[PATCH] libata-dev: recognize WRITE_MULTI_FUA_EXT for r/w multiple
[deliverable/linux.git] / drivers / scsi / libata-core.c
1 /*
2 * libata-core.c - helper library for ATA
3 *
4 * Maintained by: Jeff Garzik <jgarzik@pobox.com>
5 * Please ALWAYS copy linux-ide@vger.kernel.org
6 * on emails.
7 *
8 * Copyright 2003-2004 Red Hat, Inc. All rights reserved.
9 * Copyright 2003-2004 Jeff Garzik
10 *
11 *
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2, or (at your option)
15 * any later version.
16 *
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
21 *
22 * You should have received a copy of the GNU General Public License
23 * along with this program; see the file COPYING. If not, write to
24 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
25 *
26 *
27 * libata documentation is available via 'make {ps|pdf}docs',
28 * as Documentation/DocBook/libata.*
29 *
30 * Hardware documentation available from http://www.t13.org/ and
31 * http://www.sata-io.org/
32 *
33 */
34
35 #include <linux/config.h>
36 #include <linux/kernel.h>
37 #include <linux/module.h>
38 #include <linux/pci.h>
39 #include <linux/init.h>
40 #include <linux/list.h>
41 #include <linux/mm.h>
42 #include <linux/highmem.h>
43 #include <linux/spinlock.h>
44 #include <linux/blkdev.h>
45 #include <linux/delay.h>
46 #include <linux/timer.h>
47 #include <linux/interrupt.h>
48 #include <linux/completion.h>
49 #include <linux/suspend.h>
50 #include <linux/workqueue.h>
51 #include <linux/jiffies.h>
52 #include <linux/scatterlist.h>
53 #include <scsi/scsi.h>
54 #include "scsi_priv.h"
55 #include <scsi/scsi_cmnd.h>
56 #include <scsi/scsi_host.h>
57 #include <linux/libata.h>
58 #include <asm/io.h>
59 #include <asm/semaphore.h>
60 #include <asm/byteorder.h>
61
62 #include "libata.h"
63
64 static unsigned int ata_dev_init_params(struct ata_port *ap,
65 struct ata_device *dev);
66 static void ata_set_mode(struct ata_port *ap);
67 static void ata_dev_set_xfermode(struct ata_port *ap, struct ata_device *dev);
68 static unsigned int ata_get_mode_mask(const struct ata_port *ap, int shift);
69 static int fgb(u32 bitmap);
70 static int ata_choose_xfer_mode(const struct ata_port *ap,
71 u8 *xfer_mode_out,
72 unsigned int *xfer_shift_out);
73 static void ata_pio_error(struct ata_port *ap);
74
75 static unsigned int ata_unique_id = 1;
76 static struct workqueue_struct *ata_wq;
77
78 int atapi_enabled = 0;
79 module_param(atapi_enabled, int, 0444);
80 MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on)");
81
82 int libata_fua = 0;
83 module_param_named(fua, libata_fua, int, 0444);
84 MODULE_PARM_DESC(fua, "FUA support (0=off, 1=on)");
85
86 MODULE_AUTHOR("Jeff Garzik");
87 MODULE_DESCRIPTION("Library module for ATA devices");
88 MODULE_LICENSE("GPL");
89 MODULE_VERSION(DRV_VERSION);
90
91
92 /**
93 * ata_tf_to_fis - Convert ATA taskfile to SATA FIS structure
94 * @tf: Taskfile to convert
95 * @fis: Buffer into which data will output
96 * @pmp: Port multiplier port
97 *
98 * Converts a standard ATA taskfile to a Serial ATA
99 * FIS structure (Register - Host to Device).
100 *
101 * LOCKING:
102 * Inherited from caller.
103 */
104
105 void ata_tf_to_fis(const struct ata_taskfile *tf, u8 *fis, u8 pmp)
106 {
107 fis[0] = 0x27; /* Register - Host to Device FIS */
108 fis[1] = (pmp & 0xf) | (1 << 7); /* Port multiplier number,
109 bit 7 indicates Command FIS */
110 fis[2] = tf->command;
111 fis[3] = tf->feature;
112
113 fis[4] = tf->lbal;
114 fis[5] = tf->lbam;
115 fis[6] = tf->lbah;
116 fis[7] = tf->device;
117
118 fis[8] = tf->hob_lbal;
119 fis[9] = tf->hob_lbam;
120 fis[10] = tf->hob_lbah;
121 fis[11] = tf->hob_feature;
122
123 fis[12] = tf->nsect;
124 fis[13] = tf->hob_nsect;
125 fis[14] = 0;
126 fis[15] = tf->ctl;
127
128 fis[16] = 0;
129 fis[17] = 0;
130 fis[18] = 0;
131 fis[19] = 0;
132 }
133
134 /**
135 * ata_tf_from_fis - Convert SATA FIS to ATA taskfile
136 * @fis: Buffer from which data will be input
137 * @tf: Taskfile to output
138 *
139 * Converts a serial ATA FIS structure to a standard ATA taskfile.
140 *
141 * LOCKING:
142 * Inherited from caller.
143 */
144
145 void ata_tf_from_fis(const u8 *fis, struct ata_taskfile *tf)
146 {
147 tf->command = fis[2]; /* status */
148 tf->feature = fis[3]; /* error */
149
150 tf->lbal = fis[4];
151 tf->lbam = fis[5];
152 tf->lbah = fis[6];
153 tf->device = fis[7];
154
155 tf->hob_lbal = fis[8];
156 tf->hob_lbam = fis[9];
157 tf->hob_lbah = fis[10];
158
159 tf->nsect = fis[12];
160 tf->hob_nsect = fis[13];
161 }
162
163 static const u8 ata_rw_cmds[] = {
164 /* pio multi */
165 ATA_CMD_READ_MULTI,
166 ATA_CMD_WRITE_MULTI,
167 ATA_CMD_READ_MULTI_EXT,
168 ATA_CMD_WRITE_MULTI_EXT,
169 0,
170 0,
171 0,
172 ATA_CMD_WRITE_MULTI_FUA_EXT,
173 /* pio */
174 ATA_CMD_PIO_READ,
175 ATA_CMD_PIO_WRITE,
176 ATA_CMD_PIO_READ_EXT,
177 ATA_CMD_PIO_WRITE_EXT,
178 0,
179 0,
180 0,
181 0,
182 /* dma */
183 ATA_CMD_READ,
184 ATA_CMD_WRITE,
185 ATA_CMD_READ_EXT,
186 ATA_CMD_WRITE_EXT,
187 0,
188 0,
189 0,
190 ATA_CMD_WRITE_FUA_EXT
191 };
192
193 /**
194 * ata_rwcmd_protocol - set taskfile r/w commands and protocol
195 * @qc: command to examine and configure
196 *
197 * Examine the device configuration and tf->flags to calculate
198 * the proper read/write commands and protocol to use.
199 *
200 * LOCKING:
201 * caller.
202 */
203 int ata_rwcmd_protocol(struct ata_queued_cmd *qc)
204 {
205 struct ata_taskfile *tf = &qc->tf;
206 struct ata_device *dev = qc->dev;
207 u8 cmd;
208
209 int index, fua, lba48, write;
210
211 fua = (tf->flags & ATA_TFLAG_FUA) ? 4 : 0;
212 lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0;
213 write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0;
214
215 if (dev->flags & ATA_DFLAG_PIO) {
216 tf->protocol = ATA_PROT_PIO;
217 index = dev->multi_count ? 0 : 8;
218 } else if (lba48 && (qc->ap->flags & ATA_FLAG_PIO_LBA48)) {
219 /* Unable to use DMA due to host limitation */
220 tf->protocol = ATA_PROT_PIO;
221 index = dev->multi_count ? 0 : 8;
222 } else {
223 tf->protocol = ATA_PROT_DMA;
224 index = 16;
225 }
226
227 cmd = ata_rw_cmds[index + fua + lba48 + write];
228 if (cmd) {
229 tf->command = cmd;
230 return 0;
231 }
232 return -1;
233 }
234
235 static const char * const xfer_mode_str[] = {
236 "UDMA/16",
237 "UDMA/25",
238 "UDMA/33",
239 "UDMA/44",
240 "UDMA/66",
241 "UDMA/100",
242 "UDMA/133",
243 "UDMA7",
244 "MWDMA0",
245 "MWDMA1",
246 "MWDMA2",
247 "PIO0",
248 "PIO1",
249 "PIO2",
250 "PIO3",
251 "PIO4",
252 };
253
254 /**
255 * ata_udma_string - convert UDMA bit offset to string
256 * @mask: mask of bits supported; only highest bit counts.
257 *
258 * Determine string which represents the highest speed
259 * (highest bit in @udma_mask).
260 *
261 * LOCKING:
262 * None.
263 *
264 * RETURNS:
265 * Constant C string representing highest speed listed in
266 * @udma_mask, or the constant C string "<n/a>".
267 */
268
269 static const char *ata_mode_string(unsigned int mask)
270 {
271 int i;
272
273 for (i = 7; i >= 0; i--)
274 if (mask & (1 << i))
275 goto out;
276 for (i = ATA_SHIFT_MWDMA + 2; i >= ATA_SHIFT_MWDMA; i--)
277 if (mask & (1 << i))
278 goto out;
279 for (i = ATA_SHIFT_PIO + 4; i >= ATA_SHIFT_PIO; i--)
280 if (mask & (1 << i))
281 goto out;
282
283 return "<n/a>";
284
285 out:
286 return xfer_mode_str[i];
287 }
288
289 /**
290 * ata_pio_devchk - PATA device presence detection
291 * @ap: ATA channel to examine
292 * @device: Device to examine (starting at zero)
293 *
294 * This technique was originally described in
295 * Hale Landis's ATADRVR (www.ata-atapi.com), and
296 * later found its way into the ATA/ATAPI spec.
297 *
298 * Write a pattern to the ATA shadow registers,
299 * and if a device is present, it will respond by
300 * correctly storing and echoing back the
301 * ATA shadow register contents.
302 *
303 * LOCKING:
304 * caller.
305 */
306
307 static unsigned int ata_pio_devchk(struct ata_port *ap,
308 unsigned int device)
309 {
310 struct ata_ioports *ioaddr = &ap->ioaddr;
311 u8 nsect, lbal;
312
313 ap->ops->dev_select(ap, device);
314
315 outb(0x55, ioaddr->nsect_addr);
316 outb(0xaa, ioaddr->lbal_addr);
317
318 outb(0xaa, ioaddr->nsect_addr);
319 outb(0x55, ioaddr->lbal_addr);
320
321 outb(0x55, ioaddr->nsect_addr);
322 outb(0xaa, ioaddr->lbal_addr);
323
324 nsect = inb(ioaddr->nsect_addr);
325 lbal = inb(ioaddr->lbal_addr);
326
327 if ((nsect == 0x55) && (lbal == 0xaa))
328 return 1; /* we found a device */
329
330 return 0; /* nothing found */
331 }
332
333 /**
334 * ata_mmio_devchk - PATA device presence detection
335 * @ap: ATA channel to examine
336 * @device: Device to examine (starting at zero)
337 *
338 * This technique was originally described in
339 * Hale Landis's ATADRVR (www.ata-atapi.com), and
340 * later found its way into the ATA/ATAPI spec.
341 *
342 * Write a pattern to the ATA shadow registers,
343 * and if a device is present, it will respond by
344 * correctly storing and echoing back the
345 * ATA shadow register contents.
346 *
347 * LOCKING:
348 * caller.
349 */
350
351 static unsigned int ata_mmio_devchk(struct ata_port *ap,
352 unsigned int device)
353 {
354 struct ata_ioports *ioaddr = &ap->ioaddr;
355 u8 nsect, lbal;
356
357 ap->ops->dev_select(ap, device);
358
359 writeb(0x55, (void __iomem *) ioaddr->nsect_addr);
360 writeb(0xaa, (void __iomem *) ioaddr->lbal_addr);
361
362 writeb(0xaa, (void __iomem *) ioaddr->nsect_addr);
363 writeb(0x55, (void __iomem *) ioaddr->lbal_addr);
364
365 writeb(0x55, (void __iomem *) ioaddr->nsect_addr);
366 writeb(0xaa, (void __iomem *) ioaddr->lbal_addr);
367
368 nsect = readb((void __iomem *) ioaddr->nsect_addr);
369 lbal = readb((void __iomem *) ioaddr->lbal_addr);
370
371 if ((nsect == 0x55) && (lbal == 0xaa))
372 return 1; /* we found a device */
373
374 return 0; /* nothing found */
375 }
376
377 /**
378 * ata_devchk - PATA device presence detection
379 * @ap: ATA channel to examine
380 * @device: Device to examine (starting at zero)
381 *
382 * Dispatch ATA device presence detection, depending
383 * on whether we are using PIO or MMIO to talk to the
384 * ATA shadow registers.
385 *
386 * LOCKING:
387 * caller.
388 */
389
390 static unsigned int ata_devchk(struct ata_port *ap,
391 unsigned int device)
392 {
393 if (ap->flags & ATA_FLAG_MMIO)
394 return ata_mmio_devchk(ap, device);
395 return ata_pio_devchk(ap, device);
396 }
397
398 /**
399 * ata_dev_classify - determine device type based on ATA-spec signature
400 * @tf: ATA taskfile register set for device to be identified
401 *
402 * Determine from taskfile register contents whether a device is
403 * ATA or ATAPI, as per "Signature and persistence" section
404 * of ATA/PI spec (volume 1, sect 5.14).
405 *
406 * LOCKING:
407 * None.
408 *
409 * RETURNS:
410 * Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, or %ATA_DEV_UNKNOWN
411 * the event of failure.
412 */
413
414 unsigned int ata_dev_classify(const struct ata_taskfile *tf)
415 {
416 /* Apple's open source Darwin code hints that some devices only
417 * put a proper signature into the LBA mid/high registers,
418 * So, we only check those. It's sufficient for uniqueness.
419 */
420
421 if (((tf->lbam == 0) && (tf->lbah == 0)) ||
422 ((tf->lbam == 0x3c) && (tf->lbah == 0xc3))) {
423 DPRINTK("found ATA device by sig\n");
424 return ATA_DEV_ATA;
425 }
426
427 if (((tf->lbam == 0x14) && (tf->lbah == 0xeb)) ||
428 ((tf->lbam == 0x69) && (tf->lbah == 0x96))) {
429 DPRINTK("found ATAPI device by sig\n");
430 return ATA_DEV_ATAPI;
431 }
432
433 DPRINTK("unknown device\n");
434 return ATA_DEV_UNKNOWN;
435 }
436
437 /**
438 * ata_dev_try_classify - Parse returned ATA device signature
439 * @ap: ATA channel to examine
440 * @device: Device to examine (starting at zero)
441 * @r_err: Value of error register on completion
442 *
443 * After an event -- SRST, E.D.D., or SATA COMRESET -- occurs,
444 * an ATA/ATAPI-defined set of values is placed in the ATA
445 * shadow registers, indicating the results of device detection
446 * and diagnostics.
447 *
448 * Select the ATA device, and read the values from the ATA shadow
449 * registers. Then parse according to the Error register value,
450 * and the spec-defined values examined by ata_dev_classify().
451 *
452 * LOCKING:
453 * caller.
454 *
455 * RETURNS:
456 * Device type - %ATA_DEV_ATA, %ATA_DEV_ATAPI or %ATA_DEV_NONE.
457 */
458
459 static unsigned int
460 ata_dev_try_classify(struct ata_port *ap, unsigned int device, u8 *r_err)
461 {
462 struct ata_taskfile tf;
463 unsigned int class;
464 u8 err;
465
466 ap->ops->dev_select(ap, device);
467
468 memset(&tf, 0, sizeof(tf));
469
470 ap->ops->tf_read(ap, &tf);
471 err = tf.feature;
472 if (r_err)
473 *r_err = err;
474
475 /* see if device passed diags */
476 if (err == 1)
477 /* do nothing */ ;
478 else if ((device == 0) && (err == 0x81))
479 /* do nothing */ ;
480 else
481 return ATA_DEV_NONE;
482
483 /* determine if device is ATA or ATAPI */
484 class = ata_dev_classify(&tf);
485
486 if (class == ATA_DEV_UNKNOWN)
487 return ATA_DEV_NONE;
488 if ((class == ATA_DEV_ATA) && (ata_chk_status(ap) == 0))
489 return ATA_DEV_NONE;
490 return class;
491 }
492
493 /**
494 * ata_id_string - Convert IDENTIFY DEVICE page into string
495 * @id: IDENTIFY DEVICE results we will examine
496 * @s: string into which data is output
497 * @ofs: offset into identify device page
498 * @len: length of string to return. must be an even number.
499 *
500 * The strings in the IDENTIFY DEVICE page are broken up into
501 * 16-bit chunks. Run through the string, and output each
502 * 8-bit chunk linearly, regardless of platform.
503 *
504 * LOCKING:
505 * caller.
506 */
507
508 void ata_id_string(const u16 *id, unsigned char *s,
509 unsigned int ofs, unsigned int len)
510 {
511 unsigned int c;
512
513 while (len > 0) {
514 c = id[ofs] >> 8;
515 *s = c;
516 s++;
517
518 c = id[ofs] & 0xff;
519 *s = c;
520 s++;
521
522 ofs++;
523 len -= 2;
524 }
525 }
526
527 /**
528 * ata_id_c_string - Convert IDENTIFY DEVICE page into C string
529 * @id: IDENTIFY DEVICE results we will examine
530 * @s: string into which data is output
531 * @ofs: offset into identify device page
532 * @len: length of string to return. must be an odd number.
533 *
534 * This function is identical to ata_id_string except that it
535 * trims trailing spaces and terminates the resulting string with
536 * null. @len must be actual maximum length (even number) + 1.
537 *
538 * LOCKING:
539 * caller.
540 */
541 void ata_id_c_string(const u16 *id, unsigned char *s,
542 unsigned int ofs, unsigned int len)
543 {
544 unsigned char *p;
545
546 WARN_ON(!(len & 1));
547
548 ata_id_string(id, s, ofs, len - 1);
549
550 p = s + strnlen(s, len - 1);
551 while (p > s && p[-1] == ' ')
552 p--;
553 *p = '\0';
554 }
555
556 static u64 ata_id_n_sectors(const u16 *id)
557 {
558 if (ata_id_has_lba(id)) {
559 if (ata_id_has_lba48(id))
560 return ata_id_u64(id, 100);
561 else
562 return ata_id_u32(id, 60);
563 } else {
564 if (ata_id_current_chs_valid(id))
565 return ata_id_u32(id, 57);
566 else
567 return id[1] * id[3] * id[6];
568 }
569 }
570
571 /**
572 * ata_noop_dev_select - Select device 0/1 on ATA bus
573 * @ap: ATA channel to manipulate
574 * @device: ATA device (numbered from zero) to select
575 *
576 * This function performs no actual function.
577 *
578 * May be used as the dev_select() entry in ata_port_operations.
579 *
580 * LOCKING:
581 * caller.
582 */
583 void ata_noop_dev_select (struct ata_port *ap, unsigned int device)
584 {
585 }
586
587
588 /**
589 * ata_std_dev_select - Select device 0/1 on ATA bus
590 * @ap: ATA channel to manipulate
591 * @device: ATA device (numbered from zero) to select
592 *
593 * Use the method defined in the ATA specification to
594 * make either device 0, or device 1, active on the
595 * ATA channel. Works with both PIO and MMIO.
596 *
597 * May be used as the dev_select() entry in ata_port_operations.
598 *
599 * LOCKING:
600 * caller.
601 */
602
603 void ata_std_dev_select (struct ata_port *ap, unsigned int device)
604 {
605 u8 tmp;
606
607 if (device == 0)
608 tmp = ATA_DEVICE_OBS;
609 else
610 tmp = ATA_DEVICE_OBS | ATA_DEV1;
611
612 if (ap->flags & ATA_FLAG_MMIO) {
613 writeb(tmp, (void __iomem *) ap->ioaddr.device_addr);
614 } else {
615 outb(tmp, ap->ioaddr.device_addr);
616 }
617 ata_pause(ap); /* needed; also flushes, for mmio */
618 }
619
620 /**
621 * ata_dev_select - Select device 0/1 on ATA bus
622 * @ap: ATA channel to manipulate
623 * @device: ATA device (numbered from zero) to select
624 * @wait: non-zero to wait for Status register BSY bit to clear
625 * @can_sleep: non-zero if context allows sleeping
626 *
627 * Use the method defined in the ATA specification to
628 * make either device 0, or device 1, active on the
629 * ATA channel.
630 *
631 * This is a high-level version of ata_std_dev_select(),
632 * which additionally provides the services of inserting
633 * the proper pauses and status polling, where needed.
634 *
635 * LOCKING:
636 * caller.
637 */
638
639 void ata_dev_select(struct ata_port *ap, unsigned int device,
640 unsigned int wait, unsigned int can_sleep)
641 {
642 VPRINTK("ENTER, ata%u: device %u, wait %u\n",
643 ap->id, device, wait);
644
645 if (wait)
646 ata_wait_idle(ap);
647
648 ap->ops->dev_select(ap, device);
649
650 if (wait) {
651 if (can_sleep && ap->device[device].class == ATA_DEV_ATAPI)
652 msleep(150);
653 ata_wait_idle(ap);
654 }
655 }
656
657 /**
658 * ata_dump_id - IDENTIFY DEVICE info debugging output
659 * @id: IDENTIFY DEVICE page to dump
660 *
661 * Dump selected 16-bit words from the given IDENTIFY DEVICE
662 * page.
663 *
664 * LOCKING:
665 * caller.
666 */
667
668 static inline void ata_dump_id(const u16 *id)
669 {
670 DPRINTK("49==0x%04x "
671 "53==0x%04x "
672 "63==0x%04x "
673 "64==0x%04x "
674 "75==0x%04x \n",
675 id[49],
676 id[53],
677 id[63],
678 id[64],
679 id[75]);
680 DPRINTK("80==0x%04x "
681 "81==0x%04x "
682 "82==0x%04x "
683 "83==0x%04x "
684 "84==0x%04x \n",
685 id[80],
686 id[81],
687 id[82],
688 id[83],
689 id[84]);
690 DPRINTK("88==0x%04x "
691 "93==0x%04x\n",
692 id[88],
693 id[93]);
694 }
695
696 /*
697 * Compute the PIO modes available for this device. This is not as
698 * trivial as it seems if we must consider early devices correctly.
699 *
700 * FIXME: pre IDE drive timing (do we care ?).
701 */
702
703 static unsigned int ata_pio_modes(const struct ata_device *adev)
704 {
705 u16 modes;
706
707 /* Usual case. Word 53 indicates word 64 is valid */
708 if (adev->id[ATA_ID_FIELD_VALID] & (1 << 1)) {
709 modes = adev->id[ATA_ID_PIO_MODES] & 0x03;
710 modes <<= 3;
711 modes |= 0x7;
712 return modes;
713 }
714
715 /* If word 64 isn't valid then Word 51 high byte holds the PIO timing
716 number for the maximum. Turn it into a mask and return it */
717 modes = (2 << ((adev->id[ATA_ID_OLD_PIO_MODES] >> 8) & 0xFF)) - 1 ;
718 return modes;
719 /* But wait.. there's more. Design your standards by committee and
720 you too can get a free iordy field to process. However its the
721 speeds not the modes that are supported... Note drivers using the
722 timing API will get this right anyway */
723 }
724
725 static inline void
726 ata_queue_pio_task(struct ata_port *ap)
727 {
728 if (!(ap->flags & ATA_FLAG_FLUSH_PIO_TASK))
729 queue_work(ata_wq, &ap->pio_task);
730 }
731
732 static inline void
733 ata_queue_delayed_pio_task(struct ata_port *ap, unsigned long delay)
734 {
735 if (!(ap->flags & ATA_FLAG_FLUSH_PIO_TASK))
736 queue_delayed_work(ata_wq, &ap->pio_task, delay);
737 }
738
739 /**
740 * ata_flush_pio_tasks - Flush pio_task
741 * @ap: the target ata_port
742 *
743 * After this function completes, pio_task is
744 * guranteed not to be running or scheduled.
745 *
746 * LOCKING:
747 * Kernel thread context (may sleep)
748 */
749
750 static void ata_flush_pio_tasks(struct ata_port *ap)
751 {
752 int tmp = 0;
753 unsigned long flags;
754
755 DPRINTK("ENTER\n");
756
757 spin_lock_irqsave(&ap->host_set->lock, flags);
758 ap->flags |= ATA_FLAG_FLUSH_PIO_TASK;
759 spin_unlock_irqrestore(&ap->host_set->lock, flags);
760
761 DPRINTK("flush #1\n");
762 flush_workqueue(ata_wq);
763
764 /*
765 * At this point, if a task is running, it's guaranteed to see
766 * the FLUSH flag; thus, it will never queue pio tasks again.
767 * Cancel and flush.
768 */
769 tmp |= cancel_delayed_work(&ap->pio_task);
770 if (!tmp) {
771 DPRINTK("flush #2\n");
772 flush_workqueue(ata_wq);
773 }
774
775 spin_lock_irqsave(&ap->host_set->lock, flags);
776 ap->flags &= ~ATA_FLAG_FLUSH_PIO_TASK;
777 spin_unlock_irqrestore(&ap->host_set->lock, flags);
778
779 DPRINTK("EXIT\n");
780 }
781
782 void ata_qc_complete_internal(struct ata_queued_cmd *qc)
783 {
784 struct completion *waiting = qc->private_data;
785
786 qc->ap->ops->tf_read(qc->ap, &qc->tf);
787 complete(waiting);
788 }
789
790 /**
791 * ata_exec_internal - execute libata internal command
792 * @ap: Port to which the command is sent
793 * @dev: Device to which the command is sent
794 * @tf: Taskfile registers for the command and the result
795 * @dma_dir: Data tranfer direction of the command
796 * @buf: Data buffer of the command
797 * @buflen: Length of data buffer
798 *
799 * Executes libata internal command with timeout. @tf contains
800 * command on entry and result on return. Timeout and error
801 * conditions are reported via return value. No recovery action
802 * is taken after a command times out. It's caller's duty to
803 * clean up after timeout.
804 *
805 * LOCKING:
806 * None. Should be called with kernel context, might sleep.
807 */
808
809 static unsigned
810 ata_exec_internal(struct ata_port *ap, struct ata_device *dev,
811 struct ata_taskfile *tf,
812 int dma_dir, void *buf, unsigned int buflen)
813 {
814 u8 command = tf->command;
815 struct ata_queued_cmd *qc;
816 DECLARE_COMPLETION(wait);
817 unsigned long flags;
818 unsigned int err_mask;
819
820 spin_lock_irqsave(&ap->host_set->lock, flags);
821
822 qc = ata_qc_new_init(ap, dev);
823 BUG_ON(qc == NULL);
824
825 qc->tf = *tf;
826 qc->dma_dir = dma_dir;
827 if (dma_dir != DMA_NONE) {
828 ata_sg_init_one(qc, buf, buflen);
829 qc->nsect = buflen / ATA_SECT_SIZE;
830 }
831
832 qc->private_data = &wait;
833 qc->complete_fn = ata_qc_complete_internal;
834
835 qc->err_mask = ata_qc_issue(qc);
836 if (qc->err_mask)
837 ata_qc_complete(qc);
838
839 spin_unlock_irqrestore(&ap->host_set->lock, flags);
840
841 if (!wait_for_completion_timeout(&wait, ATA_TMOUT_INTERNAL)) {
842 spin_lock_irqsave(&ap->host_set->lock, flags);
843
844 /* We're racing with irq here. If we lose, the
845 * following test prevents us from completing the qc
846 * again. If completion irq occurs after here but
847 * before the caller cleans up, it will result in a
848 * spurious interrupt. We can live with that.
849 */
850 if (qc->flags & ATA_QCFLAG_ACTIVE) {
851 qc->err_mask = AC_ERR_TIMEOUT;
852 ata_qc_complete(qc);
853 printk(KERN_WARNING "ata%u: qc timeout (cmd 0x%x)\n",
854 ap->id, command);
855 }
856
857 spin_unlock_irqrestore(&ap->host_set->lock, flags);
858 }
859
860 *tf = qc->tf;
861 err_mask = qc->err_mask;
862
863 ata_qc_free(qc);
864
865 return err_mask;
866 }
867
868 /**
869 * ata_pio_need_iordy - check if iordy needed
870 * @adev: ATA device
871 *
872 * Check if the current speed of the device requires IORDY. Used
873 * by various controllers for chip configuration.
874 */
875
876 unsigned int ata_pio_need_iordy(const struct ata_device *adev)
877 {
878 int pio;
879 int speed = adev->pio_mode - XFER_PIO_0;
880
881 if (speed < 2)
882 return 0;
883 if (speed > 2)
884 return 1;
885
886 /* If we have no drive specific rule, then PIO 2 is non IORDY */
887
888 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE */
889 pio = adev->id[ATA_ID_EIDE_PIO];
890 /* Is the speed faster than the drive allows non IORDY ? */
891 if (pio) {
892 /* This is cycle times not frequency - watch the logic! */
893 if (pio > 240) /* PIO2 is 240nS per cycle */
894 return 1;
895 return 0;
896 }
897 }
898 return 0;
899 }
900
901 /**
902 * ata_dev_read_id - Read ID data from the specified device
903 * @ap: port on which target device resides
904 * @dev: target device
905 * @p_class: pointer to class of the target device (may be changed)
906 * @post_reset: is this read ID post-reset?
907 * @id: buffer to fill IDENTIFY page into
908 *
909 * Read ID data from the specified device. ATA_CMD_ID_ATA is
910 * performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI
911 * devices. This function also takes care of EDD signature
912 * misreporting (to be removed once EDD support is gone) and
913 * issues ATA_CMD_INIT_DEV_PARAMS for pre-ATA4 drives.
914 *
915 * LOCKING:
916 * Kernel thread context (may sleep)
917 *
918 * RETURNS:
919 * 0 on success, -errno otherwise.
920 */
921 static int ata_dev_read_id(struct ata_port *ap, struct ata_device *dev,
922 unsigned int *p_class, int post_reset, u16 *id)
923 {
924 unsigned int class = *p_class;
925 unsigned int using_edd;
926 struct ata_taskfile tf;
927 unsigned int err_mask = 0;
928 const char *reason;
929 int rc;
930
931 DPRINTK("ENTER, host %u, dev %u\n", ap->id, dev->devno);
932
933 if (ap->ops->probe_reset ||
934 ap->flags & (ATA_FLAG_SRST | ATA_FLAG_SATA_RESET))
935 using_edd = 0;
936 else
937 using_edd = 1;
938
939 ata_dev_select(ap, dev->devno, 1, 1); /* select device 0/1 */
940
941 retry:
942 ata_tf_init(ap, &tf, dev->devno);
943
944 switch (class) {
945 case ATA_DEV_ATA:
946 tf.command = ATA_CMD_ID_ATA;
947 break;
948 case ATA_DEV_ATAPI:
949 tf.command = ATA_CMD_ID_ATAPI;
950 break;
951 default:
952 rc = -ENODEV;
953 reason = "unsupported class";
954 goto err_out;
955 }
956
957 tf.protocol = ATA_PROT_PIO;
958
959 err_mask = ata_exec_internal(ap, dev, &tf, DMA_FROM_DEVICE,
960 id, sizeof(id[0]) * ATA_ID_WORDS);
961
962 if (err_mask) {
963 rc = -EIO;
964 reason = "I/O error";
965
966 if (err_mask & ~AC_ERR_DEV)
967 goto err_out;
968
969 /*
970 * arg! EDD works for all test cases, but seems to return
971 * the ATA signature for some ATAPI devices. Until the
972 * reason for this is found and fixed, we fix up the mess
973 * here. If IDENTIFY DEVICE returns command aborted
974 * (as ATAPI devices do), then we issue an
975 * IDENTIFY PACKET DEVICE.
976 *
977 * ATA software reset (SRST, the default) does not appear
978 * to have this problem.
979 */
980 if ((using_edd) && (class == ATA_DEV_ATA)) {
981 u8 err = tf.feature;
982 if (err & ATA_ABORTED) {
983 class = ATA_DEV_ATAPI;
984 goto retry;
985 }
986 }
987 goto err_out;
988 }
989
990 swap_buf_le16(id, ATA_ID_WORDS);
991
992 /* print device capabilities */
993 printk(KERN_DEBUG "ata%u: dev %u cfg "
994 "49:%04x 82:%04x 83:%04x 84:%04x 85:%04x 86:%04x 87:%04x 88:%04x\n",
995 ap->id, dev->devno,
996 id[49], id[82], id[83], id[84], id[85], id[86], id[87], id[88]);
997
998 /* sanity check */
999 if ((class == ATA_DEV_ATA) != ata_id_is_ata(id)) {
1000 rc = -EINVAL;
1001 reason = "device reports illegal type";
1002 goto err_out;
1003 }
1004
1005 if (post_reset && class == ATA_DEV_ATA) {
1006 /*
1007 * The exact sequence expected by certain pre-ATA4 drives is:
1008 * SRST RESET
1009 * IDENTIFY
1010 * INITIALIZE DEVICE PARAMETERS
1011 * anything else..
1012 * Some drives were very specific about that exact sequence.
1013 */
1014 if (ata_id_major_version(id) < 4 || !ata_id_has_lba(id)) {
1015 err_mask = ata_dev_init_params(ap, dev);
1016 if (err_mask) {
1017 rc = -EIO;
1018 reason = "INIT_DEV_PARAMS failed";
1019 goto err_out;
1020 }
1021
1022 /* current CHS translation info (id[53-58]) might be
1023 * changed. reread the identify device info.
1024 */
1025 post_reset = 0;
1026 goto retry;
1027 }
1028 }
1029
1030 *p_class = class;
1031 return 0;
1032
1033 err_out:
1034 printk(KERN_WARNING "ata%u: dev %u failed to IDENTIFY (%s)\n",
1035 ap->id, dev->devno, reason);
1036 return rc;
1037 }
1038
1039 /**
1040 * ata_dev_identify - obtain IDENTIFY x DEVICE page
1041 * @ap: port on which device we wish to probe resides
1042 * @device: device bus address, starting at zero
1043 *
1044 * Following bus reset, we issue the IDENTIFY [PACKET] DEVICE
1045 * command, and read back the 512-byte device information page.
1046 * The device information page is fed to us via the standard
1047 * PIO-IN protocol, but we hand-code it here. (TODO: investigate
1048 * using standard PIO-IN paths)
1049 *
1050 * After reading the device information page, we use several
1051 * bits of information from it to initialize data structures
1052 * that will be used during the lifetime of the ata_device.
1053 * Other data from the info page is used to disqualify certain
1054 * older ATA devices we do not wish to support.
1055 *
1056 * LOCKING:
1057 * Inherited from caller. Some functions called by this function
1058 * obtain the host_set lock.
1059 */
1060
1061 static void ata_dev_identify(struct ata_port *ap, unsigned int device)
1062 {
1063 struct ata_device *dev = &ap->device[device];
1064 unsigned long xfer_modes;
1065 int i, rc;
1066
1067 if (!ata_dev_present(dev)) {
1068 DPRINTK("ENTER/EXIT (host %u, dev %u) -- nodev\n",
1069 ap->id, device);
1070 return;
1071 }
1072
1073 DPRINTK("ENTER, host %u, dev %u\n", ap->id, device);
1074
1075 rc = ata_dev_read_id(ap, dev, &dev->class, 1, dev->id);
1076 if (rc)
1077 goto err_out;
1078
1079 /*
1080 * common ATA, ATAPI feature tests
1081 */
1082
1083 /* we require DMA support (bits 8 of word 49) */
1084 if (!ata_id_has_dma(dev->id)) {
1085 printk(KERN_DEBUG "ata%u: no dma\n", ap->id);
1086 goto err_out_nosup;
1087 }
1088
1089 /* quick-n-dirty find max transfer mode; for printk only */
1090 xfer_modes = dev->id[ATA_ID_UDMA_MODES];
1091 if (!xfer_modes)
1092 xfer_modes = (dev->id[ATA_ID_MWDMA_MODES]) << ATA_SHIFT_MWDMA;
1093 if (!xfer_modes)
1094 xfer_modes = ata_pio_modes(dev);
1095
1096 ata_dump_id(dev->id);
1097
1098 /* ATA-specific feature tests */
1099 if (dev->class == ATA_DEV_ATA) {
1100 dev->n_sectors = ata_id_n_sectors(dev->id);
1101
1102 if (ata_id_has_lba(dev->id)) {
1103 dev->flags |= ATA_DFLAG_LBA;
1104
1105 if (ata_id_has_lba48(dev->id))
1106 dev->flags |= ATA_DFLAG_LBA48;
1107
1108 /* print device info to dmesg */
1109 printk(KERN_INFO "ata%u: dev %u ATA-%d, max %s, %Lu sectors:%s\n",
1110 ap->id, device,
1111 ata_id_major_version(dev->id),
1112 ata_mode_string(xfer_modes),
1113 (unsigned long long)dev->n_sectors,
1114 dev->flags & ATA_DFLAG_LBA48 ? " LBA48" : " LBA");
1115 } else {
1116 /* CHS */
1117
1118 /* Default translation */
1119 dev->cylinders = dev->id[1];
1120 dev->heads = dev->id[3];
1121 dev->sectors = dev->id[6];
1122
1123 if (ata_id_current_chs_valid(dev->id)) {
1124 /* Current CHS translation is valid. */
1125 dev->cylinders = dev->id[54];
1126 dev->heads = dev->id[55];
1127 dev->sectors = dev->id[56];
1128 }
1129
1130 /* print device info to dmesg */
1131 printk(KERN_INFO "ata%u: dev %u ATA-%d, max %s, %Lu sectors: CHS %d/%d/%d\n",
1132 ap->id, device,
1133 ata_id_major_version(dev->id),
1134 ata_mode_string(xfer_modes),
1135 (unsigned long long)dev->n_sectors,
1136 (int)dev->cylinders, (int)dev->heads, (int)dev->sectors);
1137
1138 }
1139
1140 if (dev->id[59] & 0x100) {
1141 dev->multi_count = dev->id[59] & 0xff;
1142 DPRINTK("ata%u: dev %u multi count %u\n",
1143 ap->id, device, dev->multi_count);
1144 }
1145
1146 }
1147
1148 /* ATAPI-specific feature tests */
1149 else if (dev->class == ATA_DEV_ATAPI) {
1150 rc = atapi_cdb_len(dev->id);
1151 if ((rc < 12) || (rc > ATAPI_CDB_LEN)) {
1152 printk(KERN_WARNING "ata%u: unsupported CDB len\n", ap->id);
1153 goto err_out_nosup;
1154 }
1155 dev->cdb_len = (unsigned int) rc;
1156
1157 if (ata_id_cdb_intr(dev->id))
1158 dev->flags |= ATA_DFLAG_CDB_INTR;
1159
1160 /* print device info to dmesg */
1161 printk(KERN_INFO "ata%u: dev %u ATAPI, max %s\n",
1162 ap->id, device,
1163 ata_mode_string(xfer_modes));
1164 }
1165
1166 ap->host->max_cmd_len = 0;
1167 for (i = 0; i < ATA_MAX_DEVICES; i++)
1168 ap->host->max_cmd_len = max_t(unsigned int,
1169 ap->host->max_cmd_len,
1170 ap->device[i].cdb_len);
1171
1172 DPRINTK("EXIT, drv_stat = 0x%x\n", ata_chk_status(ap));
1173 return;
1174
1175 err_out_nosup:
1176 printk(KERN_WARNING "ata%u: dev %u not supported, ignoring\n",
1177 ap->id, device);
1178 err_out:
1179 dev->class++; /* converts ATA_DEV_xxx into ATA_DEV_xxx_UNSUP */
1180 DPRINTK("EXIT, err\n");
1181 }
1182
1183
1184 static inline u8 ata_dev_knobble(const struct ata_port *ap,
1185 struct ata_device *dev)
1186 {
1187 return ((ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(dev->id)));
1188 }
1189
1190 /**
1191 * ata_dev_config - Run device specific handlers & check for SATA->PATA bridges
1192 * @ap: Bus
1193 * @i: Device
1194 *
1195 * LOCKING:
1196 */
1197
1198 void ata_dev_config(struct ata_port *ap, unsigned int i)
1199 {
1200 /* limit bridge transfers to udma5, 200 sectors */
1201 if (ata_dev_knobble(ap, &ap->device[i])) {
1202 printk(KERN_INFO "ata%u(%u): applying bridge limits\n",
1203 ap->id, i);
1204 ap->udma_mask &= ATA_UDMA5;
1205 ap->device[i].max_sectors = ATA_MAX_SECTORS;
1206 }
1207
1208 if (ap->ops->dev_config)
1209 ap->ops->dev_config(ap, &ap->device[i]);
1210 }
1211
1212 /**
1213 * ata_bus_probe - Reset and probe ATA bus
1214 * @ap: Bus to probe
1215 *
1216 * Master ATA bus probing function. Initiates a hardware-dependent
1217 * bus reset, then attempts to identify any devices found on
1218 * the bus.
1219 *
1220 * LOCKING:
1221 * PCI/etc. bus probe sem.
1222 *
1223 * RETURNS:
1224 * Zero on success, non-zero on error.
1225 */
1226
1227 static int ata_bus_probe(struct ata_port *ap)
1228 {
1229 unsigned int i, found = 0;
1230
1231 if (ap->ops->probe_reset) {
1232 unsigned int classes[ATA_MAX_DEVICES];
1233 int rc;
1234
1235 ata_port_probe(ap);
1236
1237 rc = ap->ops->probe_reset(ap, classes);
1238 if (rc == 0) {
1239 for (i = 0; i < ATA_MAX_DEVICES; i++) {
1240 if (classes[i] == ATA_DEV_UNKNOWN)
1241 classes[i] = ATA_DEV_NONE;
1242 ap->device[i].class = classes[i];
1243 }
1244 } else {
1245 printk(KERN_ERR "ata%u: probe reset failed, "
1246 "disabling port\n", ap->id);
1247 ata_port_disable(ap);
1248 }
1249 } else
1250 ap->ops->phy_reset(ap);
1251
1252 if (ap->flags & ATA_FLAG_PORT_DISABLED)
1253 goto err_out;
1254
1255 for (i = 0; i < ATA_MAX_DEVICES; i++) {
1256 ata_dev_identify(ap, i);
1257 if (ata_dev_present(&ap->device[i])) {
1258 found = 1;
1259 ata_dev_config(ap,i);
1260 }
1261 }
1262
1263 if ((!found) || (ap->flags & ATA_FLAG_PORT_DISABLED))
1264 goto err_out_disable;
1265
1266 ata_set_mode(ap);
1267 if (ap->flags & ATA_FLAG_PORT_DISABLED)
1268 goto err_out_disable;
1269
1270 return 0;
1271
1272 err_out_disable:
1273 ap->ops->port_disable(ap);
1274 err_out:
1275 return -1;
1276 }
1277
1278 /**
1279 * ata_port_probe - Mark port as enabled
1280 * @ap: Port for which we indicate enablement
1281 *
1282 * Modify @ap data structure such that the system
1283 * thinks that the entire port is enabled.
1284 *
1285 * LOCKING: host_set lock, or some other form of
1286 * serialization.
1287 */
1288
1289 void ata_port_probe(struct ata_port *ap)
1290 {
1291 ap->flags &= ~ATA_FLAG_PORT_DISABLED;
1292 }
1293
1294 /**
1295 * sata_print_link_status - Print SATA link status
1296 * @ap: SATA port to printk link status about
1297 *
1298 * This function prints link speed and status of a SATA link.
1299 *
1300 * LOCKING:
1301 * None.
1302 */
1303 static void sata_print_link_status(struct ata_port *ap)
1304 {
1305 u32 sstatus, tmp;
1306 const char *speed;
1307
1308 if (!ap->ops->scr_read)
1309 return;
1310
1311 sstatus = scr_read(ap, SCR_STATUS);
1312
1313 if (sata_dev_present(ap)) {
1314 tmp = (sstatus >> 4) & 0xf;
1315 if (tmp & (1 << 0))
1316 speed = "1.5";
1317 else if (tmp & (1 << 1))
1318 speed = "3.0";
1319 else
1320 speed = "<unknown>";
1321 printk(KERN_INFO "ata%u: SATA link up %s Gbps (SStatus %X)\n",
1322 ap->id, speed, sstatus);
1323 } else {
1324 printk(KERN_INFO "ata%u: SATA link down (SStatus %X)\n",
1325 ap->id, sstatus);
1326 }
1327 }
1328
1329 /**
1330 * __sata_phy_reset - Wake/reset a low-level SATA PHY
1331 * @ap: SATA port associated with target SATA PHY.
1332 *
1333 * This function issues commands to standard SATA Sxxx
1334 * PHY registers, to wake up the phy (and device), and
1335 * clear any reset condition.
1336 *
1337 * LOCKING:
1338 * PCI/etc. bus probe sem.
1339 *
1340 */
1341 void __sata_phy_reset(struct ata_port *ap)
1342 {
1343 u32 sstatus;
1344 unsigned long timeout = jiffies + (HZ * 5);
1345
1346 if (ap->flags & ATA_FLAG_SATA_RESET) {
1347 /* issue phy wake/reset */
1348 scr_write_flush(ap, SCR_CONTROL, 0x301);
1349 /* Couldn't find anything in SATA I/II specs, but
1350 * AHCI-1.1 10.4.2 says at least 1 ms. */
1351 mdelay(1);
1352 }
1353 scr_write_flush(ap, SCR_CONTROL, 0x300); /* phy wake/clear reset */
1354
1355 /* wait for phy to become ready, if necessary */
1356 do {
1357 msleep(200);
1358 sstatus = scr_read(ap, SCR_STATUS);
1359 if ((sstatus & 0xf) != 1)
1360 break;
1361 } while (time_before(jiffies, timeout));
1362
1363 /* print link status */
1364 sata_print_link_status(ap);
1365
1366 /* TODO: phy layer with polling, timeouts, etc. */
1367 if (sata_dev_present(ap))
1368 ata_port_probe(ap);
1369 else
1370 ata_port_disable(ap);
1371
1372 if (ap->flags & ATA_FLAG_PORT_DISABLED)
1373 return;
1374
1375 if (ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT)) {
1376 ata_port_disable(ap);
1377 return;
1378 }
1379
1380 ap->cbl = ATA_CBL_SATA;
1381 }
1382
1383 /**
1384 * sata_phy_reset - Reset SATA bus.
1385 * @ap: SATA port associated with target SATA PHY.
1386 *
1387 * This function resets the SATA bus, and then probes
1388 * the bus for devices.
1389 *
1390 * LOCKING:
1391 * PCI/etc. bus probe sem.
1392 *
1393 */
1394 void sata_phy_reset(struct ata_port *ap)
1395 {
1396 __sata_phy_reset(ap);
1397 if (ap->flags & ATA_FLAG_PORT_DISABLED)
1398 return;
1399 ata_bus_reset(ap);
1400 }
1401
1402 /**
1403 * ata_port_disable - Disable port.
1404 * @ap: Port to be disabled.
1405 *
1406 * Modify @ap data structure such that the system
1407 * thinks that the entire port is disabled, and should
1408 * never attempt to probe or communicate with devices
1409 * on this port.
1410 *
1411 * LOCKING: host_set lock, or some other form of
1412 * serialization.
1413 */
1414
1415 void ata_port_disable(struct ata_port *ap)
1416 {
1417 ap->device[0].class = ATA_DEV_NONE;
1418 ap->device[1].class = ATA_DEV_NONE;
1419 ap->flags |= ATA_FLAG_PORT_DISABLED;
1420 }
1421
1422 /*
1423 * This mode timing computation functionality is ported over from
1424 * drivers/ide/ide-timing.h and was originally written by Vojtech Pavlik
1425 */
1426 /*
1427 * PIO 0-5, MWDMA 0-2 and UDMA 0-6 timings (in nanoseconds).
1428 * These were taken from ATA/ATAPI-6 standard, rev 0a, except
1429 * for PIO 5, which is a nonstandard extension and UDMA6, which
1430 * is currently supported only by Maxtor drives.
1431 */
1432
1433 static const struct ata_timing ata_timing[] = {
1434
1435 { XFER_UDMA_6, 0, 0, 0, 0, 0, 0, 0, 15 },
1436 { XFER_UDMA_5, 0, 0, 0, 0, 0, 0, 0, 20 },
1437 { XFER_UDMA_4, 0, 0, 0, 0, 0, 0, 0, 30 },
1438 { XFER_UDMA_3, 0, 0, 0, 0, 0, 0, 0, 45 },
1439
1440 { XFER_UDMA_2, 0, 0, 0, 0, 0, 0, 0, 60 },
1441 { XFER_UDMA_1, 0, 0, 0, 0, 0, 0, 0, 80 },
1442 { XFER_UDMA_0, 0, 0, 0, 0, 0, 0, 0, 120 },
1443
1444 /* { XFER_UDMA_SLOW, 0, 0, 0, 0, 0, 0, 0, 150 }, */
1445
1446 { XFER_MW_DMA_2, 25, 0, 0, 0, 70, 25, 120, 0 },
1447 { XFER_MW_DMA_1, 45, 0, 0, 0, 80, 50, 150, 0 },
1448 { XFER_MW_DMA_0, 60, 0, 0, 0, 215, 215, 480, 0 },
1449
1450 { XFER_SW_DMA_2, 60, 0, 0, 0, 120, 120, 240, 0 },
1451 { XFER_SW_DMA_1, 90, 0, 0, 0, 240, 240, 480, 0 },
1452 { XFER_SW_DMA_0, 120, 0, 0, 0, 480, 480, 960, 0 },
1453
1454 /* { XFER_PIO_5, 20, 50, 30, 100, 50, 30, 100, 0 }, */
1455 { XFER_PIO_4, 25, 70, 25, 120, 70, 25, 120, 0 },
1456 { XFER_PIO_3, 30, 80, 70, 180, 80, 70, 180, 0 },
1457
1458 { XFER_PIO_2, 30, 290, 40, 330, 100, 90, 240, 0 },
1459 { XFER_PIO_1, 50, 290, 93, 383, 125, 100, 383, 0 },
1460 { XFER_PIO_0, 70, 290, 240, 600, 165, 150, 600, 0 },
1461
1462 /* { XFER_PIO_SLOW, 120, 290, 240, 960, 290, 240, 960, 0 }, */
1463
1464 { 0xFF }
1465 };
1466
1467 #define ENOUGH(v,unit) (((v)-1)/(unit)+1)
1468 #define EZ(v,unit) ((v)?ENOUGH(v,unit):0)
1469
1470 static void ata_timing_quantize(const struct ata_timing *t, struct ata_timing *q, int T, int UT)
1471 {
1472 q->setup = EZ(t->setup * 1000, T);
1473 q->act8b = EZ(t->act8b * 1000, T);
1474 q->rec8b = EZ(t->rec8b * 1000, T);
1475 q->cyc8b = EZ(t->cyc8b * 1000, T);
1476 q->active = EZ(t->active * 1000, T);
1477 q->recover = EZ(t->recover * 1000, T);
1478 q->cycle = EZ(t->cycle * 1000, T);
1479 q->udma = EZ(t->udma * 1000, UT);
1480 }
1481
1482 void ata_timing_merge(const struct ata_timing *a, const struct ata_timing *b,
1483 struct ata_timing *m, unsigned int what)
1484 {
1485 if (what & ATA_TIMING_SETUP ) m->setup = max(a->setup, b->setup);
1486 if (what & ATA_TIMING_ACT8B ) m->act8b = max(a->act8b, b->act8b);
1487 if (what & ATA_TIMING_REC8B ) m->rec8b = max(a->rec8b, b->rec8b);
1488 if (what & ATA_TIMING_CYC8B ) m->cyc8b = max(a->cyc8b, b->cyc8b);
1489 if (what & ATA_TIMING_ACTIVE ) m->active = max(a->active, b->active);
1490 if (what & ATA_TIMING_RECOVER) m->recover = max(a->recover, b->recover);
1491 if (what & ATA_TIMING_CYCLE ) m->cycle = max(a->cycle, b->cycle);
1492 if (what & ATA_TIMING_UDMA ) m->udma = max(a->udma, b->udma);
1493 }
1494
1495 static const struct ata_timing* ata_timing_find_mode(unsigned short speed)
1496 {
1497 const struct ata_timing *t;
1498
1499 for (t = ata_timing; t->mode != speed; t++)
1500 if (t->mode == 0xFF)
1501 return NULL;
1502 return t;
1503 }
1504
1505 int ata_timing_compute(struct ata_device *adev, unsigned short speed,
1506 struct ata_timing *t, int T, int UT)
1507 {
1508 const struct ata_timing *s;
1509 struct ata_timing p;
1510
1511 /*
1512 * Find the mode.
1513 */
1514
1515 if (!(s = ata_timing_find_mode(speed)))
1516 return -EINVAL;
1517
1518 memcpy(t, s, sizeof(*s));
1519
1520 /*
1521 * If the drive is an EIDE drive, it can tell us it needs extended
1522 * PIO/MW_DMA cycle timing.
1523 */
1524
1525 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE drive */
1526 memset(&p, 0, sizeof(p));
1527 if(speed >= XFER_PIO_0 && speed <= XFER_SW_DMA_0) {
1528 if (speed <= XFER_PIO_2) p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO];
1529 else p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO_IORDY];
1530 } else if(speed >= XFER_MW_DMA_0 && speed <= XFER_MW_DMA_2) {
1531 p.cycle = adev->id[ATA_ID_EIDE_DMA_MIN];
1532 }
1533 ata_timing_merge(&p, t, t, ATA_TIMING_CYCLE | ATA_TIMING_CYC8B);
1534 }
1535
1536 /*
1537 * Convert the timing to bus clock counts.
1538 */
1539
1540 ata_timing_quantize(t, t, T, UT);
1541
1542 /*
1543 * Even in DMA/UDMA modes we still use PIO access for IDENTIFY,
1544 * S.M.A.R.T * and some other commands. We have to ensure that the
1545 * DMA cycle timing is slower/equal than the fastest PIO timing.
1546 */
1547
1548 if (speed > XFER_PIO_4) {
1549 ata_timing_compute(adev, adev->pio_mode, &p, T, UT);
1550 ata_timing_merge(&p, t, t, ATA_TIMING_ALL);
1551 }
1552
1553 /*
1554 * Lengthen active & recovery time so that cycle time is correct.
1555 */
1556
1557 if (t->act8b + t->rec8b < t->cyc8b) {
1558 t->act8b += (t->cyc8b - (t->act8b + t->rec8b)) / 2;
1559 t->rec8b = t->cyc8b - t->act8b;
1560 }
1561
1562 if (t->active + t->recover < t->cycle) {
1563 t->active += (t->cycle - (t->active + t->recover)) / 2;
1564 t->recover = t->cycle - t->active;
1565 }
1566
1567 return 0;
1568 }
1569
1570 static const struct {
1571 unsigned int shift;
1572 u8 base;
1573 } xfer_mode_classes[] = {
1574 { ATA_SHIFT_UDMA, XFER_UDMA_0 },
1575 { ATA_SHIFT_MWDMA, XFER_MW_DMA_0 },
1576 { ATA_SHIFT_PIO, XFER_PIO_0 },
1577 };
1578
1579 static u8 base_from_shift(unsigned int shift)
1580 {
1581 int i;
1582
1583 for (i = 0; i < ARRAY_SIZE(xfer_mode_classes); i++)
1584 if (xfer_mode_classes[i].shift == shift)
1585 return xfer_mode_classes[i].base;
1586
1587 return 0xff;
1588 }
1589
1590 static void ata_dev_set_mode(struct ata_port *ap, struct ata_device *dev)
1591 {
1592 int ofs, idx;
1593 u8 base;
1594
1595 if (!ata_dev_present(dev) || (ap->flags & ATA_FLAG_PORT_DISABLED))
1596 return;
1597
1598 if (dev->xfer_shift == ATA_SHIFT_PIO)
1599 dev->flags |= ATA_DFLAG_PIO;
1600
1601 ata_dev_set_xfermode(ap, dev);
1602
1603 base = base_from_shift(dev->xfer_shift);
1604 ofs = dev->xfer_mode - base;
1605 idx = ofs + dev->xfer_shift;
1606 WARN_ON(idx >= ARRAY_SIZE(xfer_mode_str));
1607
1608 DPRINTK("idx=%d xfer_shift=%u, xfer_mode=0x%x, base=0x%x, offset=%d\n",
1609 idx, dev->xfer_shift, (int)dev->xfer_mode, (int)base, ofs);
1610
1611 printk(KERN_INFO "ata%u: dev %u configured for %s\n",
1612 ap->id, dev->devno, xfer_mode_str[idx]);
1613 }
1614
1615 static int ata_host_set_pio(struct ata_port *ap)
1616 {
1617 unsigned int mask;
1618 int x, i;
1619 u8 base, xfer_mode;
1620
1621 mask = ata_get_mode_mask(ap, ATA_SHIFT_PIO);
1622 x = fgb(mask);
1623 if (x < 0) {
1624 printk(KERN_WARNING "ata%u: no PIO support\n", ap->id);
1625 return -1;
1626 }
1627
1628 base = base_from_shift(ATA_SHIFT_PIO);
1629 xfer_mode = base + x;
1630
1631 DPRINTK("base 0x%x xfer_mode 0x%x mask 0x%x x %d\n",
1632 (int)base, (int)xfer_mode, mask, x);
1633
1634 for (i = 0; i < ATA_MAX_DEVICES; i++) {
1635 struct ata_device *dev = &ap->device[i];
1636 if (ata_dev_present(dev)) {
1637 dev->pio_mode = xfer_mode;
1638 dev->xfer_mode = xfer_mode;
1639 dev->xfer_shift = ATA_SHIFT_PIO;
1640 if (ap->ops->set_piomode)
1641 ap->ops->set_piomode(ap, dev);
1642 }
1643 }
1644
1645 return 0;
1646 }
1647
1648 static void ata_host_set_dma(struct ata_port *ap, u8 xfer_mode,
1649 unsigned int xfer_shift)
1650 {
1651 int i;
1652
1653 for (i = 0; i < ATA_MAX_DEVICES; i++) {
1654 struct ata_device *dev = &ap->device[i];
1655 if (ata_dev_present(dev)) {
1656 dev->dma_mode = xfer_mode;
1657 dev->xfer_mode = xfer_mode;
1658 dev->xfer_shift = xfer_shift;
1659 if (ap->ops->set_dmamode)
1660 ap->ops->set_dmamode(ap, dev);
1661 }
1662 }
1663 }
1664
1665 /**
1666 * ata_set_mode - Program timings and issue SET FEATURES - XFER
1667 * @ap: port on which timings will be programmed
1668 *
1669 * Set ATA device disk transfer mode (PIO3, UDMA6, etc.).
1670 *
1671 * LOCKING:
1672 * PCI/etc. bus probe sem.
1673 */
1674 static void ata_set_mode(struct ata_port *ap)
1675 {
1676 unsigned int xfer_shift;
1677 u8 xfer_mode;
1678 int rc;
1679
1680 /* step 1: always set host PIO timings */
1681 rc = ata_host_set_pio(ap);
1682 if (rc)
1683 goto err_out;
1684
1685 /* step 2: choose the best data xfer mode */
1686 xfer_mode = xfer_shift = 0;
1687 rc = ata_choose_xfer_mode(ap, &xfer_mode, &xfer_shift);
1688 if (rc)
1689 goto err_out;
1690
1691 /* step 3: if that xfer mode isn't PIO, set host DMA timings */
1692 if (xfer_shift != ATA_SHIFT_PIO)
1693 ata_host_set_dma(ap, xfer_mode, xfer_shift);
1694
1695 /* step 4: update devices' xfer mode */
1696 ata_dev_set_mode(ap, &ap->device[0]);
1697 ata_dev_set_mode(ap, &ap->device[1]);
1698
1699 if (ap->flags & ATA_FLAG_PORT_DISABLED)
1700 return;
1701
1702 if (ap->ops->post_set_mode)
1703 ap->ops->post_set_mode(ap);
1704
1705 return;
1706
1707 err_out:
1708 ata_port_disable(ap);
1709 }
1710
1711 /**
1712 * ata_tf_to_host - issue ATA taskfile to host controller
1713 * @ap: port to which command is being issued
1714 * @tf: ATA taskfile register set
1715 *
1716 * Issues ATA taskfile register set to ATA host controller,
1717 * with proper synchronization with interrupt handler and
1718 * other threads.
1719 *
1720 * LOCKING:
1721 * spin_lock_irqsave(host_set lock)
1722 */
1723
1724 static inline void ata_tf_to_host(struct ata_port *ap,
1725 const struct ata_taskfile *tf)
1726 {
1727 ap->ops->tf_load(ap, tf);
1728 ap->ops->exec_command(ap, tf);
1729 }
1730
1731 /**
1732 * ata_busy_sleep - sleep until BSY clears, or timeout
1733 * @ap: port containing status register to be polled
1734 * @tmout_pat: impatience timeout
1735 * @tmout: overall timeout
1736 *
1737 * Sleep until ATA Status register bit BSY clears,
1738 * or a timeout occurs.
1739 *
1740 * LOCKING: None.
1741 */
1742
1743 unsigned int ata_busy_sleep (struct ata_port *ap,
1744 unsigned long tmout_pat, unsigned long tmout)
1745 {
1746 unsigned long timer_start, timeout;
1747 u8 status;
1748
1749 status = ata_busy_wait(ap, ATA_BUSY, 300);
1750 timer_start = jiffies;
1751 timeout = timer_start + tmout_pat;
1752 while ((status & ATA_BUSY) && (time_before(jiffies, timeout))) {
1753 msleep(50);
1754 status = ata_busy_wait(ap, ATA_BUSY, 3);
1755 }
1756
1757 if (status & ATA_BUSY)
1758 printk(KERN_WARNING "ata%u is slow to respond, "
1759 "please be patient\n", ap->id);
1760
1761 timeout = timer_start + tmout;
1762 while ((status & ATA_BUSY) && (time_before(jiffies, timeout))) {
1763 msleep(50);
1764 status = ata_chk_status(ap);
1765 }
1766
1767 if (status & ATA_BUSY) {
1768 printk(KERN_ERR "ata%u failed to respond (%lu secs)\n",
1769 ap->id, tmout / HZ);
1770 return 1;
1771 }
1772
1773 return 0;
1774 }
1775
1776 static void ata_bus_post_reset(struct ata_port *ap, unsigned int devmask)
1777 {
1778 struct ata_ioports *ioaddr = &ap->ioaddr;
1779 unsigned int dev0 = devmask & (1 << 0);
1780 unsigned int dev1 = devmask & (1 << 1);
1781 unsigned long timeout;
1782
1783 /* if device 0 was found in ata_devchk, wait for its
1784 * BSY bit to clear
1785 */
1786 if (dev0)
1787 ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT);
1788
1789 /* if device 1 was found in ata_devchk, wait for
1790 * register access, then wait for BSY to clear
1791 */
1792 timeout = jiffies + ATA_TMOUT_BOOT;
1793 while (dev1) {
1794 u8 nsect, lbal;
1795
1796 ap->ops->dev_select(ap, 1);
1797 if (ap->flags & ATA_FLAG_MMIO) {
1798 nsect = readb((void __iomem *) ioaddr->nsect_addr);
1799 lbal = readb((void __iomem *) ioaddr->lbal_addr);
1800 } else {
1801 nsect = inb(ioaddr->nsect_addr);
1802 lbal = inb(ioaddr->lbal_addr);
1803 }
1804 if ((nsect == 1) && (lbal == 1))
1805 break;
1806 if (time_after(jiffies, timeout)) {
1807 dev1 = 0;
1808 break;
1809 }
1810 msleep(50); /* give drive a breather */
1811 }
1812 if (dev1)
1813 ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT);
1814
1815 /* is all this really necessary? */
1816 ap->ops->dev_select(ap, 0);
1817 if (dev1)
1818 ap->ops->dev_select(ap, 1);
1819 if (dev0)
1820 ap->ops->dev_select(ap, 0);
1821 }
1822
1823 /**
1824 * ata_bus_edd - Issue EXECUTE DEVICE DIAGNOSTIC command.
1825 * @ap: Port to reset and probe
1826 *
1827 * Use the EXECUTE DEVICE DIAGNOSTIC command to reset and
1828 * probe the bus. Not often used these days.
1829 *
1830 * LOCKING:
1831 * PCI/etc. bus probe sem.
1832 * Obtains host_set lock.
1833 *
1834 */
1835
1836 static unsigned int ata_bus_edd(struct ata_port *ap)
1837 {
1838 struct ata_taskfile tf;
1839 unsigned long flags;
1840
1841 /* set up execute-device-diag (bus reset) taskfile */
1842 /* also, take interrupts to a known state (disabled) */
1843 DPRINTK("execute-device-diag\n");
1844 ata_tf_init(ap, &tf, 0);
1845 tf.ctl |= ATA_NIEN;
1846 tf.command = ATA_CMD_EDD;
1847 tf.protocol = ATA_PROT_NODATA;
1848
1849 /* do bus reset */
1850 spin_lock_irqsave(&ap->host_set->lock, flags);
1851 ata_tf_to_host(ap, &tf);
1852 spin_unlock_irqrestore(&ap->host_set->lock, flags);
1853
1854 /* spec says at least 2ms. but who knows with those
1855 * crazy ATAPI devices...
1856 */
1857 msleep(150);
1858
1859 return ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT);
1860 }
1861
1862 static unsigned int ata_bus_softreset(struct ata_port *ap,
1863 unsigned int devmask)
1864 {
1865 struct ata_ioports *ioaddr = &ap->ioaddr;
1866
1867 DPRINTK("ata%u: bus reset via SRST\n", ap->id);
1868
1869 /* software reset. causes dev0 to be selected */
1870 if (ap->flags & ATA_FLAG_MMIO) {
1871 writeb(ap->ctl, (void __iomem *) ioaddr->ctl_addr);
1872 udelay(20); /* FIXME: flush */
1873 writeb(ap->ctl | ATA_SRST, (void __iomem *) ioaddr->ctl_addr);
1874 udelay(20); /* FIXME: flush */
1875 writeb(ap->ctl, (void __iomem *) ioaddr->ctl_addr);
1876 } else {
1877 outb(ap->ctl, ioaddr->ctl_addr);
1878 udelay(10);
1879 outb(ap->ctl | ATA_SRST, ioaddr->ctl_addr);
1880 udelay(10);
1881 outb(ap->ctl, ioaddr->ctl_addr);
1882 }
1883
1884 /* spec mandates ">= 2ms" before checking status.
1885 * We wait 150ms, because that was the magic delay used for
1886 * ATAPI devices in Hale Landis's ATADRVR, for the period of time
1887 * between when the ATA command register is written, and then
1888 * status is checked. Because waiting for "a while" before
1889 * checking status is fine, post SRST, we perform this magic
1890 * delay here as well.
1891 */
1892 msleep(150);
1893
1894 ata_bus_post_reset(ap, devmask);
1895
1896 return 0;
1897 }
1898
1899 /**
1900 * ata_bus_reset - reset host port and associated ATA channel
1901 * @ap: port to reset
1902 *
1903 * This is typically the first time we actually start issuing
1904 * commands to the ATA channel. We wait for BSY to clear, then
1905 * issue EXECUTE DEVICE DIAGNOSTIC command, polling for its
1906 * result. Determine what devices, if any, are on the channel
1907 * by looking at the device 0/1 error register. Look at the signature
1908 * stored in each device's taskfile registers, to determine if
1909 * the device is ATA or ATAPI.
1910 *
1911 * LOCKING:
1912 * PCI/etc. bus probe sem.
1913 * Obtains host_set lock.
1914 *
1915 * SIDE EFFECTS:
1916 * Sets ATA_FLAG_PORT_DISABLED if bus reset fails.
1917 */
1918
1919 void ata_bus_reset(struct ata_port *ap)
1920 {
1921 struct ata_ioports *ioaddr = &ap->ioaddr;
1922 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
1923 u8 err;
1924 unsigned int dev0, dev1 = 0, rc = 0, devmask = 0;
1925
1926 DPRINTK("ENTER, host %u, port %u\n", ap->id, ap->port_no);
1927
1928 /* determine if device 0/1 are present */
1929 if (ap->flags & ATA_FLAG_SATA_RESET)
1930 dev0 = 1;
1931 else {
1932 dev0 = ata_devchk(ap, 0);
1933 if (slave_possible)
1934 dev1 = ata_devchk(ap, 1);
1935 }
1936
1937 if (dev0)
1938 devmask |= (1 << 0);
1939 if (dev1)
1940 devmask |= (1 << 1);
1941
1942 /* select device 0 again */
1943 ap->ops->dev_select(ap, 0);
1944
1945 /* issue bus reset */
1946 if (ap->flags & ATA_FLAG_SRST)
1947 rc = ata_bus_softreset(ap, devmask);
1948 else if ((ap->flags & ATA_FLAG_SATA_RESET) == 0) {
1949 /* set up device control */
1950 if (ap->flags & ATA_FLAG_MMIO)
1951 writeb(ap->ctl, (void __iomem *) ioaddr->ctl_addr);
1952 else
1953 outb(ap->ctl, ioaddr->ctl_addr);
1954 rc = ata_bus_edd(ap);
1955 }
1956
1957 if (rc)
1958 goto err_out;
1959
1960 /*
1961 * determine by signature whether we have ATA or ATAPI devices
1962 */
1963 ap->device[0].class = ata_dev_try_classify(ap, 0, &err);
1964 if ((slave_possible) && (err != 0x81))
1965 ap->device[1].class = ata_dev_try_classify(ap, 1, &err);
1966
1967 /* re-enable interrupts */
1968 if (ap->ioaddr.ctl_addr) /* FIXME: hack. create a hook instead */
1969 ata_irq_on(ap);
1970
1971 /* is double-select really necessary? */
1972 if (ap->device[1].class != ATA_DEV_NONE)
1973 ap->ops->dev_select(ap, 1);
1974 if (ap->device[0].class != ATA_DEV_NONE)
1975 ap->ops->dev_select(ap, 0);
1976
1977 /* if no devices were detected, disable this port */
1978 if ((ap->device[0].class == ATA_DEV_NONE) &&
1979 (ap->device[1].class == ATA_DEV_NONE))
1980 goto err_out;
1981
1982 if (ap->flags & (ATA_FLAG_SATA_RESET | ATA_FLAG_SRST)) {
1983 /* set up device control for ATA_FLAG_SATA_RESET */
1984 if (ap->flags & ATA_FLAG_MMIO)
1985 writeb(ap->ctl, (void __iomem *) ioaddr->ctl_addr);
1986 else
1987 outb(ap->ctl, ioaddr->ctl_addr);
1988 }
1989
1990 DPRINTK("EXIT\n");
1991 return;
1992
1993 err_out:
1994 printk(KERN_ERR "ata%u: disabling port\n", ap->id);
1995 ap->ops->port_disable(ap);
1996
1997 DPRINTK("EXIT\n");
1998 }
1999
2000 static int sata_phy_resume(struct ata_port *ap)
2001 {
2002 unsigned long timeout = jiffies + (HZ * 5);
2003 u32 sstatus;
2004
2005 scr_write_flush(ap, SCR_CONTROL, 0x300);
2006
2007 /* Wait for phy to become ready, if necessary. */
2008 do {
2009 msleep(200);
2010 sstatus = scr_read(ap, SCR_STATUS);
2011 if ((sstatus & 0xf) != 1)
2012 return 0;
2013 } while (time_before(jiffies, timeout));
2014
2015 return -1;
2016 }
2017
2018 /**
2019 * ata_std_probeinit - initialize probing
2020 * @ap: port to be probed
2021 *
2022 * @ap is about to be probed. Initialize it. This function is
2023 * to be used as standard callback for ata_drive_probe_reset().
2024 *
2025 * NOTE!!! Do not use this function as probeinit if a low level
2026 * driver implements only hardreset. Just pass NULL as probeinit
2027 * in that case. Using this function is probably okay but doing
2028 * so makes reset sequence different from the original
2029 * ->phy_reset implementation and Jeff nervous. :-P
2030 */
2031 extern void ata_std_probeinit(struct ata_port *ap)
2032 {
2033 if (ap->flags & ATA_FLAG_SATA && ap->ops->scr_read) {
2034 sata_phy_resume(ap);
2035 if (sata_dev_present(ap))
2036 ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT);
2037 }
2038 }
2039
2040 /**
2041 * ata_std_softreset - reset host port via ATA SRST
2042 * @ap: port to reset
2043 * @verbose: fail verbosely
2044 * @classes: resulting classes of attached devices
2045 *
2046 * Reset host port using ATA SRST. This function is to be used
2047 * as standard callback for ata_drive_*_reset() functions.
2048 *
2049 * LOCKING:
2050 * Kernel thread context (may sleep)
2051 *
2052 * RETURNS:
2053 * 0 on success, -errno otherwise.
2054 */
2055 int ata_std_softreset(struct ata_port *ap, int verbose, unsigned int *classes)
2056 {
2057 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
2058 unsigned int devmask = 0, err_mask;
2059 u8 err;
2060
2061 DPRINTK("ENTER\n");
2062
2063 if (ap->ops->scr_read && !sata_dev_present(ap)) {
2064 classes[0] = ATA_DEV_NONE;
2065 goto out;
2066 }
2067
2068 /* determine if device 0/1 are present */
2069 if (ata_devchk(ap, 0))
2070 devmask |= (1 << 0);
2071 if (slave_possible && ata_devchk(ap, 1))
2072 devmask |= (1 << 1);
2073
2074 /* select device 0 again */
2075 ap->ops->dev_select(ap, 0);
2076
2077 /* issue bus reset */
2078 DPRINTK("about to softreset, devmask=%x\n", devmask);
2079 err_mask = ata_bus_softreset(ap, devmask);
2080 if (err_mask) {
2081 if (verbose)
2082 printk(KERN_ERR "ata%u: SRST failed (err_mask=0x%x)\n",
2083 ap->id, err_mask);
2084 else
2085 DPRINTK("EXIT, softreset failed (err_mask=0x%x)\n",
2086 err_mask);
2087 return -EIO;
2088 }
2089
2090 /* determine by signature whether we have ATA or ATAPI devices */
2091 classes[0] = ata_dev_try_classify(ap, 0, &err);
2092 if (slave_possible && err != 0x81)
2093 classes[1] = ata_dev_try_classify(ap, 1, &err);
2094
2095 out:
2096 DPRINTK("EXIT, classes[0]=%u [1]=%u\n", classes[0], classes[1]);
2097 return 0;
2098 }
2099
2100 /**
2101 * sata_std_hardreset - reset host port via SATA phy reset
2102 * @ap: port to reset
2103 * @verbose: fail verbosely
2104 * @class: resulting class of attached device
2105 *
2106 * SATA phy-reset host port using DET bits of SControl register.
2107 * This function is to be used as standard callback for
2108 * ata_drive_*_reset().
2109 *
2110 * LOCKING:
2111 * Kernel thread context (may sleep)
2112 *
2113 * RETURNS:
2114 * 0 on success, -errno otherwise.
2115 */
2116 int sata_std_hardreset(struct ata_port *ap, int verbose, unsigned int *class)
2117 {
2118 DPRINTK("ENTER\n");
2119
2120 /* Issue phy wake/reset */
2121 scr_write_flush(ap, SCR_CONTROL, 0x301);
2122
2123 /*
2124 * Couldn't find anything in SATA I/II specs, but AHCI-1.1
2125 * 10.4.2 says at least 1 ms.
2126 */
2127 msleep(1);
2128
2129 /* Bring phy back */
2130 sata_phy_resume(ap);
2131
2132 /* TODO: phy layer with polling, timeouts, etc. */
2133 if (!sata_dev_present(ap)) {
2134 *class = ATA_DEV_NONE;
2135 DPRINTK("EXIT, link offline\n");
2136 return 0;
2137 }
2138
2139 if (ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT)) {
2140 if (verbose)
2141 printk(KERN_ERR "ata%u: COMRESET failed "
2142 "(device not ready)\n", ap->id);
2143 else
2144 DPRINTK("EXIT, device not ready\n");
2145 return -EIO;
2146 }
2147
2148 ap->ops->dev_select(ap, 0); /* probably unnecessary */
2149
2150 *class = ata_dev_try_classify(ap, 0, NULL);
2151
2152 DPRINTK("EXIT, class=%u\n", *class);
2153 return 0;
2154 }
2155
2156 /**
2157 * ata_std_postreset - standard postreset callback
2158 * @ap: the target ata_port
2159 * @classes: classes of attached devices
2160 *
2161 * This function is invoked after a successful reset. Note that
2162 * the device might have been reset more than once using
2163 * different reset methods before postreset is invoked.
2164 *
2165 * This function is to be used as standard callback for
2166 * ata_drive_*_reset().
2167 *
2168 * LOCKING:
2169 * Kernel thread context (may sleep)
2170 */
2171 void ata_std_postreset(struct ata_port *ap, unsigned int *classes)
2172 {
2173 DPRINTK("ENTER\n");
2174
2175 /* set cable type if it isn't already set */
2176 if (ap->cbl == ATA_CBL_NONE && ap->flags & ATA_FLAG_SATA)
2177 ap->cbl = ATA_CBL_SATA;
2178
2179 /* print link status */
2180 if (ap->cbl == ATA_CBL_SATA)
2181 sata_print_link_status(ap);
2182
2183 /* re-enable interrupts */
2184 if (ap->ioaddr.ctl_addr) /* FIXME: hack. create a hook instead */
2185 ata_irq_on(ap);
2186
2187 /* is double-select really necessary? */
2188 if (classes[0] != ATA_DEV_NONE)
2189 ap->ops->dev_select(ap, 1);
2190 if (classes[1] != ATA_DEV_NONE)
2191 ap->ops->dev_select(ap, 0);
2192
2193 /* bail out if no device is present */
2194 if (classes[0] == ATA_DEV_NONE && classes[1] == ATA_DEV_NONE) {
2195 DPRINTK("EXIT, no device\n");
2196 return;
2197 }
2198
2199 /* set up device control */
2200 if (ap->ioaddr.ctl_addr) {
2201 if (ap->flags & ATA_FLAG_MMIO)
2202 writeb(ap->ctl, (void __iomem *) ap->ioaddr.ctl_addr);
2203 else
2204 outb(ap->ctl, ap->ioaddr.ctl_addr);
2205 }
2206
2207 DPRINTK("EXIT\n");
2208 }
2209
2210 /**
2211 * ata_std_probe_reset - standard probe reset method
2212 * @ap: prot to perform probe-reset
2213 * @classes: resulting classes of attached devices
2214 *
2215 * The stock off-the-shelf ->probe_reset method.
2216 *
2217 * LOCKING:
2218 * Kernel thread context (may sleep)
2219 *
2220 * RETURNS:
2221 * 0 on success, -errno otherwise.
2222 */
2223 int ata_std_probe_reset(struct ata_port *ap, unsigned int *classes)
2224 {
2225 ata_reset_fn_t hardreset;
2226
2227 hardreset = NULL;
2228 if (ap->flags & ATA_FLAG_SATA && ap->ops->scr_read)
2229 hardreset = sata_std_hardreset;
2230
2231 return ata_drive_probe_reset(ap, ata_std_probeinit,
2232 ata_std_softreset, hardreset,
2233 ata_std_postreset, classes);
2234 }
2235
2236 static int do_probe_reset(struct ata_port *ap, ata_reset_fn_t reset,
2237 ata_postreset_fn_t postreset,
2238 unsigned int *classes)
2239 {
2240 int i, rc;
2241
2242 for (i = 0; i < ATA_MAX_DEVICES; i++)
2243 classes[i] = ATA_DEV_UNKNOWN;
2244
2245 rc = reset(ap, 0, classes);
2246 if (rc)
2247 return rc;
2248
2249 /* If any class isn't ATA_DEV_UNKNOWN, consider classification
2250 * is complete and convert all ATA_DEV_UNKNOWN to
2251 * ATA_DEV_NONE.
2252 */
2253 for (i = 0; i < ATA_MAX_DEVICES; i++)
2254 if (classes[i] != ATA_DEV_UNKNOWN)
2255 break;
2256
2257 if (i < ATA_MAX_DEVICES)
2258 for (i = 0; i < ATA_MAX_DEVICES; i++)
2259 if (classes[i] == ATA_DEV_UNKNOWN)
2260 classes[i] = ATA_DEV_NONE;
2261
2262 if (postreset)
2263 postreset(ap, classes);
2264
2265 return classes[0] != ATA_DEV_UNKNOWN ? 0 : -ENODEV;
2266 }
2267
2268 /**
2269 * ata_drive_probe_reset - Perform probe reset with given methods
2270 * @ap: port to reset
2271 * @probeinit: probeinit method (can be NULL)
2272 * @softreset: softreset method (can be NULL)
2273 * @hardreset: hardreset method (can be NULL)
2274 * @postreset: postreset method (can be NULL)
2275 * @classes: resulting classes of attached devices
2276 *
2277 * Reset the specified port and classify attached devices using
2278 * given methods. This function prefers softreset but tries all
2279 * possible reset sequences to reset and classify devices. This
2280 * function is intended to be used for constructing ->probe_reset
2281 * callback by low level drivers.
2282 *
2283 * Reset methods should follow the following rules.
2284 *
2285 * - Return 0 on sucess, -errno on failure.
2286 * - If classification is supported, fill classes[] with
2287 * recognized class codes.
2288 * - If classification is not supported, leave classes[] alone.
2289 * - If verbose is non-zero, print error message on failure;
2290 * otherwise, shut up.
2291 *
2292 * LOCKING:
2293 * Kernel thread context (may sleep)
2294 *
2295 * RETURNS:
2296 * 0 on success, -EINVAL if no reset method is avaliable, -ENODEV
2297 * if classification fails, and any error code from reset
2298 * methods.
2299 */
2300 int ata_drive_probe_reset(struct ata_port *ap, ata_probeinit_fn_t probeinit,
2301 ata_reset_fn_t softreset, ata_reset_fn_t hardreset,
2302 ata_postreset_fn_t postreset, unsigned int *classes)
2303 {
2304 int rc = -EINVAL;
2305
2306 if (probeinit)
2307 probeinit(ap);
2308
2309 if (softreset) {
2310 rc = do_probe_reset(ap, softreset, postreset, classes);
2311 if (rc == 0)
2312 return 0;
2313 }
2314
2315 if (!hardreset)
2316 return rc;
2317
2318 rc = do_probe_reset(ap, hardreset, postreset, classes);
2319 if (rc == 0 || rc != -ENODEV)
2320 return rc;
2321
2322 if (softreset)
2323 rc = do_probe_reset(ap, softreset, postreset, classes);
2324
2325 return rc;
2326 }
2327
2328 static void ata_pr_blacklisted(const struct ata_port *ap,
2329 const struct ata_device *dev)
2330 {
2331 printk(KERN_WARNING "ata%u: dev %u is on DMA blacklist, disabling DMA\n",
2332 ap->id, dev->devno);
2333 }
2334
2335 static const char * const ata_dma_blacklist [] = {
2336 "WDC AC11000H",
2337 "WDC AC22100H",
2338 "WDC AC32500H",
2339 "WDC AC33100H",
2340 "WDC AC31600H",
2341 "WDC AC32100H",
2342 "WDC AC23200L",
2343 "Compaq CRD-8241B",
2344 "CRD-8400B",
2345 "CRD-8480B",
2346 "CRD-8482B",
2347 "CRD-84",
2348 "SanDisk SDP3B",
2349 "SanDisk SDP3B-64",
2350 "SANYO CD-ROM CRD",
2351 "HITACHI CDR-8",
2352 "HITACHI CDR-8335",
2353 "HITACHI CDR-8435",
2354 "Toshiba CD-ROM XM-6202B",
2355 "TOSHIBA CD-ROM XM-1702BC",
2356 "CD-532E-A",
2357 "E-IDE CD-ROM CR-840",
2358 "CD-ROM Drive/F5A",
2359 "WPI CDD-820",
2360 "SAMSUNG CD-ROM SC-148C",
2361 "SAMSUNG CD-ROM SC",
2362 "SanDisk SDP3B-64",
2363 "ATAPI CD-ROM DRIVE 40X MAXIMUM",
2364 "_NEC DV5800A",
2365 };
2366
2367 static int ata_dma_blacklisted(const struct ata_device *dev)
2368 {
2369 unsigned char model_num[41];
2370 int i;
2371
2372 ata_id_c_string(dev->id, model_num, ATA_ID_PROD_OFS, sizeof(model_num));
2373
2374 for (i = 0; i < ARRAY_SIZE(ata_dma_blacklist); i++)
2375 if (!strcmp(ata_dma_blacklist[i], model_num))
2376 return 1;
2377
2378 return 0;
2379 }
2380
2381 static unsigned int ata_get_mode_mask(const struct ata_port *ap, int shift)
2382 {
2383 const struct ata_device *master, *slave;
2384 unsigned int mask;
2385
2386 master = &ap->device[0];
2387 slave = &ap->device[1];
2388
2389 WARN_ON(!ata_dev_present(master) && !ata_dev_present(slave));
2390
2391 if (shift == ATA_SHIFT_UDMA) {
2392 mask = ap->udma_mask;
2393 if (ata_dev_present(master)) {
2394 mask &= (master->id[ATA_ID_UDMA_MODES] & 0xff);
2395 if (ata_dma_blacklisted(master)) {
2396 mask = 0;
2397 ata_pr_blacklisted(ap, master);
2398 }
2399 }
2400 if (ata_dev_present(slave)) {
2401 mask &= (slave->id[ATA_ID_UDMA_MODES] & 0xff);
2402 if (ata_dma_blacklisted(slave)) {
2403 mask = 0;
2404 ata_pr_blacklisted(ap, slave);
2405 }
2406 }
2407 }
2408 else if (shift == ATA_SHIFT_MWDMA) {
2409 mask = ap->mwdma_mask;
2410 if (ata_dev_present(master)) {
2411 mask &= (master->id[ATA_ID_MWDMA_MODES] & 0x07);
2412 if (ata_dma_blacklisted(master)) {
2413 mask = 0;
2414 ata_pr_blacklisted(ap, master);
2415 }
2416 }
2417 if (ata_dev_present(slave)) {
2418 mask &= (slave->id[ATA_ID_MWDMA_MODES] & 0x07);
2419 if (ata_dma_blacklisted(slave)) {
2420 mask = 0;
2421 ata_pr_blacklisted(ap, slave);
2422 }
2423 }
2424 }
2425 else if (shift == ATA_SHIFT_PIO) {
2426 mask = ap->pio_mask;
2427 if (ata_dev_present(master)) {
2428 /* spec doesn't return explicit support for
2429 * PIO0-2, so we fake it
2430 */
2431 u16 tmp_mode = master->id[ATA_ID_PIO_MODES] & 0x03;
2432 tmp_mode <<= 3;
2433 tmp_mode |= 0x7;
2434 mask &= tmp_mode;
2435 }
2436 if (ata_dev_present(slave)) {
2437 /* spec doesn't return explicit support for
2438 * PIO0-2, so we fake it
2439 */
2440 u16 tmp_mode = slave->id[ATA_ID_PIO_MODES] & 0x03;
2441 tmp_mode <<= 3;
2442 tmp_mode |= 0x7;
2443 mask &= tmp_mode;
2444 }
2445 }
2446 else {
2447 mask = 0xffffffff; /* shut up compiler warning */
2448 BUG();
2449 }
2450
2451 return mask;
2452 }
2453
2454 /* find greatest bit */
2455 static int fgb(u32 bitmap)
2456 {
2457 unsigned int i;
2458 int x = -1;
2459
2460 for (i = 0; i < 32; i++)
2461 if (bitmap & (1 << i))
2462 x = i;
2463
2464 return x;
2465 }
2466
2467 /**
2468 * ata_choose_xfer_mode - attempt to find best transfer mode
2469 * @ap: Port for which an xfer mode will be selected
2470 * @xfer_mode_out: (output) SET FEATURES - XFER MODE code
2471 * @xfer_shift_out: (output) bit shift that selects this mode
2472 *
2473 * Based on host and device capabilities, determine the
2474 * maximum transfer mode that is amenable to all.
2475 *
2476 * LOCKING:
2477 * PCI/etc. bus probe sem.
2478 *
2479 * RETURNS:
2480 * Zero on success, negative on error.
2481 */
2482
2483 static int ata_choose_xfer_mode(const struct ata_port *ap,
2484 u8 *xfer_mode_out,
2485 unsigned int *xfer_shift_out)
2486 {
2487 unsigned int mask, shift;
2488 int x, i;
2489
2490 for (i = 0; i < ARRAY_SIZE(xfer_mode_classes); i++) {
2491 shift = xfer_mode_classes[i].shift;
2492 mask = ata_get_mode_mask(ap, shift);
2493
2494 x = fgb(mask);
2495 if (x >= 0) {
2496 *xfer_mode_out = xfer_mode_classes[i].base + x;
2497 *xfer_shift_out = shift;
2498 return 0;
2499 }
2500 }
2501
2502 return -1;
2503 }
2504
2505 /**
2506 * ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command
2507 * @ap: Port associated with device @dev
2508 * @dev: Device to which command will be sent
2509 *
2510 * Issue SET FEATURES - XFER MODE command to device @dev
2511 * on port @ap.
2512 *
2513 * LOCKING:
2514 * PCI/etc. bus probe sem.
2515 */
2516
2517 static void ata_dev_set_xfermode(struct ata_port *ap, struct ata_device *dev)
2518 {
2519 struct ata_taskfile tf;
2520
2521 /* set up set-features taskfile */
2522 DPRINTK("set features - xfer mode\n");
2523
2524 ata_tf_init(ap, &tf, dev->devno);
2525 tf.command = ATA_CMD_SET_FEATURES;
2526 tf.feature = SETFEATURES_XFER;
2527 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
2528 tf.protocol = ATA_PROT_NODATA;
2529 tf.nsect = dev->xfer_mode;
2530
2531 if (ata_exec_internal(ap, dev, &tf, DMA_NONE, NULL, 0)) {
2532 printk(KERN_ERR "ata%u: failed to set xfermode, disabled\n",
2533 ap->id);
2534 ata_port_disable(ap);
2535 }
2536
2537 DPRINTK("EXIT\n");
2538 }
2539
2540 /**
2541 * ata_dev_init_params - Issue INIT DEV PARAMS command
2542 * @ap: Port associated with device @dev
2543 * @dev: Device to which command will be sent
2544 *
2545 * LOCKING:
2546 * Kernel thread context (may sleep)
2547 *
2548 * RETURNS:
2549 * 0 on success, AC_ERR_* mask otherwise.
2550 */
2551
2552 static unsigned int ata_dev_init_params(struct ata_port *ap,
2553 struct ata_device *dev)
2554 {
2555 struct ata_taskfile tf;
2556 unsigned int err_mask;
2557 u16 sectors = dev->id[6];
2558 u16 heads = dev->id[3];
2559
2560 /* Number of sectors per track 1-255. Number of heads 1-16 */
2561 if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16)
2562 return 0;
2563
2564 /* set up init dev params taskfile */
2565 DPRINTK("init dev params \n");
2566
2567 ata_tf_init(ap, &tf, dev->devno);
2568 tf.command = ATA_CMD_INIT_DEV_PARAMS;
2569 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
2570 tf.protocol = ATA_PROT_NODATA;
2571 tf.nsect = sectors;
2572 tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */
2573
2574 err_mask = ata_exec_internal(ap, dev, &tf, DMA_NONE, NULL, 0);
2575
2576 DPRINTK("EXIT, err_mask=%x\n", err_mask);
2577 return err_mask;
2578 }
2579
2580 /**
2581 * ata_sg_clean - Unmap DMA memory associated with command
2582 * @qc: Command containing DMA memory to be released
2583 *
2584 * Unmap all mapped DMA memory associated with this command.
2585 *
2586 * LOCKING:
2587 * spin_lock_irqsave(host_set lock)
2588 */
2589
2590 static void ata_sg_clean(struct ata_queued_cmd *qc)
2591 {
2592 struct ata_port *ap = qc->ap;
2593 struct scatterlist *sg = qc->__sg;
2594 int dir = qc->dma_dir;
2595 void *pad_buf = NULL;
2596
2597 WARN_ON(!(qc->flags & ATA_QCFLAG_DMAMAP));
2598 WARN_ON(sg == NULL);
2599
2600 if (qc->flags & ATA_QCFLAG_SINGLE)
2601 WARN_ON(qc->n_elem > 1);
2602
2603 VPRINTK("unmapping %u sg elements\n", qc->n_elem);
2604
2605 /* if we padded the buffer out to 32-bit bound, and data
2606 * xfer direction is from-device, we must copy from the
2607 * pad buffer back into the supplied buffer
2608 */
2609 if (qc->pad_len && !(qc->tf.flags & ATA_TFLAG_WRITE))
2610 pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
2611
2612 if (qc->flags & ATA_QCFLAG_SG) {
2613 if (qc->n_elem)
2614 dma_unmap_sg(ap->host_set->dev, sg, qc->n_elem, dir);
2615 /* restore last sg */
2616 sg[qc->orig_n_elem - 1].length += qc->pad_len;
2617 if (pad_buf) {
2618 struct scatterlist *psg = &qc->pad_sgent;
2619 void *addr = kmap_atomic(psg->page, KM_IRQ0);
2620 memcpy(addr + psg->offset, pad_buf, qc->pad_len);
2621 kunmap_atomic(addr, KM_IRQ0);
2622 }
2623 } else {
2624 if (qc->n_elem)
2625 dma_unmap_single(ap->host_set->dev,
2626 sg_dma_address(&sg[0]), sg_dma_len(&sg[0]),
2627 dir);
2628 /* restore sg */
2629 sg->length += qc->pad_len;
2630 if (pad_buf)
2631 memcpy(qc->buf_virt + sg->length - qc->pad_len,
2632 pad_buf, qc->pad_len);
2633 }
2634
2635 qc->flags &= ~ATA_QCFLAG_DMAMAP;
2636 qc->__sg = NULL;
2637 }
2638
2639 /**
2640 * ata_fill_sg - Fill PCI IDE PRD table
2641 * @qc: Metadata associated with taskfile to be transferred
2642 *
2643 * Fill PCI IDE PRD (scatter-gather) table with segments
2644 * associated with the current disk command.
2645 *
2646 * LOCKING:
2647 * spin_lock_irqsave(host_set lock)
2648 *
2649 */
2650 static void ata_fill_sg(struct ata_queued_cmd *qc)
2651 {
2652 struct ata_port *ap = qc->ap;
2653 struct scatterlist *sg;
2654 unsigned int idx;
2655
2656 WARN_ON(qc->__sg == NULL);
2657 WARN_ON(qc->n_elem == 0 && qc->pad_len == 0);
2658
2659 idx = 0;
2660 ata_for_each_sg(sg, qc) {
2661 u32 addr, offset;
2662 u32 sg_len, len;
2663
2664 /* determine if physical DMA addr spans 64K boundary.
2665 * Note h/w doesn't support 64-bit, so we unconditionally
2666 * truncate dma_addr_t to u32.
2667 */
2668 addr = (u32) sg_dma_address(sg);
2669 sg_len = sg_dma_len(sg);
2670
2671 while (sg_len) {
2672 offset = addr & 0xffff;
2673 len = sg_len;
2674 if ((offset + sg_len) > 0x10000)
2675 len = 0x10000 - offset;
2676
2677 ap->prd[idx].addr = cpu_to_le32(addr);
2678 ap->prd[idx].flags_len = cpu_to_le32(len & 0xffff);
2679 VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", idx, addr, len);
2680
2681 idx++;
2682 sg_len -= len;
2683 addr += len;
2684 }
2685 }
2686
2687 if (idx)
2688 ap->prd[idx - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT);
2689 }
2690 /**
2691 * ata_check_atapi_dma - Check whether ATAPI DMA can be supported
2692 * @qc: Metadata associated with taskfile to check
2693 *
2694 * Allow low-level driver to filter ATA PACKET commands, returning
2695 * a status indicating whether or not it is OK to use DMA for the
2696 * supplied PACKET command.
2697 *
2698 * LOCKING:
2699 * spin_lock_irqsave(host_set lock)
2700 *
2701 * RETURNS: 0 when ATAPI DMA can be used
2702 * nonzero otherwise
2703 */
2704 int ata_check_atapi_dma(struct ata_queued_cmd *qc)
2705 {
2706 struct ata_port *ap = qc->ap;
2707 int rc = 0; /* Assume ATAPI DMA is OK by default */
2708
2709 if (ap->ops->check_atapi_dma)
2710 rc = ap->ops->check_atapi_dma(qc);
2711
2712 return rc;
2713 }
2714 /**
2715 * ata_qc_prep - Prepare taskfile for submission
2716 * @qc: Metadata associated with taskfile to be prepared
2717 *
2718 * Prepare ATA taskfile for submission.
2719 *
2720 * LOCKING:
2721 * spin_lock_irqsave(host_set lock)
2722 */
2723 void ata_qc_prep(struct ata_queued_cmd *qc)
2724 {
2725 if (!(qc->flags & ATA_QCFLAG_DMAMAP))
2726 return;
2727
2728 ata_fill_sg(qc);
2729 }
2730
2731 /**
2732 * ata_sg_init_one - Associate command with memory buffer
2733 * @qc: Command to be associated
2734 * @buf: Memory buffer
2735 * @buflen: Length of memory buffer, in bytes.
2736 *
2737 * Initialize the data-related elements of queued_cmd @qc
2738 * to point to a single memory buffer, @buf of byte length @buflen.
2739 *
2740 * LOCKING:
2741 * spin_lock_irqsave(host_set lock)
2742 */
2743
2744 void ata_sg_init_one(struct ata_queued_cmd *qc, void *buf, unsigned int buflen)
2745 {
2746 struct scatterlist *sg;
2747
2748 qc->flags |= ATA_QCFLAG_SINGLE;
2749
2750 memset(&qc->sgent, 0, sizeof(qc->sgent));
2751 qc->__sg = &qc->sgent;
2752 qc->n_elem = 1;
2753 qc->orig_n_elem = 1;
2754 qc->buf_virt = buf;
2755
2756 sg = qc->__sg;
2757 sg_init_one(sg, buf, buflen);
2758 }
2759
2760 /**
2761 * ata_sg_init - Associate command with scatter-gather table.
2762 * @qc: Command to be associated
2763 * @sg: Scatter-gather table.
2764 * @n_elem: Number of elements in s/g table.
2765 *
2766 * Initialize the data-related elements of queued_cmd @qc
2767 * to point to a scatter-gather table @sg, containing @n_elem
2768 * elements.
2769 *
2770 * LOCKING:
2771 * spin_lock_irqsave(host_set lock)
2772 */
2773
2774 void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg,
2775 unsigned int n_elem)
2776 {
2777 qc->flags |= ATA_QCFLAG_SG;
2778 qc->__sg = sg;
2779 qc->n_elem = n_elem;
2780 qc->orig_n_elem = n_elem;
2781 }
2782
2783 /**
2784 * ata_sg_setup_one - DMA-map the memory buffer associated with a command.
2785 * @qc: Command with memory buffer to be mapped.
2786 *
2787 * DMA-map the memory buffer associated with queued_cmd @qc.
2788 *
2789 * LOCKING:
2790 * spin_lock_irqsave(host_set lock)
2791 *
2792 * RETURNS:
2793 * Zero on success, negative on error.
2794 */
2795
2796 static int ata_sg_setup_one(struct ata_queued_cmd *qc)
2797 {
2798 struct ata_port *ap = qc->ap;
2799 int dir = qc->dma_dir;
2800 struct scatterlist *sg = qc->__sg;
2801 dma_addr_t dma_address;
2802 int trim_sg = 0;
2803
2804 /* we must lengthen transfers to end on a 32-bit boundary */
2805 qc->pad_len = sg->length & 3;
2806 if (qc->pad_len) {
2807 void *pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
2808 struct scatterlist *psg = &qc->pad_sgent;
2809
2810 WARN_ON(qc->dev->class != ATA_DEV_ATAPI);
2811
2812 memset(pad_buf, 0, ATA_DMA_PAD_SZ);
2813
2814 if (qc->tf.flags & ATA_TFLAG_WRITE)
2815 memcpy(pad_buf, qc->buf_virt + sg->length - qc->pad_len,
2816 qc->pad_len);
2817
2818 sg_dma_address(psg) = ap->pad_dma + (qc->tag * ATA_DMA_PAD_SZ);
2819 sg_dma_len(psg) = ATA_DMA_PAD_SZ;
2820 /* trim sg */
2821 sg->length -= qc->pad_len;
2822 if (sg->length == 0)
2823 trim_sg = 1;
2824
2825 DPRINTK("padding done, sg->length=%u pad_len=%u\n",
2826 sg->length, qc->pad_len);
2827 }
2828
2829 if (trim_sg) {
2830 qc->n_elem--;
2831 goto skip_map;
2832 }
2833
2834 dma_address = dma_map_single(ap->host_set->dev, qc->buf_virt,
2835 sg->length, dir);
2836 if (dma_mapping_error(dma_address)) {
2837 /* restore sg */
2838 sg->length += qc->pad_len;
2839 return -1;
2840 }
2841
2842 sg_dma_address(sg) = dma_address;
2843 sg_dma_len(sg) = sg->length;
2844
2845 skip_map:
2846 DPRINTK("mapped buffer of %d bytes for %s\n", sg_dma_len(sg),
2847 qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
2848
2849 return 0;
2850 }
2851
2852 /**
2853 * ata_sg_setup - DMA-map the scatter-gather table associated with a command.
2854 * @qc: Command with scatter-gather table to be mapped.
2855 *
2856 * DMA-map the scatter-gather table associated with queued_cmd @qc.
2857 *
2858 * LOCKING:
2859 * spin_lock_irqsave(host_set lock)
2860 *
2861 * RETURNS:
2862 * Zero on success, negative on error.
2863 *
2864 */
2865
2866 static int ata_sg_setup(struct ata_queued_cmd *qc)
2867 {
2868 struct ata_port *ap = qc->ap;
2869 struct scatterlist *sg = qc->__sg;
2870 struct scatterlist *lsg = &sg[qc->n_elem - 1];
2871 int n_elem, pre_n_elem, dir, trim_sg = 0;
2872
2873 VPRINTK("ENTER, ata%u\n", ap->id);
2874 WARN_ON(!(qc->flags & ATA_QCFLAG_SG));
2875
2876 /* we must lengthen transfers to end on a 32-bit boundary */
2877 qc->pad_len = lsg->length & 3;
2878 if (qc->pad_len) {
2879 void *pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
2880 struct scatterlist *psg = &qc->pad_sgent;
2881 unsigned int offset;
2882
2883 WARN_ON(qc->dev->class != ATA_DEV_ATAPI);
2884
2885 memset(pad_buf, 0, ATA_DMA_PAD_SZ);
2886
2887 /*
2888 * psg->page/offset are used to copy to-be-written
2889 * data in this function or read data in ata_sg_clean.
2890 */
2891 offset = lsg->offset + lsg->length - qc->pad_len;
2892 psg->page = nth_page(lsg->page, offset >> PAGE_SHIFT);
2893 psg->offset = offset_in_page(offset);
2894
2895 if (qc->tf.flags & ATA_TFLAG_WRITE) {
2896 void *addr = kmap_atomic(psg->page, KM_IRQ0);
2897 memcpy(pad_buf, addr + psg->offset, qc->pad_len);
2898 kunmap_atomic(addr, KM_IRQ0);
2899 }
2900
2901 sg_dma_address(psg) = ap->pad_dma + (qc->tag * ATA_DMA_PAD_SZ);
2902 sg_dma_len(psg) = ATA_DMA_PAD_SZ;
2903 /* trim last sg */
2904 lsg->length -= qc->pad_len;
2905 if (lsg->length == 0)
2906 trim_sg = 1;
2907
2908 DPRINTK("padding done, sg[%d].length=%u pad_len=%u\n",
2909 qc->n_elem - 1, lsg->length, qc->pad_len);
2910 }
2911
2912 pre_n_elem = qc->n_elem;
2913 if (trim_sg && pre_n_elem)
2914 pre_n_elem--;
2915
2916 if (!pre_n_elem) {
2917 n_elem = 0;
2918 goto skip_map;
2919 }
2920
2921 dir = qc->dma_dir;
2922 n_elem = dma_map_sg(ap->host_set->dev, sg, pre_n_elem, dir);
2923 if (n_elem < 1) {
2924 /* restore last sg */
2925 lsg->length += qc->pad_len;
2926 return -1;
2927 }
2928
2929 DPRINTK("%d sg elements mapped\n", n_elem);
2930
2931 skip_map:
2932 qc->n_elem = n_elem;
2933
2934 return 0;
2935 }
2936
2937 /**
2938 * ata_poll_qc_complete - turn irq back on and finish qc
2939 * @qc: Command to complete
2940 * @err_mask: ATA status register content
2941 *
2942 * LOCKING:
2943 * None. (grabs host lock)
2944 */
2945
2946 void ata_poll_qc_complete(struct ata_queued_cmd *qc)
2947 {
2948 struct ata_port *ap = qc->ap;
2949 unsigned long flags;
2950
2951 spin_lock_irqsave(&ap->host_set->lock, flags);
2952 ata_irq_on(ap);
2953 ata_qc_complete(qc);
2954 spin_unlock_irqrestore(&ap->host_set->lock, flags);
2955 }
2956
2957 /**
2958 * ata_pio_poll - poll using PIO, depending on current state
2959 * @ap: the target ata_port
2960 *
2961 * LOCKING:
2962 * None. (executing in kernel thread context)
2963 *
2964 * RETURNS:
2965 * timeout value to use
2966 */
2967
2968 static unsigned long ata_pio_poll(struct ata_port *ap)
2969 {
2970 struct ata_queued_cmd *qc;
2971 u8 status;
2972 unsigned int poll_state = HSM_ST_UNKNOWN;
2973 unsigned int reg_state = HSM_ST_UNKNOWN;
2974
2975 qc = ata_qc_from_tag(ap, ap->active_tag);
2976 WARN_ON(qc == NULL);
2977
2978 switch (ap->hsm_task_state) {
2979 case HSM_ST:
2980 case HSM_ST_POLL:
2981 poll_state = HSM_ST_POLL;
2982 reg_state = HSM_ST;
2983 break;
2984 case HSM_ST_LAST:
2985 case HSM_ST_LAST_POLL:
2986 poll_state = HSM_ST_LAST_POLL;
2987 reg_state = HSM_ST_LAST;
2988 break;
2989 default:
2990 BUG();
2991 break;
2992 }
2993
2994 status = ata_chk_status(ap);
2995 if (status & ATA_BUSY) {
2996 if (time_after(jiffies, ap->pio_task_timeout)) {
2997 qc->err_mask |= AC_ERR_TIMEOUT;
2998 ap->hsm_task_state = HSM_ST_TMOUT;
2999 return 0;
3000 }
3001 ap->hsm_task_state = poll_state;
3002 return ATA_SHORT_PAUSE;
3003 }
3004
3005 ap->hsm_task_state = reg_state;
3006 return 0;
3007 }
3008
3009 /**
3010 * ata_pio_complete - check if drive is busy or idle
3011 * @ap: the target ata_port
3012 *
3013 * LOCKING:
3014 * None. (executing in kernel thread context)
3015 *
3016 * RETURNS:
3017 * Zero if qc completed.
3018 * Non-zero if has next.
3019 */
3020
3021 static int ata_pio_complete (struct ata_port *ap)
3022 {
3023 struct ata_queued_cmd *qc;
3024 u8 drv_stat;
3025
3026 /*
3027 * This is purely heuristic. This is a fast path. Sometimes when
3028 * we enter, BSY will be cleared in a chk-status or two. If not,
3029 * the drive is probably seeking or something. Snooze for a couple
3030 * msecs, then chk-status again. If still busy, fall back to
3031 * HSM_ST_LAST_POLL state.
3032 */
3033 drv_stat = ata_busy_wait(ap, ATA_BUSY, 10);
3034 if (drv_stat & ATA_BUSY) {
3035 msleep(2);
3036 drv_stat = ata_busy_wait(ap, ATA_BUSY, 10);
3037 if (drv_stat & ATA_BUSY) {
3038 ap->hsm_task_state = HSM_ST_LAST_POLL;
3039 ap->pio_task_timeout = jiffies + ATA_TMOUT_PIO;
3040 return 1;
3041 }
3042 }
3043
3044 qc = ata_qc_from_tag(ap, ap->active_tag);
3045 WARN_ON(qc == NULL);
3046
3047 drv_stat = ata_wait_idle(ap);
3048 if (!ata_ok(drv_stat)) {
3049 qc->err_mask |= __ac_err_mask(drv_stat);
3050 ap->hsm_task_state = HSM_ST_ERR;
3051 return 1;
3052 }
3053
3054 ap->hsm_task_state = HSM_ST_IDLE;
3055
3056 WARN_ON(qc->err_mask);
3057 ata_poll_qc_complete(qc);
3058
3059 /* another command may start at this point */
3060
3061 return 0;
3062 }
3063
3064
3065 /**
3066 * swap_buf_le16 - swap halves of 16-bit words in place
3067 * @buf: Buffer to swap
3068 * @buf_words: Number of 16-bit words in buffer.
3069 *
3070 * Swap halves of 16-bit words if needed to convert from
3071 * little-endian byte order to native cpu byte order, or
3072 * vice-versa.
3073 *
3074 * LOCKING:
3075 * Inherited from caller.
3076 */
3077 void swap_buf_le16(u16 *buf, unsigned int buf_words)
3078 {
3079 #ifdef __BIG_ENDIAN
3080 unsigned int i;
3081
3082 for (i = 0; i < buf_words; i++)
3083 buf[i] = le16_to_cpu(buf[i]);
3084 #endif /* __BIG_ENDIAN */
3085 }
3086
3087 /**
3088 * ata_mmio_data_xfer - Transfer data by MMIO
3089 * @ap: port to read/write
3090 * @buf: data buffer
3091 * @buflen: buffer length
3092 * @write_data: read/write
3093 *
3094 * Transfer data from/to the device data register by MMIO.
3095 *
3096 * LOCKING:
3097 * Inherited from caller.
3098 */
3099
3100 static void ata_mmio_data_xfer(struct ata_port *ap, unsigned char *buf,
3101 unsigned int buflen, int write_data)
3102 {
3103 unsigned int i;
3104 unsigned int words = buflen >> 1;
3105 u16 *buf16 = (u16 *) buf;
3106 void __iomem *mmio = (void __iomem *)ap->ioaddr.data_addr;
3107
3108 /* Transfer multiple of 2 bytes */
3109 if (write_data) {
3110 for (i = 0; i < words; i++)
3111 writew(le16_to_cpu(buf16[i]), mmio);
3112 } else {
3113 for (i = 0; i < words; i++)
3114 buf16[i] = cpu_to_le16(readw(mmio));
3115 }
3116
3117 /* Transfer trailing 1 byte, if any. */
3118 if (unlikely(buflen & 0x01)) {
3119 u16 align_buf[1] = { 0 };
3120 unsigned char *trailing_buf = buf + buflen - 1;
3121
3122 if (write_data) {
3123 memcpy(align_buf, trailing_buf, 1);
3124 writew(le16_to_cpu(align_buf[0]), mmio);
3125 } else {
3126 align_buf[0] = cpu_to_le16(readw(mmio));
3127 memcpy(trailing_buf, align_buf, 1);
3128 }
3129 }
3130 }
3131
3132 /**
3133 * ata_pio_data_xfer - Transfer data by PIO
3134 * @ap: port to read/write
3135 * @buf: data buffer
3136 * @buflen: buffer length
3137 * @write_data: read/write
3138 *
3139 * Transfer data from/to the device data register by PIO.
3140 *
3141 * LOCKING:
3142 * Inherited from caller.
3143 */
3144
3145 static void ata_pio_data_xfer(struct ata_port *ap, unsigned char *buf,
3146 unsigned int buflen, int write_data)
3147 {
3148 unsigned int words = buflen >> 1;
3149
3150 /* Transfer multiple of 2 bytes */
3151 if (write_data)
3152 outsw(ap->ioaddr.data_addr, buf, words);
3153 else
3154 insw(ap->ioaddr.data_addr, buf, words);
3155
3156 /* Transfer trailing 1 byte, if any. */
3157 if (unlikely(buflen & 0x01)) {
3158 u16 align_buf[1] = { 0 };
3159 unsigned char *trailing_buf = buf + buflen - 1;
3160
3161 if (write_data) {
3162 memcpy(align_buf, trailing_buf, 1);
3163 outw(le16_to_cpu(align_buf[0]), ap->ioaddr.data_addr);
3164 } else {
3165 align_buf[0] = cpu_to_le16(inw(ap->ioaddr.data_addr));
3166 memcpy(trailing_buf, align_buf, 1);
3167 }
3168 }
3169 }
3170
3171 /**
3172 * ata_data_xfer - Transfer data from/to the data register.
3173 * @ap: port to read/write
3174 * @buf: data buffer
3175 * @buflen: buffer length
3176 * @do_write: read/write
3177 *
3178 * Transfer data from/to the device data register.
3179 *
3180 * LOCKING:
3181 * Inherited from caller.
3182 */
3183
3184 static void ata_data_xfer(struct ata_port *ap, unsigned char *buf,
3185 unsigned int buflen, int do_write)
3186 {
3187 /* Make the crap hardware pay the costs not the good stuff */
3188 if (unlikely(ap->flags & ATA_FLAG_IRQ_MASK)) {
3189 unsigned long flags;
3190 local_irq_save(flags);
3191 if (ap->flags & ATA_FLAG_MMIO)
3192 ata_mmio_data_xfer(ap, buf, buflen, do_write);
3193 else
3194 ata_pio_data_xfer(ap, buf, buflen, do_write);
3195 local_irq_restore(flags);
3196 } else {
3197 if (ap->flags & ATA_FLAG_MMIO)
3198 ata_mmio_data_xfer(ap, buf, buflen, do_write);
3199 else
3200 ata_pio_data_xfer(ap, buf, buflen, do_write);
3201 }
3202 }
3203
3204 /**
3205 * ata_pio_sector - Transfer ATA_SECT_SIZE (512 bytes) of data.
3206 * @qc: Command on going
3207 *
3208 * Transfer ATA_SECT_SIZE of data from/to the ATA device.
3209 *
3210 * LOCKING:
3211 * Inherited from caller.
3212 */
3213
3214 static void ata_pio_sector(struct ata_queued_cmd *qc)
3215 {
3216 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
3217 struct scatterlist *sg = qc->__sg;
3218 struct ata_port *ap = qc->ap;
3219 struct page *page;
3220 unsigned int offset;
3221 unsigned char *buf;
3222
3223 if (qc->cursect == (qc->nsect - 1))
3224 ap->hsm_task_state = HSM_ST_LAST;
3225
3226 page = sg[qc->cursg].page;
3227 offset = sg[qc->cursg].offset + qc->cursg_ofs * ATA_SECT_SIZE;
3228
3229 /* get the current page and offset */
3230 page = nth_page(page, (offset >> PAGE_SHIFT));
3231 offset %= PAGE_SIZE;
3232
3233 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
3234
3235 if (PageHighMem(page)) {
3236 unsigned long flags;
3237
3238 local_irq_save(flags);
3239 buf = kmap_atomic(page, KM_IRQ0);
3240
3241 /* do the actual data transfer */
3242 ata_data_xfer(ap, buf + offset, ATA_SECT_SIZE, do_write);
3243
3244 kunmap_atomic(buf, KM_IRQ0);
3245 local_irq_restore(flags);
3246 } else {
3247 buf = page_address(page);
3248 ata_data_xfer(ap, buf + offset, ATA_SECT_SIZE, do_write);
3249 }
3250
3251 qc->cursect++;
3252 qc->cursg_ofs++;
3253
3254 if ((qc->cursg_ofs * ATA_SECT_SIZE) == (&sg[qc->cursg])->length) {
3255 qc->cursg++;
3256 qc->cursg_ofs = 0;
3257 }
3258 }
3259
3260 /**
3261 * ata_pio_sectors - Transfer one or many 512-byte sectors.
3262 * @qc: Command on going
3263 *
3264 * Transfer one or many ATA_SECT_SIZE of data from/to the
3265 * ATA device for the DRQ request.
3266 *
3267 * LOCKING:
3268 * Inherited from caller.
3269 */
3270
3271 static void ata_pio_sectors(struct ata_queued_cmd *qc)
3272 {
3273 if (is_multi_taskfile(&qc->tf)) {
3274 /* READ/WRITE MULTIPLE */
3275 unsigned int nsect;
3276
3277 WARN_ON(qc->dev->multi_count == 0);
3278
3279 nsect = min(qc->nsect - qc->cursect, qc->dev->multi_count);
3280 while (nsect--)
3281 ata_pio_sector(qc);
3282 } else
3283 ata_pio_sector(qc);
3284 }
3285
3286 /**
3287 * atapi_send_cdb - Write CDB bytes to hardware
3288 * @ap: Port to which ATAPI device is attached.
3289 * @qc: Taskfile currently active
3290 *
3291 * When device has indicated its readiness to accept
3292 * a CDB, this function is called. Send the CDB.
3293 *
3294 * LOCKING:
3295 * caller.
3296 */
3297
3298 static void atapi_send_cdb(struct ata_port *ap, struct ata_queued_cmd *qc)
3299 {
3300 /* send SCSI cdb */
3301 DPRINTK("send cdb\n");
3302 WARN_ON(qc->dev->cdb_len < 12);
3303
3304 ata_data_xfer(ap, qc->cdb, qc->dev->cdb_len, 1);
3305 ata_altstatus(ap); /* flush */
3306
3307 switch (qc->tf.protocol) {
3308 case ATA_PROT_ATAPI:
3309 ap->hsm_task_state = HSM_ST;
3310 break;
3311 case ATA_PROT_ATAPI_NODATA:
3312 ap->hsm_task_state = HSM_ST_LAST;
3313 break;
3314 case ATA_PROT_ATAPI_DMA:
3315 ap->hsm_task_state = HSM_ST_LAST;
3316 /* initiate bmdma */
3317 ap->ops->bmdma_start(qc);
3318 break;
3319 }
3320 }
3321
3322 /**
3323 * ata_pio_first_block - Write first data block to hardware
3324 * @ap: Port to which ATA/ATAPI device is attached.
3325 *
3326 * When device has indicated its readiness to accept
3327 * the data, this function sends out the CDB or
3328 * the first data block by PIO.
3329 * After this,
3330 * - If polling, ata_pio_task() handles the rest.
3331 * - Otherwise, interrupt handler takes over.
3332 *
3333 * LOCKING:
3334 * Kernel thread context (may sleep)
3335 *
3336 * RETURNS:
3337 * Zero if irq handler takes over
3338 * Non-zero if has next (polling).
3339 */
3340
3341 static int ata_pio_first_block(struct ata_port *ap)
3342 {
3343 struct ata_queued_cmd *qc;
3344 u8 status;
3345 unsigned long flags;
3346 int has_next;
3347
3348 qc = ata_qc_from_tag(ap, ap->active_tag);
3349 WARN_ON(qc == NULL);
3350 WARN_ON((qc->flags & ATA_QCFLAG_ACTIVE) == 0);
3351
3352 /* if polling, we will stay in the work queue after sending the data.
3353 * otherwise, interrupt handler takes over after sending the data.
3354 */
3355 has_next = (qc->tf.flags & ATA_TFLAG_POLLING);
3356
3357 /* sleep-wait for BSY to clear */
3358 DPRINTK("busy wait\n");
3359 if (ata_busy_sleep(ap, ATA_TMOUT_DATAOUT_QUICK, ATA_TMOUT_DATAOUT)) {
3360 qc->err_mask |= AC_ERR_TIMEOUT;
3361 ap->hsm_task_state = HSM_ST_TMOUT;
3362 goto err_out;
3363 }
3364
3365 /* make sure DRQ is set */
3366 status = ata_chk_status(ap);
3367 if ((status & (ATA_BUSY | ATA_DRQ)) != ATA_DRQ) {
3368 /* device status error */
3369 qc->err_mask |= AC_ERR_HSM;
3370 ap->hsm_task_state = HSM_ST_ERR;
3371 goto err_out;
3372 }
3373
3374 /* Send the CDB (atapi) or the first data block (ata pio out).
3375 * During the state transition, interrupt handler shouldn't
3376 * be invoked before the data transfer is complete and
3377 * hsm_task_state is changed. Hence, the following locking.
3378 */
3379 spin_lock_irqsave(&ap->host_set->lock, flags);
3380
3381 if (qc->tf.protocol == ATA_PROT_PIO) {
3382 /* PIO data out protocol.
3383 * send first data block.
3384 */
3385
3386 /* ata_pio_sectors() might change the state to HSM_ST_LAST.
3387 * so, the state is changed here before ata_pio_sectors().
3388 */
3389 ap->hsm_task_state = HSM_ST;
3390 ata_pio_sectors(qc);
3391 ata_altstatus(ap); /* flush */
3392 } else
3393 /* send CDB */
3394 atapi_send_cdb(ap, qc);
3395
3396 spin_unlock_irqrestore(&ap->host_set->lock, flags);
3397
3398 /* if polling, ata_pio_task() handles the rest.
3399 * otherwise, interrupt handler takes over from here.
3400 */
3401 return has_next;
3402
3403 err_out:
3404 return 1; /* has next */
3405 }
3406
3407 /**
3408 * __atapi_pio_bytes - Transfer data from/to the ATAPI device.
3409 * @qc: Command on going
3410 * @bytes: number of bytes
3411 *
3412 * Transfer Transfer data from/to the ATAPI device.
3413 *
3414 * LOCKING:
3415 * Inherited from caller.
3416 *
3417 */
3418
3419 static void __atapi_pio_bytes(struct ata_queued_cmd *qc, unsigned int bytes)
3420 {
3421 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
3422 struct scatterlist *sg = qc->__sg;
3423 struct ata_port *ap = qc->ap;
3424 struct page *page;
3425 unsigned char *buf;
3426 unsigned int offset, count;
3427
3428 if (qc->curbytes + bytes >= qc->nbytes)
3429 ap->hsm_task_state = HSM_ST_LAST;
3430
3431 next_sg:
3432 if (unlikely(qc->cursg >= qc->n_elem)) {
3433 /*
3434 * The end of qc->sg is reached and the device expects
3435 * more data to transfer. In order not to overrun qc->sg
3436 * and fulfill length specified in the byte count register,
3437 * - for read case, discard trailing data from the device
3438 * - for write case, padding zero data to the device
3439 */
3440 u16 pad_buf[1] = { 0 };
3441 unsigned int words = bytes >> 1;
3442 unsigned int i;
3443
3444 if (words) /* warning if bytes > 1 */
3445 printk(KERN_WARNING "ata%u: %u bytes trailing data\n",
3446 ap->id, bytes);
3447
3448 for (i = 0; i < words; i++)
3449 ata_data_xfer(ap, (unsigned char*)pad_buf, 2, do_write);
3450
3451 ap->hsm_task_state = HSM_ST_LAST;
3452 return;
3453 }
3454
3455 sg = &qc->__sg[qc->cursg];
3456
3457 page = sg->page;
3458 offset = sg->offset + qc->cursg_ofs;
3459
3460 /* get the current page and offset */
3461 page = nth_page(page, (offset >> PAGE_SHIFT));
3462 offset %= PAGE_SIZE;
3463
3464 /* don't overrun current sg */
3465 count = min(sg->length - qc->cursg_ofs, bytes);
3466
3467 /* don't cross page boundaries */
3468 count = min(count, (unsigned int)PAGE_SIZE - offset);
3469
3470 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
3471
3472 if (PageHighMem(page)) {
3473 unsigned long flags;
3474
3475 local_irq_save(flags);
3476 buf = kmap_atomic(page, KM_IRQ0);
3477
3478 /* do the actual data transfer */
3479 ata_data_xfer(ap, buf + offset, count, do_write);
3480
3481 kunmap_atomic(buf, KM_IRQ0);
3482 local_irq_restore(flags);
3483 } else {
3484 buf = page_address(page);
3485 ata_data_xfer(ap, buf + offset, count, do_write);
3486 }
3487
3488 bytes -= count;
3489 qc->curbytes += count;
3490 qc->cursg_ofs += count;
3491
3492 if (qc->cursg_ofs == sg->length) {
3493 qc->cursg++;
3494 qc->cursg_ofs = 0;
3495 }
3496
3497 if (bytes)
3498 goto next_sg;
3499 }
3500
3501 /**
3502 * atapi_pio_bytes - Transfer data from/to the ATAPI device.
3503 * @qc: Command on going
3504 *
3505 * Transfer Transfer data from/to the ATAPI device.
3506 *
3507 * LOCKING:
3508 * Inherited from caller.
3509 */
3510
3511 static void atapi_pio_bytes(struct ata_queued_cmd *qc)
3512 {
3513 struct ata_port *ap = qc->ap;
3514 struct ata_device *dev = qc->dev;
3515 unsigned int ireason, bc_lo, bc_hi, bytes;
3516 int i_write, do_write = (qc->tf.flags & ATA_TFLAG_WRITE) ? 1 : 0;
3517
3518 ap->ops->tf_read(ap, &qc->tf);
3519 ireason = qc->tf.nsect;
3520 bc_lo = qc->tf.lbam;
3521 bc_hi = qc->tf.lbah;
3522 bytes = (bc_hi << 8) | bc_lo;
3523
3524 /* shall be cleared to zero, indicating xfer of data */
3525 if (ireason & (1 << 0))
3526 goto err_out;
3527
3528 /* make sure transfer direction matches expected */
3529 i_write = ((ireason & (1 << 1)) == 0) ? 1 : 0;
3530 if (do_write != i_write)
3531 goto err_out;
3532
3533 VPRINTK("ata%u: xfering %d bytes\n", ap->id, bytes);
3534
3535 __atapi_pio_bytes(qc, bytes);
3536
3537 return;
3538
3539 err_out:
3540 printk(KERN_INFO "ata%u: dev %u: ATAPI check failed\n",
3541 ap->id, dev->devno);
3542 qc->err_mask |= AC_ERR_HSM;
3543 ap->hsm_task_state = HSM_ST_ERR;
3544 }
3545
3546 /**
3547 * ata_pio_block - start PIO on a block
3548 * @ap: the target ata_port
3549 *
3550 * LOCKING:
3551 * None. (executing in kernel thread context)
3552 */
3553
3554 static void ata_pio_block(struct ata_port *ap)
3555 {
3556 struct ata_queued_cmd *qc;
3557 u8 status;
3558
3559 /*
3560 * This is purely heuristic. This is a fast path.
3561 * Sometimes when we enter, BSY will be cleared in
3562 * a chk-status or two. If not, the drive is probably seeking
3563 * or something. Snooze for a couple msecs, then
3564 * chk-status again. If still busy, fall back to
3565 * HSM_ST_POLL state.
3566 */
3567 status = ata_busy_wait(ap, ATA_BUSY, 5);
3568 if (status & ATA_BUSY) {
3569 msleep(2);
3570 status = ata_busy_wait(ap, ATA_BUSY, 10);
3571 if (status & ATA_BUSY) {
3572 ap->hsm_task_state = HSM_ST_POLL;
3573 ap->pio_task_timeout = jiffies + ATA_TMOUT_PIO;
3574 return;
3575 }
3576 }
3577
3578 qc = ata_qc_from_tag(ap, ap->active_tag);
3579 WARN_ON(qc == NULL);
3580
3581 /* check error */
3582 if (status & (ATA_ERR | ATA_DF)) {
3583 qc->err_mask |= AC_ERR_DEV;
3584 ap->hsm_task_state = HSM_ST_ERR;
3585 return;
3586 }
3587
3588 /* transfer data if any */
3589 if (is_atapi_taskfile(&qc->tf)) {
3590 /* DRQ=0 means no more data to transfer */
3591 if ((status & ATA_DRQ) == 0) {
3592 ap->hsm_task_state = HSM_ST_LAST;
3593 return;
3594 }
3595
3596 atapi_pio_bytes(qc);
3597 } else {
3598 /* handle BSY=0, DRQ=0 as error */
3599 if ((status & ATA_DRQ) == 0) {
3600 qc->err_mask |= AC_ERR_HSM;
3601 ap->hsm_task_state = HSM_ST_ERR;
3602 return;
3603 }
3604
3605 ata_pio_sectors(qc);
3606 }
3607
3608 ata_altstatus(ap); /* flush */
3609 }
3610
3611 static void ata_pio_error(struct ata_port *ap)
3612 {
3613 struct ata_queued_cmd *qc;
3614
3615 qc = ata_qc_from_tag(ap, ap->active_tag);
3616 WARN_ON(qc == NULL);
3617
3618 if (qc->tf.command != ATA_CMD_PACKET)
3619 printk(KERN_WARNING "ata%u: PIO error\n", ap->id);
3620
3621 /* make sure qc->err_mask is available to
3622 * know what's wrong and recover
3623 */
3624 WARN_ON(qc->err_mask == 0);
3625
3626 ap->hsm_task_state = HSM_ST_IDLE;
3627
3628 ata_poll_qc_complete(qc);
3629 }
3630
3631 static void ata_pio_task(void *_data)
3632 {
3633 struct ata_port *ap = _data;
3634 unsigned long timeout;
3635 int has_next;
3636
3637 fsm_start:
3638 timeout = 0;
3639 has_next = 1;
3640
3641 switch (ap->hsm_task_state) {
3642 case HSM_ST_FIRST:
3643 has_next = ata_pio_first_block(ap);
3644 break;
3645
3646 case HSM_ST:
3647 ata_pio_block(ap);
3648 break;
3649
3650 case HSM_ST_LAST:
3651 has_next = ata_pio_complete(ap);
3652 break;
3653
3654 case HSM_ST_POLL:
3655 case HSM_ST_LAST_POLL:
3656 timeout = ata_pio_poll(ap);
3657 break;
3658
3659 case HSM_ST_TMOUT:
3660 case HSM_ST_ERR:
3661 ata_pio_error(ap);
3662 return;
3663
3664 default:
3665 BUG();
3666 return;
3667 }
3668
3669 if (timeout)
3670 ata_queue_delayed_pio_task(ap, timeout);
3671 else if (has_next)
3672 goto fsm_start;
3673 }
3674
3675 /**
3676 * ata_qc_timeout - Handle timeout of queued command
3677 * @qc: Command that timed out
3678 *
3679 * Some part of the kernel (currently, only the SCSI layer)
3680 * has noticed that the active command on port @ap has not
3681 * completed after a specified length of time. Handle this
3682 * condition by disabling DMA (if necessary) and completing
3683 * transactions, with error if necessary.
3684 *
3685 * This also handles the case of the "lost interrupt", where
3686 * for some reason (possibly hardware bug, possibly driver bug)
3687 * an interrupt was not delivered to the driver, even though the
3688 * transaction completed successfully.
3689 *
3690 * LOCKING:
3691 * Inherited from SCSI layer (none, can sleep)
3692 */
3693
3694 static void ata_qc_timeout(struct ata_queued_cmd *qc)
3695 {
3696 struct ata_port *ap = qc->ap;
3697 struct ata_host_set *host_set = ap->host_set;
3698 u8 host_stat = 0, drv_stat;
3699 unsigned long flags;
3700
3701 DPRINTK("ENTER\n");
3702
3703 ata_flush_pio_tasks(ap);
3704 ap->hsm_task_state = HSM_ST_IDLE;
3705
3706 spin_lock_irqsave(&host_set->lock, flags);
3707
3708 switch (qc->tf.protocol) {
3709
3710 case ATA_PROT_DMA:
3711 case ATA_PROT_ATAPI_DMA:
3712 host_stat = ap->ops->bmdma_status(ap);
3713
3714 /* before we do anything else, clear DMA-Start bit */
3715 ap->ops->bmdma_stop(qc);
3716
3717 /* fall through */
3718
3719 default:
3720 ata_altstatus(ap);
3721 drv_stat = ata_chk_status(ap);
3722
3723 /* ack bmdma irq events */
3724 ap->ops->irq_clear(ap);
3725
3726 printk(KERN_ERR "ata%u: command 0x%x timeout, stat 0x%x host_stat 0x%x\n",
3727 ap->id, qc->tf.command, drv_stat, host_stat);
3728
3729 ap->hsm_task_state = HSM_ST_IDLE;
3730
3731 /* complete taskfile transaction */
3732 qc->err_mask |= AC_ERR_TIMEOUT;
3733 break;
3734 }
3735
3736 spin_unlock_irqrestore(&host_set->lock, flags);
3737
3738 ata_eh_qc_complete(qc);
3739
3740 DPRINTK("EXIT\n");
3741 }
3742
3743 /**
3744 * ata_eng_timeout - Handle timeout of queued command
3745 * @ap: Port on which timed-out command is active
3746 *
3747 * Some part of the kernel (currently, only the SCSI layer)
3748 * has noticed that the active command on port @ap has not
3749 * completed after a specified length of time. Handle this
3750 * condition by disabling DMA (if necessary) and completing
3751 * transactions, with error if necessary.
3752 *
3753 * This also handles the case of the "lost interrupt", where
3754 * for some reason (possibly hardware bug, possibly driver bug)
3755 * an interrupt was not delivered to the driver, even though the
3756 * transaction completed successfully.
3757 *
3758 * LOCKING:
3759 * Inherited from SCSI layer (none, can sleep)
3760 */
3761
3762 void ata_eng_timeout(struct ata_port *ap)
3763 {
3764 DPRINTK("ENTER\n");
3765
3766 ata_qc_timeout(ata_qc_from_tag(ap, ap->active_tag));
3767
3768 DPRINTK("EXIT\n");
3769 }
3770
3771 /**
3772 * ata_qc_new - Request an available ATA command, for queueing
3773 * @ap: Port associated with device @dev
3774 * @dev: Device from whom we request an available command structure
3775 *
3776 * LOCKING:
3777 * None.
3778 */
3779
3780 static struct ata_queued_cmd *ata_qc_new(struct ata_port *ap)
3781 {
3782 struct ata_queued_cmd *qc = NULL;
3783 unsigned int i;
3784
3785 for (i = 0; i < ATA_MAX_QUEUE; i++)
3786 if (!test_and_set_bit(i, &ap->qactive)) {
3787 qc = ata_qc_from_tag(ap, i);
3788 break;
3789 }
3790
3791 if (qc)
3792 qc->tag = i;
3793
3794 return qc;
3795 }
3796
3797 /**
3798 * ata_qc_new_init - Request an available ATA command, and initialize it
3799 * @ap: Port associated with device @dev
3800 * @dev: Device from whom we request an available command structure
3801 *
3802 * LOCKING:
3803 * None.
3804 */
3805
3806 struct ata_queued_cmd *ata_qc_new_init(struct ata_port *ap,
3807 struct ata_device *dev)
3808 {
3809 struct ata_queued_cmd *qc;
3810
3811 qc = ata_qc_new(ap);
3812 if (qc) {
3813 qc->scsicmd = NULL;
3814 qc->ap = ap;
3815 qc->dev = dev;
3816
3817 ata_qc_reinit(qc);
3818 }
3819
3820 return qc;
3821 }
3822
3823 /**
3824 * ata_qc_free - free unused ata_queued_cmd
3825 * @qc: Command to complete
3826 *
3827 * Designed to free unused ata_queued_cmd object
3828 * in case something prevents using it.
3829 *
3830 * LOCKING:
3831 * spin_lock_irqsave(host_set lock)
3832 */
3833 void ata_qc_free(struct ata_queued_cmd *qc)
3834 {
3835 struct ata_port *ap = qc->ap;
3836 unsigned int tag;
3837
3838 WARN_ON(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
3839
3840 qc->flags = 0;
3841 tag = qc->tag;
3842 if (likely(ata_tag_valid(tag))) {
3843 if (tag == ap->active_tag)
3844 ap->active_tag = ATA_TAG_POISON;
3845 qc->tag = ATA_TAG_POISON;
3846 clear_bit(tag, &ap->qactive);
3847 }
3848 }
3849
3850 void __ata_qc_complete(struct ata_queued_cmd *qc)
3851 {
3852 WARN_ON(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
3853 WARN_ON(!(qc->flags & ATA_QCFLAG_ACTIVE));
3854
3855 if (likely(qc->flags & ATA_QCFLAG_DMAMAP))
3856 ata_sg_clean(qc);
3857
3858 /* atapi: mark qc as inactive to prevent the interrupt handler
3859 * from completing the command twice later, before the error handler
3860 * is called. (when rc != 0 and atapi request sense is needed)
3861 */
3862 qc->flags &= ~ATA_QCFLAG_ACTIVE;
3863
3864 /* call completion callback */
3865 qc->complete_fn(qc);
3866 }
3867
3868 static inline int ata_should_dma_map(struct ata_queued_cmd *qc)
3869 {
3870 struct ata_port *ap = qc->ap;
3871
3872 switch (qc->tf.protocol) {
3873 case ATA_PROT_DMA:
3874 case ATA_PROT_ATAPI_DMA:
3875 return 1;
3876
3877 case ATA_PROT_ATAPI:
3878 case ATA_PROT_PIO:
3879 case ATA_PROT_PIO_MULT:
3880 if (ap->flags & ATA_FLAG_PIO_DMA)
3881 return 1;
3882
3883 /* fall through */
3884
3885 default:
3886 return 0;
3887 }
3888
3889 /* never reached */
3890 }
3891
3892 /**
3893 * ata_qc_issue - issue taskfile to device
3894 * @qc: command to issue to device
3895 *
3896 * Prepare an ATA command to submission to device.
3897 * This includes mapping the data into a DMA-able
3898 * area, filling in the S/G table, and finally
3899 * writing the taskfile to hardware, starting the command.
3900 *
3901 * LOCKING:
3902 * spin_lock_irqsave(host_set lock)
3903 *
3904 * RETURNS:
3905 * Zero on success, AC_ERR_* mask on failure
3906 */
3907
3908 unsigned int ata_qc_issue(struct ata_queued_cmd *qc)
3909 {
3910 struct ata_port *ap = qc->ap;
3911
3912 if (ata_should_dma_map(qc)) {
3913 if (qc->flags & ATA_QCFLAG_SG) {
3914 if (ata_sg_setup(qc))
3915 goto sg_err;
3916 } else if (qc->flags & ATA_QCFLAG_SINGLE) {
3917 if (ata_sg_setup_one(qc))
3918 goto sg_err;
3919 }
3920 } else {
3921 qc->flags &= ~ATA_QCFLAG_DMAMAP;
3922 }
3923
3924 ap->ops->qc_prep(qc);
3925
3926 qc->ap->active_tag = qc->tag;
3927 qc->flags |= ATA_QCFLAG_ACTIVE;
3928
3929 return ap->ops->qc_issue(qc);
3930
3931 sg_err:
3932 qc->flags &= ~ATA_QCFLAG_DMAMAP;
3933 return AC_ERR_SYSTEM;
3934 }
3935
3936
3937 /**
3938 * ata_qc_issue_prot - issue taskfile to device in proto-dependent manner
3939 * @qc: command to issue to device
3940 *
3941 * Using various libata functions and hooks, this function
3942 * starts an ATA command. ATA commands are grouped into
3943 * classes called "protocols", and issuing each type of protocol
3944 * is slightly different.
3945 *
3946 * May be used as the qc_issue() entry in ata_port_operations.
3947 *
3948 * LOCKING:
3949 * spin_lock_irqsave(host_set lock)
3950 *
3951 * RETURNS:
3952 * Zero on success, AC_ERR_* mask on failure
3953 */
3954
3955 unsigned int ata_qc_issue_prot(struct ata_queued_cmd *qc)
3956 {
3957 struct ata_port *ap = qc->ap;
3958
3959 /* Use polling pio if the LLD doesn't handle
3960 * interrupt driven pio and atapi CDB interrupt.
3961 */
3962 if (ap->flags & ATA_FLAG_PIO_POLLING) {
3963 switch (qc->tf.protocol) {
3964 case ATA_PROT_PIO:
3965 case ATA_PROT_ATAPI:
3966 case ATA_PROT_ATAPI_NODATA:
3967 qc->tf.flags |= ATA_TFLAG_POLLING;
3968 break;
3969 case ATA_PROT_ATAPI_DMA:
3970 if (qc->dev->flags & ATA_DFLAG_CDB_INTR)
3971 BUG();
3972 break;
3973 default:
3974 break;
3975 }
3976 }
3977
3978 /* select the device */
3979 ata_dev_select(ap, qc->dev->devno, 1, 0);
3980
3981 /* start the command */
3982 switch (qc->tf.protocol) {
3983 case ATA_PROT_NODATA:
3984 if (qc->tf.flags & ATA_TFLAG_POLLING)
3985 ata_qc_set_polling(qc);
3986
3987 ata_tf_to_host(ap, &qc->tf);
3988 ap->hsm_task_state = HSM_ST_LAST;
3989
3990 if (qc->tf.flags & ATA_TFLAG_POLLING)
3991 ata_queue_pio_task(ap);
3992
3993 break;
3994
3995 case ATA_PROT_DMA:
3996 WARN_ON(qc->tf.flags & ATA_TFLAG_POLLING);
3997
3998 ap->ops->tf_load(ap, &qc->tf); /* load tf registers */
3999 ap->ops->bmdma_setup(qc); /* set up bmdma */
4000 ap->ops->bmdma_start(qc); /* initiate bmdma */
4001 ap->hsm_task_state = HSM_ST_LAST;
4002 break;
4003
4004 case ATA_PROT_PIO:
4005 if (qc->tf.flags & ATA_TFLAG_POLLING)
4006 ata_qc_set_polling(qc);
4007
4008 ata_tf_to_host(ap, &qc->tf);
4009
4010 if (qc->tf.flags & ATA_TFLAG_WRITE) {
4011 /* PIO data out protocol */
4012 ap->hsm_task_state = HSM_ST_FIRST;
4013 ata_queue_pio_task(ap);
4014
4015 /* always send first data block using
4016 * the ata_pio_task() codepath.
4017 */
4018 } else {
4019 /* PIO data in protocol */
4020 ap->hsm_task_state = HSM_ST;
4021
4022 if (qc->tf.flags & ATA_TFLAG_POLLING)
4023 ata_queue_pio_task(ap);
4024
4025 /* if polling, ata_pio_task() handles the rest.
4026 * otherwise, interrupt handler takes over from here.
4027 */
4028 }
4029
4030 break;
4031
4032 case ATA_PROT_ATAPI:
4033 case ATA_PROT_ATAPI_NODATA:
4034 if (qc->tf.flags & ATA_TFLAG_POLLING)
4035 ata_qc_set_polling(qc);
4036
4037 ata_tf_to_host(ap, &qc->tf);
4038
4039 ap->hsm_task_state = HSM_ST_FIRST;
4040
4041 /* send cdb by polling if no cdb interrupt */
4042 if ((!(qc->dev->flags & ATA_DFLAG_CDB_INTR)) ||
4043 (qc->tf.flags & ATA_TFLAG_POLLING))
4044 ata_queue_pio_task(ap);
4045 break;
4046
4047 case ATA_PROT_ATAPI_DMA:
4048 WARN_ON(qc->tf.flags & ATA_TFLAG_POLLING);
4049
4050 ap->ops->tf_load(ap, &qc->tf); /* load tf registers */
4051 ap->ops->bmdma_setup(qc); /* set up bmdma */
4052 ap->hsm_task_state = HSM_ST_FIRST;
4053
4054 /* send cdb by polling if no cdb interrupt */
4055 if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
4056 ata_queue_pio_task(ap);
4057 break;
4058
4059 default:
4060 WARN_ON(1);
4061 return AC_ERR_SYSTEM;
4062 }
4063
4064 return 0;
4065 }
4066
4067 /**
4068 * ata_bmdma_setup_mmio - Set up PCI IDE BMDMA transaction
4069 * @qc: Info associated with this ATA transaction.
4070 *
4071 * LOCKING:
4072 * spin_lock_irqsave(host_set lock)
4073 */
4074
4075 static void ata_bmdma_setup_mmio (struct ata_queued_cmd *qc)
4076 {
4077 struct ata_port *ap = qc->ap;
4078 unsigned int rw = (qc->tf.flags & ATA_TFLAG_WRITE);
4079 u8 dmactl;
4080 void __iomem *mmio = (void __iomem *) ap->ioaddr.bmdma_addr;
4081
4082 /* load PRD table addr. */
4083 mb(); /* make sure PRD table writes are visible to controller */
4084 writel(ap->prd_dma, mmio + ATA_DMA_TABLE_OFS);
4085
4086 /* specify data direction, triple-check start bit is clear */
4087 dmactl = readb(mmio + ATA_DMA_CMD);
4088 dmactl &= ~(ATA_DMA_WR | ATA_DMA_START);
4089 if (!rw)
4090 dmactl |= ATA_DMA_WR;
4091 writeb(dmactl, mmio + ATA_DMA_CMD);
4092
4093 /* issue r/w command */
4094 ap->ops->exec_command(ap, &qc->tf);
4095 }
4096
4097 /**
4098 * ata_bmdma_start_mmio - Start a PCI IDE BMDMA transaction
4099 * @qc: Info associated with this ATA transaction.
4100 *
4101 * LOCKING:
4102 * spin_lock_irqsave(host_set lock)
4103 */
4104
4105 static void ata_bmdma_start_mmio (struct ata_queued_cmd *qc)
4106 {
4107 struct ata_port *ap = qc->ap;
4108 void __iomem *mmio = (void __iomem *) ap->ioaddr.bmdma_addr;
4109 u8 dmactl;
4110
4111 /* start host DMA transaction */
4112 dmactl = readb(mmio + ATA_DMA_CMD);
4113 writeb(dmactl | ATA_DMA_START, mmio + ATA_DMA_CMD);
4114
4115 /* Strictly, one may wish to issue a readb() here, to
4116 * flush the mmio write. However, control also passes
4117 * to the hardware at this point, and it will interrupt
4118 * us when we are to resume control. So, in effect,
4119 * we don't care when the mmio write flushes.
4120 * Further, a read of the DMA status register _immediately_
4121 * following the write may not be what certain flaky hardware
4122 * is expected, so I think it is best to not add a readb()
4123 * without first all the MMIO ATA cards/mobos.
4124 * Or maybe I'm just being paranoid.
4125 */
4126 }
4127
4128 /**
4129 * ata_bmdma_setup_pio - Set up PCI IDE BMDMA transaction (PIO)
4130 * @qc: Info associated with this ATA transaction.
4131 *
4132 * LOCKING:
4133 * spin_lock_irqsave(host_set lock)
4134 */
4135
4136 static void ata_bmdma_setup_pio (struct ata_queued_cmd *qc)
4137 {
4138 struct ata_port *ap = qc->ap;
4139 unsigned int rw = (qc->tf.flags & ATA_TFLAG_WRITE);
4140 u8 dmactl;
4141
4142 /* load PRD table addr. */
4143 outl(ap->prd_dma, ap->ioaddr.bmdma_addr + ATA_DMA_TABLE_OFS);
4144
4145 /* specify data direction, triple-check start bit is clear */
4146 dmactl = inb(ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
4147 dmactl &= ~(ATA_DMA_WR | ATA_DMA_START);
4148 if (!rw)
4149 dmactl |= ATA_DMA_WR;
4150 outb(dmactl, ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
4151
4152 /* issue r/w command */
4153 ap->ops->exec_command(ap, &qc->tf);
4154 }
4155
4156 /**
4157 * ata_bmdma_start_pio - Start a PCI IDE BMDMA transaction (PIO)
4158 * @qc: Info associated with this ATA transaction.
4159 *
4160 * LOCKING:
4161 * spin_lock_irqsave(host_set lock)
4162 */
4163
4164 static void ata_bmdma_start_pio (struct ata_queued_cmd *qc)
4165 {
4166 struct ata_port *ap = qc->ap;
4167 u8 dmactl;
4168
4169 /* start host DMA transaction */
4170 dmactl = inb(ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
4171 outb(dmactl | ATA_DMA_START,
4172 ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
4173 }
4174
4175
4176 /**
4177 * ata_bmdma_start - Start a PCI IDE BMDMA transaction
4178 * @qc: Info associated with this ATA transaction.
4179 *
4180 * Writes the ATA_DMA_START flag to the DMA command register.
4181 *
4182 * May be used as the bmdma_start() entry in ata_port_operations.
4183 *
4184 * LOCKING:
4185 * spin_lock_irqsave(host_set lock)
4186 */
4187 void ata_bmdma_start(struct ata_queued_cmd *qc)
4188 {
4189 if (qc->ap->flags & ATA_FLAG_MMIO)
4190 ata_bmdma_start_mmio(qc);
4191 else
4192 ata_bmdma_start_pio(qc);
4193 }
4194
4195
4196 /**
4197 * ata_bmdma_setup - Set up PCI IDE BMDMA transaction
4198 * @qc: Info associated with this ATA transaction.
4199 *
4200 * Writes address of PRD table to device's PRD Table Address
4201 * register, sets the DMA control register, and calls
4202 * ops->exec_command() to start the transfer.
4203 *
4204 * May be used as the bmdma_setup() entry in ata_port_operations.
4205 *
4206 * LOCKING:
4207 * spin_lock_irqsave(host_set lock)
4208 */
4209 void ata_bmdma_setup(struct ata_queued_cmd *qc)
4210 {
4211 if (qc->ap->flags & ATA_FLAG_MMIO)
4212 ata_bmdma_setup_mmio(qc);
4213 else
4214 ata_bmdma_setup_pio(qc);
4215 }
4216
4217
4218 /**
4219 * ata_bmdma_irq_clear - Clear PCI IDE BMDMA interrupt.
4220 * @ap: Port associated with this ATA transaction.
4221 *
4222 * Clear interrupt and error flags in DMA status register.
4223 *
4224 * May be used as the irq_clear() entry in ata_port_operations.
4225 *
4226 * LOCKING:
4227 * spin_lock_irqsave(host_set lock)
4228 */
4229
4230 void ata_bmdma_irq_clear(struct ata_port *ap)
4231 {
4232 if (ap->flags & ATA_FLAG_MMIO) {
4233 void __iomem *mmio = ((void __iomem *) ap->ioaddr.bmdma_addr) + ATA_DMA_STATUS;
4234 writeb(readb(mmio), mmio);
4235 } else {
4236 unsigned long addr = ap->ioaddr.bmdma_addr + ATA_DMA_STATUS;
4237 outb(inb(addr), addr);
4238 }
4239
4240 }
4241
4242
4243 /**
4244 * ata_bmdma_status - Read PCI IDE BMDMA status
4245 * @ap: Port associated with this ATA transaction.
4246 *
4247 * Read and return BMDMA status register.
4248 *
4249 * May be used as the bmdma_status() entry in ata_port_operations.
4250 *
4251 * LOCKING:
4252 * spin_lock_irqsave(host_set lock)
4253 */
4254
4255 u8 ata_bmdma_status(struct ata_port *ap)
4256 {
4257 u8 host_stat;
4258 if (ap->flags & ATA_FLAG_MMIO) {
4259 void __iomem *mmio = (void __iomem *) ap->ioaddr.bmdma_addr;
4260 host_stat = readb(mmio + ATA_DMA_STATUS);
4261 } else
4262 host_stat = inb(ap->ioaddr.bmdma_addr + ATA_DMA_STATUS);
4263 return host_stat;
4264 }
4265
4266
4267 /**
4268 * ata_bmdma_stop - Stop PCI IDE BMDMA transfer
4269 * @qc: Command we are ending DMA for
4270 *
4271 * Clears the ATA_DMA_START flag in the dma control register
4272 *
4273 * May be used as the bmdma_stop() entry in ata_port_operations.
4274 *
4275 * LOCKING:
4276 * spin_lock_irqsave(host_set lock)
4277 */
4278
4279 void ata_bmdma_stop(struct ata_queued_cmd *qc)
4280 {
4281 struct ata_port *ap = qc->ap;
4282 if (ap->flags & ATA_FLAG_MMIO) {
4283 void __iomem *mmio = (void __iomem *) ap->ioaddr.bmdma_addr;
4284
4285 /* clear start/stop bit */
4286 writeb(readb(mmio + ATA_DMA_CMD) & ~ATA_DMA_START,
4287 mmio + ATA_DMA_CMD);
4288 } else {
4289 /* clear start/stop bit */
4290 outb(inb(ap->ioaddr.bmdma_addr + ATA_DMA_CMD) & ~ATA_DMA_START,
4291 ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
4292 }
4293
4294 /* one-PIO-cycle guaranteed wait, per spec, for HDMA1:0 transition */
4295 ata_altstatus(ap); /* dummy read */
4296 }
4297
4298 /**
4299 * ata_host_intr - Handle host interrupt for given (port, task)
4300 * @ap: Port on which interrupt arrived (possibly...)
4301 * @qc: Taskfile currently active in engine
4302 *
4303 * Handle host interrupt for given queued command. Currently,
4304 * only DMA interrupts are handled. All other commands are
4305 * handled via polling with interrupts disabled (nIEN bit).
4306 *
4307 * LOCKING:
4308 * spin_lock_irqsave(host_set lock)
4309 *
4310 * RETURNS:
4311 * One if interrupt was handled, zero if not (shared irq).
4312 */
4313
4314 inline unsigned int ata_host_intr (struct ata_port *ap,
4315 struct ata_queued_cmd *qc)
4316 {
4317 u8 status, host_stat = 0;
4318
4319 VPRINTK("ata%u: protocol %d task_state %d\n",
4320 ap->id, qc->tf.protocol, ap->hsm_task_state);
4321
4322 /* Check whether we are expecting interrupt in this state */
4323 switch (ap->hsm_task_state) {
4324 case HSM_ST_FIRST:
4325 /* Check the ATA_DFLAG_CDB_INTR flag is enough here.
4326 * The flag was turned on only for atapi devices.
4327 * No need to check is_atapi_taskfile(&qc->tf) again.
4328 */
4329 if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
4330 goto idle_irq;
4331 break;
4332 case HSM_ST_LAST:
4333 if (qc->tf.protocol == ATA_PROT_DMA ||
4334 qc->tf.protocol == ATA_PROT_ATAPI_DMA) {
4335 /* check status of DMA engine */
4336 host_stat = ap->ops->bmdma_status(ap);
4337 VPRINTK("ata%u: host_stat 0x%X\n", ap->id, host_stat);
4338
4339 /* if it's not our irq... */
4340 if (!(host_stat & ATA_DMA_INTR))
4341 goto idle_irq;
4342
4343 /* before we do anything else, clear DMA-Start bit */
4344 ap->ops->bmdma_stop(qc);
4345
4346 if (unlikely(host_stat & ATA_DMA_ERR)) {
4347 /* error when transfering data to/from memory */
4348 qc->err_mask |= AC_ERR_HOST_BUS;
4349 ap->hsm_task_state = HSM_ST_ERR;
4350 }
4351 }
4352 break;
4353 case HSM_ST:
4354 break;
4355 default:
4356 goto idle_irq;
4357 }
4358
4359 /* check altstatus */
4360 status = ata_altstatus(ap);
4361 if (status & ATA_BUSY)
4362 goto idle_irq;
4363
4364 /* check main status, clearing INTRQ */
4365 status = ata_chk_status(ap);
4366 if (unlikely(status & ATA_BUSY))
4367 goto idle_irq;
4368
4369 DPRINTK("ata%u: protocol %d task_state %d (dev_stat 0x%X)\n",
4370 ap->id, qc->tf.protocol, ap->hsm_task_state, status);
4371
4372 /* ack bmdma irq events */
4373 ap->ops->irq_clear(ap);
4374
4375 /* check error */
4376 if (unlikely(status & (ATA_ERR | ATA_DF))) {
4377 qc->err_mask |= AC_ERR_DEV;
4378 ap->hsm_task_state = HSM_ST_ERR;
4379 }
4380
4381 fsm_start:
4382 switch (ap->hsm_task_state) {
4383 case HSM_ST_FIRST:
4384 /* Some pre-ATAPI-4 devices assert INTRQ
4385 * at this state when ready to receive CDB.
4386 */
4387
4388 /* check device status */
4389 if (unlikely((status & (ATA_BUSY | ATA_DRQ)) != ATA_DRQ)) {
4390 /* Wrong status. Let EH handle this */
4391 qc->err_mask |= AC_ERR_HSM;
4392 ap->hsm_task_state = HSM_ST_ERR;
4393 goto fsm_start;
4394 }
4395
4396 atapi_send_cdb(ap, qc);
4397
4398 break;
4399
4400 case HSM_ST:
4401 /* complete command or read/write the data register */
4402 if (qc->tf.protocol == ATA_PROT_ATAPI) {
4403 /* ATAPI PIO protocol */
4404 if ((status & ATA_DRQ) == 0) {
4405 /* no more data to transfer */
4406 ap->hsm_task_state = HSM_ST_LAST;
4407 goto fsm_start;
4408 }
4409
4410 atapi_pio_bytes(qc);
4411
4412 if (unlikely(ap->hsm_task_state == HSM_ST_ERR))
4413 /* bad ireason reported by device */
4414 goto fsm_start;
4415
4416 } else {
4417 /* ATA PIO protocol */
4418 if (unlikely((status & ATA_DRQ) == 0)) {
4419 /* handle BSY=0, DRQ=0 as error */
4420 qc->err_mask |= AC_ERR_HSM;
4421 ap->hsm_task_state = HSM_ST_ERR;
4422 goto fsm_start;
4423 }
4424
4425 ata_pio_sectors(qc);
4426
4427 if (ap->hsm_task_state == HSM_ST_LAST &&
4428 (!(qc->tf.flags & ATA_TFLAG_WRITE))) {
4429 /* all data read */
4430 ata_altstatus(ap);
4431 status = ata_chk_status(ap);
4432 goto fsm_start;
4433 }
4434 }
4435
4436 ata_altstatus(ap); /* flush */
4437 break;
4438
4439 case HSM_ST_LAST:
4440 if (unlikely(status & ATA_DRQ)) {
4441 /* handle DRQ=1 as error */
4442 qc->err_mask |= AC_ERR_HSM;
4443 ap->hsm_task_state = HSM_ST_ERR;
4444 goto fsm_start;
4445 }
4446
4447 /* no more data to transfer */
4448 DPRINTK("ata%u: command complete, drv_stat 0x%x\n",
4449 ap->id, status);
4450
4451 ap->hsm_task_state = HSM_ST_IDLE;
4452
4453 /* complete taskfile transaction */
4454 qc->err_mask |= ac_err_mask(status);
4455 ata_qc_complete(qc);
4456 break;
4457
4458 case HSM_ST_ERR:
4459 if (qc->tf.command != ATA_CMD_PACKET)
4460 printk(KERN_ERR "ata%u: command error, drv_stat 0x%x host_stat 0x%x\n",
4461 ap->id, status, host_stat);
4462
4463 /* make sure qc->err_mask is available to
4464 * know what's wrong and recover
4465 */
4466 WARN_ON(qc->err_mask == 0);
4467
4468 ap->hsm_task_state = HSM_ST_IDLE;
4469 ata_qc_complete(qc);
4470 break;
4471 default:
4472 goto idle_irq;
4473 }
4474
4475 return 1; /* irq handled */
4476
4477 idle_irq:
4478 ap->stats.idle_irq++;
4479
4480 #ifdef ATA_IRQ_TRAP
4481 if ((ap->stats.idle_irq % 1000) == 0) {
4482 handled = 1;
4483 ata_irq_ack(ap, 0); /* debug trap */
4484 printk(KERN_WARNING "ata%d: irq trap\n", ap->id);
4485 }
4486 #endif
4487 return 0; /* irq not handled */
4488 }
4489
4490 /**
4491 * ata_interrupt - Default ATA host interrupt handler
4492 * @irq: irq line (unused)
4493 * @dev_instance: pointer to our ata_host_set information structure
4494 * @regs: unused
4495 *
4496 * Default interrupt handler for PCI IDE devices. Calls
4497 * ata_host_intr() for each port that is not disabled.
4498 *
4499 * LOCKING:
4500 * Obtains host_set lock during operation.
4501 *
4502 * RETURNS:
4503 * IRQ_NONE or IRQ_HANDLED.
4504 */
4505
4506 irqreturn_t ata_interrupt (int irq, void *dev_instance, struct pt_regs *regs)
4507 {
4508 struct ata_host_set *host_set = dev_instance;
4509 unsigned int i;
4510 unsigned int handled = 0;
4511 unsigned long flags;
4512
4513 /* TODO: make _irqsave conditional on x86 PCI IDE legacy mode */
4514 spin_lock_irqsave(&host_set->lock, flags);
4515
4516 for (i = 0; i < host_set->n_ports; i++) {
4517 struct ata_port *ap;
4518
4519 ap = host_set->ports[i];
4520 if (ap &&
4521 !(ap->flags & ATA_FLAG_PORT_DISABLED)) {
4522 struct ata_queued_cmd *qc;
4523
4524 qc = ata_qc_from_tag(ap, ap->active_tag);
4525 if (qc && (!(qc->tf.flags & ATA_TFLAG_POLLING)) &&
4526 (qc->flags & ATA_QCFLAG_ACTIVE))
4527 handled |= ata_host_intr(ap, qc);
4528 }
4529 }
4530
4531 spin_unlock_irqrestore(&host_set->lock, flags);
4532
4533 return IRQ_RETVAL(handled);
4534 }
4535
4536 /*
4537 * Execute a 'simple' command, that only consists of the opcode 'cmd' itself,
4538 * without filling any other registers
4539 */
4540 static int ata_do_simple_cmd(struct ata_port *ap, struct ata_device *dev,
4541 u8 cmd)
4542 {
4543 struct ata_taskfile tf;
4544 int err;
4545
4546 ata_tf_init(ap, &tf, dev->devno);
4547
4548 tf.command = cmd;
4549 tf.flags |= ATA_TFLAG_DEVICE;
4550 tf.protocol = ATA_PROT_NODATA;
4551
4552 err = ata_exec_internal(ap, dev, &tf, DMA_NONE, NULL, 0);
4553 if (err)
4554 printk(KERN_ERR "%s: ata command failed: %d\n",
4555 __FUNCTION__, err);
4556
4557 return err;
4558 }
4559
4560 static int ata_flush_cache(struct ata_port *ap, struct ata_device *dev)
4561 {
4562 u8 cmd;
4563
4564 if (!ata_try_flush_cache(dev))
4565 return 0;
4566
4567 if (ata_id_has_flush_ext(dev->id))
4568 cmd = ATA_CMD_FLUSH_EXT;
4569 else
4570 cmd = ATA_CMD_FLUSH;
4571
4572 return ata_do_simple_cmd(ap, dev, cmd);
4573 }
4574
4575 static int ata_standby_drive(struct ata_port *ap, struct ata_device *dev)
4576 {
4577 return ata_do_simple_cmd(ap, dev, ATA_CMD_STANDBYNOW1);
4578 }
4579
4580 static int ata_start_drive(struct ata_port *ap, struct ata_device *dev)
4581 {
4582 return ata_do_simple_cmd(ap, dev, ATA_CMD_IDLEIMMEDIATE);
4583 }
4584
4585 /**
4586 * ata_device_resume - wakeup a previously suspended devices
4587 * @ap: port the device is connected to
4588 * @dev: the device to resume
4589 *
4590 * Kick the drive back into action, by sending it an idle immediate
4591 * command and making sure its transfer mode matches between drive
4592 * and host.
4593 *
4594 */
4595 int ata_device_resume(struct ata_port *ap, struct ata_device *dev)
4596 {
4597 if (ap->flags & ATA_FLAG_SUSPENDED) {
4598 ap->flags &= ~ATA_FLAG_SUSPENDED;
4599 ata_set_mode(ap);
4600 }
4601 if (!ata_dev_present(dev))
4602 return 0;
4603 if (dev->class == ATA_DEV_ATA)
4604 ata_start_drive(ap, dev);
4605
4606 return 0;
4607 }
4608
4609 /**
4610 * ata_device_suspend - prepare a device for suspend
4611 * @ap: port the device is connected to
4612 * @dev: the device to suspend
4613 *
4614 * Flush the cache on the drive, if appropriate, then issue a
4615 * standbynow command.
4616 */
4617 int ata_device_suspend(struct ata_port *ap, struct ata_device *dev)
4618 {
4619 if (!ata_dev_present(dev))
4620 return 0;
4621 if (dev->class == ATA_DEV_ATA)
4622 ata_flush_cache(ap, dev);
4623
4624 ata_standby_drive(ap, dev);
4625 ap->flags |= ATA_FLAG_SUSPENDED;
4626 return 0;
4627 }
4628
4629 /**
4630 * ata_port_start - Set port up for dma.
4631 * @ap: Port to initialize
4632 *
4633 * Called just after data structures for each port are
4634 * initialized. Allocates space for PRD table.
4635 *
4636 * May be used as the port_start() entry in ata_port_operations.
4637 *
4638 * LOCKING:
4639 * Inherited from caller.
4640 */
4641
4642 int ata_port_start (struct ata_port *ap)
4643 {
4644 struct device *dev = ap->host_set->dev;
4645 int rc;
4646
4647 ap->prd = dma_alloc_coherent(dev, ATA_PRD_TBL_SZ, &ap->prd_dma, GFP_KERNEL);
4648 if (!ap->prd)
4649 return -ENOMEM;
4650
4651 rc = ata_pad_alloc(ap, dev);
4652 if (rc) {
4653 dma_free_coherent(dev, ATA_PRD_TBL_SZ, ap->prd, ap->prd_dma);
4654 return rc;
4655 }
4656
4657 DPRINTK("prd alloc, virt %p, dma %llx\n", ap->prd, (unsigned long long) ap->prd_dma);
4658
4659 return 0;
4660 }
4661
4662
4663 /**
4664 * ata_port_stop - Undo ata_port_start()
4665 * @ap: Port to shut down
4666 *
4667 * Frees the PRD table.
4668 *
4669 * May be used as the port_stop() entry in ata_port_operations.
4670 *
4671 * LOCKING:
4672 * Inherited from caller.
4673 */
4674
4675 void ata_port_stop (struct ata_port *ap)
4676 {
4677 struct device *dev = ap->host_set->dev;
4678
4679 dma_free_coherent(dev, ATA_PRD_TBL_SZ, ap->prd, ap->prd_dma);
4680 ata_pad_free(ap, dev);
4681 }
4682
4683 void ata_host_stop (struct ata_host_set *host_set)
4684 {
4685 if (host_set->mmio_base)
4686 iounmap(host_set->mmio_base);
4687 }
4688
4689
4690 /**
4691 * ata_host_remove - Unregister SCSI host structure with upper layers
4692 * @ap: Port to unregister
4693 * @do_unregister: 1 if we fully unregister, 0 to just stop the port
4694 *
4695 * LOCKING:
4696 * Inherited from caller.
4697 */
4698
4699 static void ata_host_remove(struct ata_port *ap, unsigned int do_unregister)
4700 {
4701 struct Scsi_Host *sh = ap->host;
4702
4703 DPRINTK("ENTER\n");
4704
4705 if (do_unregister)
4706 scsi_remove_host(sh);
4707
4708 ap->ops->port_stop(ap);
4709 }
4710
4711 /**
4712 * ata_host_init - Initialize an ata_port structure
4713 * @ap: Structure to initialize
4714 * @host: associated SCSI mid-layer structure
4715 * @host_set: Collection of hosts to which @ap belongs
4716 * @ent: Probe information provided by low-level driver
4717 * @port_no: Port number associated with this ata_port
4718 *
4719 * Initialize a new ata_port structure, and its associated
4720 * scsi_host.
4721 *
4722 * LOCKING:
4723 * Inherited from caller.
4724 */
4725
4726 static void ata_host_init(struct ata_port *ap, struct Scsi_Host *host,
4727 struct ata_host_set *host_set,
4728 const struct ata_probe_ent *ent, unsigned int port_no)
4729 {
4730 unsigned int i;
4731
4732 host->max_id = 16;
4733 host->max_lun = 1;
4734 host->max_channel = 1;
4735 host->unique_id = ata_unique_id++;
4736 host->max_cmd_len = 12;
4737
4738 ap->flags = ATA_FLAG_PORT_DISABLED;
4739 ap->id = host->unique_id;
4740 ap->host = host;
4741 ap->ctl = ATA_DEVCTL_OBS;
4742 ap->host_set = host_set;
4743 ap->port_no = port_no;
4744 ap->hard_port_no =
4745 ent->legacy_mode ? ent->hard_port_no : port_no;
4746 ap->pio_mask = ent->pio_mask;
4747 ap->mwdma_mask = ent->mwdma_mask;
4748 ap->udma_mask = ent->udma_mask;
4749 ap->flags |= ent->host_flags;
4750 ap->ops = ent->port_ops;
4751 ap->cbl = ATA_CBL_NONE;
4752 ap->active_tag = ATA_TAG_POISON;
4753 ap->last_ctl = 0xFF;
4754
4755 INIT_WORK(&ap->pio_task, ata_pio_task, ap);
4756 INIT_LIST_HEAD(&ap->eh_done_q);
4757
4758 for (i = 0; i < ATA_MAX_DEVICES; i++)
4759 ap->device[i].devno = i;
4760
4761 #ifdef ATA_IRQ_TRAP
4762 ap->stats.unhandled_irq = 1;
4763 ap->stats.idle_irq = 1;
4764 #endif
4765
4766 memcpy(&ap->ioaddr, &ent->port[port_no], sizeof(struct ata_ioports));
4767 }
4768
4769 /**
4770 * ata_host_add - Attach low-level ATA driver to system
4771 * @ent: Information provided by low-level driver
4772 * @host_set: Collections of ports to which we add
4773 * @port_no: Port number associated with this host
4774 *
4775 * Attach low-level ATA driver to system.
4776 *
4777 * LOCKING:
4778 * PCI/etc. bus probe sem.
4779 *
4780 * RETURNS:
4781 * New ata_port on success, for NULL on error.
4782 */
4783
4784 static struct ata_port * ata_host_add(const struct ata_probe_ent *ent,
4785 struct ata_host_set *host_set,
4786 unsigned int port_no)
4787 {
4788 struct Scsi_Host *host;
4789 struct ata_port *ap;
4790 int rc;
4791
4792 DPRINTK("ENTER\n");
4793 host = scsi_host_alloc(ent->sht, sizeof(struct ata_port));
4794 if (!host)
4795 return NULL;
4796
4797 ap = (struct ata_port *) &host->hostdata[0];
4798
4799 ata_host_init(ap, host, host_set, ent, port_no);
4800
4801 rc = ap->ops->port_start(ap);
4802 if (rc)
4803 goto err_out;
4804
4805 return ap;
4806
4807 err_out:
4808 scsi_host_put(host);
4809 return NULL;
4810 }
4811
4812 /**
4813 * ata_device_add - Register hardware device with ATA and SCSI layers
4814 * @ent: Probe information describing hardware device to be registered
4815 *
4816 * This function processes the information provided in the probe
4817 * information struct @ent, allocates the necessary ATA and SCSI
4818 * host information structures, initializes them, and registers
4819 * everything with requisite kernel subsystems.
4820 *
4821 * This function requests irqs, probes the ATA bus, and probes
4822 * the SCSI bus.
4823 *
4824 * LOCKING:
4825 * PCI/etc. bus probe sem.
4826 *
4827 * RETURNS:
4828 * Number of ports registered. Zero on error (no ports registered).
4829 */
4830
4831 int ata_device_add(const struct ata_probe_ent *ent)
4832 {
4833 unsigned int count = 0, i;
4834 struct device *dev = ent->dev;
4835 struct ata_host_set *host_set;
4836
4837 DPRINTK("ENTER\n");
4838 /* alloc a container for our list of ATA ports (buses) */
4839 host_set = kzalloc(sizeof(struct ata_host_set) +
4840 (ent->n_ports * sizeof(void *)), GFP_KERNEL);
4841 if (!host_set)
4842 return 0;
4843 spin_lock_init(&host_set->lock);
4844
4845 host_set->dev = dev;
4846 host_set->n_ports = ent->n_ports;
4847 host_set->irq = ent->irq;
4848 host_set->mmio_base = ent->mmio_base;
4849 host_set->private_data = ent->private_data;
4850 host_set->ops = ent->port_ops;
4851
4852 /* register each port bound to this device */
4853 for (i = 0; i < ent->n_ports; i++) {
4854 struct ata_port *ap;
4855 unsigned long xfer_mode_mask;
4856
4857 ap = ata_host_add(ent, host_set, i);
4858 if (!ap)
4859 goto err_out;
4860
4861 host_set->ports[i] = ap;
4862 xfer_mode_mask =(ap->udma_mask << ATA_SHIFT_UDMA) |
4863 (ap->mwdma_mask << ATA_SHIFT_MWDMA) |
4864 (ap->pio_mask << ATA_SHIFT_PIO);
4865
4866 /* print per-port info to dmesg */
4867 printk(KERN_INFO "ata%u: %cATA max %s cmd 0x%lX ctl 0x%lX "
4868 "bmdma 0x%lX irq %lu\n",
4869 ap->id,
4870 ap->flags & ATA_FLAG_SATA ? 'S' : 'P',
4871 ata_mode_string(xfer_mode_mask),
4872 ap->ioaddr.cmd_addr,
4873 ap->ioaddr.ctl_addr,
4874 ap->ioaddr.bmdma_addr,
4875 ent->irq);
4876
4877 ata_chk_status(ap);
4878 host_set->ops->irq_clear(ap);
4879 count++;
4880 }
4881
4882 if (!count)
4883 goto err_free_ret;
4884
4885 /* obtain irq, that is shared between channels */
4886 if (request_irq(ent->irq, ent->port_ops->irq_handler, ent->irq_flags,
4887 DRV_NAME, host_set))
4888 goto err_out;
4889
4890 /* perform each probe synchronously */
4891 DPRINTK("probe begin\n");
4892 for (i = 0; i < count; i++) {
4893 struct ata_port *ap;
4894 int rc;
4895
4896 ap = host_set->ports[i];
4897
4898 DPRINTK("ata%u: bus probe begin\n", ap->id);
4899 rc = ata_bus_probe(ap);
4900 DPRINTK("ata%u: bus probe end\n", ap->id);
4901
4902 if (rc) {
4903 /* FIXME: do something useful here?
4904 * Current libata behavior will
4905 * tear down everything when
4906 * the module is removed
4907 * or the h/w is unplugged.
4908 */
4909 }
4910
4911 rc = scsi_add_host(ap->host, dev);
4912 if (rc) {
4913 printk(KERN_ERR "ata%u: scsi_add_host failed\n",
4914 ap->id);
4915 /* FIXME: do something useful here */
4916 /* FIXME: handle unconditional calls to
4917 * scsi_scan_host and ata_host_remove, below,
4918 * at the very least
4919 */
4920 }
4921 }
4922
4923 /* probes are done, now scan each port's disk(s) */
4924 DPRINTK("host probe begin\n");
4925 for (i = 0; i < count; i++) {
4926 struct ata_port *ap = host_set->ports[i];
4927
4928 ata_scsi_scan_host(ap);
4929 }
4930
4931 dev_set_drvdata(dev, host_set);
4932
4933 VPRINTK("EXIT, returning %u\n", ent->n_ports);
4934 return ent->n_ports; /* success */
4935
4936 err_out:
4937 for (i = 0; i < count; i++) {
4938 ata_host_remove(host_set->ports[i], 1);
4939 scsi_host_put(host_set->ports[i]->host);
4940 }
4941 err_free_ret:
4942 kfree(host_set);
4943 VPRINTK("EXIT, returning 0\n");
4944 return 0;
4945 }
4946
4947 /**
4948 * ata_host_set_remove - PCI layer callback for device removal
4949 * @host_set: ATA host set that was removed
4950 *
4951 * Unregister all objects associated with this host set. Free those
4952 * objects.
4953 *
4954 * LOCKING:
4955 * Inherited from calling layer (may sleep).
4956 */
4957
4958 void ata_host_set_remove(struct ata_host_set *host_set)
4959 {
4960 struct ata_port *ap;
4961 unsigned int i;
4962
4963 for (i = 0; i < host_set->n_ports; i++) {
4964 ap = host_set->ports[i];
4965 scsi_remove_host(ap->host);
4966 }
4967
4968 free_irq(host_set->irq, host_set);
4969
4970 for (i = 0; i < host_set->n_ports; i++) {
4971 ap = host_set->ports[i];
4972
4973 ata_scsi_release(ap->host);
4974
4975 if ((ap->flags & ATA_FLAG_NO_LEGACY) == 0) {
4976 struct ata_ioports *ioaddr = &ap->ioaddr;
4977
4978 if (ioaddr->cmd_addr == 0x1f0)
4979 release_region(0x1f0, 8);
4980 else if (ioaddr->cmd_addr == 0x170)
4981 release_region(0x170, 8);
4982 }
4983
4984 scsi_host_put(ap->host);
4985 }
4986
4987 if (host_set->ops->host_stop)
4988 host_set->ops->host_stop(host_set);
4989
4990 kfree(host_set);
4991 }
4992
4993 /**
4994 * ata_scsi_release - SCSI layer callback hook for host unload
4995 * @host: libata host to be unloaded
4996 *
4997 * Performs all duties necessary to shut down a libata port...
4998 * Kill port kthread, disable port, and release resources.
4999 *
5000 * LOCKING:
5001 * Inherited from SCSI layer.
5002 *
5003 * RETURNS:
5004 * One.
5005 */
5006
5007 int ata_scsi_release(struct Scsi_Host *host)
5008 {
5009 struct ata_port *ap = (struct ata_port *) &host->hostdata[0];
5010
5011 DPRINTK("ENTER\n");
5012
5013 ap->ops->port_disable(ap);
5014 ata_host_remove(ap, 0);
5015
5016 DPRINTK("EXIT\n");
5017 return 1;
5018 }
5019
5020 /**
5021 * ata_std_ports - initialize ioaddr with standard port offsets.
5022 * @ioaddr: IO address structure to be initialized
5023 *
5024 * Utility function which initializes data_addr, error_addr,
5025 * feature_addr, nsect_addr, lbal_addr, lbam_addr, lbah_addr,
5026 * device_addr, status_addr, and command_addr to standard offsets
5027 * relative to cmd_addr.
5028 *
5029 * Does not set ctl_addr, altstatus_addr, bmdma_addr, or scr_addr.
5030 */
5031
5032 void ata_std_ports(struct ata_ioports *ioaddr)
5033 {
5034 ioaddr->data_addr = ioaddr->cmd_addr + ATA_REG_DATA;
5035 ioaddr->error_addr = ioaddr->cmd_addr + ATA_REG_ERR;
5036 ioaddr->feature_addr = ioaddr->cmd_addr + ATA_REG_FEATURE;
5037 ioaddr->nsect_addr = ioaddr->cmd_addr + ATA_REG_NSECT;
5038 ioaddr->lbal_addr = ioaddr->cmd_addr + ATA_REG_LBAL;
5039 ioaddr->lbam_addr = ioaddr->cmd_addr + ATA_REG_LBAM;
5040 ioaddr->lbah_addr = ioaddr->cmd_addr + ATA_REG_LBAH;
5041 ioaddr->device_addr = ioaddr->cmd_addr + ATA_REG_DEVICE;
5042 ioaddr->status_addr = ioaddr->cmd_addr + ATA_REG_STATUS;
5043 ioaddr->command_addr = ioaddr->cmd_addr + ATA_REG_CMD;
5044 }
5045
5046
5047 #ifdef CONFIG_PCI
5048
5049 void ata_pci_host_stop (struct ata_host_set *host_set)
5050 {
5051 struct pci_dev *pdev = to_pci_dev(host_set->dev);
5052
5053 pci_iounmap(pdev, host_set->mmio_base);
5054 }
5055
5056 /**
5057 * ata_pci_remove_one - PCI layer callback for device removal
5058 * @pdev: PCI device that was removed
5059 *
5060 * PCI layer indicates to libata via this hook that
5061 * hot-unplug or module unload event has occurred.
5062 * Handle this by unregistering all objects associated
5063 * with this PCI device. Free those objects. Then finally
5064 * release PCI resources and disable device.
5065 *
5066 * LOCKING:
5067 * Inherited from PCI layer (may sleep).
5068 */
5069
5070 void ata_pci_remove_one (struct pci_dev *pdev)
5071 {
5072 struct device *dev = pci_dev_to_dev(pdev);
5073 struct ata_host_set *host_set = dev_get_drvdata(dev);
5074
5075 ata_host_set_remove(host_set);
5076 pci_release_regions(pdev);
5077 pci_disable_device(pdev);
5078 dev_set_drvdata(dev, NULL);
5079 }
5080
5081 /* move to PCI subsystem */
5082 int pci_test_config_bits(struct pci_dev *pdev, const struct pci_bits *bits)
5083 {
5084 unsigned long tmp = 0;
5085
5086 switch (bits->width) {
5087 case 1: {
5088 u8 tmp8 = 0;
5089 pci_read_config_byte(pdev, bits->reg, &tmp8);
5090 tmp = tmp8;
5091 break;
5092 }
5093 case 2: {
5094 u16 tmp16 = 0;
5095 pci_read_config_word(pdev, bits->reg, &tmp16);
5096 tmp = tmp16;
5097 break;
5098 }
5099 case 4: {
5100 u32 tmp32 = 0;
5101 pci_read_config_dword(pdev, bits->reg, &tmp32);
5102 tmp = tmp32;
5103 break;
5104 }
5105
5106 default:
5107 return -EINVAL;
5108 }
5109
5110 tmp &= bits->mask;
5111
5112 return (tmp == bits->val) ? 1 : 0;
5113 }
5114
5115 int ata_pci_device_suspend(struct pci_dev *pdev, pm_message_t state)
5116 {
5117 pci_save_state(pdev);
5118 pci_disable_device(pdev);
5119 pci_set_power_state(pdev, PCI_D3hot);
5120 return 0;
5121 }
5122
5123 int ata_pci_device_resume(struct pci_dev *pdev)
5124 {
5125 pci_set_power_state(pdev, PCI_D0);
5126 pci_restore_state(pdev);
5127 pci_enable_device(pdev);
5128 pci_set_master(pdev);
5129 return 0;
5130 }
5131 #endif /* CONFIG_PCI */
5132
5133
5134 static int __init ata_init(void)
5135 {
5136 ata_wq = create_workqueue("ata");
5137 if (!ata_wq)
5138 return -ENOMEM;
5139
5140 printk(KERN_DEBUG "libata version " DRV_VERSION " loaded.\n");
5141 return 0;
5142 }
5143
5144 static void __exit ata_exit(void)
5145 {
5146 destroy_workqueue(ata_wq);
5147 }
5148
5149 module_init(ata_init);
5150 module_exit(ata_exit);
5151
5152 static unsigned long ratelimit_time;
5153 static spinlock_t ata_ratelimit_lock = SPIN_LOCK_UNLOCKED;
5154
5155 int ata_ratelimit(void)
5156 {
5157 int rc;
5158 unsigned long flags;
5159
5160 spin_lock_irqsave(&ata_ratelimit_lock, flags);
5161
5162 if (time_after(jiffies, ratelimit_time)) {
5163 rc = 1;
5164 ratelimit_time = jiffies + (HZ/5);
5165 } else
5166 rc = 0;
5167
5168 spin_unlock_irqrestore(&ata_ratelimit_lock, flags);
5169
5170 return rc;
5171 }
5172
5173 /*
5174 * libata is essentially a library of internal helper functions for
5175 * low-level ATA host controller drivers. As such, the API/ABI is
5176 * likely to change as new drivers are added and updated.
5177 * Do not depend on ABI/API stability.
5178 */
5179
5180 EXPORT_SYMBOL_GPL(ata_std_bios_param);
5181 EXPORT_SYMBOL_GPL(ata_std_ports);
5182 EXPORT_SYMBOL_GPL(ata_device_add);
5183 EXPORT_SYMBOL_GPL(ata_host_set_remove);
5184 EXPORT_SYMBOL_GPL(ata_sg_init);
5185 EXPORT_SYMBOL_GPL(ata_sg_init_one);
5186 EXPORT_SYMBOL_GPL(__ata_qc_complete);
5187 EXPORT_SYMBOL_GPL(ata_qc_issue_prot);
5188 EXPORT_SYMBOL_GPL(ata_eng_timeout);
5189 EXPORT_SYMBOL_GPL(ata_tf_load);
5190 EXPORT_SYMBOL_GPL(ata_tf_read);
5191 EXPORT_SYMBOL_GPL(ata_noop_dev_select);
5192 EXPORT_SYMBOL_GPL(ata_std_dev_select);
5193 EXPORT_SYMBOL_GPL(ata_tf_to_fis);
5194 EXPORT_SYMBOL_GPL(ata_tf_from_fis);
5195 EXPORT_SYMBOL_GPL(ata_check_status);
5196 EXPORT_SYMBOL_GPL(ata_altstatus);
5197 EXPORT_SYMBOL_GPL(ata_exec_command);
5198 EXPORT_SYMBOL_GPL(ata_port_start);
5199 EXPORT_SYMBOL_GPL(ata_port_stop);
5200 EXPORT_SYMBOL_GPL(ata_host_stop);
5201 EXPORT_SYMBOL_GPL(ata_interrupt);
5202 EXPORT_SYMBOL_GPL(ata_qc_prep);
5203 EXPORT_SYMBOL_GPL(ata_bmdma_setup);
5204 EXPORT_SYMBOL_GPL(ata_bmdma_start);
5205 EXPORT_SYMBOL_GPL(ata_bmdma_irq_clear);
5206 EXPORT_SYMBOL_GPL(ata_bmdma_status);
5207 EXPORT_SYMBOL_GPL(ata_bmdma_stop);
5208 EXPORT_SYMBOL_GPL(ata_port_probe);
5209 EXPORT_SYMBOL_GPL(sata_phy_reset);
5210 EXPORT_SYMBOL_GPL(__sata_phy_reset);
5211 EXPORT_SYMBOL_GPL(ata_bus_reset);
5212 EXPORT_SYMBOL_GPL(ata_std_probeinit);
5213 EXPORT_SYMBOL_GPL(ata_std_softreset);
5214 EXPORT_SYMBOL_GPL(sata_std_hardreset);
5215 EXPORT_SYMBOL_GPL(ata_std_postreset);
5216 EXPORT_SYMBOL_GPL(ata_std_probe_reset);
5217 EXPORT_SYMBOL_GPL(ata_drive_probe_reset);
5218 EXPORT_SYMBOL_GPL(ata_port_disable);
5219 EXPORT_SYMBOL_GPL(ata_ratelimit);
5220 EXPORT_SYMBOL_GPL(ata_busy_sleep);
5221 EXPORT_SYMBOL_GPL(ata_scsi_ioctl);
5222 EXPORT_SYMBOL_GPL(ata_scsi_queuecmd);
5223 EXPORT_SYMBOL_GPL(ata_scsi_timed_out);
5224 EXPORT_SYMBOL_GPL(ata_scsi_error);
5225 EXPORT_SYMBOL_GPL(ata_scsi_slave_config);
5226 EXPORT_SYMBOL_GPL(ata_scsi_release);
5227 EXPORT_SYMBOL_GPL(ata_host_intr);
5228 EXPORT_SYMBOL_GPL(ata_dev_classify);
5229 EXPORT_SYMBOL_GPL(ata_id_string);
5230 EXPORT_SYMBOL_GPL(ata_id_c_string);
5231 EXPORT_SYMBOL_GPL(ata_dev_config);
5232 EXPORT_SYMBOL_GPL(ata_scsi_simulate);
5233 EXPORT_SYMBOL_GPL(ata_eh_qc_complete);
5234 EXPORT_SYMBOL_GPL(ata_eh_qc_retry);
5235
5236 EXPORT_SYMBOL_GPL(ata_pio_need_iordy);
5237 EXPORT_SYMBOL_GPL(ata_timing_compute);
5238 EXPORT_SYMBOL_GPL(ata_timing_merge);
5239
5240 #ifdef CONFIG_PCI
5241 EXPORT_SYMBOL_GPL(pci_test_config_bits);
5242 EXPORT_SYMBOL_GPL(ata_pci_host_stop);
5243 EXPORT_SYMBOL_GPL(ata_pci_init_native_mode);
5244 EXPORT_SYMBOL_GPL(ata_pci_init_one);
5245 EXPORT_SYMBOL_GPL(ata_pci_remove_one);
5246 EXPORT_SYMBOL_GPL(ata_pci_device_suspend);
5247 EXPORT_SYMBOL_GPL(ata_pci_device_resume);
5248 #endif /* CONFIG_PCI */
5249
5250 EXPORT_SYMBOL_GPL(ata_device_suspend);
5251 EXPORT_SYMBOL_GPL(ata_device_resume);
5252 EXPORT_SYMBOL_GPL(ata_scsi_device_suspend);
5253 EXPORT_SYMBOL_GPL(ata_scsi_device_resume);
This page took 0.213671 seconds and 5 git commands to generate.