[PATCH] libata: update ata_dev_init_params()
[deliverable/linux.git] / drivers / scsi / libata-core.c
1 /*
2 * libata-core.c - helper library for ATA
3 *
4 * Maintained by: Jeff Garzik <jgarzik@pobox.com>
5 * Please ALWAYS copy linux-ide@vger.kernel.org
6 * on emails.
7 *
8 * Copyright 2003-2004 Red Hat, Inc. All rights reserved.
9 * Copyright 2003-2004 Jeff Garzik
10 *
11 *
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2, or (at your option)
15 * any later version.
16 *
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
21 *
22 * You should have received a copy of the GNU General Public License
23 * along with this program; see the file COPYING. If not, write to
24 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
25 *
26 *
27 * libata documentation is available via 'make {ps|pdf}docs',
28 * as Documentation/DocBook/libata.*
29 *
30 * Hardware documentation available from http://www.t13.org/ and
31 * http://www.sata-io.org/
32 *
33 */
34
35 #include <linux/config.h>
36 #include <linux/kernel.h>
37 #include <linux/module.h>
38 #include <linux/pci.h>
39 #include <linux/init.h>
40 #include <linux/list.h>
41 #include <linux/mm.h>
42 #include <linux/highmem.h>
43 #include <linux/spinlock.h>
44 #include <linux/blkdev.h>
45 #include <linux/delay.h>
46 #include <linux/timer.h>
47 #include <linux/interrupt.h>
48 #include <linux/completion.h>
49 #include <linux/suspend.h>
50 #include <linux/workqueue.h>
51 #include <linux/jiffies.h>
52 #include <linux/scatterlist.h>
53 #include <scsi/scsi.h>
54 #include "scsi_priv.h"
55 #include <scsi/scsi_cmnd.h>
56 #include <scsi/scsi_host.h>
57 #include <linux/libata.h>
58 #include <asm/io.h>
59 #include <asm/semaphore.h>
60 #include <asm/byteorder.h>
61
62 #include "libata.h"
63
64 static void ata_dev_reread_id(struct ata_port *ap, struct ata_device *dev);
65 static unsigned int ata_dev_init_params(struct ata_port *ap,
66 struct ata_device *dev);
67 static void ata_set_mode(struct ata_port *ap);
68 static void ata_dev_set_xfermode(struct ata_port *ap, struct ata_device *dev);
69 static unsigned int ata_get_mode_mask(const struct ata_port *ap, int shift);
70 static int fgb(u32 bitmap);
71 static int ata_choose_xfer_mode(const struct ata_port *ap,
72 u8 *xfer_mode_out,
73 unsigned int *xfer_shift_out);
74
75 static unsigned int ata_unique_id = 1;
76 static struct workqueue_struct *ata_wq;
77
78 int atapi_enabled = 0;
79 module_param(atapi_enabled, int, 0444);
80 MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on)");
81
82 MODULE_AUTHOR("Jeff Garzik");
83 MODULE_DESCRIPTION("Library module for ATA devices");
84 MODULE_LICENSE("GPL");
85 MODULE_VERSION(DRV_VERSION);
86
87
88 /**
89 * ata_tf_to_fis - Convert ATA taskfile to SATA FIS structure
90 * @tf: Taskfile to convert
91 * @fis: Buffer into which data will output
92 * @pmp: Port multiplier port
93 *
94 * Converts a standard ATA taskfile to a Serial ATA
95 * FIS structure (Register - Host to Device).
96 *
97 * LOCKING:
98 * Inherited from caller.
99 */
100
101 void ata_tf_to_fis(const struct ata_taskfile *tf, u8 *fis, u8 pmp)
102 {
103 fis[0] = 0x27; /* Register - Host to Device FIS */
104 fis[1] = (pmp & 0xf) | (1 << 7); /* Port multiplier number,
105 bit 7 indicates Command FIS */
106 fis[2] = tf->command;
107 fis[3] = tf->feature;
108
109 fis[4] = tf->lbal;
110 fis[5] = tf->lbam;
111 fis[6] = tf->lbah;
112 fis[7] = tf->device;
113
114 fis[8] = tf->hob_lbal;
115 fis[9] = tf->hob_lbam;
116 fis[10] = tf->hob_lbah;
117 fis[11] = tf->hob_feature;
118
119 fis[12] = tf->nsect;
120 fis[13] = tf->hob_nsect;
121 fis[14] = 0;
122 fis[15] = tf->ctl;
123
124 fis[16] = 0;
125 fis[17] = 0;
126 fis[18] = 0;
127 fis[19] = 0;
128 }
129
130 /**
131 * ata_tf_from_fis - Convert SATA FIS to ATA taskfile
132 * @fis: Buffer from which data will be input
133 * @tf: Taskfile to output
134 *
135 * Converts a serial ATA FIS structure to a standard ATA taskfile.
136 *
137 * LOCKING:
138 * Inherited from caller.
139 */
140
141 void ata_tf_from_fis(const u8 *fis, struct ata_taskfile *tf)
142 {
143 tf->command = fis[2]; /* status */
144 tf->feature = fis[3]; /* error */
145
146 tf->lbal = fis[4];
147 tf->lbam = fis[5];
148 tf->lbah = fis[6];
149 tf->device = fis[7];
150
151 tf->hob_lbal = fis[8];
152 tf->hob_lbam = fis[9];
153 tf->hob_lbah = fis[10];
154
155 tf->nsect = fis[12];
156 tf->hob_nsect = fis[13];
157 }
158
159 static const u8 ata_rw_cmds[] = {
160 /* pio multi */
161 ATA_CMD_READ_MULTI,
162 ATA_CMD_WRITE_MULTI,
163 ATA_CMD_READ_MULTI_EXT,
164 ATA_CMD_WRITE_MULTI_EXT,
165 0,
166 0,
167 0,
168 ATA_CMD_WRITE_MULTI_FUA_EXT,
169 /* pio */
170 ATA_CMD_PIO_READ,
171 ATA_CMD_PIO_WRITE,
172 ATA_CMD_PIO_READ_EXT,
173 ATA_CMD_PIO_WRITE_EXT,
174 0,
175 0,
176 0,
177 0,
178 /* dma */
179 ATA_CMD_READ,
180 ATA_CMD_WRITE,
181 ATA_CMD_READ_EXT,
182 ATA_CMD_WRITE_EXT,
183 0,
184 0,
185 0,
186 ATA_CMD_WRITE_FUA_EXT
187 };
188
189 /**
190 * ata_rwcmd_protocol - set taskfile r/w commands and protocol
191 * @qc: command to examine and configure
192 *
193 * Examine the device configuration and tf->flags to calculate
194 * the proper read/write commands and protocol to use.
195 *
196 * LOCKING:
197 * caller.
198 */
199 int ata_rwcmd_protocol(struct ata_queued_cmd *qc)
200 {
201 struct ata_taskfile *tf = &qc->tf;
202 struct ata_device *dev = qc->dev;
203 u8 cmd;
204
205 int index, fua, lba48, write;
206
207 fua = (tf->flags & ATA_TFLAG_FUA) ? 4 : 0;
208 lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0;
209 write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0;
210
211 if (dev->flags & ATA_DFLAG_PIO) {
212 tf->protocol = ATA_PROT_PIO;
213 index = dev->multi_count ? 0 : 8;
214 } else if (lba48 && (qc->ap->flags & ATA_FLAG_PIO_LBA48)) {
215 /* Unable to use DMA due to host limitation */
216 tf->protocol = ATA_PROT_PIO;
217 index = dev->multi_count ? 0 : 8;
218 } else {
219 tf->protocol = ATA_PROT_DMA;
220 index = 16;
221 }
222
223 cmd = ata_rw_cmds[index + fua + lba48 + write];
224 if (cmd) {
225 tf->command = cmd;
226 return 0;
227 }
228 return -1;
229 }
230
231 static const char * const xfer_mode_str[] = {
232 "UDMA/16",
233 "UDMA/25",
234 "UDMA/33",
235 "UDMA/44",
236 "UDMA/66",
237 "UDMA/100",
238 "UDMA/133",
239 "UDMA7",
240 "MWDMA0",
241 "MWDMA1",
242 "MWDMA2",
243 "PIO0",
244 "PIO1",
245 "PIO2",
246 "PIO3",
247 "PIO4",
248 };
249
250 /**
251 * ata_udma_string - convert UDMA bit offset to string
252 * @mask: mask of bits supported; only highest bit counts.
253 *
254 * Determine string which represents the highest speed
255 * (highest bit in @udma_mask).
256 *
257 * LOCKING:
258 * None.
259 *
260 * RETURNS:
261 * Constant C string representing highest speed listed in
262 * @udma_mask, or the constant C string "<n/a>".
263 */
264
265 static const char *ata_mode_string(unsigned int mask)
266 {
267 int i;
268
269 for (i = 7; i >= 0; i--)
270 if (mask & (1 << i))
271 goto out;
272 for (i = ATA_SHIFT_MWDMA + 2; i >= ATA_SHIFT_MWDMA; i--)
273 if (mask & (1 << i))
274 goto out;
275 for (i = ATA_SHIFT_PIO + 4; i >= ATA_SHIFT_PIO; i--)
276 if (mask & (1 << i))
277 goto out;
278
279 return "<n/a>";
280
281 out:
282 return xfer_mode_str[i];
283 }
284
285 /**
286 * ata_pio_devchk - PATA device presence detection
287 * @ap: ATA channel to examine
288 * @device: Device to examine (starting at zero)
289 *
290 * This technique was originally described in
291 * Hale Landis's ATADRVR (www.ata-atapi.com), and
292 * later found its way into the ATA/ATAPI spec.
293 *
294 * Write a pattern to the ATA shadow registers,
295 * and if a device is present, it will respond by
296 * correctly storing and echoing back the
297 * ATA shadow register contents.
298 *
299 * LOCKING:
300 * caller.
301 */
302
303 static unsigned int ata_pio_devchk(struct ata_port *ap,
304 unsigned int device)
305 {
306 struct ata_ioports *ioaddr = &ap->ioaddr;
307 u8 nsect, lbal;
308
309 ap->ops->dev_select(ap, device);
310
311 outb(0x55, ioaddr->nsect_addr);
312 outb(0xaa, ioaddr->lbal_addr);
313
314 outb(0xaa, ioaddr->nsect_addr);
315 outb(0x55, ioaddr->lbal_addr);
316
317 outb(0x55, ioaddr->nsect_addr);
318 outb(0xaa, ioaddr->lbal_addr);
319
320 nsect = inb(ioaddr->nsect_addr);
321 lbal = inb(ioaddr->lbal_addr);
322
323 if ((nsect == 0x55) && (lbal == 0xaa))
324 return 1; /* we found a device */
325
326 return 0; /* nothing found */
327 }
328
329 /**
330 * ata_mmio_devchk - PATA device presence detection
331 * @ap: ATA channel to examine
332 * @device: Device to examine (starting at zero)
333 *
334 * This technique was originally described in
335 * Hale Landis's ATADRVR (www.ata-atapi.com), and
336 * later found its way into the ATA/ATAPI spec.
337 *
338 * Write a pattern to the ATA shadow registers,
339 * and if a device is present, it will respond by
340 * correctly storing and echoing back the
341 * ATA shadow register contents.
342 *
343 * LOCKING:
344 * caller.
345 */
346
347 static unsigned int ata_mmio_devchk(struct ata_port *ap,
348 unsigned int device)
349 {
350 struct ata_ioports *ioaddr = &ap->ioaddr;
351 u8 nsect, lbal;
352
353 ap->ops->dev_select(ap, device);
354
355 writeb(0x55, (void __iomem *) ioaddr->nsect_addr);
356 writeb(0xaa, (void __iomem *) ioaddr->lbal_addr);
357
358 writeb(0xaa, (void __iomem *) ioaddr->nsect_addr);
359 writeb(0x55, (void __iomem *) ioaddr->lbal_addr);
360
361 writeb(0x55, (void __iomem *) ioaddr->nsect_addr);
362 writeb(0xaa, (void __iomem *) ioaddr->lbal_addr);
363
364 nsect = readb((void __iomem *) ioaddr->nsect_addr);
365 lbal = readb((void __iomem *) ioaddr->lbal_addr);
366
367 if ((nsect == 0x55) && (lbal == 0xaa))
368 return 1; /* we found a device */
369
370 return 0; /* nothing found */
371 }
372
373 /**
374 * ata_devchk - PATA device presence detection
375 * @ap: ATA channel to examine
376 * @device: Device to examine (starting at zero)
377 *
378 * Dispatch ATA device presence detection, depending
379 * on whether we are using PIO or MMIO to talk to the
380 * ATA shadow registers.
381 *
382 * LOCKING:
383 * caller.
384 */
385
386 static unsigned int ata_devchk(struct ata_port *ap,
387 unsigned int device)
388 {
389 if (ap->flags & ATA_FLAG_MMIO)
390 return ata_mmio_devchk(ap, device);
391 return ata_pio_devchk(ap, device);
392 }
393
394 /**
395 * ata_dev_classify - determine device type based on ATA-spec signature
396 * @tf: ATA taskfile register set for device to be identified
397 *
398 * Determine from taskfile register contents whether a device is
399 * ATA or ATAPI, as per "Signature and persistence" section
400 * of ATA/PI spec (volume 1, sect 5.14).
401 *
402 * LOCKING:
403 * None.
404 *
405 * RETURNS:
406 * Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, or %ATA_DEV_UNKNOWN
407 * the event of failure.
408 */
409
410 unsigned int ata_dev_classify(const struct ata_taskfile *tf)
411 {
412 /* Apple's open source Darwin code hints that some devices only
413 * put a proper signature into the LBA mid/high registers,
414 * So, we only check those. It's sufficient for uniqueness.
415 */
416
417 if (((tf->lbam == 0) && (tf->lbah == 0)) ||
418 ((tf->lbam == 0x3c) && (tf->lbah == 0xc3))) {
419 DPRINTK("found ATA device by sig\n");
420 return ATA_DEV_ATA;
421 }
422
423 if (((tf->lbam == 0x14) && (tf->lbah == 0xeb)) ||
424 ((tf->lbam == 0x69) && (tf->lbah == 0x96))) {
425 DPRINTK("found ATAPI device by sig\n");
426 return ATA_DEV_ATAPI;
427 }
428
429 DPRINTK("unknown device\n");
430 return ATA_DEV_UNKNOWN;
431 }
432
433 /**
434 * ata_dev_try_classify - Parse returned ATA device signature
435 * @ap: ATA channel to examine
436 * @device: Device to examine (starting at zero)
437 * @r_err: Value of error register on completion
438 *
439 * After an event -- SRST, E.D.D., or SATA COMRESET -- occurs,
440 * an ATA/ATAPI-defined set of values is placed in the ATA
441 * shadow registers, indicating the results of device detection
442 * and diagnostics.
443 *
444 * Select the ATA device, and read the values from the ATA shadow
445 * registers. Then parse according to the Error register value,
446 * and the spec-defined values examined by ata_dev_classify().
447 *
448 * LOCKING:
449 * caller.
450 *
451 * RETURNS:
452 * Device type - %ATA_DEV_ATA, %ATA_DEV_ATAPI or %ATA_DEV_NONE.
453 */
454
455 static unsigned int
456 ata_dev_try_classify(struct ata_port *ap, unsigned int device, u8 *r_err)
457 {
458 struct ata_taskfile tf;
459 unsigned int class;
460 u8 err;
461
462 ap->ops->dev_select(ap, device);
463
464 memset(&tf, 0, sizeof(tf));
465
466 ap->ops->tf_read(ap, &tf);
467 err = tf.feature;
468 if (r_err)
469 *r_err = err;
470
471 /* see if device passed diags */
472 if (err == 1)
473 /* do nothing */ ;
474 else if ((device == 0) && (err == 0x81))
475 /* do nothing */ ;
476 else
477 return ATA_DEV_NONE;
478
479 /* determine if device is ATA or ATAPI */
480 class = ata_dev_classify(&tf);
481
482 if (class == ATA_DEV_UNKNOWN)
483 return ATA_DEV_NONE;
484 if ((class == ATA_DEV_ATA) && (ata_chk_status(ap) == 0))
485 return ATA_DEV_NONE;
486 return class;
487 }
488
489 /**
490 * ata_id_string - Convert IDENTIFY DEVICE page into string
491 * @id: IDENTIFY DEVICE results we will examine
492 * @s: string into which data is output
493 * @ofs: offset into identify device page
494 * @len: length of string to return. must be an even number.
495 *
496 * The strings in the IDENTIFY DEVICE page are broken up into
497 * 16-bit chunks. Run through the string, and output each
498 * 8-bit chunk linearly, regardless of platform.
499 *
500 * LOCKING:
501 * caller.
502 */
503
504 void ata_id_string(const u16 *id, unsigned char *s,
505 unsigned int ofs, unsigned int len)
506 {
507 unsigned int c;
508
509 while (len > 0) {
510 c = id[ofs] >> 8;
511 *s = c;
512 s++;
513
514 c = id[ofs] & 0xff;
515 *s = c;
516 s++;
517
518 ofs++;
519 len -= 2;
520 }
521 }
522
523 /**
524 * ata_id_c_string - Convert IDENTIFY DEVICE page into C string
525 * @id: IDENTIFY DEVICE results we will examine
526 * @s: string into which data is output
527 * @ofs: offset into identify device page
528 * @len: length of string to return. must be an odd number.
529 *
530 * This function is identical to ata_id_string except that it
531 * trims trailing spaces and terminates the resulting string with
532 * null. @len must be actual maximum length (even number) + 1.
533 *
534 * LOCKING:
535 * caller.
536 */
537 void ata_id_c_string(const u16 *id, unsigned char *s,
538 unsigned int ofs, unsigned int len)
539 {
540 unsigned char *p;
541
542 WARN_ON(!(len & 1));
543
544 ata_id_string(id, s, ofs, len - 1);
545
546 p = s + strnlen(s, len - 1);
547 while (p > s && p[-1] == ' ')
548 p--;
549 *p = '\0';
550 }
551
552 static u64 ata_id_n_sectors(const u16 *id)
553 {
554 if (ata_id_has_lba(id)) {
555 if (ata_id_has_lba48(id))
556 return ata_id_u64(id, 100);
557 else
558 return ata_id_u32(id, 60);
559 } else {
560 if (ata_id_current_chs_valid(id))
561 return ata_id_u32(id, 57);
562 else
563 return id[1] * id[3] * id[6];
564 }
565 }
566
567 /**
568 * ata_noop_dev_select - Select device 0/1 on ATA bus
569 * @ap: ATA channel to manipulate
570 * @device: ATA device (numbered from zero) to select
571 *
572 * This function performs no actual function.
573 *
574 * May be used as the dev_select() entry in ata_port_operations.
575 *
576 * LOCKING:
577 * caller.
578 */
579 void ata_noop_dev_select (struct ata_port *ap, unsigned int device)
580 {
581 }
582
583
584 /**
585 * ata_std_dev_select - Select device 0/1 on ATA bus
586 * @ap: ATA channel to manipulate
587 * @device: ATA device (numbered from zero) to select
588 *
589 * Use the method defined in the ATA specification to
590 * make either device 0, or device 1, active on the
591 * ATA channel. Works with both PIO and MMIO.
592 *
593 * May be used as the dev_select() entry in ata_port_operations.
594 *
595 * LOCKING:
596 * caller.
597 */
598
599 void ata_std_dev_select (struct ata_port *ap, unsigned int device)
600 {
601 u8 tmp;
602
603 if (device == 0)
604 tmp = ATA_DEVICE_OBS;
605 else
606 tmp = ATA_DEVICE_OBS | ATA_DEV1;
607
608 if (ap->flags & ATA_FLAG_MMIO) {
609 writeb(tmp, (void __iomem *) ap->ioaddr.device_addr);
610 } else {
611 outb(tmp, ap->ioaddr.device_addr);
612 }
613 ata_pause(ap); /* needed; also flushes, for mmio */
614 }
615
616 /**
617 * ata_dev_select - Select device 0/1 on ATA bus
618 * @ap: ATA channel to manipulate
619 * @device: ATA device (numbered from zero) to select
620 * @wait: non-zero to wait for Status register BSY bit to clear
621 * @can_sleep: non-zero if context allows sleeping
622 *
623 * Use the method defined in the ATA specification to
624 * make either device 0, or device 1, active on the
625 * ATA channel.
626 *
627 * This is a high-level version of ata_std_dev_select(),
628 * which additionally provides the services of inserting
629 * the proper pauses and status polling, where needed.
630 *
631 * LOCKING:
632 * caller.
633 */
634
635 void ata_dev_select(struct ata_port *ap, unsigned int device,
636 unsigned int wait, unsigned int can_sleep)
637 {
638 VPRINTK("ENTER, ata%u: device %u, wait %u\n",
639 ap->id, device, wait);
640
641 if (wait)
642 ata_wait_idle(ap);
643
644 ap->ops->dev_select(ap, device);
645
646 if (wait) {
647 if (can_sleep && ap->device[device].class == ATA_DEV_ATAPI)
648 msleep(150);
649 ata_wait_idle(ap);
650 }
651 }
652
653 /**
654 * ata_dump_id - IDENTIFY DEVICE info debugging output
655 * @id: IDENTIFY DEVICE page to dump
656 *
657 * Dump selected 16-bit words from the given IDENTIFY DEVICE
658 * page.
659 *
660 * LOCKING:
661 * caller.
662 */
663
664 static inline void ata_dump_id(const u16 *id)
665 {
666 DPRINTK("49==0x%04x "
667 "53==0x%04x "
668 "63==0x%04x "
669 "64==0x%04x "
670 "75==0x%04x \n",
671 id[49],
672 id[53],
673 id[63],
674 id[64],
675 id[75]);
676 DPRINTK("80==0x%04x "
677 "81==0x%04x "
678 "82==0x%04x "
679 "83==0x%04x "
680 "84==0x%04x \n",
681 id[80],
682 id[81],
683 id[82],
684 id[83],
685 id[84]);
686 DPRINTK("88==0x%04x "
687 "93==0x%04x\n",
688 id[88],
689 id[93]);
690 }
691
692 /*
693 * Compute the PIO modes available for this device. This is not as
694 * trivial as it seems if we must consider early devices correctly.
695 *
696 * FIXME: pre IDE drive timing (do we care ?).
697 */
698
699 static unsigned int ata_pio_modes(const struct ata_device *adev)
700 {
701 u16 modes;
702
703 /* Usual case. Word 53 indicates word 64 is valid */
704 if (adev->id[ATA_ID_FIELD_VALID] & (1 << 1)) {
705 modes = adev->id[ATA_ID_PIO_MODES] & 0x03;
706 modes <<= 3;
707 modes |= 0x7;
708 return modes;
709 }
710
711 /* If word 64 isn't valid then Word 51 high byte holds the PIO timing
712 number for the maximum. Turn it into a mask and return it */
713 modes = (2 << ((adev->id[ATA_ID_OLD_PIO_MODES] >> 8) & 0xFF)) - 1 ;
714 return modes;
715 /* But wait.. there's more. Design your standards by committee and
716 you too can get a free iordy field to process. However its the
717 speeds not the modes that are supported... Note drivers using the
718 timing API will get this right anyway */
719 }
720
721 static inline void
722 ata_queue_packet_task(struct ata_port *ap)
723 {
724 if (!(ap->flags & ATA_FLAG_FLUSH_PIO_TASK))
725 queue_work(ata_wq, &ap->packet_task);
726 }
727
728 static inline void
729 ata_queue_pio_task(struct ata_port *ap)
730 {
731 if (!(ap->flags & ATA_FLAG_FLUSH_PIO_TASK))
732 queue_work(ata_wq, &ap->pio_task);
733 }
734
735 static inline void
736 ata_queue_delayed_pio_task(struct ata_port *ap, unsigned long delay)
737 {
738 if (!(ap->flags & ATA_FLAG_FLUSH_PIO_TASK))
739 queue_delayed_work(ata_wq, &ap->pio_task, delay);
740 }
741
742 /**
743 * ata_flush_pio_tasks - Flush pio_task and packet_task
744 * @ap: the target ata_port
745 *
746 * After this function completes, pio_task and packet_task are
747 * guranteed not to be running or scheduled.
748 *
749 * LOCKING:
750 * Kernel thread context (may sleep)
751 */
752
753 static void ata_flush_pio_tasks(struct ata_port *ap)
754 {
755 int tmp = 0;
756 unsigned long flags;
757
758 DPRINTK("ENTER\n");
759
760 spin_lock_irqsave(&ap->host_set->lock, flags);
761 ap->flags |= ATA_FLAG_FLUSH_PIO_TASK;
762 spin_unlock_irqrestore(&ap->host_set->lock, flags);
763
764 DPRINTK("flush #1\n");
765 flush_workqueue(ata_wq);
766
767 /*
768 * At this point, if a task is running, it's guaranteed to see
769 * the FLUSH flag; thus, it will never queue pio tasks again.
770 * Cancel and flush.
771 */
772 tmp |= cancel_delayed_work(&ap->pio_task);
773 tmp |= cancel_delayed_work(&ap->packet_task);
774 if (!tmp) {
775 DPRINTK("flush #2\n");
776 flush_workqueue(ata_wq);
777 }
778
779 spin_lock_irqsave(&ap->host_set->lock, flags);
780 ap->flags &= ~ATA_FLAG_FLUSH_PIO_TASK;
781 spin_unlock_irqrestore(&ap->host_set->lock, flags);
782
783 DPRINTK("EXIT\n");
784 }
785
786 void ata_qc_complete_internal(struct ata_queued_cmd *qc)
787 {
788 struct completion *waiting = qc->private_data;
789
790 qc->ap->ops->tf_read(qc->ap, &qc->tf);
791 complete(waiting);
792 }
793
794 /**
795 * ata_exec_internal - execute libata internal command
796 * @ap: Port to which the command is sent
797 * @dev: Device to which the command is sent
798 * @tf: Taskfile registers for the command and the result
799 * @dma_dir: Data tranfer direction of the command
800 * @buf: Data buffer of the command
801 * @buflen: Length of data buffer
802 *
803 * Executes libata internal command with timeout. @tf contains
804 * command on entry and result on return. Timeout and error
805 * conditions are reported via return value. No recovery action
806 * is taken after a command times out. It's caller's duty to
807 * clean up after timeout.
808 *
809 * LOCKING:
810 * None. Should be called with kernel context, might sleep.
811 */
812
813 static unsigned
814 ata_exec_internal(struct ata_port *ap, struct ata_device *dev,
815 struct ata_taskfile *tf,
816 int dma_dir, void *buf, unsigned int buflen)
817 {
818 u8 command = tf->command;
819 struct ata_queued_cmd *qc;
820 DECLARE_COMPLETION(wait);
821 unsigned long flags;
822 unsigned int err_mask;
823
824 spin_lock_irqsave(&ap->host_set->lock, flags);
825
826 qc = ata_qc_new_init(ap, dev);
827 BUG_ON(qc == NULL);
828
829 qc->tf = *tf;
830 qc->dma_dir = dma_dir;
831 if (dma_dir != DMA_NONE) {
832 ata_sg_init_one(qc, buf, buflen);
833 qc->nsect = buflen / ATA_SECT_SIZE;
834 }
835
836 qc->private_data = &wait;
837 qc->complete_fn = ata_qc_complete_internal;
838
839 qc->err_mask = ata_qc_issue(qc);
840 if (qc->err_mask)
841 ata_qc_complete(qc);
842
843 spin_unlock_irqrestore(&ap->host_set->lock, flags);
844
845 if (!wait_for_completion_timeout(&wait, ATA_TMOUT_INTERNAL)) {
846 spin_lock_irqsave(&ap->host_set->lock, flags);
847
848 /* We're racing with irq here. If we lose, the
849 * following test prevents us from completing the qc
850 * again. If completion irq occurs after here but
851 * before the caller cleans up, it will result in a
852 * spurious interrupt. We can live with that.
853 */
854 if (qc->flags & ATA_QCFLAG_ACTIVE) {
855 qc->err_mask = AC_ERR_TIMEOUT;
856 ata_qc_complete(qc);
857 printk(KERN_WARNING "ata%u: qc timeout (cmd 0x%x)\n",
858 ap->id, command);
859 }
860
861 spin_unlock_irqrestore(&ap->host_set->lock, flags);
862 }
863
864 *tf = qc->tf;
865 err_mask = qc->err_mask;
866
867 ata_qc_free(qc);
868
869 return err_mask;
870 }
871
872 /**
873 * ata_pio_need_iordy - check if iordy needed
874 * @adev: ATA device
875 *
876 * Check if the current speed of the device requires IORDY. Used
877 * by various controllers for chip configuration.
878 */
879
880 unsigned int ata_pio_need_iordy(const struct ata_device *adev)
881 {
882 int pio;
883 int speed = adev->pio_mode - XFER_PIO_0;
884
885 if (speed < 2)
886 return 0;
887 if (speed > 2)
888 return 1;
889
890 /* If we have no drive specific rule, then PIO 2 is non IORDY */
891
892 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE */
893 pio = adev->id[ATA_ID_EIDE_PIO];
894 /* Is the speed faster than the drive allows non IORDY ? */
895 if (pio) {
896 /* This is cycle times not frequency - watch the logic! */
897 if (pio > 240) /* PIO2 is 240nS per cycle */
898 return 1;
899 return 0;
900 }
901 }
902 return 0;
903 }
904
905 /**
906 * ata_dev_identify - obtain IDENTIFY x DEVICE page
907 * @ap: port on which device we wish to probe resides
908 * @device: device bus address, starting at zero
909 *
910 * Following bus reset, we issue the IDENTIFY [PACKET] DEVICE
911 * command, and read back the 512-byte device information page.
912 * The device information page is fed to us via the standard
913 * PIO-IN protocol, but we hand-code it here. (TODO: investigate
914 * using standard PIO-IN paths)
915 *
916 * After reading the device information page, we use several
917 * bits of information from it to initialize data structures
918 * that will be used during the lifetime of the ata_device.
919 * Other data from the info page is used to disqualify certain
920 * older ATA devices we do not wish to support.
921 *
922 * LOCKING:
923 * Inherited from caller. Some functions called by this function
924 * obtain the host_set lock.
925 */
926
927 static void ata_dev_identify(struct ata_port *ap, unsigned int device)
928 {
929 struct ata_device *dev = &ap->device[device];
930 unsigned int major_version;
931 unsigned long xfer_modes;
932 unsigned int using_edd;
933 struct ata_taskfile tf;
934 unsigned int err_mask;
935 int i, rc;
936
937 if (!ata_dev_present(dev)) {
938 DPRINTK("ENTER/EXIT (host %u, dev %u) -- nodev\n",
939 ap->id, device);
940 return;
941 }
942
943 if (ap->ops->probe_reset ||
944 ap->flags & (ATA_FLAG_SRST | ATA_FLAG_SATA_RESET))
945 using_edd = 0;
946 else
947 using_edd = 1;
948
949 DPRINTK("ENTER, host %u, dev %u\n", ap->id, device);
950
951 WARN_ON(dev->class != ATA_DEV_ATA && dev->class != ATA_DEV_ATAPI &&
952 dev->class != ATA_DEV_NONE);
953
954 ata_dev_select(ap, device, 1, 1); /* select device 0/1 */
955
956 retry:
957 ata_tf_init(ap, &tf, device);
958
959 if (dev->class == ATA_DEV_ATA) {
960 tf.command = ATA_CMD_ID_ATA;
961 DPRINTK("do ATA identify\n");
962 } else {
963 tf.command = ATA_CMD_ID_ATAPI;
964 DPRINTK("do ATAPI identify\n");
965 }
966
967 tf.protocol = ATA_PROT_PIO;
968
969 err_mask = ata_exec_internal(ap, dev, &tf, DMA_FROM_DEVICE,
970 dev->id, sizeof(dev->id));
971
972 if (err_mask) {
973 if (err_mask & ~AC_ERR_DEV)
974 goto err_out;
975
976 /*
977 * arg! EDD works for all test cases, but seems to return
978 * the ATA signature for some ATAPI devices. Until the
979 * reason for this is found and fixed, we fix up the mess
980 * here. If IDENTIFY DEVICE returns command aborted
981 * (as ATAPI devices do), then we issue an
982 * IDENTIFY PACKET DEVICE.
983 *
984 * ATA software reset (SRST, the default) does not appear
985 * to have this problem.
986 */
987 if ((using_edd) && (dev->class == ATA_DEV_ATA)) {
988 u8 err = tf.feature;
989 if (err & ATA_ABORTED) {
990 dev->class = ATA_DEV_ATAPI;
991 goto retry;
992 }
993 }
994 goto err_out;
995 }
996
997 swap_buf_le16(dev->id, ATA_ID_WORDS);
998
999 /* print device capabilities */
1000 printk(KERN_DEBUG "ata%u: dev %u cfg "
1001 "49:%04x 82:%04x 83:%04x 84:%04x 85:%04x 86:%04x 87:%04x 88:%04x\n",
1002 ap->id, device, dev->id[49],
1003 dev->id[82], dev->id[83], dev->id[84],
1004 dev->id[85], dev->id[86], dev->id[87],
1005 dev->id[88]);
1006
1007 /*
1008 * common ATA, ATAPI feature tests
1009 */
1010
1011 /* we require DMA support (bits 8 of word 49) */
1012 if (!ata_id_has_dma(dev->id)) {
1013 printk(KERN_DEBUG "ata%u: no dma\n", ap->id);
1014 goto err_out_nosup;
1015 }
1016
1017 /* quick-n-dirty find max transfer mode; for printk only */
1018 xfer_modes = dev->id[ATA_ID_UDMA_MODES];
1019 if (!xfer_modes)
1020 xfer_modes = (dev->id[ATA_ID_MWDMA_MODES]) << ATA_SHIFT_MWDMA;
1021 if (!xfer_modes)
1022 xfer_modes = ata_pio_modes(dev);
1023
1024 ata_dump_id(dev->id);
1025
1026 /* ATA-specific feature tests */
1027 if (dev->class == ATA_DEV_ATA) {
1028 dev->n_sectors = ata_id_n_sectors(dev->id);
1029
1030 if (!ata_id_is_ata(dev->id)) /* sanity check */
1031 goto err_out_nosup;
1032
1033 /* get major version */
1034 major_version = ata_id_major_version(dev->id);
1035
1036 /*
1037 * The exact sequence expected by certain pre-ATA4 drives is:
1038 * SRST RESET
1039 * IDENTIFY
1040 * INITIALIZE DEVICE PARAMETERS
1041 * anything else..
1042 * Some drives were very specific about that exact sequence.
1043 */
1044 if (major_version < 4 || (!ata_id_has_lba(dev->id))) {
1045 err_mask = ata_dev_init_params(ap, dev);
1046 if (err_mask) {
1047 printk(KERN_ERR "ata%u: failed to init "
1048 "parameters, disabled\n", ap->id);
1049 goto err_out;
1050 }
1051
1052 /* current CHS translation info (id[53-58]) might be
1053 * changed. reread the identify device info.
1054 */
1055 ata_dev_reread_id(ap, dev);
1056 }
1057
1058 if (ata_id_has_lba(dev->id)) {
1059 dev->flags |= ATA_DFLAG_LBA;
1060
1061 if (ata_id_has_lba48(dev->id))
1062 dev->flags |= ATA_DFLAG_LBA48;
1063
1064 /* print device info to dmesg */
1065 printk(KERN_INFO "ata%u: dev %u ATA-%d, max %s, %Lu sectors:%s\n",
1066 ap->id, device,
1067 major_version,
1068 ata_mode_string(xfer_modes),
1069 (unsigned long long)dev->n_sectors,
1070 dev->flags & ATA_DFLAG_LBA48 ? " LBA48" : " LBA");
1071 } else {
1072 /* CHS */
1073
1074 /* Default translation */
1075 dev->cylinders = dev->id[1];
1076 dev->heads = dev->id[3];
1077 dev->sectors = dev->id[6];
1078
1079 if (ata_id_current_chs_valid(dev->id)) {
1080 /* Current CHS translation is valid. */
1081 dev->cylinders = dev->id[54];
1082 dev->heads = dev->id[55];
1083 dev->sectors = dev->id[56];
1084 }
1085
1086 /* print device info to dmesg */
1087 printk(KERN_INFO "ata%u: dev %u ATA-%d, max %s, %Lu sectors: CHS %d/%d/%d\n",
1088 ap->id, device,
1089 major_version,
1090 ata_mode_string(xfer_modes),
1091 (unsigned long long)dev->n_sectors,
1092 (int)dev->cylinders, (int)dev->heads, (int)dev->sectors);
1093
1094 }
1095
1096 dev->cdb_len = 16;
1097 }
1098
1099 /* ATAPI-specific feature tests */
1100 else if (dev->class == ATA_DEV_ATAPI) {
1101 if (ata_id_is_ata(dev->id)) /* sanity check */
1102 goto err_out_nosup;
1103
1104 rc = atapi_cdb_len(dev->id);
1105 if ((rc < 12) || (rc > ATAPI_CDB_LEN)) {
1106 printk(KERN_WARNING "ata%u: unsupported CDB len\n", ap->id);
1107 goto err_out_nosup;
1108 }
1109 dev->cdb_len = (unsigned int) rc;
1110
1111 /* print device info to dmesg */
1112 printk(KERN_INFO "ata%u: dev %u ATAPI, max %s\n",
1113 ap->id, device,
1114 ata_mode_string(xfer_modes));
1115 }
1116
1117 ap->host->max_cmd_len = 0;
1118 for (i = 0; i < ATA_MAX_DEVICES; i++)
1119 ap->host->max_cmd_len = max_t(unsigned int,
1120 ap->host->max_cmd_len,
1121 ap->device[i].cdb_len);
1122
1123 DPRINTK("EXIT, drv_stat = 0x%x\n", ata_chk_status(ap));
1124 return;
1125
1126 err_out_nosup:
1127 printk(KERN_WARNING "ata%u: dev %u not supported, ignoring\n",
1128 ap->id, device);
1129 err_out:
1130 dev->class++; /* converts ATA_DEV_xxx into ATA_DEV_xxx_UNSUP */
1131 DPRINTK("EXIT, err\n");
1132 }
1133
1134
1135 static inline u8 ata_dev_knobble(const struct ata_port *ap,
1136 struct ata_device *dev)
1137 {
1138 return ((ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(dev->id)));
1139 }
1140
1141 /**
1142 * ata_dev_config - Run device specific handlers & check for SATA->PATA bridges
1143 * @ap: Bus
1144 * @i: Device
1145 *
1146 * LOCKING:
1147 */
1148
1149 void ata_dev_config(struct ata_port *ap, unsigned int i)
1150 {
1151 /* limit bridge transfers to udma5, 200 sectors */
1152 if (ata_dev_knobble(ap, &ap->device[i])) {
1153 printk(KERN_INFO "ata%u(%u): applying bridge limits\n",
1154 ap->id, i);
1155 ap->udma_mask &= ATA_UDMA5;
1156 ap->device[i].max_sectors = ATA_MAX_SECTORS;
1157 }
1158
1159 if (ap->ops->dev_config)
1160 ap->ops->dev_config(ap, &ap->device[i]);
1161 }
1162
1163 /**
1164 * ata_bus_probe - Reset and probe ATA bus
1165 * @ap: Bus to probe
1166 *
1167 * Master ATA bus probing function. Initiates a hardware-dependent
1168 * bus reset, then attempts to identify any devices found on
1169 * the bus.
1170 *
1171 * LOCKING:
1172 * PCI/etc. bus probe sem.
1173 *
1174 * RETURNS:
1175 * Zero on success, non-zero on error.
1176 */
1177
1178 static int ata_bus_probe(struct ata_port *ap)
1179 {
1180 unsigned int i, found = 0;
1181
1182 if (ap->ops->probe_reset) {
1183 unsigned int classes[ATA_MAX_DEVICES];
1184 int rc;
1185
1186 ata_port_probe(ap);
1187
1188 rc = ap->ops->probe_reset(ap, classes);
1189 if (rc == 0) {
1190 for (i = 0; i < ATA_MAX_DEVICES; i++) {
1191 if (classes[i] == ATA_DEV_UNKNOWN)
1192 classes[i] = ATA_DEV_NONE;
1193 ap->device[i].class = classes[i];
1194 }
1195 } else {
1196 printk(KERN_ERR "ata%u: probe reset failed, "
1197 "disabling port\n", ap->id);
1198 ata_port_disable(ap);
1199 }
1200 } else
1201 ap->ops->phy_reset(ap);
1202
1203 if (ap->flags & ATA_FLAG_PORT_DISABLED)
1204 goto err_out;
1205
1206 for (i = 0; i < ATA_MAX_DEVICES; i++) {
1207 ata_dev_identify(ap, i);
1208 if (ata_dev_present(&ap->device[i])) {
1209 found = 1;
1210 ata_dev_config(ap,i);
1211 }
1212 }
1213
1214 if ((!found) || (ap->flags & ATA_FLAG_PORT_DISABLED))
1215 goto err_out_disable;
1216
1217 ata_set_mode(ap);
1218 if (ap->flags & ATA_FLAG_PORT_DISABLED)
1219 goto err_out_disable;
1220
1221 return 0;
1222
1223 err_out_disable:
1224 ap->ops->port_disable(ap);
1225 err_out:
1226 return -1;
1227 }
1228
1229 /**
1230 * ata_port_probe - Mark port as enabled
1231 * @ap: Port for which we indicate enablement
1232 *
1233 * Modify @ap data structure such that the system
1234 * thinks that the entire port is enabled.
1235 *
1236 * LOCKING: host_set lock, or some other form of
1237 * serialization.
1238 */
1239
1240 void ata_port_probe(struct ata_port *ap)
1241 {
1242 ap->flags &= ~ATA_FLAG_PORT_DISABLED;
1243 }
1244
1245 /**
1246 * sata_print_link_status - Print SATA link status
1247 * @ap: SATA port to printk link status about
1248 *
1249 * This function prints link speed and status of a SATA link.
1250 *
1251 * LOCKING:
1252 * None.
1253 */
1254 static void sata_print_link_status(struct ata_port *ap)
1255 {
1256 u32 sstatus, tmp;
1257 const char *speed;
1258
1259 if (!ap->ops->scr_read)
1260 return;
1261
1262 sstatus = scr_read(ap, SCR_STATUS);
1263
1264 if (sata_dev_present(ap)) {
1265 tmp = (sstatus >> 4) & 0xf;
1266 if (tmp & (1 << 0))
1267 speed = "1.5";
1268 else if (tmp & (1 << 1))
1269 speed = "3.0";
1270 else
1271 speed = "<unknown>";
1272 printk(KERN_INFO "ata%u: SATA link up %s Gbps (SStatus %X)\n",
1273 ap->id, speed, sstatus);
1274 } else {
1275 printk(KERN_INFO "ata%u: SATA link down (SStatus %X)\n",
1276 ap->id, sstatus);
1277 }
1278 }
1279
1280 /**
1281 * __sata_phy_reset - Wake/reset a low-level SATA PHY
1282 * @ap: SATA port associated with target SATA PHY.
1283 *
1284 * This function issues commands to standard SATA Sxxx
1285 * PHY registers, to wake up the phy (and device), and
1286 * clear any reset condition.
1287 *
1288 * LOCKING:
1289 * PCI/etc. bus probe sem.
1290 *
1291 */
1292 void __sata_phy_reset(struct ata_port *ap)
1293 {
1294 u32 sstatus;
1295 unsigned long timeout = jiffies + (HZ * 5);
1296
1297 if (ap->flags & ATA_FLAG_SATA_RESET) {
1298 /* issue phy wake/reset */
1299 scr_write_flush(ap, SCR_CONTROL, 0x301);
1300 /* Couldn't find anything in SATA I/II specs, but
1301 * AHCI-1.1 10.4.2 says at least 1 ms. */
1302 mdelay(1);
1303 }
1304 scr_write_flush(ap, SCR_CONTROL, 0x300); /* phy wake/clear reset */
1305
1306 /* wait for phy to become ready, if necessary */
1307 do {
1308 msleep(200);
1309 sstatus = scr_read(ap, SCR_STATUS);
1310 if ((sstatus & 0xf) != 1)
1311 break;
1312 } while (time_before(jiffies, timeout));
1313
1314 /* print link status */
1315 sata_print_link_status(ap);
1316
1317 /* TODO: phy layer with polling, timeouts, etc. */
1318 if (sata_dev_present(ap))
1319 ata_port_probe(ap);
1320 else
1321 ata_port_disable(ap);
1322
1323 if (ap->flags & ATA_FLAG_PORT_DISABLED)
1324 return;
1325
1326 if (ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT)) {
1327 ata_port_disable(ap);
1328 return;
1329 }
1330
1331 ap->cbl = ATA_CBL_SATA;
1332 }
1333
1334 /**
1335 * sata_phy_reset - Reset SATA bus.
1336 * @ap: SATA port associated with target SATA PHY.
1337 *
1338 * This function resets the SATA bus, and then probes
1339 * the bus for devices.
1340 *
1341 * LOCKING:
1342 * PCI/etc. bus probe sem.
1343 *
1344 */
1345 void sata_phy_reset(struct ata_port *ap)
1346 {
1347 __sata_phy_reset(ap);
1348 if (ap->flags & ATA_FLAG_PORT_DISABLED)
1349 return;
1350 ata_bus_reset(ap);
1351 }
1352
1353 /**
1354 * ata_port_disable - Disable port.
1355 * @ap: Port to be disabled.
1356 *
1357 * Modify @ap data structure such that the system
1358 * thinks that the entire port is disabled, and should
1359 * never attempt to probe or communicate with devices
1360 * on this port.
1361 *
1362 * LOCKING: host_set lock, or some other form of
1363 * serialization.
1364 */
1365
1366 void ata_port_disable(struct ata_port *ap)
1367 {
1368 ap->device[0].class = ATA_DEV_NONE;
1369 ap->device[1].class = ATA_DEV_NONE;
1370 ap->flags |= ATA_FLAG_PORT_DISABLED;
1371 }
1372
1373 /*
1374 * This mode timing computation functionality is ported over from
1375 * drivers/ide/ide-timing.h and was originally written by Vojtech Pavlik
1376 */
1377 /*
1378 * PIO 0-5, MWDMA 0-2 and UDMA 0-6 timings (in nanoseconds).
1379 * These were taken from ATA/ATAPI-6 standard, rev 0a, except
1380 * for PIO 5, which is a nonstandard extension and UDMA6, which
1381 * is currently supported only by Maxtor drives.
1382 */
1383
1384 static const struct ata_timing ata_timing[] = {
1385
1386 { XFER_UDMA_6, 0, 0, 0, 0, 0, 0, 0, 15 },
1387 { XFER_UDMA_5, 0, 0, 0, 0, 0, 0, 0, 20 },
1388 { XFER_UDMA_4, 0, 0, 0, 0, 0, 0, 0, 30 },
1389 { XFER_UDMA_3, 0, 0, 0, 0, 0, 0, 0, 45 },
1390
1391 { XFER_UDMA_2, 0, 0, 0, 0, 0, 0, 0, 60 },
1392 { XFER_UDMA_1, 0, 0, 0, 0, 0, 0, 0, 80 },
1393 { XFER_UDMA_0, 0, 0, 0, 0, 0, 0, 0, 120 },
1394
1395 /* { XFER_UDMA_SLOW, 0, 0, 0, 0, 0, 0, 0, 150 }, */
1396
1397 { XFER_MW_DMA_2, 25, 0, 0, 0, 70, 25, 120, 0 },
1398 { XFER_MW_DMA_1, 45, 0, 0, 0, 80, 50, 150, 0 },
1399 { XFER_MW_DMA_0, 60, 0, 0, 0, 215, 215, 480, 0 },
1400
1401 { XFER_SW_DMA_2, 60, 0, 0, 0, 120, 120, 240, 0 },
1402 { XFER_SW_DMA_1, 90, 0, 0, 0, 240, 240, 480, 0 },
1403 { XFER_SW_DMA_0, 120, 0, 0, 0, 480, 480, 960, 0 },
1404
1405 /* { XFER_PIO_5, 20, 50, 30, 100, 50, 30, 100, 0 }, */
1406 { XFER_PIO_4, 25, 70, 25, 120, 70, 25, 120, 0 },
1407 { XFER_PIO_3, 30, 80, 70, 180, 80, 70, 180, 0 },
1408
1409 { XFER_PIO_2, 30, 290, 40, 330, 100, 90, 240, 0 },
1410 { XFER_PIO_1, 50, 290, 93, 383, 125, 100, 383, 0 },
1411 { XFER_PIO_0, 70, 290, 240, 600, 165, 150, 600, 0 },
1412
1413 /* { XFER_PIO_SLOW, 120, 290, 240, 960, 290, 240, 960, 0 }, */
1414
1415 { 0xFF }
1416 };
1417
1418 #define ENOUGH(v,unit) (((v)-1)/(unit)+1)
1419 #define EZ(v,unit) ((v)?ENOUGH(v,unit):0)
1420
1421 static void ata_timing_quantize(const struct ata_timing *t, struct ata_timing *q, int T, int UT)
1422 {
1423 q->setup = EZ(t->setup * 1000, T);
1424 q->act8b = EZ(t->act8b * 1000, T);
1425 q->rec8b = EZ(t->rec8b * 1000, T);
1426 q->cyc8b = EZ(t->cyc8b * 1000, T);
1427 q->active = EZ(t->active * 1000, T);
1428 q->recover = EZ(t->recover * 1000, T);
1429 q->cycle = EZ(t->cycle * 1000, T);
1430 q->udma = EZ(t->udma * 1000, UT);
1431 }
1432
1433 void ata_timing_merge(const struct ata_timing *a, const struct ata_timing *b,
1434 struct ata_timing *m, unsigned int what)
1435 {
1436 if (what & ATA_TIMING_SETUP ) m->setup = max(a->setup, b->setup);
1437 if (what & ATA_TIMING_ACT8B ) m->act8b = max(a->act8b, b->act8b);
1438 if (what & ATA_TIMING_REC8B ) m->rec8b = max(a->rec8b, b->rec8b);
1439 if (what & ATA_TIMING_CYC8B ) m->cyc8b = max(a->cyc8b, b->cyc8b);
1440 if (what & ATA_TIMING_ACTIVE ) m->active = max(a->active, b->active);
1441 if (what & ATA_TIMING_RECOVER) m->recover = max(a->recover, b->recover);
1442 if (what & ATA_TIMING_CYCLE ) m->cycle = max(a->cycle, b->cycle);
1443 if (what & ATA_TIMING_UDMA ) m->udma = max(a->udma, b->udma);
1444 }
1445
1446 static const struct ata_timing* ata_timing_find_mode(unsigned short speed)
1447 {
1448 const struct ata_timing *t;
1449
1450 for (t = ata_timing; t->mode != speed; t++)
1451 if (t->mode == 0xFF)
1452 return NULL;
1453 return t;
1454 }
1455
1456 int ata_timing_compute(struct ata_device *adev, unsigned short speed,
1457 struct ata_timing *t, int T, int UT)
1458 {
1459 const struct ata_timing *s;
1460 struct ata_timing p;
1461
1462 /*
1463 * Find the mode.
1464 */
1465
1466 if (!(s = ata_timing_find_mode(speed)))
1467 return -EINVAL;
1468
1469 memcpy(t, s, sizeof(*s));
1470
1471 /*
1472 * If the drive is an EIDE drive, it can tell us it needs extended
1473 * PIO/MW_DMA cycle timing.
1474 */
1475
1476 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE drive */
1477 memset(&p, 0, sizeof(p));
1478 if(speed >= XFER_PIO_0 && speed <= XFER_SW_DMA_0) {
1479 if (speed <= XFER_PIO_2) p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO];
1480 else p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO_IORDY];
1481 } else if(speed >= XFER_MW_DMA_0 && speed <= XFER_MW_DMA_2) {
1482 p.cycle = adev->id[ATA_ID_EIDE_DMA_MIN];
1483 }
1484 ata_timing_merge(&p, t, t, ATA_TIMING_CYCLE | ATA_TIMING_CYC8B);
1485 }
1486
1487 /*
1488 * Convert the timing to bus clock counts.
1489 */
1490
1491 ata_timing_quantize(t, t, T, UT);
1492
1493 /*
1494 * Even in DMA/UDMA modes we still use PIO access for IDENTIFY,
1495 * S.M.A.R.T * and some other commands. We have to ensure that the
1496 * DMA cycle timing is slower/equal than the fastest PIO timing.
1497 */
1498
1499 if (speed > XFER_PIO_4) {
1500 ata_timing_compute(adev, adev->pio_mode, &p, T, UT);
1501 ata_timing_merge(&p, t, t, ATA_TIMING_ALL);
1502 }
1503
1504 /*
1505 * Lengthen active & recovery time so that cycle time is correct.
1506 */
1507
1508 if (t->act8b + t->rec8b < t->cyc8b) {
1509 t->act8b += (t->cyc8b - (t->act8b + t->rec8b)) / 2;
1510 t->rec8b = t->cyc8b - t->act8b;
1511 }
1512
1513 if (t->active + t->recover < t->cycle) {
1514 t->active += (t->cycle - (t->active + t->recover)) / 2;
1515 t->recover = t->cycle - t->active;
1516 }
1517
1518 return 0;
1519 }
1520
1521 static const struct {
1522 unsigned int shift;
1523 u8 base;
1524 } xfer_mode_classes[] = {
1525 { ATA_SHIFT_UDMA, XFER_UDMA_0 },
1526 { ATA_SHIFT_MWDMA, XFER_MW_DMA_0 },
1527 { ATA_SHIFT_PIO, XFER_PIO_0 },
1528 };
1529
1530 static u8 base_from_shift(unsigned int shift)
1531 {
1532 int i;
1533
1534 for (i = 0; i < ARRAY_SIZE(xfer_mode_classes); i++)
1535 if (xfer_mode_classes[i].shift == shift)
1536 return xfer_mode_classes[i].base;
1537
1538 return 0xff;
1539 }
1540
1541 static void ata_dev_set_mode(struct ata_port *ap, struct ata_device *dev)
1542 {
1543 int ofs, idx;
1544 u8 base;
1545
1546 if (!ata_dev_present(dev) || (ap->flags & ATA_FLAG_PORT_DISABLED))
1547 return;
1548
1549 if (dev->xfer_shift == ATA_SHIFT_PIO)
1550 dev->flags |= ATA_DFLAG_PIO;
1551
1552 ata_dev_set_xfermode(ap, dev);
1553
1554 base = base_from_shift(dev->xfer_shift);
1555 ofs = dev->xfer_mode - base;
1556 idx = ofs + dev->xfer_shift;
1557 WARN_ON(idx >= ARRAY_SIZE(xfer_mode_str));
1558
1559 DPRINTK("idx=%d xfer_shift=%u, xfer_mode=0x%x, base=0x%x, offset=%d\n",
1560 idx, dev->xfer_shift, (int)dev->xfer_mode, (int)base, ofs);
1561
1562 printk(KERN_INFO "ata%u: dev %u configured for %s\n",
1563 ap->id, dev->devno, xfer_mode_str[idx]);
1564 }
1565
1566 static int ata_host_set_pio(struct ata_port *ap)
1567 {
1568 unsigned int mask;
1569 int x, i;
1570 u8 base, xfer_mode;
1571
1572 mask = ata_get_mode_mask(ap, ATA_SHIFT_PIO);
1573 x = fgb(mask);
1574 if (x < 0) {
1575 printk(KERN_WARNING "ata%u: no PIO support\n", ap->id);
1576 return -1;
1577 }
1578
1579 base = base_from_shift(ATA_SHIFT_PIO);
1580 xfer_mode = base + x;
1581
1582 DPRINTK("base 0x%x xfer_mode 0x%x mask 0x%x x %d\n",
1583 (int)base, (int)xfer_mode, mask, x);
1584
1585 for (i = 0; i < ATA_MAX_DEVICES; i++) {
1586 struct ata_device *dev = &ap->device[i];
1587 if (ata_dev_present(dev)) {
1588 dev->pio_mode = xfer_mode;
1589 dev->xfer_mode = xfer_mode;
1590 dev->xfer_shift = ATA_SHIFT_PIO;
1591 if (ap->ops->set_piomode)
1592 ap->ops->set_piomode(ap, dev);
1593 }
1594 }
1595
1596 return 0;
1597 }
1598
1599 static void ata_host_set_dma(struct ata_port *ap, u8 xfer_mode,
1600 unsigned int xfer_shift)
1601 {
1602 int i;
1603
1604 for (i = 0; i < ATA_MAX_DEVICES; i++) {
1605 struct ata_device *dev = &ap->device[i];
1606 if (ata_dev_present(dev)) {
1607 dev->dma_mode = xfer_mode;
1608 dev->xfer_mode = xfer_mode;
1609 dev->xfer_shift = xfer_shift;
1610 if (ap->ops->set_dmamode)
1611 ap->ops->set_dmamode(ap, dev);
1612 }
1613 }
1614 }
1615
1616 /**
1617 * ata_set_mode - Program timings and issue SET FEATURES - XFER
1618 * @ap: port on which timings will be programmed
1619 *
1620 * Set ATA device disk transfer mode (PIO3, UDMA6, etc.).
1621 *
1622 * LOCKING:
1623 * PCI/etc. bus probe sem.
1624 */
1625 static void ata_set_mode(struct ata_port *ap)
1626 {
1627 unsigned int xfer_shift;
1628 u8 xfer_mode;
1629 int rc;
1630
1631 /* step 1: always set host PIO timings */
1632 rc = ata_host_set_pio(ap);
1633 if (rc)
1634 goto err_out;
1635
1636 /* step 2: choose the best data xfer mode */
1637 xfer_mode = xfer_shift = 0;
1638 rc = ata_choose_xfer_mode(ap, &xfer_mode, &xfer_shift);
1639 if (rc)
1640 goto err_out;
1641
1642 /* step 3: if that xfer mode isn't PIO, set host DMA timings */
1643 if (xfer_shift != ATA_SHIFT_PIO)
1644 ata_host_set_dma(ap, xfer_mode, xfer_shift);
1645
1646 /* step 4: update devices' xfer mode */
1647 ata_dev_set_mode(ap, &ap->device[0]);
1648 ata_dev_set_mode(ap, &ap->device[1]);
1649
1650 if (ap->flags & ATA_FLAG_PORT_DISABLED)
1651 return;
1652
1653 if (ap->ops->post_set_mode)
1654 ap->ops->post_set_mode(ap);
1655
1656 return;
1657
1658 err_out:
1659 ata_port_disable(ap);
1660 }
1661
1662 /**
1663 * ata_tf_to_host - issue ATA taskfile to host controller
1664 * @ap: port to which command is being issued
1665 * @tf: ATA taskfile register set
1666 *
1667 * Issues ATA taskfile register set to ATA host controller,
1668 * with proper synchronization with interrupt handler and
1669 * other threads.
1670 *
1671 * LOCKING:
1672 * spin_lock_irqsave(host_set lock)
1673 */
1674
1675 static inline void ata_tf_to_host(struct ata_port *ap,
1676 const struct ata_taskfile *tf)
1677 {
1678 ap->ops->tf_load(ap, tf);
1679 ap->ops->exec_command(ap, tf);
1680 }
1681
1682 /**
1683 * ata_busy_sleep - sleep until BSY clears, or timeout
1684 * @ap: port containing status register to be polled
1685 * @tmout_pat: impatience timeout
1686 * @tmout: overall timeout
1687 *
1688 * Sleep until ATA Status register bit BSY clears,
1689 * or a timeout occurs.
1690 *
1691 * LOCKING: None.
1692 */
1693
1694 unsigned int ata_busy_sleep (struct ata_port *ap,
1695 unsigned long tmout_pat, unsigned long tmout)
1696 {
1697 unsigned long timer_start, timeout;
1698 u8 status;
1699
1700 status = ata_busy_wait(ap, ATA_BUSY, 300);
1701 timer_start = jiffies;
1702 timeout = timer_start + tmout_pat;
1703 while ((status & ATA_BUSY) && (time_before(jiffies, timeout))) {
1704 msleep(50);
1705 status = ata_busy_wait(ap, ATA_BUSY, 3);
1706 }
1707
1708 if (status & ATA_BUSY)
1709 printk(KERN_WARNING "ata%u is slow to respond, "
1710 "please be patient\n", ap->id);
1711
1712 timeout = timer_start + tmout;
1713 while ((status & ATA_BUSY) && (time_before(jiffies, timeout))) {
1714 msleep(50);
1715 status = ata_chk_status(ap);
1716 }
1717
1718 if (status & ATA_BUSY) {
1719 printk(KERN_ERR "ata%u failed to respond (%lu secs)\n",
1720 ap->id, tmout / HZ);
1721 return 1;
1722 }
1723
1724 return 0;
1725 }
1726
1727 static void ata_bus_post_reset(struct ata_port *ap, unsigned int devmask)
1728 {
1729 struct ata_ioports *ioaddr = &ap->ioaddr;
1730 unsigned int dev0 = devmask & (1 << 0);
1731 unsigned int dev1 = devmask & (1 << 1);
1732 unsigned long timeout;
1733
1734 /* if device 0 was found in ata_devchk, wait for its
1735 * BSY bit to clear
1736 */
1737 if (dev0)
1738 ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT);
1739
1740 /* if device 1 was found in ata_devchk, wait for
1741 * register access, then wait for BSY to clear
1742 */
1743 timeout = jiffies + ATA_TMOUT_BOOT;
1744 while (dev1) {
1745 u8 nsect, lbal;
1746
1747 ap->ops->dev_select(ap, 1);
1748 if (ap->flags & ATA_FLAG_MMIO) {
1749 nsect = readb((void __iomem *) ioaddr->nsect_addr);
1750 lbal = readb((void __iomem *) ioaddr->lbal_addr);
1751 } else {
1752 nsect = inb(ioaddr->nsect_addr);
1753 lbal = inb(ioaddr->lbal_addr);
1754 }
1755 if ((nsect == 1) && (lbal == 1))
1756 break;
1757 if (time_after(jiffies, timeout)) {
1758 dev1 = 0;
1759 break;
1760 }
1761 msleep(50); /* give drive a breather */
1762 }
1763 if (dev1)
1764 ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT);
1765
1766 /* is all this really necessary? */
1767 ap->ops->dev_select(ap, 0);
1768 if (dev1)
1769 ap->ops->dev_select(ap, 1);
1770 if (dev0)
1771 ap->ops->dev_select(ap, 0);
1772 }
1773
1774 /**
1775 * ata_bus_edd - Issue EXECUTE DEVICE DIAGNOSTIC command.
1776 * @ap: Port to reset and probe
1777 *
1778 * Use the EXECUTE DEVICE DIAGNOSTIC command to reset and
1779 * probe the bus. Not often used these days.
1780 *
1781 * LOCKING:
1782 * PCI/etc. bus probe sem.
1783 * Obtains host_set lock.
1784 *
1785 */
1786
1787 static unsigned int ata_bus_edd(struct ata_port *ap)
1788 {
1789 struct ata_taskfile tf;
1790 unsigned long flags;
1791
1792 /* set up execute-device-diag (bus reset) taskfile */
1793 /* also, take interrupts to a known state (disabled) */
1794 DPRINTK("execute-device-diag\n");
1795 ata_tf_init(ap, &tf, 0);
1796 tf.ctl |= ATA_NIEN;
1797 tf.command = ATA_CMD_EDD;
1798 tf.protocol = ATA_PROT_NODATA;
1799
1800 /* do bus reset */
1801 spin_lock_irqsave(&ap->host_set->lock, flags);
1802 ata_tf_to_host(ap, &tf);
1803 spin_unlock_irqrestore(&ap->host_set->lock, flags);
1804
1805 /* spec says at least 2ms. but who knows with those
1806 * crazy ATAPI devices...
1807 */
1808 msleep(150);
1809
1810 return ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT);
1811 }
1812
1813 static unsigned int ata_bus_softreset(struct ata_port *ap,
1814 unsigned int devmask)
1815 {
1816 struct ata_ioports *ioaddr = &ap->ioaddr;
1817
1818 DPRINTK("ata%u: bus reset via SRST\n", ap->id);
1819
1820 /* software reset. causes dev0 to be selected */
1821 if (ap->flags & ATA_FLAG_MMIO) {
1822 writeb(ap->ctl, (void __iomem *) ioaddr->ctl_addr);
1823 udelay(20); /* FIXME: flush */
1824 writeb(ap->ctl | ATA_SRST, (void __iomem *) ioaddr->ctl_addr);
1825 udelay(20); /* FIXME: flush */
1826 writeb(ap->ctl, (void __iomem *) ioaddr->ctl_addr);
1827 } else {
1828 outb(ap->ctl, ioaddr->ctl_addr);
1829 udelay(10);
1830 outb(ap->ctl | ATA_SRST, ioaddr->ctl_addr);
1831 udelay(10);
1832 outb(ap->ctl, ioaddr->ctl_addr);
1833 }
1834
1835 /* spec mandates ">= 2ms" before checking status.
1836 * We wait 150ms, because that was the magic delay used for
1837 * ATAPI devices in Hale Landis's ATADRVR, for the period of time
1838 * between when the ATA command register is written, and then
1839 * status is checked. Because waiting for "a while" before
1840 * checking status is fine, post SRST, we perform this magic
1841 * delay here as well.
1842 */
1843 msleep(150);
1844
1845 ata_bus_post_reset(ap, devmask);
1846
1847 return 0;
1848 }
1849
1850 /**
1851 * ata_bus_reset - reset host port and associated ATA channel
1852 * @ap: port to reset
1853 *
1854 * This is typically the first time we actually start issuing
1855 * commands to the ATA channel. We wait for BSY to clear, then
1856 * issue EXECUTE DEVICE DIAGNOSTIC command, polling for its
1857 * result. Determine what devices, if any, are on the channel
1858 * by looking at the device 0/1 error register. Look at the signature
1859 * stored in each device's taskfile registers, to determine if
1860 * the device is ATA or ATAPI.
1861 *
1862 * LOCKING:
1863 * PCI/etc. bus probe sem.
1864 * Obtains host_set lock.
1865 *
1866 * SIDE EFFECTS:
1867 * Sets ATA_FLAG_PORT_DISABLED if bus reset fails.
1868 */
1869
1870 void ata_bus_reset(struct ata_port *ap)
1871 {
1872 struct ata_ioports *ioaddr = &ap->ioaddr;
1873 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
1874 u8 err;
1875 unsigned int dev0, dev1 = 0, rc = 0, devmask = 0;
1876
1877 DPRINTK("ENTER, host %u, port %u\n", ap->id, ap->port_no);
1878
1879 /* determine if device 0/1 are present */
1880 if (ap->flags & ATA_FLAG_SATA_RESET)
1881 dev0 = 1;
1882 else {
1883 dev0 = ata_devchk(ap, 0);
1884 if (slave_possible)
1885 dev1 = ata_devchk(ap, 1);
1886 }
1887
1888 if (dev0)
1889 devmask |= (1 << 0);
1890 if (dev1)
1891 devmask |= (1 << 1);
1892
1893 /* select device 0 again */
1894 ap->ops->dev_select(ap, 0);
1895
1896 /* issue bus reset */
1897 if (ap->flags & ATA_FLAG_SRST)
1898 rc = ata_bus_softreset(ap, devmask);
1899 else if ((ap->flags & ATA_FLAG_SATA_RESET) == 0) {
1900 /* set up device control */
1901 if (ap->flags & ATA_FLAG_MMIO)
1902 writeb(ap->ctl, (void __iomem *) ioaddr->ctl_addr);
1903 else
1904 outb(ap->ctl, ioaddr->ctl_addr);
1905 rc = ata_bus_edd(ap);
1906 }
1907
1908 if (rc)
1909 goto err_out;
1910
1911 /*
1912 * determine by signature whether we have ATA or ATAPI devices
1913 */
1914 ap->device[0].class = ata_dev_try_classify(ap, 0, &err);
1915 if ((slave_possible) && (err != 0x81))
1916 ap->device[1].class = ata_dev_try_classify(ap, 1, &err);
1917
1918 /* re-enable interrupts */
1919 if (ap->ioaddr.ctl_addr) /* FIXME: hack. create a hook instead */
1920 ata_irq_on(ap);
1921
1922 /* is double-select really necessary? */
1923 if (ap->device[1].class != ATA_DEV_NONE)
1924 ap->ops->dev_select(ap, 1);
1925 if (ap->device[0].class != ATA_DEV_NONE)
1926 ap->ops->dev_select(ap, 0);
1927
1928 /* if no devices were detected, disable this port */
1929 if ((ap->device[0].class == ATA_DEV_NONE) &&
1930 (ap->device[1].class == ATA_DEV_NONE))
1931 goto err_out;
1932
1933 if (ap->flags & (ATA_FLAG_SATA_RESET | ATA_FLAG_SRST)) {
1934 /* set up device control for ATA_FLAG_SATA_RESET */
1935 if (ap->flags & ATA_FLAG_MMIO)
1936 writeb(ap->ctl, (void __iomem *) ioaddr->ctl_addr);
1937 else
1938 outb(ap->ctl, ioaddr->ctl_addr);
1939 }
1940
1941 DPRINTK("EXIT\n");
1942 return;
1943
1944 err_out:
1945 printk(KERN_ERR "ata%u: disabling port\n", ap->id);
1946 ap->ops->port_disable(ap);
1947
1948 DPRINTK("EXIT\n");
1949 }
1950
1951 static int sata_phy_resume(struct ata_port *ap)
1952 {
1953 unsigned long timeout = jiffies + (HZ * 5);
1954 u32 sstatus;
1955
1956 scr_write_flush(ap, SCR_CONTROL, 0x300);
1957
1958 /* Wait for phy to become ready, if necessary. */
1959 do {
1960 msleep(200);
1961 sstatus = scr_read(ap, SCR_STATUS);
1962 if ((sstatus & 0xf) != 1)
1963 return 0;
1964 } while (time_before(jiffies, timeout));
1965
1966 return -1;
1967 }
1968
1969 /**
1970 * ata_std_probeinit - initialize probing
1971 * @ap: port to be probed
1972 *
1973 * @ap is about to be probed. Initialize it. This function is
1974 * to be used as standard callback for ata_drive_probe_reset().
1975 *
1976 * NOTE!!! Do not use this function as probeinit if a low level
1977 * driver implements only hardreset. Just pass NULL as probeinit
1978 * in that case. Using this function is probably okay but doing
1979 * so makes reset sequence different from the original
1980 * ->phy_reset implementation and Jeff nervous. :-P
1981 */
1982 extern void ata_std_probeinit(struct ata_port *ap)
1983 {
1984 if (ap->flags & ATA_FLAG_SATA && ap->ops->scr_read) {
1985 sata_phy_resume(ap);
1986 if (sata_dev_present(ap))
1987 ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT);
1988 }
1989 }
1990
1991 /**
1992 * ata_std_softreset - reset host port via ATA SRST
1993 * @ap: port to reset
1994 * @verbose: fail verbosely
1995 * @classes: resulting classes of attached devices
1996 *
1997 * Reset host port using ATA SRST. This function is to be used
1998 * as standard callback for ata_drive_*_reset() functions.
1999 *
2000 * LOCKING:
2001 * Kernel thread context (may sleep)
2002 *
2003 * RETURNS:
2004 * 0 on success, -errno otherwise.
2005 */
2006 int ata_std_softreset(struct ata_port *ap, int verbose, unsigned int *classes)
2007 {
2008 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
2009 unsigned int devmask = 0, err_mask;
2010 u8 err;
2011
2012 DPRINTK("ENTER\n");
2013
2014 if (ap->ops->scr_read && !sata_dev_present(ap)) {
2015 classes[0] = ATA_DEV_NONE;
2016 goto out;
2017 }
2018
2019 /* determine if device 0/1 are present */
2020 if (ata_devchk(ap, 0))
2021 devmask |= (1 << 0);
2022 if (slave_possible && ata_devchk(ap, 1))
2023 devmask |= (1 << 1);
2024
2025 /* select device 0 again */
2026 ap->ops->dev_select(ap, 0);
2027
2028 /* issue bus reset */
2029 DPRINTK("about to softreset, devmask=%x\n", devmask);
2030 err_mask = ata_bus_softreset(ap, devmask);
2031 if (err_mask) {
2032 if (verbose)
2033 printk(KERN_ERR "ata%u: SRST failed (err_mask=0x%x)\n",
2034 ap->id, err_mask);
2035 else
2036 DPRINTK("EXIT, softreset failed (err_mask=0x%x)\n",
2037 err_mask);
2038 return -EIO;
2039 }
2040
2041 /* determine by signature whether we have ATA or ATAPI devices */
2042 classes[0] = ata_dev_try_classify(ap, 0, &err);
2043 if (slave_possible && err != 0x81)
2044 classes[1] = ata_dev_try_classify(ap, 1, &err);
2045
2046 out:
2047 DPRINTK("EXIT, classes[0]=%u [1]=%u\n", classes[0], classes[1]);
2048 return 0;
2049 }
2050
2051 /**
2052 * sata_std_hardreset - reset host port via SATA phy reset
2053 * @ap: port to reset
2054 * @verbose: fail verbosely
2055 * @class: resulting class of attached device
2056 *
2057 * SATA phy-reset host port using DET bits of SControl register.
2058 * This function is to be used as standard callback for
2059 * ata_drive_*_reset().
2060 *
2061 * LOCKING:
2062 * Kernel thread context (may sleep)
2063 *
2064 * RETURNS:
2065 * 0 on success, -errno otherwise.
2066 */
2067 int sata_std_hardreset(struct ata_port *ap, int verbose, unsigned int *class)
2068 {
2069 DPRINTK("ENTER\n");
2070
2071 /* Issue phy wake/reset */
2072 scr_write_flush(ap, SCR_CONTROL, 0x301);
2073
2074 /*
2075 * Couldn't find anything in SATA I/II specs, but AHCI-1.1
2076 * 10.4.2 says at least 1 ms.
2077 */
2078 msleep(1);
2079
2080 /* Bring phy back */
2081 sata_phy_resume(ap);
2082
2083 /* TODO: phy layer with polling, timeouts, etc. */
2084 if (!sata_dev_present(ap)) {
2085 *class = ATA_DEV_NONE;
2086 DPRINTK("EXIT, link offline\n");
2087 return 0;
2088 }
2089
2090 if (ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT)) {
2091 if (verbose)
2092 printk(KERN_ERR "ata%u: COMRESET failed "
2093 "(device not ready)\n", ap->id);
2094 else
2095 DPRINTK("EXIT, device not ready\n");
2096 return -EIO;
2097 }
2098
2099 ap->ops->dev_select(ap, 0); /* probably unnecessary */
2100
2101 *class = ata_dev_try_classify(ap, 0, NULL);
2102
2103 DPRINTK("EXIT, class=%u\n", *class);
2104 return 0;
2105 }
2106
2107 /**
2108 * ata_std_postreset - standard postreset callback
2109 * @ap: the target ata_port
2110 * @classes: classes of attached devices
2111 *
2112 * This function is invoked after a successful reset. Note that
2113 * the device might have been reset more than once using
2114 * different reset methods before postreset is invoked.
2115 * postreset is also reponsible for setting cable type.
2116 *
2117 * This function is to be used as standard callback for
2118 * ata_drive_*_reset().
2119 *
2120 * LOCKING:
2121 * Kernel thread context (may sleep)
2122 */
2123 void ata_std_postreset(struct ata_port *ap, unsigned int *classes)
2124 {
2125 DPRINTK("ENTER\n");
2126
2127 /* set cable type */
2128 if (ap->cbl == ATA_CBL_NONE && ap->flags & ATA_FLAG_SATA)
2129 ap->cbl = ATA_CBL_SATA;
2130
2131 /* print link status */
2132 if (ap->cbl == ATA_CBL_SATA)
2133 sata_print_link_status(ap);
2134
2135 /* re-enable interrupts */
2136 if (ap->ioaddr.ctl_addr) /* FIXME: hack. create a hook instead */
2137 ata_irq_on(ap);
2138
2139 /* is double-select really necessary? */
2140 if (classes[0] != ATA_DEV_NONE)
2141 ap->ops->dev_select(ap, 1);
2142 if (classes[1] != ATA_DEV_NONE)
2143 ap->ops->dev_select(ap, 0);
2144
2145 /* bail out if no device is present */
2146 if (classes[0] == ATA_DEV_NONE && classes[1] == ATA_DEV_NONE) {
2147 DPRINTK("EXIT, no device\n");
2148 return;
2149 }
2150
2151 /* set up device control */
2152 if (ap->ioaddr.ctl_addr) {
2153 if (ap->flags & ATA_FLAG_MMIO)
2154 writeb(ap->ctl, (void __iomem *) ap->ioaddr.ctl_addr);
2155 else
2156 outb(ap->ctl, ap->ioaddr.ctl_addr);
2157 }
2158
2159 DPRINTK("EXIT\n");
2160 }
2161
2162 /**
2163 * ata_std_probe_reset - standard probe reset method
2164 * @ap: prot to perform probe-reset
2165 * @classes: resulting classes of attached devices
2166 *
2167 * The stock off-the-shelf ->probe_reset method.
2168 *
2169 * LOCKING:
2170 * Kernel thread context (may sleep)
2171 *
2172 * RETURNS:
2173 * 0 on success, -errno otherwise.
2174 */
2175 int ata_std_probe_reset(struct ata_port *ap, unsigned int *classes)
2176 {
2177 ata_reset_fn_t hardreset;
2178
2179 hardreset = NULL;
2180 if (ap->flags & ATA_FLAG_SATA && ap->ops->scr_read)
2181 hardreset = sata_std_hardreset;
2182
2183 return ata_drive_probe_reset(ap, ata_std_probeinit,
2184 ata_std_softreset, hardreset,
2185 ata_std_postreset, classes);
2186 }
2187
2188 static int do_probe_reset(struct ata_port *ap, ata_reset_fn_t reset,
2189 ata_postreset_fn_t postreset,
2190 unsigned int *classes)
2191 {
2192 int i, rc;
2193
2194 for (i = 0; i < ATA_MAX_DEVICES; i++)
2195 classes[i] = ATA_DEV_UNKNOWN;
2196
2197 rc = reset(ap, 0, classes);
2198 if (rc)
2199 return rc;
2200
2201 /* If any class isn't ATA_DEV_UNKNOWN, consider classification
2202 * is complete and convert all ATA_DEV_UNKNOWN to
2203 * ATA_DEV_NONE.
2204 */
2205 for (i = 0; i < ATA_MAX_DEVICES; i++)
2206 if (classes[i] != ATA_DEV_UNKNOWN)
2207 break;
2208
2209 if (i < ATA_MAX_DEVICES)
2210 for (i = 0; i < ATA_MAX_DEVICES; i++)
2211 if (classes[i] == ATA_DEV_UNKNOWN)
2212 classes[i] = ATA_DEV_NONE;
2213
2214 if (postreset)
2215 postreset(ap, classes);
2216
2217 return classes[0] != ATA_DEV_UNKNOWN ? 0 : -ENODEV;
2218 }
2219
2220 /**
2221 * ata_drive_probe_reset - Perform probe reset with given methods
2222 * @ap: port to reset
2223 * @probeinit: probeinit method (can be NULL)
2224 * @softreset: softreset method (can be NULL)
2225 * @hardreset: hardreset method (can be NULL)
2226 * @postreset: postreset method (can be NULL)
2227 * @classes: resulting classes of attached devices
2228 *
2229 * Reset the specified port and classify attached devices using
2230 * given methods. This function prefers softreset but tries all
2231 * possible reset sequences to reset and classify devices. This
2232 * function is intended to be used for constructing ->probe_reset
2233 * callback by low level drivers.
2234 *
2235 * Reset methods should follow the following rules.
2236 *
2237 * - Return 0 on sucess, -errno on failure.
2238 * - If classification is supported, fill classes[] with
2239 * recognized class codes.
2240 * - If classification is not supported, leave classes[] alone.
2241 * - If verbose is non-zero, print error message on failure;
2242 * otherwise, shut up.
2243 *
2244 * LOCKING:
2245 * Kernel thread context (may sleep)
2246 *
2247 * RETURNS:
2248 * 0 on success, -EINVAL if no reset method is avaliable, -ENODEV
2249 * if classification fails, and any error code from reset
2250 * methods.
2251 */
2252 int ata_drive_probe_reset(struct ata_port *ap, ata_probeinit_fn_t probeinit,
2253 ata_reset_fn_t softreset, ata_reset_fn_t hardreset,
2254 ata_postreset_fn_t postreset, unsigned int *classes)
2255 {
2256 int rc = -EINVAL;
2257
2258 if (probeinit)
2259 probeinit(ap);
2260
2261 if (softreset) {
2262 rc = do_probe_reset(ap, softreset, postreset, classes);
2263 if (rc == 0)
2264 return 0;
2265 }
2266
2267 if (!hardreset)
2268 return rc;
2269
2270 rc = do_probe_reset(ap, hardreset, postreset, classes);
2271 if (rc == 0 || rc != -ENODEV)
2272 return rc;
2273
2274 if (softreset)
2275 rc = do_probe_reset(ap, softreset, postreset, classes);
2276
2277 return rc;
2278 }
2279
2280 static void ata_pr_blacklisted(const struct ata_port *ap,
2281 const struct ata_device *dev)
2282 {
2283 printk(KERN_WARNING "ata%u: dev %u is on DMA blacklist, disabling DMA\n",
2284 ap->id, dev->devno);
2285 }
2286
2287 static const char * const ata_dma_blacklist [] = {
2288 "WDC AC11000H",
2289 "WDC AC22100H",
2290 "WDC AC32500H",
2291 "WDC AC33100H",
2292 "WDC AC31600H",
2293 "WDC AC32100H",
2294 "WDC AC23200L",
2295 "Compaq CRD-8241B",
2296 "CRD-8400B",
2297 "CRD-8480B",
2298 "CRD-8482B",
2299 "CRD-84",
2300 "SanDisk SDP3B",
2301 "SanDisk SDP3B-64",
2302 "SANYO CD-ROM CRD",
2303 "HITACHI CDR-8",
2304 "HITACHI CDR-8335",
2305 "HITACHI CDR-8435",
2306 "Toshiba CD-ROM XM-6202B",
2307 "TOSHIBA CD-ROM XM-1702BC",
2308 "CD-532E-A",
2309 "E-IDE CD-ROM CR-840",
2310 "CD-ROM Drive/F5A",
2311 "WPI CDD-820",
2312 "SAMSUNG CD-ROM SC-148C",
2313 "SAMSUNG CD-ROM SC",
2314 "SanDisk SDP3B-64",
2315 "ATAPI CD-ROM DRIVE 40X MAXIMUM",
2316 "_NEC DV5800A",
2317 };
2318
2319 static int ata_dma_blacklisted(const struct ata_device *dev)
2320 {
2321 unsigned char model_num[41];
2322 int i;
2323
2324 ata_id_c_string(dev->id, model_num, ATA_ID_PROD_OFS, sizeof(model_num));
2325
2326 for (i = 0; i < ARRAY_SIZE(ata_dma_blacklist); i++)
2327 if (!strcmp(ata_dma_blacklist[i], model_num))
2328 return 1;
2329
2330 return 0;
2331 }
2332
2333 static unsigned int ata_get_mode_mask(const struct ata_port *ap, int shift)
2334 {
2335 const struct ata_device *master, *slave;
2336 unsigned int mask;
2337
2338 master = &ap->device[0];
2339 slave = &ap->device[1];
2340
2341 WARN_ON(!ata_dev_present(master) && !ata_dev_present(slave));
2342
2343 if (shift == ATA_SHIFT_UDMA) {
2344 mask = ap->udma_mask;
2345 if (ata_dev_present(master)) {
2346 mask &= (master->id[ATA_ID_UDMA_MODES] & 0xff);
2347 if (ata_dma_blacklisted(master)) {
2348 mask = 0;
2349 ata_pr_blacklisted(ap, master);
2350 }
2351 }
2352 if (ata_dev_present(slave)) {
2353 mask &= (slave->id[ATA_ID_UDMA_MODES] & 0xff);
2354 if (ata_dma_blacklisted(slave)) {
2355 mask = 0;
2356 ata_pr_blacklisted(ap, slave);
2357 }
2358 }
2359 }
2360 else if (shift == ATA_SHIFT_MWDMA) {
2361 mask = ap->mwdma_mask;
2362 if (ata_dev_present(master)) {
2363 mask &= (master->id[ATA_ID_MWDMA_MODES] & 0x07);
2364 if (ata_dma_blacklisted(master)) {
2365 mask = 0;
2366 ata_pr_blacklisted(ap, master);
2367 }
2368 }
2369 if (ata_dev_present(slave)) {
2370 mask &= (slave->id[ATA_ID_MWDMA_MODES] & 0x07);
2371 if (ata_dma_blacklisted(slave)) {
2372 mask = 0;
2373 ata_pr_blacklisted(ap, slave);
2374 }
2375 }
2376 }
2377 else if (shift == ATA_SHIFT_PIO) {
2378 mask = ap->pio_mask;
2379 if (ata_dev_present(master)) {
2380 /* spec doesn't return explicit support for
2381 * PIO0-2, so we fake it
2382 */
2383 u16 tmp_mode = master->id[ATA_ID_PIO_MODES] & 0x03;
2384 tmp_mode <<= 3;
2385 tmp_mode |= 0x7;
2386 mask &= tmp_mode;
2387 }
2388 if (ata_dev_present(slave)) {
2389 /* spec doesn't return explicit support for
2390 * PIO0-2, so we fake it
2391 */
2392 u16 tmp_mode = slave->id[ATA_ID_PIO_MODES] & 0x03;
2393 tmp_mode <<= 3;
2394 tmp_mode |= 0x7;
2395 mask &= tmp_mode;
2396 }
2397 }
2398 else {
2399 mask = 0xffffffff; /* shut up compiler warning */
2400 BUG();
2401 }
2402
2403 return mask;
2404 }
2405
2406 /* find greatest bit */
2407 static int fgb(u32 bitmap)
2408 {
2409 unsigned int i;
2410 int x = -1;
2411
2412 for (i = 0; i < 32; i++)
2413 if (bitmap & (1 << i))
2414 x = i;
2415
2416 return x;
2417 }
2418
2419 /**
2420 * ata_choose_xfer_mode - attempt to find best transfer mode
2421 * @ap: Port for which an xfer mode will be selected
2422 * @xfer_mode_out: (output) SET FEATURES - XFER MODE code
2423 * @xfer_shift_out: (output) bit shift that selects this mode
2424 *
2425 * Based on host and device capabilities, determine the
2426 * maximum transfer mode that is amenable to all.
2427 *
2428 * LOCKING:
2429 * PCI/etc. bus probe sem.
2430 *
2431 * RETURNS:
2432 * Zero on success, negative on error.
2433 */
2434
2435 static int ata_choose_xfer_mode(const struct ata_port *ap,
2436 u8 *xfer_mode_out,
2437 unsigned int *xfer_shift_out)
2438 {
2439 unsigned int mask, shift;
2440 int x, i;
2441
2442 for (i = 0; i < ARRAY_SIZE(xfer_mode_classes); i++) {
2443 shift = xfer_mode_classes[i].shift;
2444 mask = ata_get_mode_mask(ap, shift);
2445
2446 x = fgb(mask);
2447 if (x >= 0) {
2448 *xfer_mode_out = xfer_mode_classes[i].base + x;
2449 *xfer_shift_out = shift;
2450 return 0;
2451 }
2452 }
2453
2454 return -1;
2455 }
2456
2457 /**
2458 * ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command
2459 * @ap: Port associated with device @dev
2460 * @dev: Device to which command will be sent
2461 *
2462 * Issue SET FEATURES - XFER MODE command to device @dev
2463 * on port @ap.
2464 *
2465 * LOCKING:
2466 * PCI/etc. bus probe sem.
2467 */
2468
2469 static void ata_dev_set_xfermode(struct ata_port *ap, struct ata_device *dev)
2470 {
2471 struct ata_taskfile tf;
2472
2473 /* set up set-features taskfile */
2474 DPRINTK("set features - xfer mode\n");
2475
2476 ata_tf_init(ap, &tf, dev->devno);
2477 tf.command = ATA_CMD_SET_FEATURES;
2478 tf.feature = SETFEATURES_XFER;
2479 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
2480 tf.protocol = ATA_PROT_NODATA;
2481 tf.nsect = dev->xfer_mode;
2482
2483 if (ata_exec_internal(ap, dev, &tf, DMA_NONE, NULL, 0)) {
2484 printk(KERN_ERR "ata%u: failed to set xfermode, disabled\n",
2485 ap->id);
2486 ata_port_disable(ap);
2487 }
2488
2489 DPRINTK("EXIT\n");
2490 }
2491
2492 /**
2493 * ata_dev_reread_id - Reread the device identify device info
2494 * @ap: port where the device is
2495 * @dev: device to reread the identify device info
2496 *
2497 * LOCKING:
2498 */
2499
2500 static void ata_dev_reread_id(struct ata_port *ap, struct ata_device *dev)
2501 {
2502 struct ata_taskfile tf;
2503
2504 ata_tf_init(ap, &tf, dev->devno);
2505
2506 if (dev->class == ATA_DEV_ATA) {
2507 tf.command = ATA_CMD_ID_ATA;
2508 DPRINTK("do ATA identify\n");
2509 } else {
2510 tf.command = ATA_CMD_ID_ATAPI;
2511 DPRINTK("do ATAPI identify\n");
2512 }
2513
2514 tf.flags |= ATA_TFLAG_DEVICE;
2515 tf.protocol = ATA_PROT_PIO;
2516
2517 if (ata_exec_internal(ap, dev, &tf, DMA_FROM_DEVICE,
2518 dev->id, sizeof(dev->id)))
2519 goto err_out;
2520
2521 swap_buf_le16(dev->id, ATA_ID_WORDS);
2522
2523 ata_dump_id(dev->id);
2524
2525 DPRINTK("EXIT\n");
2526
2527 return;
2528 err_out:
2529 printk(KERN_ERR "ata%u: failed to reread ID, disabled\n", ap->id);
2530 ata_port_disable(ap);
2531 }
2532
2533 /**
2534 * ata_dev_init_params - Issue INIT DEV PARAMS command
2535 * @ap: Port associated with device @dev
2536 * @dev: Device to which command will be sent
2537 *
2538 * LOCKING:
2539 * Kernel thread context (may sleep)
2540 *
2541 * RETURNS:
2542 * 0 on success, AC_ERR_* mask otherwise.
2543 */
2544
2545 static unsigned int ata_dev_init_params(struct ata_port *ap,
2546 struct ata_device *dev)
2547 {
2548 struct ata_taskfile tf;
2549 unsigned int err_mask;
2550 u16 sectors = dev->id[6];
2551 u16 heads = dev->id[3];
2552
2553 /* Number of sectors per track 1-255. Number of heads 1-16 */
2554 if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16)
2555 return 0;
2556
2557 /* set up init dev params taskfile */
2558 DPRINTK("init dev params \n");
2559
2560 ata_tf_init(ap, &tf, dev->devno);
2561 tf.command = ATA_CMD_INIT_DEV_PARAMS;
2562 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
2563 tf.protocol = ATA_PROT_NODATA;
2564 tf.nsect = sectors;
2565 tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */
2566
2567 err_mask = ata_exec_internal(ap, dev, &tf, DMA_NONE, NULL, 0);
2568
2569 DPRINTK("EXIT, err_mask=%x\n", err_mask);
2570 return err_mask;
2571 }
2572
2573 /**
2574 * ata_sg_clean - Unmap DMA memory associated with command
2575 * @qc: Command containing DMA memory to be released
2576 *
2577 * Unmap all mapped DMA memory associated with this command.
2578 *
2579 * LOCKING:
2580 * spin_lock_irqsave(host_set lock)
2581 */
2582
2583 static void ata_sg_clean(struct ata_queued_cmd *qc)
2584 {
2585 struct ata_port *ap = qc->ap;
2586 struct scatterlist *sg = qc->__sg;
2587 int dir = qc->dma_dir;
2588 void *pad_buf = NULL;
2589
2590 WARN_ON(!(qc->flags & ATA_QCFLAG_DMAMAP));
2591 WARN_ON(sg == NULL);
2592
2593 if (qc->flags & ATA_QCFLAG_SINGLE)
2594 WARN_ON(qc->n_elem != 1);
2595
2596 VPRINTK("unmapping %u sg elements\n", qc->n_elem);
2597
2598 /* if we padded the buffer out to 32-bit bound, and data
2599 * xfer direction is from-device, we must copy from the
2600 * pad buffer back into the supplied buffer
2601 */
2602 if (qc->pad_len && !(qc->tf.flags & ATA_TFLAG_WRITE))
2603 pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
2604
2605 if (qc->flags & ATA_QCFLAG_SG) {
2606 if (qc->n_elem)
2607 dma_unmap_sg(ap->host_set->dev, sg, qc->n_elem, dir);
2608 /* restore last sg */
2609 sg[qc->orig_n_elem - 1].length += qc->pad_len;
2610 if (pad_buf) {
2611 struct scatterlist *psg = &qc->pad_sgent;
2612 void *addr = kmap_atomic(psg->page, KM_IRQ0);
2613 memcpy(addr + psg->offset, pad_buf, qc->pad_len);
2614 kunmap_atomic(addr, KM_IRQ0);
2615 }
2616 } else {
2617 if (sg_dma_len(&sg[0]) > 0)
2618 dma_unmap_single(ap->host_set->dev,
2619 sg_dma_address(&sg[0]), sg_dma_len(&sg[0]),
2620 dir);
2621 /* restore sg */
2622 sg->length += qc->pad_len;
2623 if (pad_buf)
2624 memcpy(qc->buf_virt + sg->length - qc->pad_len,
2625 pad_buf, qc->pad_len);
2626 }
2627
2628 qc->flags &= ~ATA_QCFLAG_DMAMAP;
2629 qc->__sg = NULL;
2630 }
2631
2632 /**
2633 * ata_fill_sg - Fill PCI IDE PRD table
2634 * @qc: Metadata associated with taskfile to be transferred
2635 *
2636 * Fill PCI IDE PRD (scatter-gather) table with segments
2637 * associated with the current disk command.
2638 *
2639 * LOCKING:
2640 * spin_lock_irqsave(host_set lock)
2641 *
2642 */
2643 static void ata_fill_sg(struct ata_queued_cmd *qc)
2644 {
2645 struct ata_port *ap = qc->ap;
2646 struct scatterlist *sg;
2647 unsigned int idx;
2648
2649 WARN_ON(qc->__sg == NULL);
2650 WARN_ON(qc->n_elem == 0);
2651
2652 idx = 0;
2653 ata_for_each_sg(sg, qc) {
2654 u32 addr, offset;
2655 u32 sg_len, len;
2656
2657 /* determine if physical DMA addr spans 64K boundary.
2658 * Note h/w doesn't support 64-bit, so we unconditionally
2659 * truncate dma_addr_t to u32.
2660 */
2661 addr = (u32) sg_dma_address(sg);
2662 sg_len = sg_dma_len(sg);
2663
2664 while (sg_len) {
2665 offset = addr & 0xffff;
2666 len = sg_len;
2667 if ((offset + sg_len) > 0x10000)
2668 len = 0x10000 - offset;
2669
2670 ap->prd[idx].addr = cpu_to_le32(addr);
2671 ap->prd[idx].flags_len = cpu_to_le32(len & 0xffff);
2672 VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", idx, addr, len);
2673
2674 idx++;
2675 sg_len -= len;
2676 addr += len;
2677 }
2678 }
2679
2680 if (idx)
2681 ap->prd[idx - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT);
2682 }
2683 /**
2684 * ata_check_atapi_dma - Check whether ATAPI DMA can be supported
2685 * @qc: Metadata associated with taskfile to check
2686 *
2687 * Allow low-level driver to filter ATA PACKET commands, returning
2688 * a status indicating whether or not it is OK to use DMA for the
2689 * supplied PACKET command.
2690 *
2691 * LOCKING:
2692 * spin_lock_irqsave(host_set lock)
2693 *
2694 * RETURNS: 0 when ATAPI DMA can be used
2695 * nonzero otherwise
2696 */
2697 int ata_check_atapi_dma(struct ata_queued_cmd *qc)
2698 {
2699 struct ata_port *ap = qc->ap;
2700 int rc = 0; /* Assume ATAPI DMA is OK by default */
2701
2702 if (ap->ops->check_atapi_dma)
2703 rc = ap->ops->check_atapi_dma(qc);
2704
2705 return rc;
2706 }
2707 /**
2708 * ata_qc_prep - Prepare taskfile for submission
2709 * @qc: Metadata associated with taskfile to be prepared
2710 *
2711 * Prepare ATA taskfile for submission.
2712 *
2713 * LOCKING:
2714 * spin_lock_irqsave(host_set lock)
2715 */
2716 void ata_qc_prep(struct ata_queued_cmd *qc)
2717 {
2718 if (!(qc->flags & ATA_QCFLAG_DMAMAP))
2719 return;
2720
2721 ata_fill_sg(qc);
2722 }
2723
2724 /**
2725 * ata_sg_init_one - Associate command with memory buffer
2726 * @qc: Command to be associated
2727 * @buf: Memory buffer
2728 * @buflen: Length of memory buffer, in bytes.
2729 *
2730 * Initialize the data-related elements of queued_cmd @qc
2731 * to point to a single memory buffer, @buf of byte length @buflen.
2732 *
2733 * LOCKING:
2734 * spin_lock_irqsave(host_set lock)
2735 */
2736
2737 void ata_sg_init_one(struct ata_queued_cmd *qc, void *buf, unsigned int buflen)
2738 {
2739 struct scatterlist *sg;
2740
2741 qc->flags |= ATA_QCFLAG_SINGLE;
2742
2743 memset(&qc->sgent, 0, sizeof(qc->sgent));
2744 qc->__sg = &qc->sgent;
2745 qc->n_elem = 1;
2746 qc->orig_n_elem = 1;
2747 qc->buf_virt = buf;
2748
2749 sg = qc->__sg;
2750 sg_init_one(sg, buf, buflen);
2751 }
2752
2753 /**
2754 * ata_sg_init - Associate command with scatter-gather table.
2755 * @qc: Command to be associated
2756 * @sg: Scatter-gather table.
2757 * @n_elem: Number of elements in s/g table.
2758 *
2759 * Initialize the data-related elements of queued_cmd @qc
2760 * to point to a scatter-gather table @sg, containing @n_elem
2761 * elements.
2762 *
2763 * LOCKING:
2764 * spin_lock_irqsave(host_set lock)
2765 */
2766
2767 void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg,
2768 unsigned int n_elem)
2769 {
2770 qc->flags |= ATA_QCFLAG_SG;
2771 qc->__sg = sg;
2772 qc->n_elem = n_elem;
2773 qc->orig_n_elem = n_elem;
2774 }
2775
2776 /**
2777 * ata_sg_setup_one - DMA-map the memory buffer associated with a command.
2778 * @qc: Command with memory buffer to be mapped.
2779 *
2780 * DMA-map the memory buffer associated with queued_cmd @qc.
2781 *
2782 * LOCKING:
2783 * spin_lock_irqsave(host_set lock)
2784 *
2785 * RETURNS:
2786 * Zero on success, negative on error.
2787 */
2788
2789 static int ata_sg_setup_one(struct ata_queued_cmd *qc)
2790 {
2791 struct ata_port *ap = qc->ap;
2792 int dir = qc->dma_dir;
2793 struct scatterlist *sg = qc->__sg;
2794 dma_addr_t dma_address;
2795
2796 /* we must lengthen transfers to end on a 32-bit boundary */
2797 qc->pad_len = sg->length & 3;
2798 if (qc->pad_len) {
2799 void *pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
2800 struct scatterlist *psg = &qc->pad_sgent;
2801
2802 WARN_ON(qc->dev->class != ATA_DEV_ATAPI);
2803
2804 memset(pad_buf, 0, ATA_DMA_PAD_SZ);
2805
2806 if (qc->tf.flags & ATA_TFLAG_WRITE)
2807 memcpy(pad_buf, qc->buf_virt + sg->length - qc->pad_len,
2808 qc->pad_len);
2809
2810 sg_dma_address(psg) = ap->pad_dma + (qc->tag * ATA_DMA_PAD_SZ);
2811 sg_dma_len(psg) = ATA_DMA_PAD_SZ;
2812 /* trim sg */
2813 sg->length -= qc->pad_len;
2814
2815 DPRINTK("padding done, sg->length=%u pad_len=%u\n",
2816 sg->length, qc->pad_len);
2817 }
2818
2819 if (!sg->length) {
2820 sg_dma_address(sg) = 0;
2821 goto skip_map;
2822 }
2823
2824 dma_address = dma_map_single(ap->host_set->dev, qc->buf_virt,
2825 sg->length, dir);
2826 if (dma_mapping_error(dma_address)) {
2827 /* restore sg */
2828 sg->length += qc->pad_len;
2829 return -1;
2830 }
2831
2832 sg_dma_address(sg) = dma_address;
2833 skip_map:
2834 sg_dma_len(sg) = sg->length;
2835
2836 DPRINTK("mapped buffer of %d bytes for %s\n", sg_dma_len(sg),
2837 qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
2838
2839 return 0;
2840 }
2841
2842 /**
2843 * ata_sg_setup - DMA-map the scatter-gather table associated with a command.
2844 * @qc: Command with scatter-gather table to be mapped.
2845 *
2846 * DMA-map the scatter-gather table associated with queued_cmd @qc.
2847 *
2848 * LOCKING:
2849 * spin_lock_irqsave(host_set lock)
2850 *
2851 * RETURNS:
2852 * Zero on success, negative on error.
2853 *
2854 */
2855
2856 static int ata_sg_setup(struct ata_queued_cmd *qc)
2857 {
2858 struct ata_port *ap = qc->ap;
2859 struct scatterlist *sg = qc->__sg;
2860 struct scatterlist *lsg = &sg[qc->n_elem - 1];
2861 int n_elem, pre_n_elem, dir, trim_sg = 0;
2862
2863 VPRINTK("ENTER, ata%u\n", ap->id);
2864 WARN_ON(!(qc->flags & ATA_QCFLAG_SG));
2865
2866 /* we must lengthen transfers to end on a 32-bit boundary */
2867 qc->pad_len = lsg->length & 3;
2868 if (qc->pad_len) {
2869 void *pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
2870 struct scatterlist *psg = &qc->pad_sgent;
2871 unsigned int offset;
2872
2873 WARN_ON(qc->dev->class != ATA_DEV_ATAPI);
2874
2875 memset(pad_buf, 0, ATA_DMA_PAD_SZ);
2876
2877 /*
2878 * psg->page/offset are used to copy to-be-written
2879 * data in this function or read data in ata_sg_clean.
2880 */
2881 offset = lsg->offset + lsg->length - qc->pad_len;
2882 psg->page = nth_page(lsg->page, offset >> PAGE_SHIFT);
2883 psg->offset = offset_in_page(offset);
2884
2885 if (qc->tf.flags & ATA_TFLAG_WRITE) {
2886 void *addr = kmap_atomic(psg->page, KM_IRQ0);
2887 memcpy(pad_buf, addr + psg->offset, qc->pad_len);
2888 kunmap_atomic(addr, KM_IRQ0);
2889 }
2890
2891 sg_dma_address(psg) = ap->pad_dma + (qc->tag * ATA_DMA_PAD_SZ);
2892 sg_dma_len(psg) = ATA_DMA_PAD_SZ;
2893 /* trim last sg */
2894 lsg->length -= qc->pad_len;
2895 if (lsg->length == 0)
2896 trim_sg = 1;
2897
2898 DPRINTK("padding done, sg[%d].length=%u pad_len=%u\n",
2899 qc->n_elem - 1, lsg->length, qc->pad_len);
2900 }
2901
2902 pre_n_elem = qc->n_elem;
2903 if (trim_sg && pre_n_elem)
2904 pre_n_elem--;
2905
2906 if (!pre_n_elem) {
2907 n_elem = 0;
2908 goto skip_map;
2909 }
2910
2911 dir = qc->dma_dir;
2912 n_elem = dma_map_sg(ap->host_set->dev, sg, pre_n_elem, dir);
2913 if (n_elem < 1) {
2914 /* restore last sg */
2915 lsg->length += qc->pad_len;
2916 return -1;
2917 }
2918
2919 DPRINTK("%d sg elements mapped\n", n_elem);
2920
2921 skip_map:
2922 qc->n_elem = n_elem;
2923
2924 return 0;
2925 }
2926
2927 /**
2928 * ata_poll_qc_complete - turn irq back on and finish qc
2929 * @qc: Command to complete
2930 * @err_mask: ATA status register content
2931 *
2932 * LOCKING:
2933 * None. (grabs host lock)
2934 */
2935
2936 void ata_poll_qc_complete(struct ata_queued_cmd *qc)
2937 {
2938 struct ata_port *ap = qc->ap;
2939 unsigned long flags;
2940
2941 spin_lock_irqsave(&ap->host_set->lock, flags);
2942 ap->flags &= ~ATA_FLAG_NOINTR;
2943 ata_irq_on(ap);
2944 ata_qc_complete(qc);
2945 spin_unlock_irqrestore(&ap->host_set->lock, flags);
2946 }
2947
2948 /**
2949 * ata_pio_poll - poll using PIO, depending on current state
2950 * @ap: the target ata_port
2951 *
2952 * LOCKING:
2953 * None. (executing in kernel thread context)
2954 *
2955 * RETURNS:
2956 * timeout value to use
2957 */
2958
2959 static unsigned long ata_pio_poll(struct ata_port *ap)
2960 {
2961 struct ata_queued_cmd *qc;
2962 u8 status;
2963 unsigned int poll_state = HSM_ST_UNKNOWN;
2964 unsigned int reg_state = HSM_ST_UNKNOWN;
2965
2966 qc = ata_qc_from_tag(ap, ap->active_tag);
2967 WARN_ON(qc == NULL);
2968
2969 switch (ap->hsm_task_state) {
2970 case HSM_ST:
2971 case HSM_ST_POLL:
2972 poll_state = HSM_ST_POLL;
2973 reg_state = HSM_ST;
2974 break;
2975 case HSM_ST_LAST:
2976 case HSM_ST_LAST_POLL:
2977 poll_state = HSM_ST_LAST_POLL;
2978 reg_state = HSM_ST_LAST;
2979 break;
2980 default:
2981 BUG();
2982 break;
2983 }
2984
2985 status = ata_chk_status(ap);
2986 if (status & ATA_BUSY) {
2987 if (time_after(jiffies, ap->pio_task_timeout)) {
2988 qc->err_mask |= AC_ERR_TIMEOUT;
2989 ap->hsm_task_state = HSM_ST_TMOUT;
2990 return 0;
2991 }
2992 ap->hsm_task_state = poll_state;
2993 return ATA_SHORT_PAUSE;
2994 }
2995
2996 ap->hsm_task_state = reg_state;
2997 return 0;
2998 }
2999
3000 /**
3001 * ata_pio_complete - check if drive is busy or idle
3002 * @ap: the target ata_port
3003 *
3004 * LOCKING:
3005 * None. (executing in kernel thread context)
3006 *
3007 * RETURNS:
3008 * Non-zero if qc completed, zero otherwise.
3009 */
3010
3011 static int ata_pio_complete (struct ata_port *ap)
3012 {
3013 struct ata_queued_cmd *qc;
3014 u8 drv_stat;
3015
3016 /*
3017 * This is purely heuristic. This is a fast path. Sometimes when
3018 * we enter, BSY will be cleared in a chk-status or two. If not,
3019 * the drive is probably seeking or something. Snooze for a couple
3020 * msecs, then chk-status again. If still busy, fall back to
3021 * HSM_ST_POLL state.
3022 */
3023 drv_stat = ata_busy_wait(ap, ATA_BUSY, 10);
3024 if (drv_stat & ATA_BUSY) {
3025 msleep(2);
3026 drv_stat = ata_busy_wait(ap, ATA_BUSY, 10);
3027 if (drv_stat & ATA_BUSY) {
3028 ap->hsm_task_state = HSM_ST_LAST_POLL;
3029 ap->pio_task_timeout = jiffies + ATA_TMOUT_PIO;
3030 return 0;
3031 }
3032 }
3033
3034 qc = ata_qc_from_tag(ap, ap->active_tag);
3035 WARN_ON(qc == NULL);
3036
3037 drv_stat = ata_wait_idle(ap);
3038 if (!ata_ok(drv_stat)) {
3039 qc->err_mask |= __ac_err_mask(drv_stat);
3040 ap->hsm_task_state = HSM_ST_ERR;
3041 return 0;
3042 }
3043
3044 ap->hsm_task_state = HSM_ST_IDLE;
3045
3046 WARN_ON(qc->err_mask);
3047 ata_poll_qc_complete(qc);
3048
3049 /* another command may start at this point */
3050
3051 return 1;
3052 }
3053
3054
3055 /**
3056 * swap_buf_le16 - swap halves of 16-bit words in place
3057 * @buf: Buffer to swap
3058 * @buf_words: Number of 16-bit words in buffer.
3059 *
3060 * Swap halves of 16-bit words if needed to convert from
3061 * little-endian byte order to native cpu byte order, or
3062 * vice-versa.
3063 *
3064 * LOCKING:
3065 * Inherited from caller.
3066 */
3067 void swap_buf_le16(u16 *buf, unsigned int buf_words)
3068 {
3069 #ifdef __BIG_ENDIAN
3070 unsigned int i;
3071
3072 for (i = 0; i < buf_words; i++)
3073 buf[i] = le16_to_cpu(buf[i]);
3074 #endif /* __BIG_ENDIAN */
3075 }
3076
3077 /**
3078 * ata_mmio_data_xfer - Transfer data by MMIO
3079 * @ap: port to read/write
3080 * @buf: data buffer
3081 * @buflen: buffer length
3082 * @write_data: read/write
3083 *
3084 * Transfer data from/to the device data register by MMIO.
3085 *
3086 * LOCKING:
3087 * Inherited from caller.
3088 */
3089
3090 static void ata_mmio_data_xfer(struct ata_port *ap, unsigned char *buf,
3091 unsigned int buflen, int write_data)
3092 {
3093 unsigned int i;
3094 unsigned int words = buflen >> 1;
3095 u16 *buf16 = (u16 *) buf;
3096 void __iomem *mmio = (void __iomem *)ap->ioaddr.data_addr;
3097
3098 /* Transfer multiple of 2 bytes */
3099 if (write_data) {
3100 for (i = 0; i < words; i++)
3101 writew(le16_to_cpu(buf16[i]), mmio);
3102 } else {
3103 for (i = 0; i < words; i++)
3104 buf16[i] = cpu_to_le16(readw(mmio));
3105 }
3106
3107 /* Transfer trailing 1 byte, if any. */
3108 if (unlikely(buflen & 0x01)) {
3109 u16 align_buf[1] = { 0 };
3110 unsigned char *trailing_buf = buf + buflen - 1;
3111
3112 if (write_data) {
3113 memcpy(align_buf, trailing_buf, 1);
3114 writew(le16_to_cpu(align_buf[0]), mmio);
3115 } else {
3116 align_buf[0] = cpu_to_le16(readw(mmio));
3117 memcpy(trailing_buf, align_buf, 1);
3118 }
3119 }
3120 }
3121
3122 /**
3123 * ata_pio_data_xfer - Transfer data by PIO
3124 * @ap: port to read/write
3125 * @buf: data buffer
3126 * @buflen: buffer length
3127 * @write_data: read/write
3128 *
3129 * Transfer data from/to the device data register by PIO.
3130 *
3131 * LOCKING:
3132 * Inherited from caller.
3133 */
3134
3135 static void ata_pio_data_xfer(struct ata_port *ap, unsigned char *buf,
3136 unsigned int buflen, int write_data)
3137 {
3138 unsigned int words = buflen >> 1;
3139
3140 /* Transfer multiple of 2 bytes */
3141 if (write_data)
3142 outsw(ap->ioaddr.data_addr, buf, words);
3143 else
3144 insw(ap->ioaddr.data_addr, buf, words);
3145
3146 /* Transfer trailing 1 byte, if any. */
3147 if (unlikely(buflen & 0x01)) {
3148 u16 align_buf[1] = { 0 };
3149 unsigned char *trailing_buf = buf + buflen - 1;
3150
3151 if (write_data) {
3152 memcpy(align_buf, trailing_buf, 1);
3153 outw(le16_to_cpu(align_buf[0]), ap->ioaddr.data_addr);
3154 } else {
3155 align_buf[0] = cpu_to_le16(inw(ap->ioaddr.data_addr));
3156 memcpy(trailing_buf, align_buf, 1);
3157 }
3158 }
3159 }
3160
3161 /**
3162 * ata_data_xfer - Transfer data from/to the data register.
3163 * @ap: port to read/write
3164 * @buf: data buffer
3165 * @buflen: buffer length
3166 * @do_write: read/write
3167 *
3168 * Transfer data from/to the device data register.
3169 *
3170 * LOCKING:
3171 * Inherited from caller.
3172 */
3173
3174 static void ata_data_xfer(struct ata_port *ap, unsigned char *buf,
3175 unsigned int buflen, int do_write)
3176 {
3177 /* Make the crap hardware pay the costs not the good stuff */
3178 if (unlikely(ap->flags & ATA_FLAG_IRQ_MASK)) {
3179 unsigned long flags;
3180 local_irq_save(flags);
3181 if (ap->flags & ATA_FLAG_MMIO)
3182 ata_mmio_data_xfer(ap, buf, buflen, do_write);
3183 else
3184 ata_pio_data_xfer(ap, buf, buflen, do_write);
3185 local_irq_restore(flags);
3186 } else {
3187 if (ap->flags & ATA_FLAG_MMIO)
3188 ata_mmio_data_xfer(ap, buf, buflen, do_write);
3189 else
3190 ata_pio_data_xfer(ap, buf, buflen, do_write);
3191 }
3192 }
3193
3194 /**
3195 * ata_pio_sector - Transfer ATA_SECT_SIZE (512 bytes) of data.
3196 * @qc: Command on going
3197 *
3198 * Transfer ATA_SECT_SIZE of data from/to the ATA device.
3199 *
3200 * LOCKING:
3201 * Inherited from caller.
3202 */
3203
3204 static void ata_pio_sector(struct ata_queued_cmd *qc)
3205 {
3206 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
3207 struct scatterlist *sg = qc->__sg;
3208 struct ata_port *ap = qc->ap;
3209 struct page *page;
3210 unsigned int offset;
3211 unsigned char *buf;
3212
3213 if (qc->cursect == (qc->nsect - 1))
3214 ap->hsm_task_state = HSM_ST_LAST;
3215
3216 page = sg[qc->cursg].page;
3217 offset = sg[qc->cursg].offset + qc->cursg_ofs * ATA_SECT_SIZE;
3218
3219 /* get the current page and offset */
3220 page = nth_page(page, (offset >> PAGE_SHIFT));
3221 offset %= PAGE_SIZE;
3222
3223 buf = kmap(page) + offset;
3224
3225 qc->cursect++;
3226 qc->cursg_ofs++;
3227
3228 if ((qc->cursg_ofs * ATA_SECT_SIZE) == (&sg[qc->cursg])->length) {
3229 qc->cursg++;
3230 qc->cursg_ofs = 0;
3231 }
3232
3233 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
3234
3235 /* do the actual data transfer */
3236 do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
3237 ata_data_xfer(ap, buf, ATA_SECT_SIZE, do_write);
3238
3239 kunmap(page);
3240 }
3241
3242 /**
3243 * __atapi_pio_bytes - Transfer data from/to the ATAPI device.
3244 * @qc: Command on going
3245 * @bytes: number of bytes
3246 *
3247 * Transfer Transfer data from/to the ATAPI device.
3248 *
3249 * LOCKING:
3250 * Inherited from caller.
3251 *
3252 */
3253
3254 static void __atapi_pio_bytes(struct ata_queued_cmd *qc, unsigned int bytes)
3255 {
3256 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
3257 struct scatterlist *sg = qc->__sg;
3258 struct ata_port *ap = qc->ap;
3259 struct page *page;
3260 unsigned char *buf;
3261 unsigned int offset, count;
3262
3263 if (qc->curbytes + bytes >= qc->nbytes)
3264 ap->hsm_task_state = HSM_ST_LAST;
3265
3266 next_sg:
3267 if (unlikely(qc->cursg >= qc->n_elem)) {
3268 /*
3269 * The end of qc->sg is reached and the device expects
3270 * more data to transfer. In order not to overrun qc->sg
3271 * and fulfill length specified in the byte count register,
3272 * - for read case, discard trailing data from the device
3273 * - for write case, padding zero data to the device
3274 */
3275 u16 pad_buf[1] = { 0 };
3276 unsigned int words = bytes >> 1;
3277 unsigned int i;
3278
3279 if (words) /* warning if bytes > 1 */
3280 printk(KERN_WARNING "ata%u: %u bytes trailing data\n",
3281 ap->id, bytes);
3282
3283 for (i = 0; i < words; i++)
3284 ata_data_xfer(ap, (unsigned char*)pad_buf, 2, do_write);
3285
3286 ap->hsm_task_state = HSM_ST_LAST;
3287 return;
3288 }
3289
3290 sg = &qc->__sg[qc->cursg];
3291
3292 page = sg->page;
3293 offset = sg->offset + qc->cursg_ofs;
3294
3295 /* get the current page and offset */
3296 page = nth_page(page, (offset >> PAGE_SHIFT));
3297 offset %= PAGE_SIZE;
3298
3299 /* don't overrun current sg */
3300 count = min(sg->length - qc->cursg_ofs, bytes);
3301
3302 /* don't cross page boundaries */
3303 count = min(count, (unsigned int)PAGE_SIZE - offset);
3304
3305 buf = kmap(page) + offset;
3306
3307 bytes -= count;
3308 qc->curbytes += count;
3309 qc->cursg_ofs += count;
3310
3311 if (qc->cursg_ofs == sg->length) {
3312 qc->cursg++;
3313 qc->cursg_ofs = 0;
3314 }
3315
3316 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
3317
3318 /* do the actual data transfer */
3319 ata_data_xfer(ap, buf, count, do_write);
3320
3321 kunmap(page);
3322
3323 if (bytes)
3324 goto next_sg;
3325 }
3326
3327 /**
3328 * atapi_pio_bytes - Transfer data from/to the ATAPI device.
3329 * @qc: Command on going
3330 *
3331 * Transfer Transfer data from/to the ATAPI device.
3332 *
3333 * LOCKING:
3334 * Inherited from caller.
3335 */
3336
3337 static void atapi_pio_bytes(struct ata_queued_cmd *qc)
3338 {
3339 struct ata_port *ap = qc->ap;
3340 struct ata_device *dev = qc->dev;
3341 unsigned int ireason, bc_lo, bc_hi, bytes;
3342 int i_write, do_write = (qc->tf.flags & ATA_TFLAG_WRITE) ? 1 : 0;
3343
3344 ap->ops->tf_read(ap, &qc->tf);
3345 ireason = qc->tf.nsect;
3346 bc_lo = qc->tf.lbam;
3347 bc_hi = qc->tf.lbah;
3348 bytes = (bc_hi << 8) | bc_lo;
3349
3350 /* shall be cleared to zero, indicating xfer of data */
3351 if (ireason & (1 << 0))
3352 goto err_out;
3353
3354 /* make sure transfer direction matches expected */
3355 i_write = ((ireason & (1 << 1)) == 0) ? 1 : 0;
3356 if (do_write != i_write)
3357 goto err_out;
3358
3359 __atapi_pio_bytes(qc, bytes);
3360
3361 return;
3362
3363 err_out:
3364 printk(KERN_INFO "ata%u: dev %u: ATAPI check failed\n",
3365 ap->id, dev->devno);
3366 qc->err_mask |= AC_ERR_HSM;
3367 ap->hsm_task_state = HSM_ST_ERR;
3368 }
3369
3370 /**
3371 * ata_pio_block - start PIO on a block
3372 * @ap: the target ata_port
3373 *
3374 * LOCKING:
3375 * None. (executing in kernel thread context)
3376 */
3377
3378 static void ata_pio_block(struct ata_port *ap)
3379 {
3380 struct ata_queued_cmd *qc;
3381 u8 status;
3382
3383 /*
3384 * This is purely heuristic. This is a fast path.
3385 * Sometimes when we enter, BSY will be cleared in
3386 * a chk-status or two. If not, the drive is probably seeking
3387 * or something. Snooze for a couple msecs, then
3388 * chk-status again. If still busy, fall back to
3389 * HSM_ST_POLL state.
3390 */
3391 status = ata_busy_wait(ap, ATA_BUSY, 5);
3392 if (status & ATA_BUSY) {
3393 msleep(2);
3394 status = ata_busy_wait(ap, ATA_BUSY, 10);
3395 if (status & ATA_BUSY) {
3396 ap->hsm_task_state = HSM_ST_POLL;
3397 ap->pio_task_timeout = jiffies + ATA_TMOUT_PIO;
3398 return;
3399 }
3400 }
3401
3402 qc = ata_qc_from_tag(ap, ap->active_tag);
3403 WARN_ON(qc == NULL);
3404
3405 /* check error */
3406 if (status & (ATA_ERR | ATA_DF)) {
3407 qc->err_mask |= AC_ERR_DEV;
3408 ap->hsm_task_state = HSM_ST_ERR;
3409 return;
3410 }
3411
3412 /* transfer data if any */
3413 if (is_atapi_taskfile(&qc->tf)) {
3414 /* DRQ=0 means no more data to transfer */
3415 if ((status & ATA_DRQ) == 0) {
3416 ap->hsm_task_state = HSM_ST_LAST;
3417 return;
3418 }
3419
3420 atapi_pio_bytes(qc);
3421 } else {
3422 /* handle BSY=0, DRQ=0 as error */
3423 if ((status & ATA_DRQ) == 0) {
3424 qc->err_mask |= AC_ERR_HSM;
3425 ap->hsm_task_state = HSM_ST_ERR;
3426 return;
3427 }
3428
3429 ata_pio_sector(qc);
3430 }
3431 }
3432
3433 static void ata_pio_error(struct ata_port *ap)
3434 {
3435 struct ata_queued_cmd *qc;
3436
3437 qc = ata_qc_from_tag(ap, ap->active_tag);
3438 WARN_ON(qc == NULL);
3439
3440 if (qc->tf.command != ATA_CMD_PACKET)
3441 printk(KERN_WARNING "ata%u: PIO error\n", ap->id);
3442
3443 /* make sure qc->err_mask is available to
3444 * know what's wrong and recover
3445 */
3446 WARN_ON(qc->err_mask == 0);
3447
3448 ap->hsm_task_state = HSM_ST_IDLE;
3449
3450 ata_poll_qc_complete(qc);
3451 }
3452
3453 static void ata_pio_task(void *_data)
3454 {
3455 struct ata_port *ap = _data;
3456 unsigned long timeout;
3457 int qc_completed;
3458
3459 fsm_start:
3460 timeout = 0;
3461 qc_completed = 0;
3462
3463 switch (ap->hsm_task_state) {
3464 case HSM_ST_IDLE:
3465 return;
3466
3467 case HSM_ST:
3468 ata_pio_block(ap);
3469 break;
3470
3471 case HSM_ST_LAST:
3472 qc_completed = ata_pio_complete(ap);
3473 break;
3474
3475 case HSM_ST_POLL:
3476 case HSM_ST_LAST_POLL:
3477 timeout = ata_pio_poll(ap);
3478 break;
3479
3480 case HSM_ST_TMOUT:
3481 case HSM_ST_ERR:
3482 ata_pio_error(ap);
3483 return;
3484 }
3485
3486 if (timeout)
3487 ata_queue_delayed_pio_task(ap, timeout);
3488 else if (!qc_completed)
3489 goto fsm_start;
3490 }
3491
3492 /**
3493 * ata_qc_timeout - Handle timeout of queued command
3494 * @qc: Command that timed out
3495 *
3496 * Some part of the kernel (currently, only the SCSI layer)
3497 * has noticed that the active command on port @ap has not
3498 * completed after a specified length of time. Handle this
3499 * condition by disabling DMA (if necessary) and completing
3500 * transactions, with error if necessary.
3501 *
3502 * This also handles the case of the "lost interrupt", where
3503 * for some reason (possibly hardware bug, possibly driver bug)
3504 * an interrupt was not delivered to the driver, even though the
3505 * transaction completed successfully.
3506 *
3507 * LOCKING:
3508 * Inherited from SCSI layer (none, can sleep)
3509 */
3510
3511 static void ata_qc_timeout(struct ata_queued_cmd *qc)
3512 {
3513 struct ata_port *ap = qc->ap;
3514 struct ata_host_set *host_set = ap->host_set;
3515 u8 host_stat = 0, drv_stat;
3516 unsigned long flags;
3517
3518 DPRINTK("ENTER\n");
3519
3520 ata_flush_pio_tasks(ap);
3521 ap->hsm_task_state = HSM_ST_IDLE;
3522
3523 spin_lock_irqsave(&host_set->lock, flags);
3524
3525 switch (qc->tf.protocol) {
3526
3527 case ATA_PROT_DMA:
3528 case ATA_PROT_ATAPI_DMA:
3529 host_stat = ap->ops->bmdma_status(ap);
3530
3531 /* before we do anything else, clear DMA-Start bit */
3532 ap->ops->bmdma_stop(qc);
3533
3534 /* fall through */
3535
3536 default:
3537 ata_altstatus(ap);
3538 drv_stat = ata_chk_status(ap);
3539
3540 /* ack bmdma irq events */
3541 ap->ops->irq_clear(ap);
3542
3543 printk(KERN_ERR "ata%u: command 0x%x timeout, stat 0x%x host_stat 0x%x\n",
3544 ap->id, qc->tf.command, drv_stat, host_stat);
3545
3546 /* complete taskfile transaction */
3547 qc->err_mask |= ac_err_mask(drv_stat);
3548 break;
3549 }
3550
3551 spin_unlock_irqrestore(&host_set->lock, flags);
3552
3553 ata_eh_qc_complete(qc);
3554
3555 DPRINTK("EXIT\n");
3556 }
3557
3558 /**
3559 * ata_eng_timeout - Handle timeout of queued command
3560 * @ap: Port on which timed-out command is active
3561 *
3562 * Some part of the kernel (currently, only the SCSI layer)
3563 * has noticed that the active command on port @ap has not
3564 * completed after a specified length of time. Handle this
3565 * condition by disabling DMA (if necessary) and completing
3566 * transactions, with error if necessary.
3567 *
3568 * This also handles the case of the "lost interrupt", where
3569 * for some reason (possibly hardware bug, possibly driver bug)
3570 * an interrupt was not delivered to the driver, even though the
3571 * transaction completed successfully.
3572 *
3573 * LOCKING:
3574 * Inherited from SCSI layer (none, can sleep)
3575 */
3576
3577 void ata_eng_timeout(struct ata_port *ap)
3578 {
3579 DPRINTK("ENTER\n");
3580
3581 ata_qc_timeout(ata_qc_from_tag(ap, ap->active_tag));
3582
3583 DPRINTK("EXIT\n");
3584 }
3585
3586 /**
3587 * ata_qc_new - Request an available ATA command, for queueing
3588 * @ap: Port associated with device @dev
3589 * @dev: Device from whom we request an available command structure
3590 *
3591 * LOCKING:
3592 * None.
3593 */
3594
3595 static struct ata_queued_cmd *ata_qc_new(struct ata_port *ap)
3596 {
3597 struct ata_queued_cmd *qc = NULL;
3598 unsigned int i;
3599
3600 for (i = 0; i < ATA_MAX_QUEUE; i++)
3601 if (!test_and_set_bit(i, &ap->qactive)) {
3602 qc = ata_qc_from_tag(ap, i);
3603 break;
3604 }
3605
3606 if (qc)
3607 qc->tag = i;
3608
3609 return qc;
3610 }
3611
3612 /**
3613 * ata_qc_new_init - Request an available ATA command, and initialize it
3614 * @ap: Port associated with device @dev
3615 * @dev: Device from whom we request an available command structure
3616 *
3617 * LOCKING:
3618 * None.
3619 */
3620
3621 struct ata_queued_cmd *ata_qc_new_init(struct ata_port *ap,
3622 struct ata_device *dev)
3623 {
3624 struct ata_queued_cmd *qc;
3625
3626 qc = ata_qc_new(ap);
3627 if (qc) {
3628 qc->scsicmd = NULL;
3629 qc->ap = ap;
3630 qc->dev = dev;
3631
3632 ata_qc_reinit(qc);
3633 }
3634
3635 return qc;
3636 }
3637
3638 /**
3639 * ata_qc_free - free unused ata_queued_cmd
3640 * @qc: Command to complete
3641 *
3642 * Designed to free unused ata_queued_cmd object
3643 * in case something prevents using it.
3644 *
3645 * LOCKING:
3646 * spin_lock_irqsave(host_set lock)
3647 */
3648 void ata_qc_free(struct ata_queued_cmd *qc)
3649 {
3650 struct ata_port *ap = qc->ap;
3651 unsigned int tag;
3652
3653 WARN_ON(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
3654
3655 qc->flags = 0;
3656 tag = qc->tag;
3657 if (likely(ata_tag_valid(tag))) {
3658 if (tag == ap->active_tag)
3659 ap->active_tag = ATA_TAG_POISON;
3660 qc->tag = ATA_TAG_POISON;
3661 clear_bit(tag, &ap->qactive);
3662 }
3663 }
3664
3665 void __ata_qc_complete(struct ata_queued_cmd *qc)
3666 {
3667 WARN_ON(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
3668 WARN_ON(!(qc->flags & ATA_QCFLAG_ACTIVE));
3669
3670 if (likely(qc->flags & ATA_QCFLAG_DMAMAP))
3671 ata_sg_clean(qc);
3672
3673 /* atapi: mark qc as inactive to prevent the interrupt handler
3674 * from completing the command twice later, before the error handler
3675 * is called. (when rc != 0 and atapi request sense is needed)
3676 */
3677 qc->flags &= ~ATA_QCFLAG_ACTIVE;
3678
3679 /* call completion callback */
3680 qc->complete_fn(qc);
3681 }
3682
3683 static inline int ata_should_dma_map(struct ata_queued_cmd *qc)
3684 {
3685 struct ata_port *ap = qc->ap;
3686
3687 switch (qc->tf.protocol) {
3688 case ATA_PROT_DMA:
3689 case ATA_PROT_ATAPI_DMA:
3690 return 1;
3691
3692 case ATA_PROT_ATAPI:
3693 case ATA_PROT_PIO:
3694 case ATA_PROT_PIO_MULT:
3695 if (ap->flags & ATA_FLAG_PIO_DMA)
3696 return 1;
3697
3698 /* fall through */
3699
3700 default:
3701 return 0;
3702 }
3703
3704 /* never reached */
3705 }
3706
3707 /**
3708 * ata_qc_issue - issue taskfile to device
3709 * @qc: command to issue to device
3710 *
3711 * Prepare an ATA command to submission to device.
3712 * This includes mapping the data into a DMA-able
3713 * area, filling in the S/G table, and finally
3714 * writing the taskfile to hardware, starting the command.
3715 *
3716 * LOCKING:
3717 * spin_lock_irqsave(host_set lock)
3718 *
3719 * RETURNS:
3720 * Zero on success, AC_ERR_* mask on failure
3721 */
3722
3723 unsigned int ata_qc_issue(struct ata_queued_cmd *qc)
3724 {
3725 struct ata_port *ap = qc->ap;
3726
3727 if (ata_should_dma_map(qc)) {
3728 if (qc->flags & ATA_QCFLAG_SG) {
3729 if (ata_sg_setup(qc))
3730 goto sg_err;
3731 } else if (qc->flags & ATA_QCFLAG_SINGLE) {
3732 if (ata_sg_setup_one(qc))
3733 goto sg_err;
3734 }
3735 } else {
3736 qc->flags &= ~ATA_QCFLAG_DMAMAP;
3737 }
3738
3739 ap->ops->qc_prep(qc);
3740
3741 qc->ap->active_tag = qc->tag;
3742 qc->flags |= ATA_QCFLAG_ACTIVE;
3743
3744 return ap->ops->qc_issue(qc);
3745
3746 sg_err:
3747 qc->flags &= ~ATA_QCFLAG_DMAMAP;
3748 return AC_ERR_SYSTEM;
3749 }
3750
3751
3752 /**
3753 * ata_qc_issue_prot - issue taskfile to device in proto-dependent manner
3754 * @qc: command to issue to device
3755 *
3756 * Using various libata functions and hooks, this function
3757 * starts an ATA command. ATA commands are grouped into
3758 * classes called "protocols", and issuing each type of protocol
3759 * is slightly different.
3760 *
3761 * May be used as the qc_issue() entry in ata_port_operations.
3762 *
3763 * LOCKING:
3764 * spin_lock_irqsave(host_set lock)
3765 *
3766 * RETURNS:
3767 * Zero on success, AC_ERR_* mask on failure
3768 */
3769
3770 unsigned int ata_qc_issue_prot(struct ata_queued_cmd *qc)
3771 {
3772 struct ata_port *ap = qc->ap;
3773
3774 ata_dev_select(ap, qc->dev->devno, 1, 0);
3775
3776 switch (qc->tf.protocol) {
3777 case ATA_PROT_NODATA:
3778 ata_tf_to_host(ap, &qc->tf);
3779 break;
3780
3781 case ATA_PROT_DMA:
3782 ap->ops->tf_load(ap, &qc->tf); /* load tf registers */
3783 ap->ops->bmdma_setup(qc); /* set up bmdma */
3784 ap->ops->bmdma_start(qc); /* initiate bmdma */
3785 break;
3786
3787 case ATA_PROT_PIO: /* load tf registers, initiate polling pio */
3788 ata_qc_set_polling(qc);
3789 ata_tf_to_host(ap, &qc->tf);
3790 ap->hsm_task_state = HSM_ST;
3791 ata_queue_pio_task(ap);
3792 break;
3793
3794 case ATA_PROT_ATAPI:
3795 ata_qc_set_polling(qc);
3796 ata_tf_to_host(ap, &qc->tf);
3797 ata_queue_packet_task(ap);
3798 break;
3799
3800 case ATA_PROT_ATAPI_NODATA:
3801 ap->flags |= ATA_FLAG_NOINTR;
3802 ata_tf_to_host(ap, &qc->tf);
3803 ata_queue_packet_task(ap);
3804 break;
3805
3806 case ATA_PROT_ATAPI_DMA:
3807 ap->flags |= ATA_FLAG_NOINTR;
3808 ap->ops->tf_load(ap, &qc->tf); /* load tf registers */
3809 ap->ops->bmdma_setup(qc); /* set up bmdma */
3810 ata_queue_packet_task(ap);
3811 break;
3812
3813 default:
3814 WARN_ON(1);
3815 return AC_ERR_SYSTEM;
3816 }
3817
3818 return 0;
3819 }
3820
3821 /**
3822 * ata_bmdma_setup_mmio - Set up PCI IDE BMDMA transaction
3823 * @qc: Info associated with this ATA transaction.
3824 *
3825 * LOCKING:
3826 * spin_lock_irqsave(host_set lock)
3827 */
3828
3829 static void ata_bmdma_setup_mmio (struct ata_queued_cmd *qc)
3830 {
3831 struct ata_port *ap = qc->ap;
3832 unsigned int rw = (qc->tf.flags & ATA_TFLAG_WRITE);
3833 u8 dmactl;
3834 void __iomem *mmio = (void __iomem *) ap->ioaddr.bmdma_addr;
3835
3836 /* load PRD table addr. */
3837 mb(); /* make sure PRD table writes are visible to controller */
3838 writel(ap->prd_dma, mmio + ATA_DMA_TABLE_OFS);
3839
3840 /* specify data direction, triple-check start bit is clear */
3841 dmactl = readb(mmio + ATA_DMA_CMD);
3842 dmactl &= ~(ATA_DMA_WR | ATA_DMA_START);
3843 if (!rw)
3844 dmactl |= ATA_DMA_WR;
3845 writeb(dmactl, mmio + ATA_DMA_CMD);
3846
3847 /* issue r/w command */
3848 ap->ops->exec_command(ap, &qc->tf);
3849 }
3850
3851 /**
3852 * ata_bmdma_start_mmio - Start a PCI IDE BMDMA transaction
3853 * @qc: Info associated with this ATA transaction.
3854 *
3855 * LOCKING:
3856 * spin_lock_irqsave(host_set lock)
3857 */
3858
3859 static void ata_bmdma_start_mmio (struct ata_queued_cmd *qc)
3860 {
3861 struct ata_port *ap = qc->ap;
3862 void __iomem *mmio = (void __iomem *) ap->ioaddr.bmdma_addr;
3863 u8 dmactl;
3864
3865 /* start host DMA transaction */
3866 dmactl = readb(mmio + ATA_DMA_CMD);
3867 writeb(dmactl | ATA_DMA_START, mmio + ATA_DMA_CMD);
3868
3869 /* Strictly, one may wish to issue a readb() here, to
3870 * flush the mmio write. However, control also passes
3871 * to the hardware at this point, and it will interrupt
3872 * us when we are to resume control. So, in effect,
3873 * we don't care when the mmio write flushes.
3874 * Further, a read of the DMA status register _immediately_
3875 * following the write may not be what certain flaky hardware
3876 * is expected, so I think it is best to not add a readb()
3877 * without first all the MMIO ATA cards/mobos.
3878 * Or maybe I'm just being paranoid.
3879 */
3880 }
3881
3882 /**
3883 * ata_bmdma_setup_pio - Set up PCI IDE BMDMA transaction (PIO)
3884 * @qc: Info associated with this ATA transaction.
3885 *
3886 * LOCKING:
3887 * spin_lock_irqsave(host_set lock)
3888 */
3889
3890 static void ata_bmdma_setup_pio (struct ata_queued_cmd *qc)
3891 {
3892 struct ata_port *ap = qc->ap;
3893 unsigned int rw = (qc->tf.flags & ATA_TFLAG_WRITE);
3894 u8 dmactl;
3895
3896 /* load PRD table addr. */
3897 outl(ap->prd_dma, ap->ioaddr.bmdma_addr + ATA_DMA_TABLE_OFS);
3898
3899 /* specify data direction, triple-check start bit is clear */
3900 dmactl = inb(ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
3901 dmactl &= ~(ATA_DMA_WR | ATA_DMA_START);
3902 if (!rw)
3903 dmactl |= ATA_DMA_WR;
3904 outb(dmactl, ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
3905
3906 /* issue r/w command */
3907 ap->ops->exec_command(ap, &qc->tf);
3908 }
3909
3910 /**
3911 * ata_bmdma_start_pio - Start a PCI IDE BMDMA transaction (PIO)
3912 * @qc: Info associated with this ATA transaction.
3913 *
3914 * LOCKING:
3915 * spin_lock_irqsave(host_set lock)
3916 */
3917
3918 static void ata_bmdma_start_pio (struct ata_queued_cmd *qc)
3919 {
3920 struct ata_port *ap = qc->ap;
3921 u8 dmactl;
3922
3923 /* start host DMA transaction */
3924 dmactl = inb(ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
3925 outb(dmactl | ATA_DMA_START,
3926 ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
3927 }
3928
3929
3930 /**
3931 * ata_bmdma_start - Start a PCI IDE BMDMA transaction
3932 * @qc: Info associated with this ATA transaction.
3933 *
3934 * Writes the ATA_DMA_START flag to the DMA command register.
3935 *
3936 * May be used as the bmdma_start() entry in ata_port_operations.
3937 *
3938 * LOCKING:
3939 * spin_lock_irqsave(host_set lock)
3940 */
3941 void ata_bmdma_start(struct ata_queued_cmd *qc)
3942 {
3943 if (qc->ap->flags & ATA_FLAG_MMIO)
3944 ata_bmdma_start_mmio(qc);
3945 else
3946 ata_bmdma_start_pio(qc);
3947 }
3948
3949
3950 /**
3951 * ata_bmdma_setup - Set up PCI IDE BMDMA transaction
3952 * @qc: Info associated with this ATA transaction.
3953 *
3954 * Writes address of PRD table to device's PRD Table Address
3955 * register, sets the DMA control register, and calls
3956 * ops->exec_command() to start the transfer.
3957 *
3958 * May be used as the bmdma_setup() entry in ata_port_operations.
3959 *
3960 * LOCKING:
3961 * spin_lock_irqsave(host_set lock)
3962 */
3963 void ata_bmdma_setup(struct ata_queued_cmd *qc)
3964 {
3965 if (qc->ap->flags & ATA_FLAG_MMIO)
3966 ata_bmdma_setup_mmio(qc);
3967 else
3968 ata_bmdma_setup_pio(qc);
3969 }
3970
3971
3972 /**
3973 * ata_bmdma_irq_clear - Clear PCI IDE BMDMA interrupt.
3974 * @ap: Port associated with this ATA transaction.
3975 *
3976 * Clear interrupt and error flags in DMA status register.
3977 *
3978 * May be used as the irq_clear() entry in ata_port_operations.
3979 *
3980 * LOCKING:
3981 * spin_lock_irqsave(host_set lock)
3982 */
3983
3984 void ata_bmdma_irq_clear(struct ata_port *ap)
3985 {
3986 if (ap->flags & ATA_FLAG_MMIO) {
3987 void __iomem *mmio = ((void __iomem *) ap->ioaddr.bmdma_addr) + ATA_DMA_STATUS;
3988 writeb(readb(mmio), mmio);
3989 } else {
3990 unsigned long addr = ap->ioaddr.bmdma_addr + ATA_DMA_STATUS;
3991 outb(inb(addr), addr);
3992 }
3993
3994 }
3995
3996
3997 /**
3998 * ata_bmdma_status - Read PCI IDE BMDMA status
3999 * @ap: Port associated with this ATA transaction.
4000 *
4001 * Read and return BMDMA status register.
4002 *
4003 * May be used as the bmdma_status() entry in ata_port_operations.
4004 *
4005 * LOCKING:
4006 * spin_lock_irqsave(host_set lock)
4007 */
4008
4009 u8 ata_bmdma_status(struct ata_port *ap)
4010 {
4011 u8 host_stat;
4012 if (ap->flags & ATA_FLAG_MMIO) {
4013 void __iomem *mmio = (void __iomem *) ap->ioaddr.bmdma_addr;
4014 host_stat = readb(mmio + ATA_DMA_STATUS);
4015 } else
4016 host_stat = inb(ap->ioaddr.bmdma_addr + ATA_DMA_STATUS);
4017 return host_stat;
4018 }
4019
4020
4021 /**
4022 * ata_bmdma_stop - Stop PCI IDE BMDMA transfer
4023 * @qc: Command we are ending DMA for
4024 *
4025 * Clears the ATA_DMA_START flag in the dma control register
4026 *
4027 * May be used as the bmdma_stop() entry in ata_port_operations.
4028 *
4029 * LOCKING:
4030 * spin_lock_irqsave(host_set lock)
4031 */
4032
4033 void ata_bmdma_stop(struct ata_queued_cmd *qc)
4034 {
4035 struct ata_port *ap = qc->ap;
4036 if (ap->flags & ATA_FLAG_MMIO) {
4037 void __iomem *mmio = (void __iomem *) ap->ioaddr.bmdma_addr;
4038
4039 /* clear start/stop bit */
4040 writeb(readb(mmio + ATA_DMA_CMD) & ~ATA_DMA_START,
4041 mmio + ATA_DMA_CMD);
4042 } else {
4043 /* clear start/stop bit */
4044 outb(inb(ap->ioaddr.bmdma_addr + ATA_DMA_CMD) & ~ATA_DMA_START,
4045 ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
4046 }
4047
4048 /* one-PIO-cycle guaranteed wait, per spec, for HDMA1:0 transition */
4049 ata_altstatus(ap); /* dummy read */
4050 }
4051
4052 /**
4053 * ata_host_intr - Handle host interrupt for given (port, task)
4054 * @ap: Port on which interrupt arrived (possibly...)
4055 * @qc: Taskfile currently active in engine
4056 *
4057 * Handle host interrupt for given queued command. Currently,
4058 * only DMA interrupts are handled. All other commands are
4059 * handled via polling with interrupts disabled (nIEN bit).
4060 *
4061 * LOCKING:
4062 * spin_lock_irqsave(host_set lock)
4063 *
4064 * RETURNS:
4065 * One if interrupt was handled, zero if not (shared irq).
4066 */
4067
4068 inline unsigned int ata_host_intr (struct ata_port *ap,
4069 struct ata_queued_cmd *qc)
4070 {
4071 u8 status, host_stat;
4072
4073 switch (qc->tf.protocol) {
4074
4075 case ATA_PROT_DMA:
4076 case ATA_PROT_ATAPI_DMA:
4077 case ATA_PROT_ATAPI:
4078 /* check status of DMA engine */
4079 host_stat = ap->ops->bmdma_status(ap);
4080 VPRINTK("ata%u: host_stat 0x%X\n", ap->id, host_stat);
4081
4082 /* if it's not our irq... */
4083 if (!(host_stat & ATA_DMA_INTR))
4084 goto idle_irq;
4085
4086 /* before we do anything else, clear DMA-Start bit */
4087 ap->ops->bmdma_stop(qc);
4088
4089 /* fall through */
4090
4091 case ATA_PROT_ATAPI_NODATA:
4092 case ATA_PROT_NODATA:
4093 /* check altstatus */
4094 status = ata_altstatus(ap);
4095 if (status & ATA_BUSY)
4096 goto idle_irq;
4097
4098 /* check main status, clearing INTRQ */
4099 status = ata_chk_status(ap);
4100 if (unlikely(status & ATA_BUSY))
4101 goto idle_irq;
4102 DPRINTK("ata%u: protocol %d (dev_stat 0x%X)\n",
4103 ap->id, qc->tf.protocol, status);
4104
4105 /* ack bmdma irq events */
4106 ap->ops->irq_clear(ap);
4107
4108 /* complete taskfile transaction */
4109 qc->err_mask |= ac_err_mask(status);
4110 ata_qc_complete(qc);
4111 break;
4112
4113 default:
4114 goto idle_irq;
4115 }
4116
4117 return 1; /* irq handled */
4118
4119 idle_irq:
4120 ap->stats.idle_irq++;
4121
4122 #ifdef ATA_IRQ_TRAP
4123 if ((ap->stats.idle_irq % 1000) == 0) {
4124 handled = 1;
4125 ata_irq_ack(ap, 0); /* debug trap */
4126 printk(KERN_WARNING "ata%d: irq trap\n", ap->id);
4127 }
4128 #endif
4129 return 0; /* irq not handled */
4130 }
4131
4132 /**
4133 * ata_interrupt - Default ATA host interrupt handler
4134 * @irq: irq line (unused)
4135 * @dev_instance: pointer to our ata_host_set information structure
4136 * @regs: unused
4137 *
4138 * Default interrupt handler for PCI IDE devices. Calls
4139 * ata_host_intr() for each port that is not disabled.
4140 *
4141 * LOCKING:
4142 * Obtains host_set lock during operation.
4143 *
4144 * RETURNS:
4145 * IRQ_NONE or IRQ_HANDLED.
4146 */
4147
4148 irqreturn_t ata_interrupt (int irq, void *dev_instance, struct pt_regs *regs)
4149 {
4150 struct ata_host_set *host_set = dev_instance;
4151 unsigned int i;
4152 unsigned int handled = 0;
4153 unsigned long flags;
4154
4155 /* TODO: make _irqsave conditional on x86 PCI IDE legacy mode */
4156 spin_lock_irqsave(&host_set->lock, flags);
4157
4158 for (i = 0; i < host_set->n_ports; i++) {
4159 struct ata_port *ap;
4160
4161 ap = host_set->ports[i];
4162 if (ap &&
4163 !(ap->flags & (ATA_FLAG_PORT_DISABLED | ATA_FLAG_NOINTR))) {
4164 struct ata_queued_cmd *qc;
4165
4166 qc = ata_qc_from_tag(ap, ap->active_tag);
4167 if (qc && (!(qc->tf.ctl & ATA_NIEN)) &&
4168 (qc->flags & ATA_QCFLAG_ACTIVE))
4169 handled |= ata_host_intr(ap, qc);
4170 }
4171 }
4172
4173 spin_unlock_irqrestore(&host_set->lock, flags);
4174
4175 return IRQ_RETVAL(handled);
4176 }
4177
4178 /**
4179 * atapi_packet_task - Write CDB bytes to hardware
4180 * @_data: Port to which ATAPI device is attached.
4181 *
4182 * When device has indicated its readiness to accept
4183 * a CDB, this function is called. Send the CDB.
4184 * If DMA is to be performed, exit immediately.
4185 * Otherwise, we are in polling mode, so poll
4186 * status under operation succeeds or fails.
4187 *
4188 * LOCKING:
4189 * Kernel thread context (may sleep)
4190 */
4191
4192 static void atapi_packet_task(void *_data)
4193 {
4194 struct ata_port *ap = _data;
4195 struct ata_queued_cmd *qc;
4196 u8 status;
4197
4198 qc = ata_qc_from_tag(ap, ap->active_tag);
4199 WARN_ON(qc == NULL);
4200 WARN_ON(!(qc->flags & ATA_QCFLAG_ACTIVE));
4201
4202 /* sleep-wait for BSY to clear */
4203 DPRINTK("busy wait\n");
4204 if (ata_busy_sleep(ap, ATA_TMOUT_CDB_QUICK, ATA_TMOUT_CDB)) {
4205 qc->err_mask |= AC_ERR_TIMEOUT;
4206 goto err_out;
4207 }
4208
4209 /* make sure DRQ is set */
4210 status = ata_chk_status(ap);
4211 if ((status & (ATA_BUSY | ATA_DRQ)) != ATA_DRQ) {
4212 qc->err_mask |= AC_ERR_HSM;
4213 goto err_out;
4214 }
4215
4216 /* send SCSI cdb */
4217 DPRINTK("send cdb\n");
4218 WARN_ON(qc->dev->cdb_len < 12);
4219
4220 if (qc->tf.protocol == ATA_PROT_ATAPI_DMA ||
4221 qc->tf.protocol == ATA_PROT_ATAPI_NODATA) {
4222 unsigned long flags;
4223
4224 /* Once we're done issuing command and kicking bmdma,
4225 * irq handler takes over. To not lose irq, we need
4226 * to clear NOINTR flag before sending cdb, but
4227 * interrupt handler shouldn't be invoked before we're
4228 * finished. Hence, the following locking.
4229 */
4230 spin_lock_irqsave(&ap->host_set->lock, flags);
4231 ap->flags &= ~ATA_FLAG_NOINTR;
4232 ata_data_xfer(ap, qc->cdb, qc->dev->cdb_len, 1);
4233 if (qc->tf.protocol == ATA_PROT_ATAPI_DMA)
4234 ap->ops->bmdma_start(qc); /* initiate bmdma */
4235 spin_unlock_irqrestore(&ap->host_set->lock, flags);
4236 } else {
4237 ata_data_xfer(ap, qc->cdb, qc->dev->cdb_len, 1);
4238
4239 /* PIO commands are handled by polling */
4240 ap->hsm_task_state = HSM_ST;
4241 ata_queue_pio_task(ap);
4242 }
4243
4244 return;
4245
4246 err_out:
4247 ata_poll_qc_complete(qc);
4248 }
4249
4250
4251 /*
4252 * Execute a 'simple' command, that only consists of the opcode 'cmd' itself,
4253 * without filling any other registers
4254 */
4255 static int ata_do_simple_cmd(struct ata_port *ap, struct ata_device *dev,
4256 u8 cmd)
4257 {
4258 struct ata_taskfile tf;
4259 int err;
4260
4261 ata_tf_init(ap, &tf, dev->devno);
4262
4263 tf.command = cmd;
4264 tf.flags |= ATA_TFLAG_DEVICE;
4265 tf.protocol = ATA_PROT_NODATA;
4266
4267 err = ata_exec_internal(ap, dev, &tf, DMA_NONE, NULL, 0);
4268 if (err)
4269 printk(KERN_ERR "%s: ata command failed: %d\n",
4270 __FUNCTION__, err);
4271
4272 return err;
4273 }
4274
4275 static int ata_flush_cache(struct ata_port *ap, struct ata_device *dev)
4276 {
4277 u8 cmd;
4278
4279 if (!ata_try_flush_cache(dev))
4280 return 0;
4281
4282 if (ata_id_has_flush_ext(dev->id))
4283 cmd = ATA_CMD_FLUSH_EXT;
4284 else
4285 cmd = ATA_CMD_FLUSH;
4286
4287 return ata_do_simple_cmd(ap, dev, cmd);
4288 }
4289
4290 static int ata_standby_drive(struct ata_port *ap, struct ata_device *dev)
4291 {
4292 return ata_do_simple_cmd(ap, dev, ATA_CMD_STANDBYNOW1);
4293 }
4294
4295 static int ata_start_drive(struct ata_port *ap, struct ata_device *dev)
4296 {
4297 return ata_do_simple_cmd(ap, dev, ATA_CMD_IDLEIMMEDIATE);
4298 }
4299
4300 /**
4301 * ata_device_resume - wakeup a previously suspended devices
4302 * @ap: port the device is connected to
4303 * @dev: the device to resume
4304 *
4305 * Kick the drive back into action, by sending it an idle immediate
4306 * command and making sure its transfer mode matches between drive
4307 * and host.
4308 *
4309 */
4310 int ata_device_resume(struct ata_port *ap, struct ata_device *dev)
4311 {
4312 if (ap->flags & ATA_FLAG_SUSPENDED) {
4313 ap->flags &= ~ATA_FLAG_SUSPENDED;
4314 ata_set_mode(ap);
4315 }
4316 if (!ata_dev_present(dev))
4317 return 0;
4318 if (dev->class == ATA_DEV_ATA)
4319 ata_start_drive(ap, dev);
4320
4321 return 0;
4322 }
4323
4324 /**
4325 * ata_device_suspend - prepare a device for suspend
4326 * @ap: port the device is connected to
4327 * @dev: the device to suspend
4328 *
4329 * Flush the cache on the drive, if appropriate, then issue a
4330 * standbynow command.
4331 */
4332 int ata_device_suspend(struct ata_port *ap, struct ata_device *dev)
4333 {
4334 if (!ata_dev_present(dev))
4335 return 0;
4336 if (dev->class == ATA_DEV_ATA)
4337 ata_flush_cache(ap, dev);
4338
4339 ata_standby_drive(ap, dev);
4340 ap->flags |= ATA_FLAG_SUSPENDED;
4341 return 0;
4342 }
4343
4344 /**
4345 * ata_port_start - Set port up for dma.
4346 * @ap: Port to initialize
4347 *
4348 * Called just after data structures for each port are
4349 * initialized. Allocates space for PRD table.
4350 *
4351 * May be used as the port_start() entry in ata_port_operations.
4352 *
4353 * LOCKING:
4354 * Inherited from caller.
4355 */
4356
4357 int ata_port_start (struct ata_port *ap)
4358 {
4359 struct device *dev = ap->host_set->dev;
4360 int rc;
4361
4362 ap->prd = dma_alloc_coherent(dev, ATA_PRD_TBL_SZ, &ap->prd_dma, GFP_KERNEL);
4363 if (!ap->prd)
4364 return -ENOMEM;
4365
4366 rc = ata_pad_alloc(ap, dev);
4367 if (rc) {
4368 dma_free_coherent(dev, ATA_PRD_TBL_SZ, ap->prd, ap->prd_dma);
4369 return rc;
4370 }
4371
4372 DPRINTK("prd alloc, virt %p, dma %llx\n", ap->prd, (unsigned long long) ap->prd_dma);
4373
4374 return 0;
4375 }
4376
4377
4378 /**
4379 * ata_port_stop - Undo ata_port_start()
4380 * @ap: Port to shut down
4381 *
4382 * Frees the PRD table.
4383 *
4384 * May be used as the port_stop() entry in ata_port_operations.
4385 *
4386 * LOCKING:
4387 * Inherited from caller.
4388 */
4389
4390 void ata_port_stop (struct ata_port *ap)
4391 {
4392 struct device *dev = ap->host_set->dev;
4393
4394 dma_free_coherent(dev, ATA_PRD_TBL_SZ, ap->prd, ap->prd_dma);
4395 ata_pad_free(ap, dev);
4396 }
4397
4398 void ata_host_stop (struct ata_host_set *host_set)
4399 {
4400 if (host_set->mmio_base)
4401 iounmap(host_set->mmio_base);
4402 }
4403
4404
4405 /**
4406 * ata_host_remove - Unregister SCSI host structure with upper layers
4407 * @ap: Port to unregister
4408 * @do_unregister: 1 if we fully unregister, 0 to just stop the port
4409 *
4410 * LOCKING:
4411 * Inherited from caller.
4412 */
4413
4414 static void ata_host_remove(struct ata_port *ap, unsigned int do_unregister)
4415 {
4416 struct Scsi_Host *sh = ap->host;
4417
4418 DPRINTK("ENTER\n");
4419
4420 if (do_unregister)
4421 scsi_remove_host(sh);
4422
4423 ap->ops->port_stop(ap);
4424 }
4425
4426 /**
4427 * ata_host_init - Initialize an ata_port structure
4428 * @ap: Structure to initialize
4429 * @host: associated SCSI mid-layer structure
4430 * @host_set: Collection of hosts to which @ap belongs
4431 * @ent: Probe information provided by low-level driver
4432 * @port_no: Port number associated with this ata_port
4433 *
4434 * Initialize a new ata_port structure, and its associated
4435 * scsi_host.
4436 *
4437 * LOCKING:
4438 * Inherited from caller.
4439 */
4440
4441 static void ata_host_init(struct ata_port *ap, struct Scsi_Host *host,
4442 struct ata_host_set *host_set,
4443 const struct ata_probe_ent *ent, unsigned int port_no)
4444 {
4445 unsigned int i;
4446
4447 host->max_id = 16;
4448 host->max_lun = 1;
4449 host->max_channel = 1;
4450 host->unique_id = ata_unique_id++;
4451 host->max_cmd_len = 12;
4452
4453 ap->flags = ATA_FLAG_PORT_DISABLED;
4454 ap->id = host->unique_id;
4455 ap->host = host;
4456 ap->ctl = ATA_DEVCTL_OBS;
4457 ap->host_set = host_set;
4458 ap->port_no = port_no;
4459 ap->hard_port_no =
4460 ent->legacy_mode ? ent->hard_port_no : port_no;
4461 ap->pio_mask = ent->pio_mask;
4462 ap->mwdma_mask = ent->mwdma_mask;
4463 ap->udma_mask = ent->udma_mask;
4464 ap->flags |= ent->host_flags;
4465 ap->ops = ent->port_ops;
4466 ap->cbl = ATA_CBL_NONE;
4467 ap->active_tag = ATA_TAG_POISON;
4468 ap->last_ctl = 0xFF;
4469
4470 INIT_WORK(&ap->packet_task, atapi_packet_task, ap);
4471 INIT_WORK(&ap->pio_task, ata_pio_task, ap);
4472 INIT_LIST_HEAD(&ap->eh_done_q);
4473
4474 for (i = 0; i < ATA_MAX_DEVICES; i++)
4475 ap->device[i].devno = i;
4476
4477 #ifdef ATA_IRQ_TRAP
4478 ap->stats.unhandled_irq = 1;
4479 ap->stats.idle_irq = 1;
4480 #endif
4481
4482 memcpy(&ap->ioaddr, &ent->port[port_no], sizeof(struct ata_ioports));
4483 }
4484
4485 /**
4486 * ata_host_add - Attach low-level ATA driver to system
4487 * @ent: Information provided by low-level driver
4488 * @host_set: Collections of ports to which we add
4489 * @port_no: Port number associated with this host
4490 *
4491 * Attach low-level ATA driver to system.
4492 *
4493 * LOCKING:
4494 * PCI/etc. bus probe sem.
4495 *
4496 * RETURNS:
4497 * New ata_port on success, for NULL on error.
4498 */
4499
4500 static struct ata_port * ata_host_add(const struct ata_probe_ent *ent,
4501 struct ata_host_set *host_set,
4502 unsigned int port_no)
4503 {
4504 struct Scsi_Host *host;
4505 struct ata_port *ap;
4506 int rc;
4507
4508 DPRINTK("ENTER\n");
4509 host = scsi_host_alloc(ent->sht, sizeof(struct ata_port));
4510 if (!host)
4511 return NULL;
4512
4513 ap = (struct ata_port *) &host->hostdata[0];
4514
4515 ata_host_init(ap, host, host_set, ent, port_no);
4516
4517 rc = ap->ops->port_start(ap);
4518 if (rc)
4519 goto err_out;
4520
4521 return ap;
4522
4523 err_out:
4524 scsi_host_put(host);
4525 return NULL;
4526 }
4527
4528 /**
4529 * ata_device_add - Register hardware device with ATA and SCSI layers
4530 * @ent: Probe information describing hardware device to be registered
4531 *
4532 * This function processes the information provided in the probe
4533 * information struct @ent, allocates the necessary ATA and SCSI
4534 * host information structures, initializes them, and registers
4535 * everything with requisite kernel subsystems.
4536 *
4537 * This function requests irqs, probes the ATA bus, and probes
4538 * the SCSI bus.
4539 *
4540 * LOCKING:
4541 * PCI/etc. bus probe sem.
4542 *
4543 * RETURNS:
4544 * Number of ports registered. Zero on error (no ports registered).
4545 */
4546
4547 int ata_device_add(const struct ata_probe_ent *ent)
4548 {
4549 unsigned int count = 0, i;
4550 struct device *dev = ent->dev;
4551 struct ata_host_set *host_set;
4552
4553 DPRINTK("ENTER\n");
4554 /* alloc a container for our list of ATA ports (buses) */
4555 host_set = kzalloc(sizeof(struct ata_host_set) +
4556 (ent->n_ports * sizeof(void *)), GFP_KERNEL);
4557 if (!host_set)
4558 return 0;
4559 spin_lock_init(&host_set->lock);
4560
4561 host_set->dev = dev;
4562 host_set->n_ports = ent->n_ports;
4563 host_set->irq = ent->irq;
4564 host_set->mmio_base = ent->mmio_base;
4565 host_set->private_data = ent->private_data;
4566 host_set->ops = ent->port_ops;
4567
4568 /* register each port bound to this device */
4569 for (i = 0; i < ent->n_ports; i++) {
4570 struct ata_port *ap;
4571 unsigned long xfer_mode_mask;
4572
4573 ap = ata_host_add(ent, host_set, i);
4574 if (!ap)
4575 goto err_out;
4576
4577 host_set->ports[i] = ap;
4578 xfer_mode_mask =(ap->udma_mask << ATA_SHIFT_UDMA) |
4579 (ap->mwdma_mask << ATA_SHIFT_MWDMA) |
4580 (ap->pio_mask << ATA_SHIFT_PIO);
4581
4582 /* print per-port info to dmesg */
4583 printk(KERN_INFO "ata%u: %cATA max %s cmd 0x%lX ctl 0x%lX "
4584 "bmdma 0x%lX irq %lu\n",
4585 ap->id,
4586 ap->flags & ATA_FLAG_SATA ? 'S' : 'P',
4587 ata_mode_string(xfer_mode_mask),
4588 ap->ioaddr.cmd_addr,
4589 ap->ioaddr.ctl_addr,
4590 ap->ioaddr.bmdma_addr,
4591 ent->irq);
4592
4593 ata_chk_status(ap);
4594 host_set->ops->irq_clear(ap);
4595 count++;
4596 }
4597
4598 if (!count)
4599 goto err_free_ret;
4600
4601 /* obtain irq, that is shared between channels */
4602 if (request_irq(ent->irq, ent->port_ops->irq_handler, ent->irq_flags,
4603 DRV_NAME, host_set))
4604 goto err_out;
4605
4606 /* perform each probe synchronously */
4607 DPRINTK("probe begin\n");
4608 for (i = 0; i < count; i++) {
4609 struct ata_port *ap;
4610 int rc;
4611
4612 ap = host_set->ports[i];
4613
4614 DPRINTK("ata%u: bus probe begin\n", ap->id);
4615 rc = ata_bus_probe(ap);
4616 DPRINTK("ata%u: bus probe end\n", ap->id);
4617
4618 if (rc) {
4619 /* FIXME: do something useful here?
4620 * Current libata behavior will
4621 * tear down everything when
4622 * the module is removed
4623 * or the h/w is unplugged.
4624 */
4625 }
4626
4627 rc = scsi_add_host(ap->host, dev);
4628 if (rc) {
4629 printk(KERN_ERR "ata%u: scsi_add_host failed\n",
4630 ap->id);
4631 /* FIXME: do something useful here */
4632 /* FIXME: handle unconditional calls to
4633 * scsi_scan_host and ata_host_remove, below,
4634 * at the very least
4635 */
4636 }
4637 }
4638
4639 /* probes are done, now scan each port's disk(s) */
4640 DPRINTK("host probe begin\n");
4641 for (i = 0; i < count; i++) {
4642 struct ata_port *ap = host_set->ports[i];
4643
4644 ata_scsi_scan_host(ap);
4645 }
4646
4647 dev_set_drvdata(dev, host_set);
4648
4649 VPRINTK("EXIT, returning %u\n", ent->n_ports);
4650 return ent->n_ports; /* success */
4651
4652 err_out:
4653 for (i = 0; i < count; i++) {
4654 ata_host_remove(host_set->ports[i], 1);
4655 scsi_host_put(host_set->ports[i]->host);
4656 }
4657 err_free_ret:
4658 kfree(host_set);
4659 VPRINTK("EXIT, returning 0\n");
4660 return 0;
4661 }
4662
4663 /**
4664 * ata_host_set_remove - PCI layer callback for device removal
4665 * @host_set: ATA host set that was removed
4666 *
4667 * Unregister all objects associated with this host set. Free those
4668 * objects.
4669 *
4670 * LOCKING:
4671 * Inherited from calling layer (may sleep).
4672 */
4673
4674 void ata_host_set_remove(struct ata_host_set *host_set)
4675 {
4676 struct ata_port *ap;
4677 unsigned int i;
4678
4679 for (i = 0; i < host_set->n_ports; i++) {
4680 ap = host_set->ports[i];
4681 scsi_remove_host(ap->host);
4682 }
4683
4684 free_irq(host_set->irq, host_set);
4685
4686 for (i = 0; i < host_set->n_ports; i++) {
4687 ap = host_set->ports[i];
4688
4689 ata_scsi_release(ap->host);
4690
4691 if ((ap->flags & ATA_FLAG_NO_LEGACY) == 0) {
4692 struct ata_ioports *ioaddr = &ap->ioaddr;
4693
4694 if (ioaddr->cmd_addr == 0x1f0)
4695 release_region(0x1f0, 8);
4696 else if (ioaddr->cmd_addr == 0x170)
4697 release_region(0x170, 8);
4698 }
4699
4700 scsi_host_put(ap->host);
4701 }
4702
4703 if (host_set->ops->host_stop)
4704 host_set->ops->host_stop(host_set);
4705
4706 kfree(host_set);
4707 }
4708
4709 /**
4710 * ata_scsi_release - SCSI layer callback hook for host unload
4711 * @host: libata host to be unloaded
4712 *
4713 * Performs all duties necessary to shut down a libata port...
4714 * Kill port kthread, disable port, and release resources.
4715 *
4716 * LOCKING:
4717 * Inherited from SCSI layer.
4718 *
4719 * RETURNS:
4720 * One.
4721 */
4722
4723 int ata_scsi_release(struct Scsi_Host *host)
4724 {
4725 struct ata_port *ap = (struct ata_port *) &host->hostdata[0];
4726
4727 DPRINTK("ENTER\n");
4728
4729 ap->ops->port_disable(ap);
4730 ata_host_remove(ap, 0);
4731
4732 DPRINTK("EXIT\n");
4733 return 1;
4734 }
4735
4736 /**
4737 * ata_std_ports - initialize ioaddr with standard port offsets.
4738 * @ioaddr: IO address structure to be initialized
4739 *
4740 * Utility function which initializes data_addr, error_addr,
4741 * feature_addr, nsect_addr, lbal_addr, lbam_addr, lbah_addr,
4742 * device_addr, status_addr, and command_addr to standard offsets
4743 * relative to cmd_addr.
4744 *
4745 * Does not set ctl_addr, altstatus_addr, bmdma_addr, or scr_addr.
4746 */
4747
4748 void ata_std_ports(struct ata_ioports *ioaddr)
4749 {
4750 ioaddr->data_addr = ioaddr->cmd_addr + ATA_REG_DATA;
4751 ioaddr->error_addr = ioaddr->cmd_addr + ATA_REG_ERR;
4752 ioaddr->feature_addr = ioaddr->cmd_addr + ATA_REG_FEATURE;
4753 ioaddr->nsect_addr = ioaddr->cmd_addr + ATA_REG_NSECT;
4754 ioaddr->lbal_addr = ioaddr->cmd_addr + ATA_REG_LBAL;
4755 ioaddr->lbam_addr = ioaddr->cmd_addr + ATA_REG_LBAM;
4756 ioaddr->lbah_addr = ioaddr->cmd_addr + ATA_REG_LBAH;
4757 ioaddr->device_addr = ioaddr->cmd_addr + ATA_REG_DEVICE;
4758 ioaddr->status_addr = ioaddr->cmd_addr + ATA_REG_STATUS;
4759 ioaddr->command_addr = ioaddr->cmd_addr + ATA_REG_CMD;
4760 }
4761
4762
4763 #ifdef CONFIG_PCI
4764
4765 void ata_pci_host_stop (struct ata_host_set *host_set)
4766 {
4767 struct pci_dev *pdev = to_pci_dev(host_set->dev);
4768
4769 pci_iounmap(pdev, host_set->mmio_base);
4770 }
4771
4772 /**
4773 * ata_pci_remove_one - PCI layer callback for device removal
4774 * @pdev: PCI device that was removed
4775 *
4776 * PCI layer indicates to libata via this hook that
4777 * hot-unplug or module unload event has occurred.
4778 * Handle this by unregistering all objects associated
4779 * with this PCI device. Free those objects. Then finally
4780 * release PCI resources and disable device.
4781 *
4782 * LOCKING:
4783 * Inherited from PCI layer (may sleep).
4784 */
4785
4786 void ata_pci_remove_one (struct pci_dev *pdev)
4787 {
4788 struct device *dev = pci_dev_to_dev(pdev);
4789 struct ata_host_set *host_set = dev_get_drvdata(dev);
4790
4791 ata_host_set_remove(host_set);
4792 pci_release_regions(pdev);
4793 pci_disable_device(pdev);
4794 dev_set_drvdata(dev, NULL);
4795 }
4796
4797 /* move to PCI subsystem */
4798 int pci_test_config_bits(struct pci_dev *pdev, const struct pci_bits *bits)
4799 {
4800 unsigned long tmp = 0;
4801
4802 switch (bits->width) {
4803 case 1: {
4804 u8 tmp8 = 0;
4805 pci_read_config_byte(pdev, bits->reg, &tmp8);
4806 tmp = tmp8;
4807 break;
4808 }
4809 case 2: {
4810 u16 tmp16 = 0;
4811 pci_read_config_word(pdev, bits->reg, &tmp16);
4812 tmp = tmp16;
4813 break;
4814 }
4815 case 4: {
4816 u32 tmp32 = 0;
4817 pci_read_config_dword(pdev, bits->reg, &tmp32);
4818 tmp = tmp32;
4819 break;
4820 }
4821
4822 default:
4823 return -EINVAL;
4824 }
4825
4826 tmp &= bits->mask;
4827
4828 return (tmp == bits->val) ? 1 : 0;
4829 }
4830
4831 int ata_pci_device_suspend(struct pci_dev *pdev, pm_message_t state)
4832 {
4833 pci_save_state(pdev);
4834 pci_disable_device(pdev);
4835 pci_set_power_state(pdev, PCI_D3hot);
4836 return 0;
4837 }
4838
4839 int ata_pci_device_resume(struct pci_dev *pdev)
4840 {
4841 pci_set_power_state(pdev, PCI_D0);
4842 pci_restore_state(pdev);
4843 pci_enable_device(pdev);
4844 pci_set_master(pdev);
4845 return 0;
4846 }
4847 #endif /* CONFIG_PCI */
4848
4849
4850 static int __init ata_init(void)
4851 {
4852 ata_wq = create_workqueue("ata");
4853 if (!ata_wq)
4854 return -ENOMEM;
4855
4856 printk(KERN_DEBUG "libata version " DRV_VERSION " loaded.\n");
4857 return 0;
4858 }
4859
4860 static void __exit ata_exit(void)
4861 {
4862 destroy_workqueue(ata_wq);
4863 }
4864
4865 module_init(ata_init);
4866 module_exit(ata_exit);
4867
4868 static unsigned long ratelimit_time;
4869 static spinlock_t ata_ratelimit_lock = SPIN_LOCK_UNLOCKED;
4870
4871 int ata_ratelimit(void)
4872 {
4873 int rc;
4874 unsigned long flags;
4875
4876 spin_lock_irqsave(&ata_ratelimit_lock, flags);
4877
4878 if (time_after(jiffies, ratelimit_time)) {
4879 rc = 1;
4880 ratelimit_time = jiffies + (HZ/5);
4881 } else
4882 rc = 0;
4883
4884 spin_unlock_irqrestore(&ata_ratelimit_lock, flags);
4885
4886 return rc;
4887 }
4888
4889 /*
4890 * libata is essentially a library of internal helper functions for
4891 * low-level ATA host controller drivers. As such, the API/ABI is
4892 * likely to change as new drivers are added and updated.
4893 * Do not depend on ABI/API stability.
4894 */
4895
4896 EXPORT_SYMBOL_GPL(ata_std_bios_param);
4897 EXPORT_SYMBOL_GPL(ata_std_ports);
4898 EXPORT_SYMBOL_GPL(ata_device_add);
4899 EXPORT_SYMBOL_GPL(ata_host_set_remove);
4900 EXPORT_SYMBOL_GPL(ata_sg_init);
4901 EXPORT_SYMBOL_GPL(ata_sg_init_one);
4902 EXPORT_SYMBOL_GPL(__ata_qc_complete);
4903 EXPORT_SYMBOL_GPL(ata_qc_issue_prot);
4904 EXPORT_SYMBOL_GPL(ata_eng_timeout);
4905 EXPORT_SYMBOL_GPL(ata_tf_load);
4906 EXPORT_SYMBOL_GPL(ata_tf_read);
4907 EXPORT_SYMBOL_GPL(ata_noop_dev_select);
4908 EXPORT_SYMBOL_GPL(ata_std_dev_select);
4909 EXPORT_SYMBOL_GPL(ata_tf_to_fis);
4910 EXPORT_SYMBOL_GPL(ata_tf_from_fis);
4911 EXPORT_SYMBOL_GPL(ata_check_status);
4912 EXPORT_SYMBOL_GPL(ata_altstatus);
4913 EXPORT_SYMBOL_GPL(ata_exec_command);
4914 EXPORT_SYMBOL_GPL(ata_port_start);
4915 EXPORT_SYMBOL_GPL(ata_port_stop);
4916 EXPORT_SYMBOL_GPL(ata_host_stop);
4917 EXPORT_SYMBOL_GPL(ata_interrupt);
4918 EXPORT_SYMBOL_GPL(ata_qc_prep);
4919 EXPORT_SYMBOL_GPL(ata_bmdma_setup);
4920 EXPORT_SYMBOL_GPL(ata_bmdma_start);
4921 EXPORT_SYMBOL_GPL(ata_bmdma_irq_clear);
4922 EXPORT_SYMBOL_GPL(ata_bmdma_status);
4923 EXPORT_SYMBOL_GPL(ata_bmdma_stop);
4924 EXPORT_SYMBOL_GPL(ata_port_probe);
4925 EXPORT_SYMBOL_GPL(sata_phy_reset);
4926 EXPORT_SYMBOL_GPL(__sata_phy_reset);
4927 EXPORT_SYMBOL_GPL(ata_bus_reset);
4928 EXPORT_SYMBOL_GPL(ata_std_probeinit);
4929 EXPORT_SYMBOL_GPL(ata_std_softreset);
4930 EXPORT_SYMBOL_GPL(sata_std_hardreset);
4931 EXPORT_SYMBOL_GPL(ata_std_postreset);
4932 EXPORT_SYMBOL_GPL(ata_std_probe_reset);
4933 EXPORT_SYMBOL_GPL(ata_drive_probe_reset);
4934 EXPORT_SYMBOL_GPL(ata_port_disable);
4935 EXPORT_SYMBOL_GPL(ata_ratelimit);
4936 EXPORT_SYMBOL_GPL(ata_busy_sleep);
4937 EXPORT_SYMBOL_GPL(ata_scsi_ioctl);
4938 EXPORT_SYMBOL_GPL(ata_scsi_queuecmd);
4939 EXPORT_SYMBOL_GPL(ata_scsi_timed_out);
4940 EXPORT_SYMBOL_GPL(ata_scsi_error);
4941 EXPORT_SYMBOL_GPL(ata_scsi_slave_config);
4942 EXPORT_SYMBOL_GPL(ata_scsi_release);
4943 EXPORT_SYMBOL_GPL(ata_host_intr);
4944 EXPORT_SYMBOL_GPL(ata_dev_classify);
4945 EXPORT_SYMBOL_GPL(ata_id_string);
4946 EXPORT_SYMBOL_GPL(ata_id_c_string);
4947 EXPORT_SYMBOL_GPL(ata_dev_config);
4948 EXPORT_SYMBOL_GPL(ata_scsi_simulate);
4949 EXPORT_SYMBOL_GPL(ata_eh_qc_complete);
4950 EXPORT_SYMBOL_GPL(ata_eh_qc_retry);
4951
4952 EXPORT_SYMBOL_GPL(ata_pio_need_iordy);
4953 EXPORT_SYMBOL_GPL(ata_timing_compute);
4954 EXPORT_SYMBOL_GPL(ata_timing_merge);
4955
4956 #ifdef CONFIG_PCI
4957 EXPORT_SYMBOL_GPL(pci_test_config_bits);
4958 EXPORT_SYMBOL_GPL(ata_pci_host_stop);
4959 EXPORT_SYMBOL_GPL(ata_pci_init_native_mode);
4960 EXPORT_SYMBOL_GPL(ata_pci_init_one);
4961 EXPORT_SYMBOL_GPL(ata_pci_remove_one);
4962 EXPORT_SYMBOL_GPL(ata_pci_device_suspend);
4963 EXPORT_SYMBOL_GPL(ata_pci_device_resume);
4964 #endif /* CONFIG_PCI */
4965
4966 EXPORT_SYMBOL_GPL(ata_device_suspend);
4967 EXPORT_SYMBOL_GPL(ata_device_resume);
4968 EXPORT_SYMBOL_GPL(ata_scsi_device_suspend);
4969 EXPORT_SYMBOL_GPL(ata_scsi_device_resume);
This page took 0.146776 seconds and 5 git commands to generate.