values from the ATA shadow
587 * registers. Then parse according to the Error register value,
588 * and the spec-defined values examined by ata_dev_classify().
589 *
590 * LOCKING:
591 * caller.
592 *
593 * RETURNS:
594 * Device type - %ATA_DEV_ATA, %ATA_DEV_ATAPI or %ATA_DEV_NONE.
595 */
596
597 static unsigned int
598 ata_dev_try_classify(struct ata_port *ap, unsigned int device, u8 *r_err)
599 {
600 struct ata_taskfile tf;
601 unsigned int class;
602 u8 err;
603
604 ap->ops->dev_select(ap, device);
605
606 memset(&tf, 0, sizeof(tf));
607
608 ap->ops->tf_read(ap, &tf);
609 err = tf.feature;
610 if (r_err)
611 *r_err = err;
612
613 /* see if device passed diags */
614 if (err == 1)
615 /* do nothing */ ;
616 else if ((device == 0) && (err == 0x81))
617 /* do nothing */ ;
618 else
619 return ATA_DEV_NONE;
620
621 /* determine if device is ATA or ATAPI */
622 class = ata_dev_classify(&tf);
623
624 if (class == ATA_DEV_UNKNOWN)
625 return ATA_DEV_NONE;
626 if ((class == ATA_DEV_ATA) && (ata_chk_status(ap) == 0))
627 return ATA_DEV_NONE;
628 return class;
629 }
630
631 /**
632 * ata_id_string - Convert IDENTIFY DEVICE page into string
633 * @id: IDENTIFY DEVICE results we will examine
634 * @s: string into which data is output
635 * @ofs: offset into identify device page
636 * @len: length of string to return. must be an even number.
637 *
638 * The strings in the IDENTIFY DEVICE page are broken up into
639 * 16-bit chunks. Run through the string, and output each
640 * 8-bit chunk linearly, regardless of platform.
641 *
642 * LOCKING:
643 * caller.
644 */
645
646 void ata_id_string(const u16 *id, unsigned char *s,
647 unsigned int ofs, unsigned int len)
648 {
649 unsigned int c;
650
651 while (len > 0) {
652 c = id[ofs] >> 8;
653 *s = c;
654 s++;
655
656 c = id[ofs] & 0xff;
657 *s = c;
658 s++;
659
660 ofs++;
661 len -= 2;
662 }
663 }
664
665 /**
666 * ata_id_c_string - Convert IDENTIFY DEVICE page into C string
667 * @id: IDENTIFY DEVICE results we will examine
668 * @s: string into which data is output
669 * @ofs: offset into identify device page
670 * @len: length of string to return. must be an odd number.
671 *
672 * This function is identical to ata_id_string except that it
673 * trims trailing spaces and terminates the resulting string with
674 * null. @len must be actual maximum length (even number) + 1.
675 *
676 * LOCKING:
677 * caller.
678 */
679 void ata_id_c_string(const u16 *id, unsigned char *s,
680 unsigned int ofs, unsigned int len)
681 {
682 unsigned char *p;
683
684 WARN_ON(!(len & 1));
685
686 ata_id_string(id, s, ofs, len - 1);
687
688 p = s + strnlen(s, len - 1);
689 while (p > s && p[-1] == ' ')
690 p--;
691 *p = '\0';
692 }
693
694 static u64 ata_id_n_sectors(const u16 *id)
695 {
696 if (ata_id_has_lba(id)) {
697 if (ata_id_has_lba48(id))
698 return ata_id_u64(id, 100);
699 else
700 return ata_id_u32(id, 60);
701 } else {
702 if (ata_id_current_chs_valid(id))
703 return ata_id_u32(id, 57);
704 else
705 return id[1] * id[3] * id[6];
706 }
707 }
708
709 /**
710 * ata_noop_dev_select - Select device 0/1 on ATA bus
711 * @ap: ATA channel to manipulate
712 * @device: ATA device (numbered from zero) to select
713 *
714 * This function performs no actual function.
715 *
716 * May be used as the dev_select() entry in ata_port_operations.
717 *
718 * LOCKING:
719 * caller.
720 */
721 void ata_noop_dev_select (struct ata_port *ap, unsigned int device)
722 {
723 }
724
725
726 /**
727 * ata_std_dev_select - Select device 0/1 on ATA bus
728 * @ap: ATA channel to manipulate
729 * @device: ATA device (numbered from zero) to select
730 *
731 * Use the method defined in the ATA specification to
732 * make either device 0, or device 1, active on the
733 * ATA channel. Works with both PIO and MMIO.
734 *
735 * May be used as the dev_select() entry in ata_port_operations.
736 *
737 * LOCKING:
738 * caller.
739 */
740
741 void ata_std_dev_select (struct ata_port *ap, unsigned int device)
742 {
743 u8 tmp;
744
745 if (device == 0)
746 tmp = ATA_DEVICE_OBS;
747 else
748 tmp = ATA_DEVICE_OBS | ATA_DEV1;
749
750 if (ap->flags & ATA_FLAG_MMIO) {
751 writeb(tmp, (void __iomem *) ap->ioaddr.device_addr);
752 } else {
753 outb(tmp, ap->ioaddr.device_addr);
754 }
755 ata_pause(ap); /* needed; also flushes, for mmio */
756 }
757
758 /**
759 * ata_dev_select - Select device 0/1 on ATA bus
760 * @ap: ATA channel to manipulate
761 * @device: ATA device (numbered from zero) to select
762 * @wait: non-zero to wait for Status register BSY bit to clear
763 * @can_sleep: non-zero if context allows sleeping
764 *
765 * Use the method defined in the ATA specification to
766 * make either device 0, or device 1, active on the
767 * ATA channel.
768 *
769 * This is a high-level version of ata_std_dev_select(),
770 * which additionally provides the services of inserting
771 * the proper pauses and status polling, where needed.
772 *
773 * LOCKING:
774 * caller.
775 */
776
777 void ata_dev_select(struct ata_port *ap, unsigned int device,
778 unsigned int wait, unsigned int can_sleep)
779 {
780 VPRINTK("ENTER, ata%u: device %u, wait %u\n",
781 ap->id, device, wait);
782
783 if (wait)
784 ata_wait_idle(ap);
785
786 ap->ops->dev_select(ap, device);
787
788 if (wait) {
789 if (can_sleep && ap->device[device].class == ATA_DEV_ATAPI)
790 msleep(150);
791 ata_wait_idle(ap);
792 }
793 }
794
795 /**
796 * ata_dump_id - IDENTIFY DEVICE info debugging output
797 * @id: IDENTIFY DEVICE page to dump
798 *
799 * Dump selected 16-bit words from the given IDENTIFY DEVICE
800 * page.
801 *
802 * LOCKING:
803 * caller.
804 */
805
806 static inline void ata_dump_id(const u16 *id)
807 {
808 DPRINTK("49==0x%04x "
809 "53==0x%04x "
810 "63==0x%04x "
811 "64==0x%04x "
812 "75==0x%04x \n",
813 id[49],
814 id[53],
815 id[63],
816 id[64],
817 id[75]);
818 DPRINTK("80==0x%04x "
819 "81==0x%04x "
820 "82==0x%04x "
821 "83==0x%04x "
822 "84==0x%04x \n",
823 id[80],
824 id[81],
825 id[82],
826 id[83],
827 id[84]);
828 DPRINTK("88==0x%04x "
829 "93==0x%04x\n",
830 id[88],
831 id[93]);
832 }
833
834 /**
835 * ata_id_xfermask - Compute xfermask from the given IDENTIFY data
836 * @id: IDENTIFY data to compute xfer mask from
837 *
838 * Compute the xfermask for this device. This is not as trivial
839 * as it seems if we must consider early devices correctly.
840 *
841 * FIXME: pre IDE drive timing (do we care ?).
842 *
843 * LOCKING:
844 * None.
845 *
846 * RETURNS:
847 * Computed xfermask
848 */
849 static unsigned int ata_id_xfermask(const u16 *id)
850 {
851 unsigned int pio_mask, mwdma_mask, udma_mask;
852
853 /* Usual case. Word 53 indicates word 64 is valid */
854 if (id[ATA_ID_FIELD_VALID] & (1 << 1)) {
855 pio_mask = id[ATA_ID_PIO_MODES] & 0x03;
856 pio_mask <<= 3;
857 pio_mask |= 0x7;
858 } else {
859 /* If word 64 isn't valid then Word 51 high byte holds
860 * the PIO timing number for the maximum. Turn it into
861 * a mask.
862 */
863 pio_mask = (2 << (id[ATA_ID_OLD_PIO_MODES] & 0xFF)) - 1 ;
864
865 /* But wait.. there's more. Design your standards by
866 * committee and you too can get a free iordy field to
867 * process. However its the speeds not the modes that
868 * are supported... Note drivers using the timing API
869 * will get this right anyway
870 */
871 }
872
873 mwdma_mask = id[ATA_ID_MWDMA_MODES] & 0x07;
874
875 udma_mask = 0;
876 if (id[ATA_ID_FIELD_VALID] & (1 << 2))
877 udma_mask = id[ATA_ID_UDMA_MODES] & 0xff;
878
879 return ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
880 }
881
882 /**
883 * ata_port_queue_task - Queue port_task
884 * @ap: The ata_port to queue port_task for
885 * @fn: workqueue function to be scheduled
886 * @data: data value to pass to workqueue function
887 * @delay: delay time for workqueue function
888 *
889 * Schedule @fn(@data) for execution after @delay jiffies using
890 * port_task. There is one port_task per port and it's the
891 * user(low level driver)'s responsibility to make sure that only
892 * one task is active at any given time.
893 *
894 * libata core layer takes care of synchronization between
895 * port_task and EH. ata_port_queue_task() may be ignored for EH
896 * synchronization.
897 *
898 * LOCKING:
899 * Inherited from caller.
900 */
901 void ata_port_queue_task(struct ata_port *ap, void (*fn)(void *), void *data,
902 unsigned long delay)
903 {
904 int rc;
905
906 if (ap->flags & ATA_FLAG_FLUSH_PORT_TASK)
907 return;
908
909 PREPARE_WORK(&ap->port_task, fn, data);
910
911 if (!delay)
912 rc = queue_work(ata_wq, &ap->port_task);
913 else
914 rc = queue_delayed_work(ata_wq, &ap->port_task, delay);
915
916 /* rc == 0 means that another user is using port task */
917 WARN_ON(rc == 0);
918 }
919
920 /**
921 * ata_port_flush_task - Flush port_task
922 * @ap: The ata_port to flush port_task for
923 *
924 * After this function completes, port_task is guranteed not to
925 * be running or scheduled.
926 *
927 * LOCKING:
928 * Kernel thread context (may sleep)
929 */
930 void ata_port_flush_task(struct ata_port *ap)
931 {
932 unsigned long flags;
933
934 DPRINTK("ENTER\n");
935
936 spin_lock_irqsave(&ap->host_set->lock, flags);
937 ap->flags |= ATA_FLAG_FLUSH_PORT_TASK;
938 spin_unlock_irqrestore(&ap->host_set->lock, flags);
939
940 DPRINTK("flush #1\n");
941 flush_workqueue(ata_wq);
942
943 /*
944 * At this point, if a task is running, it's guaranteed to see
945 * the FLUSH flag; thus, it will never queue pio tasks again.
946 * Cancel and flush.
947 */
948 if (!cancel_delayed_work(&ap->port_task)) {
949 DPRINTK("flush #2\n");
950 flush_workqueue(ata_wq);
951 }
952
953 spin_lock_irqsave(&ap->host_set->lock, flags);
954 ap->flags &= ~ATA_FLAG_FLUSH_PORT_TASK;
955 spin_unlock_irqrestore(&ap->host_set->lock, flags);
956
957 DPRINTK("EXIT\n");
958 }
959
960 void ata_qc_complete_internal(struct ata_queued_cmd *qc)
961 {
962 struct completion *waiting = qc->private_data;
963
964 complete(waiting);
965 }
966
967 /**
968 * ata_exec_internal - execute libata internal command
969 * @dev: Device to which the command is sent
970 * @tf: Taskfile registers for the command and the result
971 * @cdb: CDB for packet command
972 * @dma_dir: Data tranfer direction of the command
973 * @buf: Data buffer of the command
974 * @buflen: Length of data buffer
975 *
976 * Executes libata internal command with timeout. @tf contains
977 * command on entry and result on return. Timeout and error
978 * conditions are reported via return value. No recovery action
979 * is taken after a command times out. It's caller's duty to
980 * clean up after timeout.
981 *
982 * LOCKING:
983 * None. Should be called with kernel context, might sleep.
984 *
985 * RETURNS:
986 * Zero on success, AC_ERR_* mask on failure
987 */
988 unsigned ata_exec_internal(struct ata_device *dev,
989 struct ata_taskfile *tf, const u8 *cdb,
990 int dma_dir, void *buf, unsigned int buflen)
991 {
992 struct ata_port *ap = dev->ap;
993 u8 command = tf->command;
994 struct ata_queued_cmd *qc;
995 unsigned int tag, preempted_tag;
996 u32 preempted_sactive, preempted_qc_active;
997 DECLARE_COMPLETION(wait);
998 unsigned long flags;
999 unsigned int err_mask;
1000 int rc;
1001
1002 spin_lock_irqsave(&ap->host_set->lock, flags);
1003
1004 /* no internal command while frozen */
1005 if (ap->flags & ATA_FLAG_FROZEN) {
1006 spin_unlock_irqrestore(&ap->host_set->lock, flags);
1007 return AC_ERR_SYSTEM;
1008 }
1009
1010 /* initialize internal qc */
1011
1012 /* XXX: Tag 0 is used for drivers with legacy EH as some
1013 * drivers choke if any other tag is given. This breaks
1014 * ata_tag_internal() test for those drivers. Don't use new
1015 * EH stuff without converting to it.
1016 */
1017 if (ap->ops->error_handler)
1018 tag = ATA_TAG_INTERNAL;
1019 else
1020 tag = 0;
1021
1022 if (test_and_set_bit(tag, &ap->qc_allocated))
1023 BUG();
1024 qc = __ata_qc_from_tag(ap, tag);
1025
1026 qc->tag = tag;
1027 qc->scsicmd = NULL;
1028 qc->ap = ap;
1029 qc->dev = dev;
1030 ata_qc_reinit(qc);
1031
1032 preempted_tag = ap->active_tag;
1033 preempted_sactive = ap->sactive;
1034 preempted_qc_active = ap->qc_active;
1035 ap->active_tag = ATA_TAG_POISON;
1036 ap->sactive = 0;
1037 ap->qc_active = 0;
1038
1039 /* prepare & issue qc */
1040 qc->tf = *tf;
1041 if (cdb)
1042 memcpy(qc->cdb, cdb, ATAPI_CDB_LEN);
1043 qc->flags |= ATA_QCFLAG_RESULT_TF;
1044 qc->dma_dir = dma_dir;
1045 if (dma_dir != DMA_NONE) {
1046 ata_sg_init_one(qc, buf, buflen);
1047 qc->nsect = buflen / ATA_SECT_SIZE;
1048 }
1049
1050 qc->private_data = &wait;
1051 qc->complete_fn = ata_qc_complete_internal;
1052
1053 ata_qc_issue(qc);
1054
1055 spin_unlock_irqrestore(&ap->host_set->lock, flags);
1056
1057 rc = wait_for_completion_timeout(&wait, ATA_TMOUT_INTERNAL);
1058
1059 ata_port_flush_task(ap);
1060
1061 if (!rc) {
1062 spin_lock_irqsave(&ap->host_set->lock, flags);
1063
1064 /* We're racing with irq here. If we lose, the
1065 * following test prevents us from completing the qc
1066 * twice. If we win, the port is frozen and will be
1067 * cleaned up by ->post_internal_cmd().
1068 */
1069 if (qc->flags & ATA_QCFLAG_ACTIVE) {
1070 qc->err_mask |= AC_ERR_TIMEOUT;
1071
1072 if (ap->ops->error_handler)
1073 ata_port_freeze(ap);
1074 else
1075 ata_qc_complete(qc);
1076
1077 ata_dev_printk(dev, KERN_WARNING,
1078 "qc timeout (cmd 0x%x)\n", command);
1079 }
1080
1081 spin_unlock_irqrestore(&ap->host_set->lock, flags);
1082 }
1083
1084 /* do post_internal_cmd */
1085 if (ap->ops->post_internal_cmd)
1086 ap->ops->post_internal_cmd(qc);
1087
1088 if (qc->flags & ATA_QCFLAG_FAILED && !qc->err_mask) {
1089 ata_dev_printk(dev, KERN_WARNING, "zero err_mask for failed "
1090 "internal command, assuming AC_ERR_OTHER\n");
1091 qc->err_mask |= AC_ERR_OTHER;
1092 }
1093
1094 /* finish up */
1095 spin_lock_irqsave(&ap->host_set->lock, flags);
1096
1097 *tf = qc->result_tf;
1098 err_mask = qc->err_mask;
1099
1100 ata_qc_free(qc);
1101 ap->active_tag = preempted_tag;
1102 ap->sactive = preempted_sactive;
1103 ap->qc_active = preempted_qc_active;
1104
1105 /* XXX - Some LLDDs (sata_mv) disable port on command failure.
1106 * Until those drivers are fixed, we detect the condition
1107 * here, fail the command with AC_ERR_SYSTEM and reenable the
1108 * port.
1109 *
1110 * Note that this doesn't change any behavior as internal
1111 * command failure results in disabling the device in the
1112 * higher layer for LLDDs without new reset/EH callbacks.
1113 *
1114 * Kill the following code as soon as those drivers are fixed.
1115 */
1116 if (ap->flags & ATA_FLAG_DISABLED) {
1117 err_mask |= AC_ERR_SYSTEM;
1118 ata_port_probe(ap);
1119 }
1120
1121 spin_unlock_irqrestore(&ap->host_set->lock, flags);
1122
1123 return err_mask;
1124 }
1125
1126 /**
1127 * ata_pio_need_iordy - check if iordy needed
1128 * @adev: ATA device
1129 *
1130 * Check if the current speed of the device requires IORDY. Used
1131 * by various controllers for chip configuration.
1132 */
1133
1134 unsigned int ata_pio_need_iordy(const struct ata_device *adev)
1135 {
1136 int pio;
1137 int speed = adev->pio_mode - XFER_PIO_0;
1138
1139 if (speed < 2)
1140 return 0;
1141 if (speed > 2)
1142 return 1;
1143
1144 /* If we have no drive specific rule, then PIO 2 is non IORDY */
1145
1146 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE */
1147 pio = adev->id[ATA_ID_EIDE_PIO];
1148 /* Is the speed faster than the drive allows non IORDY ? */
1149 if (pio) {
1150 /* This is cycle times not frequency - watch the logic! */
1151 if (pio > 240) /* PIO2 is 240nS per cycle */
1152 return 1;
1153 return 0;
1154 }
1155 }
1156 return 0;
1157 }
1158
1159 /**
1160 * ata_dev_read_id - Read ID data from the specified device
1161 * @dev: target device
1162 * @p_class: pointer to class of the target device (may be changed)
1163 * @post_reset: is this read ID post-reset?
1164 * @id: buffer to read IDENTIFY data into
1165 *
1166 * Read ID data from the specified device. ATA_CMD_ID_ATA is
1167 * performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI
1168 * devices. This function also issues ATA_CMD_INIT_DEV_PARAMS
1169 * for pre-ATA4 drives.
1170 *
1171 * LOCKING:
1172 * Kernel thread context (may sleep)
1173 *
1174 * RETURNS:
1175 * 0 on success, -errno otherwise.
1176 */
1177 int ata_dev_read_id(struct ata_device *dev, unsigned int *p_class,
1178 int post_reset, u16 *id)
1179 {
1180 struct ata_port *ap = dev->ap;
1181 unsigned int class = *p_class;
1182 struct ata_taskfile tf;
1183 unsigned int err_mask = 0;
1184 const char *reason;
1185 int rc;
1186
1187 DPRINTK("ENTER, host %u, dev %u\n", ap->id, dev->devno);
1188
1189 ata_dev_select(ap, dev->devno, 1, 1); /* select device 0/1 */
1190
1191 retry:
1192 ata_tf_init(dev, &tf);
1193
1194 switch (class) {
1195 case ATA_DEV_ATA:
1196 tf.command = ATA_CMD_ID_ATA;
1197 break;
1198 case ATA_DEV_ATAPI:
1199 tf.command = ATA_CMD_ID_ATAPI;
1200 break;
1201 default:
1202 rc = -ENODEV;
1203 reason = "unsupported class";
1204 goto err_out;
1205 }
1206
1207 tf.protocol = ATA_PROT_PIO;
1208
1209 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_FROM_DEVICE,
1210 id, sizeof(id[0]) * ATA_ID_WORDS);
1211 if (err_mask) {
1212 rc = -EIO;
1213 reason = "I/O error";
1214 goto err_out;
1215 }
1216
1217 swap_buf_le16(id, ATA_ID_WORDS);
1218
1219 /* sanity check */
1220 if ((class == ATA_DEV_ATA) != (ata_id_is_ata(id) | ata_id_is_cfa(id))) {
1221 rc = -EINVAL;
1222 reason = "device reports illegal type";
1223 goto err_out;
1224 }
1225
1226 if (post_reset && class == ATA_DEV_ATA) {
1227 /*
1228 * The exact sequence expected by certain pre-ATA4 drives is:
1229 * SRST RESET
1230 * IDENTIFY
1231 * INITIALIZE DEVICE PARAMETERS
1232 * anything else..
1233 * Some drives were very specific about that exact sequence.
1234 */
1235 if (ata_id_major_version(id) < 4 || !ata_id_has_lba(id)) {
1236 err_mask = ata_dev_init_params(dev, id[3], id[6]);
1237 if (err_mask) {
1238 rc = -EIO;
1239 reason = "INIT_DEV_PARAMS failed";
1240 goto err_out;
1241 }
1242
1243 /* current CHS translation info (id[53-58]) might be
1244 * changed. reread the identify device info.
1245 */
1246 post_reset = 0;
1247 goto retry;
1248 }
1249 }
1250
1251 *p_class = class;
1252
1253 return 0;
1254
1255 err_out:
1256 ata_dev_printk(dev, KERN_WARNING, "failed to IDENTIFY "
1257 "(%s, err_mask=0x%x)\n", reason, err_mask);
1258 return rc;
1259 }
1260
1261 static inline u8 ata_dev_knobble(struct ata_device *dev)
1262 {
1263 return ((dev->ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(dev->id)));
1264 }
1265
1266 static void ata_dev_config_ncq(struct ata_device *dev,
1267 char *desc, size_t desc_sz)
1268 {
1269 struct ata_port *ap = dev->ap;
1270 int hdepth = 0, ddepth = ata_id_queue_depth(dev->id);
1271
1272 if (!ata_id_has_ncq(dev->id)) {
1273 desc[0] = '\0';
1274 return;
1275 }
1276
1277 if (ap->flags & ATA_FLAG_NCQ) {
1278 hdepth = min(ap->host->can_queue, ATA_MAX_QUEUE - 1);
1279 dev->flags |= ATA_DFLAG_NCQ;
1280 }
1281
1282 if (hdepth >= ddepth)
1283 snprintf(desc, desc_sz, "NCQ (depth %d)", ddepth);
1284 else
1285 snprintf(desc, desc_sz, "NCQ (depth %d/%d)", hdepth, ddepth);
1286 }
1287
1288 /**
1289 * ata_dev_configure - Configure the specified ATA/ATAPI device
1290 * @dev: Target device to configure
1291 * @print_info: Enable device info printout
1292 *
1293 * Configure @dev according to @dev->id. Generic and low-level
1294 * driver specific fixups are also applied.
1295 *
1296 * LOCKING:
1297 * Kernel thread context (may sleep)
1298 *
1299 * RETURNS:
1300 * 0 on success, -errno otherwise
1301 */
1302 int ata_dev_configure(struct ata_device *dev, int print_info)
1303 {
1304 struct ata_port *ap = dev->ap;
1305 const u16 *id = dev->id;
1306 unsigned int xfer_mask;
1307 int i, rc;
1308
1309 if (!ata_dev_enabled(dev)) {
1310 DPRINTK("ENTER/EXIT (host %u, dev %u) -- nodev\n",
1311 ap->id, dev->devno);
1312 return 0;
1313 }
1314
1315 DPRINTK("ENTER, host %u, dev %u\n", ap->id, dev->devno);
1316
1317 /* print device capabilities */
1318 if (print_info)
1319 ata_dev_printk(dev, KERN_DEBUG, "cfg 49:%04x 82:%04x 83:%04x "
1320 "84:%04x 85:%04x 86:%04x 87:%04x 88:%04x\n",
1321 id[49], id[82], id[83], id[84],
1322 id[85], id[86], id[87], id[88]);
1323
1324 /* initialize to-be-configured parameters */
1325 dev->flags &= ~ATA_DFLAG_CFG_MASK;
1326 dev->max_sectors = 0;
1327 dev->cdb_len = 0;
1328 dev->n_sectors = 0;
1329 dev->cylinders = 0;
1330 dev->heads = 0;
1331 dev->sectors = 0;
1332
1333 /*
1334 * common ATA, ATAPI feature tests
1335 */
1336
1337 /* find max transfer mode; for printk only */
1338 xfer_mask = ata_id_xfermask(id);
1339
1340 ata_dump_id(id);
1341
1342 /* ATA-specific feature tests */
1343 if (dev->class == ATA_DEV_ATA) {
1344 dev->n_sectors = ata_id_n_sectors(id);
1345
1346 if (ata_id_has_lba(id)) {
1347 const char *lba_desc;
1348 char ncq_desc[20];
1349
1350 lba_desc = "LBA";
1351 dev->flags |= ATA_DFLAG_LBA;
1352 if (ata_id_has_lba48(id)) {
1353 dev->flags |= ATA_DFLAG_LBA48;
1354 lba_desc = "LBA48";
1355 }
1356
1357 /* config NCQ */
1358 ata_dev_config_ncq(dev, ncq_desc, sizeof(ncq_desc));
1359
1360 /* print device info to dmesg */
1361 if (print_info)
1362 ata_dev_printk(dev, KERN_INFO, "ATA-%d, "
1363 "max %s, %Lu sectors: %s %s\n",
1364 ata_id_major_version(id),
1365 ata_mode_string(xfer_mask),
1366 (unsigned long long)dev->n_sectors,
1367 lba_desc, ncq_desc);
1368 } else {
1369 /* CHS */
1370
1371 /* Default translation */
1372 dev->cylinders = id[1];
1373 dev->heads = id[3];
1374 dev->sectors = id[6];
1375
1376 if (ata_id_current_chs_valid(id)) {
1377 /* Current CHS translation is valid. */
1378 dev->cylinders = id[54];
1379 dev->heads = id[55];
1380 dev->sectors = id[56];
1381 }
1382
1383 /* print device info to dmesg */
1384 if (print_info)
1385 ata_dev_printk(dev, KERN_INFO, "ATA-%d, "
1386 "max %s, %Lu sectors: CHS %u/%u/%u\n",
1387 ata_id_major_version(id),
1388 ata_mode_string(xfer_mask),
1389 (unsigned long long)dev->n_sectors,
1390 dev->cylinders, dev->heads, dev->sectors);
1391 }
1392
1393 if (dev->id[59] & 0x100) {
1394 dev->multi_count = dev->id[59] & 0xff;
1395 DPRINTK("ata%u: dev %u multi count %u\n",
1396 ap->id, dev->devno, dev->multi_count);
1397 }
1398
1399 dev->cdb_len = 16;
1400 }
1401
1402 /* ATAPI-specific feature tests */
1403 else if (dev->class == ATA_DEV_ATAPI) {
1404 char *cdb_intr_string = "";
1405
1406 rc = atapi_cdb_len(id);
1407 if ((rc < 12) || (rc > ATAPI_CDB_LEN)) {
1408 ata_dev_printk(dev, KERN_WARNING,
1409 "unsupported CDB len\n");
1410 rc = -EINVAL;
1411 goto err_out_nosup;
1412 }
1413 dev->cdb_len = (unsigned int) rc;
1414
1415 if (ata_id_cdb_intr(dev->id)) {
1416 dev->flags |= ATA_DFLAG_CDB_INTR;
1417 cdb_intr_string = ", CDB intr";
1418 }
1419
1420 /* print device info to dmesg */
1421 if (print_info)
1422 ata_dev_printk(dev, KERN_INFO, "ATAPI, max %s%s\n",
1423 ata_mode_string(xfer_mask),
1424 cdb_intr_string);
1425 }
1426
1427 ap->host->max_cmd_len = 0;
1428 for (i = 0; i < ATA_MAX_DEVICES; i++)
1429 ap->host->max_cmd_len = max_t(unsigned int,
1430 ap->host->max_cmd_len,
1431 ap->device[i].cdb_len);
1432
1433 /* limit bridge transfers to udma5, 200 sectors */
1434 if (ata_dev_knobble(dev)) {
1435 if (print_info)
1436 ata_dev_printk(dev, KERN_INFO,
1437 "applying bridge limits\n");
1438 dev->udma_mask &= ATA_UDMA5;
1439 dev->max_sectors = ATA_MAX_SECTORS;
1440 }
1441
1442 if (ap->ops->dev_config)
1443 ap->ops->dev_config(ap, dev);
1444
1445 DPRINTK("EXIT, drv_stat = 0x%x\n", ata_chk_status(ap));
1446 return 0;
1447
1448 err_out_nosup:
1449 DPRINTK("EXIT, err\n");
1450 return rc;
1451 }
1452
1453 /**
1454 * ata_bus_probe - Reset and probe ATA bus
1455 * @ap: Bus to probe
1456 *
1457 * Master ATA bus probing function. Initiates a hardware-dependent
1458 * bus reset, then attempts to identify any devices found on
1459 * the bus.
1460 *
1461 * LOCKING:
1462 * PCI/etc. bus probe sem.
1463 *
1464 * RETURNS:
1465 * Zero on success, negative errno otherwise.
1466 */
1467
1468 static int ata_bus_probe(struct ata_port *ap)
1469 {
1470 unsigned int classes[ATA_MAX_DEVICES];
1471 int tries[ATA_MAX_DEVICES];
1472 int i, rc, down_xfermask;
1473 struct ata_device *dev;
1474
1475 ata_port_probe(ap);
1476
1477 for (i = 0; i < ATA_MAX_DEVICES; i++)
1478 tries[i] = ATA_PROBE_MAX_TRIES;
1479
1480 retry:
1481 down_xfermask = 0;
1482
1483 /* reset and determine device classes */
1484 ap->ops->phy_reset(ap);
1485
1486 for (i = 0; i < ATA_MAX_DEVICES; i++) {
1487 dev = &ap->device[i];
1488
1489 if (!(ap->flags & ATA_FLAG_DISABLED) &&
1490 dev->class != ATA_DEV_UNKNOWN)
1491 classes[dev->devno] = dev->class;
1492 else
1493 classes[dev->devno] = ATA_DEV_NONE;
1494
1495 dev->class = ATA_DEV_UNKNOWN;
1496 }
1497
1498 ata_port_probe(ap);
1499
1500 /* after the reset the device state is PIO 0 and the controller
1501 state is undefined. Record the mode */
1502
1503 for (i = 0; i < ATA_MAX_DEVICES; i++)
1504 ap->device[i].pio_mode = XFER_PIO_0;
1505
1506 /* read IDENTIFY page and configure devices */
1507 for (i = 0; i < ATA_MAX_DEVICES; i++) {
1508 dev = &ap->device[i];
1509
1510 if (tries[i])
1511 dev->class = classes[i];
1512
1513 if (!ata_dev_enabled(dev))
1514 continue;
1515
1516 rc = ata_dev_read_id(dev, &dev->class, 1, dev->id);
1517 if (rc)
1518 goto fail;
1519
1520 rc = ata_dev_configure(dev, 1);
1521 if (rc)
1522 goto fail;
1523 }
1524
1525 /* configure transfer mode */
1526 rc = ata_set_mode(ap, &dev);
1527 if (rc) {
1528 down_xfermask = 1;
1529 goto fail;
1530 }
1531
1532 for (i = 0; i < ATA_MAX_DEVICES; i++)
1533 if (ata_dev_enabled(&ap->device[i]))
1534 return 0;
1535
1536 /* no device present, disable port */
1537 ata_port_disable(ap);
1538 ap->ops->port_disable(ap);
1539 return -ENODEV;
1540
1541 fail:
1542 switch (rc) {
1543 case -EINVAL:
1544 case -ENODEV:
1545 tries[dev->devno] = 0;
1546 break;
1547 case -EIO:
1548 sata_down_spd_limit(ap);
1549 /* fall through */
1550 default:
1551 tries[dev->devno]--;
1552 if (down_xfermask &&
1553 ata_down_xfermask_limit(dev, tries[dev->devno] == 1))
1554 tries[dev->devno] = 0;
1555 }
1556
1557 if (!tries[dev->devno]) {
1558 ata_down_xfermask_limit(dev, 1);
1559 ata_dev_disable(dev);
1560 }
1561
1562 goto retry;
1563 }
1564
1565 /**
1566 * ata_port_probe - Mark port as enabled
1567 * @ap: Port for which we indicate enablement
1568 *
1569 * Modify @ap data structure such that the system
1570 * thinks that the entire port is enabled.
1571 *
1572 * LOCKING: host_set lock, or some other form of
1573 * serialization.
1574 */
1575
1576 void ata_port_probe(struct ata_port *ap)
1577 {
1578 ap->flags &= ~ATA_FLAG_DISABLED;
1579 }
1580
1581 /**
1582 * sata_print_link_status - Print SATA link status
1583 * @ap: SATA port to printk link status about
1584 *
1585 * This function prints link speed and status of a SATA link.
1586 *
1587 * LOCKING:
1588 * None.
1589 */
1590 static void sata_print_link_status(struct ata_port *ap)
1591 {
1592 u32 sstatus, scontrol, tmp;
1593
1594 if (sata_scr_read(ap, SCR_STATUS, &sstatus))
1595 return;
1596 sata_scr_read(ap, SCR_CONTROL, &scontrol);
1597
1598 if (ata_port_online(ap)) {
1599 tmp = (sstatus >> 4) & 0xf;
1600 ata_port_printk(ap, KERN_INFO,
1601 "SATA link up %s (SStatus %X SControl %X)\n",
1602 sata_spd_string(tmp), sstatus, scontrol);
1603 } else {
1604 ata_port_printk(ap, KERN_INFO,
1605 "SATA link down (SStatus %X SControl %X)\n",
1606 sstatus, scontrol);
1607 }
1608 }
1609
1610 /**
1611 * __sata_phy_reset - Wake/reset a low-level SATA PHY
1612 * @ap: SATA port associated with target SATA PHY.
1613 *
1614 * This function issues commands to standard SATA Sxxx
1615 * PHY registers, to wake up the phy (and device), and
1616 * clear any reset condition.
1617 *
1618 * LOCKING:
1619 * PCI/etc. bus probe sem.
1620 *
1621 */
1622 void __sata_phy_reset(struct ata_port *ap)
1623 {
1624 u32 sstatus;
1625 unsigned long timeout = jiffies + (HZ * 5);
1626
1627 if (ap->flags & ATA_FLAG_SATA_RESET) {
1628 /* issue phy wake/reset */
1629 sata_scr_write_flush(ap, SCR_CONTROL, 0x301);
1630 /* Couldn't find anything in SATA I/II specs, but
1631 * AHCI-1.1 10.4.2 says at least 1 ms. */
1632 mdelay(1);
1633 }
1634 /* phy wake/clear reset */
1635 sata_scr_write_flush(ap, SCR_CONTROL, 0x300);
1636
1637 /* wait for phy to become ready, if necessary */
1638 do {
1639 msleep(200);
1640 sata_scr_read(ap, SCR_STATUS, &sstatus);
1641 if ((sstatus & 0xf) != 1)
1642 break;
1643 } while (time_before(jiffies, timeout));
1644
1645 /* print link status */
1646 sata_print_link_status(ap);
1647
1648 /* TODO: phy layer with polling, timeouts, etc. */
1649 if (!ata_port_offline(ap))
1650 ata_port_probe(ap);
1651 else
1652 ata_port_disable(ap);
1653
1654 if (ap->flags & ATA_FLAG_DISABLED)
1655 return;
1656
1657 if (ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT)) {
1658 ata_port_disable(ap);
1659 return;
1660 }
1661
1662 ap->cbl = ATA_CBL_SATA;
1663 }
1664
1665 /**
1666 * sata_phy_reset - Reset SATA bus.
1667 * @ap: SATA port associated with target SATA PHY.
1668 *
1669 * This function resets the SATA bus, and then probes
1670 * the bus for devices.
1671 *
1672 * LOCKING:
1673 * PCI/etc. bus probe sem.
1674 *
1675 */
1676 void sata_phy_reset(struct ata_port *ap)
1677 {
1678 __sata_phy_reset(ap);
1679 if (ap->flags & ATA_FLAG_DISABLED)
1680 return;
1681 ata_bus_reset(ap);
1682 }
1683
1684 /**
1685 * ata_dev_pair - return other device on cable
1686 * @adev: device
1687 *
1688 * Obtain the other device on the same cable, or if none is
1689 * present NULL is returned
1690 */
1691
1692 struct ata_device *ata_dev_pair(struct ata_device *adev)
1693 {
1694 struct ata_port *ap = adev->ap;
1695 struct ata_device *pair = &ap->device[1 - adev->devno];
1696 if (!ata_dev_enabled(pair))
1697 return NULL;
1698 return pair;
1699 }
1700
1701 /**
1702 * ata_port_disable - Disable port.
1703 * @ap: Port to be disabled.
1704 *
1705 * Modify @ap data structure such that the system
1706 * thinks that the entire port is disabled, and should
1707 * never attempt to probe or communicate with devices
1708 * on this port.
1709 *
1710 * LOCKING: host_set lock, or some other form of
1711 * serialization.
1712 */
1713
1714 void ata_port_disable(struct ata_port *ap)
1715 {
1716 ap->device[0].class = ATA_DEV_NONE;
1717 ap->device[1].class = ATA_DEV_NONE;
1718 ap->flags |= ATA_FLAG_DISABLED;
1719 }
1720
1721 /**
1722 * sata_down_spd_limit - adjust SATA spd limit downward
1723 * @ap: Port to adjust SATA spd limit for
1724 *
1725 * Adjust SATA spd limit of @ap downward. Note that this
1726 * function only adjusts the limit. The change must be applied
1727 * using sata_set_spd().
1728 *
1729 * LOCKING:
1730 * Inherited from caller.
1731 *
1732 * RETURNS:
1733 * 0 on success, negative errno on failure
1734 */
1735 int sata_down_spd_limit(struct ata_port *ap)
1736 {
1737 u32 sstatus, spd, mask;
1738 int rc, highbit;
1739
1740 rc = sata_scr_read(ap, SCR_STATUS, &sstatus);
1741 if (rc)
1742 return rc;
1743
1744 mask = ap->sata_spd_limit;
1745 if (mask <= 1)
1746 return -EINVAL;
1747 highbit = fls(mask) - 1;
1748 mask &= ~(1 << highbit);
1749
1750 spd = (sstatus >> 4) & 0xf;
1751 if (spd <= 1)
1752 return -EINVAL;
1753 spd--;
1754 mask &= (1 << spd) - 1;
1755 if (!mask)
1756 return -EINVAL;
1757
1758 ap->sata_spd_limit = mask;
1759
1760 ata_port_printk(ap, KERN_WARNING, "limiting SATA link speed to %s\n",
1761 sata_spd_string(fls(mask)));
1762
1763 return 0;
1764 }
1765
1766 static int __sata_set_spd_needed(struct ata_port *ap, u32 *scontrol)
1767 {
1768 u32 spd, limit;
1769
1770 if (ap->sata_spd_limit == UINT_MAX)
1771 limit = 0;
1772 else
1773 limit = fls(ap->sata_spd_limit);
1774
1775 spd = (*scontrol >> 4) & 0xf;
1776 *scontrol = (*scontrol & ~0xf0) | ((limit & 0xf) << 4);
1777
1778 return spd != limit;
1779 }
1780
1781 /**
1782 * sata_set_spd_needed - is SATA spd configuration needed
1783 * @ap: Port in question
1784 *
1785 * Test whether the spd limit in SControl matches
1786 * @ap->sata_spd_limit. This function is used to determine
1787 * whether hardreset is necessary to apply SATA spd
1788 * configuration.
1789 *
1790 * LOCKING:
1791 * Inherited from caller.
1792 *
1793 * RETURNS:
1794 * 1 if SATA spd configuration is needed, 0 otherwise.
1795 */
1796 int sata_set_spd_needed(struct ata_port *ap)
1797 {
1798 u32 scontrol;
1799
1800 if (sata_scr_read(ap, SCR_CONTROL, &scontrol))
1801 return 0;
1802
1803 return __sata_set_spd_needed(ap, &scontrol);
1804 }
1805
1806 /**
1807 * sata_set_spd - set SATA spd according to spd limit
1808 * @ap: Port to set SATA spd for
1809 *
1810 * Set SATA spd of @ap according to sata_spd_limit.
1811 *
1812 * LOCKING:
1813 * Inherited from caller.
1814 *
1815 * RETURNS:
1816 * 0 if spd doesn't need to be changed, 1 if spd has been
1817 * changed. Negative errno if SCR registers are inaccessible.
1818 */
1819 int sata_set_spd(struct ata_port *ap)
1820 {
1821 u32 scontrol;
1822 int rc;
1823
1824 if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
1825 return rc;
1826
1827 if (!__sata_set_spd_needed(ap, &scontrol))
1828 return 0;
1829
1830 if ((rc = sata_scr_write(ap, SCR_CONTROL, scontrol)))
1831 return rc;
1832
1833 return 1;
1834 }
1835
1836 /*
1837 * This mode timing computation functionality is ported over from
1838 * drivers/ide/ide-timing.h and was originally written by Vojtech Pavlik
1839 */
1840 /*
1841 * PIO 0-5, MWDMA 0-2 and UDMA 0-6 timings (in nanoseconds).
1842 * These were taken from ATA/ATAPI-6 standard, rev 0a, except
1843 * for PIO 5, which is a nonstandard extension and UDMA6, which
1844 * is currently supported only by Maxtor drives.
1845 */
1846
1847 static const struct ata_timing ata_timing[] = {
1848
1849 { XFER_UDMA_6, 0, 0, 0, 0, 0, 0, 0, 15 },
1850 { XFER_UDMA_5, 0, 0, 0, 0, 0, 0, 0, 20 },
1851 { XFER_UDMA_4, 0, 0, 0, 0, 0, 0, 0, 30 },
1852 { XFER_UDMA_3, 0, 0, 0, 0, 0, 0, 0, 45 },
1853
1854 { XFER_UDMA_2, 0, 0, 0, 0, 0, 0, 0, 60 },
1855 { XFER_UDMA_1, 0, 0, 0, 0, 0, 0, 0, 80 },
1856 { XFER_UDMA_0, 0, 0, 0, 0, 0, 0, 0, 120 },
1857
1858 /* { XFER_UDMA_SLOW, 0, 0, 0, 0, 0, 0, 0, 150 }, */
1859
1860 { XFER_MW_DMA_2, 25, 0, 0, 0, 70, 25, 120, 0 },
1861 { XFER_MW_DMA_1, 45, 0, 0, 0, 80, 50, 150, 0 },
1862 { XFER_MW_DMA_0, 60, 0, 0, 0, 215, 215, 480, 0 },
1863
1864 { XFER_SW_DMA_2, 60, 0, 0, 0, 120, 120, 240, 0 },
1865 { XFER_SW_DMA_1, 90, 0, 0, 0, 240, 240, 480, 0 },
1866 { XFER_SW_DMA_0, 120, 0, 0, 0, 480, 480, 960, 0 },
1867
1868 /* { XFER_PIO_5, 20, 50, 30, 100, 50, 30, 100, 0 }, */
1869 { XFER_PIO_4, 25, 70, 25, 120, 70, 25, 120, 0 },
1870 { XFER_PIO_3, 30, 80, 70, 180, 80, 70, 180, 0 },
1871
1872 { XFER_PIO_2, 30, 290, 40, 330, 100, 90, 240, 0 },
1873 { XFER_PIO_1, 50, 290, 93, 383, 125, 100, 383, 0 },
1874 { XFER_PIO_0, 70, 290, 240, 600, 165, 150, 600, 0 },
1875
1876 /* { XFER_PIO_SLOW, 120, 290, 240, 960, 290, 240, 960, 0 }, */
1877
1878 { 0xFF }
1879 };
1880
1881 #define ENOUGH(v,unit) (((v)-1)/(unit)+1)
1882 #define EZ(v,unit) ((v)?ENOUGH(v,unit):0)
1883
1884 static void ata_timing_quantize(const struct ata_timing *t, struct ata_timing *q, int T, int UT)
1885 {
1886 q->setup = EZ(t->setup * 1000, T);
1887 q->act8b = EZ(t->act8b * 1000, T);
1888 q->rec8b = EZ(t->rec8b * 1000, T);
1889 q->cyc8b = EZ(t->cyc8b * 1000, T);
1890 q->active = EZ(t->active * 1000, T);
1891 q->recover = EZ(t->recover * 1000, T);
1892 q->cycle = EZ(t->cycle * 1000, T);
1893 q->udma = EZ(t->udma * 1000, UT);
1894 }
1895
1896 void ata_timing_merge(const struct ata_timing *a, const struct ata_timing *b,
1897 struct ata_timing *m, unsigned int what)
1898 {
1899 if (what & ATA_TIMING_SETUP ) m->setup = max(a->setup, b->setup);
1900 if (what & ATA_TIMING_ACT8B ) m->act8b = max(a->act8b, b->act8b);
1901 if (what & ATA_TIMING_REC8B ) m->rec8b = max(a->rec8b, b->rec8b);
1902 if (what & ATA_TIMING_CYC8B ) m->cyc8b = max(a->cyc8b, b->cyc8b);
1903 if (what & ATA_TIMING_ACTIVE ) m->active = max(a->active, b->active);
1904 if (what & ATA_TIMING_RECOVER) m->recover = max(a->recover, b->recover);
1905 if (what & ATA_TIMING_CYCLE ) m->cycle = max(a->cycle, b->cycle);
1906 if (what & ATA_TIMING_UDMA ) m->udma = max(a->udma, b->udma);
1907 }
1908
1909 static const struct ata_timing* ata_timing_find_mode(unsigned short speed)
1910 {
1911 const struct ata_timing *t;
1912
1913 for (t = ata_timing; t->mode != speed; t++)
1914 if (t->mode == 0xFF)
1915 return NULL;
1916 return t;
1917 }
1918
1919 int ata_timing_compute(struct ata_device *adev, unsigned short speed,
1920 struct ata_timing *t, int T, int UT)
1921 {
1922 const struct ata_timing *s;
1923 struct ata_timing p;
1924
1925 /*
1926 * Find the mode.
1927 */
1928
1929 if (!(s = ata_timing_find_mode(speed)))
1930 return -EINVAL;
1931
1932 memcpy(t, s, sizeof(*s));
1933
1934 /*
1935 * If the drive is an EIDE drive, it can tell us it needs extended
1936 * PIO/MW_DMA cycle timing.
1937 */
1938
1939 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE drive */
1940 memset(&p, 0, sizeof(p));
1941 if(speed >= XFER_PIO_0 && speed <= XFER_SW_DMA_0) {
1942 if (speed <= XFER_PIO_2) p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO];
1943 else p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO_IORDY];
1944 } else if(speed >= XFER_MW_DMA_0 && speed <= XFER_MW_DMA_2) {
1945 p.cycle = adev->id[ATA_ID_EIDE_DMA_MIN];
1946 }
1947 ata_timing_merge(&p, t, t, ATA_TIMING_CYCLE | ATA_TIMING_CYC8B);
1948 }
1949
1950 /*
1951 * Convert the timing to bus clock counts.
1952 */
1953
1954 ata_timing_quantize(t, t, T, UT);
1955
1956 /*
1957 * Even in DMA/UDMA modes we still use PIO access for IDENTIFY,
1958 * S.M.A.R.T * and some other commands. We have to ensure that the
1959 * DMA cycle timing is slower/equal than the fastest PIO timing.
1960 */
1961
1962 if (speed > XFER_PIO_4) {
1963 ata_timing_compute(adev, adev->pio_mode, &p, T, UT);
1964 ata_timing_merge(&p, t, t, ATA_TIMING_ALL);
1965 }
1966
1967 /*
1968 * Lengthen active & recovery time so that cycle time is correct.
1969 */
1970
1971 if (t->act8b + t->rec8b < t->cyc8b) {
1972 t->act8b += (t->cyc8b - (t->act8b + t->rec8b)) / 2;
1973 t->rec8b = t->cyc8b - t->act8b;
1974 }
1975
1976 if (t->active + t->recover < t->cycle) {
1977 t->active += (t->cycle - (t->active + t->recover)) / 2;
1978 t->recover = t->cycle - t->active;
1979 }
1980
1981 return 0;
1982 }
1983
1984 /**
1985 * ata_down_xfermask_limit - adjust dev xfer masks downward
1986 * @dev: Device to adjust xfer masks
1987 * @force_pio0: Force PIO0
1988 *
1989 * Adjust xfer masks of @dev downward. Note that this function
1990 * does not apply the change. Invoking ata_set_mode() afterwards
1991 * will apply the limit.
1992 *
1993 * LOCKING:
1994 * Inherited from caller.
1995 *
1996 * RETURNS:
1997 * 0 on success, negative errno on failure
1998 */
1999 int ata_down_xfermask_limit(struct ata_device *dev, int force_pio0)
2000 {
2001 unsigned long xfer_mask;
2002 int highbit;
2003
2004 xfer_mask = ata_pack_xfermask(dev->pio_mask, dev->mwdma_mask,
2005 dev->udma_mask);
2006
2007 if (!xfer_mask)
2008 goto fail;
2009 /* don't gear down to MWDMA from UDMA, go directly to PIO */
2010 if (xfer_mask & ATA_MASK_UDMA)
2011 xfer_mask &= ~ATA_MASK_MWDMA;
2012
2013 highbit = fls(xfer_mask) - 1;
2014 xfer_mask &= ~(1 << highbit);
2015 if (force_pio0)
2016 xfer_mask &= 1 << ATA_SHIFT_PIO;
2017 if (!xfer_mask)
2018 goto fail;
2019
2020 ata_unpack_xfermask(xfer_mask, &dev->pio_mask, &dev->mwdma_mask,
2021 &dev->udma_mask);
2022
2023 ata_dev_printk(dev, KERN_WARNING, "limiting speed to %s\n",
2024 ata_mode_string(xfer_mask));
2025
2026 return 0;
2027
2028 fail:
2029 return -EINVAL;
2030 }
2031
2032 static int ata_dev_set_mode(struct ata_device *dev)
2033 {
2034 unsigned int err_mask;
2035 int rc;
2036
2037 dev->flags &= ~ATA_DFLAG_PIO;
2038 if (dev->xfer_shift == ATA_SHIFT_PIO)
2039 dev->flags |= ATA_DFLAG_PIO;
2040
2041 err_mask = ata_dev_set_xfermode(dev);
2042 if (err_mask) {
2043 ata_dev_printk(dev, KERN_ERR, "failed to set xfermode "
2044 "(err_mask=0x%x)\n", err_mask);
2045 return -EIO;
2046 }
2047
2048 rc = ata_dev_revalidate(dev, 0);
2049 if (rc)
2050 return rc;
2051
2052 DPRINTK("xfer_shift=%u, xfer_mode=0x%x\n",
2053 dev->xfer_shift, (int)dev->xfer_mode);
2054
2055 ata_dev_printk(dev, KERN_INFO, "configured for %s\n",
2056 ata_mode_string(ata_xfer_mode2mask(dev->xfer_mode)));
2057 return 0;
2058 }
2059
2060 /**
2061 * ata_set_mode - Program timings and issue SET FEATURES - XFER
2062 * @ap: port on which timings will be programmed
2063 * @r_failed_dev: out paramter for failed device
2064 *
2065 * Set ATA device disk transfer mode (PIO3, UDMA6, etc.). If
2066 * ata_set_mode() fails, pointer to the failing device is
2067 * returned in @r_failed_dev.
2068 *
2069 * LOCKING:
2070 * PCI/etc. bus probe sem.
2071 *
2072 * RETURNS:
2073 * 0 on success, negative errno otherwise
2074 */
2075 int ata_set_mode(struct ata_port *ap, struct ata_device **r_failed_dev)
2076 {
2077 struct ata_device *dev;
2078 int i, rc = 0, used_dma = 0, found = 0;
2079
2080 /* has private set_mode? */
2081 if (ap->ops->set_mode) {
2082 /* FIXME: make ->set_mode handle no device case and
2083 * return error code and failing device on failure.
2084 */
2085 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2086 if (ata_dev_enabled(&ap->device[i])) {
2087 ap->ops->set_mode(ap);
2088 break;
2089 }
2090 }
2091 return 0;
2092 }
2093
2094 /* step 1: calculate xfer_mask */
2095 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2096 unsigned int pio_mask, dma_mask;
2097
2098 dev = &ap->device[i];
2099
2100 if (!ata_dev_enabled(dev))
2101 continue;
2102
2103 ata_dev_xfermask(dev);
2104
2105 pio_mask = ata_pack_xfermask(dev->pio_mask, 0, 0);
2106 dma_mask = ata_pack_xfermask(0, dev->mwdma_mask, dev->udma_mask);
2107 dev->pio_mode = ata_xfer_mask2mode(pio_mask);
2108 dev->dma_mode = ata_xfer_mask2mode(dma_mask);
2109
2110 found = 1;
2111 if (dev->dma_mode)
2112 used_dma = 1;
2113 }
2114 if (!found)
2115 goto out;
2116
2117 /* step 2: always set host PIO timings */
2118 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2119 dev = &ap->device[i];
2120 if (!ata_dev_enabled(dev))
2121 continue;
2122
2123 if (!dev->pio_mode) {
2124 ata_dev_printk(dev, KERN_WARNING, "no PIO support\n");
2125 rc = -EINVAL;
2126 goto out;
2127 }
2128
2129 dev->xfer_mode = dev->pio_mode;
2130 dev->xfer_shift = ATA_SHIFT_PIO;
2131 if (ap->ops->set_piomode)
2132 ap->ops->set_piomode(ap, dev);
2133 }
2134
2135 /* step 3: set host DMA timings */
2136 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2137 dev = &ap->device[i];
2138
2139 if (!ata_dev_enabled(dev) || !dev->dma_mode)
2140 continue;
2141
2142 dev->xfer_mode = dev->dma_mode;
2143 dev->xfer_shift = ata_xfer_mode2shift(dev->dma_mode);
2144 if (ap->ops->set_dmamode)
2145 ap->ops->set_dmamode(ap, dev);
2146 }
2147
2148 /* step 4: update devices' xfer mode */
2149 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2150 dev = &ap->device[i];
2151
2152 if (!ata_dev_enabled(dev))
2153 continue;
2154
2155 rc = ata_dev_set_mode(dev);
2156 if (rc)
2157 goto out;
2158 }
2159
2160 /* Record simplex status. If we selected DMA then the other
2161 * host channels are not permitted to do so.
2162 */
2163 if (used_dma && (ap->host_set->flags & ATA_HOST_SIMPLEX))
2164 ap->host_set->simplex_claimed = 1;
2165
2166 /* step5: chip specific finalisation */
2167 if (ap->ops->post_set_mode)
2168 ap->ops->post_set_mode(ap);
2169
2170 out:
2171 if (rc)
2172 *r_failed_dev = dev;
2173 return rc;
2174 }
2175
2176 /**
2177 * ata_tf_to_host - issue ATA taskfile to host controller
2178 * @ap: port to which command is being issued
2179 * @tf: ATA taskfile register set
2180 *
2181 * Issues ATA taskfile register set to ATA host controller,
2182 * with proper synchronization with interrupt handler and
2183 * other threads.
2184 *
2185 * LOCKING:
2186 * spin_lock_irqsave(host_set lock)
2187 */
2188
2189 static inline void ata_tf_to_host(struct ata_port *ap,
2190 const struct ata_taskfile *tf)
2191 {
2192 ap->ops->tf_load(ap, tf);
2193 ap->ops->exec_command(ap, tf);
2194 }
2195
2196 /**
2197 * ata_busy_sleep - sleep until BSY clears, or timeout
2198 * @ap: port containing status register to be polled
2199 * @tmout_pat: impatience timeout
2200 * @tmout: overall timeout
2201 *
2202 * Sleep until ATA Status register bit BSY clears,
2203 * or a timeout occurs.
2204 *
2205 * LOCKING: None.
2206 */
2207
2208 unsigned int ata_busy_sleep (struct ata_port *ap,
2209 unsigned long tmout_pat, unsigned long tmout)
2210 {
2211 unsigned long timer_start, timeout;
2212 u8 status;
2213
2214 status = ata_busy_wait(ap, ATA_BUSY, 300);
2215 timer_start = jiffies;
2216 timeout = timer_start + tmout_pat;
2217 while ((status & ATA_BUSY) && (time_before(jiffies, timeout))) {
2218 msleep(50);
2219 status = ata_busy_wait(ap, ATA_BUSY, 3);
2220 }
2221
2222 if (status & ATA_BUSY)
2223 ata_port_printk(ap, KERN_WARNING,
2224 "port is slow to respond, please be patient\n");
2225
2226 timeout = timer_start + tmout;
2227 while ((status & ATA_BUSY) && (time_before(jiffies, timeout))) {
2228 msleep(50);
2229 status = ata_chk_status(ap);
2230 }
2231
2232 if (status & ATA_BUSY) {
2233 ata_port_printk(ap, KERN_ERR, "port failed to respond "
2234 "(%lu secs)\n", tmout / HZ);
2235 return 1;
2236 }
2237
2238 return 0;
2239 }
2240
2241 static void ata_bus_post_reset(struct ata_port *ap, unsigned int devmask)
2242 {
2243 struct ata_ioports *ioaddr = &ap->ioaddr;
2244 unsigned int dev0 = devmask & (1 << 0);
2245 unsigned int dev1 = devmask & (1 << 1);
2246 unsigned long timeout;
2247
2248 /* if device 0 was found in ata_devchk, wait for its
2249 * BSY bit to clear
2250 */
2251 if (dev0)
2252 ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT);
2253
2254 /* if device 1 was found in ata_devchk, wait for
2255 * register access, then wait for BSY to clear
2256 */
2257 timeout = jiffies + ATA_TMOUT_BOOT;
2258 while (dev1) {
2259 u8 nsect, lbal;
2260
2261 ap->ops->dev_select(ap, 1);
2262 if (ap->flags & ATA_FLAG_MMIO) {
2263 nsect = readb((void __iomem *) ioaddr->nsect_addr);
2264 lbal = readb((void __iomem *) ioaddr->lbal_addr);
2265 } else {
2266 nsect = inb(ioaddr->nsect_addr);
2267 lbal = inb(ioaddr->lbal_addr);
2268 }
2269 if ((nsect == 1) && (lbal == 1))
2270 break;
2271 if (time_after(jiffies, timeout)) {
2272 dev1 = 0;
2273 break;
2274 }
2275 msleep(50); /* give drive a breather */
2276 }
2277 if (dev1)
2278 ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT);
2279
2280 /* is all this really necessary? */
2281 ap->ops->dev_select(ap, 0);
2282 if (dev1)
2283 ap->ops->dev_select(ap, 1);
2284 if (dev0)
2285 ap->ops->dev_select(ap, 0);
2286 }
2287
2288 static unsigned int ata_bus_softreset(struct ata_port *ap,
2289 unsigned int devmask)
2290 {
2291 struct ata_ioports *ioaddr = &ap->ioaddr;
2292
2293 DPRINTK("ata%u: bus reset via SRST\n", ap->id);
2294
2295 /* software reset. causes dev0 to be selected */
2296 if (ap->flags & ATA_FLAG_MMIO) {
2297 writeb(ap->ctl, (void __iomem *) ioaddr->ctl_addr);
2298 udelay(20); /* FIXME: flush */
2299 writeb(ap->ctl | ATA_SRST, (void __iomem *) ioaddr->ctl_addr);
2300 udelay(20); /* FIXME: flush */
2301 writeb(ap->ctl, (void __iomem *) ioaddr->ctl_addr);
2302 } else {
2303 outb(ap->ctl, ioaddr->ctl_addr);
2304 udelay(10);
2305 outb(ap->ctl | ATA_SRST, ioaddr->ctl_addr);
2306 udelay(10);
2307 outb(ap->ctl, ioaddr->ctl_addr);
2308 }
2309
2310 /* spec mandates ">= 2ms" before checking status.
2311 * We wait 150ms, because that was the magic delay used for
2312 * ATAPI devices in Hale Landis's ATADRVR, for the period of time
2313 * between when the ATA command register is written, and then
2314 * status is checked. Because waiting for "a while" before
2315 * checking status is fine, post SRST, we perform this magic
2316 * delay here as well.
2317 *
2318 * Old drivers/ide uses the 2mS rule and then waits for ready
2319 */
2320 msleep(150);
2321
2322 /* Before we perform post reset processing we want to see if
2323 * the bus shows 0xFF because the odd clown forgets the D7
2324 * pulldown resistor.
2325 */
2326 if (ata_check_status(ap) == 0xFF) {
2327 ata_port_printk(ap, KERN_ERR, "SRST failed (status 0xFF)\n");
2328 return AC_ERR_OTHER;
2329 }
2330
2331 ata_bus_post_reset(ap, devmask);
2332
2333 return 0;
2334 }
2335
2336 /**
2337 * ata_bus_reset - reset host port and associated ATA channel
2338 * @ap: port to reset
2339 *
2340 * This is typically the first time we actually start issuing
2341 * commands to the ATA channel. We wait for BSY to clear, then
2342 * issue EXECUTE DEVICE DIAGNOSTIC command, polling for its
2343 * result. Determine what devices, if any, are on the channel
2344 * by looking at the device 0/1 error register. Look at the signature
2345 * stored in each device's taskfile registers, to determine if
2346 * the device is ATA or ATAPI.
2347 *
2348 * LOCKING:
2349 * PCI/etc. bus probe sem.
2350 * Obtains host_set lock.
2351 *
2352 * SIDE EFFECTS:
2353 * Sets ATA_FLAG_DISABLED if bus reset fails.
2354 */
2355
2356 void ata_bus_reset(struct ata_port *ap)
2357 {
2358 struct ata_ioports *ioaddr = &ap->ioaddr;
2359 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
2360 u8 err;
2361 unsigned int dev0, dev1 = 0, devmask = 0;
2362
2363 DPRINTK("ENTER, host %u, port %u\n", ap->id, ap->port_no);
2364
2365 /* determine if device 0/1 are present */
2366 if (ap->flags & ATA_FLAG_SATA_RESET)
2367 dev0 = 1;
2368 else {
2369 dev0 = ata_devchk(ap, 0);
2370 if (slave_possible)
2371 dev1 = ata_devchk(ap, 1);
2372 }
2373
2374 if (dev0)
2375 devmask |= (1 << 0);
2376 if (dev1)
2377 devmask |= (1 << 1);
2378
2379 /* select device 0 again */
2380 ap->ops->dev_select(ap, 0);
2381
2382 /* issue bus reset */
2383 if (ap->flags & ATA_FLAG_SRST)
2384 if (ata_bus_softreset(ap, devmask))
2385 goto err_out;
2386
2387 /*
2388 * determine by signature whether we have ATA or ATAPI devices
2389 */
2390 ap->device[0].class = ata_dev_try_classify(ap, 0, &err);
2391 if ((slave_possible) && (err != 0x81))
2392 ap->device[1].class = ata_dev_try_classify(ap, 1, &err);
2393
2394 /* re-enable interrupts */
2395 if (ap->ioaddr.ctl_addr) /* FIXME: hack. create a hook instead */
2396 ata_irq_on(ap);
2397
2398 /* is double-select really necessary? */
2399 if (ap->device[1].class != ATA_DEV_NONE)
2400 ap->ops->dev_select(ap, 1);
2401 if (ap->device[0].class != ATA_DEV_NONE)
2402 ap->ops->dev_select(ap, 0);
2403
2404 /* if no devices were detected, disable this port */
2405 if ((ap->device[0].class == ATA_DEV_NONE) &&
2406 (ap->device[1].class == ATA_DEV_NONE))
2407 goto err_out;
2408
2409 if (ap->flags & (ATA_FLAG_SATA_RESET | ATA_FLAG_SRST)) {
2410 /* set up device control for ATA_FLAG_SATA_RESET */
2411 if (ap->flags & ATA_FLAG_MMIO)
2412 writeb(ap->ctl, (void __iomem *) ioaddr->ctl_addr);
2413 else
2414 outb(ap->ctl, ioaddr->ctl_addr);
2415 }
2416
2417 DPRINTK("EXIT\n");
2418 return;
2419
2420 err_out:
2421 ata_port_printk(ap, KERN_ERR, "disabling port\n");
2422 ap->ops->port_disable(ap);
2423
2424 DPRINTK("EXIT\n");
2425 }
2426
2427 /**
2428 * sata_phy_debounce - debounce SATA phy status
2429 * @ap: ATA port to debounce SATA phy status for
2430 * @params: timing parameters { interval, duratinon, timeout } in msec
2431 *
2432 * Make sure SStatus of @ap reaches stable state, determined by
2433 * holding the same value where DET is not 1 for @duration polled
2434 * every @interval, before @timeout. Timeout constraints the
2435 * beginning of the stable state. Because, after hot unplugging,
2436 * DET gets stuck at 1 on some controllers, this functions waits
2437 * until timeout then returns 0 if DET is stable at 1.
2438 *
2439 * LOCKING:
2440 * Kernel thread context (may sleep)
2441 *
2442 * RETURNS:
2443 * 0 on success, -errno on failure.
2444 */
2445 int sata_phy_debounce(struct ata_port *ap, const unsigned long *params)
2446 {
2447 unsigned long interval_msec = params[0];
2448 unsigned long duration = params[1] * HZ / 1000;
2449 unsigned long timeout = jiffies + params[2] * HZ / 1000;
2450 unsigned long last_jiffies;
2451 u32 last, cur;
2452 int rc;
2453
2454 if ((rc = sata_scr_read(ap, SCR_STATUS, &cur)))
2455 return rc;
2456 cur &= 0xf;
2457
2458 last = cur;
2459 last_jiffies = jiffies;
2460
2461 while (1) {
2462 msleep(interval_msec);
2463 if ((rc = sata_scr_read(ap, SCR_STATUS, &cur)))
2464 return rc;
2465 cur &= 0xf;
2466
2467 /* DET stable? */
2468 if (cur == last) {
2469 if (cur == 1 && time_before(jiffies, timeout))
2470 continue;
2471 if (time_after(jiffies, last_jiffies + duration))
2472 return 0;
2473 continue;
2474 }
2475
2476 /* unstable, start over */
2477 last = cur;
2478 last_jiffies = jiffies;
2479
2480 /* check timeout */
2481 if (time_after(jiffies, timeout))
2482 return -EBUSY;
2483 }
2484 }
2485
2486 /**
2487 * sata_phy_resume - resume SATA phy
2488 * @ap: ATA port to resume SATA phy for
2489 * @params: timing parameters { interval, duratinon, timeout } in msec
2490 *
2491 * Resume SATA phy of @ap and debounce it.
2492 *
2493 * LOCKING:
2494 * Kernel thread context (may sleep)
2495 *
2496 * RETURNS:
2497 * 0 on success, -errno on failure.
2498 */
2499 int sata_phy_resume(struct ata_port *ap, const unsigned long *params)
2500 {
2501 u32 scontrol;
2502 int rc;
2503
2504 if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
2505 return rc;
2506
2507 scontrol = (scontrol & 0x0f0) | 0x300;
2508
2509 if ((rc = sata_scr_write(ap, SCR_CONTROL, scontrol)))
2510 return rc;
2511
2512 /* Some PHYs react badly if SStatus is pounded immediately
2513 * after resuming. Delay 200ms before debouncing.
2514 */
2515 msleep(200);
2516
2517 return sata_phy_debounce(ap, params);
2518 }
2519
2520 static void ata_wait_spinup(struct ata_port *ap)
2521 {
2522 struct ata_eh_context *ehc = &ap->eh_context;
2523 unsigned long end, secs;
2524 int rc;
2525
2526 /* first, debounce phy if SATA */
2527 if (ap->cbl == ATA_CBL_SATA) {
2528 rc = sata_phy_debounce(ap, sata_deb_timing_eh);
2529
2530 /* if debounced successfully and offline, no need to wait */
2531 if ((rc == 0 || rc == -EOPNOTSUPP) && ata_port_offline(ap))
2532 return;
2533 }
2534
2535 /* okay, let's give the drive time to spin up */
2536 end = ehc->i.hotplug_timestamp + ATA_SPINUP_WAIT * HZ / 1000;
2537 secs = ((end - jiffies) + HZ - 1) / HZ;
2538
2539 if (time_after(jiffies, end))
2540 return;
2541
2542 if (secs > 5)
2543 ata_port_printk(ap, KERN_INFO, "waiting for device to spin up "
2544 "(%lu secs)\n", secs);
2545
2546 schedule_timeout_uninterruptible(end - jiffies);
2547 }
2548
2549 /**
2550 * ata_std_prereset - prepare for reset
2551 * @ap: ATA port to be reset
2552 *
2553 * @ap is about to be reset. Initialize it.
2554 *
2555 * LOCKING:
2556 * Kernel thread context (may sleep)
2557 *
2558 * RETURNS:
2559 * 0 on success, -errno otherwise.
2560 */
2561 int ata_std_prereset(struct ata_port *ap)
2562 {
2563 struct ata_eh_context *ehc = &ap->eh_context;
2564 const unsigned long *timing;
2565 int rc;
2566
2567 /* hotplug? */
2568 if (ehc->i.flags & ATA_EHI_HOTPLUGGED) {
2569 if (ap->flags & ATA_FLAG_HRST_TO_RESUME)
2570 ehc->i.action |= ATA_EH_HARDRESET;
2571 if (ap->flags & ATA_FLAG_SKIP_D2H_BSY)
2572 ata_wait_spinup(ap);
2573 }
2574
2575 /* if we're about to do hardreset, nothing more to do */
2576 if (ehc->i.action & ATA_EH_HARDRESET)
2577 return 0;
2578
2579 /* if SATA, resume phy */
2580 if (ap->cbl == ATA_CBL_SATA) {
2581 if (ap->flags & ATA_FLAG_LOADING)
2582 timing = sata_deb_timing_boot;
2583 else
2584 timing = sata_deb_timing_eh;
2585
2586 rc = sata_phy_resume(ap, timing);
2587 if (rc && rc != -EOPNOTSUPP) {
2588 /* phy resume failed */
2589 ata_port_printk(ap, KERN_WARNING, "failed to resume "
2590 "link for reset (errno=%d)\n", rc);
2591 return rc;
2592 }
2593 }
2594
2595 /* Wait for !BSY if the controller can wait for the first D2H
2596 * Reg FIS and we don't know that no device is attached.
2597 */
2598 if (!(ap->flags & ATA_FLAG_SKIP_D2H_BSY) && !ata_port_offline(ap))
2599 ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT);
2600
2601 return 0;
2602 }
2603
2604 /**
2605 * ata_std_softreset - reset host port via ATA SRST
2606 * @ap: port to reset
2607 * @classes: resulting classes of attached devices
2608 *
2609 * Reset host port using ATA SRST.
2610 *
2611 * LOCKING:
2612 * Kernel thread context (may sleep)
2613 *
2614 * RETURNS:
2615 * 0 on success, -errno otherwise.
2616 */
2617 int ata_std_softreset(struct ata_port *ap, unsigned int *classes)
2618 {
2619 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
2620 unsigned int devmask = 0, err_mask;
2621 u8 err;
2622
2623 DPRINTK("ENTER\n");
2624
2625 if (ata_port_offline(ap)) {
2626 classes[0] = ATA_DEV_NONE;
2627 goto out;
2628 }
2629
2630 /* determine if device 0/1 are present */
2631 if (ata_devchk(ap, 0))
2632 devmask |= (1 << 0);
2633 if (slave_possible && ata_devchk(ap, 1))
2634 devmask |= (1 << 1);
2635
2636 /* select device 0 again */
2637 ap->ops->dev_select(ap, 0);
2638
2639 /* issue bus reset */
2640 DPRINTK("about to softreset, devmask=%x\n", devmask);
2641 err_mask = ata_bus_softreset(ap, devmask);
2642 if (err_mask) {
2643 ata_port_printk(ap, KERN_ERR, "SRST failed (err_mask=0x%x)\n",
2644 err_mask);
2645 return -EIO;
2646 }
2647
2648 /* determine by signature whether we have ATA or ATAPI devices */
2649 classes[0] = ata_dev_try_classify(ap, 0, &err);
2650 if (slave_possible && err != 0x81)
2651 classes[1] = ata_dev_try_classify(ap, 1, &err);
2652
2653 out:
2654 DPRINTK("EXIT, classes[0]=%u [1]=%u\n", classes[0], classes[1]);
2655 return 0;
2656 }
2657
2658 /**
2659 * sata_std_hardreset - reset host port via SATA phy reset
2660 * @ap: port to reset
2661 * @class: resulting class of attached device
2662 *
2663 * SATA phy-reset host port using DET bits of SControl register.
2664 *
2665 * LOCKING:
2666 * Kernel thread context (may sleep)
2667 *
2668 * RETURNS:
2669 * 0 on success, -errno otherwise.
2670 */
2671 int sata_std_hardreset(struct ata_port *ap, unsigned int *class)
2672 {
2673 u32 scontrol;
2674 int rc;
2675
2676 DPRINTK("ENTER\n");
2677
2678 if (sata_set_spd_needed(ap)) {
2679 /* SATA spec says nothing about how to reconfigure
2680 * spd. To be on the safe side, turn off phy during
2681 * reconfiguration. This works for at least ICH7 AHCI
2682 * and Sil3124.
2683 */
2684 if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
2685 return rc;
2686
2687 scontrol = (scontrol & 0x0f0) | 0x302;
2688
2689 if ((rc = sata_scr_write(ap, SCR_CONTROL, scontrol)))
2690 return rc;
2691
2692 sata_set_spd(ap);
2693 }
2694
2695 /* issue phy wake/reset */
2696 if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
2697 return rc;
2698
2699 scontrol = (scontrol & 0x0f0) | 0x301;
2700
2701 if ((rc = sata_scr_write_flush(ap, SCR_CONTROL, scontrol)))
2702 return rc;
2703
2704 /* Couldn't find anything in SATA I/II specs, but AHCI-1.1
2705 * 10.4.2 says at least 1 ms.
2706 */
2707 msleep(1);
2708
2709 /* bring phy back */
2710 sata_phy_resume(ap, sata_deb_timing_eh);
2711
2712 /* TODO: phy layer with polling, timeouts, etc. */
2713 if (ata_port_offline(ap)) {
2714 *class = ATA_DEV_NONE;
2715 DPRINTK("EXIT, link offline\n");
2716 return 0;
2717 }
2718
2719 if (ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT)) {
2720 ata_port_printk(ap, KERN_ERR,
2721 "COMRESET failed (device not ready)\n");
2722 return -EIO;
2723 }
2724
2725 ap->ops->dev_select(ap, 0); /* probably unnecessary */
2726
2727 *class = ata_dev_try_classify(ap, 0, NULL);
2728
2729 DPRINTK("EXIT, class=%u\n", *class);
2730 return 0;
2731 }
2732
2733 /**
2734 * ata_std_postreset - standard postreset callback
2735 * @ap: the target ata_port
2736 * @classes: classes of attached devices
2737 *
2738 * This function is invoked after a successful reset. Note that
2739 * the device might have been reset more than once using
2740 * different reset methods before postreset is invoked.
2741 *
2742 * LOCKING:
2743 * Kernel thread context (may sleep)
2744 */
2745 void ata_std_postreset(struct ata_port *ap, unsigned int *classes)
2746 {
2747 u32 serror;
2748
2749 DPRINTK("ENTER\n");
2750
2751 /* print link status */
2752 sata_print_link_status(ap);
2753
2754 /* clear SError */
2755 if (sata_scr_read(ap, SCR_ERROR, &serror) == 0)
2756 sata_scr_write(ap, SCR_ERROR, serror);
2757
2758 /* re-enable interrupts */
2759 if (!ap->ops->error_handler) {
2760 /* FIXME: hack. create a hook instead */
2761 if (ap->ioaddr.ctl_addr)
2762 ata_irq_on(ap);
2763 }
2764
2765 /* is double-select really necessary? */
2766 if (classes[0] != ATA_DEV_NONE)
2767 ap->ops->dev_select(ap, 1);
2768 if (classes[1] != ATA_DEV_NONE)
2769 ap->ops->dev_select(ap, 0);
2770
2771 /* bail out if no device is present */
2772 if (classes[0] == ATA_DEV_NONE && classes[1] == ATA_DEV_NONE) {
2773 DPRINTK("EXIT, no device\n");
2774 return;
2775 }
2776
2777 /* set up device control */
2778 if (ap->ioaddr.ctl_addr) {
2779 if (ap->flags & ATA_FLAG_MMIO)
2780 writeb(ap->ctl, (void __iomem *) ap->ioaddr.ctl_addr);
2781 else
2782 outb(ap->ctl, ap->ioaddr.ctl_addr);
2783 }
2784
2785 DPRINTK("EXIT\n");
2786 }
2787
2788 /**
2789 * ata_dev_same_device - Determine whether new ID matches configured device
2790 * @dev: device to compare against
2791 * @new_class: class of the new device
2792 * @new_id: IDENTIFY page of the new device
2793 *
2794 * Compare @new_class and @new_id against @dev and determine
2795 * whether @dev is the device indicated by @new_class and
2796 * @new_id.
2797 *
2798 * LOCKING:
2799 * None.
2800 *
2801 * RETURNS:
2802 * 1 if @dev matches @new_class and @new_id, 0 otherwise.
2803 */
2804 static int ata_dev_same_device(struct ata_device *dev, unsigned int new_class,
2805 const u16 *new_id)
2806 {
2807 const u16 *old_id = dev->id;
2808 unsigned char model[2][41], serial[2][21];
2809 u64 new_n_sectors;
2810
2811 if (dev->class != new_class) {
2812 ata_dev_printk(dev, KERN_INFO, "class mismatch %d != %d\n",
2813 dev->class, new_class);
2814 return 0;
2815 }
2816
2817 ata_id_c_string(old_id, model[0], ATA_ID_PROD_OFS, sizeof(model[0]));
2818 ata_id_c_string(new_id, model[1], ATA_ID_PROD_OFS, sizeof(model[1]));
2819 ata_id_c_string(old_id, serial[0], ATA_ID_SERNO_OFS, sizeof(serial[0]));
2820 ata_id_c_string(new_id, serial[1], ATA_ID_SERNO_OFS, sizeof(serial[1]));
2821 new_n_sectors = ata_id_n_sectors(new_id);
2822
2823 if (strcmp(model[0], model[1])) {
2824 ata_dev_printk(dev, KERN_INFO, "model number mismatch "
2825 "'%s' != '%s'\n", model[0], model[1]);
2826 return 0;
2827 }
2828
2829 if (strcmp(serial[0], serial[1])) {
2830 ata_dev_printk(dev, KERN_INFO, "serial number mismatch "
2831 "'%s' != '%s'\n", serial[0], serial[1]);
2832 return 0;
2833 }
2834
2835 if (dev->class == ATA_DEV_ATA && dev->n_sectors != new_n_sectors) {
2836 ata_dev_printk(dev, KERN_INFO, "n_sectors mismatch "
2837 "%llu != %llu\n",
2838 (unsigned long long)dev->n_sectors,
2839 (unsigned long long)new_n_sectors);
2840 return 0;
2841 }
2842
2843 return 1;
2844 }
2845
2846 /**
2847 * ata_dev_revalidate - Revalidate ATA device
2848 * @dev: device to revalidate
2849 * @post_reset: is this revalidation after reset?
2850 *
2851 * Re-read IDENTIFY page and make sure @dev is still attached to
2852 * the port.
2853 *
2854 * LOCKING:
2855 * Kernel thread context (may sleep)
2856 *
2857 * RETURNS:
2858 * 0 on success, negative errno otherwise
2859 */
2860 int ata_dev_revalidate(struct ata_device *dev, int post_reset)
2861 {
2862 unsigned int class = dev->class;
2863 u16 *id = (void *)dev->ap->sector_buf;
2864 int rc;
2865
2866 if (!ata_dev_enabled(dev)) {
2867 rc = -ENODEV;
2868 goto fail;
2869 }
2870
2871 /* read ID data */
2872 rc = ata_dev_read_id(dev, &class, post_reset, id);
2873 if (rc)
2874 goto fail;
2875
2876 /* is the device still there? */
2877 if (!ata_dev_same_device(dev, class, id)) {
2878 rc = -ENODEV;
2879 goto fail;
2880 }
2881
2882 memcpy(dev->id, id, sizeof(id[0]) * ATA_ID_WORDS);
2883
2884 /* configure device according to the new ID */
2885 rc = ata_dev_configure(dev, 0);
2886 if (rc == 0)
2887 return 0;
2888
2889 fail:
2890 ata_dev_printk(dev, KERN_ERR, "revalidation failed (errno=%d)\n", rc);
2891 return rc;
2892 }
2893
2894 static const char * const ata_dma_blacklist [] = {
2895 "WDC AC11000H", NULL,
2896 "WDC AC22100H", NULL,
2897 "WDC AC32500H", NULL,
2898 "WDC AC33100H", NULL,
2899 "WDC AC31600H", NULL,
2900 "WDC AC32100H", "24.09P07",
2901 "WDC AC23200L", "21.10N21",
2902 "Compaq CRD-8241B", NULL,
2903 "CRD-8400B", NULL,
2904 "CRD-8480B", NULL,
2905 "CRD-8482B", NULL,
2906 "CRD-84", NULL,
2907 "SanDisk SDP3B", NULL,
2908 "SanDisk SDP3B-64", NULL,
2909 "SANYO CD-ROM CRD", NULL,
2910 "HITACHI CDR-8", NULL,
2911 "HITACHI CDR-8335", NULL,
2912 "HITACHI CDR-8435", NULL,
2913 "Toshiba CD-ROM XM-6202B", NULL,
2914 "TOSHIBA CD-ROM XM-1702BC", NULL,
2915 "CD-532E-A", NULL,
2916 "E-IDE CD-ROM CR-840", NULL,
2917 "CD-ROM Drive/F5A", NULL,
2918 "WPI CDD-820", NULL,
2919 "SAMSUNG CD-ROM SC-148C", NULL,
2920 "SAMSUNG CD-ROM SC", NULL,
2921 "SanDisk SDP3B-64", NULL,
2922 "ATAPI CD-ROM DRIVE 40X MAXIMUM",NULL,
2923 "_NEC DV5800A", NULL,
2924 "SAMSUNG CD-ROM SN-124", "N001"
2925 };
2926
2927 static int ata_strim(char *s, size_t len)
2928 {
2929 len = strnlen(s, len);
2930
2931 /* ATAPI specifies that empty space is blank-filled; remove blanks */
2932 while ((len > 0) && (s[len - 1] == ' ')) {
2933 len--;
2934 s[len] = 0;
2935 }
2936 return len;
2937 }
2938
2939 static int ata_dma_blacklisted(const struct ata_device *dev)
2940 {
2941 unsigned char model_num[40];
2942 unsigned char model_rev[16];
2943 unsigned int nlen, rlen;
2944 int i;
2945
2946 ata_id_string(dev->id, model_num, ATA_ID_PROD_OFS,
2947 sizeof(model_num));
2948 ata_id_string(dev->id, model_rev, ATA_ID_FW_REV_OFS,
2949 sizeof(model_rev));
2950 nlen = ata_strim(model_num, sizeof(model_num));
2951 rlen = ata_strim(model_rev, sizeof(model_rev));
2952
2953 for (i = 0; i < ARRAY_SIZE(ata_dma_blacklist); i += 2) {
2954 if (!strncmp(ata_dma_blacklist[i], model_num, nlen)) {
2955 if (ata_dma_blacklist[i+1] == NULL)
2956 return 1;
2957 if (!strncmp(ata_dma_blacklist[i], model_rev, rlen))
2958 return 1;
2959 }
2960 }
2961 return 0;
2962 }
2963
2964 /**
2965 * ata_dev_xfermask - Compute supported xfermask of the given device
2966 * @dev: Device to compute xfermask for
2967 *
2968 * Compute supported xfermask of @dev and store it in
2969 * dev->*_mask. This function is responsible for applying all
2970 * known limits including host controller limits, device
2971 * blacklist, etc...
2972 *
2973 * FIXME: The current implementation limits all transfer modes to
2974 * the fastest of the lowested device on the port. This is not
2975 * required on most controllers.
2976 *
2977 * LOCKING:
2978 * None.
2979 */
2980 static void ata_dev_xfermask(struct ata_device *dev)
2981 {
2982 struct ata_port *ap = dev->ap;
2983 struct ata_host_set *hs = ap->host_set;
2984 unsigned long xfer_mask;
2985 int i;
2986
2987 xfer_mask = ata_pack_xfermask(ap->pio_mask,
2988 ap->mwdma_mask, ap->udma_mask);
2989
2990 /* Apply cable rule here. Don't apply it early because when
2991 * we handle hot plug the cable type can itself change.
2992 */
2993 if (ap->cbl == ATA_CBL_PATA40)
2994 xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA);
2995
2996 /* FIXME: Use port-wide xfermask for now */
2997 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2998 struct ata_device *d = &ap->device[i];
2999
3000 if (ata_dev_absent(d))
3001 continue;
3002
3003 if (ata_dev_disabled(d)) {
3004 /* to avoid violating device selection timing */
3005 xfer_mask &= ata_pack_xfermask(d->pio_mask,
3006 UINT_MAX, UINT_MAX);
3007 continue;
3008 }
3009
3010 xfer_mask &= ata_pack_xfermask(d->pio_mask,
3011 d->mwdma_mask, d->udma_mask);
3012 xfer_mask &= ata_id_xfermask(d->id);
3013 if (ata_dma_blacklisted(d))
3014 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
3015 }
3016
3017 if (ata_dma_blacklisted(dev))
3018 ata_dev_printk(dev, KERN_WARNING,
3019 "device is on DMA blacklist, disabling DMA\n");
3020
3021 if (hs->flags & ATA_HOST_SIMPLEX) {
3022 if (hs->simplex_claimed)
3023 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
3024 }
3025
3026 if (ap->ops->mode_filter)
3027 xfer_mask = ap->ops->mode_filter(ap, dev, xfer_mask);
3028
3029 ata_unpack_xfermask(xfer_mask, &dev->pio_mask,
3030 &dev->mwdma_mask, &dev->udma_mask);
3031 }
3032
3033 /**
3034 * ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command
3035 * @dev: Device to which command will be sent
3036 *
3037 * Issue SET FEATURES - XFER MODE command to device @dev
3038 * on port @ap.
3039 *
3040 * LOCKING:
3041 * PCI/etc. bus probe sem.
3042 *
3043 * RETURNS:
3044 * 0 on success, AC_ERR_* mask otherwise.
3045 */
3046
3047 static unsigned int ata_dev_set_xfermode(struct ata_device *dev)
3048 {
3049 struct ata_taskfile tf;
3050 unsigned int err_mask;
3051
3052 /* set up set-features taskfile */
3053 DPRINTK("set features - xfer mode\n");
3054
3055 ata_tf_init(dev, &tf);
3056 tf.command = ATA_CMD_SET_FEATURES;
3057 tf.feature = SETFEATURES_XFER;
3058 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
3059 tf.protocol = ATA_PROT_NODATA;
3060 tf.nsect = dev->xfer_mode;
3061
3062 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
3063
3064 DPRINTK("EXIT, err_mask=%x\n", err_mask);
3065 return err_mask;
3066 }
3067
3068 /**
3069 * ata_dev_init_params - Issue INIT DEV PARAMS command
3070 * @dev: Device to which command will be sent
3071 * @heads: Number of heads (taskfile parameter)
3072 * @sectors: Number of sectors (taskfile parameter)
3073 *
3074 * LOCKING:
3075 * Kernel thread context (may sleep)
3076 *
3077 * RETURNS:
3078 * 0 on success, AC_ERR_* mask otherwise.
3079 */
3080 static unsigned int ata_dev_init_params(struct ata_device *dev,
3081 u16 heads, u16 sectors)
3082 {
3083 struct ata_taskfile tf;
3084 unsigned int err_mask;
3085
3086 /* Number of sectors per track 1-255. Number of heads 1-16 */
3087 if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16)
3088 return AC_ERR_INVALID;
3089
3090 /* set up init dev params taskfile */
3091 DPRINTK("init dev params \n");
3092
3093 ata_tf_init(dev, &tf);
3094 tf.command = ATA_CMD_INIT_DEV_PARAMS;
3095 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
3096 tf.protocol = ATA_PROT_NODATA;
3097 tf.nsect = sectors;
3098 tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */
3099
3100 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
3101
3102 DPRINTK("EXIT, err_mask=%x\n", err_mask);
3103 return err_mask;
3104 }
3105
3106 /**
3107 * ata_sg_clean - Unmap DMA memory associated with command
3108 * @qc: Command containing DMA memory to be released
3109 *
3110 * Unmap all mapped DMA memory associated with this command.
3111 *
3112 * LOCKING:
3113 * spin_lock_irqsave(host_set lock)
3114 */
3115
3116 static void ata_sg_clean(struct ata_queued_cmd *qc)
3117 {
3118 struct ata_port *ap = qc->ap;
3119 struct scatterlist *sg = qc->__sg;
3120 int dir = qc->dma_dir;
3121 void *pad_buf = NULL;
3122
3123 WARN_ON(!(qc->flags & ATA_QCFLAG_DMAMAP));
3124 WARN_ON(sg == NULL);
3125
3126 if (qc->flags & ATA_QCFLAG_SINGLE)
3127 WARN_ON(qc->n_elem > 1);
3128
3129 VPRINTK("unmapping %u sg elements\n", qc->n_elem);
3130
3131 /* if we padded the buffer out to 32-bit bound, and data
3132 * xfer direction is from-device, we must copy from the
3133 * pad buffer back into the supplied buffer
3134 */
3135 if (qc->pad_len && !(qc->tf.flags & ATA_TFLAG_WRITE))
3136 pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
3137
3138 if (qc->flags & ATA_QCFLAG_SG) {
3139 if (qc->n_elem)
3140 dma_unmap_sg(ap->dev, sg, qc->n_elem, dir);
3141 /* restore last sg */
3142 sg[qc->orig_n_elem - 1].length += qc->pad_len;
3143 if (pad_buf) {
3144 struct scatterlist *psg = &qc->pad_sgent;
3145 void *addr = kmap_atomic(psg->page, KM_IRQ0);
3146 memcpy(addr + psg->offset, pad_buf, qc->pad_len);
3147 kunmap_atomic(addr, KM_IRQ0);
3148 }
3149 } else {
3150 if (qc->n_elem)
3151 dma_unmap_single(ap->dev,
3152 sg_dma_address(&sg[0]), sg_dma_len(&sg[0]),
3153 dir);
3154 /* restore sg */
3155 sg->length += qc->pad_len;
3156 if (pad_buf)
3157 memcpy(qc->buf_virt + sg->length - qc->pad_len,
3158 pad_buf, qc->pad_len);
3159 }
3160
3161 qc->flags &= ~ATA_QCFLAG_DMAMAP;
3162 qc->__sg = NULL;
3163 }
3164
3165 /**
3166 * ata_fill_sg - Fill PCI IDE PRD table
3167 * @qc: Metadata associated with taskfile to be transferred
3168 *
3169 * Fill PCI IDE PRD (scatter-gather) table with segments
3170 * associated with the current disk command.
3171 *
3172 * LOCKING:
3173 * spin_lock_irqsave(host_set lock)
3174 *
3175 */
3176 static void ata_fill_sg(struct ata_queued_cmd *qc)
3177 {
3178 struct ata_port *ap = qc->ap;
3179 struct scatterlist *sg;
3180 unsigned int idx;
3181
3182 WARN_ON(qc->__sg == NULL);
3183 WARN_ON(qc->n_elem == 0 && qc->pad_len == 0);
3184
3185 idx = 0;
3186 ata_for_each_sg(sg, qc) {
3187 u32 addr, offset;
3188 u32 sg_len, len;
3189
3190 /* determine if physical DMA addr spans 64K boundary.
3191 * Note h/w doesn't support 64-bit, so we unconditionally
3192 * truncate dma_addr_t to u32.
3193 */
3194 addr = (u32) sg_dma_address(sg);
3195 sg_len = sg_dma_len(sg);
3196
3197 while (sg_len) {
3198 offset = addr & 0xffff;
3199 len = sg_len;
3200 if ((offset + sg_len) > 0x10000)
3201 len = 0x10000 - offset;
3202
3203 ap->prd[idx].addr = cpu_to_le32(addr);
3204 ap->prd[idx].flags_len = cpu_to_le32(len & 0xffff);
3205 VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", idx, addr, len);
3206
3207 idx++;
3208 sg_len -= len;
3209 addr += len;
3210 }
3211 }
3212
3213 if (idx)
3214 ap->prd[idx - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT);
3215 }
3216 /**
3217 * ata_check_atapi_dma - Check whether ATAPI DMA can be supported
3218 * @qc: Metadata associated with taskfile to check
3219 *
3220 * Allow low-level driver to filter ATA PACKET commands, returning
3221 * a status indicating whether or not it is OK to use DMA for the
3222 * supplied PACKET command.
3223 *
3224 * LOCKING:
3225 * spin_lock_irqsave(host_set lock)
3226 *
3227 * RETURNS: 0 when ATAPI DMA can be used
3228 * nonzero otherwise
3229 */
3230 int ata_check_atapi_dma(struct ata_queued_cmd *qc)
3231 {
3232 struct ata_port *ap = qc->ap;
3233 int rc = 0; /* Assume ATAPI DMA is OK by default */
3234
3235 if (ap->ops->check_atapi_dma)
3236 rc = ap->ops->check_atapi_dma(qc);
3237
3238 /* We don't support polling DMA.
3239 * Use PIO if the LLDD handles only interrupts in
3240 * the HSM_ST_LAST state and the ATAPI device
3241 * generates CDB interrupts.
3242 */
3243 if ((ap->flags & ATA_FLAG_PIO_POLLING) &&
3244 (qc->dev->flags & ATA_DFLAG_CDB_INTR))
3245 rc = 1;
3246
3247 return rc;
3248 }
3249 /**
3250 * ata_qc_prep - Prepare taskfile for submission
3251 * @qc: Metadata associated with taskfile to be prepared
3252 *
3253 * Prepare ATA taskfile for submission.
3254 *
3255 * LOCKING:
3256 * spin_lock_irqsave(host_set lock)
3257 */
3258 void ata_qc_prep(struct ata_queued_cmd *qc)
3259 {
3260 if (!(qc->flags & ATA_QCFLAG_DMAMAP))
3261 return;
3262
3263 ata_fill_sg(qc);
3264 }
3265
3266 void ata_noop_qc_prep(struct ata_queued_cmd *qc) { }
3267
3268 /**
3269 * ata_sg_init_one - Associate command with memory buffer
3270 * @qc: Command to be associated
3271 * @buf: Memory buffer
3272 * @buflen: Length of memory buffer, in bytes.
3273 *
3274 * Initialize the data-related elements of queued_cmd @qc
3275 * to point to a single memory buffer, @buf of byte length @buflen.
3276 *
3277 * LOCKING:
3278 * spin_lock_irqsave(host_set lock)
3279 */
3280
3281 void ata_sg_init_one(struct ata_queued_cmd *qc, void *buf, unsigned int buflen)
3282 {
3283 struct scatterlist *sg;
3284
3285 qc->flags |= ATA_QCFLAG_SINGLE;
3286
3287 memset(&qc->sgent, 0, sizeof(qc->sgent));
3288 qc->__sg = &qc->sgent;
3289 qc->n_elem = 1;
3290 qc->orig_n_elem = 1;
3291 qc->buf_virt = buf;
3292 qc->nbytes = buflen;
3293
3294 sg = qc->__sg;
3295 sg_init_one(sg, buf, buflen);
3296 }
3297
3298 /**
3299 * ata_sg_init - Associate command with scatter-gather table.
3300 * @qc: Command to be associated
3301 * @sg: Scatter-gather table.
3302 * @n_elem: Number of elements in s/g table.
3303 *
3304 * Initialize the data-related elements of queued_cmd @qc
3305 * to point to a scatter-gather table @sg, containing @n_elem
3306 * elements.
3307 *
3308 * LOCKING:
3309 * spin_lock_irqsave(host_set lock)
3310 */
3311
3312 void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg,
3313 unsigned int n_elem)
3314 {
3315 qc->flags |= ATA_QCFLAG_SG;
3316 qc->__sg = sg;
3317 qc->n_elem = n_elem;
3318 qc->orig_n_elem = n_elem;
3319 }
3320
3321 /**
3322 * ata_sg_setup_one - DMA-map the memory buffer associated with a command.
3323 * @qc: Command with memory buffer to be mapped.
3324 *
3325 * DMA-map the memory buffer associated with queued_cmd @qc.
3326 *
3327 * LOCKING:
3328 * spin_lock_irqsave(host_set lock)
3329 *
3330 * RETURNS:
3331 * Zero on success, negative on error.
3332 */
3333
3334 static int ata_sg_setup_one(struct ata_queued_cmd *qc)
3335 {
3336 struct ata_port *ap = qc->ap;
3337 int dir = qc->dma_dir;
3338 struct scatterlist *sg = qc->__sg;
3339 dma_addr_t dma_address;
3340 int trim_sg = 0;
3341
3342 /* we must lengthen transfers to end on a 32-bit boundary */
3343 qc->pad_len = sg->length & 3;
3344 if (qc->pad_len) {
3345 void *pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
3346 struct scatterlist *psg = &qc->pad_sgent;
3347
3348 WARN_ON(qc->dev->class != ATA_DEV_ATAPI);
3349
3350 memset(pad_buf, 0, ATA_DMA_PAD_SZ);
3351
3352 if (qc->tf.flags & ATA_TFLAG_WRITE)
3353 memcpy(pad_buf, qc->buf_virt + sg->length - qc->pad_len,
3354 qc->pad_len);
3355
3356 sg_dma_address(psg) = ap->pad_dma + (qc->tag * ATA_DMA_PAD_SZ);
3357 sg_dma_len(psg) = ATA_DMA_PAD_SZ;
3358 /* trim sg */
3359 sg->length -= qc->pad_len;
3360 if (sg->length == 0)
3361 trim_sg = 1;
3362
3363 DPRINTK("padding done, sg->length=%u pad_len=%u\n",
3364 sg->length, qc->pad_len);
3365 }
3366
3367 if (trim_sg) {
3368 qc->n_elem--;
3369 goto skip_map;
3370 }
3371
3372 dma_address = dma_map_single(ap->dev, qc->buf_virt,
3373 sg->length, dir);
3374 if (dma_mapping_error(dma_address)) {
3375 /* restore sg */
3376 sg->length += qc->pad_len;
3377 return -1;
3378 }
3379
3380 sg_dma_address(sg) = dma_address;
3381 sg_dma_len(sg) = sg->length;
3382
3383 skip_map:
3384 DPRINTK("mapped buffer of %d bytes for %s\n", sg_dma_len(sg),
3385 qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
3386
3387 return 0;
3388 }
3389
3390 /**
3391 * ata_sg_setup - DMA-map the scatter-gather table associated with a command.
3392 * @qc: Command with scatter-gather table to be mapped.
3393 *
3394 * DMA-map the scatter-gather table associated with queued_cmd @qc.
3395 *
3396 * LOCKING:
3397 * spin_lock_irqsave(host_set lock)
3398 *
3399 * RETURNS:
3400 * Zero on success, negative on error.
3401 *
3402 */
3403
3404 static int ata_sg_setup(struct ata_queued_cmd *qc)
3405 {
3406 struct ata_port *ap = qc->ap;
3407 struct scatterlist *sg = qc->__sg;
3408 struct scatterlist *lsg = &sg[qc->n_elem - 1];
3409 int n_elem, pre_n_elem, dir, trim_sg = 0;
3410
3411 VPRINTK("ENTER, ata%u\n", ap->id);
3412 WARN_ON(!(qc->flags & ATA_QCFLAG_SG));
3413
3414 /* we must lengthen transfers to end on a 32-bit boundary */
3415 qc->pad_len = lsg->length & 3;
3416 if (qc->pad_len) {
3417 void *pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
3418 struct scatterlist *psg = &qc->pad_sgent;
3419 unsigned int offset;
3420
3421 WARN_ON(qc->dev->class != ATA_DEV_ATAPI);
3422
3423 memset(pad_buf, 0, ATA_DMA_PAD_SZ);
3424
3425 /*
3426 * psg->page/offset are used to copy to-be-written
3427 * data in this function or read data in ata_sg_clean.
3428 */
3429 offset = lsg->offset + lsg->length - qc->pad_len;
3430 psg->page = nth_page(lsg->page, offset >> PAGE_SHIFT);
3431 psg->offset = offset_in_page(offset);
3432
3433 if (qc->tf.flags & ATA_TFLAG_WRITE) {
3434 void *addr = kmap_atomic(psg->page, KM_IRQ0);
3435 memcpy(pad_buf, addr + psg->offset, qc->pad_len);
3436 kunmap_atomic(addr, KM_IRQ0);
3437 }
3438
3439 sg_dma_address(psg) = ap->pad_dma + (qc->tag * ATA_DMA_PAD_SZ);
3440 sg_dma_len(psg) = ATA_DMA_PAD_SZ;
3441 /* trim last sg */
3442 lsg->length -= qc->pad_len;
3443 if (lsg->length == 0)
3444 trim_sg = 1;
3445
3446 DPRINTK("padding done, sg[%d].length=%u pad_len=%u\n",
3447 qc->n_elem - 1, lsg->length, qc->pad_len);
3448 }
3449
3450 pre_n_elem = qc->n_elem;
3451 if (trim_sg && pre_n_elem)
3452 pre_n_elem--;
3453
3454 if (!pre_n_elem) {
3455 n_elem = 0;
3456 goto skip_map;
3457 }
3458
3459 dir = qc->dma_dir;
3460 n_elem = dma_map_sg(ap->dev, sg, pre_n_elem, dir);
3461 if (n_elem < 1) {
3462 /* restore last sg */
3463 lsg->length += qc->pad_len;
3464 return -1;
3465 }
3466
3467 DPRINTK("%d sg elements mapped\n", n_elem);
3468
3469 skip_map:
3470 qc->n_elem = n_elem;
3471
3472 return 0;
3473 }
3474
3475 /**
3476 * swap_buf_le16 - swap halves of 16-bit words in place
3477 * @buf: Buffer to swap
3478 * @buf_words: Number of 16-bit words in buffer.
3479 *
3480 * Swap halves of 16-bit words if needed to convert from
3481 * little-endian byte order to native cpu byte order, or
3482 * vice-versa.
3483 *
3484 * LOCKING:
3485 * Inherited from caller.
3486 */
3487 void swap_buf_le16(u16 *buf, unsigned int buf_words)
3488 {
3489 #ifdef __BIG_ENDIAN
3490 unsigned int i;
3491
3492 for (i = 0; i < buf_words; i++)
3493 buf[i] = le16_to_cpu(buf[i]);
3494 #endif /* __BIG_ENDIAN */
3495 }
3496
3497 /**
3498 * ata_mmio_data_xfer - Transfer data by MMIO
3499 * @dev: device for this I/O
3500 * @buf: data buffer
3501 * @buflen: buffer length
3502 * @write_data: read/write
3503 *
3504 * Transfer data from/to the device data register by MMIO.
3505 *
3506 * LOCKING:
3507 * Inherited from caller.
3508 */
3509
3510 void ata_mmio_data_xfer(struct ata_device *adev, unsigned char *buf,
3511 unsigned int buflen, int write_data)
3512 {
3513 struct ata_port *ap = adev->ap;
3514 unsigned int i;
3515 unsigned int words = buflen >> 1;
3516 u16 *buf16 = (u16 *) buf;
3517 void __iomem *mmio = (void __iomem *)ap->ioaddr.data_addr;
3518
3519 /* Transfer multiple of 2 bytes */
3520 if (write_data) {
3521 for (i = 0; i < words; i++)
3522 writew(le16_to_cpu(buf16[i]), mmio);
3523 } else {
3524 for (i = 0; i < words; i++)
3525 buf16[i] = cpu_to_le16(readw(mmio));
3526 }
3527
3528 /* Transfer trailing 1 byte, if any. */
3529 if (unlikely(buflen & 0x01)) {
3530 u16 align_buf[1] = { 0 };
3531 unsigned char *trailing_buf = buf + buflen - 1;
3532
3533 if (write_data) {
3534 memcpy(align_buf, trailing_buf, 1);
3535 writew(le16_to_cpu(align_buf[0]), mmio);
3536 } else {
3537 align_buf[0] = cpu_to_le16(readw(mmio));
3538 memcpy(trailing_buf, align_buf, 1);
3539 }
3540 }
3541 }
3542
3543 /**
3544 * ata_pio_data_xfer - Transfer data by PIO
3545 * @adev: device to target
3546 * @buf: data buffer
3547 * @buflen: buffer length
3548 * @write_data: read/write
3549 *
3550 * Transfer data from/to the device data register by PIO.
3551 *
3552 * LOCKING:
3553 * Inherited from caller.
3554 */
3555
3556 void ata_pio_data_xfer(struct ata_device *adev, unsigned char *buf,
3557 unsigned int buflen, int write_data)
3558 {
3559 struct ata_port *ap = adev->ap;
3560 unsigned int words = buflen >> 1;
3561
3562 /* Transfer multiple of 2 bytes */
3563 if (write_data)
3564 outsw(ap->ioaddr.data_addr, buf, words);
3565 else
3566 insw(ap->ioaddr.data_addr, buf, words);
3567
3568 /* Transfer trailing 1 byte, if any. */
3569 if (unlikely(buflen & 0x01)) {
3570 u16 align_buf[1] = { 0 };
3571 unsigned char *trailing_buf = buf + buflen - 1;
3572
3573 if (write_data) {
3574 memcpy(align_buf, trailing_buf, 1);
3575 outw(le16_to_cpu(align_buf[0]), ap->ioaddr.data_addr);
3576 } else {
3577 align_buf[0] = cpu_to_le16(inw(ap->ioaddr.data_addr));
3578 memcpy(trailing_buf, align_buf, 1);
3579 }
3580 }
3581 }
3582
3583 /**
3584 * ata_pio_data_xfer_noirq - Transfer data by PIO
3585 * @adev: device to target
3586 * @buf: data buffer
3587 * @buflen: buffer length
3588 * @write_data: read/write
3589 *
3590 * Transfer data from/to the device data register by PIO. Do the
3591 * transfer with interrupts disabled.
3592 *
3593 * LOCKING:
3594 * Inherited from caller.
3595 */
3596
3597 void ata_pio_data_xfer_noirq(struct ata_device *adev, unsigned char *buf,
3598 unsigned int buflen, int write_data)
3599 {
3600 unsigned long flags;
3601 local_irq_save(flags);
3602 ata_pio_data_xfer(adev, buf, buflen, write_data);
3603 local_irq_restore(flags);
3604 }
3605
3606
3607 /**
3608 * ata_pio_sector - Transfer ATA_SECT_SIZE (512 bytes) of data.
3609 * @qc: Command on going
3610 *
3611 * Transfer ATA_SECT_SIZE of data from/to the ATA device.
3612 *
3613 * LOCKING:
3614 * Inherited from caller.
3615 */
3616
3617 static void ata_pio_sector(struct ata_queued_cmd *qc)
3618 {
3619 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
3620 struct scatterlist *sg = qc->__sg;
3621 struct ata_port *ap = qc->ap;
3622 struct page *page;
3623 unsigned int offset;
3624 unsigned char *buf;
3625
3626 if (qc->cursect == (qc->nsect - 1))
3627 ap->hsm_task_state = HSM_ST_LAST;
3628
3629 page = sg[qc->cursg].page;
3630 offset = sg[qc->cursg].offset + qc->cursg_ofs * ATA_SECT_SIZE;
3631
3632 /* get the current page and offset */
3633 page = nth_page(page, (offset >> PAGE_SHIFT));
3634 offset %= PAGE_SIZE;
3635
3636 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
3637
3638 if (PageHighMem(page)) {
3639 unsigned long flags;
3640
3641 /* FIXME: use a bounce buffer */
3642 local_irq_save(flags);
3643 buf = kmap_atomic(page, KM_IRQ0);
3644
3645 /* do the actual data transfer */
3646 ap->ops->data_xfer(qc->dev, buf + offset, ATA_SECT_SIZE, do_write);
3647
3648 kunmap_atomic(buf, KM_IRQ0);
3649 local_irq_restore(flags);
3650 } else {
3651 buf = page_address(page);
3652 ap->ops->data_xfer(qc->dev, buf + offset, ATA_SECT_SIZE, do_write);
3653 }
3654
3655 qc->cursect++;
3656 qc->cursg_ofs++;
3657
3658 if ((qc->cursg_ofs * ATA_SECT_SIZE) == (&sg[qc->cursg])->length) {
3659 qc->cursg++;
3660 qc->cursg_ofs = 0;
3661 }
3662 }
3663
3664 /**
3665 * ata_pio_sectors - Transfer one or many 512-byte sectors.
3666 * @qc: Command on going
3667 *
3668 * Transfer one or many ATA_SECT_SIZE of data from/to the
3669 * ATA device for the DRQ request.
3670 *
3671 * LOCKING:
3672 * Inherited from caller.
3673 */
3674
3675 static void ata_pio_sectors(struct ata_queued_cmd *qc)
3676 {
3677 if (is_multi_taskfile(&qc->tf)) {
3678 /* READ/WRITE MULTIPLE */
3679 unsigned int nsect;
3680
3681 WARN_ON(qc->dev->multi_count == 0);
3682
3683 nsect = min(qc->nsect - qc->cursect, qc->dev->multi_count);
3684 while (nsect--)
3685 ata_pio_sector(qc);
3686 } else
3687 ata_pio_sector(qc);
3688 }
3689
3690 /**
3691 * atapi_send_cdb - Write CDB bytes to hardware
3692 * @ap: Port to which ATAPI device is attached.
3693 * @qc: Taskfile currently active
3694 *
3695 * When device has indicated its readiness to accept
3696 * a CDB, this function is called. Send the CDB.
3697 *
3698 * LOCKING:
3699 * caller.
3700 */
3701
3702 static void atapi_send_cdb(struct ata_port *ap, struct ata_queued_cmd *qc)
3703 {
3704 /* send SCSI cdb */
3705 DPRINTK("send cdb\n");
3706 WARN_ON(qc->dev->cdb_len < 12);
3707
3708 ap->ops->data_xfer(qc->dev, qc->cdb, qc->dev->cdb_len, 1);
3709 ata_altstatus(ap); /* flush */
3710
3711 switch (qc->tf.protocol) {
3712 case ATA_PROT_ATAPI:
3713 ap->hsm_task_state = HSM_ST;
3714 break;
3715 case ATA_PROT_ATAPI_NODATA:
3716 ap->hsm_task_state = HSM_ST_LAST;
3717 break;
3718 case ATA_PROT_ATAPI_DMA:
3719 ap->hsm_task_state = HSM_ST_LAST;
3720 /* initiate bmdma */
3721 ap->ops->bmdma_start(qc);
3722 break;
3723 }
3724 }
3725
3726 /**
3727 * __atapi_pio_bytes - Transfer data from/to the ATAPI device.
3728 * @qc: Command on going
3729 * @bytes: number of bytes
3730 *
3731 * Transfer Transfer data from/to the ATAPI device.
3732 *
3733 * LOCKING:
3734 * Inherited from caller.
3735 *
3736 */
3737
3738 static void __atapi_pio_bytes(struct ata_queued_cmd *qc, unsigned int bytes)
3739 {
3740 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
3741 struct scatterlist *sg = qc->__sg;
3742 struct ata_port *ap = qc->ap;
3743 struct page *page;
3744 unsigned char *buf;
3745 unsigned int offset, count;
3746
3747 if (qc->curbytes + bytes >= qc->nbytes)
3748 ap->hsm_task_state = HSM_ST_LAST;
3749
3750 next_sg:
3751 if (unlikely(qc->cursg >= qc->n_elem)) {
3752 /*
3753 * The end of qc->sg is reached and the device expects
3754 * more data to transfer. In order not to overrun qc->sg
3755 * and fulfill length specified in the byte count register,
3756 * - for read case, discard trailing data from the device
3757 * - for write case, padding zero data to the device
3758 */
3759 u16 pad_buf[1] = { 0 };
3760 unsigned int words = bytes >> 1;
3761 unsigned int i;
3762
3763 if (words) /* warning if bytes > 1 */
3764 ata_dev_printk(qc->dev, KERN_WARNING,
3765 "%u bytes trailing data\n", bytes);
3766
3767 for (i = 0; i < words; i++)
3768 ap->ops->data_xfer(qc->dev, (unsigned char*)pad_buf, 2, do_write);
3769
3770 ap->hsm_task_state = HSM_ST_LAST;
3771 return;
3772 }
3773
3774 sg = &qc->__sg[qc->cursg];
3775
3776 page = sg->page;
3777 offset = sg->offset + qc->cursg_ofs;
3778
3779 /* get the current page and offset */
3780 page = nth_page(page, (offset >> PAGE_SHIFT));
3781 offset %= PAGE_SIZE;
3782
3783 /* don't overrun current sg */
3784 count = min(sg->length - qc->cursg_ofs, bytes);
3785
3786 /* don't cross page boundaries */
3787 count = min(count, (unsigned int)PAGE_SIZE - offset);
3788
3789 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
3790
3791 if (PageHighMem(page)) {
3792 unsigned long flags;
3793
3794 /* FIXME: use bounce buffer */
3795 local_irq_save(flags);
3796 buf = kmap_atomic(page, KM_IRQ0);
3797
3798 /* do the actual data transfer */
3799 ap->ops->data_xfer(qc->dev, buf + offset, count, do_write);
3800
3801 kunmap_atomic(buf, KM_IRQ0);
3802 local_irq_restore(flags);
3803 } else {
3804 buf = page_address(page);
3805 ap->ops->data_xfer(qc->dev, buf + offset, count, do_write);
3806 }
3807
3808 bytes -= count;
3809 qc->curbytes += count;
3810 qc->cursg_ofs += count;
3811
3812 if (qc->cursg_ofs == sg->length) {
3813 qc->cursg++;
3814 qc->cursg_ofs = 0;
3815 }
3816
3817 if (bytes)
3818 goto next_sg;
3819 }
3820
3821 /**
3822 * atapi_pio_bytes - Transfer data from/to the ATAPI device.
3823 * @qc: Command on going
3824 *
3825 * Transfer Transfer data from/to the ATAPI device.
3826 *
3827 * LOCKING:
3828 * Inherited from caller.
3829 */
3830
3831 static void atapi_pio_bytes(struct ata_queued_cmd *qc)
3832 {
3833 struct ata_port *ap = qc->ap;
3834 struct ata_device *dev = qc->dev;
3835 unsigned int ireason, bc_lo, bc_hi, bytes;
3836 int i_write, do_write = (qc->tf.flags & ATA_TFLAG_WRITE) ? 1 : 0;
3837
3838 /* Abuse qc->result_tf for temp storage of intermediate TF
3839 * here to save some kernel stack usage.
3840 * For normal completion, qc->result_tf is not relevant. For
3841 * error, qc->result_tf is later overwritten by ata_qc_complete().
3842 * So, the correctness of qc->result_tf is not affected.
3843 */
3844 ap->ops->tf_read(ap, &qc->result_tf);
3845 ireason = qc->result_tf.nsect;
3846 bc_lo = qc->result_tf.lbam;
3847 bc_hi = qc->result_tf.lbah;
3848 bytes = (bc_hi << 8) | bc_lo;
3849
3850 /* shall be cleared to zero, indicating xfer of data */
3851 if (ireason & (1 << 0))
3852 goto err_out;
3853
3854 /* make sure transfer direction matches expected */
3855 i_write = ((ireason & (1 << 1)) == 0) ? 1 : 0;
3856 if (do_write != i_write)
3857 goto err_out;
3858
3859 VPRINTK("ata%u: xfering %d bytes\n", ap->id, bytes);
3860
3861 __atapi_pio_bytes(qc, bytes);
3862
3863 return;
3864
3865 err_out:
3866 ata_dev_printk(dev, KERN_INFO, "ATAPI check failed\n");
3867 qc->err_mask |= AC_ERR_HSM;
3868 ap->hsm_task_state = HSM_ST_ERR;
3869 }
3870
3871 /**
3872 * ata_hsm_ok_in_wq - Check if the qc can be handled in the workqueue.
3873 * @ap: the target ata_port
3874 * @qc: qc on going
3875 *
3876 * RETURNS:
3877 * 1 if ok in workqueue, 0 otherwise.
3878 */
3879
3880 static inline int ata_hsm_ok_in_wq(struct ata_port *ap, struct ata_queued_cmd *qc)
3881 {
3882 if (qc->tf.flags & ATA_TFLAG_POLLING)
3883 return 1;
3884
3885 if (ap->hsm_task_state == HSM_ST_FIRST) {
3886 if (qc->tf.protocol == ATA_PROT_PIO &&
3887 (qc->tf.flags & ATA_TFLAG_WRITE))
3888 return 1;
3889
3890 if (is_atapi_taskfile(&qc->tf) &&
3891 !(qc->dev->flags & ATA_DFLAG_CDB_INTR))
3892 return 1;
3893 }
3894
3895 return 0;
3896 }
3897
3898 /**
3899 * ata_hsm_qc_complete - finish a qc running on standard HSM
3900 * @qc: Command to complete
3901 * @in_wq: 1 if called from workqueue, 0 otherwise
3902 *
3903 * Finish @qc which is running on standard HSM.
3904 *
3905 * LOCKING:
3906 * If @in_wq is zero, spin_lock_irqsave(host_set lock).
3907 * Otherwise, none on entry and grabs host lock.
3908 */
3909 static void ata_hsm_qc_complete(struct ata_queued_cmd *qc, int in_wq)
3910 {
3911 struct ata_port *ap = qc->ap;
3912 unsigned long flags;
3913
3914 if (ap->ops->error_handler) {
3915 if (in_wq) {
3916 spin_lock_irqsave(&ap->host_set->lock, flags);
3917
3918 /* EH might have kicked in while host_set lock
3919 * is released.
3920 */
3921 qc = ata_qc_from_tag(ap, qc->tag);
3922 if (qc) {
3923 if (likely(!(qc->err_mask & AC_ERR_HSM))) {
3924 ata_irq_on(ap);
3925 ata_qc_complete(qc);
3926 } else
3927 ata_port_freeze(ap);
3928 }
3929
3930 spin_unlock_irqrestore(&ap->host_set->lock, flags);
3931 } else {
3932 if (likely(!(qc->err_mask & AC_ERR_HSM)))
3933 ata_qc_complete(qc);
3934 else
3935 ata_port_freeze(ap);
3936 }
3937 } else {
3938 if (in_wq) {
3939 spin_lock_irqsave(&ap->host_set->lock, flags);
3940 ata_irq_on(ap);
3941 ata_qc_complete(qc);
3942 spin_unlock_irqrestore(&ap->host_set->lock, flags);
3943 } else
3944 ata_qc_complete(qc);
3945 }
3946
3947 ata_altstatus(ap); /* flush */
3948 }
3949
3950 /**
3951 * ata_hsm_move - move the HSM to the next state.
3952 * @ap: the target ata_port
3953 * @qc: qc on going
3954 * @status: current device status
3955 * @in_wq: 1 if called from workqueue, 0 otherwise
3956 *
3957 * RETURNS:
3958 * 1 when poll next status needed, 0 otherwise.
3959 */
3960 int ata_hsm_move(struct ata_port *ap, struct ata_queued_cmd *qc,
3961 u8 status, int in_wq)
3962 {
3963 unsigned long flags = 0;
3964 int poll_next;
3965
3966 WARN_ON((qc->flags & ATA_QCFLAG_ACTIVE) == 0);
3967
3968 /* Make sure ata_qc_issue_prot() does not throw things
3969 * like DMA polling into the workqueue. Notice that
3970 * in_wq is not equivalent to (qc->tf.flags & ATA_TFLAG_POLLING).
3971 */
3972 WARN_ON(in_wq != ata_hsm_ok_in_wq(ap, qc));
3973
3974 fsm_start:
3975 DPRINTK("ata%u: protocol %d task_state %d (dev_stat 0x%X)\n",
3976 ap->id, qc->tf.protocol, ap->hsm_task_state, status);
3977
3978 switch (ap->hsm_task_state) {
3979 case HSM_ST_FIRST:
3980 /* Send first data block or PACKET CDB */
3981
3982 /* If polling, we will stay in the work queue after
3983 * sending the data. Otherwise, interrupt handler
3984 * takes over after sending the data.
3985 */
3986 poll_next = (qc->tf.flags & ATA_TFLAG_POLLING);
3987
3988 /* check device status */
3989 if (unlikely((status & ATA_DRQ) == 0)) {
3990 /* handle BSY=0, DRQ=0 as error */
3991 if (likely(status & (ATA_ERR | ATA_DF)))
3992 /* device stops HSM for abort/error */
3993 qc->err_mask |= AC_ERR_DEV;
3994 else
3995 /* HSM violation. Let EH handle this */
3996 qc->err_mask |= AC_ERR_HSM;
3997
3998 ap->hsm_task_state = HSM_ST_ERR;
3999 goto fsm_start;
4000 }
4001
4002 /* Device should not ask for data transfer (DRQ=1)
4003 * when it finds something wrong.
4004 * We ignore DRQ here and stop the HSM by
4005 * changing hsm_task_state to HSM_ST_ERR and
4006 * let the EH abort the command or reset the device.
4007 */
4008 if (unlikely(status & (ATA_ERR | ATA_DF))) {
4009 printk(KERN_WARNING "ata%d: DRQ=1 with device error, dev_stat 0x%X\n",
4010 ap->id, status);
4011 qc->err_mask |= AC_ERR_HSM;
4012 ap->hsm_task_state = HSM_ST_ERR;
4013 goto fsm_start;
4014 }
4015
4016 /* Send the CDB (atapi) or the first data block (ata pio out).
4017 * During the state transition, interrupt handler shouldn't
4018 * be invoked before the data transfer is complete and
4019 * hsm_task_state is changed. Hence, the following locking.
4020 */
4021 if (in_wq)
4022 spin_lock_irqsave(&ap->host_set->lock, flags);
4023
4024 if (qc->tf.protocol == ATA_PROT_PIO) {
4025 /* PIO data out protocol.
4026 * send first data block.
4027 */
4028
4029 /* ata_pio_sectors() might change the state
4030 * to HSM_ST_LAST. so, the state is changed here
4031 * before ata_pio_sectors().
4032 */
4033 ap->hsm_task_state = HSM_ST;
4034 ata_pio_sectors(qc);
4035 ata_altstatus(ap); /* flush */
4036 } else
4037 /* send CDB */
4038 atapi_send_cdb(ap, qc);
4039
4040 if (in_wq)
4041 spin_unlock_irqrestore(&ap->host_set->lock, flags);
4042
4043 /* if polling, ata_pio_task() handles the rest.
4044 * otherwise, interrupt handler takes over from here.
4045 */
4046 break;
4047
4048 case HSM_ST:
4049 /* complete command or read/write the data register */
4050 if (qc->tf.protocol == ATA_PROT_ATAPI) {
4051 /* ATAPI PIO protocol */
4052 if ((status & ATA_DRQ) == 0) {
4053 /* No more data to transfer or device error.
4054 * Device error will be tagged in HSM_ST_LAST.
4055 */
4056 ap->hsm_task_state = HSM_ST_LAST;
4057 goto fsm_start;
4058 }
4059
4060 /* Device should not ask for data transfer (DRQ=1)
4061 * when it finds something wrong.
4062 * We ignore DRQ here and stop the HSM by
4063 * changing hsm_task_state to HSM_ST_ERR and
4064 * let the EH abort the command or reset the device.
4065 */
4066 if (unlikely(status & (ATA_ERR | ATA_DF))) {
4067 printk(KERN_WARNING "ata%d: DRQ=1 with device error, dev_stat 0x%X\n",
4068 ap->id, status);
4069 qc->err_mask |= AC_ERR_HSM;
4070 ap->hsm_task_state = HSM_ST_ERR;
4071 goto fsm_start;
4072 }
4073
4074 atapi_pio_bytes(qc);
4075
4076 if (unlikely(ap->hsm_task_state == HSM_ST_ERR))
4077 /* bad ireason reported by device */
4078 goto fsm_start;
4079
4080 } else {
4081 /* ATA PIO protocol */
4082 if (unlikely((status & ATA_DRQ) == 0)) {
4083 /* handle BSY=0, DRQ=0 as error */
4084 if (likely(status & (ATA_ERR | ATA_DF)))
4085 /* device stops HSM for abort/error */
4086 qc->err_mask |= AC_ERR_DEV;
4087 else
4088 /* HSM violation. Let EH handle this */
4089 qc->err_mask |= AC_ERR_HSM;
4090
4091 ap->hsm_task_state = HSM_ST_ERR;
4092 goto fsm_start;
4093 }
4094
4095 /* For PIO reads, some devices may ask for
4096 * data transfer (DRQ=1) alone with ERR=1.
4097 * We respect DRQ here and transfer one
4098 * block of junk data before changing the
4099 * hsm_task_state to HSM_ST_ERR.
4100 *
4101 * For PIO writes, ERR=1 DRQ=1 doesn't make
4102 * sense since the data block has been
4103 * transferred to the device.
4104 */
4105 if (unlikely(status & (ATA_ERR | ATA_DF))) {
4106 /* data might be corrputed */
4107 qc->err_mask |= AC_ERR_DEV;
4108
4109 if (!(qc->tf.flags & ATA_TFLAG_WRITE)) {
4110 ata_pio_sectors(qc);
4111 ata_altstatus(ap);
4112 status = ata_wait_idle(ap);
4113 }
4114
4115 if (status & (ATA_BUSY | ATA_DRQ))
4116 qc->err_mask |= AC_ERR_HSM;
4117
4118 /* ata_pio_sectors() might change the
4119 * state to HSM_ST_LAST. so, the state
4120 * is changed after ata_pio_sectors().
4121 */
4122 ap->hsm_task_state = HSM_ST_ERR;
4123 goto fsm_start;
4124 }
4125
4126 ata_pio_sectors(qc);
4127
4128 if (ap->hsm_task_state == HSM_ST_LAST &&
4129 (!(qc->tf.flags & ATA_TFLAG_WRITE))) {
4130 /* all data read */
4131 ata_altstatus(ap);
4132 status = ata_wait_idle(ap);
4133 goto fsm_start;
4134 }
4135 }
4136
4137 ata_altstatus(ap); /* flush */
4138 poll_next = 1;
4139 break;
4140
4141 case HSM_ST_LAST:
4142 if (unlikely(!ata_ok(status))) {
4143 qc->err_mask |= __ac_err_mask(status);
4144 ap->hsm_task_state = HSM_ST_ERR;
4145 goto fsm_start;
4146 }
4147
4148 /* no more data to transfer */
4149 DPRINTK("ata%u: dev %u command complete, drv_stat 0x%x\n",
4150 ap->id, qc->dev->devno, status);
4151
4152 WARN_ON(qc->err_mask);
4153
4154 ap->hsm_task_state = HSM_ST_IDLE;
4155
4156 /* complete taskfile transaction */
4157 ata_hsm_qc_complete(qc, in_wq);
4158
4159 poll_next = 0;
4160 break;
4161
4162 case HSM_ST_ERR:
4163 /* make sure qc->err_mask is available to
4164 * know what's wrong and recover
4165 */
4166 WARN_ON(qc->err_mask == 0);
4167
4168 ap->hsm_task_state = HSM_ST_IDLE;
4169
4170 /* complete taskfile transaction */
4171 ata_hsm_qc_complete(qc, in_wq);
4172
4173 poll_next = 0;
4174 break;
4175 default:
4176 poll_next = 0;
4177 BUG();
4178 }
4179
4180 return poll_next;
4181 }
4182
4183 static void ata_pio_task(void *_data)
4184 {
4185 struct ata_queued_cmd *qc = _data;
4186 struct ata_port *ap = qc->ap;
4187 u8 status;
4188 int poll_next;
4189
4190 fsm_start:
4191 WARN_ON(ap->hsm_task_state == HSM_ST_IDLE);
4192
4193 /*
4194 * This is purely heuristic. This is a fast path.
4195 * Sometimes when we enter, BSY will be cleared in
4196 * a chk-status or two. If not, the drive is probably seeking
4197 * or something. Snooze for a couple msecs, then
4198 * chk-status again. If still busy, queue delayed work.
4199 */
4200 status = ata_busy_wait(ap, ATA_BUSY, 5);
4201 if (status & ATA_BUSY) {
4202 msleep(2);
4203 status = ata_busy_wait(ap, ATA_BUSY, 10);
4204 if (status & ATA_BUSY) {
4205 ata_port_queue_task(ap, ata_pio_task, qc, ATA_SHORT_PAUSE);
4206 return;
4207 }
4208 }
4209
4210 /* move the HSM */
4211 poll_next = ata_hsm_move(ap, qc, status, 1);
4212
4213 /* another command or interrupt handler
4214 * may be running at this point.
4215 */
4216 if (poll_next)
4217 goto fsm_start;
4218 }
4219
4220 /**
4221 * ata_qc_new - Request an available ATA command, for queueing
4222 * @ap: Port associated with device @dev
4223 * @dev: Device from whom we request an available command structure
4224 *
4225 * LOCKING:
4226 * None.
4227 */
4228
4229 static struct ata_queued_cmd *ata_qc_new(struct ata_port *ap)
4230 {
4231 struct ata_queued_cmd *qc = NULL;
4232 unsigned int i;
4233
4234 /* no command while frozen */
4235 if (unlikely(ap->flags & ATA_FLAG_FROZEN))
4236 return NULL;
4237
4238 /* the last tag is reserved for internal command. */
4239 for (i = 0; i < ATA_MAX_QUEUE - 1; i++)
4240 if (!test_and_set_bit(i, &ap->qc_allocated)) {
4241 qc = __ata_qc_from_tag(ap, i);
4242 break;
4243 }
4244
4245 if (qc)
4246 qc->tag = i;
4247
4248 return qc;
4249 }
4250
4251 /**
4252 * ata_qc_new_init - Request an available ATA command, and initialize it
4253 * @dev: Device from whom we request an available command structure
4254 *
4255 * LOCKING:
4256 * None.
4257 */
4258
4259 struct ata_queued_cmd *ata_qc_new_init(struct ata_device *dev)
4260 {
4261 struct ata_port *ap = dev->ap;
4262 struct ata_queued_cmd *qc;
4263
4264 qc = ata_qc_new(ap);
4265 if (qc) {
4266 qc->scsicmd = NULL;
4267 qc->ap = ap;
4268 qc->dev = dev;
4269
4270 ata_qc_reinit(qc);
4271 }
4272
4273 return qc;
4274 }
4275
4276 /**
4277 * ata_qc_free - free unused ata_queued_cmd
4278 * @qc: Command to complete
4279 *
4280 * Designed to free unused ata_queued_cmd object
4281 * in case something prevents using it.
4282 *
4283 * LOCKING:
4284 * spin_lock_irqsave(host_set lock)
4285 */
4286 void ata_qc_free(struct ata_queued_cmd *qc)
4287 {
4288 struct ata_port *ap = qc->ap;
4289 unsigned int tag;
4290
4291 WARN_ON(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
4292
4293 qc->flags = 0;
4294 tag = qc->tag;
4295 if (likely(ata_tag_valid(tag))) {
4296 qc->tag = ATA_TAG_POISON;
4297 clear_bit(tag, &ap->qc_allocated);
4298 }
4299 }
4300
4301 void __ata_qc_complete(struct ata_queued_cmd *qc)
4302 {
4303 struct ata_port *ap = qc->ap;
4304
4305 WARN_ON(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
4306 WARN_ON(!(qc->flags & ATA_QCFLAG_ACTIVE));
4307
4308 if (likely(qc->flags & ATA_QCFLAG_DMAMAP))
4309 ata_sg_clean(qc);
4310
4311 /* command should be marked inactive atomically with qc completion */
4312 if (qc->tf.protocol == ATA_PROT_NCQ)
4313 ap->sactive &= ~(1 << qc->tag);
4314 else
4315 ap->active_tag = ATA_TAG_POISON;
4316
4317 /* atapi: mark qc as inactive to prevent the interrupt handler
4318 * from completing the command twice later, before the error handler
4319 * is called. (when rc != 0 and atapi request sense is needed)
4320 */
4321 qc->flags &= ~ATA_QCFLAG_ACTIVE;
4322 ap->qc_active &= ~(1 << qc->tag);
4323
4324 /* call completion callback */
4325 qc->complete_fn(qc);
4326 }
4327
4328 /**
4329 * ata_qc_complete - Complete an active ATA command
4330 * @qc: Command to complete
4331 * @err_mask: ATA Status register contents
4332 *
4333 * Indicate to the mid and upper layers that an ATA
4334 * command has completed, with either an ok or not-ok status.
4335 *
4336 * LOCKING:
4337 * spin_lock_irqsave(host_set lock)
4338 */
4339 void ata_qc_complete(struct ata_queued_cmd *qc)
4340 {
4341 struct ata_port *ap = qc->ap;
4342
4343 /* XXX: New EH and old EH use different mechanisms to
4344 * synchronize EH with regular execution path.
4345 *
4346 * In new EH, a failed qc is marked with ATA_QCFLAG_FAILED.
4347 * Normal execution path is responsible for not accessing a
4348 * failed qc. libata core enforces the rule by returning NULL
4349 * from ata_qc_from_tag() for failed qcs.
4350 *
4351 * Old EH depends on ata_qc_complete() nullifying completion
4352 * requests if ATA_QCFLAG_EH_SCHEDULED is set. Old EH does
4353 * not synchronize with interrupt handler. Only PIO task is
4354 * taken care of.
4355 */
4356 if (ap->ops->error_handler) {
4357 WARN_ON(ap->flags & ATA_FLAG_FROZEN);
4358
4359 if (unlikely(qc->err_mask))
4360 qc->flags |= ATA_QCFLAG_FAILED;
4361
4362 if (unlikely(qc->flags & ATA_QCFLAG_FAILED)) {
4363 if (!ata_tag_internal(qc->tag)) {
4364 /* always fill result TF for failed qc */
4365 ap->ops->tf_read(ap, &qc->result_tf);
4366 ata_qc_schedule_eh(qc);
4367 return;
4368 }
4369 }
4370
4371 /* read result TF if requested */
4372 if (qc->flags & ATA_QCFLAG_RESULT_TF)
4373 ap->ops->tf_read(ap, &qc->result_tf);
4374
4375 __ata_qc_complete(qc);
4376 } else {
4377 if (qc->flags & ATA_QCFLAG_EH_SCHEDULED)
4378 return;
4379
4380 /* read result TF if failed or requested */
4381 if (qc->err_mask || qc->flags & ATA_QCFLAG_RESULT_TF)
4382 ap->ops->tf_read(ap, &qc->result_tf);
4383
4384 __ata_qc_complete(qc);
4385 }
4386 }
4387
4388 /**
4389 * ata_qc_complete_multiple - Complete multiple qcs successfully
4390 * @ap: port in question
4391 * @qc_active: new qc_active mask
4392 * @finish_qc: LLDD callback invoked before completing a qc
4393 *
4394 * Complete in-flight commands. This functions is meant to be
4395 * called from low-level driver's interrupt routine to complete
4396 * requests normally. ap->qc_active and @qc_active is compared
4397 * and commands are completed accordingly.
4398 *
4399 * LOCKING:
4400 * spin_lock_irqsave(host_set lock)
4401 *
4402 * RETURNS:
4403 * Number of completed commands on success, -errno otherwise.
4404 */
4405 int ata_qc_complete_multiple(struct ata_port *ap, u32 qc_active,
4406 void (*finish_qc)(struct ata_queued_cmd *))
4407 {
4408 int nr_done = 0;
4409 u32 done_mask;
4410 int i;
4411
4412 done_mask = ap->qc_active ^ qc_active;
4413
4414 if (unlikely(done_mask & qc_active)) {
4415 ata_port_printk(ap, KERN_ERR, "illegal qc_active transition "
4416 "(%08x->%08x)\n", ap->qc_active, qc_active);
4417 return -EINVAL;
4418 }
4419
4420 for (i = 0; i < ATA_MAX_QUEUE; i++) {
4421 struct ata_queued_cmd *qc;
4422
4423 if (!(done_mask & (1 << i)))
4424 continue;
4425
4426 if ((qc = ata_qc_from_tag(ap, i))) {
4427 if (finish_qc)
4428 finish_qc(qc);
4429 ata_qc_complete(qc);
4430 nr_done++;
4431 }
4432 }
4433
4434 return nr_done;
4435 }
4436
4437 static inline int ata_should_dma_map(struct ata_queued_cmd *qc)
4438 {
4439 struct ata_port *ap = qc->ap;
4440
4441 switch (qc->tf.protocol) {
4442 case ATA_PROT_NCQ:
4443 case ATA_PROT_DMA:
4444 case ATA_PROT_ATAPI_DMA:
4445 return 1;
4446
4447 case ATA_PROT_ATAPI:
4448 case ATA_PROT_PIO:
4449 if (ap->flags & ATA_FLAG_PIO_DMA)
4450 return 1;
4451
4452 /* fall through */
4453
4454 default:
4455 return 0;
4456 }
4457
4458 /* never reached */
4459 }
4460
4461 /**
4462 * ata_qc_issue - issue taskfile to device
4463 * @qc: command to issue to device
4464 *
4465 * Prepare an ATA command to submission to device.
4466 * This includes mapping the data into a DMA-able
4467 * area, filling in the S/G table, and finally
4468 * writing the taskfile to hardware, starting the command.
4469 *
4470 * LOCKING:
4471 * spin_lock_irqsave(host_set lock)
4472 */
4473 void ata_qc_issue(struct ata_queued_cmd *qc)
4474 {
4475 struct ata_port *ap = qc->ap;
4476
4477 /* Make sure only one non-NCQ command is outstanding. The
4478 * check is skipped for old EH because it reuses active qc to
4479 * request ATAPI sense.
4480 */
4481 WARN_ON(ap->ops->error_handler && ata_tag_valid(ap->active_tag));
4482
4483 if (qc->tf.protocol == ATA_PROT_NCQ) {
4484 WARN_ON(ap->sactive & (1 << qc->tag));
4485 ap->sactive |= 1 << qc->tag;
4486 } else {
4487 WARN_ON(ap->sactive);
4488 ap->active_tag = qc->tag;
4489 }
4490
4491 qc->flags |= ATA_QCFLAG_ACTIVE;
4492 ap->qc_active |= 1 << qc->tag;
4493
4494 if (ata_should_dma_map(qc)) {
4495 if (qc->flags & ATA_QCFLAG_SG) {
4496 if (ata_sg_setup(qc))
4497 goto sg_err;
4498 } else if (qc->flags & ATA_QCFLAG_SINGLE) {
4499 if (ata_sg_setup_one(qc))
4500 goto sg_err;
4501 }
4502 } else {
4503 qc->flags &= ~ATA_QCFLAG_DMAMAP;
4504 }
4505
4506 ap->ops->qc_prep(qc);
4507
4508 qc->err_mask |= ap->ops->qc_issue(qc);
4509 if (unlikely(qc->err_mask))
4510 goto err;
4511 return;
4512
4513 sg_err:
4514 qc->flags &= ~ATA_QCFLAG_DMAMAP;
4515 qc->err_mask |= AC_ERR_SYSTEM;
4516 err:
4517 ata_qc_complete(qc);
4518 }
4519
4520 /**
4521 * ata_qc_issue_prot - issue taskfile to device in proto-dependent manner
4522 * @qc: command to issue to device
4523 *
4524 * Using various libata functions and hooks, this function
4525 * starts an ATA command. ATA commands are grouped into
4526 * classes called "protocols", and issuing each type of protocol
4527 * is slightly different.
4528 *
4529 * May be used as the qc_issue() entry in ata_port_operations.
4530 *
4531 * LOCKING:
4532 * spin_lock_irqsave(host_set lock)
4533 *
4534 * RETURNS:
4535 * Zero on success, AC_ERR_* mask on failure
4536 */
4537
4538 unsigned int ata_qc_issue_prot(struct ata_queued_cmd *qc)
4539 {
4540 struct ata_port *ap = qc->ap;
4541
4542 /* Use polling pio if the LLD doesn't handle
4543 * interrupt driven pio and atapi CDB interrupt.
4544 */
4545 if (ap->flags & ATA_FLAG_PIO_POLLING) {
4546 switch (qc->tf.protocol) {
4547 case ATA_PROT_PIO:
4548 case ATA_PROT_ATAPI:
4549 case ATA_PROT_ATAPI_NODATA:
4550 qc->tf.flags |= ATA_TFLAG_POLLING;
4551 break;
4552 case ATA_PROT_ATAPI_DMA:
4553 if (qc->dev->flags & ATA_DFLAG_CDB_INTR)
4554 /* see ata_check_atapi_dma() */
4555 BUG();
4556 break;
4557 default:
4558 break;
4559 }
4560 }
4561
4562 /* select the device */
4563 ata_dev_select(ap, qc->dev->devno, 1, 0);
4564
4565 /* start the command */
4566 switch (qc->tf.protocol) {
4567 case ATA_PROT_NODATA:
4568 if (qc->tf.flags & ATA_TFLAG_POLLING)
4569 ata_qc_set_polling(qc);
4570
4571 ata_tf_to_host(ap, &qc->tf);
4572 ap->hsm_task_state = HSM_ST_LAST;
4573
4574 if (qc->tf.flags & ATA_TFLAG_POLLING)
4575 ata_port_queue_task(ap, ata_pio_task, qc, 0);
4576
4577 break;
4578
4579 case ATA_PROT_DMA:
4580 WARN_ON(qc->tf.flags & ATA_TFLAG_POLLING);
4581
4582 ap->ops->tf_load(ap, &qc->tf); /* load tf registers */
4583 ap->ops->bmdma_setup(qc); /* set up bmdma */
4584 ap->ops->bmdma_start(qc); /* initiate bmdma */
4585 ap->hsm_task_state = HSM_ST_LAST;
4586 break;
4587
4588 case ATA_PROT_PIO:
4589 if (qc->tf.flags & ATA_TFLAG_POLLING)
4590 ata_qc_set_polling(qc);
4591
4592 ata_tf_to_host(ap, &qc->tf);
4593
4594 if (qc->tf.flags & ATA_TFLAG_WRITE) {
4595 /* PIO data out protocol */
4596 ap->hsm_task_state = HSM_ST_FIRST;
4597 ata_port_queue_task(ap, ata_pio_task, qc, 0);
4598
4599 /* always send first data block using
4600 * the ata_pio_task() codepath.
4601 */
4602 } else {
4603 /* PIO data in protocol */
4604 ap->hsm_task_state = HSM_ST;
4605
4606 if (qc->tf.flags & ATA_TFLAG_POLLING)
4607 ata_port_queue_task(ap, ata_pio_task, qc, 0);
4608
4609 /* if polling, ata_pio_task() handles the rest.
4610 * otherwise, interrupt handler takes over from here.
4611 */
4612 }
4613
4614 break;
4615
4616 case ATA_PROT_ATAPI:
4617 case ATA_PROT_ATAPI_NODATA:
4618 if (qc->tf.flags & ATA_TFLAG_POLLING)
4619 ata_qc_set_polling(qc);
4620
4621 ata_tf_to_host(ap, &qc->tf);
4622
4623 ap->hsm_task_state = HSM_ST_FIRST;
4624
4625 /* send cdb by polling if no cdb interrupt */
4626 if ((!(qc->dev->flags & ATA_DFLAG_CDB_INTR)) ||
4627 (qc->tf.flags & ATA_TFLAG_POLLING))
4628 ata_port_queue_task(ap, ata_pio_task, qc, 0);
4629 break;
4630
4631 case ATA_PROT_ATAPI_DMA:
4632 WARN_ON(qc->tf.flags & ATA_TFLAG_POLLING);
4633
4634 ap->ops->tf_load(ap, &qc->tf); /* load tf registers */
4635 ap->ops->bmdma_setup(qc); /* set up bmdma */
4636 ap->hsm_task_state = HSM_ST_FIRST;
4637
4638 /* send cdb by polling if no cdb interrupt */
4639 if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
4640 ata_port_queue_task(ap, ata_pio_task, qc, 0);
4641 break;
4642
4643 default:
4644 WARN_ON(1);
4645 return AC_ERR_SYSTEM;
4646 }
4647
4648 return 0;
4649 }
4650
4651 /**
4652 * ata_host_intr - Handle host interrupt for given (port, task)
4653 * @ap: Port on which interrupt arrived (possibly...)
4654 * @qc: Taskfile currently active in engine
4655 *
4656 * Handle host interrupt for given queued command. Currently,
4657 * only DMA interrupts are handled. All other commands are
4658 * handled via polling with interrupts disabled (nIEN bit).
4659 *
4660 * LOCKING:
4661 * spin_lock_irqsave(host_set lock)
4662 *
4663 * RETURNS:
4664 * One if interrupt was handled, zero if not (shared irq).
4665 */
4666
4667 inline unsigned int ata_host_intr (struct ata_port *ap,
4668 struct ata_queued_cmd *qc)
4669 {
4670 u8 status, host_stat = 0;
4671
4672 VPRINTK("ata%u: protocol %d task_state %d\n",
4673 ap->id, qc->tf.protocol, ap->hsm_task_state);
4674
4675 /* Check whether we are expecting interrupt in this state */
4676 switch (ap->hsm_task_state) {
4677 case HSM_ST_FIRST:
4678 /* Some pre-ATAPI-4 devices assert INTRQ
4679 * at this state when ready to receive CDB.
4680 */
4681
4682 /* Check the ATA_DFLAG_CDB_INTR flag is enough here.
4683 * The flag was turned on only for atapi devices.
4684 * No need to check is_atapi_taskfile(&qc->tf) again.
4685 */
4686 if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
4687 goto idle_irq;
4688 break;
4689 case HSM_ST_LAST:
4690 if (qc->tf.protocol == ATA_PROT_DMA ||
4691 qc->tf.protocol == ATA_PROT_ATAPI_DMA) {
4692 /* check status of DMA engine */
4693 host_stat = ap->ops->bmdma_status(ap);
4694 VPRINTK("ata%u: host_stat 0x%X\n", ap->id, host_stat);
4695
4696 /* if it's not our irq... */
4697 if (!(host_stat & ATA_DMA_INTR))
4698 goto idle_irq;
4699
4700 /* before we do anything else, clear DMA-Start bit */
4701 ap->ops->bmdma_stop(qc);
4702
4703 if (unlikely(host_stat & ATA_DMA_ERR)) {
4704 /* error when transfering data to/from memory */
4705 qc->err_mask |= AC_ERR_HOST_BUS;
4706 ap->hsm_task_state = HSM_ST_ERR;
4707 }
4708 }
4709 break;
4710 case HSM_ST:
4711 break;
4712 default:
4713 goto idle_irq;
4714 }
4715
4716 /* check altstatus */
4717 status = ata_altstatus(ap);
4718 if (status & ATA_BUSY)
4719 goto idle_irq;
4720
4721 /* check main status, clearing INTRQ */
4722 status = ata_chk_status(ap);
4723 if (unlikely(status & ATA_BUSY))
4724 goto idle_irq;
4725
4726 /* ack bmdma irq events */
4727 ap->ops->irq_clear(ap);
4728
4729 ata_hsm_move(ap, qc, status, 0);
4730 return 1; /* irq handled */
4731
4732 idle_irq:
4733 ap->stats.idle_irq++;
4734
4735 #ifdef ATA_IRQ_TRAP
4736 if ((ap->stats.idle_irq % 1000) == 0) {
4737 ata_irq_ack(ap, 0); /* debug trap */
4738 ata_port_printk(ap, KERN_WARNING, "irq trap\n");
4739 return 1;
4740 }
4741 #endif
4742 return 0; /* irq not handled */
4743 }
4744
4745 /**
4746 * ata_interrupt - Default ATA host interrupt handler
4747 * @irq: irq line (unused)
4748 * @dev_instance: pointer to our ata_host_set information structure
4749 * @regs: unused
4750 *
4751 * Default interrupt handler for PCI IDE devices. Calls
4752 * ata_host_intr() for each port that is not disabled.
4753 *
4754 * LOCKING:
4755 * Obtains host_set lock during operation.
4756 *
4757 * RETURNS:
4758 * IRQ_NONE or IRQ_HANDLED.
4759 */
4760
4761 irqreturn_t ata_interrupt (int irq, void *dev_instance, struct pt_regs *regs)
4762 {
4763 struct ata_host_set *host_set = dev_instance;
4764 unsigned int i;
4765 unsigned int handled = 0;
4766 unsigned long flags;
4767
4768 /* TODO: make _irqsave conditional on x86 PCI IDE legacy mode */
4769 spin_lock_irqsave(&host_set->lock, flags);
4770
4771 for (i = 0; i < host_set->n_ports; i++) {
4772 struct ata_port *ap;
4773
4774 ap = host_set->ports[i];
4775 if (ap &&
4776 !(ap->flags & ATA_FLAG_DISABLED)) {
4777 struct ata_queued_cmd *qc;
4778
4779 qc = ata_qc_from_tag(ap, ap->active_tag);
4780 if (qc && (!(qc->tf.flags & ATA_TFLAG_POLLING)) &&
4781 (qc->flags & ATA_QCFLAG_ACTIVE))
4782 handled |= ata_host_intr(ap, qc);
4783 }
4784 }
4785
4786 spin_unlock_irqrestore(&host_set->lock, flags);
4787
4788 return IRQ_RETVAL(handled);
4789 }
4790
4791 /**
4792 * sata_scr_valid - test whether SCRs are accessible
4793 * @ap: ATA port to test SCR accessibility for
4794 *
4795 * Test whether SCRs are accessible for @ap.
4796 *
4797 * LOCKING:
4798 * None.
4799 *
4800 * RETURNS:
4801 * 1 if SCRs are accessible, 0 otherwise.
4802 */
4803 int sata_scr_valid(struct ata_port *ap)
4804 {
4805 return ap->cbl == ATA_CBL_SATA && ap->ops->scr_read;
4806 }
4807
4808 /**
4809 * sata_scr_read - read SCR register of the specified port
4810 * @ap: ATA port to read SCR for
4811 * @reg: SCR to read
4812 * @val: Place to store read value
4813 *
4814 * Read SCR register @reg of @ap into *@val. This function is
4815 * guaranteed to succeed if the cable type of the port is SATA
4816 * and the port implements ->scr_read.
4817 *
4818 * LOCKING:
4819 * None.
4820 *
4821 * RETURNS:
4822 * 0 on success, negative errno on failure.
4823 */
4824 int sata_scr_read(struct ata_port *ap, int reg, u32 *val)
4825 {
4826 if (sata_scr_valid(ap)) {
4827 *val = ap->ops->scr_read(ap, reg);
4828 return 0;
4829 }
4830 return -EOPNOTSUPP;
4831 }
4832
4833 /**
4834 * sata_scr_write - write SCR register of the specified port
4835 * @ap: ATA port to write SCR for
4836 * @reg: SCR to write
4837 * @val: value to write
4838 *
4839 * Write @val to SCR register @reg of @ap. This function is
4840 * guaranteed to succeed if the cable type of the port is SATA
4841 * and the port implements ->scr_read.
4842 *
4843 * LOCKING:
4844 * None.
4845 *
4846 * RETURNS:
4847 * 0 on success, negative errno on failure.
4848 */
4849 int sata_scr_write(struct ata_port *ap, int reg, u32 val)
4850 {
4851 if (sata_scr_valid(ap)) {
4852 ap->ops->scr_write(ap, reg, val);
4853 return 0;
4854 }
4855 return -EOPNOTSUPP;
4856 }
4857
4858 /**
4859 * sata_scr_write_flush - write SCR register of the specified port and flush
4860 * @ap: ATA port to write SCR for
4861 * @reg: SCR to write
4862 * @val: value to write
4863 *
4864 * This function is identical to sata_scr_write() except that this
4865 * function performs flush after writing to the register.
4866 *
4867 * LOCKING:
4868 * None.
4869 *
4870 * RETURNS:
4871 * 0 on success, negative errno on failure.
4872 */
4873 int sata_scr_write_flush(struct ata_port *ap, int reg, u32 val)
4874 {
4875 if (sata_scr_valid(ap)) {
4876 ap->ops->scr_write(ap, reg, val);
4877 ap->ops->scr_read(ap, reg);
4878 return 0;
4879 }
4880 return -EOPNOTSUPP;
4881 }
4882
4883 /**
4884 * ata_port_online - test whether the given port is online
4885 * @ap: ATA port to test
4886 *
4887 * Test whether @ap is online. Note that this function returns 0
4888 * if online status of @ap cannot be obtained, so
4889 * ata_port_online(ap) != !ata_port_offline(ap).
4890 *
4891 * LOCKING:
4892 * None.
4893 *
4894 * RETURNS:
4895 * 1 if the port online status is available and online.
4896 */
4897 int ata_port_online(struct ata_port *ap)
4898 {
4899 u32 sstatus;
4900
4901 if (!sata_scr_read(ap, SCR_STATUS, &sstatus) && (sstatus & 0xf) == 0x3)
4902 return 1;
4903 return 0;
4904 }
4905
4906 /**
4907 * ata_port_offline - test whether the given port is offline
4908 * @ap: ATA port to test
4909 *
4910 * Test whether @ap is offline. Note that this function returns
4911 * 0 if offline status of @ap cannot be obtained, so
4912 * ata_port_online(ap) != !ata_port_offline(ap).
4913 *
4914 * LOCKING:
4915 * None.
4916 *
4917 * RETURNS:
4918 * 1 if the port offline status is available and offline.
4919 */
4920 int ata_port_offline(struct ata_port *ap)
4921 {
4922 u32 sstatus;
4923
4924 if (!sata_scr_read(ap, SCR_STATUS, &sstatus) && (sstatus & 0xf) != 0x3)
4925 return 1;
4926 return 0;
4927 }
4928
4929 /*
4930 * Execute a 'simple' command, that only consists of the opcode 'cmd' itself,
4931 * without filling any other registers
4932 */
4933 static int ata_do_simple_cmd(struct ata_device *dev, u8 cmd)
4934 {
4935 struct ata_taskfile tf;
4936 int err;
4937
4938 ata_tf_init(dev, &tf);
4939
4940 tf.command = cmd;
4941 tf.flags |= ATA_TFLAG_DEVICE;
4942 tf.protocol = ATA_PROT_NODATA;
4943
4944 err = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
4945 if (err)
4946 ata_dev_printk(dev, KERN_ERR, "%s: ata command failed: %d\n",
4947 __FUNCTION__, err);
4948
4949 return err;
4950 }
4951
4952 static int ata_flush_cache(struct ata_device *dev)
4953 {
4954 u8 cmd;
4955
4956 if (!ata_try_flush_cache(dev))
4957 return 0;
4958
4959 if (ata_id_has_flush_ext(dev->id))
4960 cmd = ATA_CMD_FLUSH_EXT;
4961 else
4962 cmd = ATA_CMD_FLUSH;
4963
4964 return ata_do_simple_cmd(dev, cmd);
4965 }
4966
4967 static int ata_standby_drive(struct ata_device *dev)
4968 {
4969 return ata_do_simple_cmd(dev, ATA_CMD_STANDBYNOW1);
4970 }
4971
4972 static int ata_start_drive(struct ata_device *dev)
4973 {
4974 return ata_do_simple_cmd(dev, ATA_CMD_IDLEIMMEDIATE);
4975 }
4976
4977 /**
4978 * ata_device_resume - wakeup a previously suspended devices
4979 * @dev: the device to resume
4980 *
4981 * Kick the drive back into action, by sending it an idle immediate
4982 * command and making sure its transfer mode matches between drive
4983 * and host.
4984 *
4985 */
4986 int ata_device_resume(struct ata_device *dev)
4987 {
4988 struct ata_port *ap = dev->ap;
4989
4990 if (ap->flags & ATA_FLAG_SUSPENDED) {
4991 struct ata_device *failed_dev;
4992
4993 ata_busy_wait(ap, ATA_BUSY | ATA_DRQ, 200000);
4994
4995 ap->flags &= ~ATA_FLAG_SUSPENDED;
4996 while (ata_set_mode(ap, &failed_dev))
4997 ata_dev_disable(failed_dev);
4998 }
4999 if (!ata_dev_enabled(dev))
5000 return 0;
5001 if (dev->class == ATA_DEV_ATA)
5002 ata_start_drive(dev);
5003
5004 return 0;
5005 }
5006
5007 /**
5008 * ata_device_suspend - prepare a device for suspend
5009 * @dev: the device to suspend
5010 * @state: target power management state
5011 *
5012 * Flush the cache on the drive, if appropriate, then issue a
5013 * standbynow command.
5014 */
5015 int ata_device_suspend(struct ata_device *dev, pm_message_t state)
5016 {
5017 struct ata_port *ap = dev->ap;
5018
5019 if (!ata_dev_enabled(dev))
5020 return 0;
5021 if (dev->class == ATA_DEV_ATA)
5022 ata_flush_cache(dev);
5023
5024 if (state.event != PM_EVENT_FREEZE)
5025 ata_standby_drive(dev);
5026 ap->flags |= ATA_FLAG_SUSPENDED;
5027 return 0;
5028 }
5029
5030 /**
5031 * ata_port_start - Set port up for dma.
5032 * @ap: Port to initialize
5033 *
5034 * Called just after data structures for each port are
5035 * initialized. Allocates space for PRD table.
5036 *
5037 * May be used as the port_start() entry in ata_port_operations.
5038 *
5039 * LOCKING:
5040 * Inherited from caller.
5041 */
5042
5043 int ata_port_start (struct ata_port *ap)
5044 {
5045 struct device *dev = ap->dev;
5046 int rc;
5047
5048 ap->prd = dma_alloc_coherent(dev, ATA_PRD_TBL_SZ, &ap->prd_dma, GFP_KERNEL);
5049 if (!ap->prd)
5050 return -ENOMEM;
5051
5052 rc = ata_pad_alloc(ap, dev);
5053 if (rc) {
5054 dma_free_coherent(dev, ATA_PRD_TBL_SZ, ap->prd, ap->prd_dma);
5055 return rc;
5056 }
5057
5058 DPRINTK("prd alloc, virt %p, dma %llx\n", ap->prd, (unsigned long long) ap->prd_dma);
5059
5060 return 0;
5061 }
5062
5063
5064 /**
5065 * ata_port_stop - Undo ata_port_start()
5066 * @ap: Port to shut down
5067 *
5068 * Frees the PRD table.
5069 *
5070 * May be used as the port_stop() entry in ata_port_operations.
5071 *
5072 * LOCKING:
5073 * Inherited from caller.
5074 */
5075
5076 void ata_port_stop (struct ata_port *ap)
5077 {
5078 struct device *dev = ap->dev;
5079
5080 dma_free_coherent(dev, ATA_PRD_TBL_SZ, ap->prd, ap->prd_dma);
5081 ata_pad_free(ap, dev);
5082 }
5083
5084 void ata_host_stop (struct ata_host_set *host_set)
5085 {
5086 if (host_set->mmio_base)
5087 iounmap(host_set->mmio_base);
5088 }
5089
5090
5091 /**
5092 * ata_host_remove - Unregister SCSI host structure with upper layers
5093 * @ap: Port to unregister
5094 * @do_unregister: 1 if we fully unregister, 0 to just stop the port
5095 *
5096 * LOCKING:
5097 * Inherited from caller.
5098 */
5099
5100 static void ata_host_remove(struct ata_port *ap, unsigned int do_unregister)
5101 {
5102 struct Scsi_Host *sh = ap->host;
5103
5104 DPRINTK("ENTER\n");
5105
5106 if (do_unregister)
5107 scsi_remove_host(sh);
5108
5109 ap->ops->port_stop(ap);
5110 }
5111
5112 /**
5113 * ata_dev_init - Initialize an ata_device structure
5114 * @dev: Device structure to initialize
5115 *
5116 * Initialize @dev in preparation for probing.
5117 *
5118 * LOCKING:
5119 * Inherited from caller.
5120 */
5121 void ata_dev_init(struct ata_device *dev)
5122 {
5123 struct ata_port *ap = dev->ap;
5124 unsigned long flags;
5125
5126 /* SATA spd limit is bound to the first device */
5127 ap->sata_spd_limit = ap->hw_sata_spd_limit;
5128
5129 /* High bits of dev->flags are used to record warm plug
5130 * requests which occur asynchronously. Synchronize using
5131 * host_set lock.
5132 */
5133 spin_lock_irqsave(&ap->host_set->lock, flags);
5134 dev->flags &= ~ATA_DFLAG_INIT_MASK;
5135 spin_unlock_irqrestore(&ap->host_set->lock, flags);
5136
5137 memset((void *)dev + ATA_DEVICE_CLEAR_OFFSET, 0,
5138 sizeof(*dev) - ATA_DEVICE_CLEAR_OFFSET);
5139 dev->pio_mask = UINT_MAX;
5140 dev->mwdma_mask = UINT_MAX;
5141 dev->udma_mask = UINT_MAX;
5142 }
5143
5144 /**
5145 * ata_host_init - Initialize an ata_port structure
5146 * @ap: Structure to initialize
5147 * @host: associated SCSI mid-layer structure
5148 * @host_set: Collection of hosts to which @ap belongs
5149 * @ent: Probe information provided by low-level driver
5150 * @port_no: Port number associated with this ata_port
5151 *
5152 * Initialize a new ata_port structure, and its associated
5153 * scsi_host.
5154 *
5155 * LOCKING:
5156 * Inherited from caller.
5157 */
5158 static void ata_host_init(struct ata_port *ap, struct Scsi_Host *host,
5159 struct ata_host_set *host_set,
5160 const struct ata_probe_ent *ent, unsigned int port_no)
5161 {
5162 unsigned int i;
5163
5164 host->max_id = 16;
5165 host->max_lun = 1;
5166 host->max_channel = 1;
5167 host->unique_id = ata_unique_id++;
5168 host->max_cmd_len = 12;
5169
5170 ap->flags = ATA_FLAG_DISABLED;
5171 ap->id = host->unique_id;
5172 ap->host = host;
5173 ap->ctl = ATA_DEVCTL_OBS;
5174 ap->host_set = host_set;
5175 ap->dev = ent->dev;
5176 ap->port_no = port_no;
5177 ap->hard_port_no =
5178 ent->legacy_mode ? ent->hard_port_no : port_no;
5179 ap->pio_mask = ent->pio_mask;
5180 ap->mwdma_mask = ent->mwdma_mask;
5181 ap->udma_mask = ent->udma_mask;
5182 ap->flags |= ent->host_flags;
5183 ap->ops = ent->port_ops;
5184 ap->hw_sata_spd_limit = UINT_MAX;
5185 ap->active_tag = ATA_TAG_POISON;
5186 ap->last_ctl = 0xFF;
5187
5188 #if defined(ATA_VERBOSE_DEBUG)
5189 /* turn on all debugging levels */
5190 ap->msg_enable = 0x00FF;
5191 #elif defined(ATA_DEBUG)
5192 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_INFO | ATA_MSG_CTL | ATA_MSG_WARN | ATA_MSG_ERR;
5193 #else
5194 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_ERR;
5195 #endif
5196
5197 INIT_WORK(&ap->port_task, NULL, NULL);
5198 INIT_WORK(&ap->hotplug_task, ata_scsi_hotplug, ap);
5199 INIT_WORK(&ap->scsi_rescan_task, ata_scsi_dev_rescan, ap);
5200 INIT_LIST_HEAD(&ap->eh_done_q);
5201 init_waitqueue_head(&ap->eh_wait_q);
5202
5203 /* set cable type */
5204 ap->cbl = ATA_CBL_NONE;
5205 if (ap->flags & ATA_FLAG_SATA)
5206 ap->cbl = ATA_CBL_SATA;
5207
5208 for (i = 0; i < ATA_MAX_DEVICES; i++) {
5209 struct ata_device *dev = &ap->device[i];
5210 dev->ap = ap;
5211 dev->devno = i;
5212 ata_dev_init(dev);
5213 }
5214
5215 #ifdef ATA_IRQ_TRAP
5216 ap->stats.unhandled_irq = 1;
5217 ap->stats.idle_irq = 1;
5218 #endif
5219
5220 memcpy(&ap->ioaddr, &ent->port[port_no], sizeof(struct ata_ioports));
5221 }
5222
5223 /**
5224 * ata_host_add - Attach low-level ATA driver to system
5225 * @ent: Information provided by low-level driver
5226 * @host_set: Collections of ports to which we add
5227 * @port_no: Port number associated with this host
5228 *
5229 * Attach low-level ATA driver to system.
5230 *
5231 * LOCKING:
5232 * PCI/etc. bus probe sem.
5233 *
5234 * RETURNS:
5235 * New ata_port on success, for NULL on error.
5236 */
5237
5238 static struct ata_port * ata_host_add(const struct ata_probe_ent *ent,
5239 struct ata_host_set *host_set,
5240 unsigned int port_no)
5241 {
5242 struct Scsi_Host *host;
5243 struct ata_port *ap;
5244 int rc;
5245
5246 DPRINTK("ENTER\n");
5247
5248 if (!ent->port_ops->error_handler &&
5249 !(ent->host_flags & (ATA_FLAG_SATA_RESET | ATA_FLAG_SRST))) {
5250 printk(KERN_ERR "ata%u: no reset mechanism available\n",
5251 port_no);
5252 return NULL;
5253 }
5254
5255 host = scsi_host_alloc(ent->sht, sizeof(struct ata_port));
5256 if (!host)
5257 return NULL;
5258
5259 host->transportt = &ata_scsi_transport_template;
5260
5261 ap = ata_shost_to_port(host);
5262
5263 ata_host_init(ap, host, host_set, ent, port_no);
5264
5265 rc = ap->ops->port_start(ap);
5266 if (rc)
5267 goto err_out;
5268
5269 return ap;
5270
5271 err_out:
5272 scsi_host_put(host);
5273 return NULL;
5274 }
5275
5276 /**
5277 * ata_device_add - Register hardware device with ATA and SCSI layers
5278 * @ent: Probe information describing hardware device to be registered
5279 *
5280 * This function processes the information provided in the probe
5281 * information struct @ent, allocates the necessary ATA and SCSI
5282 * host information structures, initializes them, and registers
5283 * everything with requisite kernel subsystems.
5284 *
5285 * This function requests irqs, probes the ATA bus, and probes
5286 * the SCSI bus.
5287 *
5288 * LOCKING:
5289 * PCI/etc. bus probe sem.
5290 *
5291 * RETURNS:
5292 * Number of ports registered. Zero on error (no ports registered).
5293 */
5294 int ata_device_add(const struct ata_probe_ent *ent)
5295 {
5296 unsigned int count = 0, i;
5297 struct device *dev = ent->dev;
5298 struct ata_host_set *host_set;
5299 int rc;
5300
5301 DPRINTK("ENTER\n");
5302 /* alloc a container for our list of ATA ports (buses) */
5303 host_set = kzalloc(sizeof(struct ata_host_set) +
5304 (ent->n_ports * sizeof(void *)), GFP_KERNEL);
5305 if (!host_set)
5306 return 0;
5307 spin_lock_init(&host_set->lock);
5308
5309 host_set->dev = dev;
5310 host_set->n_ports = ent->n_ports;
5311 host_set->irq = ent->irq;
5312 host_set->mmio_base = ent->mmio_base;
5313 host_set->private_data = ent->private_data;
5314 host_set->ops = ent->port_ops;
5315 host_set->flags = ent->host_set_flags;
5316
5317 /* register each port bound to this device */
5318 for (i = 0; i < ent->n_ports; i++) {
5319 struct ata_port *ap;
5320 unsigned long xfer_mode_mask;
5321
5322 ap = ata_host_add(ent, host_set, i);
5323 if (!ap)
5324 goto err_out;
5325
5326 host_set->ports[i] = ap;
5327 xfer_mode_mask =(ap->udma_mask << ATA_SHIFT_UDMA) |
5328 (ap->mwdma_mask << ATA_SHIFT_MWDMA) |
5329 (ap->pio_mask << ATA_SHIFT_PIO);
5330
5331 /* print per-port info to dmesg */
5332 ata_port_printk(ap, KERN_INFO, "%cATA max %s cmd 0x%lX "
5333 "ctl 0x%lX bmdma 0x%lX irq %lu\n",
5334 ap->flags & ATA_FLAG_SATA ? 'S' : 'P',
5335 ata_mode_string(xfer_mode_mask),
5336 ap->ioaddr.cmd_addr,
5337 ap->ioaddr.ctl_addr,
5338 ap->ioaddr.bmdma_addr,
5339 ent->irq);
5340
5341 ata_chk_status(ap);
5342 host_set->ops->irq_clear(ap);
5343 ata_eh_freeze_port(ap); /* freeze port before requesting IRQ */
5344 count++;
5345 }
5346
5347 if (!count)
5348 goto err_free_ret;
5349
5350 /* obtain irq, that is shared between channels */
5351 rc = request_irq(ent->irq, ent->port_ops->irq_handler, ent->irq_flags,
5352 DRV_NAME, host_set);
5353 if (rc) {
5354 dev_printk(KERN_ERR, dev, "irq %lu request failed: %d\n",
5355 ent->irq, rc);
5356 goto err_out;
5357 }
5358
5359 /* perform each probe synchronously */
5360 DPRINTK("probe begin\n");
5361 for (i = 0; i < count; i++) {
5362 struct ata_port *ap;
5363 u32 scontrol;
5364 int rc;
5365
5366 ap = host_set->ports[i];
5367
5368 /* init sata_spd_limit to the current value */
5369 if (sata_scr_read(ap, SCR_CONTROL, &scontrol) == 0) {
5370 int spd = (scontrol >> 4) & 0xf;
5371 ap->hw_sata_spd_limit &= (1 << spd) - 1;
5372 }
5373 ap->sata_spd_limit = ap->hw_sata_spd_limit;
5374
5375 rc = scsi_add_host(ap->host, dev);
5376 if (rc) {
5377 ata_port_printk(ap, KERN_ERR, "scsi_add_host failed\n");
5378 /* FIXME: do something useful here */
5379 /* FIXME: handle unconditional calls to
5380 * scsi_scan_host and ata_host_remove, below,
5381 * at the very least
5382 */
5383 }
5384
5385 if (ap->ops->error_handler) {
5386 unsigned long flags;
5387
5388 ata_port_probe(ap);
5389
5390 /* kick EH for boot probing */
5391 spin_lock_irqsave(&ap->host_set->lock, flags);
5392
5393 ap->eh_info.probe_mask = (1 << ATA_MAX_DEVICES) - 1;
5394 ap->eh_info.action |= ATA_EH_SOFTRESET;
5395
5396 ap->flags |= ATA_FLAG_LOADING;
5397 ata_port_schedule_eh(ap);
5398
5399 spin_unlock_irqrestore(&ap->host_set->lock, flags);
5400
5401 /* wait for EH to finish */
5402 ata_port_wait_eh(ap);
5403 } else {
5404 DPRINTK("ata%u: bus probe begin\n", ap->id);
5405 rc = ata_bus_probe(ap);
5406 DPRINTK("ata%u: bus probe end\n", ap->id);
5407
5408 if (rc) {
5409 /* FIXME: do something useful here?
5410 * Current libata behavior will
5411 * tear down everything when
5412 * the module is removed
5413 * or the h/w is unplugged.
5414 */
5415 }
5416 }
5417 }
5418
5419 /* probes are done, now scan each port's disk(s) */
5420 DPRINTK("host probe begin\n");
5421 for (i = 0; i < count; i++) {
5422 struct ata_port *ap = host_set->ports[i];
5423
5424 ata_scsi_scan_host(ap);
5425 }
5426
5427 dev_set_drvdata(dev, host_set);
5428
5429 VPRINTK("EXIT, returning %u\n", ent->n_ports);
5430 return ent->n_ports; /* success */
5431
5432 err_out:
5433 for (i = 0; i < count; i++) {
5434 ata_host_remove(host_set->ports[i], 1);
5435 scsi_host_put(host_set->ports[i]->host);
5436 }
5437 err_free_ret:
5438 kfree(host_set);
5439 VPRINTK("EXIT, returning 0\n");
5440 return 0;
5441 }
5442
5443 /**
5444 * ata_port_detach - Detach ATA port in prepration of device removal
5445 * @ap: ATA port to be detached
5446 *
5447 * Detach all ATA devices and the associated SCSI devices of @ap;
5448 * then, remove the associated SCSI host. @ap is guaranteed to
5449 * be quiescent on return from this function.
5450 *
5451 * LOCKING:
5452 * Kernel thread context (may sleep).
5453 */
5454 void ata_port_detach(struct ata_port *ap)
5455 {
5456 unsigned long flags;
5457 int i;
5458
5459 if (!ap->ops->error_handler)
5460 return;
5461
5462 /* tell EH we're leaving & flush EH */
5463 spin_lock_irqsave(&ap->host_set->lock, flags);
5464 ap->flags |= ATA_FLAG_UNLOADING;
5465 spin_unlock_irqrestore(&ap->host_set->lock, flags);
5466
5467 ata_port_wait_eh(ap);
5468
5469 /* EH is now guaranteed to see UNLOADING, so no new device
5470 * will be attached. Disable all existing devices.
5471 */
5472 spin_lock_irqsave(&ap->host_set->lock, flags);
5473
5474 for (i = 0; i < ATA_MAX_DEVICES; i++)
5475 ata_dev_disable(&ap->device[i]);
5476
5477 spin_unlock_irqrestore(&ap->host_set->lock, flags);
5478
5479 /* Final freeze & EH. All in-flight commands are aborted. EH
5480 * will be skipped and retrials will be terminated with bad
5481 * target.
5482 */
5483 spin_lock_irqsave(&ap->host_set->lock, flags);
5484 ata_port_freeze(ap); /* won't be thawed */
5485 spin_unlock_irqrestore(&ap->host_set->lock, flags);
5486
5487 ata_port_wait_eh(ap);
5488
5489 /* Flush hotplug task. The sequence is similar to
5490 * ata_port_flush_task().
5491 */
5492 flush_workqueue(ata_aux_wq);
5493 cancel_delayed_work(&ap->hotplug_task);
5494 flush_workqueue(ata_aux_wq);
5495
5496 /* remove the associated SCSI host */
5497 scsi_remove_host(ap->host);
5498 }
5499
5500 /**
5501 * ata_host_set_remove - PCI layer callback for device removal
5502 * @host_set: ATA host set that was removed
5503 *
5504 * Unregister all objects associated with this host set. Free those
5505 * objects.
5506 *
5507 * LOCKING:
5508 * Inherited from calling layer (may sleep).
5509 */
5510
5511 void ata_host_set_remove(struct ata_host_set *host_set)
5512 {
5513 unsigned int i;
5514
5515 for (i = 0; i < host_set->n_ports; i++)
5516 ata_port_detach(host_set->ports[i]);
5517
5518 free_irq(host_set->irq, host_set);
5519
5520 for (i = 0; i < host_set->n_ports; i++) {
5521 struct ata_port *ap = host_set->ports[i];
5522
5523 ata_scsi_release(ap->host);
5524
5525 if ((ap->flags & ATA_FLAG_NO_LEGACY) == 0) {
5526 struct ata_ioports *ioaddr = &ap->ioaddr;
5527
5528 if (ioaddr->cmd_addr == 0x1f0)
5529 release_region(0x1f0, 8);
5530 else if (ioaddr->cmd_addr == 0x170)
5531 release_region(0x170, 8);
5532 }
5533
5534 scsi_host_put(ap->host);
5535 }
5536
5537 if (host_set->ops->host_stop)
5538 host_set->ops->host_stop(host_set);
5539
5540 kfree(host_set);
5541 }
5542
5543 /**
5544 * ata_scsi_release - SCSI layer callback hook for host unload
5545 * @host: libata host to be unloaded
5546 *
5547 * Performs all duties necessary to shut down a libata port...
5548 * Kill port kthread, disable port, and release resources.
5549 *
5550 * LOCKING:
5551 * Inherited from SCSI layer.
5552 *
5553 * RETURNS:
5554 * One.
5555 */
5556
5557 int ata_scsi_release(struct Scsi_Host *host)
5558 {
5559 struct ata_port *ap = ata_shost_to_port(host);
5560
5561 DPRINTK("ENTER\n");
5562
5563 ap->ops->port_disable(ap);
5564 ata_host_remove(ap, 0);
5565
5566 DPRINTK("EXIT\n");
5567 return 1;
5568 }
5569
5570 /**
5571 * ata_std_ports - initialize ioaddr with standard port offsets.
5572 * @ioaddr: IO address structure to be initialized
5573 *
5574 * Utility function which initializes data_addr, error_addr,
5575 * feature_addr, nsect_addr, lbal_addr, lbam_addr, lbah_addr,
5576 * device_addr, status_addr, and command_addr to standard offsets
5577 * relative to cmd_addr.
5578 *
5579 * Does not set ctl_addr, altstatus_addr, bmdma_addr, or scr_addr.
5580 */
5581
5582 void ata_std_ports(struct ata_ioports *ioaddr)
5583 {
5584 ioaddr->data_addr = ioaddr->cmd_addr + ATA_REG_DATA;
5585 ioaddr->error_addr = ioaddr->cmd_addr + ATA_REG_ERR;
5586 ioaddr->feature_addr = ioaddr->cmd_addr + ATA_REG_FEATURE;
5587 ioaddr->nsect_addr = ioaddr->cmd_addr + ATA_REG_NSECT;
5588 ioaddr->lbal_addr = ioaddr->cmd_addr + ATA_REG_LBAL;
5589 ioaddr->lbam_addr = ioaddr->cmd_addr + ATA_REG_LBAM;
5590 ioaddr->lbah_addr = ioaddr->cmd_addr + ATA_REG_LBAH;
5591 ioaddr->device_addr = ioaddr->cmd_addr + ATA_REG_DEVICE;
5592 ioaddr->status_addr = ioaddr->cmd_addr + ATA_REG_STATUS;
5593 ioaddr->command_addr = ioaddr->cmd_addr + ATA_REG_CMD;
5594 }
5595
5596
5597 #ifdef CONFIG_PCI
5598
5599 void ata_pci_host_stop (struct ata_host_set *host_set)
5600 {
5601 struct pci_dev *pdev = to_pci_dev(host_set->dev);
5602
5603 pci_iounmap(pdev, host_set->mmio_base);
5604 }
5605
5606 /**
5607 * ata_pci_remove_one - PCI layer callback for device removal
5608 * @pdev: PCI device that was removed
5609 *
5610 * PCI layer indicates to libata via this hook that
5611 * hot-unplug or module unload event has occurred.
5612 * Handle this by unregistering all objects associated
5613 * with this PCI device. Free those objects. Then finally
5614 * release PCI resources and disable device.
5615 *
5616 * LOCKING:
5617 * Inherited from PCI layer (may sleep).
5618 */
5619
5620 void ata_pci_remove_one (struct pci_dev *pdev)
5621 {
5622 struct device *dev = pci_dev_to_dev(pdev);
5623 struct ata_host_set *host_set = dev_get_drvdata(dev);
5624
5625 ata_host_set_remove(host_set);
5626 pci_release_regions(pdev);
5627 pci_disable_device(pdev);
5628 dev_set_drvdata(dev, NULL);
5629 }
5630
5631 /* move to PCI subsystem */
5632 int pci_test_config_bits(struct pci_dev *pdev, const struct pci_bits *bits)
5633 {
5634 unsigned long tmp = 0;
5635
5636 switch (bits->width) {
5637 case 1: {
5638 u8 tmp8 = 0;
5639 pci_read_config_byte(pdev, bits->reg, &tmp8);
5640 tmp = tmp8;
5641 break;
5642 }
5643 case 2: {
5644 u16 tmp16 = 0;
5645 pci_read_config_word(pdev, bits->reg, &tmp16);
5646 tmp = tmp16;
5647 break;
5648 }
5649 case 4: {
5650 u32 tmp32 = 0;
5651 pci_read_config_dword(pdev, bits->reg, &tmp32);
5652 tmp = tmp32;
5653 break;
5654 }
5655
5656 default:
5657 return -EINVAL;
5658 }
5659
5660 tmp &= bits->mask;
5661
5662 return (tmp == bits->val) ? 1 : 0;
5663 }
5664
5665 int ata_pci_device_suspend(struct pci_dev *pdev, pm_message_t state)
5666 {
5667 pci_save_state(pdev);
5668 pci_disable_device(pdev);
5669 pci_set_power_state(pdev, PCI_D3hot);
5670 return 0;
5671 }
5672
5673 int ata_pci_device_resume(struct pci_dev *pdev)
5674 {
5675 pci_set_power_state(pdev, PCI_D0);
5676 pci_restore_state(pdev);
5677 pci_enable_device(pdev);
5678 pci_set_master(pdev);
5679 return 0;
5680 }
5681 #endif /* CONFIG_PCI */
5682
5683
5684 static int __init ata_init(void)
5685 {
5686 ata_wq = create_workqueue("ata");
5687 if (!ata_wq)
5688 return -ENOMEM;
5689
5690 ata_aux_wq = create_singlethread_workqueue("ata_aux");
5691 if (!ata_aux_wq) {
5692 destroy_workqueue(ata_wq);
5693 return -ENOMEM;
5694 }
5695
5696 printk(KERN_DEBUG "libata version " DRV_VERSION " loaded.\n");
5697 return 0;
5698 }
5699
5700 static void __exit ata_exit(void)
5701 {
5702 destroy_workqueue(ata_wq);
5703 destroy_workqueue(ata_aux_wq);
5704 }
5705
5706 module_init(ata_init);
5707 module_exit(ata_exit);
5708
5709 static unsigned long ratelimit_time;
5710 static spinlock_t ata_ratelimit_lock = SPIN_LOCK_UNLOCKED;
5711
5712 int ata_ratelimit(void)
5713 {
5714 int rc;
5715 unsigned long flags;
5716
5717 spin_lock_irqsave(&ata_ratelimit_lock, flags);
5718
5719 if (time_after(jiffies, ratelimit_time)) {
5720 rc = 1;
5721 ratelimit_time = jiffies + (HZ/5);
5722 } else
5723 rc = 0;
5724
5725 spin_unlock_irqrestore(&ata_ratelimit_lock, flags);
5726
5727 return rc;
5728 }
5729
5730 /**
5731 * ata_wait_register - wait until register value changes
5732 * @reg: IO-mapped register
5733 * @mask: Mask to apply to read register value
5734 * @val: Wait condition
5735 * @interval_msec: polling interval in milliseconds
5736 * @timeout_msec: timeout in milliseconds
5737 *
5738 * Waiting for some bits of register to change is a common
5739 * operation for ATA controllers. This function reads 32bit LE
5740 * IO-mapped register @reg and tests for the following condition.
5741 *
5742 * (*@reg & mask) != val
5743 *
5744 * If the condition is met, it returns; otherwise, the process is
5745 * repeated after @interval_msec until timeout.
5746 *
5747 * LOCKING:
5748 * Kernel thread context (may sleep)
5749 *
5750 * RETURNS:
5751 * The final register value.
5752 */
5753 u32 ata_wait_register(void __iomem *reg, u32 mask, u32 val,
5754 unsigned long interval_msec,
5755 unsigned long timeout_msec)
5756 {
5757 unsigned long timeout;
5758 u32 tmp;
5759
5760 tmp = ioread32(reg);
5761
5762 /* Calculate timeout _after_ the first read to make sure
5763 * preceding writes reach the controller before starting to
5764 * eat away the timeout.
5765 */
5766 timeout = jiffies + (timeout_msec * HZ) / 1000;
5767
5768 while ((tmp & mask) == val && time_before(jiffies, timeout)) {
5769 msleep(interval_msec);
5770 tmp = ioread32(reg);
5771 }
5772
5773 return tmp;
5774 }
5775
5776 /*
5777 * libata is essentially a library of internal helper functions for
5778 * low-level ATA host controller drivers. As such, the API/ABI is
5779 * likely to change as new drivers are added and updated.
5780 * Do not depend on ABI/API stability.
5781 */
5782
5783 EXPORT_SYMBOL_GPL(sata_deb_timing_boot);
5784 EXPORT_SYMBOL_GPL(sata_deb_timing_eh);
5785 EXPORT_SYMBOL_GPL(sata_deb_timing_before_fsrst);
5786 EXPORT_SYMBOL_GPL(ata_std_bios_param);
5787 EXPORT_SYMBOL_GPL(ata_std_ports);
5788 EXPORT_SYMBOL_GPL(ata_device_add);
5789 EXPORT_SYMBOL_GPL(ata_port_detach);
5790 EXPORT_SYMBOL_GPL(ata_host_set_remove);
5791 EXPORT_SYMBOL_GPL(ata_sg_init);
5792 EXPORT_SYMBOL_GPL(ata_sg_init_one);
5793 EXPORT_SYMBOL_GPL(ata_hsm_move);
5794 EXPORT_SYMBOL_GPL(ata_qc_complete);
5795 EXPORT_SYMBOL_GPL(ata_qc_complete_multiple);
5796 EXPORT_SYMBOL_GPL(ata_qc_issue_prot);
5797 EXPORT_SYMBOL_GPL(ata_tf_load);
5798 EXPORT_SYMBOL_GPL(ata_tf_read);
5799 EXPORT_SYMBOL_GPL(ata_noop_dev_select);
5800 EXPORT_SYMBOL_GPL(ata_std_dev_select);
5801 EXPORT_SYMBOL_GPL(ata_tf_to_fis);
5802 EXPORT_SYMBOL_GPL(ata_tf_from_fis);
5803 EXPORT_SYMBOL_GPL(ata_check_status);
5804 EXPORT_SYMBOL_GPL(ata_altstatus);
5805 EXPORT_SYMBOL_GPL(ata_exec_command);
5806 EXPORT_SYMBOL_GPL(ata_port_start);
5807 EXPORT_SYMBOL_GPL(ata_port_stop);
5808 EXPORT_SYMBOL_GPL(ata_host_stop);
5809 EXPORT_SYMBOL_GPL(ata_interrupt);
5810 EXPORT_SYMBOL_GPL(ata_mmio_data_xfer);
5811 EXPORT_SYMBOL_GPL(ata_pio_data_xfer);
5812 EXPORT_SYMBOL_GPL(ata_pio_data_xfer_noirq);
5813 EXPORT_SYMBOL_GPL(ata_qc_prep);
5814 EXPORT_SYMBOL_GPL(ata_noop_qc_prep);
5815 EXPORT_SYMBOL_GPL(ata_bmdma_setup);
5816 EXPORT_SYMBOL_GPL(ata_bmdma_start);
5817 EXPORT_SYMBOL_GPL(ata_bmdma_irq_clear);
5818 EXPORT_SYMBOL_GPL(ata_bmdma_status);
5819 EXPORT_SYMBOL_GPL(ata_bmdma_stop);
5820 EXPORT_SYMBOL_GPL(ata_bmdma_freeze);
5821 EXPORT_SYMBOL_GPL(ata_bmdma_thaw);
5822 EXPORT_SYMBOL_GPL(ata_bmdma_drive_eh);
5823 EXPORT_SYMBOL_GPL(ata_bmdma_error_handler);
5824 EXPORT_SYMBOL_GPL(ata_bmdma_post_internal_cmd);
5825 EXPORT_SYMBOL_GPL(ata_port_probe);
5826 EXPORT_SYMBOL_GPL(sata_set_spd);
5827 EXPORT_SYMBOL_GPL(sata_phy_debounce);
5828 EXPORT_SYMBOL_GPL(sata_phy_resume);
5829 EXPORT_SYMBOL_GPL(sata_phy_reset);
5830 EXPORT_SYMBOL_GPL(__sata_phy_reset);
5831 EXPORT_SYMBOL_GPL(ata_bus_reset);
5832 EXPORT_SYMBOL_GPL(ata_std_prereset);
5833 EXPORT_SYMBOL_GPL(ata_std_softreset);
5834 EXPORT_SYMBOL_GPL(sata_std_hardreset);
5835 EXPORT_SYMBOL_GPL(ata_std_postreset);
5836 EXPORT_SYMBOL_GPL(ata_dev_revalidate);
5837 EXPORT_SYMBOL_GPL(ata_dev_classify);
5838 EXPORT_SYMBOL_GPL(ata_dev_pair);
5839 EXPORT_SYMBOL_GPL(ata_port_disable);
5840 EXPORT_SYMBOL_GPL(ata_ratelimit);
5841 EXPORT_SYMBOL_GPL(ata_wait_register);
5842 EXPORT_SYMBOL_GPL(ata_busy_sleep);
5843 EXPORT_SYMBOL_GPL(ata_port_queue_task);
5844 EXPORT_SYMBOL_GPL(ata_scsi_ioctl);
5845 EXPORT_SYMBOL_GPL(ata_scsi_queuecmd);
5846 EXPORT_SYMBOL_GPL(ata_scsi_slave_config);
5847 EXPORT_SYMBOL_GPL(ata_scsi_slave_destroy);
5848 EXPORT_SYMBOL_GPL(ata_scsi_change_queue_depth);
5849 EXPORT_SYMBOL_GPL(ata_scsi_release);
5850 EXPORT_SYMBOL_GPL(ata_host_intr);
5851 EXPORT_SYMBOL_GPL(sata_scr_valid);
5852 EXPORT_SYMBOL_GPL(sata_scr_read);
5853 EXPORT_SYMBOL_GPL(sata_scr_write);
5854 EXPORT_SYMBOL_GPL(sata_scr_write_flush);
5855 EXPORT_SYMBOL_GPL(ata_port_online);
5856 EXPORT_SYMBOL_GPL(ata_port_offline);
5857 EXPORT_SYMBOL_GPL(ata_id_string);
5858 EXPORT_SYMBOL_GPL(ata_id_c_string);
5859 EXPORT_SYMBOL_GPL(ata_scsi_simulate);
5860
5861 EXPORT_SYMBOL_GPL(ata_pio_need_iordy);
5862 EXPORT_SYMBOL_GPL(ata_timing_compute);
5863 EXPORT_SYMBOL_GPL(ata_timing_merge);
5864
5865 #ifdef CONFIG_PCI
5866 EXPORT_SYMBOL_GPL(pci_test_config_bits);
5867 EXPORT_SYMBOL_GPL(ata_pci_host_stop);
5868 EXPORT_SYMBOL_GPL(ata_pci_init_native_mode);
5869 EXPORT_SYMBOL_GPL(ata_pci_init_one);
5870 EXPORT_SYMBOL_GPL(ata_pci_remove_one);
5871 EXPORT_SYMBOL_GPL(ata_pci_device_suspend);
5872 EXPORT_SYMBOL_GPL(ata_pci_device_resume);
5873 EXPORT_SYMBOL_GPL(ata_pci_default_filter);
5874 EXPORT_SYMBOL_GPL(ata_pci_clear_simplex);
5875 #endif /* CONFIG_PCI */
5876
5877 EXPORT_SYMBOL_GPL(ata_device_suspend);
5878 EXPORT_SYMBOL_GPL(ata_device_resume);
5879 EXPORT_SYMBOL_GPL(ata_scsi_device_suspend);
5880 EXPORT_SYMBOL_GPL(ata_scsi_device_resume);
5881
5882 EXPORT_SYMBOL_GPL(ata_eng_timeout);
5883 EXPORT_SYMBOL_GPL(ata_port_schedule_eh);
5884 EXPORT_SYMBOL_GPL(ata_port_abort);
5885 EXPORT_SYMBOL_GPL(ata_port_freeze);
5886 EXPORT_SYMBOL_GPL(ata_eh_freeze_port);
5887 EXPORT_SYMBOL_GPL(ata_eh_thaw_port);
5888 EXPORT_SYMBOL_GPL(ata_eh_qc_complete);
5889 EXPORT_SYMBOL_GPL(ata_eh_qc_retry);
5890 EXPORT_SYMBOL_GPL(ata_do_eh);
This page took 0.171754 seconds and 4 git commands to generate.