4a44e759e45a5e2ef15a7635bcb1ab2a219722e6
[deliverable/linux.git] / drivers / scsi / libata-core.c
1 /*
2 * libata-core.c - helper library for ATA
3 *
4 * Maintained by: Jeff Garzik <jgarzik@pobox.com>
5 * Please ALWAYS copy linux-ide@vger.kernel.org
6 * on emails.
7 *
8 * Copyright 2003-2004 Red Hat, Inc. All rights reserved.
9 * Copyright 2003-2004 Jeff Garzik
10 *
11 *
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2, or (at your option)
15 * any later version.
16 *
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
21 *
22 * You should have received a copy of the GNU General Public License
23 * along with this program; see the file COPYING. If not, write to
24 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
25 *
26 *
27 * libata documentation is available via 'make {ps|pdf}docs',
28 * as Documentation/DocBook/libata.*
29 *
30 * Hardware documentation available from http://www.t13.org/ and
31 * http://www.sata-io.org/
32 *
33 */
34
35 #include <linux/config.h>
36 #include <linux/kernel.h>
37 #include <linux/module.h>
38 #include <linux/pci.h>
39 #include <linux/init.h>
40 #include <linux/list.h>
41 #include <linux/mm.h>
42 #include <linux/highmem.h>
43 #include <linux/spinlock.h>
44 #include <linux/blkdev.h>
45 #include <linux/delay.h>
46 #include <linux/timer.h>
47 #include <linux/interrupt.h>
48 #include <linux/completion.h>
49 #include <linux/suspend.h>
50 #include <linux/workqueue.h>
51 #include <linux/jiffies.h>
52 #include <linux/scatterlist.h>
53 #include <scsi/scsi.h>
54 #include "scsi_priv.h"
55 #include <scsi/scsi_cmnd.h>
56 #include <scsi/scsi_host.h>
57 #include <linux/libata.h>
58 #include <asm/io.h>
59 #include <asm/semaphore.h>
60 #include <asm/byteorder.h>
61
62 #include "libata.h"
63
64 /* debounce timing parameters in msecs { interval, duration, timeout } */
65 const unsigned long sata_deb_timing_boot[] = { 5, 100, 2000 };
66 const unsigned long sata_deb_timing_eh[] = { 25, 500, 2000 };
67 const unsigned long sata_deb_timing_before_fsrst[] = { 100, 2000, 5000 };
68
69 static unsigned int ata_dev_init_params(struct ata_device *dev,
70 u16 heads, u16 sectors);
71 static unsigned int ata_dev_set_xfermode(struct ata_device *dev);
72 static void ata_dev_xfermask(struct ata_device *dev);
73
74 static unsigned int ata_unique_id = 1;
75 static struct workqueue_struct *ata_wq;
76
77 struct workqueue_struct *ata_aux_wq;
78
79 int atapi_enabled = 1;
80 module_param(atapi_enabled, int, 0444);
81 MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on)");
82
83 int atapi_dmadir = 0;
84 module_param(atapi_dmadir, int, 0444);
85 MODULE_PARM_DESC(atapi_dmadir, "Enable ATAPI DMADIR bridge support (0=off, 1=on)");
86
87 int libata_fua = 0;
88 module_param_named(fua, libata_fua, int, 0444);
89 MODULE_PARM_DESC(fua, "FUA support (0=off, 1=on)");
90
91 MODULE_AUTHOR("Jeff Garzik");
92 MODULE_DESCRIPTION("Library module for ATA devices");
93 MODULE_LICENSE("GPL");
94 MODULE_VERSION(DRV_VERSION);
95
96
97 /**
98 * ata_tf_to_fis - Convert ATA taskfile to SATA FIS structure
99 * @tf: Taskfile to convert
100 * @fis: Buffer into which data will output
101 * @pmp: Port multiplier port
102 *
103 * Converts a standard ATA taskfile to a Serial ATA
104 * FIS structure (Register - Host to Device).
105 *
106 * LOCKING:
107 * Inherited from caller.
108 */
109
110 void ata_tf_to_fis(const struct ata_taskfile *tf, u8 *fis, u8 pmp)
111 {
112 fis[0] = 0x27; /* Register - Host to Device FIS */
113 fis[1] = (pmp & 0xf) | (1 << 7); /* Port multiplier number,
114 bit 7 indicates Command FIS */
115 fis[2] = tf->command;
116 fis[3] = tf->feature;
117
118 fis[4] = tf->lbal;
119 fis[5] = tf->lbam;
120 fis[6] = tf->lbah;
121 fis[7] = tf->device;
122
123 fis[8] = tf->hob_lbal;
124 fis[9] = tf->hob_lbam;
125 fis[10] = tf->hob_lbah;
126 fis[11] = tf->hob_feature;
127
128 fis[12] = tf->nsect;
129 fis[13] = tf->hob_nsect;
130 fis[14] = 0;
131 fis[15] = tf->ctl;
132
133 fis[16] = 0;
134 fis[17] = 0;
135 fis[18] = 0;
136 fis[19] = 0;
137 }
138
139 /**
140 * ata_tf_from_fis - Convert SATA FIS to ATA taskfile
141 * @fis: Buffer from which data will be input
142 * @tf: Taskfile to output
143 *
144 * Converts a serial ATA FIS structure to a standard ATA taskfile.
145 *
146 * LOCKING:
147 * Inherited from caller.
148 */
149
150 void ata_tf_from_fis(const u8 *fis, struct ata_taskfile *tf)
151 {
152 tf->command = fis[2]; /* status */
153 tf->feature = fis[3]; /* error */
154
155 tf->lbal = fis[4];
156 tf->lbam = fis[5];
157 tf->lbah = fis[6];
158 tf->device = fis[7];
159
160 tf->hob_lbal = fis[8];
161 tf->hob_lbam = fis[9];
162 tf->hob_lbah = fis[10];
163
164 tf->nsect = fis[12];
165 tf->hob_nsect = fis[13];
166 }
167
168 static const u8 ata_rw_cmds[] = {
169 /* pio multi */
170 ATA_CMD_READ_MULTI,
171 ATA_CMD_WRITE_MULTI,
172 ATA_CMD_READ_MULTI_EXT,
173 ATA_CMD_WRITE_MULTI_EXT,
174 0,
175 0,
176 0,
177 ATA_CMD_WRITE_MULTI_FUA_EXT,
178 /* pio */
179 ATA_CMD_PIO_READ,
180 ATA_CMD_PIO_WRITE,
181 ATA_CMD_PIO_READ_EXT,
182 ATA_CMD_PIO_WRITE_EXT,
183 0,
184 0,
185 0,
186 0,
187 /* dma */
188 ATA_CMD_READ,
189 ATA_CMD_WRITE,
190 ATA_CMD_READ_EXT,
191 ATA_CMD_WRITE_EXT,
192 0,
193 0,
194 0,
195 ATA_CMD_WRITE_FUA_EXT
196 };
197
198 /**
199 * ata_rwcmd_protocol - set taskfile r/w commands and protocol
200 * @qc: command to examine and configure
201 *
202 * Examine the device configuration and tf->flags to calculate
203 * the proper read/write commands and protocol to use.
204 *
205 * LOCKING:
206 * caller.
207 */
208 int ata_rwcmd_protocol(struct ata_queued_cmd *qc)
209 {
210 struct ata_taskfile *tf = &qc->tf;
211 struct ata_device *dev = qc->dev;
212 u8 cmd;
213
214 int index, fua, lba48, write;
215
216 fua = (tf->flags & ATA_TFLAG_FUA) ? 4 : 0;
217 lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0;
218 write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0;
219
220 if (dev->flags & ATA_DFLAG_PIO) {
221 tf->protocol = ATA_PROT_PIO;
222 index = dev->multi_count ? 0 : 8;
223 } else if (lba48 && (qc->ap->flags & ATA_FLAG_PIO_LBA48)) {
224 /* Unable to use DMA due to host limitation */
225 tf->protocol = ATA_PROT_PIO;
226 index = dev->multi_count ? 0 : 8;
227 } else {
228 tf->protocol = ATA_PROT_DMA;
229 index = 16;
230 }
231
232 cmd = ata_rw_cmds[index + fua + lba48 + write];
233 if (cmd) {
234 tf->command = cmd;
235 return 0;
236 }
237 return -1;
238 }
239
240 /**
241 * ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask
242 * @pio_mask: pio_mask
243 * @mwdma_mask: mwdma_mask
244 * @udma_mask: udma_mask
245 *
246 * Pack @pio_mask, @mwdma_mask and @udma_mask into a single
247 * unsigned int xfer_mask.
248 *
249 * LOCKING:
250 * None.
251 *
252 * RETURNS:
253 * Packed xfer_mask.
254 */
255 static unsigned int ata_pack_xfermask(unsigned int pio_mask,
256 unsigned int mwdma_mask,
257 unsigned int udma_mask)
258 {
259 return ((pio_mask << ATA_SHIFT_PIO) & ATA_MASK_PIO) |
260 ((mwdma_mask << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA) |
261 ((udma_mask << ATA_SHIFT_UDMA) & ATA_MASK_UDMA);
262 }
263
264 /**
265 * ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks
266 * @xfer_mask: xfer_mask to unpack
267 * @pio_mask: resulting pio_mask
268 * @mwdma_mask: resulting mwdma_mask
269 * @udma_mask: resulting udma_mask
270 *
271 * Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask.
272 * Any NULL distination masks will be ignored.
273 */
274 static void ata_unpack_xfermask(unsigned int xfer_mask,
275 unsigned int *pio_mask,
276 unsigned int *mwdma_mask,
277 unsigned int *udma_mask)
278 {
279 if (pio_mask)
280 *pio_mask = (xfer_mask & ATA_MASK_PIO) >> ATA_SHIFT_PIO;
281 if (mwdma_mask)
282 *mwdma_mask = (xfer_mask & ATA_MASK_MWDMA) >> ATA_SHIFT_MWDMA;
283 if (udma_mask)
284 *udma_mask = (xfer_mask & ATA_MASK_UDMA) >> ATA_SHIFT_UDMA;
285 }
286
287 static const struct ata_xfer_ent {
288 int shift, bits;
289 u8 base;
290 } ata_xfer_tbl[] = {
291 { ATA_SHIFT_PIO, ATA_BITS_PIO, XFER_PIO_0 },
292 { ATA_SHIFT_MWDMA, ATA_BITS_MWDMA, XFER_MW_DMA_0 },
293 { ATA_SHIFT_UDMA, ATA_BITS_UDMA, XFER_UDMA_0 },
294 { -1, },
295 };
296
297 /**
298 * ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask
299 * @xfer_mask: xfer_mask of interest
300 *
301 * Return matching XFER_* value for @xfer_mask. Only the highest
302 * bit of @xfer_mask is considered.
303 *
304 * LOCKING:
305 * None.
306 *
307 * RETURNS:
308 * Matching XFER_* value, 0 if no match found.
309 */
310 static u8 ata_xfer_mask2mode(unsigned int xfer_mask)
311 {
312 int highbit = fls(xfer_mask) - 1;
313 const struct ata_xfer_ent *ent;
314
315 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
316 if (highbit >= ent->shift && highbit < ent->shift + ent->bits)
317 return ent->base + highbit - ent->shift;
318 return 0;
319 }
320
321 /**
322 * ata_xfer_mode2mask - Find matching xfer_mask for XFER_*
323 * @xfer_mode: XFER_* of interest
324 *
325 * Return matching xfer_mask for @xfer_mode.
326 *
327 * LOCKING:
328 * None.
329 *
330 * RETURNS:
331 * Matching xfer_mask, 0 if no match found.
332 */
333 static unsigned int ata_xfer_mode2mask(u8 xfer_mode)
334 {
335 const struct ata_xfer_ent *ent;
336
337 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
338 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
339 return 1 << (ent->shift + xfer_mode - ent->base);
340 return 0;
341 }
342
343 /**
344 * ata_xfer_mode2shift - Find matching xfer_shift for XFER_*
345 * @xfer_mode: XFER_* of interest
346 *
347 * Return matching xfer_shift for @xfer_mode.
348 *
349 * LOCKING:
350 * None.
351 *
352 * RETURNS:
353 * Matching xfer_shift, -1 if no match found.
354 */
355 static int ata_xfer_mode2shift(unsigned int xfer_mode)
356 {
357 const struct ata_xfer_ent *ent;
358
359 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
360 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
361 return ent->shift;
362 return -1;
363 }
364
365 /**
366 * ata_mode_string - convert xfer_mask to string
367 * @xfer_mask: mask of bits supported; only highest bit counts.
368 *
369 * Determine string which represents the highest speed
370 * (highest bit in @modemask).
371 *
372 * LOCKING:
373 * None.
374 *
375 * RETURNS:
376 * Constant C string representing highest speed listed in
377 * @mode_mask, or the constant C string "<n/a>".
378 */
379 static const char *ata_mode_string(unsigned int xfer_mask)
380 {
381 static const char * const xfer_mode_str[] = {
382 "PIO0",
383 "PIO1",
384 "PIO2",
385 "PIO3",
386 "PIO4",
387 "MWDMA0",
388 "MWDMA1",
389 "MWDMA2",
390 "UDMA/16",
391 "UDMA/25",
392 "UDMA/33",
393 "UDMA/44",
394 "UDMA/66",
395 "UDMA/100",
396 "UDMA/133",
397 "UDMA7",
398 };
399 int highbit;
400
401 highbit = fls(xfer_mask) - 1;
402 if (highbit >= 0 && highbit < ARRAY_SIZE(xfer_mode_str))
403 return xfer_mode_str[highbit];
404 return "<n/a>";
405 }
406
407 static const char *sata_spd_string(unsigned int spd)
408 {
409 static const char * const spd_str[] = {
410 "1.5 Gbps",
411 "3.0 Gbps",
412 };
413
414 if (spd == 0 || (spd - 1) >= ARRAY_SIZE(spd_str))
415 return "<unknown>";
416 return spd_str[spd - 1];
417 }
418
419 void ata_dev_disable(struct ata_device *dev)
420 {
421 if (ata_dev_enabled(dev) && ata_msg_drv(dev->ap)) {
422 ata_dev_printk(dev, KERN_WARNING, "disabled\n");
423 dev->class++;
424 }
425 }
426
427 /**
428 * ata_pio_devchk - PATA device presence detection
429 * @ap: ATA channel to examine
430 * @device: Device to examine (starting at zero)
431 *
432 * This technique was originally described in
433 * Hale Landis's ATADRVR (www.ata-atapi.com), and
434 * later found its way into the ATA/ATAPI spec.
435 *
436 * Write a pattern to the ATA shadow registers,
437 * and if a device is present, it will respond by
438 * correctly storing and echoing back the
439 * ATA shadow register contents.
440 *
441 * LOCKING:
442 * caller.
443 */
444
445 static unsigned int ata_pio_devchk(struct ata_port *ap,
446 unsigned int device)
447 {
448 struct ata_ioports *ioaddr = &ap->ioaddr;
449 u8 nsect, lbal;
450
451 ap->ops->dev_select(ap, device);
452
453 outb(0x55, ioaddr->nsect_addr);
454 outb(0xaa, ioaddr->lbal_addr);
455
456 outb(0xaa, ioaddr->nsect_addr);
457 outb(0x55, ioaddr->lbal_addr);
458
459 outb(0x55, ioaddr->nsect_addr);
460 outb(0xaa, ioaddr->lbal_addr);
461
462 nsect = inb(ioaddr->nsect_addr);
463 lbal = inb(ioaddr->lbal_addr);
464
465 if ((nsect == 0x55) && (lbal == 0xaa))
466 return 1; /* we found a device */
467
468 return 0; /* nothing found */
469 }
470
471 /**
472 * ata_mmio_devchk - PATA device presence detection
473 * @ap: ATA channel to examine
474 * @device: Device to examine (starting at zero)
475 *
476 * This technique was originally described in
477 * Hale Landis's ATADRVR (www.ata-atapi.com), and
478 * later found its way into the ATA/ATAPI spec.
479 *
480 * Write a pattern to the ATA shadow registers,
481 * and if a device is present, it will respond by
482 * correctly storing and echoing back the
483 * ATA shadow register contents.
484 *
485 * LOCKING:
486 * caller.
487 */
488
489 static unsigned int ata_mmio_devchk(struct ata_port *ap,
490 unsigned int device)
491 {
492 struct ata_ioports *ioaddr = &ap->ioaddr;
493 u8 nsect, lbal;
494
495 ap->ops->dev_select(ap, device);
496
497 writeb(0x55, (void __iomem *) ioaddr->nsect_addr);
498 writeb(0xaa, (void __iomem *) ioaddr->lbal_addr);
499
500 writeb(0xaa, (void __iomem *) ioaddr->nsect_addr);
501 writeb(0x55, (void __iomem *) ioaddr->lbal_addr);
502
503 writeb(0x55, (void __iomem *) ioaddr->nsect_addr);
504 writeb(0xaa, (void __iomem *) ioaddr->lbal_addr);
505
506 nsect = readb((void __iomem *) ioaddr->nsect_addr);
507 lbal = readb((void __iomem *) ioaddr->lbal_addr);
508
509 if ((nsect == 0x55) && (lbal == 0xaa))
510 return 1; /* we found a device */
511
512 return 0; /* nothing found */
513 }
514
515 /**
516 * ata_devchk - PATA device presence detection
517 * @ap: ATA channel to examine
518 * @device: Device to examine (starting at zero)
519 *
520 * Dispatch ATA device presence detection, depending
521 * on whether we are using PIO or MMIO to talk to the
522 * ATA shadow registers.
523 *
524 * LOCKING:
525 * caller.
526 */
527
528 static unsigned int ata_devchk(struct ata_port *ap,
529 unsigned int device)
530 {
531 if (ap->flags & ATA_FLAG_MMIO)
532 return ata_mmio_devchk(ap, device);
533 return ata_pio_devchk(ap, device);
534 }
535
536 /**
537 * ata_dev_classify - determine device type based on ATA-spec signature
538 * @tf: ATA taskfile register set for device to be identified
539 *
540 * Determine from taskfile register contents whether a device is
541 * ATA or ATAPI, as per "Signature and persistence" section
542 * of ATA/PI spec (volume 1, sect 5.14).
543 *
544 * LOCKING:
545 * None.
546 *
547 * RETURNS:
548 * Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, or %ATA_DEV_UNKNOWN
549 * the event of failure.
550 */
551
552 unsigned int ata_dev_classify(const struct ata_taskfile *tf)
553 {
554 /* Apple's open source Darwin code hints that some devices only
555 * put a proper signature into the LBA mid/high registers,
556 * So, we only check those. It's sufficient for uniqueness.
557 */
558
559 if (((tf->lbam == 0) && (tf->lbah == 0)) ||
560 ((tf->lbam == 0x3c) && (tf->lbah == 0xc3))) {
561 DPRINTK("found ATA device by sig\n");
562 return ATA_DEV_ATA;
563 }
564
565 if (((tf->lbam == 0x14) && (tf->lbah == 0xeb)) ||
566 ((tf->lbam == 0x69) && (tf->lbah == 0x96))) {
567 DPRINTK("found ATAPI device by sig\n");
568 return ATA_DEV_ATAPI;
569 }
570
571 DPRINTK("unknown device\n");
572 return ATA_DEV_UNKNOWN;
573 }
574
575 /**
576 * ata_dev_try_classify - Parse returned ATA device signature
577 * @ap: ATA channel to examine
578 * @device: Device to examine (starting at zero)
579 * @r_err: Value of error register on completion
580 *
581 * After an event -- SRST, E.D.D., or SATA COMRESET -- occurs,
582 * an ATA/ATAPI-defined set of values is placed in the ATA
583 * shadow registers, indicating the results of device detection
584 * and diagnostics.
585 *
586 * Select the ATA device, and read the values from the ATA shadow
587 * registers. Then parse according to the Error register value,
588 * and the spec-defined values examined by ata_dev_classify().
589 *
590 * LOCKING:
591 * caller.
592 *
593 * RETURNS:
594 * Device type - %ATA_DEV_ATA, %ATA_DEV_ATAPI or %ATA_DEV_NONE.
595 */
596
597 static unsigned int
598 ata_dev_try_classify(struct ata_port *ap, unsigned int device, u8 *r_err)
599 {
600 struct ata_taskfile tf;
601 unsigned int class;
602 u8 err;
603
604 ap->ops->dev_select(ap, device);
605
606 memset(&tf, 0, sizeof(tf));
607
608 ap->ops->tf_read(ap, &tf);
609 err = tf.feature;
610 if (r_err)
611 *r_err = err;
612
613 /* see if device passed diags */
614 if (err == 1)
615 /* do nothing */ ;
616 else if ((device == 0) && (err == 0x81))
617 /* do nothing */ ;
618 else
619 return ATA_DEV_NONE;
620
621 /* determine if device is ATA or ATAPI */
622 class = ata_dev_classify(&tf);
623
624 if (class == ATA_DEV_UNKNOWN)
625 return ATA_DEV_NONE;
626 if ((class == ATA_DEV_ATA) && (ata_chk_status(ap) == 0))
627 return ATA_DEV_NONE;
628 return class;
629 }
630
631 /**
632 * ata_id_string - Convert IDENTIFY DEVICE page into string
633 * @id: IDENTIFY DEVICE results we will examine
634 * @s: string into which data is output
635 * @ofs: offset into identify device page
636 * @len: length of string to return. must be an even number.
637 *
638 * The strings in the IDENTIFY DEVICE page are broken up into
639 * 16-bit chunks. Run through the string, and output each
640 * 8-bit chunk linearly, regardless of platform.
641 *
642 * LOCKING:
643 * caller.
644 */
645
646 void ata_id_string(const u16 *id, unsigned char *s,
647 unsigned int ofs, unsigned int len)
648 {
649 unsigned int c;
650
651 while (len > 0) {
652 c = id[ofs] >> 8;
653 *s = c;
654 s++;
655
656 c = id[ofs] & 0xff;
657 *s = c;
658 s++;
659
660 ofs++;
661 len -= 2;
662 }
663 }
664
665 /**
666 * ata_id_c_string - Convert IDENTIFY DEVICE page into C string
667 * @id: IDENTIFY DEVICE results we will examine
668 * @s: string into which data is output
669 * @ofs: offset into identify device page
670 * @len: length of string to return. must be an odd number.
671 *
672 * This function is identical to ata_id_string except that it
673 * trims trailing spaces and terminates the resulting string with
674 * null. @len must be actual maximum length (even number) + 1.
675 *
676 * LOCKING:
677 * caller.
678 */
679 void ata_id_c_string(const u16 *id, unsigned char *s,
680 unsigned int ofs, unsigned int len)
681 {
682 unsigned char *p;
683
684 WARN_ON(!(len & 1));
685
686 ata_id_string(id, s, ofs, len - 1);
687
688 p = s + strnlen(s, len - 1);
689 while (p > s && p[-1] == ' ')
690 p--;
691 *p = '\0';
692 }
693
694 static u64 ata_id_n_sectors(const u16 *id)
695 {
696 if (ata_id_has_lba(id)) {
697 if (ata_id_has_lba48(id))
698 return ata_id_u64(id, 100);
699 else
700 return ata_id_u32(id, 60);
701 } else {
702 if (ata_id_current_chs_valid(id))
703 return ata_id_u32(id, 57);
704 else
705 return id[1] * id[3] * id[6];
706 }
707 }
708
709 /**
710 * ata_noop_dev_select - Select device 0/1 on ATA bus
711 * @ap: ATA channel to manipulate
712 * @device: ATA device (numbered from zero) to select
713 *
714 * This function performs no actual function.
715 *
716 * May be used as the dev_select() entry in ata_port_operations.
717 *
718 * LOCKING:
719 * caller.
720 */
721 void ata_noop_dev_select (struct ata_port *ap, unsigned int device)
722 {
723 }
724
725
726 /**
727 * ata_std_dev_select - Select device 0/1 on ATA bus
728 * @ap: ATA channel to manipulate
729 * @device: ATA device (numbered from zero) to select
730 *
731 * Use the method defined in the ATA specification to
732 * make either device 0, or device 1, active on the
733 * ATA channel. Works with both PIO and MMIO.
734 *
735 * May be used as the dev_select() entry in ata_port_operations.
736 *
737 * LOCKING:
738 * caller.
739 */
740
741 void ata_std_dev_select (struct ata_port *ap, unsigned int device)
742 {
743 u8 tmp;
744
745 if (device == 0)
746 tmp = ATA_DEVICE_OBS;
747 else
748 tmp = ATA_DEVICE_OBS | ATA_DEV1;
749
750 if (ap->flags & ATA_FLAG_MMIO) {
751 writeb(tmp, (void __iomem *) ap->ioaddr.device_addr);
752 } else {
753 outb(tmp, ap->ioaddr.device_addr);
754 }
755 ata_pause(ap); /* needed; also flushes, for mmio */
756 }
757
758 /**
759 * ata_dev_select - Select device 0/1 on ATA bus
760 * @ap: ATA channel to manipulate
761 * @device: ATA device (numbered from zero) to select
762 * @wait: non-zero to wait for Status register BSY bit to clear
763 * @can_sleep: non-zero if context allows sleeping
764 *
765 * Use the method defined in the ATA specification to
766 * make either device 0, or device 1, active on the
767 * ATA channel.
768 *
769 * This is a high-level version of ata_std_dev_select(),
770 * which additionally provides the services of inserting
771 * the proper pauses and status polling, where needed.
772 *
773 * LOCKING:
774 * caller.
775 */
776
777 void ata_dev_select(struct ata_port *ap, unsigned int device,
778 unsigned int wait, unsigned int can_sleep)
779 {
780 if (ata_msg_probe(ap)) {
781 ata_port_printk(ap, KERN_INFO, "ata_dev_select: ENTER, ata%u: "
782 "device %u, wait %u\n",
783 ap->id, device, wait);
784 }
785
786 if (wait)
787 ata_wait_idle(ap);
788
789 ap->ops->dev_select(ap, device);
790
791 if (wait) {
792 if (can_sleep && ap->device[device].class == ATA_DEV_ATAPI)
793 msleep(150);
794 ata_wait_idle(ap);
795 }
796 }
797
798 /**
799 * ata_dump_id - IDENTIFY DEVICE info debugging output
800 * @id: IDENTIFY DEVICE page to dump
801 *
802 * Dump selected 16-bit words from the given IDENTIFY DEVICE
803 * page.
804 *
805 * LOCKING:
806 * caller.
807 */
808
809 static inline void ata_dump_id(const u16 *id)
810 {
811 DPRINTK("49==0x%04x "
812 "53==0x%04x "
813 "63==0x%04x "
814 "64==0x%04x "
815 "75==0x%04x \n",
816 id[49],
817 id[53],
818 id[63],
819 id[64],
820 id[75]);
821 DPRINTK("80==0x%04x "
822 "81==0x%04x "
823 "82==0x%04x "
824 "83==0x%04x "
825 "84==0x%04x \n",
826 id[80],
827 id[81],
828 id[82],
829 id[83],
830 id[84]);
831 DPRINTK("88==0x%04x "
832 "93==0x%04x\n",
833 id[88],
834 id[93]);
835 }
836
837 /**
838 * ata_id_xfermask - Compute xfermask from the given IDENTIFY data
839 * @id: IDENTIFY data to compute xfer mask from
840 *
841 * Compute the xfermask for this device. This is not as trivial
842 * as it seems if we must consider early devices correctly.
843 *
844 * FIXME: pre IDE drive timing (do we care ?).
845 *
846 * LOCKING:
847 * None.
848 *
849 * RETURNS:
850 * Computed xfermask
851 */
852 static unsigned int ata_id_xfermask(const u16 *id)
853 {
854 unsigned int pio_mask, mwdma_mask, udma_mask;
855
856 /* Usual case. Word 53 indicates word 64 is valid */
857 if (id[ATA_ID_FIELD_VALID] & (1 << 1)) {
858 pio_mask = id[ATA_ID_PIO_MODES] & 0x03;
859 pio_mask <<= 3;
860 pio_mask |= 0x7;
861 } else {
862 /* If word 64 isn't valid then Word 51 high byte holds
863 * the PIO timing number for the maximum. Turn it into
864 * a mask.
865 */
866 pio_mask = (2 << (id[ATA_ID_OLD_PIO_MODES] & 0xFF)) - 1 ;
867
868 /* But wait.. there's more. Design your standards by
869 * committee and you too can get a free iordy field to
870 * process. However its the speeds not the modes that
871 * are supported... Note drivers using the timing API
872 * will get this right anyway
873 */
874 }
875
876 mwdma_mask = id[ATA_ID_MWDMA_MODES] & 0x07;
877
878 udma_mask = 0;
879 if (id[ATA_ID_FIELD_VALID] & (1 << 2))
880 udma_mask = id[ATA_ID_UDMA_MODES] & 0xff;
881
882 return ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
883 }
884
885 /**
886 * ata_port_queue_task - Queue port_task
887 * @ap: The ata_port to queue port_task for
888 * @fn: workqueue function to be scheduled
889 * @data: data value to pass to workqueue function
890 * @delay: delay time for workqueue function
891 *
892 * Schedule @fn(@data) for execution after @delay jiffies using
893 * port_task. There is one port_task per port and it's the
894 * user(low level driver)'s responsibility to make sure that only
895 * one task is active at any given time.
896 *
897 * libata core layer takes care of synchronization between
898 * port_task and EH. ata_port_queue_task() may be ignored for EH
899 * synchronization.
900 *
901 * LOCKING:
902 * Inherited from caller.
903 */
904 void ata_port_queue_task(struct ata_port *ap, void (*fn)(void *), void *data,
905 unsigned long delay)
906 {
907 int rc;
908
909 if (ap->flags & ATA_FLAG_FLUSH_PORT_TASK)
910 return;
911
912 PREPARE_WORK(&ap->port_task, fn, data);
913
914 if (!delay)
915 rc = queue_work(ata_wq, &ap->port_task);
916 else
917 rc = queue_delayed_work(ata_wq, &ap->port_task, delay);
918
919 /* rc == 0 means that another user is using port task */
920 WARN_ON(rc == 0);
921 }
922
923 /**
924 * ata_port_flush_task - Flush port_task
925 * @ap: The ata_port to flush port_task for
926 *
927 * After this function completes, port_task is guranteed not to
928 * be running or scheduled.
929 *
930 * LOCKING:
931 * Kernel thread context (may sleep)
932 */
933 void ata_port_flush_task(struct ata_port *ap)
934 {
935 unsigned long flags;
936
937 DPRINTK("ENTER\n");
938
939 spin_lock_irqsave(ap->lock, flags);
940 ap->flags |= ATA_FLAG_FLUSH_PORT_TASK;
941 spin_unlock_irqrestore(ap->lock, flags);
942
943 DPRINTK("flush #1\n");
944 flush_workqueue(ata_wq);
945
946 /*
947 * At this point, if a task is running, it's guaranteed to see
948 * the FLUSH flag; thus, it will never queue pio tasks again.
949 * Cancel and flush.
950 */
951 if (!cancel_delayed_work(&ap->port_task)) {
952 if (ata_msg_ctl(ap))
953 ata_port_printk(ap, KERN_DEBUG, "%s: flush #2\n", __FUNCTION__);
954 flush_workqueue(ata_wq);
955 }
956
957 spin_lock_irqsave(ap->lock, flags);
958 ap->flags &= ~ATA_FLAG_FLUSH_PORT_TASK;
959 spin_unlock_irqrestore(ap->lock, flags);
960
961 if (ata_msg_ctl(ap))
962 ata_port_printk(ap, KERN_DEBUG, "%s: EXIT\n", __FUNCTION__);
963 }
964
965 void ata_qc_complete_internal(struct ata_queued_cmd *qc)
966 {
967 struct completion *waiting = qc->private_data;
968
969 complete(waiting);
970 }
971
972 /**
973 * ata_exec_internal - execute libata internal command
974 * @dev: Device to which the command is sent
975 * @tf: Taskfile registers for the command and the result
976 * @cdb: CDB for packet command
977 * @dma_dir: Data tranfer direction of the command
978 * @buf: Data buffer of the command
979 * @buflen: Length of data buffer
980 *
981 * Executes libata internal command with timeout. @tf contains
982 * command on entry and result on return. Timeout and error
983 * conditions are reported via return value. No recovery action
984 * is taken after a command times out. It's caller's duty to
985 * clean up after timeout.
986 *
987 * LOCKING:
988 * None. Should be called with kernel context, might sleep.
989 *
990 * RETURNS:
991 * Zero on success, AC_ERR_* mask on failure
992 */
993 unsigned ata_exec_internal(struct ata_device *dev,
994 struct ata_taskfile *tf, const u8 *cdb,
995 int dma_dir, void *buf, unsigned int buflen)
996 {
997 struct ata_port *ap = dev->ap;
998 u8 command = tf->command;
999 struct ata_queued_cmd *qc;
1000 unsigned int tag, preempted_tag;
1001 u32 preempted_sactive, preempted_qc_active;
1002 DECLARE_COMPLETION(wait);
1003 unsigned long flags;
1004 unsigned int err_mask;
1005 int rc;
1006
1007 spin_lock_irqsave(ap->lock, flags);
1008
1009 /* no internal command while frozen */
1010 if (ap->flags & ATA_FLAG_FROZEN) {
1011 spin_unlock_irqrestore(ap->lock, flags);
1012 return AC_ERR_SYSTEM;
1013 }
1014
1015 /* initialize internal qc */
1016
1017 /* XXX: Tag 0 is used for drivers with legacy EH as some
1018 * drivers choke if any other tag is given. This breaks
1019 * ata_tag_internal() test for those drivers. Don't use new
1020 * EH stuff without converting to it.
1021 */
1022 if (ap->ops->error_handler)
1023 tag = ATA_TAG_INTERNAL;
1024 else
1025 tag = 0;
1026
1027 if (test_and_set_bit(tag, &ap->qc_allocated))
1028 BUG();
1029 qc = __ata_qc_from_tag(ap, tag);
1030
1031 qc->tag = tag;
1032 qc->scsicmd = NULL;
1033 qc->ap = ap;
1034 qc->dev = dev;
1035 ata_qc_reinit(qc);
1036
1037 preempted_tag = ap->active_tag;
1038 preempted_sactive = ap->sactive;
1039 preempted_qc_active = ap->qc_active;
1040 ap->active_tag = ATA_TAG_POISON;
1041 ap->sactive = 0;
1042 ap->qc_active = 0;
1043
1044 /* prepare & issue qc */
1045 qc->tf = *tf;
1046 if (cdb)
1047 memcpy(qc->cdb, cdb, ATAPI_CDB_LEN);
1048 qc->flags |= ATA_QCFLAG_RESULT_TF;
1049 qc->dma_dir = dma_dir;
1050 if (dma_dir != DMA_NONE) {
1051 ata_sg_init_one(qc, buf, buflen);
1052 qc->nsect = buflen / ATA_SECT_SIZE;
1053 }
1054
1055 qc->private_data = &wait;
1056 qc->complete_fn = ata_qc_complete_internal;
1057
1058 ata_qc_issue(qc);
1059
1060 spin_unlock_irqrestore(ap->lock, flags);
1061
1062 rc = wait_for_completion_timeout(&wait, ATA_TMOUT_INTERNAL);
1063
1064 ata_port_flush_task(ap);
1065
1066 if (!rc) {
1067 spin_lock_irqsave(ap->lock, flags);
1068
1069 /* We're racing with irq here. If we lose, the
1070 * following test prevents us from completing the qc
1071 * twice. If we win, the port is frozen and will be
1072 * cleaned up by ->post_internal_cmd().
1073 */
1074 if (qc->flags & ATA_QCFLAG_ACTIVE) {
1075 qc->err_mask |= AC_ERR_TIMEOUT;
1076
1077 if (ap->ops->error_handler)
1078 ata_port_freeze(ap);
1079 else
1080 ata_qc_complete(qc);
1081
1082 if (ata_msg_warn(ap))
1083 ata_dev_printk(dev, KERN_WARNING,
1084 "qc timeout (cmd 0x%x)\n", command);
1085 }
1086
1087 spin_unlock_irqrestore(ap->lock, flags);
1088 }
1089
1090 /* do post_internal_cmd */
1091 if (ap->ops->post_internal_cmd)
1092 ap->ops->post_internal_cmd(qc);
1093
1094 if (qc->flags & ATA_QCFLAG_FAILED && !qc->err_mask) {
1095 if (ata_msg_warn(ap))
1096 ata_dev_printk(dev, KERN_WARNING,
1097 "zero err_mask for failed "
1098 "internal command, assuming AC_ERR_OTHER\n");
1099 qc->err_mask |= AC_ERR_OTHER;
1100 }
1101
1102 /* finish up */
1103 spin_lock_irqsave(ap->lock, flags);
1104
1105 *tf = qc->result_tf;
1106 err_mask = qc->err_mask;
1107
1108 ata_qc_free(qc);
1109 ap->active_tag = preempted_tag;
1110 ap->sactive = preempted_sactive;
1111 ap->qc_active = preempted_qc_active;
1112
1113 /* XXX - Some LLDDs (sata_mv) disable port on command failure.
1114 * Until those drivers are fixed, we detect the condition
1115 * here, fail the command with AC_ERR_SYSTEM and reenable the
1116 * port.
1117 *
1118 * Note that this doesn't change any behavior as internal
1119 * command failure results in disabling the device in the
1120 * higher layer for LLDDs without new reset/EH callbacks.
1121 *
1122 * Kill the following code as soon as those drivers are fixed.
1123 */
1124 if (ap->flags & ATA_FLAG_DISABLED) {
1125 err_mask |= AC_ERR_SYSTEM;
1126 ata_port_probe(ap);
1127 }
1128
1129 spin_unlock_irqrestore(ap->lock, flags);
1130
1131 return err_mask;
1132 }
1133
1134 /**
1135 * ata_do_simple_cmd - execute simple internal command
1136 * @dev: Device to which the command is sent
1137 * @cmd: Opcode to execute
1138 *
1139 * Execute a 'simple' command, that only consists of the opcode
1140 * 'cmd' itself, without filling any other registers
1141 *
1142 * LOCKING:
1143 * Kernel thread context (may sleep).
1144 *
1145 * RETURNS:
1146 * Zero on success, AC_ERR_* mask on failure
1147 */
1148 static unsigned int ata_do_simple_cmd(struct ata_device *dev, u8 cmd)
1149 {
1150 struct ata_taskfile tf;
1151
1152 ata_tf_init(dev, &tf);
1153
1154 tf.command = cmd;
1155 tf.flags |= ATA_TFLAG_DEVICE;
1156 tf.protocol = ATA_PROT_NODATA;
1157
1158 return ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
1159 }
1160
1161 /**
1162 * ata_pio_need_iordy - check if iordy needed
1163 * @adev: ATA device
1164 *
1165 * Check if the current speed of the device requires IORDY. Used
1166 * by various controllers for chip configuration.
1167 */
1168
1169 unsigned int ata_pio_need_iordy(const struct ata_device *adev)
1170 {
1171 int pio;
1172 int speed = adev->pio_mode - XFER_PIO_0;
1173
1174 if (speed < 2)
1175 return 0;
1176 if (speed > 2)
1177 return 1;
1178
1179 /* If we have no drive specific rule, then PIO 2 is non IORDY */
1180
1181 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE */
1182 pio = adev->id[ATA_ID_EIDE_PIO];
1183 /* Is the speed faster than the drive allows non IORDY ? */
1184 if (pio) {
1185 /* This is cycle times not frequency - watch the logic! */
1186 if (pio > 240) /* PIO2 is 240nS per cycle */
1187 return 1;
1188 return 0;
1189 }
1190 }
1191 return 0;
1192 }
1193
1194 /**
1195 * ata_dev_read_id - Read ID data from the specified device
1196 * @dev: target device
1197 * @p_class: pointer to class of the target device (may be changed)
1198 * @post_reset: is this read ID post-reset?
1199 * @id: buffer to read IDENTIFY data into
1200 *
1201 * Read ID data from the specified device. ATA_CMD_ID_ATA is
1202 * performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI
1203 * devices. This function also issues ATA_CMD_INIT_DEV_PARAMS
1204 * for pre-ATA4 drives.
1205 *
1206 * LOCKING:
1207 * Kernel thread context (may sleep)
1208 *
1209 * RETURNS:
1210 * 0 on success, -errno otherwise.
1211 */
1212 int ata_dev_read_id(struct ata_device *dev, unsigned int *p_class,
1213 int post_reset, u16 *id)
1214 {
1215 struct ata_port *ap = dev->ap;
1216 unsigned int class = *p_class;
1217 struct ata_taskfile tf;
1218 unsigned int err_mask = 0;
1219 const char *reason;
1220 int rc;
1221
1222 if (ata_msg_ctl(ap))
1223 ata_dev_printk(dev, KERN_DEBUG, "%s: ENTER, host %u, dev %u\n",
1224 __FUNCTION__, ap->id, dev->devno);
1225
1226 ata_dev_select(ap, dev->devno, 1, 1); /* select device 0/1 */
1227
1228 retry:
1229 ata_tf_init(dev, &tf);
1230
1231 switch (class) {
1232 case ATA_DEV_ATA:
1233 tf.command = ATA_CMD_ID_ATA;
1234 break;
1235 case ATA_DEV_ATAPI:
1236 tf.command = ATA_CMD_ID_ATAPI;
1237 break;
1238 default:
1239 rc = -ENODEV;
1240 reason = "unsupported class";
1241 goto err_out;
1242 }
1243
1244 tf.protocol = ATA_PROT_PIO;
1245
1246 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_FROM_DEVICE,
1247 id, sizeof(id[0]) * ATA_ID_WORDS);
1248 if (err_mask) {
1249 rc = -EIO;
1250 reason = "I/O error";
1251 goto err_out;
1252 }
1253
1254 swap_buf_le16(id, ATA_ID_WORDS);
1255
1256 /* sanity check */
1257 if ((class == ATA_DEV_ATA) != (ata_id_is_ata(id) | ata_id_is_cfa(id))) {
1258 rc = -EINVAL;
1259 reason = "device reports illegal type";
1260 goto err_out;
1261 }
1262
1263 if (post_reset && class == ATA_DEV_ATA) {
1264 /*
1265 * The exact sequence expected by certain pre-ATA4 drives is:
1266 * SRST RESET
1267 * IDENTIFY
1268 * INITIALIZE DEVICE PARAMETERS
1269 * anything else..
1270 * Some drives were very specific about that exact sequence.
1271 */
1272 if (ata_id_major_version(id) < 4 || !ata_id_has_lba(id)) {
1273 err_mask = ata_dev_init_params(dev, id[3], id[6]);
1274 if (err_mask) {
1275 rc = -EIO;
1276 reason = "INIT_DEV_PARAMS failed";
1277 goto err_out;
1278 }
1279
1280 /* current CHS translation info (id[53-58]) might be
1281 * changed. reread the identify device info.
1282 */
1283 post_reset = 0;
1284 goto retry;
1285 }
1286 }
1287
1288 *p_class = class;
1289
1290 return 0;
1291
1292 err_out:
1293 if (ata_msg_warn(ap))
1294 ata_dev_printk(dev, KERN_WARNING, "failed to IDENTIFY "
1295 "(%s, err_mask=0x%x)\n", reason, err_mask);
1296 return rc;
1297 }
1298
1299 static inline u8 ata_dev_knobble(struct ata_device *dev)
1300 {
1301 return ((dev->ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(dev->id)));
1302 }
1303
1304 static void ata_dev_config_ncq(struct ata_device *dev,
1305 char *desc, size_t desc_sz)
1306 {
1307 struct ata_port *ap = dev->ap;
1308 int hdepth = 0, ddepth = ata_id_queue_depth(dev->id);
1309
1310 if (!ata_id_has_ncq(dev->id)) {
1311 desc[0] = '\0';
1312 return;
1313 }
1314
1315 if (ap->flags & ATA_FLAG_NCQ) {
1316 hdepth = min(ap->host->can_queue, ATA_MAX_QUEUE - 1);
1317 dev->flags |= ATA_DFLAG_NCQ;
1318 }
1319
1320 if (hdepth >= ddepth)
1321 snprintf(desc, desc_sz, "NCQ (depth %d)", ddepth);
1322 else
1323 snprintf(desc, desc_sz, "NCQ (depth %d/%d)", hdepth, ddepth);
1324 }
1325
1326 /**
1327 * ata_dev_configure - Configure the specified ATA/ATAPI device
1328 * @dev: Target device to configure
1329 * @print_info: Enable device info printout
1330 *
1331 * Configure @dev according to @dev->id. Generic and low-level
1332 * driver specific fixups are also applied.
1333 *
1334 * LOCKING:
1335 * Kernel thread context (may sleep)
1336 *
1337 * RETURNS:
1338 * 0 on success, -errno otherwise
1339 */
1340 int ata_dev_configure(struct ata_device *dev, int print_info)
1341 {
1342 struct ata_port *ap = dev->ap;
1343 const u16 *id = dev->id;
1344 unsigned int xfer_mask;
1345 int i, rc;
1346
1347 if (!ata_dev_enabled(dev) && ata_msg_info(ap)) {
1348 ata_dev_printk(dev, KERN_INFO, "%s: ENTER/EXIT (host %u, dev %u) -- nodev\n",
1349 __FUNCTION__, ap->id, dev->devno);
1350 return 0;
1351 }
1352
1353 if (ata_msg_probe(ap))
1354 ata_dev_printk(dev, KERN_DEBUG, "%s: ENTER, host %u, dev %u\n",
1355 __FUNCTION__, ap->id, dev->devno);
1356
1357 /* print device capabilities */
1358 if (ata_msg_probe(ap))
1359 ata_dev_printk(dev, KERN_DEBUG, "%s: cfg 49:%04x 82:%04x 83:%04x "
1360 "84:%04x 85:%04x 86:%04x 87:%04x 88:%04x\n",
1361 __FUNCTION__,
1362 id[49], id[82], id[83], id[84],
1363 id[85], id[86], id[87], id[88]);
1364
1365 /* initialize to-be-configured parameters */
1366 dev->flags &= ~ATA_DFLAG_CFG_MASK;
1367 dev->max_sectors = 0;
1368 dev->cdb_len = 0;
1369 dev->n_sectors = 0;
1370 dev->cylinders = 0;
1371 dev->heads = 0;
1372 dev->sectors = 0;
1373
1374 /*
1375 * common ATA, ATAPI feature tests
1376 */
1377
1378 /* find max transfer mode; for printk only */
1379 xfer_mask = ata_id_xfermask(id);
1380
1381 if (ata_msg_probe(ap))
1382 ata_dump_id(id);
1383
1384 /* ATA-specific feature tests */
1385 if (dev->class == ATA_DEV_ATA) {
1386 dev->n_sectors = ata_id_n_sectors(id);
1387
1388 if (ata_id_has_lba(id)) {
1389 const char *lba_desc;
1390 char ncq_desc[20];
1391
1392 lba_desc = "LBA";
1393 dev->flags |= ATA_DFLAG_LBA;
1394 if (ata_id_has_lba48(id)) {
1395 dev->flags |= ATA_DFLAG_LBA48;
1396 lba_desc = "LBA48";
1397 }
1398
1399 /* config NCQ */
1400 ata_dev_config_ncq(dev, ncq_desc, sizeof(ncq_desc));
1401
1402 /* print device info to dmesg */
1403 if (ata_msg_info(ap))
1404 ata_dev_printk(dev, KERN_INFO, "ATA-%d, "
1405 "max %s, %Lu sectors: %s %s\n",
1406 ata_id_major_version(id),
1407 ata_mode_string(xfer_mask),
1408 (unsigned long long)dev->n_sectors,
1409 lba_desc, ncq_desc);
1410 } else {
1411 /* CHS */
1412
1413 /* Default translation */
1414 dev->cylinders = id[1];
1415 dev->heads = id[3];
1416 dev->sectors = id[6];
1417
1418 if (ata_id_current_chs_valid(id)) {
1419 /* Current CHS translation is valid. */
1420 dev->cylinders = id[54];
1421 dev->heads = id[55];
1422 dev->sectors = id[56];
1423 }
1424
1425 /* print device info to dmesg */
1426 if (ata_msg_info(ap))
1427 ata_dev_printk(dev, KERN_INFO, "ATA-%d, "
1428 "max %s, %Lu sectors: CHS %u/%u/%u\n",
1429 ata_id_major_version(id),
1430 ata_mode_string(xfer_mask),
1431 (unsigned long long)dev->n_sectors,
1432 dev->cylinders, dev->heads, dev->sectors);
1433 }
1434
1435 if (dev->id[59] & 0x100) {
1436 dev->multi_count = dev->id[59] & 0xff;
1437 if (ata_msg_info(ap))
1438 ata_dev_printk(dev, KERN_INFO, "ata%u: dev %u multi count %u\n",
1439 ap->id, dev->devno, dev->multi_count);
1440 }
1441
1442 dev->cdb_len = 16;
1443 }
1444
1445 /* ATAPI-specific feature tests */
1446 else if (dev->class == ATA_DEV_ATAPI) {
1447 char *cdb_intr_string = "";
1448
1449 rc = atapi_cdb_len(id);
1450 if ((rc < 12) || (rc > ATAPI_CDB_LEN)) {
1451 if (ata_msg_warn(ap))
1452 ata_dev_printk(dev, KERN_WARNING,
1453 "unsupported CDB len\n");
1454 rc = -EINVAL;
1455 goto err_out_nosup;
1456 }
1457 dev->cdb_len = (unsigned int) rc;
1458
1459 if (ata_id_cdb_intr(dev->id)) {
1460 dev->flags |= ATA_DFLAG_CDB_INTR;
1461 cdb_intr_string = ", CDB intr";
1462 }
1463
1464 /* print device info to dmesg */
1465 if (ata_msg_info(ap))
1466 ata_dev_printk(dev, KERN_INFO, "ATAPI, max %s%s\n",
1467 ata_mode_string(xfer_mask),
1468 cdb_intr_string);
1469 }
1470
1471 ap->host->max_cmd_len = 0;
1472 for (i = 0; i < ATA_MAX_DEVICES; i++)
1473 ap->host->max_cmd_len = max_t(unsigned int,
1474 ap->host->max_cmd_len,
1475 ap->device[i].cdb_len);
1476
1477 /* limit bridge transfers to udma5, 200 sectors */
1478 if (ata_dev_knobble(dev)) {
1479 if (ata_msg_info(ap))
1480 ata_dev_printk(dev, KERN_INFO,
1481 "applying bridge limits\n");
1482 dev->udma_mask &= ATA_UDMA5;
1483 dev->max_sectors = ATA_MAX_SECTORS;
1484 }
1485
1486 if (ap->ops->dev_config)
1487 ap->ops->dev_config(ap, dev);
1488
1489 if (ata_msg_probe(ap))
1490 ata_dev_printk(dev, KERN_DEBUG, "%s: EXIT, drv_stat = 0x%x\n",
1491 __FUNCTION__, ata_chk_status(ap));
1492 return 0;
1493
1494 err_out_nosup:
1495 if (ata_msg_probe(ap))
1496 ata_dev_printk(dev, KERN_DEBUG,
1497 "%s: EXIT, err\n", __FUNCTION__);
1498 return rc;
1499 }
1500
1501 /**
1502 * ata_bus_probe - Reset and probe ATA bus
1503 * @ap: Bus to probe
1504 *
1505 * Master ATA bus probing function. Initiates a hardware-dependent
1506 * bus reset, then attempts to identify any devices found on
1507 * the bus.
1508 *
1509 * LOCKING:
1510 * PCI/etc. bus probe sem.
1511 *
1512 * RETURNS:
1513 * Zero on success, negative errno otherwise.
1514 */
1515
1516 static int ata_bus_probe(struct ata_port *ap)
1517 {
1518 unsigned int classes[ATA_MAX_DEVICES];
1519 int tries[ATA_MAX_DEVICES];
1520 int i, rc, down_xfermask;
1521 struct ata_device *dev;
1522
1523 ata_port_probe(ap);
1524
1525 for (i = 0; i < ATA_MAX_DEVICES; i++)
1526 tries[i] = ATA_PROBE_MAX_TRIES;
1527
1528 retry:
1529 down_xfermask = 0;
1530
1531 /* reset and determine device classes */
1532 ap->ops->phy_reset(ap);
1533
1534 for (i = 0; i < ATA_MAX_DEVICES; i++) {
1535 dev = &ap->device[i];
1536
1537 if (!(ap->flags & ATA_FLAG_DISABLED) &&
1538 dev->class != ATA_DEV_UNKNOWN)
1539 classes[dev->devno] = dev->class;
1540 else
1541 classes[dev->devno] = ATA_DEV_NONE;
1542
1543 dev->class = ATA_DEV_UNKNOWN;
1544 }
1545
1546 ata_port_probe(ap);
1547
1548 /* after the reset the device state is PIO 0 and the controller
1549 state is undefined. Record the mode */
1550
1551 for (i = 0; i < ATA_MAX_DEVICES; i++)
1552 ap->device[i].pio_mode = XFER_PIO_0;
1553
1554 /* read IDENTIFY page and configure devices */
1555 for (i = 0; i < ATA_MAX_DEVICES; i++) {
1556 dev = &ap->device[i];
1557
1558 if (tries[i])
1559 dev->class = classes[i];
1560
1561 if (!ata_dev_enabled(dev))
1562 continue;
1563
1564 rc = ata_dev_read_id(dev, &dev->class, 1, dev->id);
1565 if (rc)
1566 goto fail;
1567
1568 rc = ata_dev_configure(dev, 1);
1569 if (rc)
1570 goto fail;
1571 }
1572
1573 /* configure transfer mode */
1574 rc = ata_set_mode(ap, &dev);
1575 if (rc) {
1576 down_xfermask = 1;
1577 goto fail;
1578 }
1579
1580 for (i = 0; i < ATA_MAX_DEVICES; i++)
1581 if (ata_dev_enabled(&ap->device[i]))
1582 return 0;
1583
1584 /* no device present, disable port */
1585 ata_port_disable(ap);
1586 ap->ops->port_disable(ap);
1587 return -ENODEV;
1588
1589 fail:
1590 switch (rc) {
1591 case -EINVAL:
1592 case -ENODEV:
1593 tries[dev->devno] = 0;
1594 break;
1595 case -EIO:
1596 sata_down_spd_limit(ap);
1597 /* fall through */
1598 default:
1599 tries[dev->devno]--;
1600 if (down_xfermask &&
1601 ata_down_xfermask_limit(dev, tries[dev->devno] == 1))
1602 tries[dev->devno] = 0;
1603 }
1604
1605 if (!tries[dev->devno]) {
1606 ata_down_xfermask_limit(dev, 1);
1607 ata_dev_disable(dev);
1608 }
1609
1610 goto retry;
1611 }
1612
1613 /**
1614 * ata_port_probe - Mark port as enabled
1615 * @ap: Port for which we indicate enablement
1616 *
1617 * Modify @ap data structure such that the system
1618 * thinks that the entire port is enabled.
1619 *
1620 * LOCKING: host_set lock, or some other form of
1621 * serialization.
1622 */
1623
1624 void ata_port_probe(struct ata_port *ap)
1625 {
1626 ap->flags &= ~ATA_FLAG_DISABLED;
1627 }
1628
1629 /**
1630 * sata_print_link_status - Print SATA link status
1631 * @ap: SATA port to printk link status about
1632 *
1633 * This function prints link speed and status of a SATA link.
1634 *
1635 * LOCKING:
1636 * None.
1637 */
1638 static void sata_print_link_status(struct ata_port *ap)
1639 {
1640 u32 sstatus, scontrol, tmp;
1641
1642 if (sata_scr_read(ap, SCR_STATUS, &sstatus))
1643 return;
1644 sata_scr_read(ap, SCR_CONTROL, &scontrol);
1645
1646 if (ata_port_online(ap)) {
1647 tmp = (sstatus >> 4) & 0xf;
1648 ata_port_printk(ap, KERN_INFO,
1649 "SATA link up %s (SStatus %X SControl %X)\n",
1650 sata_spd_string(tmp), sstatus, scontrol);
1651 } else {
1652 ata_port_printk(ap, KERN_INFO,
1653 "SATA link down (SStatus %X SControl %X)\n",
1654 sstatus, scontrol);
1655 }
1656 }
1657
1658 /**
1659 * __sata_phy_reset - Wake/reset a low-level SATA PHY
1660 * @ap: SATA port associated with target SATA PHY.
1661 *
1662 * This function issues commands to standard SATA Sxxx
1663 * PHY registers, to wake up the phy (and device), and
1664 * clear any reset condition.
1665 *
1666 * LOCKING:
1667 * PCI/etc. bus probe sem.
1668 *
1669 */
1670 void __sata_phy_reset(struct ata_port *ap)
1671 {
1672 u32 sstatus;
1673 unsigned long timeout = jiffies + (HZ * 5);
1674
1675 if (ap->flags & ATA_FLAG_SATA_RESET) {
1676 /* issue phy wake/reset */
1677 sata_scr_write_flush(ap, SCR_CONTROL, 0x301);
1678 /* Couldn't find anything in SATA I/II specs, but
1679 * AHCI-1.1 10.4.2 says at least 1 ms. */
1680 mdelay(1);
1681 }
1682 /* phy wake/clear reset */
1683 sata_scr_write_flush(ap, SCR_CONTROL, 0x300);
1684
1685 /* wait for phy to become ready, if necessary */
1686 do {
1687 msleep(200);
1688 sata_scr_read(ap, SCR_STATUS, &sstatus);
1689 if ((sstatus & 0xf) != 1)
1690 break;
1691 } while (time_before(jiffies, timeout));
1692
1693 /* print link status */
1694 sata_print_link_status(ap);
1695
1696 /* TODO: phy layer with polling, timeouts, etc. */
1697 if (!ata_port_offline(ap))
1698 ata_port_probe(ap);
1699 else
1700 ata_port_disable(ap);
1701
1702 if (ap->flags & ATA_FLAG_DISABLED)
1703 return;
1704
1705 if (ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT)) {
1706 ata_port_disable(ap);
1707 return;
1708 }
1709
1710 ap->cbl = ATA_CBL_SATA;
1711 }
1712
1713 /**
1714 * sata_phy_reset - Reset SATA bus.
1715 * @ap: SATA port associated with target SATA PHY.
1716 *
1717 * This function resets the SATA bus, and then probes
1718 * the bus for devices.
1719 *
1720 * LOCKING:
1721 * PCI/etc. bus probe sem.
1722 *
1723 */
1724 void sata_phy_reset(struct ata_port *ap)
1725 {
1726 __sata_phy_reset(ap);
1727 if (ap->flags & ATA_FLAG_DISABLED)
1728 return;
1729 ata_bus_reset(ap);
1730 }
1731
1732 /**
1733 * ata_dev_pair - return other device on cable
1734 * @adev: device
1735 *
1736 * Obtain the other device on the same cable, or if none is
1737 * present NULL is returned
1738 */
1739
1740 struct ata_device *ata_dev_pair(struct ata_device *adev)
1741 {
1742 struct ata_port *ap = adev->ap;
1743 struct ata_device *pair = &ap->device[1 - adev->devno];
1744 if (!ata_dev_enabled(pair))
1745 return NULL;
1746 return pair;
1747 }
1748
1749 /**
1750 * ata_port_disable - Disable port.
1751 * @ap: Port to be disabled.
1752 *
1753 * Modify @ap data structure such that the system
1754 * thinks that the entire port is disabled, and should
1755 * never attempt to probe or communicate with devices
1756 * on this port.
1757 *
1758 * LOCKING: host_set lock, or some other form of
1759 * serialization.
1760 */
1761
1762 void ata_port_disable(struct ata_port *ap)
1763 {
1764 ap->device[0].class = ATA_DEV_NONE;
1765 ap->device[1].class = ATA_DEV_NONE;
1766 ap->flags |= ATA_FLAG_DISABLED;
1767 }
1768
1769 /**
1770 * sata_down_spd_limit - adjust SATA spd limit downward
1771 * @ap: Port to adjust SATA spd limit for
1772 *
1773 * Adjust SATA spd limit of @ap downward. Note that this
1774 * function only adjusts the limit. The change must be applied
1775 * using sata_set_spd().
1776 *
1777 * LOCKING:
1778 * Inherited from caller.
1779 *
1780 * RETURNS:
1781 * 0 on success, negative errno on failure
1782 */
1783 int sata_down_spd_limit(struct ata_port *ap)
1784 {
1785 u32 sstatus, spd, mask;
1786 int rc, highbit;
1787
1788 rc = sata_scr_read(ap, SCR_STATUS, &sstatus);
1789 if (rc)
1790 return rc;
1791
1792 mask = ap->sata_spd_limit;
1793 if (mask <= 1)
1794 return -EINVAL;
1795 highbit = fls(mask) - 1;
1796 mask &= ~(1 << highbit);
1797
1798 spd = (sstatus >> 4) & 0xf;
1799 if (spd <= 1)
1800 return -EINVAL;
1801 spd--;
1802 mask &= (1 << spd) - 1;
1803 if (!mask)
1804 return -EINVAL;
1805
1806 ap->sata_spd_limit = mask;
1807
1808 ata_port_printk(ap, KERN_WARNING, "limiting SATA link speed to %s\n",
1809 sata_spd_string(fls(mask)));
1810
1811 return 0;
1812 }
1813
1814 static int __sata_set_spd_needed(struct ata_port *ap, u32 *scontrol)
1815 {
1816 u32 spd, limit;
1817
1818 if (ap->sata_spd_limit == UINT_MAX)
1819 limit = 0;
1820 else
1821 limit = fls(ap->sata_spd_limit);
1822
1823 spd = (*scontrol >> 4) & 0xf;
1824 *scontrol = (*scontrol & ~0xf0) | ((limit & 0xf) << 4);
1825
1826 return spd != limit;
1827 }
1828
1829 /**
1830 * sata_set_spd_needed - is SATA spd configuration needed
1831 * @ap: Port in question
1832 *
1833 * Test whether the spd limit in SControl matches
1834 * @ap->sata_spd_limit. This function is used to determine
1835 * whether hardreset is necessary to apply SATA spd
1836 * configuration.
1837 *
1838 * LOCKING:
1839 * Inherited from caller.
1840 *
1841 * RETURNS:
1842 * 1 if SATA spd configuration is needed, 0 otherwise.
1843 */
1844 int sata_set_spd_needed(struct ata_port *ap)
1845 {
1846 u32 scontrol;
1847
1848 if (sata_scr_read(ap, SCR_CONTROL, &scontrol))
1849 return 0;
1850
1851 return __sata_set_spd_needed(ap, &scontrol);
1852 }
1853
1854 /**
1855 * sata_set_spd - set SATA spd according to spd limit
1856 * @ap: Port to set SATA spd for
1857 *
1858 * Set SATA spd of @ap according to sata_spd_limit.
1859 *
1860 * LOCKING:
1861 * Inherited from caller.
1862 *
1863 * RETURNS:
1864 * 0 if spd doesn't need to be changed, 1 if spd has been
1865 * changed. Negative errno if SCR registers are inaccessible.
1866 */
1867 int sata_set_spd(struct ata_port *ap)
1868 {
1869 u32 scontrol;
1870 int rc;
1871
1872 if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
1873 return rc;
1874
1875 if (!__sata_set_spd_needed(ap, &scontrol))
1876 return 0;
1877
1878 if ((rc = sata_scr_write(ap, SCR_CONTROL, scontrol)))
1879 return rc;
1880
1881 return 1;
1882 }
1883
1884 /*
1885 * This mode timing computation functionality is ported over from
1886 * drivers/ide/ide-timing.h and was originally written by Vojtech Pavlik
1887 */
1888 /*
1889 * PIO 0-5, MWDMA 0-2 and UDMA 0-6 timings (in nanoseconds).
1890 * These were taken from ATA/ATAPI-6 standard, rev 0a, except
1891 * for PIO 5, which is a nonstandard extension and UDMA6, which
1892 * is currently supported only by Maxtor drives.
1893 */
1894
1895 static const struct ata_timing ata_timing[] = {
1896
1897 { XFER_UDMA_6, 0, 0, 0, 0, 0, 0, 0, 15 },
1898 { XFER_UDMA_5, 0, 0, 0, 0, 0, 0, 0, 20 },
1899 { XFER_UDMA_4, 0, 0, 0, 0, 0, 0, 0, 30 },
1900 { XFER_UDMA_3, 0, 0, 0, 0, 0, 0, 0, 45 },
1901
1902 { XFER_UDMA_2, 0, 0, 0, 0, 0, 0, 0, 60 },
1903 { XFER_UDMA_1, 0, 0, 0, 0, 0, 0, 0, 80 },
1904 { XFER_UDMA_0, 0, 0, 0, 0, 0, 0, 0, 120 },
1905
1906 /* { XFER_UDMA_SLOW, 0, 0, 0, 0, 0, 0, 0, 150 }, */
1907
1908 { XFER_MW_DMA_2, 25, 0, 0, 0, 70, 25, 120, 0 },
1909 { XFER_MW_DMA_1, 45, 0, 0, 0, 80, 50, 150, 0 },
1910 { XFER_MW_DMA_0, 60, 0, 0, 0, 215, 215, 480, 0 },
1911
1912 { XFER_SW_DMA_2, 60, 0, 0, 0, 120, 120, 240, 0 },
1913 { XFER_SW_DMA_1, 90, 0, 0, 0, 240, 240, 480, 0 },
1914 { XFER_SW_DMA_0, 120, 0, 0, 0, 480, 480, 960, 0 },
1915
1916 /* { XFER_PIO_5, 20, 50, 30, 100, 50, 30, 100, 0 }, */
1917 { XFER_PIO_4, 25, 70, 25, 120, 70, 25, 120, 0 },
1918 { XFER_PIO_3, 30, 80, 70, 180, 80, 70, 180, 0 },
1919
1920 { XFER_PIO_2, 30, 290, 40, 330, 100, 90, 240, 0 },
1921 { XFER_PIO_1, 50, 290, 93, 383, 125, 100, 383, 0 },
1922 { XFER_PIO_0, 70, 290, 240, 600, 165, 150, 600, 0 },
1923
1924 /* { XFER_PIO_SLOW, 120, 290, 240, 960, 290, 240, 960, 0 }, */
1925
1926 { 0xFF }
1927 };
1928
1929 #define ENOUGH(v,unit) (((v)-1)/(unit)+1)
1930 #define EZ(v,unit) ((v)?ENOUGH(v,unit):0)
1931
1932 static void ata_timing_quantize(const struct ata_timing *t, struct ata_timing *q, int T, int UT)
1933 {
1934 q->setup = EZ(t->setup * 1000, T);
1935 q->act8b = EZ(t->act8b * 1000, T);
1936 q->rec8b = EZ(t->rec8b * 1000, T);
1937 q->cyc8b = EZ(t->cyc8b * 1000, T);
1938 q->active = EZ(t->active * 1000, T);
1939 q->recover = EZ(t->recover * 1000, T);
1940 q->cycle = EZ(t->cycle * 1000, T);
1941 q->udma = EZ(t->udma * 1000, UT);
1942 }
1943
1944 void ata_timing_merge(const struct ata_timing *a, const struct ata_timing *b,
1945 struct ata_timing *m, unsigned int what)
1946 {
1947 if (what & ATA_TIMING_SETUP ) m->setup = max(a->setup, b->setup);
1948 if (what & ATA_TIMING_ACT8B ) m->act8b = max(a->act8b, b->act8b);
1949 if (what & ATA_TIMING_REC8B ) m->rec8b = max(a->rec8b, b->rec8b);
1950 if (what & ATA_TIMING_CYC8B ) m->cyc8b = max(a->cyc8b, b->cyc8b);
1951 if (what & ATA_TIMING_ACTIVE ) m->active = max(a->active, b->active);
1952 if (what & ATA_TIMING_RECOVER) m->recover = max(a->recover, b->recover);
1953 if (what & ATA_TIMING_CYCLE ) m->cycle = max(a->cycle, b->cycle);
1954 if (what & ATA_TIMING_UDMA ) m->udma = max(a->udma, b->udma);
1955 }
1956
1957 static const struct ata_timing* ata_timing_find_mode(unsigned short speed)
1958 {
1959 const struct ata_timing *t;
1960
1961 for (t = ata_timing; t->mode != speed; t++)
1962 if (t->mode == 0xFF)
1963 return NULL;
1964 return t;
1965 }
1966
1967 int ata_timing_compute(struct ata_device *adev, unsigned short speed,
1968 struct ata_timing *t, int T, int UT)
1969 {
1970 const struct ata_timing *s;
1971 struct ata_timing p;
1972
1973 /*
1974 * Find the mode.
1975 */
1976
1977 if (!(s = ata_timing_find_mode(speed)))
1978 return -EINVAL;
1979
1980 memcpy(t, s, sizeof(*s));
1981
1982 /*
1983 * If the drive is an EIDE drive, it can tell us it needs extended
1984 * PIO/MW_DMA cycle timing.
1985 */
1986
1987 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE drive */
1988 memset(&p, 0, sizeof(p));
1989 if(speed >= XFER_PIO_0 && speed <= XFER_SW_DMA_0) {
1990 if (speed <= XFER_PIO_2) p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO];
1991 else p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO_IORDY];
1992 } else if(speed >= XFER_MW_DMA_0 && speed <= XFER_MW_DMA_2) {
1993 p.cycle = adev->id[ATA_ID_EIDE_DMA_MIN];
1994 }
1995 ata_timing_merge(&p, t, t, ATA_TIMING_CYCLE | ATA_TIMING_CYC8B);
1996 }
1997
1998 /*
1999 * Convert the timing to bus clock counts.
2000 */
2001
2002 ata_timing_quantize(t, t, T, UT);
2003
2004 /*
2005 * Even in DMA/UDMA modes we still use PIO access for IDENTIFY,
2006 * S.M.A.R.T * and some other commands. We have to ensure that the
2007 * DMA cycle timing is slower/equal than the fastest PIO timing.
2008 */
2009
2010 if (speed > XFER_PIO_4) {
2011 ata_timing_compute(adev, adev->pio_mode, &p, T, UT);
2012 ata_timing_merge(&p, t, t, ATA_TIMING_ALL);
2013 }
2014
2015 /*
2016 * Lengthen active & recovery time so that cycle time is correct.
2017 */
2018
2019 if (t->act8b + t->rec8b < t->cyc8b) {
2020 t->act8b += (t->cyc8b - (t->act8b + t->rec8b)) / 2;
2021 t->rec8b = t->cyc8b - t->act8b;
2022 }
2023
2024 if (t->active + t->recover < t->cycle) {
2025 t->active += (t->cycle - (t->active + t->recover)) / 2;
2026 t->recover = t->cycle - t->active;
2027 }
2028
2029 return 0;
2030 }
2031
2032 /**
2033 * ata_down_xfermask_limit - adjust dev xfer masks downward
2034 * @dev: Device to adjust xfer masks
2035 * @force_pio0: Force PIO0
2036 *
2037 * Adjust xfer masks of @dev downward. Note that this function
2038 * does not apply the change. Invoking ata_set_mode() afterwards
2039 * will apply the limit.
2040 *
2041 * LOCKING:
2042 * Inherited from caller.
2043 *
2044 * RETURNS:
2045 * 0 on success, negative errno on failure
2046 */
2047 int ata_down_xfermask_limit(struct ata_device *dev, int force_pio0)
2048 {
2049 unsigned long xfer_mask;
2050 int highbit;
2051
2052 xfer_mask = ata_pack_xfermask(dev->pio_mask, dev->mwdma_mask,
2053 dev->udma_mask);
2054
2055 if (!xfer_mask)
2056 goto fail;
2057 /* don't gear down to MWDMA from UDMA, go directly to PIO */
2058 if (xfer_mask & ATA_MASK_UDMA)
2059 xfer_mask &= ~ATA_MASK_MWDMA;
2060
2061 highbit = fls(xfer_mask) - 1;
2062 xfer_mask &= ~(1 << highbit);
2063 if (force_pio0)
2064 xfer_mask &= 1 << ATA_SHIFT_PIO;
2065 if (!xfer_mask)
2066 goto fail;
2067
2068 ata_unpack_xfermask(xfer_mask, &dev->pio_mask, &dev->mwdma_mask,
2069 &dev->udma_mask);
2070
2071 ata_dev_printk(dev, KERN_WARNING, "limiting speed to %s\n",
2072 ata_mode_string(xfer_mask));
2073
2074 return 0;
2075
2076 fail:
2077 return -EINVAL;
2078 }
2079
2080 static int ata_dev_set_mode(struct ata_device *dev)
2081 {
2082 unsigned int err_mask;
2083 int rc;
2084
2085 dev->flags &= ~ATA_DFLAG_PIO;
2086 if (dev->xfer_shift == ATA_SHIFT_PIO)
2087 dev->flags |= ATA_DFLAG_PIO;
2088
2089 err_mask = ata_dev_set_xfermode(dev);
2090 if (err_mask) {
2091 ata_dev_printk(dev, KERN_ERR, "failed to set xfermode "
2092 "(err_mask=0x%x)\n", err_mask);
2093 return -EIO;
2094 }
2095
2096 rc = ata_dev_revalidate(dev, 0);
2097 if (rc)
2098 return rc;
2099
2100 DPRINTK("xfer_shift=%u, xfer_mode=0x%x\n",
2101 dev->xfer_shift, (int)dev->xfer_mode);
2102
2103 ata_dev_printk(dev, KERN_INFO, "configured for %s\n",
2104 ata_mode_string(ata_xfer_mode2mask(dev->xfer_mode)));
2105 return 0;
2106 }
2107
2108 /**
2109 * ata_set_mode - Program timings and issue SET FEATURES - XFER
2110 * @ap: port on which timings will be programmed
2111 * @r_failed_dev: out paramter for failed device
2112 *
2113 * Set ATA device disk transfer mode (PIO3, UDMA6, etc.). If
2114 * ata_set_mode() fails, pointer to the failing device is
2115 * returned in @r_failed_dev.
2116 *
2117 * LOCKING:
2118 * PCI/etc. bus probe sem.
2119 *
2120 * RETURNS:
2121 * 0 on success, negative errno otherwise
2122 */
2123 int ata_set_mode(struct ata_port *ap, struct ata_device **r_failed_dev)
2124 {
2125 struct ata_device *dev;
2126 int i, rc = 0, used_dma = 0, found = 0;
2127
2128 /* has private set_mode? */
2129 if (ap->ops->set_mode) {
2130 /* FIXME: make ->set_mode handle no device case and
2131 * return error code and failing device on failure.
2132 */
2133 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2134 if (ata_dev_enabled(&ap->device[i])) {
2135 ap->ops->set_mode(ap);
2136 break;
2137 }
2138 }
2139 return 0;
2140 }
2141
2142 /* step 1: calculate xfer_mask */
2143 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2144 unsigned int pio_mask, dma_mask;
2145
2146 dev = &ap->device[i];
2147
2148 if (!ata_dev_enabled(dev))
2149 continue;
2150
2151 ata_dev_xfermask(dev);
2152
2153 pio_mask = ata_pack_xfermask(dev->pio_mask, 0, 0);
2154 dma_mask = ata_pack_xfermask(0, dev->mwdma_mask, dev->udma_mask);
2155 dev->pio_mode = ata_xfer_mask2mode(pio_mask);
2156 dev->dma_mode = ata_xfer_mask2mode(dma_mask);
2157
2158 found = 1;
2159 if (dev->dma_mode)
2160 used_dma = 1;
2161 }
2162 if (!found)
2163 goto out;
2164
2165 /* step 2: always set host PIO timings */
2166 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2167 dev = &ap->device[i];
2168 if (!ata_dev_enabled(dev))
2169 continue;
2170
2171 if (!dev->pio_mode) {
2172 ata_dev_printk(dev, KERN_WARNING, "no PIO support\n");
2173 rc = -EINVAL;
2174 goto out;
2175 }
2176
2177 dev->xfer_mode = dev->pio_mode;
2178 dev->xfer_shift = ATA_SHIFT_PIO;
2179 if (ap->ops->set_piomode)
2180 ap->ops->set_piomode(ap, dev);
2181 }
2182
2183 /* step 3: set host DMA timings */
2184 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2185 dev = &ap->device[i];
2186
2187 if (!ata_dev_enabled(dev) || !dev->dma_mode)
2188 continue;
2189
2190 dev->xfer_mode = dev->dma_mode;
2191 dev->xfer_shift = ata_xfer_mode2shift(dev->dma_mode);
2192 if (ap->ops->set_dmamode)
2193 ap->ops->set_dmamode(ap, dev);
2194 }
2195
2196 /* step 4: update devices' xfer mode */
2197 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2198 dev = &ap->device[i];
2199
2200 if (!ata_dev_enabled(dev))
2201 continue;
2202
2203 rc = ata_dev_set_mode(dev);
2204 if (rc)
2205 goto out;
2206 }
2207
2208 /* Record simplex status. If we selected DMA then the other
2209 * host channels are not permitted to do so.
2210 */
2211 if (used_dma && (ap->host_set->flags & ATA_HOST_SIMPLEX))
2212 ap->host_set->simplex_claimed = 1;
2213
2214 /* step5: chip specific finalisation */
2215 if (ap->ops->post_set_mode)
2216 ap->ops->post_set_mode(ap);
2217
2218 out:
2219 if (rc)
2220 *r_failed_dev = dev;
2221 return rc;
2222 }
2223
2224 /**
2225 * ata_tf_to_host - issue ATA taskfile to host controller
2226 * @ap: port to which command is being issued
2227 * @tf: ATA taskfile register set
2228 *
2229 * Issues ATA taskfile register set to ATA host controller,
2230 * with proper synchronization with interrupt handler and
2231 * other threads.
2232 *
2233 * LOCKING:
2234 * spin_lock_irqsave(host_set lock)
2235 */
2236
2237 static inline void ata_tf_to_host(struct ata_port *ap,
2238 const struct ata_taskfile *tf)
2239 {
2240 ap->ops->tf_load(ap, tf);
2241 ap->ops->exec_command(ap, tf);
2242 }
2243
2244 /**
2245 * ata_busy_sleep - sleep until BSY clears, or timeout
2246 * @ap: port containing status register to be polled
2247 * @tmout_pat: impatience timeout
2248 * @tmout: overall timeout
2249 *
2250 * Sleep until ATA Status register bit BSY clears,
2251 * or a timeout occurs.
2252 *
2253 * LOCKING: None.
2254 */
2255
2256 unsigned int ata_busy_sleep (struct ata_port *ap,
2257 unsigned long tmout_pat, unsigned long tmout)
2258 {
2259 unsigned long timer_start, timeout;
2260 u8 status;
2261
2262 status = ata_busy_wait(ap, ATA_BUSY, 300);
2263 timer_start = jiffies;
2264 timeout = timer_start + tmout_pat;
2265 while ((status & ATA_BUSY) && (time_before(jiffies, timeout))) {
2266 msleep(50);
2267 status = ata_busy_wait(ap, ATA_BUSY, 3);
2268 }
2269
2270 if (status & ATA_BUSY)
2271 ata_port_printk(ap, KERN_WARNING,
2272 "port is slow to respond, please be patient\n");
2273
2274 timeout = timer_start + tmout;
2275 while ((status & ATA_BUSY) && (time_before(jiffies, timeout))) {
2276 msleep(50);
2277 status = ata_chk_status(ap);
2278 }
2279
2280 if (status & ATA_BUSY) {
2281 ata_port_printk(ap, KERN_ERR, "port failed to respond "
2282 "(%lu secs)\n", tmout / HZ);
2283 return 1;
2284 }
2285
2286 return 0;
2287 }
2288
2289 static void ata_bus_post_reset(struct ata_port *ap, unsigned int devmask)
2290 {
2291 struct ata_ioports *ioaddr = &ap->ioaddr;
2292 unsigned int dev0 = devmask & (1 << 0);
2293 unsigned int dev1 = devmask & (1 << 1);
2294 unsigned long timeout;
2295
2296 /* if device 0 was found in ata_devchk, wait for its
2297 * BSY bit to clear
2298 */
2299 if (dev0)
2300 ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT);
2301
2302 /* if device 1 was found in ata_devchk, wait for
2303 * register access, then wait for BSY to clear
2304 */
2305 timeout = jiffies + ATA_TMOUT_BOOT;
2306 while (dev1) {
2307 u8 nsect, lbal;
2308
2309 ap->ops->dev_select(ap, 1);
2310 if (ap->flags & ATA_FLAG_MMIO) {
2311 nsect = readb((void __iomem *) ioaddr->nsect_addr);
2312 lbal = readb((void __iomem *) ioaddr->lbal_addr);
2313 } else {
2314 nsect = inb(ioaddr->nsect_addr);
2315 lbal = inb(ioaddr->lbal_addr);
2316 }
2317 if ((nsect == 1) && (lbal == 1))
2318 break;
2319 if (time_after(jiffies, timeout)) {
2320 dev1 = 0;
2321 break;
2322 }
2323 msleep(50); /* give drive a breather */
2324 }
2325 if (dev1)
2326 ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT);
2327
2328 /* is all this really necessary? */
2329 ap->ops->dev_select(ap, 0);
2330 if (dev1)
2331 ap->ops->dev_select(ap, 1);
2332 if (dev0)
2333 ap->ops->dev_select(ap, 0);
2334 }
2335
2336 static unsigned int ata_bus_softreset(struct ata_port *ap,
2337 unsigned int devmask)
2338 {
2339 struct ata_ioports *ioaddr = &ap->ioaddr;
2340
2341 DPRINTK("ata%u: bus reset via SRST\n", ap->id);
2342
2343 /* software reset. causes dev0 to be selected */
2344 if (ap->flags & ATA_FLAG_MMIO) {
2345 writeb(ap->ctl, (void __iomem *) ioaddr->ctl_addr);
2346 udelay(20); /* FIXME: flush */
2347 writeb(ap->ctl | ATA_SRST, (void __iomem *) ioaddr->ctl_addr);
2348 udelay(20); /* FIXME: flush */
2349 writeb(ap->ctl, (void __iomem *) ioaddr->ctl_addr);
2350 } else {
2351 outb(ap->ctl, ioaddr->ctl_addr);
2352 udelay(10);
2353 outb(ap->ctl | ATA_SRST, ioaddr->ctl_addr);
2354 udelay(10);
2355 outb(ap->ctl, ioaddr->ctl_addr);
2356 }
2357
2358 /* spec mandates ">= 2ms" before checking status.
2359 * We wait 150ms, because that was the magic delay used for
2360 * ATAPI devices in Hale Landis's ATADRVR, for the period of time
2361 * between when the ATA command register is written, and then
2362 * status is checked. Because waiting for "a while" before
2363 * checking status is fine, post SRST, we perform this magic
2364 * delay here as well.
2365 *
2366 * Old drivers/ide uses the 2mS rule and then waits for ready
2367 */
2368 msleep(150);
2369
2370 /* Before we perform post reset processing we want to see if
2371 * the bus shows 0xFF because the odd clown forgets the D7
2372 * pulldown resistor.
2373 */
2374 if (ata_check_status(ap) == 0xFF) {
2375 ata_port_printk(ap, KERN_ERR, "SRST failed (status 0xFF)\n");
2376 return AC_ERR_OTHER;
2377 }
2378
2379 ata_bus_post_reset(ap, devmask);
2380
2381 return 0;
2382 }
2383
2384 /**
2385 * ata_bus_reset - reset host port and associated ATA channel
2386 * @ap: port to reset
2387 *
2388 * This is typically the first time we actually start issuing
2389 * commands to the ATA channel. We wait for BSY to clear, then
2390 * issue EXECUTE DEVICE DIAGNOSTIC command, polling for its
2391 * result. Determine what devices, if any, are on the channel
2392 * by looking at the device 0/1 error register. Look at the signature
2393 * stored in each device's taskfile registers, to determine if
2394 * the device is ATA or ATAPI.
2395 *
2396 * LOCKING:
2397 * PCI/etc. bus probe sem.
2398 * Obtains host_set lock.
2399 *
2400 * SIDE EFFECTS:
2401 * Sets ATA_FLAG_DISABLED if bus reset fails.
2402 */
2403
2404 void ata_bus_reset(struct ata_port *ap)
2405 {
2406 struct ata_ioports *ioaddr = &ap->ioaddr;
2407 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
2408 u8 err;
2409 unsigned int dev0, dev1 = 0, devmask = 0;
2410
2411 DPRINTK("ENTER, host %u, port %u\n", ap->id, ap->port_no);
2412
2413 /* determine if device 0/1 are present */
2414 if (ap->flags & ATA_FLAG_SATA_RESET)
2415 dev0 = 1;
2416 else {
2417 dev0 = ata_devchk(ap, 0);
2418 if (slave_possible)
2419 dev1 = ata_devchk(ap, 1);
2420 }
2421
2422 if (dev0)
2423 devmask |= (1 << 0);
2424 if (dev1)
2425 devmask |= (1 << 1);
2426
2427 /* select device 0 again */
2428 ap->ops->dev_select(ap, 0);
2429
2430 /* issue bus reset */
2431 if (ap->flags & ATA_FLAG_SRST)
2432 if (ata_bus_softreset(ap, devmask))
2433 goto err_out;
2434
2435 /*
2436 * determine by signature whether we have ATA or ATAPI devices
2437 */
2438 ap->device[0].class = ata_dev_try_classify(ap, 0, &err);
2439 if ((slave_possible) && (err != 0x81))
2440 ap->device[1].class = ata_dev_try_classify(ap, 1, &err);
2441
2442 /* re-enable interrupts */
2443 if (ap->ioaddr.ctl_addr) /* FIXME: hack. create a hook instead */
2444 ata_irq_on(ap);
2445
2446 /* is double-select really necessary? */
2447 if (ap->device[1].class != ATA_DEV_NONE)
2448 ap->ops->dev_select(ap, 1);
2449 if (ap->device[0].class != ATA_DEV_NONE)
2450 ap->ops->dev_select(ap, 0);
2451
2452 /* if no devices were detected, disable this port */
2453 if ((ap->device[0].class == ATA_DEV_NONE) &&
2454 (ap->device[1].class == ATA_DEV_NONE))
2455 goto err_out;
2456
2457 if (ap->flags & (ATA_FLAG_SATA_RESET | ATA_FLAG_SRST)) {
2458 /* set up device control for ATA_FLAG_SATA_RESET */
2459 if (ap->flags & ATA_FLAG_MMIO)
2460 writeb(ap->ctl, (void __iomem *) ioaddr->ctl_addr);
2461 else
2462 outb(ap->ctl, ioaddr->ctl_addr);
2463 }
2464
2465 DPRINTK("EXIT\n");
2466 return;
2467
2468 err_out:
2469 ata_port_printk(ap, KERN_ERR, "disabling port\n");
2470 ap->ops->port_disable(ap);
2471
2472 DPRINTK("EXIT\n");
2473 }
2474
2475 /**
2476 * sata_phy_debounce - debounce SATA phy status
2477 * @ap: ATA port to debounce SATA phy status for
2478 * @params: timing parameters { interval, duratinon, timeout } in msec
2479 *
2480 * Make sure SStatus of @ap reaches stable state, determined by
2481 * holding the same value where DET is not 1 for @duration polled
2482 * every @interval, before @timeout. Timeout constraints the
2483 * beginning of the stable state. Because, after hot unplugging,
2484 * DET gets stuck at 1 on some controllers, this functions waits
2485 * until timeout then returns 0 if DET is stable at 1.
2486 *
2487 * LOCKING:
2488 * Kernel thread context (may sleep)
2489 *
2490 * RETURNS:
2491 * 0 on success, -errno on failure.
2492 */
2493 int sata_phy_debounce(struct ata_port *ap, const unsigned long *params)
2494 {
2495 unsigned long interval_msec = params[0];
2496 unsigned long duration = params[1] * HZ / 1000;
2497 unsigned long timeout = jiffies + params[2] * HZ / 1000;
2498 unsigned long last_jiffies;
2499 u32 last, cur;
2500 int rc;
2501
2502 if ((rc = sata_scr_read(ap, SCR_STATUS, &cur)))
2503 return rc;
2504 cur &= 0xf;
2505
2506 last = cur;
2507 last_jiffies = jiffies;
2508
2509 while (1) {
2510 msleep(interval_msec);
2511 if ((rc = sata_scr_read(ap, SCR_STATUS, &cur)))
2512 return rc;
2513 cur &= 0xf;
2514
2515 /* DET stable? */
2516 if (cur == last) {
2517 if (cur == 1 && time_before(jiffies, timeout))
2518 continue;
2519 if (time_after(jiffies, last_jiffies + duration))
2520 return 0;
2521 continue;
2522 }
2523
2524 /* unstable, start over */
2525 last = cur;
2526 last_jiffies = jiffies;
2527
2528 /* check timeout */
2529 if (time_after(jiffies, timeout))
2530 return -EBUSY;
2531 }
2532 }
2533
2534 /**
2535 * sata_phy_resume - resume SATA phy
2536 * @ap: ATA port to resume SATA phy for
2537 * @params: timing parameters { interval, duratinon, timeout } in msec
2538 *
2539 * Resume SATA phy of @ap and debounce it.
2540 *
2541 * LOCKING:
2542 * Kernel thread context (may sleep)
2543 *
2544 * RETURNS:
2545 * 0 on success, -errno on failure.
2546 */
2547 int sata_phy_resume(struct ata_port *ap, const unsigned long *params)
2548 {
2549 u32 scontrol;
2550 int rc;
2551
2552 if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
2553 return rc;
2554
2555 scontrol = (scontrol & 0x0f0) | 0x300;
2556
2557 if ((rc = sata_scr_write(ap, SCR_CONTROL, scontrol)))
2558 return rc;
2559
2560 /* Some PHYs react badly if SStatus is pounded immediately
2561 * after resuming. Delay 200ms before debouncing.
2562 */
2563 msleep(200);
2564
2565 return sata_phy_debounce(ap, params);
2566 }
2567
2568 static void ata_wait_spinup(struct ata_port *ap)
2569 {
2570 struct ata_eh_context *ehc = &ap->eh_context;
2571 unsigned long end, secs;
2572 int rc;
2573
2574 /* first, debounce phy if SATA */
2575 if (ap->cbl == ATA_CBL_SATA) {
2576 rc = sata_phy_debounce(ap, sata_deb_timing_eh);
2577
2578 /* if debounced successfully and offline, no need to wait */
2579 if ((rc == 0 || rc == -EOPNOTSUPP) && ata_port_offline(ap))
2580 return;
2581 }
2582
2583 /* okay, let's give the drive time to spin up */
2584 end = ehc->i.hotplug_timestamp + ATA_SPINUP_WAIT * HZ / 1000;
2585 secs = ((end - jiffies) + HZ - 1) / HZ;
2586
2587 if (time_after(jiffies, end))
2588 return;
2589
2590 if (secs > 5)
2591 ata_port_printk(ap, KERN_INFO, "waiting for device to spin up "
2592 "(%lu secs)\n", secs);
2593
2594 schedule_timeout_uninterruptible(end - jiffies);
2595 }
2596
2597 /**
2598 * ata_std_prereset - prepare for reset
2599 * @ap: ATA port to be reset
2600 *
2601 * @ap is about to be reset. Initialize it.
2602 *
2603 * LOCKING:
2604 * Kernel thread context (may sleep)
2605 *
2606 * RETURNS:
2607 * 0 on success, -errno otherwise.
2608 */
2609 int ata_std_prereset(struct ata_port *ap)
2610 {
2611 struct ata_eh_context *ehc = &ap->eh_context;
2612 const unsigned long *timing;
2613 int rc;
2614
2615 /* hotplug? */
2616 if (ehc->i.flags & ATA_EHI_HOTPLUGGED) {
2617 if (ap->flags & ATA_FLAG_HRST_TO_RESUME)
2618 ehc->i.action |= ATA_EH_HARDRESET;
2619 if (ap->flags & ATA_FLAG_SKIP_D2H_BSY)
2620 ata_wait_spinup(ap);
2621 }
2622
2623 /* if we're about to do hardreset, nothing more to do */
2624 if (ehc->i.action & ATA_EH_HARDRESET)
2625 return 0;
2626
2627 /* if SATA, resume phy */
2628 if (ap->cbl == ATA_CBL_SATA) {
2629 if (ap->flags & ATA_FLAG_LOADING)
2630 timing = sata_deb_timing_boot;
2631 else
2632 timing = sata_deb_timing_eh;
2633
2634 rc = sata_phy_resume(ap, timing);
2635 if (rc && rc != -EOPNOTSUPP) {
2636 /* phy resume failed */
2637 ata_port_printk(ap, KERN_WARNING, "failed to resume "
2638 "link for reset (errno=%d)\n", rc);
2639 return rc;
2640 }
2641 }
2642
2643 /* Wait for !BSY if the controller can wait for the first D2H
2644 * Reg FIS and we don't know that no device is attached.
2645 */
2646 if (!(ap->flags & ATA_FLAG_SKIP_D2H_BSY) && !ata_port_offline(ap))
2647 ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT);
2648
2649 return 0;
2650 }
2651
2652 /**
2653 * ata_std_softreset - reset host port via ATA SRST
2654 * @ap: port to reset
2655 * @classes: resulting classes of attached devices
2656 *
2657 * Reset host port using ATA SRST.
2658 *
2659 * LOCKING:
2660 * Kernel thread context (may sleep)
2661 *
2662 * RETURNS:
2663 * 0 on success, -errno otherwise.
2664 */
2665 int ata_std_softreset(struct ata_port *ap, unsigned int *classes)
2666 {
2667 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
2668 unsigned int devmask = 0, err_mask;
2669 u8 err;
2670
2671 DPRINTK("ENTER\n");
2672
2673 if (ata_port_offline(ap)) {
2674 classes[0] = ATA_DEV_NONE;
2675 goto out;
2676 }
2677
2678 /* determine if device 0/1 are present */
2679 if (ata_devchk(ap, 0))
2680 devmask |= (1 << 0);
2681 if (slave_possible && ata_devchk(ap, 1))
2682 devmask |= (1 << 1);
2683
2684 /* select device 0 again */
2685 ap->ops->dev_select(ap, 0);
2686
2687 /* issue bus reset */
2688 DPRINTK("about to softreset, devmask=%x\n", devmask);
2689 err_mask = ata_bus_softreset(ap, devmask);
2690 if (err_mask) {
2691 ata_port_printk(ap, KERN_ERR, "SRST failed (err_mask=0x%x)\n",
2692 err_mask);
2693 return -EIO;
2694 }
2695
2696 /* determine by signature whether we have ATA or ATAPI devices */
2697 classes[0] = ata_dev_try_classify(ap, 0, &err);
2698 if (slave_possible && err != 0x81)
2699 classes[1] = ata_dev_try_classify(ap, 1, &err);
2700
2701 out:
2702 DPRINTK("EXIT, classes[0]=%u [1]=%u\n", classes[0], classes[1]);
2703 return 0;
2704 }
2705
2706 /**
2707 * sata_std_hardreset - reset host port via SATA phy reset
2708 * @ap: port to reset
2709 * @class: resulting class of attached device
2710 *
2711 * SATA phy-reset host port using DET bits of SControl register.
2712 *
2713 * LOCKING:
2714 * Kernel thread context (may sleep)
2715 *
2716 * RETURNS:
2717 * 0 on success, -errno otherwise.
2718 */
2719 int sata_std_hardreset(struct ata_port *ap, unsigned int *class)
2720 {
2721 u32 scontrol;
2722 int rc;
2723
2724 DPRINTK("ENTER\n");
2725
2726 if (sata_set_spd_needed(ap)) {
2727 /* SATA spec says nothing about how to reconfigure
2728 * spd. To be on the safe side, turn off phy during
2729 * reconfiguration. This works for at least ICH7 AHCI
2730 * and Sil3124.
2731 */
2732 if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
2733 return rc;
2734
2735 scontrol = (scontrol & 0x0f0) | 0x302;
2736
2737 if ((rc = sata_scr_write(ap, SCR_CONTROL, scontrol)))
2738 return rc;
2739
2740 sata_set_spd(ap);
2741 }
2742
2743 /* issue phy wake/reset */
2744 if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
2745 return rc;
2746
2747 scontrol = (scontrol & 0x0f0) | 0x301;
2748
2749 if ((rc = sata_scr_write_flush(ap, SCR_CONTROL, scontrol)))
2750 return rc;
2751
2752 /* Couldn't find anything in SATA I/II specs, but AHCI-1.1
2753 * 10.4.2 says at least 1 ms.
2754 */
2755 msleep(1);
2756
2757 /* bring phy back */
2758 sata_phy_resume(ap, sata_deb_timing_eh);
2759
2760 /* TODO: phy layer with polling, timeouts, etc. */
2761 if (ata_port_offline(ap)) {
2762 *class = ATA_DEV_NONE;
2763 DPRINTK("EXIT, link offline\n");
2764 return 0;
2765 }
2766
2767 if (ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT)) {
2768 ata_port_printk(ap, KERN_ERR,
2769 "COMRESET failed (device not ready)\n");
2770 return -EIO;
2771 }
2772
2773 ap->ops->dev_select(ap, 0); /* probably unnecessary */
2774
2775 *class = ata_dev_try_classify(ap, 0, NULL);
2776
2777 DPRINTK("EXIT, class=%u\n", *class);
2778 return 0;
2779 }
2780
2781 /**
2782 * ata_std_postreset - standard postreset callback
2783 * @ap: the target ata_port
2784 * @classes: classes of attached devices
2785 *
2786 * This function is invoked after a successful reset. Note that
2787 * the device might have been reset more than once using
2788 * different reset methods before postreset is invoked.
2789 *
2790 * LOCKING:
2791 * Kernel thread context (may sleep)
2792 */
2793 void ata_std_postreset(struct ata_port *ap, unsigned int *classes)
2794 {
2795 u32 serror;
2796
2797 DPRINTK("ENTER\n");
2798
2799 /* print link status */
2800 sata_print_link_status(ap);
2801
2802 /* clear SError */
2803 if (sata_scr_read(ap, SCR_ERROR, &serror) == 0)
2804 sata_scr_write(ap, SCR_ERROR, serror);
2805
2806 /* re-enable interrupts */
2807 if (!ap->ops->error_handler) {
2808 /* FIXME: hack. create a hook instead */
2809 if (ap->ioaddr.ctl_addr)
2810 ata_irq_on(ap);
2811 }
2812
2813 /* is double-select really necessary? */
2814 if (classes[0] != ATA_DEV_NONE)
2815 ap->ops->dev_select(ap, 1);
2816 if (classes[1] != ATA_DEV_NONE)
2817 ap->ops->dev_select(ap, 0);
2818
2819 /* bail out if no device is present */
2820 if (classes[0] == ATA_DEV_NONE && classes[1] == ATA_DEV_NONE) {
2821 DPRINTK("EXIT, no device\n");
2822 return;
2823 }
2824
2825 /* set up device control */
2826 if (ap->ioaddr.ctl_addr) {
2827 if (ap->flags & ATA_FLAG_MMIO)
2828 writeb(ap->ctl, (void __iomem *) ap->ioaddr.ctl_addr);
2829 else
2830 outb(ap->ctl, ap->ioaddr.ctl_addr);
2831 }
2832
2833 DPRINTK("EXIT\n");
2834 }
2835
2836 /**
2837 * ata_dev_same_device - Determine whether new ID matches configured device
2838 * @dev: device to compare against
2839 * @new_class: class of the new device
2840 * @new_id: IDENTIFY page of the new device
2841 *
2842 * Compare @new_class and @new_id against @dev and determine
2843 * whether @dev is the device indicated by @new_class and
2844 * @new_id.
2845 *
2846 * LOCKING:
2847 * None.
2848 *
2849 * RETURNS:
2850 * 1 if @dev matches @new_class and @new_id, 0 otherwise.
2851 */
2852 static int ata_dev_same_device(struct ata_device *dev, unsigned int new_class,
2853 const u16 *new_id)
2854 {
2855 const u16 *old_id = dev->id;
2856 unsigned char model[2][41], serial[2][21];
2857 u64 new_n_sectors;
2858
2859 if (dev->class != new_class) {
2860 ata_dev_printk(dev, KERN_INFO, "class mismatch %d != %d\n",
2861 dev->class, new_class);
2862 return 0;
2863 }
2864
2865 ata_id_c_string(old_id, model[0], ATA_ID_PROD_OFS, sizeof(model[0]));
2866 ata_id_c_string(new_id, model[1], ATA_ID_PROD_OFS, sizeof(model[1]));
2867 ata_id_c_string(old_id, serial[0], ATA_ID_SERNO_OFS, sizeof(serial[0]));
2868 ata_id_c_string(new_id, serial[1], ATA_ID_SERNO_OFS, sizeof(serial[1]));
2869 new_n_sectors = ata_id_n_sectors(new_id);
2870
2871 if (strcmp(model[0], model[1])) {
2872 ata_dev_printk(dev, KERN_INFO, "model number mismatch "
2873 "'%s' != '%s'\n", model[0], model[1]);
2874 return 0;
2875 }
2876
2877 if (strcmp(serial[0], serial[1])) {
2878 ata_dev_printk(dev, KERN_INFO, "serial number mismatch "
2879 "'%s' != '%s'\n", serial[0], serial[1]);
2880 return 0;
2881 }
2882
2883 if (dev->class == ATA_DEV_ATA && dev->n_sectors != new_n_sectors) {
2884 ata_dev_printk(dev, KERN_INFO, "n_sectors mismatch "
2885 "%llu != %llu\n",
2886 (unsigned long long)dev->n_sectors,
2887 (unsigned long long)new_n_sectors);
2888 return 0;
2889 }
2890
2891 return 1;
2892 }
2893
2894 /**
2895 * ata_dev_revalidate - Revalidate ATA device
2896 * @dev: device to revalidate
2897 * @post_reset: is this revalidation after reset?
2898 *
2899 * Re-read IDENTIFY page and make sure @dev is still attached to
2900 * the port.
2901 *
2902 * LOCKING:
2903 * Kernel thread context (may sleep)
2904 *
2905 * RETURNS:
2906 * 0 on success, negative errno otherwise
2907 */
2908 int ata_dev_revalidate(struct ata_device *dev, int post_reset)
2909 {
2910 unsigned int class = dev->class;
2911 u16 *id = (void *)dev->ap->sector_buf;
2912 int rc;
2913
2914 if (!ata_dev_enabled(dev)) {
2915 rc = -ENODEV;
2916 goto fail;
2917 }
2918
2919 /* read ID data */
2920 rc = ata_dev_read_id(dev, &class, post_reset, id);
2921 if (rc)
2922 goto fail;
2923
2924 /* is the device still there? */
2925 if (!ata_dev_same_device(dev, class, id)) {
2926 rc = -ENODEV;
2927 goto fail;
2928 }
2929
2930 memcpy(dev->id, id, sizeof(id[0]) * ATA_ID_WORDS);
2931
2932 /* configure device according to the new ID */
2933 rc = ata_dev_configure(dev, 0);
2934 if (rc == 0)
2935 return 0;
2936
2937 fail:
2938 ata_dev_printk(dev, KERN_ERR, "revalidation failed (errno=%d)\n", rc);
2939 return rc;
2940 }
2941
2942 static const char * const ata_dma_blacklist [] = {
2943 "WDC AC11000H", NULL,
2944 "WDC AC22100H", NULL,
2945 "WDC AC32500H", NULL,
2946 "WDC AC33100H", NULL,
2947 "WDC AC31600H", NULL,
2948 "WDC AC32100H", "24.09P07",
2949 "WDC AC23200L", "21.10N21",
2950 "Compaq CRD-8241B", NULL,
2951 "CRD-8400B", NULL,
2952 "CRD-8480B", NULL,
2953 "CRD-8482B", NULL,
2954 "CRD-84", NULL,
2955 "SanDisk SDP3B", NULL,
2956 "SanDisk SDP3B-64", NULL,
2957 "SANYO CD-ROM CRD", NULL,
2958 "HITACHI CDR-8", NULL,
2959 "HITACHI CDR-8335", NULL,
2960 "HITACHI CDR-8435", NULL,
2961 "Toshiba CD-ROM XM-6202B", NULL,
2962 "TOSHIBA CD-ROM XM-1702BC", NULL,
2963 "CD-532E-A", NULL,
2964 "E-IDE CD-ROM CR-840", NULL,
2965 "CD-ROM Drive/F5A", NULL,
2966 "WPI CDD-820", NULL,
2967 "SAMSUNG CD-ROM SC-148C", NULL,
2968 "SAMSUNG CD-ROM SC", NULL,
2969 "SanDisk SDP3B-64", NULL,
2970 "ATAPI CD-ROM DRIVE 40X MAXIMUM",NULL,
2971 "_NEC DV5800A", NULL,
2972 "SAMSUNG CD-ROM SN-124", "N001"
2973 };
2974
2975 static int ata_strim(char *s, size_t len)
2976 {
2977 len = strnlen(s, len);
2978
2979 /* ATAPI specifies that empty space is blank-filled; remove blanks */
2980 while ((len > 0) && (s[len - 1] == ' ')) {
2981 len--;
2982 s[len] = 0;
2983 }
2984 return len;
2985 }
2986
2987 static int ata_dma_blacklisted(const struct ata_device *dev)
2988 {
2989 unsigned char model_num[40];
2990 unsigned char model_rev[16];
2991 unsigned int nlen, rlen;
2992 int i;
2993
2994 /* We don't support polling DMA.
2995 * DMA blacklist those ATAPI devices with CDB-intr (and use PIO)
2996 * if the LLDD handles only interrupts in the HSM_ST_LAST state.
2997 */
2998 if ((dev->ap->flags & ATA_FLAG_PIO_POLLING) &&
2999 (dev->flags & ATA_DFLAG_CDB_INTR))
3000 return 1;
3001
3002 ata_id_string(dev->id, model_num, ATA_ID_PROD_OFS,
3003 sizeof(model_num));
3004 ata_id_string(dev->id, model_rev, ATA_ID_FW_REV_OFS,
3005 sizeof(model_rev));
3006 nlen = ata_strim(model_num, sizeof(model_num));
3007 rlen = ata_strim(model_rev, sizeof(model_rev));
3008
3009 for (i = 0; i < ARRAY_SIZE(ata_dma_blacklist); i += 2) {
3010 if (!strncmp(ata_dma_blacklist[i], model_num, nlen)) {
3011 if (ata_dma_blacklist[i+1] == NULL)
3012 return 1;
3013 if (!strncmp(ata_dma_blacklist[i], model_rev, rlen))
3014 return 1;
3015 }
3016 }
3017 return 0;
3018 }
3019
3020 /**
3021 * ata_dev_xfermask - Compute supported xfermask of the given device
3022 * @dev: Device to compute xfermask for
3023 *
3024 * Compute supported xfermask of @dev and store it in
3025 * dev->*_mask. This function is responsible for applying all
3026 * known limits including host controller limits, device
3027 * blacklist, etc...
3028 *
3029 * FIXME: The current implementation limits all transfer modes to
3030 * the fastest of the lowested device on the port. This is not
3031 * required on most controllers.
3032 *
3033 * LOCKING:
3034 * None.
3035 */
3036 static void ata_dev_xfermask(struct ata_device *dev)
3037 {
3038 struct ata_port *ap = dev->ap;
3039 struct ata_host_set *hs = ap->host_set;
3040 unsigned long xfer_mask;
3041 int i;
3042
3043 xfer_mask = ata_pack_xfermask(ap->pio_mask,
3044 ap->mwdma_mask, ap->udma_mask);
3045
3046 /* Apply cable rule here. Don't apply it early because when
3047 * we handle hot plug the cable type can itself change.
3048 */
3049 if (ap->cbl == ATA_CBL_PATA40)
3050 xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA);
3051
3052 /* FIXME: Use port-wide xfermask for now */
3053 for (i = 0; i < ATA_MAX_DEVICES; i++) {
3054 struct ata_device *d = &ap->device[i];
3055
3056 if (ata_dev_absent(d))
3057 continue;
3058
3059 if (ata_dev_disabled(d)) {
3060 /* to avoid violating device selection timing */
3061 xfer_mask &= ata_pack_xfermask(d->pio_mask,
3062 UINT_MAX, UINT_MAX);
3063 continue;
3064 }
3065
3066 xfer_mask &= ata_pack_xfermask(d->pio_mask,
3067 d->mwdma_mask, d->udma_mask);
3068 xfer_mask &= ata_id_xfermask(d->id);
3069 if (ata_dma_blacklisted(d))
3070 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
3071 }
3072
3073 if (ata_dma_blacklisted(dev))
3074 ata_dev_printk(dev, KERN_WARNING,
3075 "device is on DMA blacklist, disabling DMA\n");
3076
3077 if (hs->flags & ATA_HOST_SIMPLEX) {
3078 if (hs->simplex_claimed)
3079 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
3080 }
3081
3082 if (ap->ops->mode_filter)
3083 xfer_mask = ap->ops->mode_filter(ap, dev, xfer_mask);
3084
3085 ata_unpack_xfermask(xfer_mask, &dev->pio_mask,
3086 &dev->mwdma_mask, &dev->udma_mask);
3087 }
3088
3089 /**
3090 * ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command
3091 * @dev: Device to which command will be sent
3092 *
3093 * Issue SET FEATURES - XFER MODE command to device @dev
3094 * on port @ap.
3095 *
3096 * LOCKING:
3097 * PCI/etc. bus probe sem.
3098 *
3099 * RETURNS:
3100 * 0 on success, AC_ERR_* mask otherwise.
3101 */
3102
3103 static unsigned int ata_dev_set_xfermode(struct ata_device *dev)
3104 {
3105 struct ata_taskfile tf;
3106 unsigned int err_mask;
3107
3108 /* set up set-features taskfile */
3109 DPRINTK("set features - xfer mode\n");
3110
3111 ata_tf_init(dev, &tf);
3112 tf.command = ATA_CMD_SET_FEATURES;
3113 tf.feature = SETFEATURES_XFER;
3114 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
3115 tf.protocol = ATA_PROT_NODATA;
3116 tf.nsect = dev->xfer_mode;
3117
3118 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
3119
3120 DPRINTK("EXIT, err_mask=%x\n", err_mask);
3121 return err_mask;
3122 }
3123
3124 /**
3125 * ata_dev_init_params - Issue INIT DEV PARAMS command
3126 * @dev: Device to which command will be sent
3127 * @heads: Number of heads (taskfile parameter)
3128 * @sectors: Number of sectors (taskfile parameter)
3129 *
3130 * LOCKING:
3131 * Kernel thread context (may sleep)
3132 *
3133 * RETURNS:
3134 * 0 on success, AC_ERR_* mask otherwise.
3135 */
3136 static unsigned int ata_dev_init_params(struct ata_device *dev,
3137 u16 heads, u16 sectors)
3138 {
3139 struct ata_taskfile tf;
3140 unsigned int err_mask;
3141
3142 /* Number of sectors per track 1-255. Number of heads 1-16 */
3143 if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16)
3144 return AC_ERR_INVALID;
3145
3146 /* set up init dev params taskfile */
3147 DPRINTK("init dev params \n");
3148
3149 ata_tf_init(dev, &tf);
3150 tf.command = ATA_CMD_INIT_DEV_PARAMS;
3151 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
3152 tf.protocol = ATA_PROT_NODATA;
3153 tf.nsect = sectors;
3154 tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */
3155
3156 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
3157
3158 DPRINTK("EXIT, err_mask=%x\n", err_mask);
3159 return err_mask;
3160 }
3161
3162 /**
3163 * ata_sg_clean - Unmap DMA memory associated with command
3164 * @qc: Command containing DMA memory to be released
3165 *
3166 * Unmap all mapped DMA memory associated with this command.
3167 *
3168 * LOCKING:
3169 * spin_lock_irqsave(host_set lock)
3170 */
3171
3172 static void ata_sg_clean(struct ata_queued_cmd *qc)
3173 {
3174 struct ata_port *ap = qc->ap;
3175 struct scatterlist *sg = qc->__sg;
3176 int dir = qc->dma_dir;
3177 void *pad_buf = NULL;
3178
3179 WARN_ON(!(qc->flags & ATA_QCFLAG_DMAMAP));
3180 WARN_ON(sg == NULL);
3181
3182 if (qc->flags & ATA_QCFLAG_SINGLE)
3183 WARN_ON(qc->n_elem > 1);
3184
3185 VPRINTK("unmapping %u sg elements\n", qc->n_elem);
3186
3187 /* if we padded the buffer out to 32-bit bound, and data
3188 * xfer direction is from-device, we must copy from the
3189 * pad buffer back into the supplied buffer
3190 */
3191 if (qc->pad_len && !(qc->tf.flags & ATA_TFLAG_WRITE))
3192 pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
3193
3194 if (qc->flags & ATA_QCFLAG_SG) {
3195 if (qc->n_elem)
3196 dma_unmap_sg(ap->dev, sg, qc->n_elem, dir);
3197 /* restore last sg */
3198 sg[qc->orig_n_elem - 1].length += qc->pad_len;
3199 if (pad_buf) {
3200 struct scatterlist *psg = &qc->pad_sgent;
3201 void *addr = kmap_atomic(psg->page, KM_IRQ0);
3202 memcpy(addr + psg->offset, pad_buf, qc->pad_len);
3203 kunmap_atomic(addr, KM_IRQ0);
3204 }
3205 } else {
3206 if (qc->n_elem)
3207 dma_unmap_single(ap->dev,
3208 sg_dma_address(&sg[0]), sg_dma_len(&sg[0]),
3209 dir);
3210 /* restore sg */
3211 sg->length += qc->pad_len;
3212 if (pad_buf)
3213 memcpy(qc->buf_virt + sg->length - qc->pad_len,
3214 pad_buf, qc->pad_len);
3215 }
3216
3217 qc->flags &= ~ATA_QCFLAG_DMAMAP;
3218 qc->__sg = NULL;
3219 }
3220
3221 /**
3222 * ata_fill_sg - Fill PCI IDE PRD table
3223 * @qc: Metadata associated with taskfile to be transferred
3224 *
3225 * Fill PCI IDE PRD (scatter-gather) table with segments
3226 * associated with the current disk command.
3227 *
3228 * LOCKING:
3229 * spin_lock_irqsave(host_set lock)
3230 *
3231 */
3232 static void ata_fill_sg(struct ata_queued_cmd *qc)
3233 {
3234 struct ata_port *ap = qc->ap;
3235 struct scatterlist *sg;
3236 unsigned int idx;
3237
3238 WARN_ON(qc->__sg == NULL);
3239 WARN_ON(qc->n_elem == 0 && qc->pad_len == 0);
3240
3241 idx = 0;
3242 ata_for_each_sg(sg, qc) {
3243 u32 addr, offset;
3244 u32 sg_len, len;
3245
3246 /* determine if physical DMA addr spans 64K boundary.
3247 * Note h/w doesn't support 64-bit, so we unconditionally
3248 * truncate dma_addr_t to u32.
3249 */
3250 addr = (u32) sg_dma_address(sg);
3251 sg_len = sg_dma_len(sg);
3252
3253 while (sg_len) {
3254 offset = addr & 0xffff;
3255 len = sg_len;
3256 if ((offset + sg_len) > 0x10000)
3257 len = 0x10000 - offset;
3258
3259 ap->prd[idx].addr = cpu_to_le32(addr);
3260 ap->prd[idx].flags_len = cpu_to_le32(len & 0xffff);
3261 VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", idx, addr, len);
3262
3263 idx++;
3264 sg_len -= len;
3265 addr += len;
3266 }
3267 }
3268
3269 if (idx)
3270 ap->prd[idx - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT);
3271 }
3272 /**
3273 * ata_check_atapi_dma - Check whether ATAPI DMA can be supported
3274 * @qc: Metadata associated with taskfile to check
3275 *
3276 * Allow low-level driver to filter ATA PACKET commands, returning
3277 * a status indicating whether or not it is OK to use DMA for the
3278 * supplied PACKET command.
3279 *
3280 * LOCKING:
3281 * spin_lock_irqsave(host_set lock)
3282 *
3283 * RETURNS: 0 when ATAPI DMA can be used
3284 * nonzero otherwise
3285 */
3286 int ata_check_atapi_dma(struct ata_queued_cmd *qc)
3287 {
3288 struct ata_port *ap = qc->ap;
3289 int rc = 0; /* Assume ATAPI DMA is OK by default */
3290
3291 if (ap->ops->check_atapi_dma)
3292 rc = ap->ops->check_atapi_dma(qc);
3293
3294 return rc;
3295 }
3296 /**
3297 * ata_qc_prep - Prepare taskfile for submission
3298 * @qc: Metadata associated with taskfile to be prepared
3299 *
3300 * Prepare ATA taskfile for submission.
3301 *
3302 * LOCKING:
3303 * spin_lock_irqsave(host_set lock)
3304 */
3305 void ata_qc_prep(struct ata_queued_cmd *qc)
3306 {
3307 if (!(qc->flags & ATA_QCFLAG_DMAMAP))
3308 return;
3309
3310 ata_fill_sg(qc);
3311 }
3312
3313 void ata_noop_qc_prep(struct ata_queued_cmd *qc) { }
3314
3315 /**
3316 * ata_sg_init_one - Associate command with memory buffer
3317 * @qc: Command to be associated
3318 * @buf: Memory buffer
3319 * @buflen: Length of memory buffer, in bytes.
3320 *
3321 * Initialize the data-related elements of queued_cmd @qc
3322 * to point to a single memory buffer, @buf of byte length @buflen.
3323 *
3324 * LOCKING:
3325 * spin_lock_irqsave(host_set lock)
3326 */
3327
3328 void ata_sg_init_one(struct ata_queued_cmd *qc, void *buf, unsigned int buflen)
3329 {
3330 struct scatterlist *sg;
3331
3332 qc->flags |= ATA_QCFLAG_SINGLE;
3333
3334 memset(&qc->sgent, 0, sizeof(qc->sgent));
3335 qc->__sg = &qc->sgent;
3336 qc->n_elem = 1;
3337 qc->orig_n_elem = 1;
3338 qc->buf_virt = buf;
3339 qc->nbytes = buflen;
3340
3341 sg = qc->__sg;
3342 sg_init_one(sg, buf, buflen);
3343 }
3344
3345 /**
3346 * ata_sg_init - Associate command with scatter-gather table.
3347 * @qc: Command to be associated
3348 * @sg: Scatter-gather table.
3349 * @n_elem: Number of elements in s/g table.
3350 *
3351 * Initialize the data-related elements of queued_cmd @qc
3352 * to point to a scatter-gather table @sg, containing @n_elem
3353 * elements.
3354 *
3355 * LOCKING:
3356 * spin_lock_irqsave(host_set lock)
3357 */
3358
3359 void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg,
3360 unsigned int n_elem)
3361 {
3362 qc->flags |= ATA_QCFLAG_SG;
3363 qc->__sg = sg;
3364 qc->n_elem = n_elem;
3365 qc->orig_n_elem = n_elem;
3366 }
3367
3368 /**
3369 * ata_sg_setup_one - DMA-map the memory buffer associated with a command.
3370 * @qc: Command with memory buffer to be mapped.
3371 *
3372 * DMA-map the memory buffer associated with queued_cmd @qc.
3373 *
3374 * LOCKING:
3375 * spin_lock_irqsave(host_set lock)
3376 *
3377 * RETURNS:
3378 * Zero on success, negative on error.
3379 */
3380
3381 static int ata_sg_setup_one(struct ata_queued_cmd *qc)
3382 {
3383 struct ata_port *ap = qc->ap;
3384 int dir = qc->dma_dir;
3385 struct scatterlist *sg = qc->__sg;
3386 dma_addr_t dma_address;
3387 int trim_sg = 0;
3388
3389 /* we must lengthen transfers to end on a 32-bit boundary */
3390 qc->pad_len = sg->length & 3;
3391 if (qc->pad_len) {
3392 void *pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
3393 struct scatterlist *psg = &qc->pad_sgent;
3394
3395 WARN_ON(qc->dev->class != ATA_DEV_ATAPI);
3396
3397 memset(pad_buf, 0, ATA_DMA_PAD_SZ);
3398
3399 if (qc->tf.flags & ATA_TFLAG_WRITE)
3400 memcpy(pad_buf, qc->buf_virt + sg->length - qc->pad_len,
3401 qc->pad_len);
3402
3403 sg_dma_address(psg) = ap->pad_dma + (qc->tag * ATA_DMA_PAD_SZ);
3404 sg_dma_len(psg) = ATA_DMA_PAD_SZ;
3405 /* trim sg */
3406 sg->length -= qc->pad_len;
3407 if (sg->length == 0)
3408 trim_sg = 1;
3409
3410 DPRINTK("padding done, sg->length=%u pad_len=%u\n",
3411 sg->length, qc->pad_len);
3412 }
3413
3414 if (trim_sg) {
3415 qc->n_elem--;
3416 goto skip_map;
3417 }
3418
3419 dma_address = dma_map_single(ap->dev, qc->buf_virt,
3420 sg->length, dir);
3421 if (dma_mapping_error(dma_address)) {
3422 /* restore sg */
3423 sg->length += qc->pad_len;
3424 return -1;
3425 }
3426
3427 sg_dma_address(sg) = dma_address;
3428 sg_dma_len(sg) = sg->length;
3429
3430 skip_map:
3431 DPRINTK("mapped buffer of %d bytes for %s\n", sg_dma_len(sg),
3432 qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
3433
3434 return 0;
3435 }
3436
3437 /**
3438 * ata_sg_setup - DMA-map the scatter-gather table associated with a command.
3439 * @qc: Command with scatter-gather table to be mapped.
3440 *
3441 * DMA-map the scatter-gather table associated with queued_cmd @qc.
3442 *
3443 * LOCKING:
3444 * spin_lock_irqsave(host_set lock)
3445 *
3446 * RETURNS:
3447 * Zero on success, negative on error.
3448 *
3449 */
3450
3451 static int ata_sg_setup(struct ata_queued_cmd *qc)
3452 {
3453 struct ata_port *ap = qc->ap;
3454 struct scatterlist *sg = qc->__sg;
3455 struct scatterlist *lsg = &sg[qc->n_elem - 1];
3456 int n_elem, pre_n_elem, dir, trim_sg = 0;
3457
3458 VPRINTK("ENTER, ata%u\n", ap->id);
3459 WARN_ON(!(qc->flags & ATA_QCFLAG_SG));
3460
3461 /* we must lengthen transfers to end on a 32-bit boundary */
3462 qc->pad_len = lsg->length & 3;
3463 if (qc->pad_len) {
3464 void *pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
3465 struct scatterlist *psg = &qc->pad_sgent;
3466 unsigned int offset;
3467
3468 WARN_ON(qc->dev->class != ATA_DEV_ATAPI);
3469
3470 memset(pad_buf, 0, ATA_DMA_PAD_SZ);
3471
3472 /*
3473 * psg->page/offset are used to copy to-be-written
3474 * data in this function or read data in ata_sg_clean.
3475 */
3476 offset = lsg->offset + lsg->length - qc->pad_len;
3477 psg->page = nth_page(lsg->page, offset >> PAGE_SHIFT);
3478 psg->offset = offset_in_page(offset);
3479
3480 if (qc->tf.flags & ATA_TFLAG_WRITE) {
3481 void *addr = kmap_atomic(psg->page, KM_IRQ0);
3482 memcpy(pad_buf, addr + psg->offset, qc->pad_len);
3483 kunmap_atomic(addr, KM_IRQ0);
3484 }
3485
3486 sg_dma_address(psg) = ap->pad_dma + (qc->tag * ATA_DMA_PAD_SZ);
3487 sg_dma_len(psg) = ATA_DMA_PAD_SZ;
3488 /* trim last sg */
3489 lsg->length -= qc->pad_len;
3490 if (lsg->length == 0)
3491 trim_sg = 1;
3492
3493 DPRINTK("padding done, sg[%d].length=%u pad_len=%u\n",
3494 qc->n_elem - 1, lsg->length, qc->pad_len);
3495 }
3496
3497 pre_n_elem = qc->n_elem;
3498 if (trim_sg && pre_n_elem)
3499 pre_n_elem--;
3500
3501 if (!pre_n_elem) {
3502 n_elem = 0;
3503 goto skip_map;
3504 }
3505
3506 dir = qc->dma_dir;
3507 n_elem = dma_map_sg(ap->dev, sg, pre_n_elem, dir);
3508 if (n_elem < 1) {
3509 /* restore last sg */
3510 lsg->length += qc->pad_len;
3511 return -1;
3512 }
3513
3514 DPRINTK("%d sg elements mapped\n", n_elem);
3515
3516 skip_map:
3517 qc->n_elem = n_elem;
3518
3519 return 0;
3520 }
3521
3522 /**
3523 * swap_buf_le16 - swap halves of 16-bit words in place
3524 * @buf: Buffer to swap
3525 * @buf_words: Number of 16-bit words in buffer.
3526 *
3527 * Swap halves of 16-bit words if needed to convert from
3528 * little-endian byte order to native cpu byte order, or
3529 * vice-versa.
3530 *
3531 * LOCKING:
3532 * Inherited from caller.
3533 */
3534 void swap_buf_le16(u16 *buf, unsigned int buf_words)
3535 {
3536 #ifdef __BIG_ENDIAN
3537 unsigned int i;
3538
3539 for (i = 0; i < buf_words; i++)
3540 buf[i] = le16_to_cpu(buf[i]);
3541 #endif /* __BIG_ENDIAN */
3542 }
3543
3544 /**
3545 * ata_mmio_data_xfer - Transfer data by MMIO
3546 * @adev: device for this I/O
3547 * @buf: data buffer
3548 * @buflen: buffer length
3549 * @write_data: read/write
3550 *
3551 * Transfer data from/to the device data register by MMIO.
3552 *
3553 * LOCKING:
3554 * Inherited from caller.
3555 */
3556
3557 void ata_mmio_data_xfer(struct ata_device *adev, unsigned char *buf,
3558 unsigned int buflen, int write_data)
3559 {
3560 struct ata_port *ap = adev->ap;
3561 unsigned int i;
3562 unsigned int words = buflen >> 1;
3563 u16 *buf16 = (u16 *) buf;
3564 void __iomem *mmio = (void __iomem *)ap->ioaddr.data_addr;
3565
3566 /* Transfer multiple of 2 bytes */
3567 if (write_data) {
3568 for (i = 0; i < words; i++)
3569 writew(le16_to_cpu(buf16[i]), mmio);
3570 } else {
3571 for (i = 0; i < words; i++)
3572 buf16[i] = cpu_to_le16(readw(mmio));
3573 }
3574
3575 /* Transfer trailing 1 byte, if any. */
3576 if (unlikely(buflen & 0x01)) {
3577 u16 align_buf[1] = { 0 };
3578 unsigned char *trailing_buf = buf + buflen - 1;
3579
3580 if (write_data) {
3581 memcpy(align_buf, trailing_buf, 1);
3582 writew(le16_to_cpu(align_buf[0]), mmio);
3583 } else {
3584 align_buf[0] = cpu_to_le16(readw(mmio));
3585 memcpy(trailing_buf, align_buf, 1);
3586 }
3587 }
3588 }
3589
3590 /**
3591 * ata_pio_data_xfer - Transfer data by PIO
3592 * @adev: device to target
3593 * @buf: data buffer
3594 * @buflen: buffer length
3595 * @write_data: read/write
3596 *
3597 * Transfer data from/to the device data register by PIO.
3598 *
3599 * LOCKING:
3600 * Inherited from caller.
3601 */
3602
3603 void ata_pio_data_xfer(struct ata_device *adev, unsigned char *buf,
3604 unsigned int buflen, int write_data)
3605 {
3606 struct ata_port *ap = adev->ap;
3607 unsigned int words = buflen >> 1;
3608
3609 /* Transfer multiple of 2 bytes */
3610 if (write_data)
3611 outsw(ap->ioaddr.data_addr, buf, words);
3612 else
3613 insw(ap->ioaddr.data_addr, buf, words);
3614
3615 /* Transfer trailing 1 byte, if any. */
3616 if (unlikely(buflen & 0x01)) {
3617 u16 align_buf[1] = { 0 };
3618 unsigned char *trailing_buf = buf + buflen - 1;
3619
3620 if (write_data) {
3621 memcpy(align_buf, trailing_buf, 1);
3622 outw(le16_to_cpu(align_buf[0]), ap->ioaddr.data_addr);
3623 } else {
3624 align_buf[0] = cpu_to_le16(inw(ap->ioaddr.data_addr));
3625 memcpy(trailing_buf, align_buf, 1);
3626 }
3627 }
3628 }
3629
3630 /**
3631 * ata_pio_data_xfer_noirq - Transfer data by PIO
3632 * @adev: device to target
3633 * @buf: data buffer
3634 * @buflen: buffer length
3635 * @write_data: read/write
3636 *
3637 * Transfer data from/to the device data register by PIO. Do the
3638 * transfer with interrupts disabled.
3639 *
3640 * LOCKING:
3641 * Inherited from caller.
3642 */
3643
3644 void ata_pio_data_xfer_noirq(struct ata_device *adev, unsigned char *buf,
3645 unsigned int buflen, int write_data)
3646 {
3647 unsigned long flags;
3648 local_irq_save(flags);
3649 ata_pio_data_xfer(adev, buf, buflen, write_data);
3650 local_irq_restore(flags);
3651 }
3652
3653
3654 /**
3655 * ata_pio_sector - Transfer ATA_SECT_SIZE (512 bytes) of data.
3656 * @qc: Command on going
3657 *
3658 * Transfer ATA_SECT_SIZE of data from/to the ATA device.
3659 *
3660 * LOCKING:
3661 * Inherited from caller.
3662 */
3663
3664 static void ata_pio_sector(struct ata_queued_cmd *qc)
3665 {
3666 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
3667 struct scatterlist *sg = qc->__sg;
3668 struct ata_port *ap = qc->ap;
3669 struct page *page;
3670 unsigned int offset;
3671 unsigned char *buf;
3672
3673 if (qc->cursect == (qc->nsect - 1))
3674 ap->hsm_task_state = HSM_ST_LAST;
3675
3676 page = sg[qc->cursg].page;
3677 offset = sg[qc->cursg].offset + qc->cursg_ofs * ATA_SECT_SIZE;
3678
3679 /* get the current page and offset */
3680 page = nth_page(page, (offset >> PAGE_SHIFT));
3681 offset %= PAGE_SIZE;
3682
3683 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
3684
3685 if (PageHighMem(page)) {
3686 unsigned long flags;
3687
3688 /* FIXME: use a bounce buffer */
3689 local_irq_save(flags);
3690 buf = kmap_atomic(page, KM_IRQ0);
3691
3692 /* do the actual data transfer */
3693 ap->ops->data_xfer(qc->dev, buf + offset, ATA_SECT_SIZE, do_write);
3694
3695 kunmap_atomic(buf, KM_IRQ0);
3696 local_irq_restore(flags);
3697 } else {
3698 buf = page_address(page);
3699 ap->ops->data_xfer(qc->dev, buf + offset, ATA_SECT_SIZE, do_write);
3700 }
3701
3702 qc->cursect++;
3703 qc->cursg_ofs++;
3704
3705 if ((qc->cursg_ofs * ATA_SECT_SIZE) == (&sg[qc->cursg])->length) {
3706 qc->cursg++;
3707 qc->cursg_ofs = 0;
3708 }
3709 }
3710
3711 /**
3712 * ata_pio_sectors - Transfer one or many 512-byte sectors.
3713 * @qc: Command on going
3714 *
3715 * Transfer one or many ATA_SECT_SIZE of data from/to the
3716 * ATA device for the DRQ request.
3717 *
3718 * LOCKING:
3719 * Inherited from caller.
3720 */
3721
3722 static void ata_pio_sectors(struct ata_queued_cmd *qc)
3723 {
3724 if (is_multi_taskfile(&qc->tf)) {
3725 /* READ/WRITE MULTIPLE */
3726 unsigned int nsect;
3727
3728 WARN_ON(qc->dev->multi_count == 0);
3729
3730 nsect = min(qc->nsect - qc->cursect, qc->dev->multi_count);
3731 while (nsect--)
3732 ata_pio_sector(qc);
3733 } else
3734 ata_pio_sector(qc);
3735 }
3736
3737 /**
3738 * atapi_send_cdb - Write CDB bytes to hardware
3739 * @ap: Port to which ATAPI device is attached.
3740 * @qc: Taskfile currently active
3741 *
3742 * When device has indicated its readiness to accept
3743 * a CDB, this function is called. Send the CDB.
3744 *
3745 * LOCKING:
3746 * caller.
3747 */
3748
3749 static void atapi_send_cdb(struct ata_port *ap, struct ata_queued_cmd *qc)
3750 {
3751 /* send SCSI cdb */
3752 DPRINTK("send cdb\n");
3753 WARN_ON(qc->dev->cdb_len < 12);
3754
3755 ap->ops->data_xfer(qc->dev, qc->cdb, qc->dev->cdb_len, 1);
3756 ata_altstatus(ap); /* flush */
3757
3758 switch (qc->tf.protocol) {
3759 case ATA_PROT_ATAPI:
3760 ap->hsm_task_state = HSM_ST;
3761 break;
3762 case ATA_PROT_ATAPI_NODATA:
3763 ap->hsm_task_state = HSM_ST_LAST;
3764 break;
3765 case ATA_PROT_ATAPI_DMA:
3766 ap->hsm_task_state = HSM_ST_LAST;
3767 /* initiate bmdma */
3768 ap->ops->bmdma_start(qc);
3769 break;
3770 }
3771 }
3772
3773 /**
3774 * __atapi_pio_bytes - Transfer data from/to the ATAPI device.
3775 * @qc: Command on going
3776 * @bytes: number of bytes
3777 *
3778 * Transfer Transfer data from/to the ATAPI device.
3779 *
3780 * LOCKING:
3781 * Inherited from caller.
3782 *
3783 */
3784
3785 static void __atapi_pio_bytes(struct ata_queued_cmd *qc, unsigned int bytes)
3786 {
3787 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
3788 struct scatterlist *sg = qc->__sg;
3789 struct ata_port *ap = qc->ap;
3790 struct page *page;
3791 unsigned char *buf;
3792 unsigned int offset, count;
3793
3794 if (qc->curbytes + bytes >= qc->nbytes)
3795 ap->hsm_task_state = HSM_ST_LAST;
3796
3797 next_sg:
3798 if (unlikely(qc->cursg >= qc->n_elem)) {
3799 /*
3800 * The end of qc->sg is reached and the device expects
3801 * more data to transfer. In order not to overrun qc->sg
3802 * and fulfill length specified in the byte count register,
3803 * - for read case, discard trailing data from the device
3804 * - for write case, padding zero data to the device
3805 */
3806 u16 pad_buf[1] = { 0 };
3807 unsigned int words = bytes >> 1;
3808 unsigned int i;
3809
3810 if (words) /* warning if bytes > 1 */
3811 ata_dev_printk(qc->dev, KERN_WARNING,
3812 "%u bytes trailing data\n", bytes);
3813
3814 for (i = 0; i < words; i++)
3815 ap->ops->data_xfer(qc->dev, (unsigned char*)pad_buf, 2, do_write);
3816
3817 ap->hsm_task_state = HSM_ST_LAST;
3818 return;
3819 }
3820
3821 sg = &qc->__sg[qc->cursg];
3822
3823 page = sg->page;
3824 offset = sg->offset + qc->cursg_ofs;
3825
3826 /* get the current page and offset */
3827 page = nth_page(page, (offset >> PAGE_SHIFT));
3828 offset %= PAGE_SIZE;
3829
3830 /* don't overrun current sg */
3831 count = min(sg->length - qc->cursg_ofs, bytes);
3832
3833 /* don't cross page boundaries */
3834 count = min(count, (unsigned int)PAGE_SIZE - offset);
3835
3836 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
3837
3838 if (PageHighMem(page)) {
3839 unsigned long flags;
3840
3841 /* FIXME: use bounce buffer */
3842 local_irq_save(flags);
3843 buf = kmap_atomic(page, KM_IRQ0);
3844
3845 /* do the actual data transfer */
3846 ap->ops->data_xfer(qc->dev, buf + offset, count, do_write);
3847
3848 kunmap_atomic(buf, KM_IRQ0);
3849 local_irq_restore(flags);
3850 } else {
3851 buf = page_address(page);
3852 ap->ops->data_xfer(qc->dev, buf + offset, count, do_write);
3853 }
3854
3855 bytes -= count;
3856 qc->curbytes += count;
3857 qc->cursg_ofs += count;
3858
3859 if (qc->cursg_ofs == sg->length) {
3860 qc->cursg++;
3861 qc->cursg_ofs = 0;
3862 }
3863
3864 if (bytes)
3865 goto next_sg;
3866 }
3867
3868 /**
3869 * atapi_pio_bytes - Transfer data from/to the ATAPI device.
3870 * @qc: Command on going
3871 *
3872 * Transfer Transfer data from/to the ATAPI device.
3873 *
3874 * LOCKING:
3875 * Inherited from caller.
3876 */
3877
3878 static void atapi_pio_bytes(struct ata_queued_cmd *qc)
3879 {
3880 struct ata_port *ap = qc->ap;
3881 struct ata_device *dev = qc->dev;
3882 unsigned int ireason, bc_lo, bc_hi, bytes;
3883 int i_write, do_write = (qc->tf.flags & ATA_TFLAG_WRITE) ? 1 : 0;
3884
3885 /* Abuse qc->result_tf for temp storage of intermediate TF
3886 * here to save some kernel stack usage.
3887 * For normal completion, qc->result_tf is not relevant. For
3888 * error, qc->result_tf is later overwritten by ata_qc_complete().
3889 * So, the correctness of qc->result_tf is not affected.
3890 */
3891 ap->ops->tf_read(ap, &qc->result_tf);
3892 ireason = qc->result_tf.nsect;
3893 bc_lo = qc->result_tf.lbam;
3894 bc_hi = qc->result_tf.lbah;
3895 bytes = (bc_hi << 8) | bc_lo;
3896
3897 /* shall be cleared to zero, indicating xfer of data */
3898 if (ireason & (1 << 0))
3899 goto err_out;
3900
3901 /* make sure transfer direction matches expected */
3902 i_write = ((ireason & (1 << 1)) == 0) ? 1 : 0;
3903 if (do_write != i_write)
3904 goto err_out;
3905
3906 VPRINTK("ata%u: xfering %d bytes\n", ap->id, bytes);
3907
3908 __atapi_pio_bytes(qc, bytes);
3909
3910 return;
3911
3912 err_out:
3913 ata_dev_printk(dev, KERN_INFO, "ATAPI check failed\n");
3914 qc->err_mask |= AC_ERR_HSM;
3915 ap->hsm_task_state = HSM_ST_ERR;
3916 }
3917
3918 /**
3919 * ata_hsm_ok_in_wq - Check if the qc can be handled in the workqueue.
3920 * @ap: the target ata_port
3921 * @qc: qc on going
3922 *
3923 * RETURNS:
3924 * 1 if ok in workqueue, 0 otherwise.
3925 */
3926
3927 static inline int ata_hsm_ok_in_wq(struct ata_port *ap, struct ata_queued_cmd *qc)
3928 {
3929 if (qc->tf.flags & ATA_TFLAG_POLLING)
3930 return 1;
3931
3932 if (ap->hsm_task_state == HSM_ST_FIRST) {
3933 if (qc->tf.protocol == ATA_PROT_PIO &&
3934 (qc->tf.flags & ATA_TFLAG_WRITE))
3935 return 1;
3936
3937 if (is_atapi_taskfile(&qc->tf) &&
3938 !(qc->dev->flags & ATA_DFLAG_CDB_INTR))
3939 return 1;
3940 }
3941
3942 return 0;
3943 }
3944
3945 /**
3946 * ata_hsm_qc_complete - finish a qc running on standard HSM
3947 * @qc: Command to complete
3948 * @in_wq: 1 if called from workqueue, 0 otherwise
3949 *
3950 * Finish @qc which is running on standard HSM.
3951 *
3952 * LOCKING:
3953 * If @in_wq is zero, spin_lock_irqsave(host_set lock).
3954 * Otherwise, none on entry and grabs host lock.
3955 */
3956 static void ata_hsm_qc_complete(struct ata_queued_cmd *qc, int in_wq)
3957 {
3958 struct ata_port *ap = qc->ap;
3959 unsigned long flags;
3960
3961 if (ap->ops->error_handler) {
3962 if (in_wq) {
3963 spin_lock_irqsave(ap->lock, flags);
3964
3965 /* EH might have kicked in while host_set lock
3966 * is released.
3967 */
3968 qc = ata_qc_from_tag(ap, qc->tag);
3969 if (qc) {
3970 if (likely(!(qc->err_mask & AC_ERR_HSM))) {
3971 ata_irq_on(ap);
3972 ata_qc_complete(qc);
3973 } else
3974 ata_port_freeze(ap);
3975 }
3976
3977 spin_unlock_irqrestore(ap->lock, flags);
3978 } else {
3979 if (likely(!(qc->err_mask & AC_ERR_HSM)))
3980 ata_qc_complete(qc);
3981 else
3982 ata_port_freeze(ap);
3983 }
3984 } else {
3985 if (in_wq) {
3986 spin_lock_irqsave(ap->lock, flags);
3987 ata_irq_on(ap);
3988 ata_qc_complete(qc);
3989 spin_unlock_irqrestore(ap->lock, flags);
3990 } else
3991 ata_qc_complete(qc);
3992 }
3993
3994 ata_altstatus(ap); /* flush */
3995 }
3996
3997 /**
3998 * ata_hsm_move - move the HSM to the next state.
3999 * @ap: the target ata_port
4000 * @qc: qc on going
4001 * @status: current device status
4002 * @in_wq: 1 if called from workqueue, 0 otherwise
4003 *
4004 * RETURNS:
4005 * 1 when poll next status needed, 0 otherwise.
4006 */
4007 int ata_hsm_move(struct ata_port *ap, struct ata_queued_cmd *qc,
4008 u8 status, int in_wq)
4009 {
4010 unsigned long flags = 0;
4011 int poll_next;
4012
4013 WARN_ON((qc->flags & ATA_QCFLAG_ACTIVE) == 0);
4014
4015 /* Make sure ata_qc_issue_prot() does not throw things
4016 * like DMA polling into the workqueue. Notice that
4017 * in_wq is not equivalent to (qc->tf.flags & ATA_TFLAG_POLLING).
4018 */
4019 WARN_ON(in_wq != ata_hsm_ok_in_wq(ap, qc));
4020
4021 fsm_start:
4022 DPRINTK("ata%u: protocol %d task_state %d (dev_stat 0x%X)\n",
4023 ap->id, qc->tf.protocol, ap->hsm_task_state, status);
4024
4025 switch (ap->hsm_task_state) {
4026 case HSM_ST_FIRST:
4027 /* Send first data block or PACKET CDB */
4028
4029 /* If polling, we will stay in the work queue after
4030 * sending the data. Otherwise, interrupt handler
4031 * takes over after sending the data.
4032 */
4033 poll_next = (qc->tf.flags & ATA_TFLAG_POLLING);
4034
4035 /* check device status */
4036 if (unlikely((status & ATA_DRQ) == 0)) {
4037 /* handle BSY=0, DRQ=0 as error */
4038 if (likely(status & (ATA_ERR | ATA_DF)))
4039 /* device stops HSM for abort/error */
4040 qc->err_mask |= AC_ERR_DEV;
4041 else
4042 /* HSM violation. Let EH handle this */
4043 qc->err_mask |= AC_ERR_HSM;
4044
4045 ap->hsm_task_state = HSM_ST_ERR;
4046 goto fsm_start;
4047 }
4048
4049 /* Device should not ask for data transfer (DRQ=1)
4050 * when it finds something wrong.
4051 * We ignore DRQ here and stop the HSM by
4052 * changing hsm_task_state to HSM_ST_ERR and
4053 * let the EH abort the command or reset the device.
4054 */
4055 if (unlikely(status & (ATA_ERR | ATA_DF))) {
4056 printk(KERN_WARNING "ata%d: DRQ=1 with device error, dev_stat 0x%X\n",
4057 ap->id, status);
4058 qc->err_mask |= AC_ERR_HSM;
4059 ap->hsm_task_state = HSM_ST_ERR;
4060 goto fsm_start;
4061 }
4062
4063 /* Send the CDB (atapi) or the first data block (ata pio out).
4064 * During the state transition, interrupt handler shouldn't
4065 * be invoked before the data transfer is complete and
4066 * hsm_task_state is changed. Hence, the following locking.
4067 */
4068 if (in_wq)
4069 spin_lock_irqsave(ap->lock, flags);
4070
4071 if (qc->tf.protocol == ATA_PROT_PIO) {
4072 /* PIO data out protocol.
4073 * send first data block.
4074 */
4075
4076 /* ata_pio_sectors() might change the state
4077 * to HSM_ST_LAST. so, the state is changed here
4078 * before ata_pio_sectors().
4079 */
4080 ap->hsm_task_state = HSM_ST;
4081 ata_pio_sectors(qc);
4082 ata_altstatus(ap); /* flush */
4083 } else
4084 /* send CDB */
4085 atapi_send_cdb(ap, qc);
4086
4087 if (in_wq)
4088 spin_unlock_irqrestore(ap->lock, flags);
4089
4090 /* if polling, ata_pio_task() handles the rest.
4091 * otherwise, interrupt handler takes over from here.
4092 */
4093 break;
4094
4095 case HSM_ST:
4096 /* complete command or read/write the data register */
4097 if (qc->tf.protocol == ATA_PROT_ATAPI) {
4098 /* ATAPI PIO protocol */
4099 if ((status & ATA_DRQ) == 0) {
4100 /* No more data to transfer or device error.
4101 * Device error will be tagged in HSM_ST_LAST.
4102 */
4103 ap->hsm_task_state = HSM_ST_LAST;
4104 goto fsm_start;
4105 }
4106
4107 /* Device should not ask for data transfer (DRQ=1)
4108 * when it finds something wrong.
4109 * We ignore DRQ here and stop the HSM by
4110 * changing hsm_task_state to HSM_ST_ERR and
4111 * let the EH abort the command or reset the device.
4112 */
4113 if (unlikely(status & (ATA_ERR | ATA_DF))) {
4114 printk(KERN_WARNING "ata%d: DRQ=1 with device error, dev_stat 0x%X\n",
4115 ap->id, status);
4116 qc->err_mask |= AC_ERR_HSM;
4117 ap->hsm_task_state = HSM_ST_ERR;
4118 goto fsm_start;
4119 }
4120
4121 atapi_pio_bytes(qc);
4122
4123 if (unlikely(ap->hsm_task_state == HSM_ST_ERR))
4124 /* bad ireason reported by device */
4125 goto fsm_start;
4126
4127 } else {
4128 /* ATA PIO protocol */
4129 if (unlikely((status & ATA_DRQ) == 0)) {
4130 /* handle BSY=0, DRQ=0 as error */
4131 if (likely(status & (ATA_ERR | ATA_DF)))
4132 /* device stops HSM for abort/error */
4133 qc->err_mask |= AC_ERR_DEV;
4134 else
4135 /* HSM violation. Let EH handle this */
4136 qc->err_mask |= AC_ERR_HSM;
4137
4138 ap->hsm_task_state = HSM_ST_ERR;
4139 goto fsm_start;
4140 }
4141
4142 /* For PIO reads, some devices may ask for
4143 * data transfer (DRQ=1) alone with ERR=1.
4144 * We respect DRQ here and transfer one
4145 * block of junk data before changing the
4146 * hsm_task_state to HSM_ST_ERR.
4147 *
4148 * For PIO writes, ERR=1 DRQ=1 doesn't make
4149 * sense since the data block has been
4150 * transferred to the device.
4151 */
4152 if (unlikely(status & (ATA_ERR | ATA_DF))) {
4153 /* data might be corrputed */
4154 qc->err_mask |= AC_ERR_DEV;
4155
4156 if (!(qc->tf.flags & ATA_TFLAG_WRITE)) {
4157 ata_pio_sectors(qc);
4158 ata_altstatus(ap);
4159 status = ata_wait_idle(ap);
4160 }
4161
4162 if (status & (ATA_BUSY | ATA_DRQ))
4163 qc->err_mask |= AC_ERR_HSM;
4164
4165 /* ata_pio_sectors() might change the
4166 * state to HSM_ST_LAST. so, the state
4167 * is changed after ata_pio_sectors().
4168 */
4169 ap->hsm_task_state = HSM_ST_ERR;
4170 goto fsm_start;
4171 }
4172
4173 ata_pio_sectors(qc);
4174
4175 if (ap->hsm_task_state == HSM_ST_LAST &&
4176 (!(qc->tf.flags & ATA_TFLAG_WRITE))) {
4177 /* all data read */
4178 ata_altstatus(ap);
4179 status = ata_wait_idle(ap);
4180 goto fsm_start;
4181 }
4182 }
4183
4184 ata_altstatus(ap); /* flush */
4185 poll_next = 1;
4186 break;
4187
4188 case HSM_ST_LAST:
4189 if (unlikely(!ata_ok(status))) {
4190 qc->err_mask |= __ac_err_mask(status);
4191 ap->hsm_task_state = HSM_ST_ERR;
4192 goto fsm_start;
4193 }
4194
4195 /* no more data to transfer */
4196 DPRINTK("ata%u: dev %u command complete, drv_stat 0x%x\n",
4197 ap->id, qc->dev->devno, status);
4198
4199 WARN_ON(qc->err_mask);
4200
4201 ap->hsm_task_state = HSM_ST_IDLE;
4202
4203 /* complete taskfile transaction */
4204 ata_hsm_qc_complete(qc, in_wq);
4205
4206 poll_next = 0;
4207 break;
4208
4209 case HSM_ST_ERR:
4210 /* make sure qc->err_mask is available to
4211 * know what's wrong and recover
4212 */
4213 WARN_ON(qc->err_mask == 0);
4214
4215 ap->hsm_task_state = HSM_ST_IDLE;
4216
4217 /* complete taskfile transaction */
4218 ata_hsm_qc_complete(qc, in_wq);
4219
4220 poll_next = 0;
4221 break;
4222 default:
4223 poll_next = 0;
4224 BUG();
4225 }
4226
4227 return poll_next;
4228 }
4229
4230 static void ata_pio_task(void *_data)
4231 {
4232 struct ata_queued_cmd *qc = _data;
4233 struct ata_port *ap = qc->ap;
4234 u8 status;
4235 int poll_next;
4236
4237 fsm_start:
4238 WARN_ON(ap->hsm_task_state == HSM_ST_IDLE);
4239
4240 /*
4241 * This is purely heuristic. This is a fast path.
4242 * Sometimes when we enter, BSY will be cleared in
4243 * a chk-status or two. If not, the drive is probably seeking
4244 * or something. Snooze for a couple msecs, then
4245 * chk-status again. If still busy, queue delayed work.
4246 */
4247 status = ata_busy_wait(ap, ATA_BUSY, 5);
4248 if (status & ATA_BUSY) {
4249 msleep(2);
4250 status = ata_busy_wait(ap, ATA_BUSY, 10);
4251 if (status & ATA_BUSY) {
4252 ata_port_queue_task(ap, ata_pio_task, qc, ATA_SHORT_PAUSE);
4253 return;
4254 }
4255 }
4256
4257 /* move the HSM */
4258 poll_next = ata_hsm_move(ap, qc, status, 1);
4259
4260 /* another command or interrupt handler
4261 * may be running at this point.
4262 */
4263 if (poll_next)
4264 goto fsm_start;
4265 }
4266
4267 /**
4268 * ata_qc_new - Request an available ATA command, for queueing
4269 * @ap: Port associated with device @dev
4270 * @dev: Device from whom we request an available command structure
4271 *
4272 * LOCKING:
4273 * None.
4274 */
4275
4276 static struct ata_queued_cmd *ata_qc_new(struct ata_port *ap)
4277 {
4278 struct ata_queued_cmd *qc = NULL;
4279 unsigned int i;
4280
4281 /* no command while frozen */
4282 if (unlikely(ap->flags & ATA_FLAG_FROZEN))
4283 return NULL;
4284
4285 /* the last tag is reserved for internal command. */
4286 for (i = 0; i < ATA_MAX_QUEUE - 1; i++)
4287 if (!test_and_set_bit(i, &ap->qc_allocated)) {
4288 qc = __ata_qc_from_tag(ap, i);
4289 break;
4290 }
4291
4292 if (qc)
4293 qc->tag = i;
4294
4295 return qc;
4296 }
4297
4298 /**
4299 * ata_qc_new_init - Request an available ATA command, and initialize it
4300 * @dev: Device from whom we request an available command structure
4301 *
4302 * LOCKING:
4303 * None.
4304 */
4305
4306 struct ata_queued_cmd *ata_qc_new_init(struct ata_device *dev)
4307 {
4308 struct ata_port *ap = dev->ap;
4309 struct ata_queued_cmd *qc;
4310
4311 qc = ata_qc_new(ap);
4312 if (qc) {
4313 qc->scsicmd = NULL;
4314 qc->ap = ap;
4315 qc->dev = dev;
4316
4317 ata_qc_reinit(qc);
4318 }
4319
4320 return qc;
4321 }
4322
4323 /**
4324 * ata_qc_free - free unused ata_queued_cmd
4325 * @qc: Command to complete
4326 *
4327 * Designed to free unused ata_queued_cmd object
4328 * in case something prevents using it.
4329 *
4330 * LOCKING:
4331 * spin_lock_irqsave(host_set lock)
4332 */
4333 void ata_qc_free(struct ata_queued_cmd *qc)
4334 {
4335 struct ata_port *ap = qc->ap;
4336 unsigned int tag;
4337
4338 WARN_ON(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
4339
4340 qc->flags = 0;
4341 tag = qc->tag;
4342 if (likely(ata_tag_valid(tag))) {
4343 qc->tag = ATA_TAG_POISON;
4344 clear_bit(tag, &ap->qc_allocated);
4345 }
4346 }
4347
4348 void __ata_qc_complete(struct ata_queued_cmd *qc)
4349 {
4350 struct ata_port *ap = qc->ap;
4351
4352 WARN_ON(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
4353 WARN_ON(!(qc->flags & ATA_QCFLAG_ACTIVE));
4354
4355 if (likely(qc->flags & ATA_QCFLAG_DMAMAP))
4356 ata_sg_clean(qc);
4357
4358 /* command should be marked inactive atomically with qc completion */
4359 if (qc->tf.protocol == ATA_PROT_NCQ)
4360 ap->sactive &= ~(1 << qc->tag);
4361 else
4362 ap->active_tag = ATA_TAG_POISON;
4363
4364 /* atapi: mark qc as inactive to prevent the interrupt handler
4365 * from completing the command twice later, before the error handler
4366 * is called. (when rc != 0 and atapi request sense is needed)
4367 */
4368 qc->flags &= ~ATA_QCFLAG_ACTIVE;
4369 ap->qc_active &= ~(1 << qc->tag);
4370
4371 /* call completion callback */
4372 qc->complete_fn(qc);
4373 }
4374
4375 /**
4376 * ata_qc_complete - Complete an active ATA command
4377 * @qc: Command to complete
4378 * @err_mask: ATA Status register contents
4379 *
4380 * Indicate to the mid and upper layers that an ATA
4381 * command has completed, with either an ok or not-ok status.
4382 *
4383 * LOCKING:
4384 * spin_lock_irqsave(host_set lock)
4385 */
4386 void ata_qc_complete(struct ata_queued_cmd *qc)
4387 {
4388 struct ata_port *ap = qc->ap;
4389
4390 /* XXX: New EH and old EH use different mechanisms to
4391 * synchronize EH with regular execution path.
4392 *
4393 * In new EH, a failed qc is marked with ATA_QCFLAG_FAILED.
4394 * Normal execution path is responsible for not accessing a
4395 * failed qc. libata core enforces the rule by returning NULL
4396 * from ata_qc_from_tag() for failed qcs.
4397 *
4398 * Old EH depends on ata_qc_complete() nullifying completion
4399 * requests if ATA_QCFLAG_EH_SCHEDULED is set. Old EH does
4400 * not synchronize with interrupt handler. Only PIO task is
4401 * taken care of.
4402 */
4403 if (ap->ops->error_handler) {
4404 WARN_ON(ap->flags & ATA_FLAG_FROZEN);
4405
4406 if (unlikely(qc->err_mask))
4407 qc->flags |= ATA_QCFLAG_FAILED;
4408
4409 if (unlikely(qc->flags & ATA_QCFLAG_FAILED)) {
4410 if (!ata_tag_internal(qc->tag)) {
4411 /* always fill result TF for failed qc */
4412 ap->ops->tf_read(ap, &qc->result_tf);
4413 ata_qc_schedule_eh(qc);
4414 return;
4415 }
4416 }
4417
4418 /* read result TF if requested */
4419 if (qc->flags & ATA_QCFLAG_RESULT_TF)
4420 ap->ops->tf_read(ap, &qc->result_tf);
4421
4422 __ata_qc_complete(qc);
4423 } else {
4424 if (qc->flags & ATA_QCFLAG_EH_SCHEDULED)
4425 return;
4426
4427 /* read result TF if failed or requested */
4428 if (qc->err_mask || qc->flags & ATA_QCFLAG_RESULT_TF)
4429 ap->ops->tf_read(ap, &qc->result_tf);
4430
4431 __ata_qc_complete(qc);
4432 }
4433 }
4434
4435 /**
4436 * ata_qc_complete_multiple - Complete multiple qcs successfully
4437 * @ap: port in question
4438 * @qc_active: new qc_active mask
4439 * @finish_qc: LLDD callback invoked before completing a qc
4440 *
4441 * Complete in-flight commands. This functions is meant to be
4442 * called from low-level driver's interrupt routine to complete
4443 * requests normally. ap->qc_active and @qc_active is compared
4444 * and commands are completed accordingly.
4445 *
4446 * LOCKING:
4447 * spin_lock_irqsave(host_set lock)
4448 *
4449 * RETURNS:
4450 * Number of completed commands on success, -errno otherwise.
4451 */
4452 int ata_qc_complete_multiple(struct ata_port *ap, u32 qc_active,
4453 void (*finish_qc)(struct ata_queued_cmd *))
4454 {
4455 int nr_done = 0;
4456 u32 done_mask;
4457 int i;
4458
4459 done_mask = ap->qc_active ^ qc_active;
4460
4461 if (unlikely(done_mask & qc_active)) {
4462 ata_port_printk(ap, KERN_ERR, "illegal qc_active transition "
4463 "(%08x->%08x)\n", ap->qc_active, qc_active);
4464 return -EINVAL;
4465 }
4466
4467 for (i = 0; i < ATA_MAX_QUEUE; i++) {
4468 struct ata_queued_cmd *qc;
4469
4470 if (!(done_mask & (1 << i)))
4471 continue;
4472
4473 if ((qc = ata_qc_from_tag(ap, i))) {
4474 if (finish_qc)
4475 finish_qc(qc);
4476 ata_qc_complete(qc);
4477 nr_done++;
4478 }
4479 }
4480
4481 return nr_done;
4482 }
4483
4484 static inline int ata_should_dma_map(struct ata_queued_cmd *qc)
4485 {
4486 struct ata_port *ap = qc->ap;
4487
4488 switch (qc->tf.protocol) {
4489 case ATA_PROT_NCQ:
4490 case ATA_PROT_DMA:
4491 case ATA_PROT_ATAPI_DMA:
4492 return 1;
4493
4494 case ATA_PROT_ATAPI:
4495 case ATA_PROT_PIO:
4496 if (ap->flags & ATA_FLAG_PIO_DMA)
4497 return 1;
4498
4499 /* fall through */
4500
4501 default:
4502 return 0;
4503 }
4504
4505 /* never reached */
4506 }
4507
4508 /**
4509 * ata_qc_issue - issue taskfile to device
4510 * @qc: command to issue to device
4511 *
4512 * Prepare an ATA command to submission to device.
4513 * This includes mapping the data into a DMA-able
4514 * area, filling in the S/G table, and finally
4515 * writing the taskfile to hardware, starting the command.
4516 *
4517 * LOCKING:
4518 * spin_lock_irqsave(host_set lock)
4519 */
4520 void ata_qc_issue(struct ata_queued_cmd *qc)
4521 {
4522 struct ata_port *ap = qc->ap;
4523
4524 /* Make sure only one non-NCQ command is outstanding. The
4525 * check is skipped for old EH because it reuses active qc to
4526 * request ATAPI sense.
4527 */
4528 WARN_ON(ap->ops->error_handler && ata_tag_valid(ap->active_tag));
4529
4530 if (qc->tf.protocol == ATA_PROT_NCQ) {
4531 WARN_ON(ap->sactive & (1 << qc->tag));
4532 ap->sactive |= 1 << qc->tag;
4533 } else {
4534 WARN_ON(ap->sactive);
4535 ap->active_tag = qc->tag;
4536 }
4537
4538 qc->flags |= ATA_QCFLAG_ACTIVE;
4539 ap->qc_active |= 1 << qc->tag;
4540
4541 if (ata_should_dma_map(qc)) {
4542 if (qc->flags & ATA_QCFLAG_SG) {
4543 if (ata_sg_setup(qc))
4544 goto sg_err;
4545 } else if (qc->flags & ATA_QCFLAG_SINGLE) {
4546 if (ata_sg_setup_one(qc))
4547 goto sg_err;
4548 }
4549 } else {
4550 qc->flags &= ~ATA_QCFLAG_DMAMAP;
4551 }
4552
4553 ap->ops->qc_prep(qc);
4554
4555 qc->err_mask |= ap->ops->qc_issue(qc);
4556 if (unlikely(qc->err_mask))
4557 goto err;
4558 return;
4559
4560 sg_err:
4561 qc->flags &= ~ATA_QCFLAG_DMAMAP;
4562 qc->err_mask |= AC_ERR_SYSTEM;
4563 err:
4564 ata_qc_complete(qc);
4565 }
4566
4567 /**
4568 * ata_qc_issue_prot - issue taskfile to device in proto-dependent manner
4569 * @qc: command to issue to device
4570 *
4571 * Using various libata functions and hooks, this function
4572 * starts an ATA command. ATA commands are grouped into
4573 * classes called "protocols", and issuing each type of protocol
4574 * is slightly different.
4575 *
4576 * May be used as the qc_issue() entry in ata_port_operations.
4577 *
4578 * LOCKING:
4579 * spin_lock_irqsave(host_set lock)
4580 *
4581 * RETURNS:
4582 * Zero on success, AC_ERR_* mask on failure
4583 */
4584
4585 unsigned int ata_qc_issue_prot(struct ata_queued_cmd *qc)
4586 {
4587 struct ata_port *ap = qc->ap;
4588
4589 /* Use polling pio if the LLD doesn't handle
4590 * interrupt driven pio and atapi CDB interrupt.
4591 */
4592 if (ap->flags & ATA_FLAG_PIO_POLLING) {
4593 switch (qc->tf.protocol) {
4594 case ATA_PROT_PIO:
4595 case ATA_PROT_ATAPI:
4596 case ATA_PROT_ATAPI_NODATA:
4597 qc->tf.flags |= ATA_TFLAG_POLLING;
4598 break;
4599 case ATA_PROT_ATAPI_DMA:
4600 if (qc->dev->flags & ATA_DFLAG_CDB_INTR)
4601 /* see ata_dma_blacklisted() */
4602 BUG();
4603 break;
4604 default:
4605 break;
4606 }
4607 }
4608
4609 /* select the device */
4610 ata_dev_select(ap, qc->dev->devno, 1, 0);
4611
4612 /* start the command */
4613 switch (qc->tf.protocol) {
4614 case ATA_PROT_NODATA:
4615 if (qc->tf.flags & ATA_TFLAG_POLLING)
4616 ata_qc_set_polling(qc);
4617
4618 ata_tf_to_host(ap, &qc->tf);
4619 ap->hsm_task_state = HSM_ST_LAST;
4620
4621 if (qc->tf.flags & ATA_TFLAG_POLLING)
4622 ata_port_queue_task(ap, ata_pio_task, qc, 0);
4623
4624 break;
4625
4626 case ATA_PROT_DMA:
4627 WARN_ON(qc->tf.flags & ATA_TFLAG_POLLING);
4628
4629 ap->ops->tf_load(ap, &qc->tf); /* load tf registers */
4630 ap->ops->bmdma_setup(qc); /* set up bmdma */
4631 ap->ops->bmdma_start(qc); /* initiate bmdma */
4632 ap->hsm_task_state = HSM_ST_LAST;
4633 break;
4634
4635 case ATA_PROT_PIO:
4636 if (qc->tf.flags & ATA_TFLAG_POLLING)
4637 ata_qc_set_polling(qc);
4638
4639 ata_tf_to_host(ap, &qc->tf);
4640
4641 if (qc->tf.flags & ATA_TFLAG_WRITE) {
4642 /* PIO data out protocol */
4643 ap->hsm_task_state = HSM_ST_FIRST;
4644 ata_port_queue_task(ap, ata_pio_task, qc, 0);
4645
4646 /* always send first data block using
4647 * the ata_pio_task() codepath.
4648 */
4649 } else {
4650 /* PIO data in protocol */
4651 ap->hsm_task_state = HSM_ST;
4652
4653 if (qc->tf.flags & ATA_TFLAG_POLLING)
4654 ata_port_queue_task(ap, ata_pio_task, qc, 0);
4655
4656 /* if polling, ata_pio_task() handles the rest.
4657 * otherwise, interrupt handler takes over from here.
4658 */
4659 }
4660
4661 break;
4662
4663 case ATA_PROT_ATAPI:
4664 case ATA_PROT_ATAPI_NODATA:
4665 if (qc->tf.flags & ATA_TFLAG_POLLING)
4666 ata_qc_set_polling(qc);
4667
4668 ata_tf_to_host(ap, &qc->tf);
4669
4670 ap->hsm_task_state = HSM_ST_FIRST;
4671
4672 /* send cdb by polling if no cdb interrupt */
4673 if ((!(qc->dev->flags & ATA_DFLAG_CDB_INTR)) ||
4674 (qc->tf.flags & ATA_TFLAG_POLLING))
4675 ata_port_queue_task(ap, ata_pio_task, qc, 0);
4676 break;
4677
4678 case ATA_PROT_ATAPI_DMA:
4679 WARN_ON(qc->tf.flags & ATA_TFLAG_POLLING);
4680
4681 ap->ops->tf_load(ap, &qc->tf); /* load tf registers */
4682 ap->ops->bmdma_setup(qc); /* set up bmdma */
4683 ap->hsm_task_state = HSM_ST_FIRST;
4684
4685 /* send cdb by polling if no cdb interrupt */
4686 if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
4687 ata_port_queue_task(ap, ata_pio_task, qc, 0);
4688 break;
4689
4690 default:
4691 WARN_ON(1);
4692 return AC_ERR_SYSTEM;
4693 }
4694
4695 return 0;
4696 }
4697
4698 /**
4699 * ata_host_intr - Handle host interrupt for given (port, task)
4700 * @ap: Port on which interrupt arrived (possibly...)
4701 * @qc: Taskfile currently active in engine
4702 *
4703 * Handle host interrupt for given queued command. Currently,
4704 * only DMA interrupts are handled. All other commands are
4705 * handled via polling with interrupts disabled (nIEN bit).
4706 *
4707 * LOCKING:
4708 * spin_lock_irqsave(host_set lock)
4709 *
4710 * RETURNS:
4711 * One if interrupt was handled, zero if not (shared irq).
4712 */
4713
4714 inline unsigned int ata_host_intr (struct ata_port *ap,
4715 struct ata_queued_cmd *qc)
4716 {
4717 u8 status, host_stat = 0;
4718
4719 VPRINTK("ata%u: protocol %d task_state %d\n",
4720 ap->id, qc->tf.protocol, ap->hsm_task_state);
4721
4722 /* Check whether we are expecting interrupt in this state */
4723 switch (ap->hsm_task_state) {
4724 case HSM_ST_FIRST:
4725 /* Some pre-ATAPI-4 devices assert INTRQ
4726 * at this state when ready to receive CDB.
4727 */
4728
4729 /* Check the ATA_DFLAG_CDB_INTR flag is enough here.
4730 * The flag was turned on only for atapi devices.
4731 * No need to check is_atapi_taskfile(&qc->tf) again.
4732 */
4733 if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
4734 goto idle_irq;
4735 break;
4736 case HSM_ST_LAST:
4737 if (qc->tf.protocol == ATA_PROT_DMA ||
4738 qc->tf.protocol == ATA_PROT_ATAPI_DMA) {
4739 /* check status of DMA engine */
4740 host_stat = ap->ops->bmdma_status(ap);
4741 VPRINTK("ata%u: host_stat 0x%X\n", ap->id, host_stat);
4742
4743 /* if it's not our irq... */
4744 if (!(host_stat & ATA_DMA_INTR))
4745 goto idle_irq;
4746
4747 /* before we do anything else, clear DMA-Start bit */
4748 ap->ops->bmdma_stop(qc);
4749
4750 if (unlikely(host_stat & ATA_DMA_ERR)) {
4751 /* error when transfering data to/from memory */
4752 qc->err_mask |= AC_ERR_HOST_BUS;
4753 ap->hsm_task_state = HSM_ST_ERR;
4754 }
4755 }
4756 break;
4757 case HSM_ST:
4758 break;
4759 default:
4760 goto idle_irq;
4761 }
4762
4763 /* check altstatus */
4764 status = ata_altstatus(ap);
4765 if (status & ATA_BUSY)
4766 goto idle_irq;
4767
4768 /* check main status, clearing INTRQ */
4769 status = ata_chk_status(ap);
4770 if (unlikely(status & ATA_BUSY))
4771 goto idle_irq;
4772
4773 /* ack bmdma irq events */
4774 ap->ops->irq_clear(ap);
4775
4776 ata_hsm_move(ap, qc, status, 0);
4777 return 1; /* irq handled */
4778
4779 idle_irq:
4780 ap->stats.idle_irq++;
4781
4782 #ifdef ATA_IRQ_TRAP
4783 if ((ap->stats.idle_irq % 1000) == 0) {
4784 ata_irq_ack(ap, 0); /* debug trap */
4785 ata_port_printk(ap, KERN_WARNING, "irq trap\n");
4786 return 1;
4787 }
4788 #endif
4789 return 0; /* irq not handled */
4790 }
4791
4792 /**
4793 * ata_interrupt - Default ATA host interrupt handler
4794 * @irq: irq line (unused)
4795 * @dev_instance: pointer to our ata_host_set information structure
4796 * @regs: unused
4797 *
4798 * Default interrupt handler for PCI IDE devices. Calls
4799 * ata_host_intr() for each port that is not disabled.
4800 *
4801 * LOCKING:
4802 * Obtains host_set lock during operation.
4803 *
4804 * RETURNS:
4805 * IRQ_NONE or IRQ_HANDLED.
4806 */
4807
4808 irqreturn_t ata_interrupt (int irq, void *dev_instance, struct pt_regs *regs)
4809 {
4810 struct ata_host_set *host_set = dev_instance;
4811 unsigned int i;
4812 unsigned int handled = 0;
4813 unsigned long flags;
4814
4815 /* TODO: make _irqsave conditional on x86 PCI IDE legacy mode */
4816 spin_lock_irqsave(&host_set->lock, flags);
4817
4818 for (i = 0; i < host_set->n_ports; i++) {
4819 struct ata_port *ap;
4820
4821 ap = host_set->ports[i];
4822 if (ap &&
4823 !(ap->flags & ATA_FLAG_DISABLED)) {
4824 struct ata_queued_cmd *qc;
4825
4826 qc = ata_qc_from_tag(ap, ap->active_tag);
4827 if (qc && (!(qc->tf.flags & ATA_TFLAG_POLLING)) &&
4828 (qc->flags & ATA_QCFLAG_ACTIVE))
4829 handled |= ata_host_intr(ap, qc);
4830 }
4831 }
4832
4833 spin_unlock_irqrestore(&host_set->lock, flags);
4834
4835 return IRQ_RETVAL(handled);
4836 }
4837
4838 /**
4839 * sata_scr_valid - test whether SCRs are accessible
4840 * @ap: ATA port to test SCR accessibility for
4841 *
4842 * Test whether SCRs are accessible for @ap.
4843 *
4844 * LOCKING:
4845 * None.
4846 *
4847 * RETURNS:
4848 * 1 if SCRs are accessible, 0 otherwise.
4849 */
4850 int sata_scr_valid(struct ata_port *ap)
4851 {
4852 return ap->cbl == ATA_CBL_SATA && ap->ops->scr_read;
4853 }
4854
4855 /**
4856 * sata_scr_read - read SCR register of the specified port
4857 * @ap: ATA port to read SCR for
4858 * @reg: SCR to read
4859 * @val: Place to store read value
4860 *
4861 * Read SCR register @reg of @ap into *@val. This function is
4862 * guaranteed to succeed if the cable type of the port is SATA
4863 * and the port implements ->scr_read.
4864 *
4865 * LOCKING:
4866 * None.
4867 *
4868 * RETURNS:
4869 * 0 on success, negative errno on failure.
4870 */
4871 int sata_scr_read(struct ata_port *ap, int reg, u32 *val)
4872 {
4873 if (sata_scr_valid(ap)) {
4874 *val = ap->ops->scr_read(ap, reg);
4875 return 0;
4876 }
4877 return -EOPNOTSUPP;
4878 }
4879
4880 /**
4881 * sata_scr_write - write SCR register of the specified port
4882 * @ap: ATA port to write SCR for
4883 * @reg: SCR to write
4884 * @val: value to write
4885 *
4886 * Write @val to SCR register @reg of @ap. This function is
4887 * guaranteed to succeed if the cable type of the port is SATA
4888 * and the port implements ->scr_read.
4889 *
4890 * LOCKING:
4891 * None.
4892 *
4893 * RETURNS:
4894 * 0 on success, negative errno on failure.
4895 */
4896 int sata_scr_write(struct ata_port *ap, int reg, u32 val)
4897 {
4898 if (sata_scr_valid(ap)) {
4899 ap->ops->scr_write(ap, reg, val);
4900 return 0;
4901 }
4902 return -EOPNOTSUPP;
4903 }
4904
4905 /**
4906 * sata_scr_write_flush - write SCR register of the specified port and flush
4907 * @ap: ATA port to write SCR for
4908 * @reg: SCR to write
4909 * @val: value to write
4910 *
4911 * This function is identical to sata_scr_write() except that this
4912 * function performs flush after writing to the register.
4913 *
4914 * LOCKING:
4915 * None.
4916 *
4917 * RETURNS:
4918 * 0 on success, negative errno on failure.
4919 */
4920 int sata_scr_write_flush(struct ata_port *ap, int reg, u32 val)
4921 {
4922 if (sata_scr_valid(ap)) {
4923 ap->ops->scr_write(ap, reg, val);
4924 ap->ops->scr_read(ap, reg);
4925 return 0;
4926 }
4927 return -EOPNOTSUPP;
4928 }
4929
4930 /**
4931 * ata_port_online - test whether the given port is online
4932 * @ap: ATA port to test
4933 *
4934 * Test whether @ap is online. Note that this function returns 0
4935 * if online status of @ap cannot be obtained, so
4936 * ata_port_online(ap) != !ata_port_offline(ap).
4937 *
4938 * LOCKING:
4939 * None.
4940 *
4941 * RETURNS:
4942 * 1 if the port online status is available and online.
4943 */
4944 int ata_port_online(struct ata_port *ap)
4945 {
4946 u32 sstatus;
4947
4948 if (!sata_scr_read(ap, SCR_STATUS, &sstatus) && (sstatus & 0xf) == 0x3)
4949 return 1;
4950 return 0;
4951 }
4952
4953 /**
4954 * ata_port_offline - test whether the given port is offline
4955 * @ap: ATA port to test
4956 *
4957 * Test whether @ap is offline. Note that this function returns
4958 * 0 if offline status of @ap cannot be obtained, so
4959 * ata_port_online(ap) != !ata_port_offline(ap).
4960 *
4961 * LOCKING:
4962 * None.
4963 *
4964 * RETURNS:
4965 * 1 if the port offline status is available and offline.
4966 */
4967 int ata_port_offline(struct ata_port *ap)
4968 {
4969 u32 sstatus;
4970
4971 if (!sata_scr_read(ap, SCR_STATUS, &sstatus) && (sstatus & 0xf) != 0x3)
4972 return 1;
4973 return 0;
4974 }
4975
4976 static int ata_flush_cache(struct ata_device *dev)
4977 {
4978 unsigned int err_mask;
4979 u8 cmd;
4980
4981 if (!ata_try_flush_cache(dev))
4982 return 0;
4983
4984 if (ata_id_has_flush_ext(dev->id))
4985 cmd = ATA_CMD_FLUSH_EXT;
4986 else
4987 cmd = ATA_CMD_FLUSH;
4988
4989 err_mask = ata_do_simple_cmd(dev, cmd);
4990 if (err_mask) {
4991 ata_dev_printk(dev, KERN_ERR, "failed to flush cache\n");
4992 return -EIO;
4993 }
4994
4995 return 0;
4996 }
4997
4998 static int ata_standby_drive(struct ata_device *dev)
4999 {
5000 unsigned int err_mask;
5001
5002 err_mask = ata_do_simple_cmd(dev, ATA_CMD_STANDBYNOW1);
5003 if (err_mask) {
5004 ata_dev_printk(dev, KERN_ERR, "failed to standby drive "
5005 "(err_mask=0x%x)\n", err_mask);
5006 return -EIO;
5007 }
5008
5009 return 0;
5010 }
5011
5012 static int ata_start_drive(struct ata_device *dev)
5013 {
5014 unsigned int err_mask;
5015
5016 err_mask = ata_do_simple_cmd(dev, ATA_CMD_IDLEIMMEDIATE);
5017 if (err_mask) {
5018 ata_dev_printk(dev, KERN_ERR, "failed to start drive "
5019 "(err_mask=0x%x)\n", err_mask);
5020 return -EIO;
5021 }
5022
5023 return 0;
5024 }
5025
5026 /**
5027 * ata_device_resume - wakeup a previously suspended devices
5028 * @dev: the device to resume
5029 *
5030 * Kick the drive back into action, by sending it an idle immediate
5031 * command and making sure its transfer mode matches between drive
5032 * and host.
5033 *
5034 */
5035 int ata_device_resume(struct ata_device *dev)
5036 {
5037 struct ata_port *ap = dev->ap;
5038
5039 if (ap->flags & ATA_FLAG_SUSPENDED) {
5040 struct ata_device *failed_dev;
5041
5042 ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT);
5043 ata_busy_wait(ap, ATA_BUSY | ATA_DRQ, 200000);
5044
5045 ap->flags &= ~ATA_FLAG_SUSPENDED;
5046 while (ata_set_mode(ap, &failed_dev))
5047 ata_dev_disable(failed_dev);
5048 }
5049 if (!ata_dev_enabled(dev))
5050 return 0;
5051 if (dev->class == ATA_DEV_ATA)
5052 ata_start_drive(dev);
5053
5054 return 0;
5055 }
5056
5057 /**
5058 * ata_device_suspend - prepare a device for suspend
5059 * @dev: the device to suspend
5060 * @state: target power management state
5061 *
5062 * Flush the cache on the drive, if appropriate, then issue a
5063 * standbynow command.
5064 */
5065 int ata_device_suspend(struct ata_device *dev, pm_message_t state)
5066 {
5067 struct ata_port *ap = dev->ap;
5068
5069 if (!ata_dev_enabled(dev))
5070 return 0;
5071 if (dev->class == ATA_DEV_ATA)
5072 ata_flush_cache(dev);
5073
5074 if (state.event != PM_EVENT_FREEZE)
5075 ata_standby_drive(dev);
5076 ap->flags |= ATA_FLAG_SUSPENDED;
5077 return 0;
5078 }
5079
5080 /**
5081 * ata_port_start - Set port up for dma.
5082 * @ap: Port to initialize
5083 *
5084 * Called just after data structures for each port are
5085 * initialized. Allocates space for PRD table.
5086 *
5087 * May be used as the port_start() entry in ata_port_operations.
5088 *
5089 * LOCKING:
5090 * Inherited from caller.
5091 */
5092
5093 int ata_port_start (struct ata_port *ap)
5094 {
5095 struct device *dev = ap->dev;
5096 int rc;
5097
5098 ap->prd = dma_alloc_coherent(dev, ATA_PRD_TBL_SZ, &ap->prd_dma, GFP_KERNEL);
5099 if (!ap->prd)
5100 return -ENOMEM;
5101
5102 rc = ata_pad_alloc(ap, dev);
5103 if (rc) {
5104 dma_free_coherent(dev, ATA_PRD_TBL_SZ, ap->prd, ap->prd_dma);
5105 return rc;
5106 }
5107
5108 DPRINTK("prd alloc, virt %p, dma %llx\n", ap->prd, (unsigned long long) ap->prd_dma);
5109
5110 return 0;
5111 }
5112
5113
5114 /**
5115 * ata_port_stop - Undo ata_port_start()
5116 * @ap: Port to shut down
5117 *
5118 * Frees the PRD table.
5119 *
5120 * May be used as the port_stop() entry in ata_port_operations.
5121 *
5122 * LOCKING:
5123 * Inherited from caller.
5124 */
5125
5126 void ata_port_stop (struct ata_port *ap)
5127 {
5128 struct device *dev = ap->dev;
5129
5130 dma_free_coherent(dev, ATA_PRD_TBL_SZ, ap->prd, ap->prd_dma);
5131 ata_pad_free(ap, dev);
5132 }
5133
5134 void ata_host_stop (struct ata_host_set *host_set)
5135 {
5136 if (host_set->mmio_base)
5137 iounmap(host_set->mmio_base);
5138 }
5139
5140
5141 /**
5142 * ata_host_remove - Unregister SCSI host structure with upper layers
5143 * @ap: Port to unregister
5144 * @do_unregister: 1 if we fully unregister, 0 to just stop the port
5145 *
5146 * LOCKING:
5147 * Inherited from caller.
5148 */
5149
5150 static void ata_host_remove(struct ata_port *ap, unsigned int do_unregister)
5151 {
5152 struct Scsi_Host *sh = ap->host;
5153
5154 DPRINTK("ENTER\n");
5155
5156 if (do_unregister)
5157 scsi_remove_host(sh);
5158
5159 ap->ops->port_stop(ap);
5160 }
5161
5162 /**
5163 * ata_dev_init - Initialize an ata_device structure
5164 * @dev: Device structure to initialize
5165 *
5166 * Initialize @dev in preparation for probing.
5167 *
5168 * LOCKING:
5169 * Inherited from caller.
5170 */
5171 void ata_dev_init(struct ata_device *dev)
5172 {
5173 struct ata_port *ap = dev->ap;
5174 unsigned long flags;
5175
5176 /* SATA spd limit is bound to the first device */
5177 ap->sata_spd_limit = ap->hw_sata_spd_limit;
5178
5179 /* High bits of dev->flags are used to record warm plug
5180 * requests which occur asynchronously. Synchronize using
5181 * host_set lock.
5182 */
5183 spin_lock_irqsave(ap->lock, flags);
5184 dev->flags &= ~ATA_DFLAG_INIT_MASK;
5185 spin_unlock_irqrestore(ap->lock, flags);
5186
5187 memset((void *)dev + ATA_DEVICE_CLEAR_OFFSET, 0,
5188 sizeof(*dev) - ATA_DEVICE_CLEAR_OFFSET);
5189 dev->pio_mask = UINT_MAX;
5190 dev->mwdma_mask = UINT_MAX;
5191 dev->udma_mask = UINT_MAX;
5192 }
5193
5194 /**
5195 * ata_host_init - Initialize an ata_port structure
5196 * @ap: Structure to initialize
5197 * @host: associated SCSI mid-layer structure
5198 * @host_set: Collection of hosts to which @ap belongs
5199 * @ent: Probe information provided by low-level driver
5200 * @port_no: Port number associated with this ata_port
5201 *
5202 * Initialize a new ata_port structure, and its associated
5203 * scsi_host.
5204 *
5205 * LOCKING:
5206 * Inherited from caller.
5207 */
5208 static void ata_host_init(struct ata_port *ap, struct Scsi_Host *host,
5209 struct ata_host_set *host_set,
5210 const struct ata_probe_ent *ent, unsigned int port_no)
5211 {
5212 unsigned int i;
5213
5214 host->max_id = 16;
5215 host->max_lun = 1;
5216 host->max_channel = 1;
5217 host->unique_id = ata_unique_id++;
5218 host->max_cmd_len = 12;
5219
5220 ap->lock = &host_set->lock;
5221 ap->flags = ATA_FLAG_DISABLED;
5222 ap->id = host->unique_id;
5223 ap->host = host;
5224 ap->ctl = ATA_DEVCTL_OBS;
5225 ap->host_set = host_set;
5226 ap->dev = ent->dev;
5227 ap->port_no = port_no;
5228 ap->hard_port_no =
5229 ent->legacy_mode ? ent->hard_port_no : port_no;
5230 ap->pio_mask = ent->pio_mask;
5231 ap->mwdma_mask = ent->mwdma_mask;
5232 ap->udma_mask = ent->udma_mask;
5233 ap->flags |= ent->host_flags;
5234 ap->ops = ent->port_ops;
5235 ap->hw_sata_spd_limit = UINT_MAX;
5236 ap->active_tag = ATA_TAG_POISON;
5237 ap->last_ctl = 0xFF;
5238
5239 #if defined(ATA_VERBOSE_DEBUG)
5240 /* turn on all debugging levels */
5241 ap->msg_enable = 0x00FF;
5242 #elif defined(ATA_DEBUG)
5243 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_INFO | ATA_MSG_CTL | ATA_MSG_WARN | ATA_MSG_ERR;
5244 #else
5245 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_ERR | ATA_MSG_WARN;
5246 #endif
5247
5248 INIT_WORK(&ap->port_task, NULL, NULL);
5249 INIT_WORK(&ap->hotplug_task, ata_scsi_hotplug, ap);
5250 INIT_WORK(&ap->scsi_rescan_task, ata_scsi_dev_rescan, ap);
5251 INIT_LIST_HEAD(&ap->eh_done_q);
5252 init_waitqueue_head(&ap->eh_wait_q);
5253
5254 /* set cable type */
5255 ap->cbl = ATA_CBL_NONE;
5256 if (ap->flags & ATA_FLAG_SATA)
5257 ap->cbl = ATA_CBL_SATA;
5258
5259 for (i = 0; i < ATA_MAX_DEVICES; i++) {
5260 struct ata_device *dev = &ap->device[i];
5261 dev->ap = ap;
5262 dev->devno = i;
5263 ata_dev_init(dev);
5264 }
5265
5266 #ifdef ATA_IRQ_TRAP
5267 ap->stats.unhandled_irq = 1;
5268 ap->stats.idle_irq = 1;
5269 #endif
5270
5271 memcpy(&ap->ioaddr, &ent->port[port_no], sizeof(struct ata_ioports));
5272 }
5273
5274 /**
5275 * ata_host_add - Attach low-level ATA driver to system
5276 * @ent: Information provided by low-level driver
5277 * @host_set: Collections of ports to which we add
5278 * @port_no: Port number associated with this host
5279 *
5280 * Attach low-level ATA driver to system.
5281 *
5282 * LOCKING:
5283 * PCI/etc. bus probe sem.
5284 *
5285 * RETURNS:
5286 * New ata_port on success, for NULL on error.
5287 */
5288
5289 static struct ata_port * ata_host_add(const struct ata_probe_ent *ent,
5290 struct ata_host_set *host_set,
5291 unsigned int port_no)
5292 {
5293 struct Scsi_Host *host;
5294 struct ata_port *ap;
5295 int rc;
5296
5297 DPRINTK("ENTER\n");
5298
5299 if (!ent->port_ops->error_handler &&
5300 !(ent->host_flags & (ATA_FLAG_SATA_RESET | ATA_FLAG_SRST))) {
5301 printk(KERN_ERR "ata%u: no reset mechanism available\n",
5302 port_no);
5303 return NULL;
5304 }
5305
5306 host = scsi_host_alloc(ent->sht, sizeof(struct ata_port));
5307 if (!host)
5308 return NULL;
5309
5310 host->transportt = &ata_scsi_transport_template;
5311
5312 ap = ata_shost_to_port(host);
5313
5314 ata_host_init(ap, host, host_set, ent, port_no);
5315
5316 rc = ap->ops->port_start(ap);
5317 if (rc)
5318 goto err_out;
5319
5320 return ap;
5321
5322 err_out:
5323 scsi_host_put(host);
5324 return NULL;
5325 }
5326
5327 /**
5328 * ata_device_add - Register hardware device with ATA and SCSI layers
5329 * @ent: Probe information describing hardware device to be registered
5330 *
5331 * This function processes the information provided in the probe
5332 * information struct @ent, allocates the necessary ATA and SCSI
5333 * host information structures, initializes them, and registers
5334 * everything with requisite kernel subsystems.
5335 *
5336 * This function requests irqs, probes the ATA bus, and probes
5337 * the SCSI bus.
5338 *
5339 * LOCKING:
5340 * PCI/etc. bus probe sem.
5341 *
5342 * RETURNS:
5343 * Number of ports registered. Zero on error (no ports registered).
5344 */
5345 int ata_device_add(const struct ata_probe_ent *ent)
5346 {
5347 unsigned int count = 0, i;
5348 struct device *dev = ent->dev;
5349 struct ata_host_set *host_set;
5350 int rc;
5351
5352 DPRINTK("ENTER\n");
5353 /* alloc a container for our list of ATA ports (buses) */
5354 host_set = kzalloc(sizeof(struct ata_host_set) +
5355 (ent->n_ports * sizeof(void *)), GFP_KERNEL);
5356 if (!host_set)
5357 return 0;
5358 spin_lock_init(&host_set->lock);
5359
5360 host_set->dev = dev;
5361 host_set->n_ports = ent->n_ports;
5362 host_set->irq = ent->irq;
5363 host_set->mmio_base = ent->mmio_base;
5364 host_set->private_data = ent->private_data;
5365 host_set->ops = ent->port_ops;
5366 host_set->flags = ent->host_set_flags;
5367
5368 /* register each port bound to this device */
5369 for (i = 0; i < ent->n_ports; i++) {
5370 struct ata_port *ap;
5371 unsigned long xfer_mode_mask;
5372
5373 ap = ata_host_add(ent, host_set, i);
5374 if (!ap)
5375 goto err_out;
5376
5377 host_set->ports[i] = ap;
5378 xfer_mode_mask =(ap->udma_mask << ATA_SHIFT_UDMA) |
5379 (ap->mwdma_mask << ATA_SHIFT_MWDMA) |
5380 (ap->pio_mask << ATA_SHIFT_PIO);
5381
5382 /* print per-port info to dmesg */
5383 ata_port_printk(ap, KERN_INFO, "%cATA max %s cmd 0x%lX "
5384 "ctl 0x%lX bmdma 0x%lX irq %lu\n",
5385 ap->flags & ATA_FLAG_SATA ? 'S' : 'P',
5386 ata_mode_string(xfer_mode_mask),
5387 ap->ioaddr.cmd_addr,
5388 ap->ioaddr.ctl_addr,
5389 ap->ioaddr.bmdma_addr,
5390 ent->irq);
5391
5392 ata_chk_status(ap);
5393 host_set->ops->irq_clear(ap);
5394 ata_eh_freeze_port(ap); /* freeze port before requesting IRQ */
5395 count++;
5396 }
5397
5398 if (!count)
5399 goto err_free_ret;
5400
5401 /* obtain irq, that is shared between channels */
5402 rc = request_irq(ent->irq, ent->port_ops->irq_handler, ent->irq_flags,
5403 DRV_NAME, host_set);
5404 if (rc) {
5405 dev_printk(KERN_ERR, dev, "irq %lu request failed: %d\n",
5406 ent->irq, rc);
5407 goto err_out;
5408 }
5409
5410 /* perform each probe synchronously */
5411 DPRINTK("probe begin\n");
5412 for (i = 0; i < count; i++) {
5413 struct ata_port *ap;
5414 u32 scontrol;
5415 int rc;
5416
5417 ap = host_set->ports[i];
5418
5419 /* init sata_spd_limit to the current value */
5420 if (sata_scr_read(ap, SCR_CONTROL, &scontrol) == 0) {
5421 int spd = (scontrol >> 4) & 0xf;
5422 ap->hw_sata_spd_limit &= (1 << spd) - 1;
5423 }
5424 ap->sata_spd_limit = ap->hw_sata_spd_limit;
5425
5426 rc = scsi_add_host(ap->host, dev);
5427 if (rc) {
5428 ata_port_printk(ap, KERN_ERR, "scsi_add_host failed\n");
5429 /* FIXME: do something useful here */
5430 /* FIXME: handle unconditional calls to
5431 * scsi_scan_host and ata_host_remove, below,
5432 * at the very least
5433 */
5434 }
5435
5436 if (ap->ops->error_handler) {
5437 unsigned long flags;
5438
5439 ata_port_probe(ap);
5440
5441 /* kick EH for boot probing */
5442 spin_lock_irqsave(ap->lock, flags);
5443
5444 ap->eh_info.probe_mask = (1 << ATA_MAX_DEVICES) - 1;
5445 ap->eh_info.action |= ATA_EH_SOFTRESET;
5446
5447 ap->flags |= ATA_FLAG_LOADING;
5448 ata_port_schedule_eh(ap);
5449
5450 spin_unlock_irqrestore(ap->lock, flags);
5451
5452 /* wait for EH to finish */
5453 ata_port_wait_eh(ap);
5454 } else {
5455 DPRINTK("ata%u: bus probe begin\n", ap->id);
5456 rc = ata_bus_probe(ap);
5457 DPRINTK("ata%u: bus probe end\n", ap->id);
5458
5459 if (rc) {
5460 /* FIXME: do something useful here?
5461 * Current libata behavior will
5462 * tear down everything when
5463 * the module is removed
5464 * or the h/w is unplugged.
5465 */
5466 }
5467 }
5468 }
5469
5470 /* probes are done, now scan each port's disk(s) */
5471 DPRINTK("host probe begin\n");
5472 for (i = 0; i < count; i++) {
5473 struct ata_port *ap = host_set->ports[i];
5474
5475 ata_scsi_scan_host(ap);
5476 }
5477
5478 dev_set_drvdata(dev, host_set);
5479
5480 VPRINTK("EXIT, returning %u\n", ent->n_ports);
5481 return ent->n_ports; /* success */
5482
5483 err_out:
5484 for (i = 0; i < count; i++) {
5485 ata_host_remove(host_set->ports[i], 1);
5486 scsi_host_put(host_set->ports[i]->host);
5487 }
5488 err_free_ret:
5489 kfree(host_set);
5490 VPRINTK("EXIT, returning 0\n");
5491 return 0;
5492 }
5493
5494 /**
5495 * ata_port_detach - Detach ATA port in prepration of device removal
5496 * @ap: ATA port to be detached
5497 *
5498 * Detach all ATA devices and the associated SCSI devices of @ap;
5499 * then, remove the associated SCSI host. @ap is guaranteed to
5500 * be quiescent on return from this function.
5501 *
5502 * LOCKING:
5503 * Kernel thread context (may sleep).
5504 */
5505 void ata_port_detach(struct ata_port *ap)
5506 {
5507 unsigned long flags;
5508 int i;
5509
5510 if (!ap->ops->error_handler)
5511 return;
5512
5513 /* tell EH we're leaving & flush EH */
5514 spin_lock_irqsave(ap->lock, flags);
5515 ap->flags |= ATA_FLAG_UNLOADING;
5516 spin_unlock_irqrestore(ap->lock, flags);
5517
5518 ata_port_wait_eh(ap);
5519
5520 /* EH is now guaranteed to see UNLOADING, so no new device
5521 * will be attached. Disable all existing devices.
5522 */
5523 spin_lock_irqsave(ap->lock, flags);
5524
5525 for (i = 0; i < ATA_MAX_DEVICES; i++)
5526 ata_dev_disable(&ap->device[i]);
5527
5528 spin_unlock_irqrestore(ap->lock, flags);
5529
5530 /* Final freeze & EH. All in-flight commands are aborted. EH
5531 * will be skipped and retrials will be terminated with bad
5532 * target.
5533 */
5534 spin_lock_irqsave(ap->lock, flags);
5535 ata_port_freeze(ap); /* won't be thawed */
5536 spin_unlock_irqrestore(ap->lock, flags);
5537
5538 ata_port_wait_eh(ap);
5539
5540 /* Flush hotplug task. The sequence is similar to
5541 * ata_port_flush_task().
5542 */
5543 flush_workqueue(ata_aux_wq);
5544 cancel_delayed_work(&ap->hotplug_task);
5545 flush_workqueue(ata_aux_wq);
5546
5547 /* remove the associated SCSI host */
5548 scsi_remove_host(ap->host);
5549 }
5550
5551 /**
5552 * ata_host_set_remove - PCI layer callback for device removal
5553 * @host_set: ATA host set that was removed
5554 *
5555 * Unregister all objects associated with this host set. Free those
5556 * objects.
5557 *
5558 * LOCKING:
5559 * Inherited from calling layer (may sleep).
5560 */
5561
5562 void ata_host_set_remove(struct ata_host_set *host_set)
5563 {
5564 unsigned int i;
5565
5566 for (i = 0; i < host_set->n_ports; i++)
5567 ata_port_detach(host_set->ports[i]);
5568
5569 free_irq(host_set->irq, host_set);
5570
5571 for (i = 0; i < host_set->n_ports; i++) {
5572 struct ata_port *ap = host_set->ports[i];
5573
5574 ata_scsi_release(ap->host);
5575
5576 if ((ap->flags & ATA_FLAG_NO_LEGACY) == 0) {
5577 struct ata_ioports *ioaddr = &ap->ioaddr;
5578
5579 if (ioaddr->cmd_addr == 0x1f0)
5580 release_region(0x1f0, 8);
5581 else if (ioaddr->cmd_addr == 0x170)
5582 release_region(0x170, 8);
5583 }
5584
5585 scsi_host_put(ap->host);
5586 }
5587
5588 if (host_set->ops->host_stop)
5589 host_set->ops->host_stop(host_set);
5590
5591 kfree(host_set);
5592 }
5593
5594 /**
5595 * ata_scsi_release - SCSI layer callback hook for host unload
5596 * @host: libata host to be unloaded
5597 *
5598 * Performs all duties necessary to shut down a libata port...
5599 * Kill port kthread, disable port, and release resources.
5600 *
5601 * LOCKING:
5602 * Inherited from SCSI layer.
5603 *
5604 * RETURNS:
5605 * One.
5606 */
5607
5608 int ata_scsi_release(struct Scsi_Host *host)
5609 {
5610 struct ata_port *ap = ata_shost_to_port(host);
5611
5612 DPRINTK("ENTER\n");
5613
5614 ap->ops->port_disable(ap);
5615 ata_host_remove(ap, 0);
5616
5617 DPRINTK("EXIT\n");
5618 return 1;
5619 }
5620
5621 /**
5622 * ata_std_ports - initialize ioaddr with standard port offsets.
5623 * @ioaddr: IO address structure to be initialized
5624 *
5625 * Utility function which initializes data_addr, error_addr,
5626 * feature_addr, nsect_addr, lbal_addr, lbam_addr, lbah_addr,
5627 * device_addr, status_addr, and command_addr to standard offsets
5628 * relative to cmd_addr.
5629 *
5630 * Does not set ctl_addr, altstatus_addr, bmdma_addr, or scr_addr.
5631 */
5632
5633 void ata_std_ports(struct ata_ioports *ioaddr)
5634 {
5635 ioaddr->data_addr = ioaddr->cmd_addr + ATA_REG_DATA;
5636 ioaddr->error_addr = ioaddr->cmd_addr + ATA_REG_ERR;
5637 ioaddr->feature_addr = ioaddr->cmd_addr + ATA_REG_FEATURE;
5638 ioaddr->nsect_addr = ioaddr->cmd_addr + ATA_REG_NSECT;
5639 ioaddr->lbal_addr = ioaddr->cmd_addr + ATA_REG_LBAL;
5640 ioaddr->lbam_addr = ioaddr->cmd_addr + ATA_REG_LBAM;
5641 ioaddr->lbah_addr = ioaddr->cmd_addr + ATA_REG_LBAH;
5642 ioaddr->device_addr = ioaddr->cmd_addr + ATA_REG_DEVICE;
5643 ioaddr->status_addr = ioaddr->cmd_addr + ATA_REG_STATUS;
5644 ioaddr->command_addr = ioaddr->cmd_addr + ATA_REG_CMD;
5645 }
5646
5647
5648 #ifdef CONFIG_PCI
5649
5650 void ata_pci_host_stop (struct ata_host_set *host_set)
5651 {
5652 struct pci_dev *pdev = to_pci_dev(host_set->dev);
5653
5654 pci_iounmap(pdev, host_set->mmio_base);
5655 }
5656
5657 /**
5658 * ata_pci_remove_one - PCI layer callback for device removal
5659 * @pdev: PCI device that was removed
5660 *
5661 * PCI layer indicates to libata via this hook that
5662 * hot-unplug or module unload event has occurred.
5663 * Handle this by unregistering all objects associated
5664 * with this PCI device. Free those objects. Then finally
5665 * release PCI resources and disable device.
5666 *
5667 * LOCKING:
5668 * Inherited from PCI layer (may sleep).
5669 */
5670
5671 void ata_pci_remove_one (struct pci_dev *pdev)
5672 {
5673 struct device *dev = pci_dev_to_dev(pdev);
5674 struct ata_host_set *host_set = dev_get_drvdata(dev);
5675 struct ata_host_set *host_set2 = host_set->next;
5676
5677 ata_host_set_remove(host_set);
5678 if (host_set2)
5679 ata_host_set_remove(host_set2);
5680
5681 pci_release_regions(pdev);
5682 pci_disable_device(pdev);
5683 dev_set_drvdata(dev, NULL);
5684 }
5685
5686 /* move to PCI subsystem */
5687 int pci_test_config_bits(struct pci_dev *pdev, const struct pci_bits *bits)
5688 {
5689 unsigned long tmp = 0;
5690
5691 switch (bits->width) {
5692 case 1: {
5693 u8 tmp8 = 0;
5694 pci_read_config_byte(pdev, bits->reg, &tmp8);
5695 tmp = tmp8;
5696 break;
5697 }
5698 case 2: {
5699 u16 tmp16 = 0;
5700 pci_read_config_word(pdev, bits->reg, &tmp16);
5701 tmp = tmp16;
5702 break;
5703 }
5704 case 4: {
5705 u32 tmp32 = 0;
5706 pci_read_config_dword(pdev, bits->reg, &tmp32);
5707 tmp = tmp32;
5708 break;
5709 }
5710
5711 default:
5712 return -EINVAL;
5713 }
5714
5715 tmp &= bits->mask;
5716
5717 return (tmp == bits->val) ? 1 : 0;
5718 }
5719
5720 int ata_pci_device_suspend(struct pci_dev *pdev, pm_message_t state)
5721 {
5722 pci_save_state(pdev);
5723 pci_disable_device(pdev);
5724 pci_set_power_state(pdev, PCI_D3hot);
5725 return 0;
5726 }
5727
5728 int ata_pci_device_resume(struct pci_dev *pdev)
5729 {
5730 pci_set_power_state(pdev, PCI_D0);
5731 pci_restore_state(pdev);
5732 pci_enable_device(pdev);
5733 pci_set_master(pdev);
5734 return 0;
5735 }
5736 #endif /* CONFIG_PCI */
5737
5738
5739 static int __init ata_init(void)
5740 {
5741 ata_wq = create_workqueue("ata");
5742 if (!ata_wq)
5743 return -ENOMEM;
5744
5745 ata_aux_wq = create_singlethread_workqueue("ata_aux");
5746 if (!ata_aux_wq) {
5747 destroy_workqueue(ata_wq);
5748 return -ENOMEM;
5749 }
5750
5751 printk(KERN_DEBUG "libata version " DRV_VERSION " loaded.\n");
5752 return 0;
5753 }
5754
5755 static void __exit ata_exit(void)
5756 {
5757 destroy_workqueue(ata_wq);
5758 destroy_workqueue(ata_aux_wq);
5759 }
5760
5761 module_init(ata_init);
5762 module_exit(ata_exit);
5763
5764 static unsigned long ratelimit_time;
5765 static spinlock_t ata_ratelimit_lock = SPIN_LOCK_UNLOCKED;
5766
5767 int ata_ratelimit(void)
5768 {
5769 int rc;
5770 unsigned long flags;
5771
5772 spin_lock_irqsave(&ata_ratelimit_lock, flags);
5773
5774 if (time_after(jiffies, ratelimit_time)) {
5775 rc = 1;
5776 ratelimit_time = jiffies + (HZ/5);
5777 } else
5778 rc = 0;
5779
5780 spin_unlock_irqrestore(&ata_ratelimit_lock, flags);
5781
5782 return rc;
5783 }
5784
5785 /**
5786 * ata_wait_register - wait until register value changes
5787 * @reg: IO-mapped register
5788 * @mask: Mask to apply to read register value
5789 * @val: Wait condition
5790 * @interval_msec: polling interval in milliseconds
5791 * @timeout_msec: timeout in milliseconds
5792 *
5793 * Waiting for some bits of register to change is a common
5794 * operation for ATA controllers. This function reads 32bit LE
5795 * IO-mapped register @reg and tests for the following condition.
5796 *
5797 * (*@reg & mask) != val
5798 *
5799 * If the condition is met, it returns; otherwise, the process is
5800 * repeated after @interval_msec until timeout.
5801 *
5802 * LOCKING:
5803 * Kernel thread context (may sleep)
5804 *
5805 * RETURNS:
5806 * The final register value.
5807 */
5808 u32 ata_wait_register(void __iomem *reg, u32 mask, u32 val,
5809 unsigned long interval_msec,
5810 unsigned long timeout_msec)
5811 {
5812 unsigned long timeout;
5813 u32 tmp;
5814
5815 tmp = ioread32(reg);
5816
5817 /* Calculate timeout _after_ the first read to make sure
5818 * preceding writes reach the controller before starting to
5819 * eat away the timeout.
5820 */
5821 timeout = jiffies + (timeout_msec * HZ) / 1000;
5822
5823 while ((tmp & mask) == val && time_before(jiffies, timeout)) {
5824 msleep(interval_msec);
5825 tmp = ioread32(reg);
5826 }
5827
5828 return tmp;
5829 }
5830
5831 /*
5832 * libata is essentially a library of internal helper functions for
5833 * low-level ATA host controller drivers. As such, the API/ABI is
5834 * likely to change as new drivers are added and updated.
5835 * Do not depend on ABI/API stability.
5836 */
5837
5838 EXPORT_SYMBOL_GPL(sata_deb_timing_boot);
5839 EXPORT_SYMBOL_GPL(sata_deb_timing_eh);
5840 EXPORT_SYMBOL_GPL(sata_deb_timing_before_fsrst);
5841 EXPORT_SYMBOL_GPL(ata_std_bios_param);
5842 EXPORT_SYMBOL_GPL(ata_std_ports);
5843 EXPORT_SYMBOL_GPL(ata_device_add);
5844 EXPORT_SYMBOL_GPL(ata_port_detach);
5845 EXPORT_SYMBOL_GPL(ata_host_set_remove);
5846 EXPORT_SYMBOL_GPL(ata_sg_init);
5847 EXPORT_SYMBOL_GPL(ata_sg_init_one);
5848 EXPORT_SYMBOL_GPL(ata_hsm_move);
5849 EXPORT_SYMBOL_GPL(ata_qc_complete);
5850 EXPORT_SYMBOL_GPL(ata_qc_complete_multiple);
5851 EXPORT_SYMBOL_GPL(ata_qc_issue_prot);
5852 EXPORT_SYMBOL_GPL(ata_tf_load);
5853 EXPORT_SYMBOL_GPL(ata_tf_read);
5854 EXPORT_SYMBOL_GPL(ata_noop_dev_select);
5855 EXPORT_SYMBOL_GPL(ata_std_dev_select);
5856 EXPORT_SYMBOL_GPL(ata_tf_to_fis);
5857 EXPORT_SYMBOL_GPL(ata_tf_from_fis);
5858 EXPORT_SYMBOL_GPL(ata_check_status);
5859 EXPORT_SYMBOL_GPL(ata_altstatus);
5860 EXPORT_SYMBOL_GPL(ata_exec_command);
5861 EXPORT_SYMBOL_GPL(ata_port_start);
5862 EXPORT_SYMBOL_GPL(ata_port_stop);
5863 EXPORT_SYMBOL_GPL(ata_host_stop);
5864 EXPORT_SYMBOL_GPL(ata_interrupt);
5865 EXPORT_SYMBOL_GPL(ata_mmio_data_xfer);
5866 EXPORT_SYMBOL_GPL(ata_pio_data_xfer);
5867 EXPORT_SYMBOL_GPL(ata_pio_data_xfer_noirq);
5868 EXPORT_SYMBOL_GPL(ata_qc_prep);
5869 EXPORT_SYMBOL_GPL(ata_noop_qc_prep);
5870 EXPORT_SYMBOL_GPL(ata_bmdma_setup);
5871 EXPORT_SYMBOL_GPL(ata_bmdma_start);
5872 EXPORT_SYMBOL_GPL(ata_bmdma_irq_clear);
5873 EXPORT_SYMBOL_GPL(ata_bmdma_status);
5874 EXPORT_SYMBOL_GPL(ata_bmdma_stop);
5875 EXPORT_SYMBOL_GPL(ata_bmdma_freeze);
5876 EXPORT_SYMBOL_GPL(ata_bmdma_thaw);
5877 EXPORT_SYMBOL_GPL(ata_bmdma_drive_eh);
5878 EXPORT_SYMBOL_GPL(ata_bmdma_error_handler);
5879 EXPORT_SYMBOL_GPL(ata_bmdma_post_internal_cmd);
5880 EXPORT_SYMBOL_GPL(ata_port_probe);
5881 EXPORT_SYMBOL_GPL(sata_set_spd);
5882 EXPORT_SYMBOL_GPL(sata_phy_debounce);
5883 EXPORT_SYMBOL_GPL(sata_phy_resume);
5884 EXPORT_SYMBOL_GPL(sata_phy_reset);
5885 EXPORT_SYMBOL_GPL(__sata_phy_reset);
5886 EXPORT_SYMBOL_GPL(ata_bus_reset);
5887 EXPORT_SYMBOL_GPL(ata_std_prereset);
5888 EXPORT_SYMBOL_GPL(ata_std_softreset);
5889 EXPORT_SYMBOL_GPL(sata_std_hardreset);
5890 EXPORT_SYMBOL_GPL(ata_std_postreset);
5891 EXPORT_SYMBOL_GPL(ata_dev_revalidate);
5892 EXPORT_SYMBOL_GPL(ata_dev_classify);
5893 EXPORT_SYMBOL_GPL(ata_dev_pair);
5894 EXPORT_SYMBOL_GPL(ata_port_disable);
5895 EXPORT_SYMBOL_GPL(ata_ratelimit);
5896 EXPORT_SYMBOL_GPL(ata_wait_register);
5897 EXPORT_SYMBOL_GPL(ata_busy_sleep);
5898 EXPORT_SYMBOL_GPL(ata_port_queue_task);
5899 EXPORT_SYMBOL_GPL(ata_scsi_ioctl);
5900 EXPORT_SYMBOL_GPL(ata_scsi_queuecmd);
5901 EXPORT_SYMBOL_GPL(ata_scsi_slave_config);
5902 EXPORT_SYMBOL_GPL(ata_scsi_slave_destroy);
5903 EXPORT_SYMBOL_GPL(ata_scsi_change_queue_depth);
5904 EXPORT_SYMBOL_GPL(ata_scsi_release);
5905 EXPORT_SYMBOL_GPL(ata_host_intr);
5906 EXPORT_SYMBOL_GPL(sata_scr_valid);
5907 EXPORT_SYMBOL_GPL(sata_scr_read);
5908 EXPORT_SYMBOL_GPL(sata_scr_write);
5909 EXPORT_SYMBOL_GPL(sata_scr_write_flush);
5910 EXPORT_SYMBOL_GPL(ata_port_online);
5911 EXPORT_SYMBOL_GPL(ata_port_offline);
5912 EXPORT_SYMBOL_GPL(ata_id_string);
5913 EXPORT_SYMBOL_GPL(ata_id_c_string);
5914 EXPORT_SYMBOL_GPL(ata_scsi_simulate);
5915
5916 EXPORT_SYMBOL_GPL(ata_pio_need_iordy);
5917 EXPORT_SYMBOL_GPL(ata_timing_compute);
5918 EXPORT_SYMBOL_GPL(ata_timing_merge);
5919
5920 #ifdef CONFIG_PCI
5921 EXPORT_SYMBOL_GPL(pci_test_config_bits);
5922 EXPORT_SYMBOL_GPL(ata_pci_host_stop);
5923 EXPORT_SYMBOL_GPL(ata_pci_init_native_mode);
5924 EXPORT_SYMBOL_GPL(ata_pci_init_one);
5925 EXPORT_SYMBOL_GPL(ata_pci_remove_one);
5926 EXPORT_SYMBOL_GPL(ata_pci_device_suspend);
5927 EXPORT_SYMBOL_GPL(ata_pci_device_resume);
5928 EXPORT_SYMBOL_GPL(ata_pci_default_filter);
5929 EXPORT_SYMBOL_GPL(ata_pci_clear_simplex);
5930 #endif /* CONFIG_PCI */
5931
5932 EXPORT_SYMBOL_GPL(ata_device_suspend);
5933 EXPORT_SYMBOL_GPL(ata_device_resume);
5934 EXPORT_SYMBOL_GPL(ata_scsi_device_suspend);
5935 EXPORT_SYMBOL_GPL(ata_scsi_device_resume);
5936
5937 EXPORT_SYMBOL_GPL(ata_eng_timeout);
5938 EXPORT_SYMBOL_GPL(ata_port_schedule_eh);
5939 EXPORT_SYMBOL_GPL(ata_port_abort);
5940 EXPORT_SYMBOL_GPL(ata_port_freeze);
5941 EXPORT_SYMBOL_GPL(ata_eh_freeze_port);
5942 EXPORT_SYMBOL_GPL(ata_eh_thaw_port);
5943 EXPORT_SYMBOL_GPL(ata_eh_qc_complete);
5944 EXPORT_SYMBOL_GPL(ata_eh_qc_retry);
5945 EXPORT_SYMBOL_GPL(ata_do_eh);
This page took 0.164432 seconds and 4 git commands to generate.