bbd6665eb212452e2dd8f84fdfc988ecd1b8848e
[deliverable/linux.git] / drivers / scsi / libata-core.c
1 /*
2 * libata-core.c - helper library for ATA
3 *
4 * Maintained by: Jeff Garzik <jgarzik@pobox.com>
5 * Please ALWAYS copy linux-ide@vger.kernel.org
6 * on emails.
7 *
8 * Copyright 2003-2004 Red Hat, Inc. All rights reserved.
9 * Copyright 2003-2004 Jeff Garzik
10 *
11 *
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2, or (at your option)
15 * any later version.
16 *
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
21 *
22 * You should have received a copy of the GNU General Public License
23 * along with this program; see the file COPYING. If not, write to
24 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
25 *
26 *
27 * libata documentation is available via 'make {ps|pdf}docs',
28 * as Documentation/DocBook/libata.*
29 *
30 * Hardware documentation available from http://www.t13.org/ and
31 * http://www.sata-io.org/
32 *
33 */
34
35 #include <linux/config.h>
36 #include <linux/kernel.h>
37 #include <linux/module.h>
38 #include <linux/pci.h>
39 #include <linux/init.h>
40 #include <linux/list.h>
41 #include <linux/mm.h>
42 #include <linux/highmem.h>
43 #include <linux/spinlock.h>
44 #include <linux/blkdev.h>
45 #include <linux/delay.h>
46 #include <linux/timer.h>
47 #include <linux/interrupt.h>
48 #include <linux/completion.h>
49 #include <linux/suspend.h>
50 #include <linux/workqueue.h>
51 #include <linux/jiffies.h>
52 #include <linux/scatterlist.h>
53 #include <scsi/scsi.h>
54 #include "scsi_priv.h"
55 #include <scsi/scsi_cmnd.h>
56 #include <scsi/scsi_host.h>
57 #include <linux/libata.h>
58 #include <asm/io.h>
59 #include <asm/semaphore.h>
60 #include <asm/byteorder.h>
61
62 #include "libata.h"
63
64 /* debounce timing parameters in msecs { interval, duration, timeout } */
65 const unsigned long sata_deb_timing_boot[] = { 5, 100, 2000 };
66 const unsigned long sata_deb_timing_eh[] = { 25, 500, 2000 };
67 const unsigned long sata_deb_timing_before_fsrst[] = { 100, 2000, 5000 };
68
69 static unsigned int ata_dev_init_params(struct ata_device *dev,
70 u16 heads, u16 sectors);
71 static unsigned int ata_dev_set_xfermode(struct ata_device *dev);
72 static void ata_dev_xfermask(struct ata_device *dev);
73
74 static unsigned int ata_unique_id = 1;
75 static struct workqueue_struct *ata_wq;
76
77 struct workqueue_struct *ata_aux_wq;
78
79 int atapi_enabled = 1;
80 module_param(atapi_enabled, int, 0444);
81 MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on)");
82
83 int atapi_dmadir = 0;
84 module_param(atapi_dmadir, int, 0444);
85 MODULE_PARM_DESC(atapi_dmadir, "Enable ATAPI DMADIR bridge support (0=off, 1=on)");
86
87 int libata_fua = 0;
88 module_param_named(fua, libata_fua, int, 0444);
89 MODULE_PARM_DESC(fua, "FUA support (0=off, 1=on)");
90
91 MODULE_AUTHOR("Jeff Garzik");
92 MODULE_DESCRIPTION("Library module for ATA devices");
93 MODULE_LICENSE("GPL");
94 MODULE_VERSION(DRV_VERSION);
95
96
97 /**
98 * ata_tf_to_fis - Convert ATA taskfile to SATA FIS structure
99 * @tf: Taskfile to convert
100 * @fis: Buffer into which data will output
101 * @pmp: Port multiplier port
102 *
103 * Converts a standard ATA taskfile to a Serial ATA
104 * FIS structure (Register - Host to Device).
105 *
106 * LOCKING:
107 * Inherited from caller.
108 */
109
110 void ata_tf_to_fis(const struct ata_taskfile *tf, u8 *fis, u8 pmp)
111 {
112 fis[0] = 0x27; /* Register - Host to Device FIS */
113 fis[1] = (pmp & 0xf) | (1 << 7); /* Port multiplier number,
114 bit 7 indicates Command FIS */
115 fis[2] = tf->command;
116 fis[3] = tf->feature;
117
118 fis[4] = tf->lbal;
119 fis[5] = tf->lbam;
120 fis[6] = tf->lbah;
121 fis[7] = tf->device;
122
123 fis[8] = tf->hob_lbal;
124 fis[9] = tf->hob_lbam;
125 fis[10] = tf->hob_lbah;
126 fis[11] = tf->hob_feature;
127
128 fis[12] = tf->nsect;
129 fis[13] = tf->hob_nsect;
130 fis[14] = 0;
131 fis[15] = tf->ctl;
132
133 fis[16] = 0;
134 fis[17] = 0;
135 fis[18] = 0;
136 fis[19] = 0;
137 }
138
139 /**
140 * ata_tf_from_fis - Convert SATA FIS to ATA taskfile
141 * @fis: Buffer from which data will be input
142 * @tf: Taskfile to output
143 *
144 * Converts a serial ATA FIS structure to a standard ATA taskfile.
145 *
146 * LOCKING:
147 * Inherited from caller.
148 */
149
150 void ata_tf_from_fis(const u8 *fis, struct ata_taskfile *tf)
151 {
152 tf->command = fis[2]; /* status */
153 tf->feature = fis[3]; /* error */
154
155 tf->lbal = fis[4];
156 tf->lbam = fis[5];
157 tf->lbah = fis[6];
158 tf->device = fis[7];
159
160 tf->hob_lbal = fis[8];
161 tf->hob_lbam = fis[9];
162 tf->hob_lbah = fis[10];
163
164 tf->nsect = fis[12];
165 tf->hob_nsect = fis[13];
166 }
167
168 static const u8 ata_rw_cmds[] = {
169 /* pio multi */
170 ATA_CMD_READ_MULTI,
171 ATA_CMD_WRITE_MULTI,
172 ATA_CMD_READ_MULTI_EXT,
173 ATA_CMD_WRITE_MULTI_EXT,
174 0,
175 0,
176 0,
177 ATA_CMD_WRITE_MULTI_FUA_EXT,
178 /* pio */
179 ATA_CMD_PIO_READ,
180 ATA_CMD_PIO_WRITE,
181 ATA_CMD_PIO_READ_EXT,
182 ATA_CMD_PIO_WRITE_EXT,
183 0,
184 0,
185 0,
186 0,
187 /* dma */
188 ATA_CMD_READ,
189 ATA_CMD_WRITE,
190 ATA_CMD_READ_EXT,
191 ATA_CMD_WRITE_EXT,
192 0,
193 0,
194 0,
195 ATA_CMD_WRITE_FUA_EXT
196 };
197
198 /**
199 * ata_rwcmd_protocol - set taskfile r/w commands and protocol
200 * @qc: command to examine and configure
201 *
202 * Examine the device configuration and tf->flags to calculate
203 * the proper read/write commands and protocol to use.
204 *
205 * LOCKING:
206 * caller.
207 */
208 int ata_rwcmd_protocol(struct ata_queued_cmd *qc)
209 {
210 struct ata_taskfile *tf = &qc->tf;
211 struct ata_device *dev = qc->dev;
212 u8 cmd;
213
214 int index, fua, lba48, write;
215
216 fua = (tf->flags & ATA_TFLAG_FUA) ? 4 : 0;
217 lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0;
218 write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0;
219
220 if (dev->flags & ATA_DFLAG_PIO) {
221 tf->protocol = ATA_PROT_PIO;
222 index = dev->multi_count ? 0 : 8;
223 } else if (lba48 && (qc->ap->flags & ATA_FLAG_PIO_LBA48)) {
224 /* Unable to use DMA due to host limitation */
225 tf->protocol = ATA_PROT_PIO;
226 index = dev->multi_count ? 0 : 8;
227 } else {
228 tf->protocol = ATA_PROT_DMA;
229 index = 16;
230 }
231
232 cmd = ata_rw_cmds[index + fua + lba48 + write];
233 if (cmd) {
234 tf->command = cmd;
235 return 0;
236 }
237 return -1;
238 }
239
240 /**
241 * ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask
242 * @pio_mask: pio_mask
243 * @mwdma_mask: mwdma_mask
244 * @udma_mask: udma_mask
245 *
246 * Pack @pio_mask, @mwdma_mask and @udma_mask into a single
247 * unsigned int xfer_mask.
248 *
249 * LOCKING:
250 * None.
251 *
252 * RETURNS:
253 * Packed xfer_mask.
254 */
255 static unsigned int ata_pack_xfermask(unsigned int pio_mask,
256 unsigned int mwdma_mask,
257 unsigned int udma_mask)
258 {
259 return ((pio_mask << ATA_SHIFT_PIO) & ATA_MASK_PIO) |
260 ((mwdma_mask << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA) |
261 ((udma_mask << ATA_SHIFT_UDMA) & ATA_MASK_UDMA);
262 }
263
264 /**
265 * ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks
266 * @xfer_mask: xfer_mask to unpack
267 * @pio_mask: resulting pio_mask
268 * @mwdma_mask: resulting mwdma_mask
269 * @udma_mask: resulting udma_mask
270 *
271 * Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask.
272 * Any NULL distination masks will be ignored.
273 */
274 static void ata_unpack_xfermask(unsigned int xfer_mask,
275 unsigned int *pio_mask,
276 unsigned int *mwdma_mask,
277 unsigned int *udma_mask)
278 {
279 if (pio_mask)
280 *pio_mask = (xfer_mask & ATA_MASK_PIO) >> ATA_SHIFT_PIO;
281 if (mwdma_mask)
282 *mwdma_mask = (xfer_mask & ATA_MASK_MWDMA) >> ATA_SHIFT_MWDMA;
283 if (udma_mask)
284 *udma_mask = (xfer_mask & ATA_MASK_UDMA) >> ATA_SHIFT_UDMA;
285 }
286
287 static const struct ata_xfer_ent {
288 int shift, bits;
289 u8 base;
290 } ata_xfer_tbl[] = {
291 { ATA_SHIFT_PIO, ATA_BITS_PIO, XFER_PIO_0 },
292 { ATA_SHIFT_MWDMA, ATA_BITS_MWDMA, XFER_MW_DMA_0 },
293 { ATA_SHIFT_UDMA, ATA_BITS_UDMA, XFER_UDMA_0 },
294 { -1, },
295 };
296
297 /**
298 * ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask
299 * @xfer_mask: xfer_mask of interest
300 *
301 * Return matching XFER_* value for @xfer_mask. Only the highest
302 * bit of @xfer_mask is considered.
303 *
304 * LOCKING:
305 * None.
306 *
307 * RETURNS:
308 * Matching XFER_* value, 0 if no match found.
309 */
310 static u8 ata_xfer_mask2mode(unsigned int xfer_mask)
311 {
312 int highbit = fls(xfer_mask) - 1;
313 const struct ata_xfer_ent *ent;
314
315 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
316 if (highbit >= ent->shift && highbit < ent->shift + ent->bits)
317 return ent->base + highbit - ent->shift;
318 return 0;
319 }
320
321 /**
322 * ata_xfer_mode2mask - Find matching xfer_mask for XFER_*
323 * @xfer_mode: XFER_* of interest
324 *
325 * Return matching xfer_mask for @xfer_mode.
326 *
327 * LOCKING:
328 * None.
329 *
330 * RETURNS:
331 * Matching xfer_mask, 0 if no match found.
332 */
333 static unsigned int ata_xfer_mode2mask(u8 xfer_mode)
334 {
335 const struct ata_xfer_ent *ent;
336
337 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
338 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
339 return 1 << (ent->shift + xfer_mode - ent->base);
340 return 0;
341 }
342
343 /**
344 * ata_xfer_mode2shift - Find matching xfer_shift for XFER_*
345 * @xfer_mode: XFER_* of interest
346 *
347 * Return matching xfer_shift for @xfer_mode.
348 *
349 * LOCKING:
350 * None.
351 *
352 * RETURNS:
353 * Matching xfer_shift, -1 if no match found.
354 */
355 static int ata_xfer_mode2shift(unsigned int xfer_mode)
356 {
357 const struct ata_xfer_ent *ent;
358
359 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
360 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
361 return ent->shift;
362 return -1;
363 }
364
365 /**
366 * ata_mode_string - convert xfer_mask to string
367 * @xfer_mask: mask of bits supported; only highest bit counts.
368 *
369 * Determine string which represents the highest speed
370 * (highest bit in @modemask).
371 *
372 * LOCKING:
373 * None.
374 *
375 * RETURNS:
376 * Constant C string representing highest speed listed in
377 * @mode_mask, or the constant C string "<n/a>".
378 */
379 static const char *ata_mode_string(unsigned int xfer_mask)
380 {
381 static const char * const xfer_mode_str[] = {
382 "PIO0",
383 "PIO1",
384 "PIO2",
385 "PIO3",
386 "PIO4",
387 "MWDMA0",
388 "MWDMA1",
389 "MWDMA2",
390 "UDMA/16",
391 "UDMA/25",
392 "UDMA/33",
393 "UDMA/44",
394 "UDMA/66",
395 "UDMA/100",
396 "UDMA/133",
397 "UDMA7",
398 };
399 int highbit;
400
401 highbit = fls(xfer_mask) - 1;
402 if (highbit >= 0 && highbit < ARRAY_SIZE(xfer_mode_str))
403 return xfer_mode_str[highbit];
404 return "<n/a>";
405 }
406
407 static const char *sata_spd_string(unsigned int spd)
408 {
409 static const char * const spd_str[] = {
410 "1.5 Gbps",
411 "3.0 Gbps",
412 };
413
414 if (spd == 0 || (spd - 1) >= ARRAY_SIZE(spd_str))
415 return "<unknown>";
416 return spd_str[spd - 1];
417 }
418
419 void ata_dev_disable(struct ata_device *dev)
420 {
421 if (ata_dev_enabled(dev) && ata_msg_drv(dev->ap)) {
422 ata_dev_printk(dev, KERN_WARNING, "disabled\n");
423 dev->class++;
424 }
425 }
426
427 /**
428 * ata_pio_devchk - PATA device presence detection
429 * @ap: ATA channel to examine
430 * @device: Device to examine (starting at zero)
431 *
432 * This technique was originally described in
433 * Hale Landis's ATADRVR (www.ata-atapi.com), and
434 * later found its way into the ATA/ATAPI spec.
435 *
436 * Write a pattern to the ATA shadow registers,
437 * and if a device is present, it will respond by
438 * correctly storing and echoing back the
439 * ATA shadow register contents.
440 *
441 * LOCKING:
442 * caller.
443 */
444
445 static unsigned int ata_pio_devchk(struct ata_port *ap,
446 unsigned int device)
447 {
448 struct ata_ioports *ioaddr = &ap->ioaddr;
449 u8 nsect, lbal;
450
451 ap->ops->dev_select(ap, device);
452
453 outb(0x55, ioaddr->nsect_addr);
454 outb(0xaa, ioaddr->lbal_addr);
455
456 outb(0xaa, ioaddr->nsect_addr);
457 outb(0x55, ioaddr->lbal_addr);
458
459 outb(0x55, ioaddr->nsect_addr);
460 outb(0xaa, ioaddr->lbal_addr);
461
462 nsect = inb(ioaddr->nsect_addr);
463 lbal = inb(ioaddr->lbal_addr);
464
465 if ((nsect == 0x55) && (lbal == 0xaa))
466 return 1; /* we found a device */
467
468 return 0; /* nothing found */
469 }
470
471 /**
472 * ata_mmio_devchk - PATA device presence detection
473 * @ap: ATA channel to examine
474 * @device: Device to examine (starting at zero)
475 *
476 * This technique was originally described in
477 * Hale Landis's ATADRVR (www.ata-atapi.com), and
478 * later found its way into the ATA/ATAPI spec.
479 *
480 * Write a pattern to the ATA shadow registers,
481 * and if a device is present, it will respond by
482 * correctly storing and echoing back the
483 * ATA shadow register contents.
484 *
485 * LOCKING:
486 * caller.
487 */
488
489 static unsigned int ata_mmio_devchk(struct ata_port *ap,
490 unsigned int device)
491 {
492 struct ata_ioports *ioaddr = &ap->ioaddr;
493 u8 nsect, lbal;
494
495 ap->ops->dev_select(ap, device);
496
497 writeb(0x55, (void __iomem *) ioaddr->nsect_addr);
498 writeb(0xaa, (void __iomem *) ioaddr->lbal_addr);
499
500 writeb(0xaa, (void __iomem *) ioaddr->nsect_addr);
501 writeb(0x55, (void __iomem *) ioaddr->lbal_addr);
502
503 writeb(0x55, (void __iomem *) ioaddr->nsect_addr);
504 writeb(0xaa, (void __iomem *) ioaddr->lbal_addr);
505
506 nsect = readb((void __iomem *) ioaddr->nsect_addr);
507 lbal = readb((void __iomem *) ioaddr->lbal_addr);
508
509 if ((nsect == 0x55) && (lbal == 0xaa))
510 return 1; /* we found a device */
511
512 return 0; /* nothing found */
513 }
514
515 /**
516 * ata_devchk - PATA device presence detection
517 * @ap: ATA channel to examine
518 * @device: Device to examine (starting at zero)
519 *
520 * Dispatch ATA device presence detection, depending
521 * on whether we are using PIO or MMIO to talk to the
522 * ATA shadow registers.
523 *
524 * LOCKING:
525 * caller.
526 */
527
528 static unsigned int ata_devchk(struct ata_port *ap,
529 unsigned int device)
530 {
531 if (ap->flags & ATA_FLAG_MMIO)
532 return ata_mmio_devchk(ap, device);
533 return ata_pio_devchk(ap, device);
534 }
535
536 /**
537 * ata_dev_classify - determine device type based on ATA-spec signature
538 * @tf: ATA taskfile register set for device to be identified
539 *
540 * Determine from taskfile register contents whether a device is
541 * ATA or ATAPI, as per "Signature and persistence" section
542 * of ATA/PI spec (volume 1, sect 5.14).
543 *
544 * LOCKING:
545 * None.
546 *
547 * RETURNS:
548 * Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, or %ATA_DEV_UNKNOWN
549 * the event of failure.
550 */
551
552 unsigned int ata_dev_classify(const struct ata_taskfile *tf)
553 {
554 /* Apple's open source Darwin code hints that some devices only
555 * put a proper signature into the LBA mid/high registers,
556 * So, we only check those. It's sufficient for uniqueness.
557 */
558
559 if (((tf->lbam == 0) && (tf->lbah == 0)) ||
560 ((tf->lbam == 0x3c) && (tf->lbah == 0xc3))) {
561 DPRINTK("found ATA device by sig\n");
562 return ATA_DEV_ATA;
563 }
564
565 if (((tf->lbam == 0x14) && (tf->lbah == 0xeb)) ||
566 ((tf->lbam == 0x69) && (tf->lbah == 0x96))) {
567 DPRINTK("found ATAPI device by sig\n");
568 return ATA_DEV_ATAPI;
569 }
570
571 DPRINTK("unknown device\n");
572 return ATA_DEV_UNKNOWN;
573 }
574
575 /**
576 * ata_dev_try_classify - Parse returned ATA device signature
577 * @ap: ATA channel to examine
578 * @device: Device to examine (starting at zero)
579 * @r_err: Value of error register on completion
580 *
581 * After an event -- SRST, E.D.D., or SATA COMRESET -- occurs,
582 * an ATA/ATAPI-defined set of values is placed in the ATA
583 * shadow registers, indicating the results of device detection
584 * and diagnostics.
585 *
586 * Select the ATA device, and read the values from the ATA shadow
587 * registers. Then parse according to the Error register value,
588 * and the spec-defined values examined by ata_dev_classify().
589 *
590 * LOCKING:
591 * caller.
592 *
593 * RETURNS:
594 * Device type - %ATA_DEV_ATA, %ATA_DEV_ATAPI or %ATA_DEV_NONE.
595 */
596
597 static unsigned int
598 ata_dev_try_classify(struct ata_port *ap, unsigned int device, u8 *r_err)
599 {
600 struct ata_taskfile tf;
601 unsigned int class;
602 u8 err;
603
604 ap->ops->dev_select(ap, device);
605
606 memset(&tf, 0, sizeof(tf));
607
608 ap->ops->tf_read(ap, &tf);
609 err = tf.feature;
610 if (r_err)
611 *r_err = err;
612
613 /* see if device passed diags */
614 if (err == 1)
615 /* do nothing */ ;
616 else if ((device == 0) && (err == 0x81))
617 /* do nothing */ ;
618 else
619 return ATA_DEV_NONE;
620
621 /* determine if device is ATA or ATAPI */
622 class = ata_dev_classify(&tf);
623
624 if (class == ATA_DEV_UNKNOWN)
625 return ATA_DEV_NONE;
626 if ((class == ATA_DEV_ATA) && (ata_chk_status(ap) == 0))
627 return ATA_DEV_NONE;
628 return class;
629 }
630
631 /**
632 * ata_id_string - Convert IDENTIFY DEVICE page into string
633 * @id: IDENTIFY DEVICE results we will examine
634 * @s: string into which data is output
635 * @ofs: offset into identify device page
636 * @len: length of string to return. must be an even number.
637 *
638 * The strings in the IDENTIFY DEVICE page are broken up into
639 * 16-bit chunks. Run through the string, and output each
640 * 8-bit chunk linearly, regardless of platform.
641 *
642 * LOCKING:
643 * caller.
644 */
645
646 void ata_id_string(const u16 *id, unsigned char *s,
647 unsigned int ofs, unsigned int len)
648 {
649 unsigned int c;
650
651 while (len > 0) {
652 c = id[ofs] >> 8;
653 *s = c;
654 s++;
655
656 c = id[ofs] & 0xff;
657 *s = c;
658 s++;
659
660 ofs++;
661 len -= 2;
662 }
663 }
664
665 /**
666 * ata_id_c_string - Convert IDENTIFY DEVICE page into C string
667 * @id: IDENTIFY DEVICE results we will examine
668 * @s: string into which data is output
669 * @ofs: offset into identify device page
670 * @len: length of string to return. must be an odd number.
671 *
672 * This function is identical to ata_id_string except that it
673 * trims trailing spaces and terminates the resulting string with
674 * null. @len must be actual maximum length (even number) + 1.
675 *
676 * LOCKING:
677 * caller.
678 */
679 void ata_id_c_string(const u16 *id, unsigned char *s,
680 unsigned int ofs, unsigned int len)
681 {
682 unsigned char *p;
683
684 WARN_ON(!(len & 1));
685
686 ata_id_string(id, s, ofs, len - 1);
687
688 p = s + strnlen(s, len - 1);
689 while (p > s && p[-1] == ' ')
690 p--;
691 *p = '\0';
692 }
693
694 static u64 ata_id_n_sectors(const u16 *id)
695 {
696 if (ata_id_has_lba(id)) {
697 if (ata_id_has_lba48(id))
698 return ata_id_u64(id, 100);
699 else
700 return ata_id_u32(id, 60);
701 } else {
702 if (ata_id_current_chs_valid(id))
703 return ata_id_u32(id, 57);
704 else
705 return id[1] * id[3] * id[6];
706 }
707 }
708
709 /**
710 * ata_noop_dev_select - Select device 0/1 on ATA bus
711 * @ap: ATA channel to manipulate
712 * @device: ATA device (numbered from zero) to select
713 *
714 * This function performs no actual function.
715 *
716 * May be used as the dev_select() entry in ata_port_operations.
717 *
718 * LOCKING:
719 * caller.
720 */
721 void ata_noop_dev_select (struct ata_port *ap, unsigned int device)
722 {
723 }
724
725
726 /**
727 * ata_std_dev_select - Select device 0/1 on ATA bus
728 * @ap: ATA channel to manipulate
729 * @device: ATA device (numbered from zero) to select
730 *
731 * Use the method defined in the ATA specification to
732 * make either device 0, or device 1, active on the
733 * ATA channel. Works with both PIO and MMIO.
734 *
735 * May be used as the dev_select() entry in ata_port_operations.
736 *
737 * LOCKING:
738 * caller.
739 */
740
741 void ata_std_dev_select (struct ata_port *ap, unsigned int device)
742 {
743 u8 tmp;
744
745 if (device == 0)
746 tmp = ATA_DEVICE_OBS;
747 else
748 tmp = ATA_DEVICE_OBS | ATA_DEV1;
749
750 if (ap->flags & ATA_FLAG_MMIO) {
751 writeb(tmp, (void __iomem *) ap->ioaddr.device_addr);
752 } else {
753 outb(tmp, ap->ioaddr.device_addr);
754 }
755 ata_pause(ap); /* needed; also flushes, for mmio */
756 }
757
758 /**
759 * ata_dev_select - Select device 0/1 on ATA bus
760 * @ap: ATA channel to manipulate
761 * @device: ATA device (numbered from zero) to select
762 * @wait: non-zero to wait for Status register BSY bit to clear
763 * @can_sleep: non-zero if context allows sleeping
764 *
765 * Use the method defined in the ATA specification to
766 * make either device 0, or device 1, active on the
767 * ATA channel.
768 *
769 * This is a high-level version of ata_std_dev_select(),
770 * which additionally provides the services of inserting
771 * the proper pauses and status polling, where needed.
772 *
773 * LOCKING:
774 * caller.
775 */
776
777 void ata_dev_select(struct ata_port *ap, unsigned int device,
778 unsigned int wait, unsigned int can_sleep)
779 {
780 if (ata_msg_probe(ap)) {
781 ata_port_printk(ap, KERN_INFO, "ata_dev_select: ENTER, ata%u: "
782 "device %u, wait %u\n",
783 ap->id, device, wait);
784 }
785
786 if (wait)
787 ata_wait_idle(ap);
788
789 ap->ops->dev_select(ap, device);
790
791 if (wait) {
792 if (can_sleep && ap->device[device].class == ATA_DEV_ATAPI)
793 msleep(150);
794 ata_wait_idle(ap);
795 }
796 }
797
798 /**
799 * ata_dump_id - IDENTIFY DEVICE info debugging output
800 * @id: IDENTIFY DEVICE page to dump
801 *
802 * Dump selected 16-bit words from the given IDENTIFY DEVICE
803 * page.
804 *
805 * LOCKING:
806 * caller.
807 */
808
809 static inline void ata_dump_id(const u16 *id)
810 {
811 DPRINTK("49==0x%04x "
812 "53==0x%04x "
813 "63==0x%04x "
814 "64==0x%04x "
815 "75==0x%04x \n",
816 id[49],
817 id[53],
818 id[63],
819 id[64],
820 id[75]);
821 DPRINTK("80==0x%04x "
822 "81==0x%04x "
823 "82==0x%04x "
824 "83==0x%04x "
825 "84==0x%04x \n",
826 id[80],
827 id[81],
828 id[82],
829 id[83],
830 id[84]);
831 DPRINTK("88==0x%04x "
832 "93==0x%04x\n",
833 id[88],
834 id[93]);
835 }
836
837 /**
838 * ata_id_xfermask - Compute xfermask from the given IDENTIFY data
839 * @id: IDENTIFY data to compute xfer mask from
840 *
841 * Compute the xfermask for this device. This is not as trivial
842 * as it seems if we must consider early devices correctly.
843 *
844 * FIXME: pre IDE drive timing (do we care ?).
845 *
846 * LOCKING:
847 * None.
848 *
849 * RETURNS:
850 * Computed xfermask
851 */
852 static unsigned int ata_id_xfermask(const u16 *id)
853 {
854 unsigned int pio_mask, mwdma_mask, udma_mask;
855
856 /* Usual case. Word 53 indicates word 64 is valid */
857 if (id[ATA_ID_FIELD_VALID] & (1 << 1)) {
858 pio_mask = id[ATA_ID_PIO_MODES] & 0x03;
859 pio_mask <<= 3;
860 pio_mask |= 0x7;
861 } else {
862 /* If word 64 isn't valid then Word 51 high byte holds
863 * the PIO timing number for the maximum. Turn it into
864 * a mask.
865 */
866 pio_mask = (2 << (id[ATA_ID_OLD_PIO_MODES] & 0xFF)) - 1 ;
867
868 /* But wait.. there's more. Design your standards by
869 * committee and you too can get a free iordy field to
870 * process. However its the speeds not the modes that
871 * are supported... Note drivers using the timing API
872 * will get this right anyway
873 */
874 }
875
876 mwdma_mask = id[ATA_ID_MWDMA_MODES] & 0x07;
877
878 udma_mask = 0;
879 if (id[ATA_ID_FIELD_VALID] & (1 << 2))
880 udma_mask = id[ATA_ID_UDMA_MODES] & 0xff;
881
882 return ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
883 }
884
885 /**
886 * ata_port_queue_task - Queue port_task
887 * @ap: The ata_port to queue port_task for
888 * @fn: workqueue function to be scheduled
889 * @data: data value to pass to workqueue function
890 * @delay: delay time for workqueue function
891 *
892 * Schedule @fn(@data) for execution after @delay jiffies using
893 * port_task. There is one port_task per port and it's the
894 * user(low level driver)'s responsibility to make sure that only
895 * one task is active at any given time.
896 *
897 * libata core layer takes care of synchronization between
898 * port_task and EH. ata_port_queue_task() may be ignored for EH
899 * synchronization.
900 *
901 * LOCKING:
902 * Inherited from caller.
903 */
904 void ata_port_queue_task(struct ata_port *ap, void (*fn)(void *), void *data,
905 unsigned long delay)
906 {
907 int rc;
908
909 if (ap->flags & ATA_FLAG_FLUSH_PORT_TASK)
910 return;
911
912 PREPARE_WORK(&ap->port_task, fn, data);
913
914 if (!delay)
915 rc = queue_work(ata_wq, &ap->port_task);
916 else
917 rc = queue_delayed_work(ata_wq, &ap->port_task, delay);
918
919 /* rc == 0 means that another user is using port task */
920 WARN_ON(rc == 0);
921 }
922
923 /**
924 * ata_port_flush_task - Flush port_task
925 * @ap: The ata_port to flush port_task for
926 *
927 * After this function completes, port_task is guranteed not to
928 * be running or scheduled.
929 *
930 * LOCKING:
931 * Kernel thread context (may sleep)
932 */
933 void ata_port_flush_task(struct ata_port *ap)
934 {
935 unsigned long flags;
936
937 DPRINTK("ENTER\n");
938
939 spin_lock_irqsave(ap->lock, flags);
940 ap->flags |= ATA_FLAG_FLUSH_PORT_TASK;
941 spin_unlock_irqrestore(ap->lock, flags);
942
943 DPRINTK("flush #1\n");
944 flush_workqueue(ata_wq);
945
946 /*
947 * At this point, if a task is running, it's guaranteed to see
948 * the FLUSH flag; thus, it will never queue pio tasks again.
949 * Cancel and flush.
950 */
951 if (!cancel_delayed_work(&ap->port_task)) {
952 if (ata_msg_ctl(ap))
953 ata_port_printk(ap, KERN_DEBUG, "%s: flush #2\n", __FUNCTION__);
954 flush_workqueue(ata_wq);
955 }
956
957 spin_lock_irqsave(ap->lock, flags);
958 ap->flags &= ~ATA_FLAG_FLUSH_PORT_TASK;
959 spin_unlock_irqrestore(ap->lock, flags);
960
961 if (ata_msg_ctl(ap))
962 ata_port_printk(ap, KERN_DEBUG, "%s: EXIT\n", __FUNCTION__);
963 }
964
965 void ata_qc_complete_internal(struct ata_queued_cmd *qc)
966 {
967 struct completion *waiting = qc->private_data;
968
969 complete(waiting);
970 }
971
972 /**
973 * ata_exec_internal - execute libata internal command
974 * @dev: Device to which the command is sent
975 * @tf: Taskfile registers for the command and the result
976 * @cdb: CDB for packet command
977 * @dma_dir: Data tranfer direction of the command
978 * @buf: Data buffer of the command
979 * @buflen: Length of data buffer
980 *
981 * Executes libata internal command with timeout. @tf contains
982 * command on entry and result on return. Timeout and error
983 * conditions are reported via return value. No recovery action
984 * is taken after a command times out. It's caller's duty to
985 * clean up after timeout.
986 *
987 * LOCKING:
988 * None. Should be called with kernel context, might sleep.
989 *
990 * RETURNS:
991 * Zero on success, AC_ERR_* mask on failure
992 */
993 unsigned ata_exec_internal(struct ata_device *dev,
994 struct ata_taskfile *tf, const u8 *cdb,
995 int dma_dir, void *buf, unsigned int buflen)
996 {
997 struct ata_port *ap = dev->ap;
998 u8 command = tf->command;
999 struct ata_queued_cmd *qc;
1000 unsigned int tag, preempted_tag;
1001 u32 preempted_sactive, preempted_qc_active;
1002 DECLARE_COMPLETION(wait);
1003 unsigned long flags;
1004 unsigned int err_mask;
1005 int rc;
1006
1007 spin_lock_irqsave(ap->lock, flags);
1008
1009 /* no internal command while frozen */
1010 if (ap->flags & ATA_FLAG_FROZEN) {
1011 spin_unlock_irqrestore(ap->lock, flags);
1012 return AC_ERR_SYSTEM;
1013 }
1014
1015 /* initialize internal qc */
1016
1017 /* XXX: Tag 0 is used for drivers with legacy EH as some
1018 * drivers choke if any other tag is given. This breaks
1019 * ata_tag_internal() test for those drivers. Don't use new
1020 * EH stuff without converting to it.
1021 */
1022 if (ap->ops->error_handler)
1023 tag = ATA_TAG_INTERNAL;
1024 else
1025 tag = 0;
1026
1027 if (test_and_set_bit(tag, &ap->qc_allocated))
1028 BUG();
1029 qc = __ata_qc_from_tag(ap, tag);
1030
1031 qc->tag = tag;
1032 qc->scsicmd = NULL;
1033 qc->ap = ap;
1034 qc->dev = dev;
1035 ata_qc_reinit(qc);
1036
1037 preempted_tag = ap->active_tag;
1038 preempted_sactive = ap->sactive;
1039 preempted_qc_active = ap->qc_active;
1040 ap->active_tag = ATA_TAG_POISON;
1041 ap->sactive = 0;
1042 ap->qc_active = 0;
1043
1044 /* prepare & issue qc */
1045 qc->tf = *tf;
1046 if (cdb)
1047 memcpy(qc->cdb, cdb, ATAPI_CDB_LEN);
1048 qc->flags |= ATA_QCFLAG_RESULT_TF;
1049 qc->dma_dir = dma_dir;
1050 if (dma_dir != DMA_NONE) {
1051 ata_sg_init_one(qc, buf, buflen);
1052 qc->nsect = buflen / ATA_SECT_SIZE;
1053 }
1054
1055 qc->private_data = &wait;
1056 qc->complete_fn = ata_qc_complete_internal;
1057
1058 ata_qc_issue(qc);
1059
1060 spin_unlock_irqrestore(ap->lock, flags);
1061
1062 rc = wait_for_completion_timeout(&wait, ATA_TMOUT_INTERNAL);
1063
1064 ata_port_flush_task(ap);
1065
1066 if (!rc) {
1067 spin_lock_irqsave(ap->lock, flags);
1068
1069 /* We're racing with irq here. If we lose, the
1070 * following test prevents us from completing the qc
1071 * twice. If we win, the port is frozen and will be
1072 * cleaned up by ->post_internal_cmd().
1073 */
1074 if (qc->flags & ATA_QCFLAG_ACTIVE) {
1075 qc->err_mask |= AC_ERR_TIMEOUT;
1076
1077 if (ap->ops->error_handler)
1078 ata_port_freeze(ap);
1079 else
1080 ata_qc_complete(qc);
1081
1082 if (ata_msg_warn(ap))
1083 ata_dev_printk(dev, KERN_WARNING,
1084 "qc timeout (cmd 0x%x)\n", command);
1085 }
1086
1087 spin_unlock_irqrestore(ap->lock, flags);
1088 }
1089
1090 /* do post_internal_cmd */
1091 if (ap->ops->post_internal_cmd)
1092 ap->ops->post_internal_cmd(qc);
1093
1094 if (qc->flags & ATA_QCFLAG_FAILED && !qc->err_mask) {
1095 if (ata_msg_warn(ap))
1096 ata_dev_printk(dev, KERN_WARNING,
1097 "zero err_mask for failed "
1098 "internal command, assuming AC_ERR_OTHER\n");
1099 qc->err_mask |= AC_ERR_OTHER;
1100 }
1101
1102 /* finish up */
1103 spin_lock_irqsave(ap->lock, flags);
1104
1105 *tf = qc->result_tf;
1106 err_mask = qc->err_mask;
1107
1108 ata_qc_free(qc);
1109 ap->active_tag = preempted_tag;
1110 ap->sactive = preempted_sactive;
1111 ap->qc_active = preempted_qc_active;
1112
1113 /* XXX - Some LLDDs (sata_mv) disable port on command failure.
1114 * Until those drivers are fixed, we detect the condition
1115 * here, fail the command with AC_ERR_SYSTEM and reenable the
1116 * port.
1117 *
1118 * Note that this doesn't change any behavior as internal
1119 * command failure results in disabling the device in the
1120 * higher layer for LLDDs without new reset/EH callbacks.
1121 *
1122 * Kill the following code as soon as those drivers are fixed.
1123 */
1124 if (ap->flags & ATA_FLAG_DISABLED) {
1125 err_mask |= AC_ERR_SYSTEM;
1126 ata_port_probe(ap);
1127 }
1128
1129 spin_unlock_irqrestore(ap->lock, flags);
1130
1131 return err_mask;
1132 }
1133
1134 /*
1135 * Execute a 'simple' command, that only consists of the opcode 'cmd' itself,
1136 * without filling any other registers
1137 */
1138 static int ata_do_simple_cmd(struct ata_device *dev, u8 cmd)
1139 {
1140 struct ata_taskfile tf;
1141 int err;
1142
1143 ata_tf_init(dev, &tf);
1144
1145 tf.command = cmd;
1146 tf.flags |= ATA_TFLAG_DEVICE;
1147 tf.protocol = ATA_PROT_NODATA;
1148
1149 err = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
1150 if (err)
1151 ata_dev_printk(dev, KERN_ERR, "%s: ata command failed: %d\n",
1152 __FUNCTION__, err);
1153
1154 return err;
1155 }
1156
1157 /**
1158 * ata_pio_need_iordy - check if iordy needed
1159 * @adev: ATA device
1160 *
1161 * Check if the current speed of the device requires IORDY. Used
1162 * by various controllers for chip configuration.
1163 */
1164
1165 unsigned int ata_pio_need_iordy(const struct ata_device *adev)
1166 {
1167 int pio;
1168 int speed = adev->pio_mode - XFER_PIO_0;
1169
1170 if (speed < 2)
1171 return 0;
1172 if (speed > 2)
1173 return 1;
1174
1175 /* If we have no drive specific rule, then PIO 2 is non IORDY */
1176
1177 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE */
1178 pio = adev->id[ATA_ID_EIDE_PIO];
1179 /* Is the speed faster than the drive allows non IORDY ? */
1180 if (pio) {
1181 /* This is cycle times not frequency - watch the logic! */
1182 if (pio > 240) /* PIO2 is 240nS per cycle */
1183 return 1;
1184 return 0;
1185 }
1186 }
1187 return 0;
1188 }
1189
1190 /**
1191 * ata_dev_read_id - Read ID data from the specified device
1192 * @dev: target device
1193 * @p_class: pointer to class of the target device (may be changed)
1194 * @post_reset: is this read ID post-reset?
1195 * @id: buffer to read IDENTIFY data into
1196 *
1197 * Read ID data from the specified device. ATA_CMD_ID_ATA is
1198 * performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI
1199 * devices. This function also issues ATA_CMD_INIT_DEV_PARAMS
1200 * for pre-ATA4 drives.
1201 *
1202 * LOCKING:
1203 * Kernel thread context (may sleep)
1204 *
1205 * RETURNS:
1206 * 0 on success, -errno otherwise.
1207 */
1208 int ata_dev_read_id(struct ata_device *dev, unsigned int *p_class,
1209 int post_reset, u16 *id)
1210 {
1211 struct ata_port *ap = dev->ap;
1212 unsigned int class = *p_class;
1213 struct ata_taskfile tf;
1214 unsigned int err_mask = 0;
1215 const char *reason;
1216 int rc;
1217
1218 if (ata_msg_ctl(ap))
1219 ata_dev_printk(dev, KERN_DEBUG, "%s: ENTER, host %u, dev %u\n",
1220 __FUNCTION__, ap->id, dev->devno);
1221
1222 ata_dev_select(ap, dev->devno, 1, 1); /* select device 0/1 */
1223
1224 retry:
1225 ata_tf_init(dev, &tf);
1226
1227 switch (class) {
1228 case ATA_DEV_ATA:
1229 tf.command = ATA_CMD_ID_ATA;
1230 break;
1231 case ATA_DEV_ATAPI:
1232 tf.command = ATA_CMD_ID_ATAPI;
1233 break;
1234 default:
1235 rc = -ENODEV;
1236 reason = "unsupported class";
1237 goto err_out;
1238 }
1239
1240 tf.protocol = ATA_PROT_PIO;
1241
1242 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_FROM_DEVICE,
1243 id, sizeof(id[0]) * ATA_ID_WORDS);
1244 if (err_mask) {
1245 rc = -EIO;
1246 reason = "I/O error";
1247 goto err_out;
1248 }
1249
1250 swap_buf_le16(id, ATA_ID_WORDS);
1251
1252 /* sanity check */
1253 if ((class == ATA_DEV_ATA) != (ata_id_is_ata(id) | ata_id_is_cfa(id))) {
1254 rc = -EINVAL;
1255 reason = "device reports illegal type";
1256 goto err_out;
1257 }
1258
1259 if (post_reset && class == ATA_DEV_ATA) {
1260 /*
1261 * The exact sequence expected by certain pre-ATA4 drives is:
1262 * SRST RESET
1263 * IDENTIFY
1264 * INITIALIZE DEVICE PARAMETERS
1265 * anything else..
1266 * Some drives were very specific about that exact sequence.
1267 */
1268 if (ata_id_major_version(id) < 4 || !ata_id_has_lba(id)) {
1269 err_mask = ata_dev_init_params(dev, id[3], id[6]);
1270 if (err_mask) {
1271 rc = -EIO;
1272 reason = "INIT_DEV_PARAMS failed";
1273 goto err_out;
1274 }
1275
1276 /* current CHS translation info (id[53-58]) might be
1277 * changed. reread the identify device info.
1278 */
1279 post_reset = 0;
1280 goto retry;
1281 }
1282 }
1283
1284 *p_class = class;
1285
1286 return 0;
1287
1288 err_out:
1289 if (ata_msg_warn(ap))
1290 ata_dev_printk(dev, KERN_WARNING, "failed to IDENTIFY "
1291 "(%s, err_mask=0x%x)\n", reason, err_mask);
1292 return rc;
1293 }
1294
1295 static inline u8 ata_dev_knobble(struct ata_device *dev)
1296 {
1297 return ((dev->ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(dev->id)));
1298 }
1299
1300 static void ata_dev_config_ncq(struct ata_device *dev,
1301 char *desc, size_t desc_sz)
1302 {
1303 struct ata_port *ap = dev->ap;
1304 int hdepth = 0, ddepth = ata_id_queue_depth(dev->id);
1305
1306 if (!ata_id_has_ncq(dev->id)) {
1307 desc[0] = '\0';
1308 return;
1309 }
1310
1311 if (ap->flags & ATA_FLAG_NCQ) {
1312 hdepth = min(ap->host->can_queue, ATA_MAX_QUEUE - 1);
1313 dev->flags |= ATA_DFLAG_NCQ;
1314 }
1315
1316 if (hdepth >= ddepth)
1317 snprintf(desc, desc_sz, "NCQ (depth %d)", ddepth);
1318 else
1319 snprintf(desc, desc_sz, "NCQ (depth %d/%d)", hdepth, ddepth);
1320 }
1321
1322 /**
1323 * ata_dev_configure - Configure the specified ATA/ATAPI device
1324 * @dev: Target device to configure
1325 * @print_info: Enable device info printout
1326 *
1327 * Configure @dev according to @dev->id. Generic and low-level
1328 * driver specific fixups are also applied.
1329 *
1330 * LOCKING:
1331 * Kernel thread context (may sleep)
1332 *
1333 * RETURNS:
1334 * 0 on success, -errno otherwise
1335 */
1336 int ata_dev_configure(struct ata_device *dev, int print_info)
1337 {
1338 struct ata_port *ap = dev->ap;
1339 const u16 *id = dev->id;
1340 unsigned int xfer_mask;
1341 int i, rc;
1342
1343 if (!ata_dev_enabled(dev) && ata_msg_info(ap)) {
1344 ata_dev_printk(dev, KERN_INFO, "%s: ENTER/EXIT (host %u, dev %u) -- nodev\n",
1345 __FUNCTION__, ap->id, dev->devno);
1346 return 0;
1347 }
1348
1349 if (ata_msg_probe(ap))
1350 ata_dev_printk(dev, KERN_DEBUG, "%s: ENTER, host %u, dev %u\n",
1351 __FUNCTION__, ap->id, dev->devno);
1352
1353 /* print device capabilities */
1354 if (ata_msg_probe(ap))
1355 ata_dev_printk(dev, KERN_DEBUG, "%s: cfg 49:%04x 82:%04x 83:%04x "
1356 "84:%04x 85:%04x 86:%04x 87:%04x 88:%04x\n",
1357 __FUNCTION__,
1358 id[49], id[82], id[83], id[84],
1359 id[85], id[86], id[87], id[88]);
1360
1361 /* initialize to-be-configured parameters */
1362 dev->flags &= ~ATA_DFLAG_CFG_MASK;
1363 dev->max_sectors = 0;
1364 dev->cdb_len = 0;
1365 dev->n_sectors = 0;
1366 dev->cylinders = 0;
1367 dev->heads = 0;
1368 dev->sectors = 0;
1369
1370 /*
1371 * common ATA, ATAPI feature tests
1372 */
1373
1374 /* find max transfer mode; for printk only */
1375 xfer_mask = ata_id_xfermask(id);
1376
1377 if (ata_msg_probe(ap))
1378 ata_dump_id(id);
1379
1380 /* ATA-specific feature tests */
1381 if (dev->class == ATA_DEV_ATA) {
1382 dev->n_sectors = ata_id_n_sectors(id);
1383
1384 if (ata_id_has_lba(id)) {
1385 const char *lba_desc;
1386 char ncq_desc[20];
1387
1388 lba_desc = "LBA";
1389 dev->flags |= ATA_DFLAG_LBA;
1390 if (ata_id_has_lba48(id)) {
1391 dev->flags |= ATA_DFLAG_LBA48;
1392 lba_desc = "LBA48";
1393 }
1394
1395 /* config NCQ */
1396 ata_dev_config_ncq(dev, ncq_desc, sizeof(ncq_desc));
1397
1398 /* print device info to dmesg */
1399 if (ata_msg_info(ap))
1400 ata_dev_printk(dev, KERN_INFO, "ATA-%d, "
1401 "max %s, %Lu sectors: %s %s\n",
1402 ata_id_major_version(id),
1403 ata_mode_string(xfer_mask),
1404 (unsigned long long)dev->n_sectors,
1405 lba_desc, ncq_desc);
1406 } else {
1407 /* CHS */
1408
1409 /* Default translation */
1410 dev->cylinders = id[1];
1411 dev->heads = id[3];
1412 dev->sectors = id[6];
1413
1414 if (ata_id_current_chs_valid(id)) {
1415 /* Current CHS translation is valid. */
1416 dev->cylinders = id[54];
1417 dev->heads = id[55];
1418 dev->sectors = id[56];
1419 }
1420
1421 /* print device info to dmesg */
1422 if (ata_msg_info(ap))
1423 ata_dev_printk(dev, KERN_INFO, "ATA-%d, "
1424 "max %s, %Lu sectors: CHS %u/%u/%u\n",
1425 ata_id_major_version(id),
1426 ata_mode_string(xfer_mask),
1427 (unsigned long long)dev->n_sectors,
1428 dev->cylinders, dev->heads, dev->sectors);
1429 }
1430
1431 if (dev->id[59] & 0x100) {
1432 dev->multi_count = dev->id[59] & 0xff;
1433 if (ata_msg_info(ap))
1434 ata_dev_printk(dev, KERN_INFO, "ata%u: dev %u multi count %u\n",
1435 ap->id, dev->devno, dev->multi_count);
1436 }
1437
1438 dev->cdb_len = 16;
1439 }
1440
1441 /* ATAPI-specific feature tests */
1442 else if (dev->class == ATA_DEV_ATAPI) {
1443 char *cdb_intr_string = "";
1444
1445 rc = atapi_cdb_len(id);
1446 if ((rc < 12) || (rc > ATAPI_CDB_LEN)) {
1447 if (ata_msg_warn(ap))
1448 ata_dev_printk(dev, KERN_WARNING,
1449 "unsupported CDB len\n");
1450 rc = -EINVAL;
1451 goto err_out_nosup;
1452 }
1453 dev->cdb_len = (unsigned int) rc;
1454
1455 if (ata_id_cdb_intr(dev->id)) {
1456 dev->flags |= ATA_DFLAG_CDB_INTR;
1457 cdb_intr_string = ", CDB intr";
1458 }
1459
1460 /* print device info to dmesg */
1461 if (ata_msg_info(ap))
1462 ata_dev_printk(dev, KERN_INFO, "ATAPI, max %s%s\n",
1463 ata_mode_string(xfer_mask),
1464 cdb_intr_string);
1465 }
1466
1467 ap->host->max_cmd_len = 0;
1468 for (i = 0; i < ATA_MAX_DEVICES; i++)
1469 ap->host->max_cmd_len = max_t(unsigned int,
1470 ap->host->max_cmd_len,
1471 ap->device[i].cdb_len);
1472
1473 /* limit bridge transfers to udma5, 200 sectors */
1474 if (ata_dev_knobble(dev)) {
1475 if (ata_msg_info(ap))
1476 ata_dev_printk(dev, KERN_INFO,
1477 "applying bridge limits\n");
1478 dev->udma_mask &= ATA_UDMA5;
1479 dev->max_sectors = ATA_MAX_SECTORS;
1480 }
1481
1482 if (ap->ops->dev_config)
1483 ap->ops->dev_config(ap, dev);
1484
1485 if (ata_msg_probe(ap))
1486 ata_dev_printk(dev, KERN_DEBUG, "%s: EXIT, drv_stat = 0x%x\n",
1487 __FUNCTION__, ata_chk_status(ap));
1488 return 0;
1489
1490 err_out_nosup:
1491 if (ata_msg_probe(ap))
1492 ata_dev_printk(dev, KERN_DEBUG,
1493 "%s: EXIT, err\n", __FUNCTION__);
1494 return rc;
1495 }
1496
1497 /**
1498 * ata_bus_probe - Reset and probe ATA bus
1499 * @ap: Bus to probe
1500 *
1501 * Master ATA bus probing function. Initiates a hardware-dependent
1502 * bus reset, then attempts to identify any devices found on
1503 * the bus.
1504 *
1505 * LOCKING:
1506 * PCI/etc. bus probe sem.
1507 *
1508 * RETURNS:
1509 * Zero on success, negative errno otherwise.
1510 */
1511
1512 static int ata_bus_probe(struct ata_port *ap)
1513 {
1514 unsigned int classes[ATA_MAX_DEVICES];
1515 int tries[ATA_MAX_DEVICES];
1516 int i, rc, down_xfermask;
1517 struct ata_device *dev;
1518
1519 ata_port_probe(ap);
1520
1521 for (i = 0; i < ATA_MAX_DEVICES; i++)
1522 tries[i] = ATA_PROBE_MAX_TRIES;
1523
1524 retry:
1525 down_xfermask = 0;
1526
1527 /* reset and determine device classes */
1528 ap->ops->phy_reset(ap);
1529
1530 for (i = 0; i < ATA_MAX_DEVICES; i++) {
1531 dev = &ap->device[i];
1532
1533 if (!(ap->flags & ATA_FLAG_DISABLED) &&
1534 dev->class != ATA_DEV_UNKNOWN)
1535 classes[dev->devno] = dev->class;
1536 else
1537 classes[dev->devno] = ATA_DEV_NONE;
1538
1539 dev->class = ATA_DEV_UNKNOWN;
1540 }
1541
1542 ata_port_probe(ap);
1543
1544 /* after the reset the device state is PIO 0 and the controller
1545 state is undefined. Record the mode */
1546
1547 for (i = 0; i < ATA_MAX_DEVICES; i++)
1548 ap->device[i].pio_mode = XFER_PIO_0;
1549
1550 /* read IDENTIFY page and configure devices */
1551 for (i = 0; i < ATA_MAX_DEVICES; i++) {
1552 dev = &ap->device[i];
1553
1554 if (tries[i])
1555 dev->class = classes[i];
1556
1557 if (!ata_dev_enabled(dev))
1558 continue;
1559
1560 rc = ata_dev_read_id(dev, &dev->class, 1, dev->id);
1561 if (rc)
1562 goto fail;
1563
1564 rc = ata_dev_configure(dev, 1);
1565 if (rc)
1566 goto fail;
1567 }
1568
1569 /* configure transfer mode */
1570 rc = ata_set_mode(ap, &dev);
1571 if (rc) {
1572 down_xfermask = 1;
1573 goto fail;
1574 }
1575
1576 for (i = 0; i < ATA_MAX_DEVICES; i++)
1577 if (ata_dev_enabled(&ap->device[i]))
1578 return 0;
1579
1580 /* no device present, disable port */
1581 ata_port_disable(ap);
1582 ap->ops->port_disable(ap);
1583 return -ENODEV;
1584
1585 fail:
1586 switch (rc) {
1587 case -EINVAL:
1588 case -ENODEV:
1589 tries[dev->devno] = 0;
1590 break;
1591 case -EIO:
1592 sata_down_spd_limit(ap);
1593 /* fall through */
1594 default:
1595 tries[dev->devno]--;
1596 if (down_xfermask &&
1597 ata_down_xfermask_limit(dev, tries[dev->devno] == 1))
1598 tries[dev->devno] = 0;
1599 }
1600
1601 if (!tries[dev->devno]) {
1602 ata_down_xfermask_limit(dev, 1);
1603 ata_dev_disable(dev);
1604 }
1605
1606 goto retry;
1607 }
1608
1609 /**
1610 * ata_port_probe - Mark port as enabled
1611 * @ap: Port for which we indicate enablement
1612 *
1613 * Modify @ap data structure such that the system
1614 * thinks that the entire port is enabled.
1615 *
1616 * LOCKING: host_set lock, or some other form of
1617 * serialization.
1618 */
1619
1620 void ata_port_probe(struct ata_port *ap)
1621 {
1622 ap->flags &= ~ATA_FLAG_DISABLED;
1623 }
1624
1625 /**
1626 * sata_print_link_status - Print SATA link status
1627 * @ap: SATA port to printk link status about
1628 *
1629 * This function prints link speed and status of a SATA link.
1630 *
1631 * LOCKING:
1632 * None.
1633 */
1634 static void sata_print_link_status(struct ata_port *ap)
1635 {
1636 u32 sstatus, scontrol, tmp;
1637
1638 if (sata_scr_read(ap, SCR_STATUS, &sstatus))
1639 return;
1640 sata_scr_read(ap, SCR_CONTROL, &scontrol);
1641
1642 if (ata_port_online(ap)) {
1643 tmp = (sstatus >> 4) & 0xf;
1644 ata_port_printk(ap, KERN_INFO,
1645 "SATA link up %s (SStatus %X SControl %X)\n",
1646 sata_spd_string(tmp), sstatus, scontrol);
1647 } else {
1648 ata_port_printk(ap, KERN_INFO,
1649 "SATA link down (SStatus %X SControl %X)\n",
1650 sstatus, scontrol);
1651 }
1652 }
1653
1654 /**
1655 * __sata_phy_reset - Wake/reset a low-level SATA PHY
1656 * @ap: SATA port associated with target SATA PHY.
1657 *
1658 * This function issues commands to standard SATA Sxxx
1659 * PHY registers, to wake up the phy (and device), and
1660 * clear any reset condition.
1661 *
1662 * LOCKING:
1663 * PCI/etc. bus probe sem.
1664 *
1665 */
1666 void __sata_phy_reset(struct ata_port *ap)
1667 {
1668 u32 sstatus;
1669 unsigned long timeout = jiffies + (HZ * 5);
1670
1671 if (ap->flags & ATA_FLAG_SATA_RESET) {
1672 /* issue phy wake/reset */
1673 sata_scr_write_flush(ap, SCR_CONTROL, 0x301);
1674 /* Couldn't find anything in SATA I/II specs, but
1675 * AHCI-1.1 10.4.2 says at least 1 ms. */
1676 mdelay(1);
1677 }
1678 /* phy wake/clear reset */
1679 sata_scr_write_flush(ap, SCR_CONTROL, 0x300);
1680
1681 /* wait for phy to become ready, if necessary */
1682 do {
1683 msleep(200);
1684 sata_scr_read(ap, SCR_STATUS, &sstatus);
1685 if ((sstatus & 0xf) != 1)
1686 break;
1687 } while (time_before(jiffies, timeout));
1688
1689 /* print link status */
1690 sata_print_link_status(ap);
1691
1692 /* TODO: phy layer with polling, timeouts, etc. */
1693 if (!ata_port_offline(ap))
1694 ata_port_probe(ap);
1695 else
1696 ata_port_disable(ap);
1697
1698 if (ap->flags & ATA_FLAG_DISABLED)
1699 return;
1700
1701 if (ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT)) {
1702 ata_port_disable(ap);
1703 return;
1704 }
1705
1706 ap->cbl = ATA_CBL_SATA;
1707 }
1708
1709 /**
1710 * sata_phy_reset - Reset SATA bus.
1711 * @ap: SATA port associated with target SATA PHY.
1712 *
1713 * This function resets the SATA bus, and then probes
1714 * the bus for devices.
1715 *
1716 * LOCKING:
1717 * PCI/etc. bus probe sem.
1718 *
1719 */
1720 void sata_phy_reset(struct ata_port *ap)
1721 {
1722 __sata_phy_reset(ap);
1723 if (ap->flags & ATA_FLAG_DISABLED)
1724 return;
1725 ata_bus_reset(ap);
1726 }
1727
1728 /**
1729 * ata_dev_pair - return other device on cable
1730 * @adev: device
1731 *
1732 * Obtain the other device on the same cable, or if none is
1733 * present NULL is returned
1734 */
1735
1736 struct ata_device *ata_dev_pair(struct ata_device *adev)
1737 {
1738 struct ata_port *ap = adev->ap;
1739 struct ata_device *pair = &ap->device[1 - adev->devno];
1740 if (!ata_dev_enabled(pair))
1741 return NULL;
1742 return pair;
1743 }
1744
1745 /**
1746 * ata_port_disable - Disable port.
1747 * @ap: Port to be disabled.
1748 *
1749 * Modify @ap data structure such that the system
1750 * thinks that the entire port is disabled, and should
1751 * never attempt to probe or communicate with devices
1752 * on this port.
1753 *
1754 * LOCKING: host_set lock, or some other form of
1755 * serialization.
1756 */
1757
1758 void ata_port_disable(struct ata_port *ap)
1759 {
1760 ap->device[0].class = ATA_DEV_NONE;
1761 ap->device[1].class = ATA_DEV_NONE;
1762 ap->flags |= ATA_FLAG_DISABLED;
1763 }
1764
1765 /**
1766 * sata_down_spd_limit - adjust SATA spd limit downward
1767 * @ap: Port to adjust SATA spd limit for
1768 *
1769 * Adjust SATA spd limit of @ap downward. Note that this
1770 * function only adjusts the limit. The change must be applied
1771 * using sata_set_spd().
1772 *
1773 * LOCKING:
1774 * Inherited from caller.
1775 *
1776 * RETURNS:
1777 * 0 on success, negative errno on failure
1778 */
1779 int sata_down_spd_limit(struct ata_port *ap)
1780 {
1781 u32 sstatus, spd, mask;
1782 int rc, highbit;
1783
1784 rc = sata_scr_read(ap, SCR_STATUS, &sstatus);
1785 if (rc)
1786 return rc;
1787
1788 mask = ap->sata_spd_limit;
1789 if (mask <= 1)
1790 return -EINVAL;
1791 highbit = fls(mask) - 1;
1792 mask &= ~(1 << highbit);
1793
1794 spd = (sstatus >> 4) & 0xf;
1795 if (spd <= 1)
1796 return -EINVAL;
1797 spd--;
1798 mask &= (1 << spd) - 1;
1799 if (!mask)
1800 return -EINVAL;
1801
1802 ap->sata_spd_limit = mask;
1803
1804 ata_port_printk(ap, KERN_WARNING, "limiting SATA link speed to %s\n",
1805 sata_spd_string(fls(mask)));
1806
1807 return 0;
1808 }
1809
1810 static int __sata_set_spd_needed(struct ata_port *ap, u32 *scontrol)
1811 {
1812 u32 spd, limit;
1813
1814 if (ap->sata_spd_limit == UINT_MAX)
1815 limit = 0;
1816 else
1817 limit = fls(ap->sata_spd_limit);
1818
1819 spd = (*scontrol >> 4) & 0xf;
1820 *scontrol = (*scontrol & ~0xf0) | ((limit & 0xf) << 4);
1821
1822 return spd != limit;
1823 }
1824
1825 /**
1826 * sata_set_spd_needed - is SATA spd configuration needed
1827 * @ap: Port in question
1828 *
1829 * Test whether the spd limit in SControl matches
1830 * @ap->sata_spd_limit. This function is used to determine
1831 * whether hardreset is necessary to apply SATA spd
1832 * configuration.
1833 *
1834 * LOCKING:
1835 * Inherited from caller.
1836 *
1837 * RETURNS:
1838 * 1 if SATA spd configuration is needed, 0 otherwise.
1839 */
1840 int sata_set_spd_needed(struct ata_port *ap)
1841 {
1842 u32 scontrol;
1843
1844 if (sata_scr_read(ap, SCR_CONTROL, &scontrol))
1845 return 0;
1846
1847 return __sata_set_spd_needed(ap, &scontrol);
1848 }
1849
1850 /**
1851 * sata_set_spd - set SATA spd according to spd limit
1852 * @ap: Port to set SATA spd for
1853 *
1854 * Set SATA spd of @ap according to sata_spd_limit.
1855 *
1856 * LOCKING:
1857 * Inherited from caller.
1858 *
1859 * RETURNS:
1860 * 0 if spd doesn't need to be changed, 1 if spd has been
1861 * changed. Negative errno if SCR registers are inaccessible.
1862 */
1863 int sata_set_spd(struct ata_port *ap)
1864 {
1865 u32 scontrol;
1866 int rc;
1867
1868 if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
1869 return rc;
1870
1871 if (!__sata_set_spd_needed(ap, &scontrol))
1872 return 0;
1873
1874 if ((rc = sata_scr_write(ap, SCR_CONTROL, scontrol)))
1875 return rc;
1876
1877 return 1;
1878 }
1879
1880 /*
1881 * This mode timing computation functionality is ported over from
1882 * drivers/ide/ide-timing.h and was originally written by Vojtech Pavlik
1883 */
1884 /*
1885 * PIO 0-5, MWDMA 0-2 and UDMA 0-6 timings (in nanoseconds).
1886 * These were taken from ATA/ATAPI-6 standard, rev 0a, except
1887 * for PIO 5, which is a nonstandard extension and UDMA6, which
1888 * is currently supported only by Maxtor drives.
1889 */
1890
1891 static const struct ata_timing ata_timing[] = {
1892
1893 { XFER_UDMA_6, 0, 0, 0, 0, 0, 0, 0, 15 },
1894 { XFER_UDMA_5, 0, 0, 0, 0, 0, 0, 0, 20 },
1895 { XFER_UDMA_4, 0, 0, 0, 0, 0, 0, 0, 30 },
1896 { XFER_UDMA_3, 0, 0, 0, 0, 0, 0, 0, 45 },
1897
1898 { XFER_UDMA_2, 0, 0, 0, 0, 0, 0, 0, 60 },
1899 { XFER_UDMA_1, 0, 0, 0, 0, 0, 0, 0, 80 },
1900 { XFER_UDMA_0, 0, 0, 0, 0, 0, 0, 0, 120 },
1901
1902 /* { XFER_UDMA_SLOW, 0, 0, 0, 0, 0, 0, 0, 150 }, */
1903
1904 { XFER_MW_DMA_2, 25, 0, 0, 0, 70, 25, 120, 0 },
1905 { XFER_MW_DMA_1, 45, 0, 0, 0, 80, 50, 150, 0 },
1906 { XFER_MW_DMA_0, 60, 0, 0, 0, 215, 215, 480, 0 },
1907
1908 { XFER_SW_DMA_2, 60, 0, 0, 0, 120, 120, 240, 0 },
1909 { XFER_SW_DMA_1, 90, 0, 0, 0, 240, 240, 480, 0 },
1910 { XFER_SW_DMA_0, 120, 0, 0, 0, 480, 480, 960, 0 },
1911
1912 /* { XFER_PIO_5, 20, 50, 30, 100, 50, 30, 100, 0 }, */
1913 { XFER_PIO_4, 25, 70, 25, 120, 70, 25, 120, 0 },
1914 { XFER_PIO_3, 30, 80, 70, 180, 80, 70, 180, 0 },
1915
1916 { XFER_PIO_2, 30, 290, 40, 330, 100, 90, 240, 0 },
1917 { XFER_PIO_1, 50, 290, 93, 383, 125, 100, 383, 0 },
1918 { XFER_PIO_0, 70, 290, 240, 600, 165, 150, 600, 0 },
1919
1920 /* { XFER_PIO_SLOW, 120, 290, 240, 960, 290, 240, 960, 0 }, */
1921
1922 { 0xFF }
1923 };
1924
1925 #define ENOUGH(v,unit) (((v)-1)/(unit)+1)
1926 #define EZ(v,unit) ((v)?ENOUGH(v,unit):0)
1927
1928 static void ata_timing_quantize(const struct ata_timing *t, struct ata_timing *q, int T, int UT)
1929 {
1930 q->setup = EZ(t->setup * 1000, T);
1931 q->act8b = EZ(t->act8b * 1000, T);
1932 q->rec8b = EZ(t->rec8b * 1000, T);
1933 q->cyc8b = EZ(t->cyc8b * 1000, T);
1934 q->active = EZ(t->active * 1000, T);
1935 q->recover = EZ(t->recover * 1000, T);
1936 q->cycle = EZ(t->cycle * 1000, T);
1937 q->udma = EZ(t->udma * 1000, UT);
1938 }
1939
1940 void ata_timing_merge(const struct ata_timing *a, const struct ata_timing *b,
1941 struct ata_timing *m, unsigned int what)
1942 {
1943 if (what & ATA_TIMING_SETUP ) m->setup = max(a->setup, b->setup);
1944 if (what & ATA_TIMING_ACT8B ) m->act8b = max(a->act8b, b->act8b);
1945 if (what & ATA_TIMING_REC8B ) m->rec8b = max(a->rec8b, b->rec8b);
1946 if (what & ATA_TIMING_CYC8B ) m->cyc8b = max(a->cyc8b, b->cyc8b);
1947 if (what & ATA_TIMING_ACTIVE ) m->active = max(a->active, b->active);
1948 if (what & ATA_TIMING_RECOVER) m->recover = max(a->recover, b->recover);
1949 if (what & ATA_TIMING_CYCLE ) m->cycle = max(a->cycle, b->cycle);
1950 if (what & ATA_TIMING_UDMA ) m->udma = max(a->udma, b->udma);
1951 }
1952
1953 static const struct ata_timing* ata_timing_find_mode(unsigned short speed)
1954 {
1955 const struct ata_timing *t;
1956
1957 for (t = ata_timing; t->mode != speed; t++)
1958 if (t->mode == 0xFF)
1959 return NULL;
1960 return t;
1961 }
1962
1963 int ata_timing_compute(struct ata_device *adev, unsigned short speed,
1964 struct ata_timing *t, int T, int UT)
1965 {
1966 const struct ata_timing *s;
1967 struct ata_timing p;
1968
1969 /*
1970 * Find the mode.
1971 */
1972
1973 if (!(s = ata_timing_find_mode(speed)))
1974 return -EINVAL;
1975
1976 memcpy(t, s, sizeof(*s));
1977
1978 /*
1979 * If the drive is an EIDE drive, it can tell us it needs extended
1980 * PIO/MW_DMA cycle timing.
1981 */
1982
1983 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE drive */
1984 memset(&p, 0, sizeof(p));
1985 if(speed >= XFER_PIO_0 && speed <= XFER_SW_DMA_0) {
1986 if (speed <= XFER_PIO_2) p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO];
1987 else p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO_IORDY];
1988 } else if(speed >= XFER_MW_DMA_0 && speed <= XFER_MW_DMA_2) {
1989 p.cycle = adev->id[ATA_ID_EIDE_DMA_MIN];
1990 }
1991 ata_timing_merge(&p, t, t, ATA_TIMING_CYCLE | ATA_TIMING_CYC8B);
1992 }
1993
1994 /*
1995 * Convert the timing to bus clock counts.
1996 */
1997
1998 ata_timing_quantize(t, t, T, UT);
1999
2000 /*
2001 * Even in DMA/UDMA modes we still use PIO access for IDENTIFY,
2002 * S.M.A.R.T * and some other commands. We have to ensure that the
2003 * DMA cycle timing is slower/equal than the fastest PIO timing.
2004 */
2005
2006 if (speed > XFER_PIO_4) {
2007 ata_timing_compute(adev, adev->pio_mode, &p, T, UT);
2008 ata_timing_merge(&p, t, t, ATA_TIMING_ALL);
2009 }
2010
2011 /*
2012 * Lengthen active & recovery time so that cycle time is correct.
2013 */
2014
2015 if (t->act8b + t->rec8b < t->cyc8b) {
2016 t->act8b += (t->cyc8b - (t->act8b + t->rec8b)) / 2;
2017 t->rec8b = t->cyc8b - t->act8b;
2018 }
2019
2020 if (t->active + t->recover < t->cycle) {
2021 t->active += (t->cycle - (t->active + t->recover)) / 2;
2022 t->recover = t->cycle - t->active;
2023 }
2024
2025 return 0;
2026 }
2027
2028 /**
2029 * ata_down_xfermask_limit - adjust dev xfer masks downward
2030 * @dev: Device to adjust xfer masks
2031 * @force_pio0: Force PIO0
2032 *
2033 * Adjust xfer masks of @dev downward. Note that this function
2034 * does not apply the change. Invoking ata_set_mode() afterwards
2035 * will apply the limit.
2036 *
2037 * LOCKING:
2038 * Inherited from caller.
2039 *
2040 * RETURNS:
2041 * 0 on success, negative errno on failure
2042 */
2043 int ata_down_xfermask_limit(struct ata_device *dev, int force_pio0)
2044 {
2045 unsigned long xfer_mask;
2046 int highbit;
2047
2048 xfer_mask = ata_pack_xfermask(dev->pio_mask, dev->mwdma_mask,
2049 dev->udma_mask);
2050
2051 if (!xfer_mask)
2052 goto fail;
2053 /* don't gear down to MWDMA from UDMA, go directly to PIO */
2054 if (xfer_mask & ATA_MASK_UDMA)
2055 xfer_mask &= ~ATA_MASK_MWDMA;
2056
2057 highbit = fls(xfer_mask) - 1;
2058 xfer_mask &= ~(1 << highbit);
2059 if (force_pio0)
2060 xfer_mask &= 1 << ATA_SHIFT_PIO;
2061 if (!xfer_mask)
2062 goto fail;
2063
2064 ata_unpack_xfermask(xfer_mask, &dev->pio_mask, &dev->mwdma_mask,
2065 &dev->udma_mask);
2066
2067 ata_dev_printk(dev, KERN_WARNING, "limiting speed to %s\n",
2068 ata_mode_string(xfer_mask));
2069
2070 return 0;
2071
2072 fail:
2073 return -EINVAL;
2074 }
2075
2076 static int ata_dev_set_mode(struct ata_device *dev)
2077 {
2078 unsigned int err_mask;
2079 int rc;
2080
2081 dev->flags &= ~ATA_DFLAG_PIO;
2082 if (dev->xfer_shift == ATA_SHIFT_PIO)
2083 dev->flags |= ATA_DFLAG_PIO;
2084
2085 err_mask = ata_dev_set_xfermode(dev);
2086 if (err_mask) {
2087 ata_dev_printk(dev, KERN_ERR, "failed to set xfermode "
2088 "(err_mask=0x%x)\n", err_mask);
2089 return -EIO;
2090 }
2091
2092 rc = ata_dev_revalidate(dev, 0);
2093 if (rc)
2094 return rc;
2095
2096 DPRINTK("xfer_shift=%u, xfer_mode=0x%x\n",
2097 dev->xfer_shift, (int)dev->xfer_mode);
2098
2099 ata_dev_printk(dev, KERN_INFO, "configured for %s\n",
2100 ata_mode_string(ata_xfer_mode2mask(dev->xfer_mode)));
2101 return 0;
2102 }
2103
2104 /**
2105 * ata_set_mode - Program timings and issue SET FEATURES - XFER
2106 * @ap: port on which timings will be programmed
2107 * @r_failed_dev: out paramter for failed device
2108 *
2109 * Set ATA device disk transfer mode (PIO3, UDMA6, etc.). If
2110 * ata_set_mode() fails, pointer to the failing device is
2111 * returned in @r_failed_dev.
2112 *
2113 * LOCKING:
2114 * PCI/etc. bus probe sem.
2115 *
2116 * RETURNS:
2117 * 0 on success, negative errno otherwise
2118 */
2119 int ata_set_mode(struct ata_port *ap, struct ata_device **r_failed_dev)
2120 {
2121 struct ata_device *dev;
2122 int i, rc = 0, used_dma = 0, found = 0;
2123
2124 /* has private set_mode? */
2125 if (ap->ops->set_mode) {
2126 /* FIXME: make ->set_mode handle no device case and
2127 * return error code and failing device on failure.
2128 */
2129 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2130 if (ata_dev_enabled(&ap->device[i])) {
2131 ap->ops->set_mode(ap);
2132 break;
2133 }
2134 }
2135 return 0;
2136 }
2137
2138 /* step 1: calculate xfer_mask */
2139 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2140 unsigned int pio_mask, dma_mask;
2141
2142 dev = &ap->device[i];
2143
2144 if (!ata_dev_enabled(dev))
2145 continue;
2146
2147 ata_dev_xfermask(dev);
2148
2149 pio_mask = ata_pack_xfermask(dev->pio_mask, 0, 0);
2150 dma_mask = ata_pack_xfermask(0, dev->mwdma_mask, dev->udma_mask);
2151 dev->pio_mode = ata_xfer_mask2mode(pio_mask);
2152 dev->dma_mode = ata_xfer_mask2mode(dma_mask);
2153
2154 found = 1;
2155 if (dev->dma_mode)
2156 used_dma = 1;
2157 }
2158 if (!found)
2159 goto out;
2160
2161 /* step 2: always set host PIO timings */
2162 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2163 dev = &ap->device[i];
2164 if (!ata_dev_enabled(dev))
2165 continue;
2166
2167 if (!dev->pio_mode) {
2168 ata_dev_printk(dev, KERN_WARNING, "no PIO support\n");
2169 rc = -EINVAL;
2170 goto out;
2171 }
2172
2173 dev->xfer_mode = dev->pio_mode;
2174 dev->xfer_shift = ATA_SHIFT_PIO;
2175 if (ap->ops->set_piomode)
2176 ap->ops->set_piomode(ap, dev);
2177 }
2178
2179 /* step 3: set host DMA timings */
2180 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2181 dev = &ap->device[i];
2182
2183 if (!ata_dev_enabled(dev) || !dev->dma_mode)
2184 continue;
2185
2186 dev->xfer_mode = dev->dma_mode;
2187 dev->xfer_shift = ata_xfer_mode2shift(dev->dma_mode);
2188 if (ap->ops->set_dmamode)
2189 ap->ops->set_dmamode(ap, dev);
2190 }
2191
2192 /* step 4: update devices' xfer mode */
2193 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2194 dev = &ap->device[i];
2195
2196 if (!ata_dev_enabled(dev))
2197 continue;
2198
2199 rc = ata_dev_set_mode(dev);
2200 if (rc)
2201 goto out;
2202 }
2203
2204 /* Record simplex status. If we selected DMA then the other
2205 * host channels are not permitted to do so.
2206 */
2207 if (used_dma && (ap->host_set->flags & ATA_HOST_SIMPLEX))
2208 ap->host_set->simplex_claimed = 1;
2209
2210 /* step5: chip specific finalisation */
2211 if (ap->ops->post_set_mode)
2212 ap->ops->post_set_mode(ap);
2213
2214 out:
2215 if (rc)
2216 *r_failed_dev = dev;
2217 return rc;
2218 }
2219
2220 /**
2221 * ata_tf_to_host - issue ATA taskfile to host controller
2222 * @ap: port to which command is being issued
2223 * @tf: ATA taskfile register set
2224 *
2225 * Issues ATA taskfile register set to ATA host controller,
2226 * with proper synchronization with interrupt handler and
2227 * other threads.
2228 *
2229 * LOCKING:
2230 * spin_lock_irqsave(host_set lock)
2231 */
2232
2233 static inline void ata_tf_to_host(struct ata_port *ap,
2234 const struct ata_taskfile *tf)
2235 {
2236 ap->ops->tf_load(ap, tf);
2237 ap->ops->exec_command(ap, tf);
2238 }
2239
2240 /**
2241 * ata_busy_sleep - sleep until BSY clears, or timeout
2242 * @ap: port containing status register to be polled
2243 * @tmout_pat: impatience timeout
2244 * @tmout: overall timeout
2245 *
2246 * Sleep until ATA Status register bit BSY clears,
2247 * or a timeout occurs.
2248 *
2249 * LOCKING: None.
2250 */
2251
2252 unsigned int ata_busy_sleep (struct ata_port *ap,
2253 unsigned long tmout_pat, unsigned long tmout)
2254 {
2255 unsigned long timer_start, timeout;
2256 u8 status;
2257
2258 status = ata_busy_wait(ap, ATA_BUSY, 300);
2259 timer_start = jiffies;
2260 timeout = timer_start + tmout_pat;
2261 while ((status & ATA_BUSY) && (time_before(jiffies, timeout))) {
2262 msleep(50);
2263 status = ata_busy_wait(ap, ATA_BUSY, 3);
2264 }
2265
2266 if (status & ATA_BUSY)
2267 ata_port_printk(ap, KERN_WARNING,
2268 "port is slow to respond, please be patient\n");
2269
2270 timeout = timer_start + tmout;
2271 while ((status & ATA_BUSY) && (time_before(jiffies, timeout))) {
2272 msleep(50);
2273 status = ata_chk_status(ap);
2274 }
2275
2276 if (status & ATA_BUSY) {
2277 ata_port_printk(ap, KERN_ERR, "port failed to respond "
2278 "(%lu secs)\n", tmout / HZ);
2279 return 1;
2280 }
2281
2282 return 0;
2283 }
2284
2285 static void ata_bus_post_reset(struct ata_port *ap, unsigned int devmask)
2286 {
2287 struct ata_ioports *ioaddr = &ap->ioaddr;
2288 unsigned int dev0 = devmask & (1 << 0);
2289 unsigned int dev1 = devmask & (1 << 1);
2290 unsigned long timeout;
2291
2292 /* if device 0 was found in ata_devchk, wait for its
2293 * BSY bit to clear
2294 */
2295 if (dev0)
2296 ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT);
2297
2298 /* if device 1 was found in ata_devchk, wait for
2299 * register access, then wait for BSY to clear
2300 */
2301 timeout = jiffies + ATA_TMOUT_BOOT;
2302 while (dev1) {
2303 u8 nsect, lbal;
2304
2305 ap->ops->dev_select(ap, 1);
2306 if (ap->flags & ATA_FLAG_MMIO) {
2307 nsect = readb((void __iomem *) ioaddr->nsect_addr);
2308 lbal = readb((void __iomem *) ioaddr->lbal_addr);
2309 } else {
2310 nsect = inb(ioaddr->nsect_addr);
2311 lbal = inb(ioaddr->lbal_addr);
2312 }
2313 if ((nsect == 1) && (lbal == 1))
2314 break;
2315 if (time_after(jiffies, timeout)) {
2316 dev1 = 0;
2317 break;
2318 }
2319 msleep(50); /* give drive a breather */
2320 }
2321 if (dev1)
2322 ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT);
2323
2324 /* is all this really necessary? */
2325 ap->ops->dev_select(ap, 0);
2326 if (dev1)
2327 ap->ops->dev_select(ap, 1);
2328 if (dev0)
2329 ap->ops->dev_select(ap, 0);
2330 }
2331
2332 static unsigned int ata_bus_softreset(struct ata_port *ap,
2333 unsigned int devmask)
2334 {
2335 struct ata_ioports *ioaddr = &ap->ioaddr;
2336
2337 DPRINTK("ata%u: bus reset via SRST\n", ap->id);
2338
2339 /* software reset. causes dev0 to be selected */
2340 if (ap->flags & ATA_FLAG_MMIO) {
2341 writeb(ap->ctl, (void __iomem *) ioaddr->ctl_addr);
2342 udelay(20); /* FIXME: flush */
2343 writeb(ap->ctl | ATA_SRST, (void __iomem *) ioaddr->ctl_addr);
2344 udelay(20); /* FIXME: flush */
2345 writeb(ap->ctl, (void __iomem *) ioaddr->ctl_addr);
2346 } else {
2347 outb(ap->ctl, ioaddr->ctl_addr);
2348 udelay(10);
2349 outb(ap->ctl | ATA_SRST, ioaddr->ctl_addr);
2350 udelay(10);
2351 outb(ap->ctl, ioaddr->ctl_addr);
2352 }
2353
2354 /* spec mandates ">= 2ms" before checking status.
2355 * We wait 150ms, because that was the magic delay used for
2356 * ATAPI devices in Hale Landis's ATADRVR, for the period of time
2357 * between when the ATA command register is written, and then
2358 * status is checked. Because waiting for "a while" before
2359 * checking status is fine, post SRST, we perform this magic
2360 * delay here as well.
2361 *
2362 * Old drivers/ide uses the 2mS rule and then waits for ready
2363 */
2364 msleep(150);
2365
2366 /* Before we perform post reset processing we want to see if
2367 * the bus shows 0xFF because the odd clown forgets the D7
2368 * pulldown resistor.
2369 */
2370 if (ata_check_status(ap) == 0xFF) {
2371 ata_port_printk(ap, KERN_ERR, "SRST failed (status 0xFF)\n");
2372 return AC_ERR_OTHER;
2373 }
2374
2375 ata_bus_post_reset(ap, devmask);
2376
2377 return 0;
2378 }
2379
2380 /**
2381 * ata_bus_reset - reset host port and associated ATA channel
2382 * @ap: port to reset
2383 *
2384 * This is typically the first time we actually start issuing
2385 * commands to the ATA channel. We wait for BSY to clear, then
2386 * issue EXECUTE DEVICE DIAGNOSTIC command, polling for its
2387 * result. Determine what devices, if any, are on the channel
2388 * by looking at the device 0/1 error register. Look at the signature
2389 * stored in each device's taskfile registers, to determine if
2390 * the device is ATA or ATAPI.
2391 *
2392 * LOCKING:
2393 * PCI/etc. bus probe sem.
2394 * Obtains host_set lock.
2395 *
2396 * SIDE EFFECTS:
2397 * Sets ATA_FLAG_DISABLED if bus reset fails.
2398 */
2399
2400 void ata_bus_reset(struct ata_port *ap)
2401 {
2402 struct ata_ioports *ioaddr = &ap->ioaddr;
2403 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
2404 u8 err;
2405 unsigned int dev0, dev1 = 0, devmask = 0;
2406
2407 DPRINTK("ENTER, host %u, port %u\n", ap->id, ap->port_no);
2408
2409 /* determine if device 0/1 are present */
2410 if (ap->flags & ATA_FLAG_SATA_RESET)
2411 dev0 = 1;
2412 else {
2413 dev0 = ata_devchk(ap, 0);
2414 if (slave_possible)
2415 dev1 = ata_devchk(ap, 1);
2416 }
2417
2418 if (dev0)
2419 devmask |= (1 << 0);
2420 if (dev1)
2421 devmask |= (1 << 1);
2422
2423 /* select device 0 again */
2424 ap->ops->dev_select(ap, 0);
2425
2426 /* issue bus reset */
2427 if (ap->flags & ATA_FLAG_SRST)
2428 if (ata_bus_softreset(ap, devmask))
2429 goto err_out;
2430
2431 /*
2432 * determine by signature whether we have ATA or ATAPI devices
2433 */
2434 ap->device[0].class = ata_dev_try_classify(ap, 0, &err);
2435 if ((slave_possible) && (err != 0x81))
2436 ap->device[1].class = ata_dev_try_classify(ap, 1, &err);
2437
2438 /* re-enable interrupts */
2439 if (ap->ioaddr.ctl_addr) /* FIXME: hack. create a hook instead */
2440 ata_irq_on(ap);
2441
2442 /* is double-select really necessary? */
2443 if (ap->device[1].class != ATA_DEV_NONE)
2444 ap->ops->dev_select(ap, 1);
2445 if (ap->device[0].class != ATA_DEV_NONE)
2446 ap->ops->dev_select(ap, 0);
2447
2448 /* if no devices were detected, disable this port */
2449 if ((ap->device[0].class == ATA_DEV_NONE) &&
2450 (ap->device[1].class == ATA_DEV_NONE))
2451 goto err_out;
2452
2453 if (ap->flags & (ATA_FLAG_SATA_RESET | ATA_FLAG_SRST)) {
2454 /* set up device control for ATA_FLAG_SATA_RESET */
2455 if (ap->flags & ATA_FLAG_MMIO)
2456 writeb(ap->ctl, (void __iomem *) ioaddr->ctl_addr);
2457 else
2458 outb(ap->ctl, ioaddr->ctl_addr);
2459 }
2460
2461 DPRINTK("EXIT\n");
2462 return;
2463
2464 err_out:
2465 ata_port_printk(ap, KERN_ERR, "disabling port\n");
2466 ap->ops->port_disable(ap);
2467
2468 DPRINTK("EXIT\n");
2469 }
2470
2471 /**
2472 * sata_phy_debounce - debounce SATA phy status
2473 * @ap: ATA port to debounce SATA phy status for
2474 * @params: timing parameters { interval, duratinon, timeout } in msec
2475 *
2476 * Make sure SStatus of @ap reaches stable state, determined by
2477 * holding the same value where DET is not 1 for @duration polled
2478 * every @interval, before @timeout. Timeout constraints the
2479 * beginning of the stable state. Because, after hot unplugging,
2480 * DET gets stuck at 1 on some controllers, this functions waits
2481 * until timeout then returns 0 if DET is stable at 1.
2482 *
2483 * LOCKING:
2484 * Kernel thread context (may sleep)
2485 *
2486 * RETURNS:
2487 * 0 on success, -errno on failure.
2488 */
2489 int sata_phy_debounce(struct ata_port *ap, const unsigned long *params)
2490 {
2491 unsigned long interval_msec = params[0];
2492 unsigned long duration = params[1] * HZ / 1000;
2493 unsigned long timeout = jiffies + params[2] * HZ / 1000;
2494 unsigned long last_jiffies;
2495 u32 last, cur;
2496 int rc;
2497
2498 if ((rc = sata_scr_read(ap, SCR_STATUS, &cur)))
2499 return rc;
2500 cur &= 0xf;
2501
2502 last = cur;
2503 last_jiffies = jiffies;
2504
2505 while (1) {
2506 msleep(interval_msec);
2507 if ((rc = sata_scr_read(ap, SCR_STATUS, &cur)))
2508 return rc;
2509 cur &= 0xf;
2510
2511 /* DET stable? */
2512 if (cur == last) {
2513 if (cur == 1 && time_before(jiffies, timeout))
2514 continue;
2515 if (time_after(jiffies, last_jiffies + duration))
2516 return 0;
2517 continue;
2518 }
2519
2520 /* unstable, start over */
2521 last = cur;
2522 last_jiffies = jiffies;
2523
2524 /* check timeout */
2525 if (time_after(jiffies, timeout))
2526 return -EBUSY;
2527 }
2528 }
2529
2530 /**
2531 * sata_phy_resume - resume SATA phy
2532 * @ap: ATA port to resume SATA phy for
2533 * @params: timing parameters { interval, duratinon, timeout } in msec
2534 *
2535 * Resume SATA phy of @ap and debounce it.
2536 *
2537 * LOCKING:
2538 * Kernel thread context (may sleep)
2539 *
2540 * RETURNS:
2541 * 0 on success, -errno on failure.
2542 */
2543 int sata_phy_resume(struct ata_port *ap, const unsigned long *params)
2544 {
2545 u32 scontrol;
2546 int rc;
2547
2548 if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
2549 return rc;
2550
2551 scontrol = (scontrol & 0x0f0) | 0x300;
2552
2553 if ((rc = sata_scr_write(ap, SCR_CONTROL, scontrol)))
2554 return rc;
2555
2556 /* Some PHYs react badly if SStatus is pounded immediately
2557 * after resuming. Delay 200ms before debouncing.
2558 */
2559 msleep(200);
2560
2561 return sata_phy_debounce(ap, params);
2562 }
2563
2564 static void ata_wait_spinup(struct ata_port *ap)
2565 {
2566 struct ata_eh_context *ehc = &ap->eh_context;
2567 unsigned long end, secs;
2568 int rc;
2569
2570 /* first, debounce phy if SATA */
2571 if (ap->cbl == ATA_CBL_SATA) {
2572 rc = sata_phy_debounce(ap, sata_deb_timing_eh);
2573
2574 /* if debounced successfully and offline, no need to wait */
2575 if ((rc == 0 || rc == -EOPNOTSUPP) && ata_port_offline(ap))
2576 return;
2577 }
2578
2579 /* okay, let's give the drive time to spin up */
2580 end = ehc->i.hotplug_timestamp + ATA_SPINUP_WAIT * HZ / 1000;
2581 secs = ((end - jiffies) + HZ - 1) / HZ;
2582
2583 if (time_after(jiffies, end))
2584 return;
2585
2586 if (secs > 5)
2587 ata_port_printk(ap, KERN_INFO, "waiting for device to spin up "
2588 "(%lu secs)\n", secs);
2589
2590 schedule_timeout_uninterruptible(end - jiffies);
2591 }
2592
2593 /**
2594 * ata_std_prereset - prepare for reset
2595 * @ap: ATA port to be reset
2596 *
2597 * @ap is about to be reset. Initialize it.
2598 *
2599 * LOCKING:
2600 * Kernel thread context (may sleep)
2601 *
2602 * RETURNS:
2603 * 0 on success, -errno otherwise.
2604 */
2605 int ata_std_prereset(struct ata_port *ap)
2606 {
2607 struct ata_eh_context *ehc = &ap->eh_context;
2608 const unsigned long *timing;
2609 int rc;
2610
2611 /* hotplug? */
2612 if (ehc->i.flags & ATA_EHI_HOTPLUGGED) {
2613 if (ap->flags & ATA_FLAG_HRST_TO_RESUME)
2614 ehc->i.action |= ATA_EH_HARDRESET;
2615 if (ap->flags & ATA_FLAG_SKIP_D2H_BSY)
2616 ata_wait_spinup(ap);
2617 }
2618
2619 /* if we're about to do hardreset, nothing more to do */
2620 if (ehc->i.action & ATA_EH_HARDRESET)
2621 return 0;
2622
2623 /* if SATA, resume phy */
2624 if (ap->cbl == ATA_CBL_SATA) {
2625 if (ap->flags & ATA_FLAG_LOADING)
2626 timing = sata_deb_timing_boot;
2627 else
2628 timing = sata_deb_timing_eh;
2629
2630 rc = sata_phy_resume(ap, timing);
2631 if (rc && rc != -EOPNOTSUPP) {
2632 /* phy resume failed */
2633 ata_port_printk(ap, KERN_WARNING, "failed to resume "
2634 "link for reset (errno=%d)\n", rc);
2635 return rc;
2636 }
2637 }
2638
2639 /* Wait for !BSY if the controller can wait for the first D2H
2640 * Reg FIS and we don't know that no device is attached.
2641 */
2642 if (!(ap->flags & ATA_FLAG_SKIP_D2H_BSY) && !ata_port_offline(ap))
2643 ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT);
2644
2645 return 0;
2646 }
2647
2648 /**
2649 * ata_std_softreset - reset host port via ATA SRST
2650 * @ap: port to reset
2651 * @classes: resulting classes of attached devices
2652 *
2653 * Reset host port using ATA SRST.
2654 *
2655 * LOCKING:
2656 * Kernel thread context (may sleep)
2657 *
2658 * RETURNS:
2659 * 0 on success, -errno otherwise.
2660 */
2661 int ata_std_softreset(struct ata_port *ap, unsigned int *classes)
2662 {
2663 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
2664 unsigned int devmask = 0, err_mask;
2665 u8 err;
2666
2667 DPRINTK("ENTER\n");
2668
2669 if (ata_port_offline(ap)) {
2670 classes[0] = ATA_DEV_NONE;
2671 goto out;
2672 }
2673
2674 /* determine if device 0/1 are present */
2675 if (ata_devchk(ap, 0))
2676 devmask |= (1 << 0);
2677 if (slave_possible && ata_devchk(ap, 1))
2678 devmask |= (1 << 1);
2679
2680 /* select device 0 again */
2681 ap->ops->dev_select(ap, 0);
2682
2683 /* issue bus reset */
2684 DPRINTK("about to softreset, devmask=%x\n", devmask);
2685 err_mask = ata_bus_softreset(ap, devmask);
2686 if (err_mask) {
2687 ata_port_printk(ap, KERN_ERR, "SRST failed (err_mask=0x%x)\n",
2688 err_mask);
2689 return -EIO;
2690 }
2691
2692 /* determine by signature whether we have ATA or ATAPI devices */
2693 classes[0] = ata_dev_try_classify(ap, 0, &err);
2694 if (slave_possible && err != 0x81)
2695 classes[1] = ata_dev_try_classify(ap, 1, &err);
2696
2697 out:
2698 DPRINTK("EXIT, classes[0]=%u [1]=%u\n", classes[0], classes[1]);
2699 return 0;
2700 }
2701
2702 /**
2703 * sata_std_hardreset - reset host port via SATA phy reset
2704 * @ap: port to reset
2705 * @class: resulting class of attached device
2706 *
2707 * SATA phy-reset host port using DET bits of SControl register.
2708 *
2709 * LOCKING:
2710 * Kernel thread context (may sleep)
2711 *
2712 * RETURNS:
2713 * 0 on success, -errno otherwise.
2714 */
2715 int sata_std_hardreset(struct ata_port *ap, unsigned int *class)
2716 {
2717 u32 scontrol;
2718 int rc;
2719
2720 DPRINTK("ENTER\n");
2721
2722 if (sata_set_spd_needed(ap)) {
2723 /* SATA spec says nothing about how to reconfigure
2724 * spd. To be on the safe side, turn off phy during
2725 * reconfiguration. This works for at least ICH7 AHCI
2726 * and Sil3124.
2727 */
2728 if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
2729 return rc;
2730
2731 scontrol = (scontrol & 0x0f0) | 0x302;
2732
2733 if ((rc = sata_scr_write(ap, SCR_CONTROL, scontrol)))
2734 return rc;
2735
2736 sata_set_spd(ap);
2737 }
2738
2739 /* issue phy wake/reset */
2740 if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
2741 return rc;
2742
2743 scontrol = (scontrol & 0x0f0) | 0x301;
2744
2745 if ((rc = sata_scr_write_flush(ap, SCR_CONTROL, scontrol)))
2746 return rc;
2747
2748 /* Couldn't find anything in SATA I/II specs, but AHCI-1.1
2749 * 10.4.2 says at least 1 ms.
2750 */
2751 msleep(1);
2752
2753 /* bring phy back */
2754 sata_phy_resume(ap, sata_deb_timing_eh);
2755
2756 /* TODO: phy layer with polling, timeouts, etc. */
2757 if (ata_port_offline(ap)) {
2758 *class = ATA_DEV_NONE;
2759 DPRINTK("EXIT, link offline\n");
2760 return 0;
2761 }
2762
2763 if (ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT)) {
2764 ata_port_printk(ap, KERN_ERR,
2765 "COMRESET failed (device not ready)\n");
2766 return -EIO;
2767 }
2768
2769 ap->ops->dev_select(ap, 0); /* probably unnecessary */
2770
2771 *class = ata_dev_try_classify(ap, 0, NULL);
2772
2773 DPRINTK("EXIT, class=%u\n", *class);
2774 return 0;
2775 }
2776
2777 /**
2778 * ata_std_postreset - standard postreset callback
2779 * @ap: the target ata_port
2780 * @classes: classes of attached devices
2781 *
2782 * This function is invoked after a successful reset. Note that
2783 * the device might have been reset more than once using
2784 * different reset methods before postreset is invoked.
2785 *
2786 * LOCKING:
2787 * Kernel thread context (may sleep)
2788 */
2789 void ata_std_postreset(struct ata_port *ap, unsigned int *classes)
2790 {
2791 u32 serror;
2792
2793 DPRINTK("ENTER\n");
2794
2795 /* print link status */
2796 sata_print_link_status(ap);
2797
2798 /* clear SError */
2799 if (sata_scr_read(ap, SCR_ERROR, &serror) == 0)
2800 sata_scr_write(ap, SCR_ERROR, serror);
2801
2802 /* re-enable interrupts */
2803 if (!ap->ops->error_handler) {
2804 /* FIXME: hack. create a hook instead */
2805 if (ap->ioaddr.ctl_addr)
2806 ata_irq_on(ap);
2807 }
2808
2809 /* is double-select really necessary? */
2810 if (classes[0] != ATA_DEV_NONE)
2811 ap->ops->dev_select(ap, 1);
2812 if (classes[1] != ATA_DEV_NONE)
2813 ap->ops->dev_select(ap, 0);
2814
2815 /* bail out if no device is present */
2816 if (classes[0] == ATA_DEV_NONE && classes[1] == ATA_DEV_NONE) {
2817 DPRINTK("EXIT, no device\n");
2818 return;
2819 }
2820
2821 /* set up device control */
2822 if (ap->ioaddr.ctl_addr) {
2823 if (ap->flags & ATA_FLAG_MMIO)
2824 writeb(ap->ctl, (void __iomem *) ap->ioaddr.ctl_addr);
2825 else
2826 outb(ap->ctl, ap->ioaddr.ctl_addr);
2827 }
2828
2829 DPRINTK("EXIT\n");
2830 }
2831
2832 /**
2833 * ata_dev_same_device - Determine whether new ID matches configured device
2834 * @dev: device to compare against
2835 * @new_class: class of the new device
2836 * @new_id: IDENTIFY page of the new device
2837 *
2838 * Compare @new_class and @new_id against @dev and determine
2839 * whether @dev is the device indicated by @new_class and
2840 * @new_id.
2841 *
2842 * LOCKING:
2843 * None.
2844 *
2845 * RETURNS:
2846 * 1 if @dev matches @new_class and @new_id, 0 otherwise.
2847 */
2848 static int ata_dev_same_device(struct ata_device *dev, unsigned int new_class,
2849 const u16 *new_id)
2850 {
2851 const u16 *old_id = dev->id;
2852 unsigned char model[2][41], serial[2][21];
2853 u64 new_n_sectors;
2854
2855 if (dev->class != new_class) {
2856 ata_dev_printk(dev, KERN_INFO, "class mismatch %d != %d\n",
2857 dev->class, new_class);
2858 return 0;
2859 }
2860
2861 ata_id_c_string(old_id, model[0], ATA_ID_PROD_OFS, sizeof(model[0]));
2862 ata_id_c_string(new_id, model[1], ATA_ID_PROD_OFS, sizeof(model[1]));
2863 ata_id_c_string(old_id, serial[0], ATA_ID_SERNO_OFS, sizeof(serial[0]));
2864 ata_id_c_string(new_id, serial[1], ATA_ID_SERNO_OFS, sizeof(serial[1]));
2865 new_n_sectors = ata_id_n_sectors(new_id);
2866
2867 if (strcmp(model[0], model[1])) {
2868 ata_dev_printk(dev, KERN_INFO, "model number mismatch "
2869 "'%s' != '%s'\n", model[0], model[1]);
2870 return 0;
2871 }
2872
2873 if (strcmp(serial[0], serial[1])) {
2874 ata_dev_printk(dev, KERN_INFO, "serial number mismatch "
2875 "'%s' != '%s'\n", serial[0], serial[1]);
2876 return 0;
2877 }
2878
2879 if (dev->class == ATA_DEV_ATA && dev->n_sectors != new_n_sectors) {
2880 ata_dev_printk(dev, KERN_INFO, "n_sectors mismatch "
2881 "%llu != %llu\n",
2882 (unsigned long long)dev->n_sectors,
2883 (unsigned long long)new_n_sectors);
2884 return 0;
2885 }
2886
2887 return 1;
2888 }
2889
2890 /**
2891 * ata_dev_revalidate - Revalidate ATA device
2892 * @dev: device to revalidate
2893 * @post_reset: is this revalidation after reset?
2894 *
2895 * Re-read IDENTIFY page and make sure @dev is still attached to
2896 * the port.
2897 *
2898 * LOCKING:
2899 * Kernel thread context (may sleep)
2900 *
2901 * RETURNS:
2902 * 0 on success, negative errno otherwise
2903 */
2904 int ata_dev_revalidate(struct ata_device *dev, int post_reset)
2905 {
2906 unsigned int class = dev->class;
2907 u16 *id = (void *)dev->ap->sector_buf;
2908 int rc;
2909
2910 if (!ata_dev_enabled(dev)) {
2911 rc = -ENODEV;
2912 goto fail;
2913 }
2914
2915 /* read ID data */
2916 rc = ata_dev_read_id(dev, &class, post_reset, id);
2917 if (rc)
2918 goto fail;
2919
2920 /* is the device still there? */
2921 if (!ata_dev_same_device(dev, class, id)) {
2922 rc = -ENODEV;
2923 goto fail;
2924 }
2925
2926 memcpy(dev->id, id, sizeof(id[0]) * ATA_ID_WORDS);
2927
2928 /* configure device according to the new ID */
2929 rc = ata_dev_configure(dev, 0);
2930 if (rc == 0)
2931 return 0;
2932
2933 fail:
2934 ata_dev_printk(dev, KERN_ERR, "revalidation failed (errno=%d)\n", rc);
2935 return rc;
2936 }
2937
2938 static const char * const ata_dma_blacklist [] = {
2939 "WDC AC11000H", NULL,
2940 "WDC AC22100H", NULL,
2941 "WDC AC32500H", NULL,
2942 "WDC AC33100H", NULL,
2943 "WDC AC31600H", NULL,
2944 "WDC AC32100H", "24.09P07",
2945 "WDC AC23200L", "21.10N21",
2946 "Compaq CRD-8241B", NULL,
2947 "CRD-8400B", NULL,
2948 "CRD-8480B", NULL,
2949 "CRD-8482B", NULL,
2950 "CRD-84", NULL,
2951 "SanDisk SDP3B", NULL,
2952 "SanDisk SDP3B-64", NULL,
2953 "SANYO CD-ROM CRD", NULL,
2954 "HITACHI CDR-8", NULL,
2955 "HITACHI CDR-8335", NULL,
2956 "HITACHI CDR-8435", NULL,
2957 "Toshiba CD-ROM XM-6202B", NULL,
2958 "TOSHIBA CD-ROM XM-1702BC", NULL,
2959 "CD-532E-A", NULL,
2960 "E-IDE CD-ROM CR-840", NULL,
2961 "CD-ROM Drive/F5A", NULL,
2962 "WPI CDD-820", NULL,
2963 "SAMSUNG CD-ROM SC-148C", NULL,
2964 "SAMSUNG CD-ROM SC", NULL,
2965 "SanDisk SDP3B-64", NULL,
2966 "ATAPI CD-ROM DRIVE 40X MAXIMUM",NULL,
2967 "_NEC DV5800A", NULL,
2968 "SAMSUNG CD-ROM SN-124", "N001"
2969 };
2970
2971 static int ata_strim(char *s, size_t len)
2972 {
2973 len = strnlen(s, len);
2974
2975 /* ATAPI specifies that empty space is blank-filled; remove blanks */
2976 while ((len > 0) && (s[len - 1] == ' ')) {
2977 len--;
2978 s[len] = 0;
2979 }
2980 return len;
2981 }
2982
2983 static int ata_dma_blacklisted(const struct ata_device *dev)
2984 {
2985 unsigned char model_num[40];
2986 unsigned char model_rev[16];
2987 unsigned int nlen, rlen;
2988 int i;
2989
2990 /* We don't support polling DMA.
2991 * DMA blacklist those ATAPI devices with CDB-intr (and use PIO)
2992 * if the LLDD handles only interrupts in the HSM_ST_LAST state.
2993 */
2994 if ((dev->ap->flags & ATA_FLAG_PIO_POLLING) &&
2995 (dev->flags & ATA_DFLAG_CDB_INTR))
2996 return 1;
2997
2998 ata_id_string(dev->id, model_num, ATA_ID_PROD_OFS,
2999 sizeof(model_num));
3000 ata_id_string(dev->id, model_rev, ATA_ID_FW_REV_OFS,
3001 sizeof(model_rev));
3002 nlen = ata_strim(model_num, sizeof(model_num));
3003 rlen = ata_strim(model_rev, sizeof(model_rev));
3004
3005 for (i = 0; i < ARRAY_SIZE(ata_dma_blacklist); i += 2) {
3006 if (!strncmp(ata_dma_blacklist[i], model_num, nlen)) {
3007 if (ata_dma_blacklist[i+1] == NULL)
3008 return 1;
3009 if (!strncmp(ata_dma_blacklist[i], model_rev, rlen))
3010 return 1;
3011 }
3012 }
3013 return 0;
3014 }
3015
3016 /**
3017 * ata_dev_xfermask - Compute supported xfermask of the given device
3018 * @dev: Device to compute xfermask for
3019 *
3020 * Compute supported xfermask of @dev and store it in
3021 * dev->*_mask. This function is responsible for applying all
3022 * known limits including host controller limits, device
3023 * blacklist, etc...
3024 *
3025 * FIXME: The current implementation limits all transfer modes to
3026 * the fastest of the lowested device on the port. This is not
3027 * required on most controllers.
3028 *
3029 * LOCKING:
3030 * None.
3031 */
3032 static void ata_dev_xfermask(struct ata_device *dev)
3033 {
3034 struct ata_port *ap = dev->ap;
3035 struct ata_host_set *hs = ap->host_set;
3036 unsigned long xfer_mask;
3037 int i;
3038
3039 xfer_mask = ata_pack_xfermask(ap->pio_mask,
3040 ap->mwdma_mask, ap->udma_mask);
3041
3042 /* Apply cable rule here. Don't apply it early because when
3043 * we handle hot plug the cable type can itself change.
3044 */
3045 if (ap->cbl == ATA_CBL_PATA40)
3046 xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA);
3047
3048 /* FIXME: Use port-wide xfermask for now */
3049 for (i = 0; i < ATA_MAX_DEVICES; i++) {
3050 struct ata_device *d = &ap->device[i];
3051
3052 if (ata_dev_absent(d))
3053 continue;
3054
3055 if (ata_dev_disabled(d)) {
3056 /* to avoid violating device selection timing */
3057 xfer_mask &= ata_pack_xfermask(d->pio_mask,
3058 UINT_MAX, UINT_MAX);
3059 continue;
3060 }
3061
3062 xfer_mask &= ata_pack_xfermask(d->pio_mask,
3063 d->mwdma_mask, d->udma_mask);
3064 xfer_mask &= ata_id_xfermask(d->id);
3065 if (ata_dma_blacklisted(d))
3066 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
3067 }
3068
3069 if (ata_dma_blacklisted(dev))
3070 ata_dev_printk(dev, KERN_WARNING,
3071 "device is on DMA blacklist, disabling DMA\n");
3072
3073 if (hs->flags & ATA_HOST_SIMPLEX) {
3074 if (hs->simplex_claimed)
3075 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
3076 }
3077
3078 if (ap->ops->mode_filter)
3079 xfer_mask = ap->ops->mode_filter(ap, dev, xfer_mask);
3080
3081 ata_unpack_xfermask(xfer_mask, &dev->pio_mask,
3082 &dev->mwdma_mask, &dev->udma_mask);
3083 }
3084
3085 /**
3086 * ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command
3087 * @dev: Device to which command will be sent
3088 *
3089 * Issue SET FEATURES - XFER MODE command to device @dev
3090 * on port @ap.
3091 *
3092 * LOCKING:
3093 * PCI/etc. bus probe sem.
3094 *
3095 * RETURNS:
3096 * 0 on success, AC_ERR_* mask otherwise.
3097 */
3098
3099 static unsigned int ata_dev_set_xfermode(struct ata_device *dev)
3100 {
3101 struct ata_taskfile tf;
3102 unsigned int err_mask;
3103
3104 /* set up set-features taskfile */
3105 DPRINTK("set features - xfer mode\n");
3106
3107 ata_tf_init(dev, &tf);
3108 tf.command = ATA_CMD_SET_FEATURES;
3109 tf.feature = SETFEATURES_XFER;
3110 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
3111 tf.protocol = ATA_PROT_NODATA;
3112 tf.nsect = dev->xfer_mode;
3113
3114 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
3115
3116 DPRINTK("EXIT, err_mask=%x\n", err_mask);
3117 return err_mask;
3118 }
3119
3120 /**
3121 * ata_dev_init_params - Issue INIT DEV PARAMS command
3122 * @dev: Device to which command will be sent
3123 * @heads: Number of heads (taskfile parameter)
3124 * @sectors: Number of sectors (taskfile parameter)
3125 *
3126 * LOCKING:
3127 * Kernel thread context (may sleep)
3128 *
3129 * RETURNS:
3130 * 0 on success, AC_ERR_* mask otherwise.
3131 */
3132 static unsigned int ata_dev_init_params(struct ata_device *dev,
3133 u16 heads, u16 sectors)
3134 {
3135 struct ata_taskfile tf;
3136 unsigned int err_mask;
3137
3138 /* Number of sectors per track 1-255. Number of heads 1-16 */
3139 if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16)
3140 return AC_ERR_INVALID;
3141
3142 /* set up init dev params taskfile */
3143 DPRINTK("init dev params \n");
3144
3145 ata_tf_init(dev, &tf);
3146 tf.command = ATA_CMD_INIT_DEV_PARAMS;
3147 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
3148 tf.protocol = ATA_PROT_NODATA;
3149 tf.nsect = sectors;
3150 tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */
3151
3152 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
3153
3154 DPRINTK("EXIT, err_mask=%x\n", err_mask);
3155 return err_mask;
3156 }
3157
3158 /**
3159 * ata_sg_clean - Unmap DMA memory associated with command
3160 * @qc: Command containing DMA memory to be released
3161 *
3162 * Unmap all mapped DMA memory associated with this command.
3163 *
3164 * LOCKING:
3165 * spin_lock_irqsave(host_set lock)
3166 */
3167
3168 static void ata_sg_clean(struct ata_queued_cmd *qc)
3169 {
3170 struct ata_port *ap = qc->ap;
3171 struct scatterlist *sg = qc->__sg;
3172 int dir = qc->dma_dir;
3173 void *pad_buf = NULL;
3174
3175 WARN_ON(!(qc->flags & ATA_QCFLAG_DMAMAP));
3176 WARN_ON(sg == NULL);
3177
3178 if (qc->flags & ATA_QCFLAG_SINGLE)
3179 WARN_ON(qc->n_elem > 1);
3180
3181 VPRINTK("unmapping %u sg elements\n", qc->n_elem);
3182
3183 /* if we padded the buffer out to 32-bit bound, and data
3184 * xfer direction is from-device, we must copy from the
3185 * pad buffer back into the supplied buffer
3186 */
3187 if (qc->pad_len && !(qc->tf.flags & ATA_TFLAG_WRITE))
3188 pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
3189
3190 if (qc->flags & ATA_QCFLAG_SG) {
3191 if (qc->n_elem)
3192 dma_unmap_sg(ap->dev, sg, qc->n_elem, dir);
3193 /* restore last sg */
3194 sg[qc->orig_n_elem - 1].length += qc->pad_len;
3195 if (pad_buf) {
3196 struct scatterlist *psg = &qc->pad_sgent;
3197 void *addr = kmap_atomic(psg->page, KM_IRQ0);
3198 memcpy(addr + psg->offset, pad_buf, qc->pad_len);
3199 kunmap_atomic(addr, KM_IRQ0);
3200 }
3201 } else {
3202 if (qc->n_elem)
3203 dma_unmap_single(ap->dev,
3204 sg_dma_address(&sg[0]), sg_dma_len(&sg[0]),
3205 dir);
3206 /* restore sg */
3207 sg->length += qc->pad_len;
3208 if (pad_buf)
3209 memcpy(qc->buf_virt + sg->length - qc->pad_len,
3210 pad_buf, qc->pad_len);
3211 }
3212
3213 qc->flags &= ~ATA_QCFLAG_DMAMAP;
3214 qc->__sg = NULL;
3215 }
3216
3217 /**
3218 * ata_fill_sg - Fill PCI IDE PRD table
3219 * @qc: Metadata associated with taskfile to be transferred
3220 *
3221 * Fill PCI IDE PRD (scatter-gather) table with segments
3222 * associated with the current disk command.
3223 *
3224 * LOCKING:
3225 * spin_lock_irqsave(host_set lock)
3226 *
3227 */
3228 static void ata_fill_sg(struct ata_queued_cmd *qc)
3229 {
3230 struct ata_port *ap = qc->ap;
3231 struct scatterlist *sg;
3232 unsigned int idx;
3233
3234 WARN_ON(qc->__sg == NULL);
3235 WARN_ON(qc->n_elem == 0 && qc->pad_len == 0);
3236
3237 idx = 0;
3238 ata_for_each_sg(sg, qc) {
3239 u32 addr, offset;
3240 u32 sg_len, len;
3241
3242 /* determine if physical DMA addr spans 64K boundary.
3243 * Note h/w doesn't support 64-bit, so we unconditionally
3244 * truncate dma_addr_t to u32.
3245 */
3246 addr = (u32) sg_dma_address(sg);
3247 sg_len = sg_dma_len(sg);
3248
3249 while (sg_len) {
3250 offset = addr & 0xffff;
3251 len = sg_len;
3252 if ((offset + sg_len) > 0x10000)
3253 len = 0x10000 - offset;
3254
3255 ap->prd[idx].addr = cpu_to_le32(addr);
3256 ap->prd[idx].flags_len = cpu_to_le32(len & 0xffff);
3257 VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", idx, addr, len);
3258
3259 idx++;
3260 sg_len -= len;
3261 addr += len;
3262 }
3263 }
3264
3265 if (idx)
3266 ap->prd[idx - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT);
3267 }
3268 /**
3269 * ata_check_atapi_dma - Check whether ATAPI DMA can be supported
3270 * @qc: Metadata associated with taskfile to check
3271 *
3272 * Allow low-level driver to filter ATA PACKET commands, returning
3273 * a status indicating whether or not it is OK to use DMA for the
3274 * supplied PACKET command.
3275 *
3276 * LOCKING:
3277 * spin_lock_irqsave(host_set lock)
3278 *
3279 * RETURNS: 0 when ATAPI DMA can be used
3280 * nonzero otherwise
3281 */
3282 int ata_check_atapi_dma(struct ata_queued_cmd *qc)
3283 {
3284 struct ata_port *ap = qc->ap;
3285 int rc = 0; /* Assume ATAPI DMA is OK by default */
3286
3287 if (ap->ops->check_atapi_dma)
3288 rc = ap->ops->check_atapi_dma(qc);
3289
3290 return rc;
3291 }
3292 /**
3293 * ata_qc_prep - Prepare taskfile for submission
3294 * @qc: Metadata associated with taskfile to be prepared
3295 *
3296 * Prepare ATA taskfile for submission.
3297 *
3298 * LOCKING:
3299 * spin_lock_irqsave(host_set lock)
3300 */
3301 void ata_qc_prep(struct ata_queued_cmd *qc)
3302 {
3303 if (!(qc->flags & ATA_QCFLAG_DMAMAP))
3304 return;
3305
3306 ata_fill_sg(qc);
3307 }
3308
3309 void ata_noop_qc_prep(struct ata_queued_cmd *qc) { }
3310
3311 /**
3312 * ata_sg_init_one - Associate command with memory buffer
3313 * @qc: Command to be associated
3314 * @buf: Memory buffer
3315 * @buflen: Length of memory buffer, in bytes.
3316 *
3317 * Initialize the data-related elements of queued_cmd @qc
3318 * to point to a single memory buffer, @buf of byte length @buflen.
3319 *
3320 * LOCKING:
3321 * spin_lock_irqsave(host_set lock)
3322 */
3323
3324 void ata_sg_init_one(struct ata_queued_cmd *qc, void *buf, unsigned int buflen)
3325 {
3326 struct scatterlist *sg;
3327
3328 qc->flags |= ATA_QCFLAG_SINGLE;
3329
3330 memset(&qc->sgent, 0, sizeof(qc->sgent));
3331 qc->__sg = &qc->sgent;
3332 qc->n_elem = 1;
3333 qc->orig_n_elem = 1;
3334 qc->buf_virt = buf;
3335 qc->nbytes = buflen;
3336
3337 sg = qc->__sg;
3338 sg_init_one(sg, buf, buflen);
3339 }
3340
3341 /**
3342 * ata_sg_init - Associate command with scatter-gather table.
3343 * @qc: Command to be associated
3344 * @sg: Scatter-gather table.
3345 * @n_elem: Number of elements in s/g table.
3346 *
3347 * Initialize the data-related elements of queued_cmd @qc
3348 * to point to a scatter-gather table @sg, containing @n_elem
3349 * elements.
3350 *
3351 * LOCKING:
3352 * spin_lock_irqsave(host_set lock)
3353 */
3354
3355 void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg,
3356 unsigned int n_elem)
3357 {
3358 qc->flags |= ATA_QCFLAG_SG;
3359 qc->__sg = sg;
3360 qc->n_elem = n_elem;
3361 qc->orig_n_elem = n_elem;
3362 }
3363
3364 /**
3365 * ata_sg_setup_one - DMA-map the memory buffer associated with a command.
3366 * @qc: Command with memory buffer to be mapped.
3367 *
3368 * DMA-map the memory buffer associated with queued_cmd @qc.
3369 *
3370 * LOCKING:
3371 * spin_lock_irqsave(host_set lock)
3372 *
3373 * RETURNS:
3374 * Zero on success, negative on error.
3375 */
3376
3377 static int ata_sg_setup_one(struct ata_queued_cmd *qc)
3378 {
3379 struct ata_port *ap = qc->ap;
3380 int dir = qc->dma_dir;
3381 struct scatterlist *sg = qc->__sg;
3382 dma_addr_t dma_address;
3383 int trim_sg = 0;
3384
3385 /* we must lengthen transfers to end on a 32-bit boundary */
3386 qc->pad_len = sg->length & 3;
3387 if (qc->pad_len) {
3388 void *pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
3389 struct scatterlist *psg = &qc->pad_sgent;
3390
3391 WARN_ON(qc->dev->class != ATA_DEV_ATAPI);
3392
3393 memset(pad_buf, 0, ATA_DMA_PAD_SZ);
3394
3395 if (qc->tf.flags & ATA_TFLAG_WRITE)
3396 memcpy(pad_buf, qc->buf_virt + sg->length - qc->pad_len,
3397 qc->pad_len);
3398
3399 sg_dma_address(psg) = ap->pad_dma + (qc->tag * ATA_DMA_PAD_SZ);
3400 sg_dma_len(psg) = ATA_DMA_PAD_SZ;
3401 /* trim sg */
3402 sg->length -= qc->pad_len;
3403 if (sg->length == 0)
3404 trim_sg = 1;
3405
3406 DPRINTK("padding done, sg->length=%u pad_len=%u\n",
3407 sg->length, qc->pad_len);
3408 }
3409
3410 if (trim_sg) {
3411 qc->n_elem--;
3412 goto skip_map;
3413 }
3414
3415 dma_address = dma_map_single(ap->dev, qc->buf_virt,
3416 sg->length, dir);
3417 if (dma_mapping_error(dma_address)) {
3418 /* restore sg */
3419 sg->length += qc->pad_len;
3420 return -1;
3421 }
3422
3423 sg_dma_address(sg) = dma_address;
3424 sg_dma_len(sg) = sg->length;
3425
3426 skip_map:
3427 DPRINTK("mapped buffer of %d bytes for %s\n", sg_dma_len(sg),
3428 qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
3429
3430 return 0;
3431 }
3432
3433 /**
3434 * ata_sg_setup - DMA-map the scatter-gather table associated with a command.
3435 * @qc: Command with scatter-gather table to be mapped.
3436 *
3437 * DMA-map the scatter-gather table associated with queued_cmd @qc.
3438 *
3439 * LOCKING:
3440 * spin_lock_irqsave(host_set lock)
3441 *
3442 * RETURNS:
3443 * Zero on success, negative on error.
3444 *
3445 */
3446
3447 static int ata_sg_setup(struct ata_queued_cmd *qc)
3448 {
3449 struct ata_port *ap = qc->ap;
3450 struct scatterlist *sg = qc->__sg;
3451 struct scatterlist *lsg = &sg[qc->n_elem - 1];
3452 int n_elem, pre_n_elem, dir, trim_sg = 0;
3453
3454 VPRINTK("ENTER, ata%u\n", ap->id);
3455 WARN_ON(!(qc->flags & ATA_QCFLAG_SG));
3456
3457 /* we must lengthen transfers to end on a 32-bit boundary */
3458 qc->pad_len = lsg->length & 3;
3459 if (qc->pad_len) {
3460 void *pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
3461 struct scatterlist *psg = &qc->pad_sgent;
3462 unsigned int offset;
3463
3464 WARN_ON(qc->dev->class != ATA_DEV_ATAPI);
3465
3466 memset(pad_buf, 0, ATA_DMA_PAD_SZ);
3467
3468 /*
3469 * psg->page/offset are used to copy to-be-written
3470 * data in this function or read data in ata_sg_clean.
3471 */
3472 offset = lsg->offset + lsg->length - qc->pad_len;
3473 psg->page = nth_page(lsg->page, offset >> PAGE_SHIFT);
3474 psg->offset = offset_in_page(offset);
3475
3476 if (qc->tf.flags & ATA_TFLAG_WRITE) {
3477 void *addr = kmap_atomic(psg->page, KM_IRQ0);
3478 memcpy(pad_buf, addr + psg->offset, qc->pad_len);
3479 kunmap_atomic(addr, KM_IRQ0);
3480 }
3481
3482 sg_dma_address(psg) = ap->pad_dma + (qc->tag * ATA_DMA_PAD_SZ);
3483 sg_dma_len(psg) = ATA_DMA_PAD_SZ;
3484 /* trim last sg */
3485 lsg->length -= qc->pad_len;
3486 if (lsg->length == 0)
3487 trim_sg = 1;
3488
3489 DPRINTK("padding done, sg[%d].length=%u pad_len=%u\n",
3490 qc->n_elem - 1, lsg->length, qc->pad_len);
3491 }
3492
3493 pre_n_elem = qc->n_elem;
3494 if (trim_sg && pre_n_elem)
3495 pre_n_elem--;
3496
3497 if (!pre_n_elem) {
3498 n_elem = 0;
3499 goto skip_map;
3500 }
3501
3502 dir = qc->dma_dir;
3503 n_elem = dma_map_sg(ap->dev, sg, pre_n_elem, dir);
3504 if (n_elem < 1) {
3505 /* restore last sg */
3506 lsg->length += qc->pad_len;
3507 return -1;
3508 }
3509
3510 DPRINTK("%d sg elements mapped\n", n_elem);
3511
3512 skip_map:
3513 qc->n_elem = n_elem;
3514
3515 return 0;
3516 }
3517
3518 /**
3519 * swap_buf_le16 - swap halves of 16-bit words in place
3520 * @buf: Buffer to swap
3521 * @buf_words: Number of 16-bit words in buffer.
3522 *
3523 * Swap halves of 16-bit words if needed to convert from
3524 * little-endian byte order to native cpu byte order, or
3525 * vice-versa.
3526 *
3527 * LOCKING:
3528 * Inherited from caller.
3529 */
3530 void swap_buf_le16(u16 *buf, unsigned int buf_words)
3531 {
3532 #ifdef __BIG_ENDIAN
3533 unsigned int i;
3534
3535 for (i = 0; i < buf_words; i++)
3536 buf[i] = le16_to_cpu(buf[i]);
3537 #endif /* __BIG_ENDIAN */
3538 }
3539
3540 /**
3541 * ata_mmio_data_xfer - Transfer data by MMIO
3542 * @adev: device for this I/O
3543 * @buf: data buffer
3544 * @buflen: buffer length
3545 * @write_data: read/write
3546 *
3547 * Transfer data from/to the device data register by MMIO.
3548 *
3549 * LOCKING:
3550 * Inherited from caller.
3551 */
3552
3553 void ata_mmio_data_xfer(struct ata_device *adev, unsigned char *buf,
3554 unsigned int buflen, int write_data)
3555 {
3556 struct ata_port *ap = adev->ap;
3557 unsigned int i;
3558 unsigned int words = buflen >> 1;
3559 u16 *buf16 = (u16 *) buf;
3560 void __iomem *mmio = (void __iomem *)ap->ioaddr.data_addr;
3561
3562 /* Transfer multiple of 2 bytes */
3563 if (write_data) {
3564 for (i = 0; i < words; i++)
3565 writew(le16_to_cpu(buf16[i]), mmio);
3566 } else {
3567 for (i = 0; i < words; i++)
3568 buf16[i] = cpu_to_le16(readw(mmio));
3569 }
3570
3571 /* Transfer trailing 1 byte, if any. */
3572 if (unlikely(buflen & 0x01)) {
3573 u16 align_buf[1] = { 0 };
3574 unsigned char *trailing_buf = buf + buflen - 1;
3575
3576 if (write_data) {
3577 memcpy(align_buf, trailing_buf, 1);
3578 writew(le16_to_cpu(align_buf[0]), mmio);
3579 } else {
3580 align_buf[0] = cpu_to_le16(readw(mmio));
3581 memcpy(trailing_buf, align_buf, 1);
3582 }
3583 }
3584 }
3585
3586 /**
3587 * ata_pio_data_xfer - Transfer data by PIO
3588 * @adev: device to target
3589 * @buf: data buffer
3590 * @buflen: buffer length
3591 * @write_data: read/write
3592 *
3593 * Transfer data from/to the device data register by PIO.
3594 *
3595 * LOCKING:
3596 * Inherited from caller.
3597 */
3598
3599 void ata_pio_data_xfer(struct ata_device *adev, unsigned char *buf,
3600 unsigned int buflen, int write_data)
3601 {
3602 struct ata_port *ap = adev->ap;
3603 unsigned int words = buflen >> 1;
3604
3605 /* Transfer multiple of 2 bytes */
3606 if (write_data)
3607 outsw(ap->ioaddr.data_addr, buf, words);
3608 else
3609 insw(ap->ioaddr.data_addr, buf, words);
3610
3611 /* Transfer trailing 1 byte, if any. */
3612 if (unlikely(buflen & 0x01)) {
3613 u16 align_buf[1] = { 0 };
3614 unsigned char *trailing_buf = buf + buflen - 1;
3615
3616 if (write_data) {
3617 memcpy(align_buf, trailing_buf, 1);
3618 outw(le16_to_cpu(align_buf[0]), ap->ioaddr.data_addr);
3619 } else {
3620 align_buf[0] = cpu_to_le16(inw(ap->ioaddr.data_addr));
3621 memcpy(trailing_buf, align_buf, 1);
3622 }
3623 }
3624 }
3625
3626 /**
3627 * ata_pio_data_xfer_noirq - Transfer data by PIO
3628 * @adev: device to target
3629 * @buf: data buffer
3630 * @buflen: buffer length
3631 * @write_data: read/write
3632 *
3633 * Transfer data from/to the device data register by PIO. Do the
3634 * transfer with interrupts disabled.
3635 *
3636 * LOCKING:
3637 * Inherited from caller.
3638 */
3639
3640 void ata_pio_data_xfer_noirq(struct ata_device *adev, unsigned char *buf,
3641 unsigned int buflen, int write_data)
3642 {
3643 unsigned long flags;
3644 local_irq_save(flags);
3645 ata_pio_data_xfer(adev, buf, buflen, write_data);
3646 local_irq_restore(flags);
3647 }
3648
3649
3650 /**
3651 * ata_pio_sector - Transfer ATA_SECT_SIZE (512 bytes) of data.
3652 * @qc: Command on going
3653 *
3654 * Transfer ATA_SECT_SIZE of data from/to the ATA device.
3655 *
3656 * LOCKING:
3657 * Inherited from caller.
3658 */
3659
3660 static void ata_pio_sector(struct ata_queued_cmd *qc)
3661 {
3662 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
3663 struct scatterlist *sg = qc->__sg;
3664 struct ata_port *ap = qc->ap;
3665 struct page *page;
3666 unsigned int offset;
3667 unsigned char *buf;
3668
3669 if (qc->cursect == (qc->nsect - 1))
3670 ap->hsm_task_state = HSM_ST_LAST;
3671
3672 page = sg[qc->cursg].page;
3673 offset = sg[qc->cursg].offset + qc->cursg_ofs * ATA_SECT_SIZE;
3674
3675 /* get the current page and offset */
3676 page = nth_page(page, (offset >> PAGE_SHIFT));
3677 offset %= PAGE_SIZE;
3678
3679 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
3680
3681 if (PageHighMem(page)) {
3682 unsigned long flags;
3683
3684 /* FIXME: use a bounce buffer */
3685 local_irq_save(flags);
3686 buf = kmap_atomic(page, KM_IRQ0);
3687
3688 /* do the actual data transfer */
3689 ap->ops->data_xfer(qc->dev, buf + offset, ATA_SECT_SIZE, do_write);
3690
3691 kunmap_atomic(buf, KM_IRQ0);
3692 local_irq_restore(flags);
3693 } else {
3694 buf = page_address(page);
3695 ap->ops->data_xfer(qc->dev, buf + offset, ATA_SECT_SIZE, do_write);
3696 }
3697
3698 qc->cursect++;
3699 qc->cursg_ofs++;
3700
3701 if ((qc->cursg_ofs * ATA_SECT_SIZE) == (&sg[qc->cursg])->length) {
3702 qc->cursg++;
3703 qc->cursg_ofs = 0;
3704 }
3705 }
3706
3707 /**
3708 * ata_pio_sectors - Transfer one or many 512-byte sectors.
3709 * @qc: Command on going
3710 *
3711 * Transfer one or many ATA_SECT_SIZE of data from/to the
3712 * ATA device for the DRQ request.
3713 *
3714 * LOCKING:
3715 * Inherited from caller.
3716 */
3717
3718 static void ata_pio_sectors(struct ata_queued_cmd *qc)
3719 {
3720 if (is_multi_taskfile(&qc->tf)) {
3721 /* READ/WRITE MULTIPLE */
3722 unsigned int nsect;
3723
3724 WARN_ON(qc->dev->multi_count == 0);
3725
3726 nsect = min(qc->nsect - qc->cursect, qc->dev->multi_count);
3727 while (nsect--)
3728 ata_pio_sector(qc);
3729 } else
3730 ata_pio_sector(qc);
3731 }
3732
3733 /**
3734 * atapi_send_cdb - Write CDB bytes to hardware
3735 * @ap: Port to which ATAPI device is attached.
3736 * @qc: Taskfile currently active
3737 *
3738 * When device has indicated its readiness to accept
3739 * a CDB, this function is called. Send the CDB.
3740 *
3741 * LOCKING:
3742 * caller.
3743 */
3744
3745 static void atapi_send_cdb(struct ata_port *ap, struct ata_queued_cmd *qc)
3746 {
3747 /* send SCSI cdb */
3748 DPRINTK("send cdb\n");
3749 WARN_ON(qc->dev->cdb_len < 12);
3750
3751 ap->ops->data_xfer(qc->dev, qc->cdb, qc->dev->cdb_len, 1);
3752 ata_altstatus(ap); /* flush */
3753
3754 switch (qc->tf.protocol) {
3755 case ATA_PROT_ATAPI:
3756 ap->hsm_task_state = HSM_ST;
3757 break;
3758 case ATA_PROT_ATAPI_NODATA:
3759 ap->hsm_task_state = HSM_ST_LAST;
3760 break;
3761 case ATA_PROT_ATAPI_DMA:
3762 ap->hsm_task_state = HSM_ST_LAST;
3763 /* initiate bmdma */
3764 ap->ops->bmdma_start(qc);
3765 break;
3766 }
3767 }
3768
3769 /**
3770 * __atapi_pio_bytes - Transfer data from/to the ATAPI device.
3771 * @qc: Command on going
3772 * @bytes: number of bytes
3773 *
3774 * Transfer Transfer data from/to the ATAPI device.
3775 *
3776 * LOCKING:
3777 * Inherited from caller.
3778 *
3779 */
3780
3781 static void __atapi_pio_bytes(struct ata_queued_cmd *qc, unsigned int bytes)
3782 {
3783 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
3784 struct scatterlist *sg = qc->__sg;
3785 struct ata_port *ap = qc->ap;
3786 struct page *page;
3787 unsigned char *buf;
3788 unsigned int offset, count;
3789
3790 if (qc->curbytes + bytes >= qc->nbytes)
3791 ap->hsm_task_state = HSM_ST_LAST;
3792
3793 next_sg:
3794 if (unlikely(qc->cursg >= qc->n_elem)) {
3795 /*
3796 * The end of qc->sg is reached and the device expects
3797 * more data to transfer. In order not to overrun qc->sg
3798 * and fulfill length specified in the byte count register,
3799 * - for read case, discard trailing data from the device
3800 * - for write case, padding zero data to the device
3801 */
3802 u16 pad_buf[1] = { 0 };
3803 unsigned int words = bytes >> 1;
3804 unsigned int i;
3805
3806 if (words) /* warning if bytes > 1 */
3807 ata_dev_printk(qc->dev, KERN_WARNING,
3808 "%u bytes trailing data\n", bytes);
3809
3810 for (i = 0; i < words; i++)
3811 ap->ops->data_xfer(qc->dev, (unsigned char*)pad_buf, 2, do_write);
3812
3813 ap->hsm_task_state = HSM_ST_LAST;
3814 return;
3815 }
3816
3817 sg = &qc->__sg[qc->cursg];
3818
3819 page = sg->page;
3820 offset = sg->offset + qc->cursg_ofs;
3821
3822 /* get the current page and offset */
3823 page = nth_page(page, (offset >> PAGE_SHIFT));
3824 offset %= PAGE_SIZE;
3825
3826 /* don't overrun current sg */
3827 count = min(sg->length - qc->cursg_ofs, bytes);
3828
3829 /* don't cross page boundaries */
3830 count = min(count, (unsigned int)PAGE_SIZE - offset);
3831
3832 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
3833
3834 if (PageHighMem(page)) {
3835 unsigned long flags;
3836
3837 /* FIXME: use bounce buffer */
3838 local_irq_save(flags);
3839 buf = kmap_atomic(page, KM_IRQ0);
3840
3841 /* do the actual data transfer */
3842 ap->ops->data_xfer(qc->dev, buf + offset, count, do_write);
3843
3844 kunmap_atomic(buf, KM_IRQ0);
3845 local_irq_restore(flags);
3846 } else {
3847 buf = page_address(page);
3848 ap->ops->data_xfer(qc->dev, buf + offset, count, do_write);
3849 }
3850
3851 bytes -= count;
3852 qc->curbytes += count;
3853 qc->cursg_ofs += count;
3854
3855 if (qc->cursg_ofs == sg->length) {
3856 qc->cursg++;
3857 qc->cursg_ofs = 0;
3858 }
3859
3860 if (bytes)
3861 goto next_sg;
3862 }
3863
3864 /**
3865 * atapi_pio_bytes - Transfer data from/to the ATAPI device.
3866 * @qc: Command on going
3867 *
3868 * Transfer Transfer data from/to the ATAPI device.
3869 *
3870 * LOCKING:
3871 * Inherited from caller.
3872 */
3873
3874 static void atapi_pio_bytes(struct ata_queued_cmd *qc)
3875 {
3876 struct ata_port *ap = qc->ap;
3877 struct ata_device *dev = qc->dev;
3878 unsigned int ireason, bc_lo, bc_hi, bytes;
3879 int i_write, do_write = (qc->tf.flags & ATA_TFLAG_WRITE) ? 1 : 0;
3880
3881 /* Abuse qc->result_tf for temp storage of intermediate TF
3882 * here to save some kernel stack usage.
3883 * For normal completion, qc->result_tf is not relevant. For
3884 * error, qc->result_tf is later overwritten by ata_qc_complete().
3885 * So, the correctness of qc->result_tf is not affected.
3886 */
3887 ap->ops->tf_read(ap, &qc->result_tf);
3888 ireason = qc->result_tf.nsect;
3889 bc_lo = qc->result_tf.lbam;
3890 bc_hi = qc->result_tf.lbah;
3891 bytes = (bc_hi << 8) | bc_lo;
3892
3893 /* shall be cleared to zero, indicating xfer of data */
3894 if (ireason & (1 << 0))
3895 goto err_out;
3896
3897 /* make sure transfer direction matches expected */
3898 i_write = ((ireason & (1 << 1)) == 0) ? 1 : 0;
3899 if (do_write != i_write)
3900 goto err_out;
3901
3902 VPRINTK("ata%u: xfering %d bytes\n", ap->id, bytes);
3903
3904 __atapi_pio_bytes(qc, bytes);
3905
3906 return;
3907
3908 err_out:
3909 ata_dev_printk(dev, KERN_INFO, "ATAPI check failed\n");
3910 qc->err_mask |= AC_ERR_HSM;
3911 ap->hsm_task_state = HSM_ST_ERR;
3912 }
3913
3914 /**
3915 * ata_hsm_ok_in_wq - Check if the qc can be handled in the workqueue.
3916 * @ap: the target ata_port
3917 * @qc: qc on going
3918 *
3919 * RETURNS:
3920 * 1 if ok in workqueue, 0 otherwise.
3921 */
3922
3923 static inline int ata_hsm_ok_in_wq(struct ata_port *ap, struct ata_queued_cmd *qc)
3924 {
3925 if (qc->tf.flags & ATA_TFLAG_POLLING)
3926 return 1;
3927
3928 if (ap->hsm_task_state == HSM_ST_FIRST) {
3929 if (qc->tf.protocol == ATA_PROT_PIO &&
3930 (qc->tf.flags & ATA_TFLAG_WRITE))
3931 return 1;
3932
3933 if (is_atapi_taskfile(&qc->tf) &&
3934 !(qc->dev->flags & ATA_DFLAG_CDB_INTR))
3935 return 1;
3936 }
3937
3938 return 0;
3939 }
3940
3941 /**
3942 * ata_hsm_qc_complete - finish a qc running on standard HSM
3943 * @qc: Command to complete
3944 * @in_wq: 1 if called from workqueue, 0 otherwise
3945 *
3946 * Finish @qc which is running on standard HSM.
3947 *
3948 * LOCKING:
3949 * If @in_wq is zero, spin_lock_irqsave(host_set lock).
3950 * Otherwise, none on entry and grabs host lock.
3951 */
3952 static void ata_hsm_qc_complete(struct ata_queued_cmd *qc, int in_wq)
3953 {
3954 struct ata_port *ap = qc->ap;
3955 unsigned long flags;
3956
3957 if (ap->ops->error_handler) {
3958 if (in_wq) {
3959 spin_lock_irqsave(ap->lock, flags);
3960
3961 /* EH might have kicked in while host_set lock
3962 * is released.
3963 */
3964 qc = ata_qc_from_tag(ap, qc->tag);
3965 if (qc) {
3966 if (likely(!(qc->err_mask & AC_ERR_HSM))) {
3967 ata_irq_on(ap);
3968 ata_qc_complete(qc);
3969 } else
3970 ata_port_freeze(ap);
3971 }
3972
3973 spin_unlock_irqrestore(ap->lock, flags);
3974 } else {
3975 if (likely(!(qc->err_mask & AC_ERR_HSM)))
3976 ata_qc_complete(qc);
3977 else
3978 ata_port_freeze(ap);
3979 }
3980 } else {
3981 if (in_wq) {
3982 spin_lock_irqsave(ap->lock, flags);
3983 ata_irq_on(ap);
3984 ata_qc_complete(qc);
3985 spin_unlock_irqrestore(ap->lock, flags);
3986 } else
3987 ata_qc_complete(qc);
3988 }
3989
3990 ata_altstatus(ap); /* flush */
3991 }
3992
3993 /**
3994 * ata_hsm_move - move the HSM to the next state.
3995 * @ap: the target ata_port
3996 * @qc: qc on going
3997 * @status: current device status
3998 * @in_wq: 1 if called from workqueue, 0 otherwise
3999 *
4000 * RETURNS:
4001 * 1 when poll next status needed, 0 otherwise.
4002 */
4003 int ata_hsm_move(struct ata_port *ap, struct ata_queued_cmd *qc,
4004 u8 status, int in_wq)
4005 {
4006 unsigned long flags = 0;
4007 int poll_next;
4008
4009 WARN_ON((qc->flags & ATA_QCFLAG_ACTIVE) == 0);
4010
4011 /* Make sure ata_qc_issue_prot() does not throw things
4012 * like DMA polling into the workqueue. Notice that
4013 * in_wq is not equivalent to (qc->tf.flags & ATA_TFLAG_POLLING).
4014 */
4015 WARN_ON(in_wq != ata_hsm_ok_in_wq(ap, qc));
4016
4017 fsm_start:
4018 DPRINTK("ata%u: protocol %d task_state %d (dev_stat 0x%X)\n",
4019 ap->id, qc->tf.protocol, ap->hsm_task_state, status);
4020
4021 switch (ap->hsm_task_state) {
4022 case HSM_ST_FIRST:
4023 /* Send first data block or PACKET CDB */
4024
4025 /* If polling, we will stay in the work queue after
4026 * sending the data. Otherwise, interrupt handler
4027 * takes over after sending the data.
4028 */
4029 poll_next = (qc->tf.flags & ATA_TFLAG_POLLING);
4030
4031 /* check device status */
4032 if (unlikely((status & ATA_DRQ) == 0)) {
4033 /* handle BSY=0, DRQ=0 as error */
4034 if (likely(status & (ATA_ERR | ATA_DF)))
4035 /* device stops HSM for abort/error */
4036 qc->err_mask |= AC_ERR_DEV;
4037 else
4038 /* HSM violation. Let EH handle this */
4039 qc->err_mask |= AC_ERR_HSM;
4040
4041 ap->hsm_task_state = HSM_ST_ERR;
4042 goto fsm_start;
4043 }
4044
4045 /* Device should not ask for data transfer (DRQ=1)
4046 * when it finds something wrong.
4047 * We ignore DRQ here and stop the HSM by
4048 * changing hsm_task_state to HSM_ST_ERR and
4049 * let the EH abort the command or reset the device.
4050 */
4051 if (unlikely(status & (ATA_ERR | ATA_DF))) {
4052 printk(KERN_WARNING "ata%d: DRQ=1 with device error, dev_stat 0x%X\n",
4053 ap->id, status);
4054 qc->err_mask |= AC_ERR_HSM;
4055 ap->hsm_task_state = HSM_ST_ERR;
4056 goto fsm_start;
4057 }
4058
4059 /* Send the CDB (atapi) or the first data block (ata pio out).
4060 * During the state transition, interrupt handler shouldn't
4061 * be invoked before the data transfer is complete and
4062 * hsm_task_state is changed. Hence, the following locking.
4063 */
4064 if (in_wq)
4065 spin_lock_irqsave(ap->lock, flags);
4066
4067 if (qc->tf.protocol == ATA_PROT_PIO) {
4068 /* PIO data out protocol.
4069 * send first data block.
4070 */
4071
4072 /* ata_pio_sectors() might change the state
4073 * to HSM_ST_LAST. so, the state is changed here
4074 * before ata_pio_sectors().
4075 */
4076 ap->hsm_task_state = HSM_ST;
4077 ata_pio_sectors(qc);
4078 ata_altstatus(ap); /* flush */
4079 } else
4080 /* send CDB */
4081 atapi_send_cdb(ap, qc);
4082
4083 if (in_wq)
4084 spin_unlock_irqrestore(ap->lock, flags);
4085
4086 /* if polling, ata_pio_task() handles the rest.
4087 * otherwise, interrupt handler takes over from here.
4088 */
4089 break;
4090
4091 case HSM_ST:
4092 /* complete command or read/write the data register */
4093 if (qc->tf.protocol == ATA_PROT_ATAPI) {
4094 /* ATAPI PIO protocol */
4095 if ((status & ATA_DRQ) == 0) {
4096 /* No more data to transfer or device error.
4097 * Device error will be tagged in HSM_ST_LAST.
4098 */
4099 ap->hsm_task_state = HSM_ST_LAST;
4100 goto fsm_start;
4101 }
4102
4103 /* Device should not ask for data transfer (DRQ=1)
4104 * when it finds something wrong.
4105 * We ignore DRQ here and stop the HSM by
4106 * changing hsm_task_state to HSM_ST_ERR and
4107 * let the EH abort the command or reset the device.
4108 */
4109 if (unlikely(status & (ATA_ERR | ATA_DF))) {
4110 printk(KERN_WARNING "ata%d: DRQ=1 with device error, dev_stat 0x%X\n",
4111 ap->id, status);
4112 qc->err_mask |= AC_ERR_HSM;
4113 ap->hsm_task_state = HSM_ST_ERR;
4114 goto fsm_start;
4115 }
4116
4117 atapi_pio_bytes(qc);
4118
4119 if (unlikely(ap->hsm_task_state == HSM_ST_ERR))
4120 /* bad ireason reported by device */
4121 goto fsm_start;
4122
4123 } else {
4124 /* ATA PIO protocol */
4125 if (unlikely((status & ATA_DRQ) == 0)) {
4126 /* handle BSY=0, DRQ=0 as error */
4127 if (likely(status & (ATA_ERR | ATA_DF)))
4128 /* device stops HSM for abort/error */
4129 qc->err_mask |= AC_ERR_DEV;
4130 else
4131 /* HSM violation. Let EH handle this */
4132 qc->err_mask |= AC_ERR_HSM;
4133
4134 ap->hsm_task_state = HSM_ST_ERR;
4135 goto fsm_start;
4136 }
4137
4138 /* For PIO reads, some devices may ask for
4139 * data transfer (DRQ=1) alone with ERR=1.
4140 * We respect DRQ here and transfer one
4141 * block of junk data before changing the
4142 * hsm_task_state to HSM_ST_ERR.
4143 *
4144 * For PIO writes, ERR=1 DRQ=1 doesn't make
4145 * sense since the data block has been
4146 * transferred to the device.
4147 */
4148 if (unlikely(status & (ATA_ERR | ATA_DF))) {
4149 /* data might be corrputed */
4150 qc->err_mask |= AC_ERR_DEV;
4151
4152 if (!(qc->tf.flags & ATA_TFLAG_WRITE)) {
4153 ata_pio_sectors(qc);
4154 ata_altstatus(ap);
4155 status = ata_wait_idle(ap);
4156 }
4157
4158 if (status & (ATA_BUSY | ATA_DRQ))
4159 qc->err_mask |= AC_ERR_HSM;
4160
4161 /* ata_pio_sectors() might change the
4162 * state to HSM_ST_LAST. so, the state
4163 * is changed after ata_pio_sectors().
4164 */
4165 ap->hsm_task_state = HSM_ST_ERR;
4166 goto fsm_start;
4167 }
4168
4169 ata_pio_sectors(qc);
4170
4171 if (ap->hsm_task_state == HSM_ST_LAST &&
4172 (!(qc->tf.flags & ATA_TFLAG_WRITE))) {
4173 /* all data read */
4174 ata_altstatus(ap);
4175 status = ata_wait_idle(ap);
4176 goto fsm_start;
4177 }
4178 }
4179
4180 ata_altstatus(ap); /* flush */
4181 poll_next = 1;
4182 break;
4183
4184 case HSM_ST_LAST:
4185 if (unlikely(!ata_ok(status))) {
4186 qc->err_mask |= __ac_err_mask(status);
4187 ap->hsm_task_state = HSM_ST_ERR;
4188 goto fsm_start;
4189 }
4190
4191 /* no more data to transfer */
4192 DPRINTK("ata%u: dev %u command complete, drv_stat 0x%x\n",
4193 ap->id, qc->dev->devno, status);
4194
4195 WARN_ON(qc->err_mask);
4196
4197 ap->hsm_task_state = HSM_ST_IDLE;
4198
4199 /* complete taskfile transaction */
4200 ata_hsm_qc_complete(qc, in_wq);
4201
4202 poll_next = 0;
4203 break;
4204
4205 case HSM_ST_ERR:
4206 /* make sure qc->err_mask is available to
4207 * know what's wrong and recover
4208 */
4209 WARN_ON(qc->err_mask == 0);
4210
4211 ap->hsm_task_state = HSM_ST_IDLE;
4212
4213 /* complete taskfile transaction */
4214 ata_hsm_qc_complete(qc, in_wq);
4215
4216 poll_next = 0;
4217 break;
4218 default:
4219 poll_next = 0;
4220 BUG();
4221 }
4222
4223 return poll_next;
4224 }
4225
4226 static void ata_pio_task(void *_data)
4227 {
4228 struct ata_queued_cmd *qc = _data;
4229 struct ata_port *ap = qc->ap;
4230 u8 status;
4231 int poll_next;
4232
4233 fsm_start:
4234 WARN_ON(ap->hsm_task_state == HSM_ST_IDLE);
4235
4236 /*
4237 * This is purely heuristic. This is a fast path.
4238 * Sometimes when we enter, BSY will be cleared in
4239 * a chk-status or two. If not, the drive is probably seeking
4240 * or something. Snooze for a couple msecs, then
4241 * chk-status again. If still busy, queue delayed work.
4242 */
4243 status = ata_busy_wait(ap, ATA_BUSY, 5);
4244 if (status & ATA_BUSY) {
4245 msleep(2);
4246 status = ata_busy_wait(ap, ATA_BUSY, 10);
4247 if (status & ATA_BUSY) {
4248 ata_port_queue_task(ap, ata_pio_task, qc, ATA_SHORT_PAUSE);
4249 return;
4250 }
4251 }
4252
4253 /* move the HSM */
4254 poll_next = ata_hsm_move(ap, qc, status, 1);
4255
4256 /* another command or interrupt handler
4257 * may be running at this point.
4258 */
4259 if (poll_next)
4260 goto fsm_start;
4261 }
4262
4263 /**
4264 * ata_qc_new - Request an available ATA command, for queueing
4265 * @ap: Port associated with device @dev
4266 * @dev: Device from whom we request an available command structure
4267 *
4268 * LOCKING:
4269 * None.
4270 */
4271
4272 static struct ata_queued_cmd *ata_qc_new(struct ata_port *ap)
4273 {
4274 struct ata_queued_cmd *qc = NULL;
4275 unsigned int i;
4276
4277 /* no command while frozen */
4278 if (unlikely(ap->flags & ATA_FLAG_FROZEN))
4279 return NULL;
4280
4281 /* the last tag is reserved for internal command. */
4282 for (i = 0; i < ATA_MAX_QUEUE - 1; i++)
4283 if (!test_and_set_bit(i, &ap->qc_allocated)) {
4284 qc = __ata_qc_from_tag(ap, i);
4285 break;
4286 }
4287
4288 if (qc)
4289 qc->tag = i;
4290
4291 return qc;
4292 }
4293
4294 /**
4295 * ata_qc_new_init - Request an available ATA command, and initialize it
4296 * @dev: Device from whom we request an available command structure
4297 *
4298 * LOCKING:
4299 * None.
4300 */
4301
4302 struct ata_queued_cmd *ata_qc_new_init(struct ata_device *dev)
4303 {
4304 struct ata_port *ap = dev->ap;
4305 struct ata_queued_cmd *qc;
4306
4307 qc = ata_qc_new(ap);
4308 if (qc) {
4309 qc->scsicmd = NULL;
4310 qc->ap = ap;
4311 qc->dev = dev;
4312
4313 ata_qc_reinit(qc);
4314 }
4315
4316 return qc;
4317 }
4318
4319 /**
4320 * ata_qc_free - free unused ata_queued_cmd
4321 * @qc: Command to complete
4322 *
4323 * Designed to free unused ata_queued_cmd object
4324 * in case something prevents using it.
4325 *
4326 * LOCKING:
4327 * spin_lock_irqsave(host_set lock)
4328 */
4329 void ata_qc_free(struct ata_queued_cmd *qc)
4330 {
4331 struct ata_port *ap = qc->ap;
4332 unsigned int tag;
4333
4334 WARN_ON(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
4335
4336 qc->flags = 0;
4337 tag = qc->tag;
4338 if (likely(ata_tag_valid(tag))) {
4339 qc->tag = ATA_TAG_POISON;
4340 clear_bit(tag, &ap->qc_allocated);
4341 }
4342 }
4343
4344 void __ata_qc_complete(struct ata_queued_cmd *qc)
4345 {
4346 struct ata_port *ap = qc->ap;
4347
4348 WARN_ON(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
4349 WARN_ON(!(qc->flags & ATA_QCFLAG_ACTIVE));
4350
4351 if (likely(qc->flags & ATA_QCFLAG_DMAMAP))
4352 ata_sg_clean(qc);
4353
4354 /* command should be marked inactive atomically with qc completion */
4355 if (qc->tf.protocol == ATA_PROT_NCQ)
4356 ap->sactive &= ~(1 << qc->tag);
4357 else
4358 ap->active_tag = ATA_TAG_POISON;
4359
4360 /* atapi: mark qc as inactive to prevent the interrupt handler
4361 * from completing the command twice later, before the error handler
4362 * is called. (when rc != 0 and atapi request sense is needed)
4363 */
4364 qc->flags &= ~ATA_QCFLAG_ACTIVE;
4365 ap->qc_active &= ~(1 << qc->tag);
4366
4367 /* call completion callback */
4368 qc->complete_fn(qc);
4369 }
4370
4371 /**
4372 * ata_qc_complete - Complete an active ATA command
4373 * @qc: Command to complete
4374 * @err_mask: ATA Status register contents
4375 *
4376 * Indicate to the mid and upper layers that an ATA
4377 * command has completed, with either an ok or not-ok status.
4378 *
4379 * LOCKING:
4380 * spin_lock_irqsave(host_set lock)
4381 */
4382 void ata_qc_complete(struct ata_queued_cmd *qc)
4383 {
4384 struct ata_port *ap = qc->ap;
4385
4386 /* XXX: New EH and old EH use different mechanisms to
4387 * synchronize EH with regular execution path.
4388 *
4389 * In new EH, a failed qc is marked with ATA_QCFLAG_FAILED.
4390 * Normal execution path is responsible for not accessing a
4391 * failed qc. libata core enforces the rule by returning NULL
4392 * from ata_qc_from_tag() for failed qcs.
4393 *
4394 * Old EH depends on ata_qc_complete() nullifying completion
4395 * requests if ATA_QCFLAG_EH_SCHEDULED is set. Old EH does
4396 * not synchronize with interrupt handler. Only PIO task is
4397 * taken care of.
4398 */
4399 if (ap->ops->error_handler) {
4400 WARN_ON(ap->flags & ATA_FLAG_FROZEN);
4401
4402 if (unlikely(qc->err_mask))
4403 qc->flags |= ATA_QCFLAG_FAILED;
4404
4405 if (unlikely(qc->flags & ATA_QCFLAG_FAILED)) {
4406 if (!ata_tag_internal(qc->tag)) {
4407 /* always fill result TF for failed qc */
4408 ap->ops->tf_read(ap, &qc->result_tf);
4409 ata_qc_schedule_eh(qc);
4410 return;
4411 }
4412 }
4413
4414 /* read result TF if requested */
4415 if (qc->flags & ATA_QCFLAG_RESULT_TF)
4416 ap->ops->tf_read(ap, &qc->result_tf);
4417
4418 __ata_qc_complete(qc);
4419 } else {
4420 if (qc->flags & ATA_QCFLAG_EH_SCHEDULED)
4421 return;
4422
4423 /* read result TF if failed or requested */
4424 if (qc->err_mask || qc->flags & ATA_QCFLAG_RESULT_TF)
4425 ap->ops->tf_read(ap, &qc->result_tf);
4426
4427 __ata_qc_complete(qc);
4428 }
4429 }
4430
4431 /**
4432 * ata_qc_complete_multiple - Complete multiple qcs successfully
4433 * @ap: port in question
4434 * @qc_active: new qc_active mask
4435 * @finish_qc: LLDD callback invoked before completing a qc
4436 *
4437 * Complete in-flight commands. This functions is meant to be
4438 * called from low-level driver's interrupt routine to complete
4439 * requests normally. ap->qc_active and @qc_active is compared
4440 * and commands are completed accordingly.
4441 *
4442 * LOCKING:
4443 * spin_lock_irqsave(host_set lock)
4444 *
4445 * RETURNS:
4446 * Number of completed commands on success, -errno otherwise.
4447 */
4448 int ata_qc_complete_multiple(struct ata_port *ap, u32 qc_active,
4449 void (*finish_qc)(struct ata_queued_cmd *))
4450 {
4451 int nr_done = 0;
4452 u32 done_mask;
4453 int i;
4454
4455 done_mask = ap->qc_active ^ qc_active;
4456
4457 if (unlikely(done_mask & qc_active)) {
4458 ata_port_printk(ap, KERN_ERR, "illegal qc_active transition "
4459 "(%08x->%08x)\n", ap->qc_active, qc_active);
4460 return -EINVAL;
4461 }
4462
4463 for (i = 0; i < ATA_MAX_QUEUE; i++) {
4464 struct ata_queued_cmd *qc;
4465
4466 if (!(done_mask & (1 << i)))
4467 continue;
4468
4469 if ((qc = ata_qc_from_tag(ap, i))) {
4470 if (finish_qc)
4471 finish_qc(qc);
4472 ata_qc_complete(qc);
4473 nr_done++;
4474 }
4475 }
4476
4477 return nr_done;
4478 }
4479
4480 static inline int ata_should_dma_map(struct ata_queued_cmd *qc)
4481 {
4482 struct ata_port *ap = qc->ap;
4483
4484 switch (qc->tf.protocol) {
4485 case ATA_PROT_NCQ:
4486 case ATA_PROT_DMA:
4487 case ATA_PROT_ATAPI_DMA:
4488 return 1;
4489
4490 case ATA_PROT_ATAPI:
4491 case ATA_PROT_PIO:
4492 if (ap->flags & ATA_FLAG_PIO_DMA)
4493 return 1;
4494
4495 /* fall through */
4496
4497 default:
4498 return 0;
4499 }
4500
4501 /* never reached */
4502 }
4503
4504 /**
4505 * ata_qc_issue - issue taskfile to device
4506 * @qc: command to issue to device
4507 *
4508 * Prepare an ATA command to submission to device.
4509 * This includes mapping the data into a DMA-able
4510 * area, filling in the S/G table, and finally
4511 * writing the taskfile to hardware, starting the command.
4512 *
4513 * LOCKING:
4514 * spin_lock_irqsave(host_set lock)
4515 */
4516 void ata_qc_issue(struct ata_queued_cmd *qc)
4517 {
4518 struct ata_port *ap = qc->ap;
4519
4520 /* Make sure only one non-NCQ command is outstanding. The
4521 * check is skipped for old EH because it reuses active qc to
4522 * request ATAPI sense.
4523 */
4524 WARN_ON(ap->ops->error_handler && ata_tag_valid(ap->active_tag));
4525
4526 if (qc->tf.protocol == ATA_PROT_NCQ) {
4527 WARN_ON(ap->sactive & (1 << qc->tag));
4528 ap->sactive |= 1 << qc->tag;
4529 } else {
4530 WARN_ON(ap->sactive);
4531 ap->active_tag = qc->tag;
4532 }
4533
4534 qc->flags |= ATA_QCFLAG_ACTIVE;
4535 ap->qc_active |= 1 << qc->tag;
4536
4537 if (ata_should_dma_map(qc)) {
4538 if (qc->flags & ATA_QCFLAG_SG) {
4539 if (ata_sg_setup(qc))
4540 goto sg_err;
4541 } else if (qc->flags & ATA_QCFLAG_SINGLE) {
4542 if (ata_sg_setup_one(qc))
4543 goto sg_err;
4544 }
4545 } else {
4546 qc->flags &= ~ATA_QCFLAG_DMAMAP;
4547 }
4548
4549 ap->ops->qc_prep(qc);
4550
4551 qc->err_mask |= ap->ops->qc_issue(qc);
4552 if (unlikely(qc->err_mask))
4553 goto err;
4554 return;
4555
4556 sg_err:
4557 qc->flags &= ~ATA_QCFLAG_DMAMAP;
4558 qc->err_mask |= AC_ERR_SYSTEM;
4559 err:
4560 ata_qc_complete(qc);
4561 }
4562
4563 /**
4564 * ata_qc_issue_prot - issue taskfile to device in proto-dependent manner
4565 * @qc: command to issue to device
4566 *
4567 * Using various libata functions and hooks, this function
4568 * starts an ATA command. ATA commands are grouped into
4569 * classes called "protocols", and issuing each type of protocol
4570 * is slightly different.
4571 *
4572 * May be used as the qc_issue() entry in ata_port_operations.
4573 *
4574 * LOCKING:
4575 * spin_lock_irqsave(host_set lock)
4576 *
4577 * RETURNS:
4578 * Zero on success, AC_ERR_* mask on failure
4579 */
4580
4581 unsigned int ata_qc_issue_prot(struct ata_queued_cmd *qc)
4582 {
4583 struct ata_port *ap = qc->ap;
4584
4585 /* Use polling pio if the LLD doesn't handle
4586 * interrupt driven pio and atapi CDB interrupt.
4587 */
4588 if (ap->flags & ATA_FLAG_PIO_POLLING) {
4589 switch (qc->tf.protocol) {
4590 case ATA_PROT_PIO:
4591 case ATA_PROT_ATAPI:
4592 case ATA_PROT_ATAPI_NODATA:
4593 qc->tf.flags |= ATA_TFLAG_POLLING;
4594 break;
4595 case ATA_PROT_ATAPI_DMA:
4596 if (qc->dev->flags & ATA_DFLAG_CDB_INTR)
4597 /* see ata_dma_blacklisted() */
4598 BUG();
4599 break;
4600 default:
4601 break;
4602 }
4603 }
4604
4605 /* select the device */
4606 ata_dev_select(ap, qc->dev->devno, 1, 0);
4607
4608 /* start the command */
4609 switch (qc->tf.protocol) {
4610 case ATA_PROT_NODATA:
4611 if (qc->tf.flags & ATA_TFLAG_POLLING)
4612 ata_qc_set_polling(qc);
4613
4614 ata_tf_to_host(ap, &qc->tf);
4615 ap->hsm_task_state = HSM_ST_LAST;
4616
4617 if (qc->tf.flags & ATA_TFLAG_POLLING)
4618 ata_port_queue_task(ap, ata_pio_task, qc, 0);
4619
4620 break;
4621
4622 case ATA_PROT_DMA:
4623 WARN_ON(qc->tf.flags & ATA_TFLAG_POLLING);
4624
4625 ap->ops->tf_load(ap, &qc->tf); /* load tf registers */
4626 ap->ops->bmdma_setup(qc); /* set up bmdma */
4627 ap->ops->bmdma_start(qc); /* initiate bmdma */
4628 ap->hsm_task_state = HSM_ST_LAST;
4629 break;
4630
4631 case ATA_PROT_PIO:
4632 if (qc->tf.flags & ATA_TFLAG_POLLING)
4633 ata_qc_set_polling(qc);
4634
4635 ata_tf_to_host(ap, &qc->tf);
4636
4637 if (qc->tf.flags & ATA_TFLAG_WRITE) {
4638 /* PIO data out protocol */
4639 ap->hsm_task_state = HSM_ST_FIRST;
4640 ata_port_queue_task(ap, ata_pio_task, qc, 0);
4641
4642 /* always send first data block using
4643 * the ata_pio_task() codepath.
4644 */
4645 } else {
4646 /* PIO data in protocol */
4647 ap->hsm_task_state = HSM_ST;
4648
4649 if (qc->tf.flags & ATA_TFLAG_POLLING)
4650 ata_port_queue_task(ap, ata_pio_task, qc, 0);
4651
4652 /* if polling, ata_pio_task() handles the rest.
4653 * otherwise, interrupt handler takes over from here.
4654 */
4655 }
4656
4657 break;
4658
4659 case ATA_PROT_ATAPI:
4660 case ATA_PROT_ATAPI_NODATA:
4661 if (qc->tf.flags & ATA_TFLAG_POLLING)
4662 ata_qc_set_polling(qc);
4663
4664 ata_tf_to_host(ap, &qc->tf);
4665
4666 ap->hsm_task_state = HSM_ST_FIRST;
4667
4668 /* send cdb by polling if no cdb interrupt */
4669 if ((!(qc->dev->flags & ATA_DFLAG_CDB_INTR)) ||
4670 (qc->tf.flags & ATA_TFLAG_POLLING))
4671 ata_port_queue_task(ap, ata_pio_task, qc, 0);
4672 break;
4673
4674 case ATA_PROT_ATAPI_DMA:
4675 WARN_ON(qc->tf.flags & ATA_TFLAG_POLLING);
4676
4677 ap->ops->tf_load(ap, &qc->tf); /* load tf registers */
4678 ap->ops->bmdma_setup(qc); /* set up bmdma */
4679 ap->hsm_task_state = HSM_ST_FIRST;
4680
4681 /* send cdb by polling if no cdb interrupt */
4682 if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
4683 ata_port_queue_task(ap, ata_pio_task, qc, 0);
4684 break;
4685
4686 default:
4687 WARN_ON(1);
4688 return AC_ERR_SYSTEM;
4689 }
4690
4691 return 0;
4692 }
4693
4694 /**
4695 * ata_host_intr - Handle host interrupt for given (port, task)
4696 * @ap: Port on which interrupt arrived (possibly...)
4697 * @qc: Taskfile currently active in engine
4698 *
4699 * Handle host interrupt for given queued command. Currently,
4700 * only DMA interrupts are handled. All other commands are
4701 * handled via polling with interrupts disabled (nIEN bit).
4702 *
4703 * LOCKING:
4704 * spin_lock_irqsave(host_set lock)
4705 *
4706 * RETURNS:
4707 * One if interrupt was handled, zero if not (shared irq).
4708 */
4709
4710 inline unsigned int ata_host_intr (struct ata_port *ap,
4711 struct ata_queued_cmd *qc)
4712 {
4713 u8 status, host_stat = 0;
4714
4715 VPRINTK("ata%u: protocol %d task_state %d\n",
4716 ap->id, qc->tf.protocol, ap->hsm_task_state);
4717
4718 /* Check whether we are expecting interrupt in this state */
4719 switch (ap->hsm_task_state) {
4720 case HSM_ST_FIRST:
4721 /* Some pre-ATAPI-4 devices assert INTRQ
4722 * at this state when ready to receive CDB.
4723 */
4724
4725 /* Check the ATA_DFLAG_CDB_INTR flag is enough here.
4726 * The flag was turned on only for atapi devices.
4727 * No need to check is_atapi_taskfile(&qc->tf) again.
4728 */
4729 if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
4730 goto idle_irq;
4731 break;
4732 case HSM_ST_LAST:
4733 if (qc->tf.protocol == ATA_PROT_DMA ||
4734 qc->tf.protocol == ATA_PROT_ATAPI_DMA) {
4735 /* check status of DMA engine */
4736 host_stat = ap->ops->bmdma_status(ap);
4737 VPRINTK("ata%u: host_stat 0x%X\n", ap->id, host_stat);
4738
4739 /* if it's not our irq... */
4740 if (!(host_stat & ATA_DMA_INTR))
4741 goto idle_irq;
4742
4743 /* before we do anything else, clear DMA-Start bit */
4744 ap->ops->bmdma_stop(qc);
4745
4746 if (unlikely(host_stat & ATA_DMA_ERR)) {
4747 /* error when transfering data to/from memory */
4748 qc->err_mask |= AC_ERR_HOST_BUS;
4749 ap->hsm_task_state = HSM_ST_ERR;
4750 }
4751 }
4752 break;
4753 case HSM_ST:
4754 break;
4755 default:
4756 goto idle_irq;
4757 }
4758
4759 /* check altstatus */
4760 status = ata_altstatus(ap);
4761 if (status & ATA_BUSY)
4762 goto idle_irq;
4763
4764 /* check main status, clearing INTRQ */
4765 status = ata_chk_status(ap);
4766 if (unlikely(status & ATA_BUSY))
4767 goto idle_irq;
4768
4769 /* ack bmdma irq events */
4770 ap->ops->irq_clear(ap);
4771
4772 ata_hsm_move(ap, qc, status, 0);
4773 return 1; /* irq handled */
4774
4775 idle_irq:
4776 ap->stats.idle_irq++;
4777
4778 #ifdef ATA_IRQ_TRAP
4779 if ((ap->stats.idle_irq % 1000) == 0) {
4780 ata_irq_ack(ap, 0); /* debug trap */
4781 ata_port_printk(ap, KERN_WARNING, "irq trap\n");
4782 return 1;
4783 }
4784 #endif
4785 return 0; /* irq not handled */
4786 }
4787
4788 /**
4789 * ata_interrupt - Default ATA host interrupt handler
4790 * @irq: irq line (unused)
4791 * @dev_instance: pointer to our ata_host_set information structure
4792 * @regs: unused
4793 *
4794 * Default interrupt handler for PCI IDE devices. Calls
4795 * ata_host_intr() for each port that is not disabled.
4796 *
4797 * LOCKING:
4798 * Obtains host_set lock during operation.
4799 *
4800 * RETURNS:
4801 * IRQ_NONE or IRQ_HANDLED.
4802 */
4803
4804 irqreturn_t ata_interrupt (int irq, void *dev_instance, struct pt_regs *regs)
4805 {
4806 struct ata_host_set *host_set = dev_instance;
4807 unsigned int i;
4808 unsigned int handled = 0;
4809 unsigned long flags;
4810
4811 /* TODO: make _irqsave conditional on x86 PCI IDE legacy mode */
4812 spin_lock_irqsave(&host_set->lock, flags);
4813
4814 for (i = 0; i < host_set->n_ports; i++) {
4815 struct ata_port *ap;
4816
4817 ap = host_set->ports[i];
4818 if (ap &&
4819 !(ap->flags & ATA_FLAG_DISABLED)) {
4820 struct ata_queued_cmd *qc;
4821
4822 qc = ata_qc_from_tag(ap, ap->active_tag);
4823 if (qc && (!(qc->tf.flags & ATA_TFLAG_POLLING)) &&
4824 (qc->flags & ATA_QCFLAG_ACTIVE))
4825 handled |= ata_host_intr(ap, qc);
4826 }
4827 }
4828
4829 spin_unlock_irqrestore(&host_set->lock, flags);
4830
4831 return IRQ_RETVAL(handled);
4832 }
4833
4834 /**
4835 * sata_scr_valid - test whether SCRs are accessible
4836 * @ap: ATA port to test SCR accessibility for
4837 *
4838 * Test whether SCRs are accessible for @ap.
4839 *
4840 * LOCKING:
4841 * None.
4842 *
4843 * RETURNS:
4844 * 1 if SCRs are accessible, 0 otherwise.
4845 */
4846 int sata_scr_valid(struct ata_port *ap)
4847 {
4848 return ap->cbl == ATA_CBL_SATA && ap->ops->scr_read;
4849 }
4850
4851 /**
4852 * sata_scr_read - read SCR register of the specified port
4853 * @ap: ATA port to read SCR for
4854 * @reg: SCR to read
4855 * @val: Place to store read value
4856 *
4857 * Read SCR register @reg of @ap into *@val. This function is
4858 * guaranteed to succeed if the cable type of the port is SATA
4859 * and the port implements ->scr_read.
4860 *
4861 * LOCKING:
4862 * None.
4863 *
4864 * RETURNS:
4865 * 0 on success, negative errno on failure.
4866 */
4867 int sata_scr_read(struct ata_port *ap, int reg, u32 *val)
4868 {
4869 if (sata_scr_valid(ap)) {
4870 *val = ap->ops->scr_read(ap, reg);
4871 return 0;
4872 }
4873 return -EOPNOTSUPP;
4874 }
4875
4876 /**
4877 * sata_scr_write - write SCR register of the specified port
4878 * @ap: ATA port to write SCR for
4879 * @reg: SCR to write
4880 * @val: value to write
4881 *
4882 * Write @val to SCR register @reg of @ap. This function is
4883 * guaranteed to succeed if the cable type of the port is SATA
4884 * and the port implements ->scr_read.
4885 *
4886 * LOCKING:
4887 * None.
4888 *
4889 * RETURNS:
4890 * 0 on success, negative errno on failure.
4891 */
4892 int sata_scr_write(struct ata_port *ap, int reg, u32 val)
4893 {
4894 if (sata_scr_valid(ap)) {
4895 ap->ops->scr_write(ap, reg, val);
4896 return 0;
4897 }
4898 return -EOPNOTSUPP;
4899 }
4900
4901 /**
4902 * sata_scr_write_flush - write SCR register of the specified port and flush
4903 * @ap: ATA port to write SCR for
4904 * @reg: SCR to write
4905 * @val: value to write
4906 *
4907 * This function is identical to sata_scr_write() except that this
4908 * function performs flush after writing to the register.
4909 *
4910 * LOCKING:
4911 * None.
4912 *
4913 * RETURNS:
4914 * 0 on success, negative errno on failure.
4915 */
4916 int sata_scr_write_flush(struct ata_port *ap, int reg, u32 val)
4917 {
4918 if (sata_scr_valid(ap)) {
4919 ap->ops->scr_write(ap, reg, val);
4920 ap->ops->scr_read(ap, reg);
4921 return 0;
4922 }
4923 return -EOPNOTSUPP;
4924 }
4925
4926 /**
4927 * ata_port_online - test whether the given port is online
4928 * @ap: ATA port to test
4929 *
4930 * Test whether @ap is online. Note that this function returns 0
4931 * if online status of @ap cannot be obtained, so
4932 * ata_port_online(ap) != !ata_port_offline(ap).
4933 *
4934 * LOCKING:
4935 * None.
4936 *
4937 * RETURNS:
4938 * 1 if the port online status is available and online.
4939 */
4940 int ata_port_online(struct ata_port *ap)
4941 {
4942 u32 sstatus;
4943
4944 if (!sata_scr_read(ap, SCR_STATUS, &sstatus) && (sstatus & 0xf) == 0x3)
4945 return 1;
4946 return 0;
4947 }
4948
4949 /**
4950 * ata_port_offline - test whether the given port is offline
4951 * @ap: ATA port to test
4952 *
4953 * Test whether @ap is offline. Note that this function returns
4954 * 0 if offline status of @ap cannot be obtained, so
4955 * ata_port_online(ap) != !ata_port_offline(ap).
4956 *
4957 * LOCKING:
4958 * None.
4959 *
4960 * RETURNS:
4961 * 1 if the port offline status is available and offline.
4962 */
4963 int ata_port_offline(struct ata_port *ap)
4964 {
4965 u32 sstatus;
4966
4967 if (!sata_scr_read(ap, SCR_STATUS, &sstatus) && (sstatus & 0xf) != 0x3)
4968 return 1;
4969 return 0;
4970 }
4971
4972 static int ata_flush_cache(struct ata_device *dev)
4973 {
4974 u8 cmd;
4975
4976 if (!ata_try_flush_cache(dev))
4977 return 0;
4978
4979 if (ata_id_has_flush_ext(dev->id))
4980 cmd = ATA_CMD_FLUSH_EXT;
4981 else
4982 cmd = ATA_CMD_FLUSH;
4983
4984 return ata_do_simple_cmd(dev, cmd);
4985 }
4986
4987 static int ata_standby_drive(struct ata_device *dev)
4988 {
4989 return ata_do_simple_cmd(dev, ATA_CMD_STANDBYNOW1);
4990 }
4991
4992 static int ata_start_drive(struct ata_device *dev)
4993 {
4994 return ata_do_simple_cmd(dev, ATA_CMD_IDLEIMMEDIATE);
4995 }
4996
4997 /**
4998 * ata_device_resume - wakeup a previously suspended devices
4999 * @dev: the device to resume
5000 *
5001 * Kick the drive back into action, by sending it an idle immediate
5002 * command and making sure its transfer mode matches between drive
5003 * and host.
5004 *
5005 */
5006 int ata_device_resume(struct ata_device *dev)
5007 {
5008 struct ata_port *ap = dev->ap;
5009
5010 if (ap->flags & ATA_FLAG_SUSPENDED) {
5011 struct ata_device *failed_dev;
5012
5013 ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT);
5014 ata_busy_wait(ap, ATA_BUSY | ATA_DRQ, 200000);
5015
5016 ap->flags &= ~ATA_FLAG_SUSPENDED;
5017 while (ata_set_mode(ap, &failed_dev))
5018 ata_dev_disable(failed_dev);
5019 }
5020 if (!ata_dev_enabled(dev))
5021 return 0;
5022 if (dev->class == ATA_DEV_ATA)
5023 ata_start_drive(dev);
5024
5025 return 0;
5026 }
5027
5028 /**
5029 * ata_device_suspend - prepare a device for suspend
5030 * @dev: the device to suspend
5031 * @state: target power management state
5032 *
5033 * Flush the cache on the drive, if appropriate, then issue a
5034 * standbynow command.
5035 */
5036 int ata_device_suspend(struct ata_device *dev, pm_message_t state)
5037 {
5038 struct ata_port *ap = dev->ap;
5039
5040 if (!ata_dev_enabled(dev))
5041 return 0;
5042 if (dev->class == ATA_DEV_ATA)
5043 ata_flush_cache(dev);
5044
5045 if (state.event != PM_EVENT_FREEZE)
5046 ata_standby_drive(dev);
5047 ap->flags |= ATA_FLAG_SUSPENDED;
5048 return 0;
5049 }
5050
5051 /**
5052 * ata_port_start - Set port up for dma.
5053 * @ap: Port to initialize
5054 *
5055 * Called just after data structures for each port are
5056 * initialized. Allocates space for PRD table.
5057 *
5058 * May be used as the port_start() entry in ata_port_operations.
5059 *
5060 * LOCKING:
5061 * Inherited from caller.
5062 */
5063
5064 int ata_port_start (struct ata_port *ap)
5065 {
5066 struct device *dev = ap->dev;
5067 int rc;
5068
5069 ap->prd = dma_alloc_coherent(dev, ATA_PRD_TBL_SZ, &ap->prd_dma, GFP_KERNEL);
5070 if (!ap->prd)
5071 return -ENOMEM;
5072
5073 rc = ata_pad_alloc(ap, dev);
5074 if (rc) {
5075 dma_free_coherent(dev, ATA_PRD_TBL_SZ, ap->prd, ap->prd_dma);
5076 return rc;
5077 }
5078
5079 DPRINTK("prd alloc, virt %p, dma %llx\n", ap->prd, (unsigned long long) ap->prd_dma);
5080
5081 return 0;
5082 }
5083
5084
5085 /**
5086 * ata_port_stop - Undo ata_port_start()
5087 * @ap: Port to shut down
5088 *
5089 * Frees the PRD table.
5090 *
5091 * May be used as the port_stop() entry in ata_port_operations.
5092 *
5093 * LOCKING:
5094 * Inherited from caller.
5095 */
5096
5097 void ata_port_stop (struct ata_port *ap)
5098 {
5099 struct device *dev = ap->dev;
5100
5101 dma_free_coherent(dev, ATA_PRD_TBL_SZ, ap->prd, ap->prd_dma);
5102 ata_pad_free(ap, dev);
5103 }
5104
5105 void ata_host_stop (struct ata_host_set *host_set)
5106 {
5107 if (host_set->mmio_base)
5108 iounmap(host_set->mmio_base);
5109 }
5110
5111
5112 /**
5113 * ata_host_remove - Unregister SCSI host structure with upper layers
5114 * @ap: Port to unregister
5115 * @do_unregister: 1 if we fully unregister, 0 to just stop the port
5116 *
5117 * LOCKING:
5118 * Inherited from caller.
5119 */
5120
5121 static void ata_host_remove(struct ata_port *ap, unsigned int do_unregister)
5122 {
5123 struct Scsi_Host *sh = ap->host;
5124
5125 DPRINTK("ENTER\n");
5126
5127 if (do_unregister)
5128 scsi_remove_host(sh);
5129
5130 ap->ops->port_stop(ap);
5131 }
5132
5133 /**
5134 * ata_dev_init - Initialize an ata_device structure
5135 * @dev: Device structure to initialize
5136 *
5137 * Initialize @dev in preparation for probing.
5138 *
5139 * LOCKING:
5140 * Inherited from caller.
5141 */
5142 void ata_dev_init(struct ata_device *dev)
5143 {
5144 struct ata_port *ap = dev->ap;
5145 unsigned long flags;
5146
5147 /* SATA spd limit is bound to the first device */
5148 ap->sata_spd_limit = ap->hw_sata_spd_limit;
5149
5150 /* High bits of dev->flags are used to record warm plug
5151 * requests which occur asynchronously. Synchronize using
5152 * host_set lock.
5153 */
5154 spin_lock_irqsave(ap->lock, flags);
5155 dev->flags &= ~ATA_DFLAG_INIT_MASK;
5156 spin_unlock_irqrestore(ap->lock, flags);
5157
5158 memset((void *)dev + ATA_DEVICE_CLEAR_OFFSET, 0,
5159 sizeof(*dev) - ATA_DEVICE_CLEAR_OFFSET);
5160 dev->pio_mask = UINT_MAX;
5161 dev->mwdma_mask = UINT_MAX;
5162 dev->udma_mask = UINT_MAX;
5163 }
5164
5165 /**
5166 * ata_host_init - Initialize an ata_port structure
5167 * @ap: Structure to initialize
5168 * @host: associated SCSI mid-layer structure
5169 * @host_set: Collection of hosts to which @ap belongs
5170 * @ent: Probe information provided by low-level driver
5171 * @port_no: Port number associated with this ata_port
5172 *
5173 * Initialize a new ata_port structure, and its associated
5174 * scsi_host.
5175 *
5176 * LOCKING:
5177 * Inherited from caller.
5178 */
5179 static void ata_host_init(struct ata_port *ap, struct Scsi_Host *host,
5180 struct ata_host_set *host_set,
5181 const struct ata_probe_ent *ent, unsigned int port_no)
5182 {
5183 unsigned int i;
5184
5185 host->max_id = 16;
5186 host->max_lun = 1;
5187 host->max_channel = 1;
5188 host->unique_id = ata_unique_id++;
5189 host->max_cmd_len = 12;
5190
5191 ap->lock = &host_set->lock;
5192 ap->flags = ATA_FLAG_DISABLED;
5193 ap->id = host->unique_id;
5194 ap->host = host;
5195 ap->ctl = ATA_DEVCTL_OBS;
5196 ap->host_set = host_set;
5197 ap->dev = ent->dev;
5198 ap->port_no = port_no;
5199 ap->hard_port_no =
5200 ent->legacy_mode ? ent->hard_port_no : port_no;
5201 ap->pio_mask = ent->pio_mask;
5202 ap->mwdma_mask = ent->mwdma_mask;
5203 ap->udma_mask = ent->udma_mask;
5204 ap->flags |= ent->host_flags;
5205 ap->ops = ent->port_ops;
5206 ap->hw_sata_spd_limit = UINT_MAX;
5207 ap->active_tag = ATA_TAG_POISON;
5208 ap->last_ctl = 0xFF;
5209
5210 #if defined(ATA_VERBOSE_DEBUG)
5211 /* turn on all debugging levels */
5212 ap->msg_enable = 0x00FF;
5213 #elif defined(ATA_DEBUG)
5214 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_INFO | ATA_MSG_CTL | ATA_MSG_WARN | ATA_MSG_ERR;
5215 #else
5216 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_ERR | ATA_MSG_WARN;
5217 #endif
5218
5219 INIT_WORK(&ap->port_task, NULL, NULL);
5220 INIT_WORK(&ap->hotplug_task, ata_scsi_hotplug, ap);
5221 INIT_WORK(&ap->scsi_rescan_task, ata_scsi_dev_rescan, ap);
5222 INIT_LIST_HEAD(&ap->eh_done_q);
5223 init_waitqueue_head(&ap->eh_wait_q);
5224
5225 /* set cable type */
5226 ap->cbl = ATA_CBL_NONE;
5227 if (ap->flags & ATA_FLAG_SATA)
5228 ap->cbl = ATA_CBL_SATA;
5229
5230 for (i = 0; i < ATA_MAX_DEVICES; i++) {
5231 struct ata_device *dev = &ap->device[i];
5232 dev->ap = ap;
5233 dev->devno = i;
5234 ata_dev_init(dev);
5235 }
5236
5237 #ifdef ATA_IRQ_TRAP
5238 ap->stats.unhandled_irq = 1;
5239 ap->stats.idle_irq = 1;
5240 #endif
5241
5242 memcpy(&ap->ioaddr, &ent->port[port_no], sizeof(struct ata_ioports));
5243 }
5244
5245 /**
5246 * ata_host_add - Attach low-level ATA driver to system
5247 * @ent: Information provided by low-level driver
5248 * @host_set: Collections of ports to which we add
5249 * @port_no: Port number associated with this host
5250 *
5251 * Attach low-level ATA driver to system.
5252 *
5253 * LOCKING:
5254 * PCI/etc. bus probe sem.
5255 *
5256 * RETURNS:
5257 * New ata_port on success, for NULL on error.
5258 */
5259
5260 static struct ata_port * ata_host_add(const struct ata_probe_ent *ent,
5261 struct ata_host_set *host_set,
5262 unsigned int port_no)
5263 {
5264 struct Scsi_Host *host;
5265 struct ata_port *ap;
5266 int rc;
5267
5268 DPRINTK("ENTER\n");
5269
5270 if (!ent->port_ops->error_handler &&
5271 !(ent->host_flags & (ATA_FLAG_SATA_RESET | ATA_FLAG_SRST))) {
5272 printk(KERN_ERR "ata%u: no reset mechanism available\n",
5273 port_no);
5274 return NULL;
5275 }
5276
5277 host = scsi_host_alloc(ent->sht, sizeof(struct ata_port));
5278 if (!host)
5279 return NULL;
5280
5281 host->transportt = &ata_scsi_transport_template;
5282
5283 ap = ata_shost_to_port(host);
5284
5285 ata_host_init(ap, host, host_set, ent, port_no);
5286
5287 rc = ap->ops->port_start(ap);
5288 if (rc)
5289 goto err_out;
5290
5291 return ap;
5292
5293 err_out:
5294 scsi_host_put(host);
5295 return NULL;
5296 }
5297
5298 /**
5299 * ata_device_add - Register hardware device with ATA and SCSI layers
5300 * @ent: Probe information describing hardware device to be registered
5301 *
5302 * This function processes the information provided in the probe
5303 * information struct @ent, allocates the necessary ATA and SCSI
5304 * host information structures, initializes them, and registers
5305 * everything with requisite kernel subsystems.
5306 *
5307 * This function requests irqs, probes the ATA bus, and probes
5308 * the SCSI bus.
5309 *
5310 * LOCKING:
5311 * PCI/etc. bus probe sem.
5312 *
5313 * RETURNS:
5314 * Number of ports registered. Zero on error (no ports registered).
5315 */
5316 int ata_device_add(const struct ata_probe_ent *ent)
5317 {
5318 unsigned int count = 0, i;
5319 struct device *dev = ent->dev;
5320 struct ata_host_set *host_set;
5321 int rc;
5322
5323 DPRINTK("ENTER\n");
5324 /* alloc a container for our list of ATA ports (buses) */
5325 host_set = kzalloc(sizeof(struct ata_host_set) +
5326 (ent->n_ports * sizeof(void *)), GFP_KERNEL);
5327 if (!host_set)
5328 return 0;
5329 spin_lock_init(&host_set->lock);
5330
5331 host_set->dev = dev;
5332 host_set->n_ports = ent->n_ports;
5333 host_set->irq = ent->irq;
5334 host_set->mmio_base = ent->mmio_base;
5335 host_set->private_data = ent->private_data;
5336 host_set->ops = ent->port_ops;
5337 host_set->flags = ent->host_set_flags;
5338
5339 /* register each port bound to this device */
5340 for (i = 0; i < ent->n_ports; i++) {
5341 struct ata_port *ap;
5342 unsigned long xfer_mode_mask;
5343
5344 ap = ata_host_add(ent, host_set, i);
5345 if (!ap)
5346 goto err_out;
5347
5348 host_set->ports[i] = ap;
5349 xfer_mode_mask =(ap->udma_mask << ATA_SHIFT_UDMA) |
5350 (ap->mwdma_mask << ATA_SHIFT_MWDMA) |
5351 (ap->pio_mask << ATA_SHIFT_PIO);
5352
5353 /* print per-port info to dmesg */
5354 ata_port_printk(ap, KERN_INFO, "%cATA max %s cmd 0x%lX "
5355 "ctl 0x%lX bmdma 0x%lX irq %lu\n",
5356 ap->flags & ATA_FLAG_SATA ? 'S' : 'P',
5357 ata_mode_string(xfer_mode_mask),
5358 ap->ioaddr.cmd_addr,
5359 ap->ioaddr.ctl_addr,
5360 ap->ioaddr.bmdma_addr,
5361 ent->irq);
5362
5363 ata_chk_status(ap);
5364 host_set->ops->irq_clear(ap);
5365 ata_eh_freeze_port(ap); /* freeze port before requesting IRQ */
5366 count++;
5367 }
5368
5369 if (!count)
5370 goto err_free_ret;
5371
5372 /* obtain irq, that is shared between channels */
5373 rc = request_irq(ent->irq, ent->port_ops->irq_handler, ent->irq_flags,
5374 DRV_NAME, host_set);
5375 if (rc) {
5376 dev_printk(KERN_ERR, dev, "irq %lu request failed: %d\n",
5377 ent->irq, rc);
5378 goto err_out;
5379 }
5380
5381 /* perform each probe synchronously */
5382 DPRINTK("probe begin\n");
5383 for (i = 0; i < count; i++) {
5384 struct ata_port *ap;
5385 u32 scontrol;
5386 int rc;
5387
5388 ap = host_set->ports[i];
5389
5390 /* init sata_spd_limit to the current value */
5391 if (sata_scr_read(ap, SCR_CONTROL, &scontrol) == 0) {
5392 int spd = (scontrol >> 4) & 0xf;
5393 ap->hw_sata_spd_limit &= (1 << spd) - 1;
5394 }
5395 ap->sata_spd_limit = ap->hw_sata_spd_limit;
5396
5397 rc = scsi_add_host(ap->host, dev);
5398 if (rc) {
5399 ata_port_printk(ap, KERN_ERR, "scsi_add_host failed\n");
5400 /* FIXME: do something useful here */
5401 /* FIXME: handle unconditional calls to
5402 * scsi_scan_host and ata_host_remove, below,
5403 * at the very least
5404 */
5405 }
5406
5407 if (ap->ops->error_handler) {
5408 unsigned long flags;
5409
5410 ata_port_probe(ap);
5411
5412 /* kick EH for boot probing */
5413 spin_lock_irqsave(ap->lock, flags);
5414
5415 ap->eh_info.probe_mask = (1 << ATA_MAX_DEVICES) - 1;
5416 ap->eh_info.action |= ATA_EH_SOFTRESET;
5417
5418 ap->flags |= ATA_FLAG_LOADING;
5419 ata_port_schedule_eh(ap);
5420
5421 spin_unlock_irqrestore(ap->lock, flags);
5422
5423 /* wait for EH to finish */
5424 ata_port_wait_eh(ap);
5425 } else {
5426 DPRINTK("ata%u: bus probe begin\n", ap->id);
5427 rc = ata_bus_probe(ap);
5428 DPRINTK("ata%u: bus probe end\n", ap->id);
5429
5430 if (rc) {
5431 /* FIXME: do something useful here?
5432 * Current libata behavior will
5433 * tear down everything when
5434 * the module is removed
5435 * or the h/w is unplugged.
5436 */
5437 }
5438 }
5439 }
5440
5441 /* probes are done, now scan each port's disk(s) */
5442 DPRINTK("host probe begin\n");
5443 for (i = 0; i < count; i++) {
5444 struct ata_port *ap = host_set->ports[i];
5445
5446 ata_scsi_scan_host(ap);
5447 }
5448
5449 dev_set_drvdata(dev, host_set);
5450
5451 VPRINTK("EXIT, returning %u\n", ent->n_ports);
5452 return ent->n_ports; /* success */
5453
5454 err_out:
5455 for (i = 0; i < count; i++) {
5456 ata_host_remove(host_set->ports[i], 1);
5457 scsi_host_put(host_set->ports[i]->host);
5458 }
5459 err_free_ret:
5460 kfree(host_set);
5461 VPRINTK("EXIT, returning 0\n");
5462 return 0;
5463 }
5464
5465 /**
5466 * ata_port_detach - Detach ATA port in prepration of device removal
5467 * @ap: ATA port to be detached
5468 *
5469 * Detach all ATA devices and the associated SCSI devices of @ap;
5470 * then, remove the associated SCSI host. @ap is guaranteed to
5471 * be quiescent on return from this function.
5472 *
5473 * LOCKING:
5474 * Kernel thread context (may sleep).
5475 */
5476 void ata_port_detach(struct ata_port *ap)
5477 {
5478 unsigned long flags;
5479 int i;
5480
5481 if (!ap->ops->error_handler)
5482 return;
5483
5484 /* tell EH we're leaving & flush EH */
5485 spin_lock_irqsave(ap->lock, flags);
5486 ap->flags |= ATA_FLAG_UNLOADING;
5487 spin_unlock_irqrestore(ap->lock, flags);
5488
5489 ata_port_wait_eh(ap);
5490
5491 /* EH is now guaranteed to see UNLOADING, so no new device
5492 * will be attached. Disable all existing devices.
5493 */
5494 spin_lock_irqsave(ap->lock, flags);
5495
5496 for (i = 0; i < ATA_MAX_DEVICES; i++)
5497 ata_dev_disable(&ap->device[i]);
5498
5499 spin_unlock_irqrestore(ap->lock, flags);
5500
5501 /* Final freeze & EH. All in-flight commands are aborted. EH
5502 * will be skipped and retrials will be terminated with bad
5503 * target.
5504 */
5505 spin_lock_irqsave(ap->lock, flags);
5506 ata_port_freeze(ap); /* won't be thawed */
5507 spin_unlock_irqrestore(ap->lock, flags);
5508
5509 ata_port_wait_eh(ap);
5510
5511 /* Flush hotplug task. The sequence is similar to
5512 * ata_port_flush_task().
5513 */
5514 flush_workqueue(ata_aux_wq);
5515 cancel_delayed_work(&ap->hotplug_task);
5516 flush_workqueue(ata_aux_wq);
5517
5518 /* remove the associated SCSI host */
5519 scsi_remove_host(ap->host);
5520 }
5521
5522 /**
5523 * ata_host_set_remove - PCI layer callback for device removal
5524 * @host_set: ATA host set that was removed
5525 *
5526 * Unregister all objects associated with this host set. Free those
5527 * objects.
5528 *
5529 * LOCKING:
5530 * Inherited from calling layer (may sleep).
5531 */
5532
5533 void ata_host_set_remove(struct ata_host_set *host_set)
5534 {
5535 unsigned int i;
5536
5537 for (i = 0; i < host_set->n_ports; i++)
5538 ata_port_detach(host_set->ports[i]);
5539
5540 free_irq(host_set->irq, host_set);
5541
5542 for (i = 0; i < host_set->n_ports; i++) {
5543 struct ata_port *ap = host_set->ports[i];
5544
5545 ata_scsi_release(ap->host);
5546
5547 if ((ap->flags & ATA_FLAG_NO_LEGACY) == 0) {
5548 struct ata_ioports *ioaddr = &ap->ioaddr;
5549
5550 if (ioaddr->cmd_addr == 0x1f0)
5551 release_region(0x1f0, 8);
5552 else if (ioaddr->cmd_addr == 0x170)
5553 release_region(0x170, 8);
5554 }
5555
5556 scsi_host_put(ap->host);
5557 }
5558
5559 if (host_set->ops->host_stop)
5560 host_set->ops->host_stop(host_set);
5561
5562 kfree(host_set);
5563 }
5564
5565 /**
5566 * ata_scsi_release - SCSI layer callback hook for host unload
5567 * @host: libata host to be unloaded
5568 *
5569 * Performs all duties necessary to shut down a libata port...
5570 * Kill port kthread, disable port, and release resources.
5571 *
5572 * LOCKING:
5573 * Inherited from SCSI layer.
5574 *
5575 * RETURNS:
5576 * One.
5577 */
5578
5579 int ata_scsi_release(struct Scsi_Host *host)
5580 {
5581 struct ata_port *ap = ata_shost_to_port(host);
5582
5583 DPRINTK("ENTER\n");
5584
5585 ap->ops->port_disable(ap);
5586 ata_host_remove(ap, 0);
5587
5588 DPRINTK("EXIT\n");
5589 return 1;
5590 }
5591
5592 /**
5593 * ata_std_ports - initialize ioaddr with standard port offsets.
5594 * @ioaddr: IO address structure to be initialized
5595 *
5596 * Utility function which initializes data_addr, error_addr,
5597 * feature_addr, nsect_addr, lbal_addr, lbam_addr, lbah_addr,
5598 * device_addr, status_addr, and command_addr to standard offsets
5599 * relative to cmd_addr.
5600 *
5601 * Does not set ctl_addr, altstatus_addr, bmdma_addr, or scr_addr.
5602 */
5603
5604 void ata_std_ports(struct ata_ioports *ioaddr)
5605 {
5606 ioaddr->data_addr = ioaddr->cmd_addr + ATA_REG_DATA;
5607 ioaddr->error_addr = ioaddr->cmd_addr + ATA_REG_ERR;
5608 ioaddr->feature_addr = ioaddr->cmd_addr + ATA_REG_FEATURE;
5609 ioaddr->nsect_addr = ioaddr->cmd_addr + ATA_REG_NSECT;
5610 ioaddr->lbal_addr = ioaddr->cmd_addr + ATA_REG_LBAL;
5611 ioaddr->lbam_addr = ioaddr->cmd_addr + ATA_REG_LBAM;
5612 ioaddr->lbah_addr = ioaddr->cmd_addr + ATA_REG_LBAH;
5613 ioaddr->device_addr = ioaddr->cmd_addr + ATA_REG_DEVICE;
5614 ioaddr->status_addr = ioaddr->cmd_addr + ATA_REG_STATUS;
5615 ioaddr->command_addr = ioaddr->cmd_addr + ATA_REG_CMD;
5616 }
5617
5618
5619 #ifdef CONFIG_PCI
5620
5621 void ata_pci_host_stop (struct ata_host_set *host_set)
5622 {
5623 struct pci_dev *pdev = to_pci_dev(host_set->dev);
5624
5625 pci_iounmap(pdev, host_set->mmio_base);
5626 }
5627
5628 /**
5629 * ata_pci_remove_one - PCI layer callback for device removal
5630 * @pdev: PCI device that was removed
5631 *
5632 * PCI layer indicates to libata via this hook that
5633 * hot-unplug or module unload event has occurred.
5634 * Handle this by unregistering all objects associated
5635 * with this PCI device. Free those objects. Then finally
5636 * release PCI resources and disable device.
5637 *
5638 * LOCKING:
5639 * Inherited from PCI layer (may sleep).
5640 */
5641
5642 void ata_pci_remove_one (struct pci_dev *pdev)
5643 {
5644 struct device *dev = pci_dev_to_dev(pdev);
5645 struct ata_host_set *host_set = dev_get_drvdata(dev);
5646 struct ata_host_set *host_set2 = host_set->next;
5647
5648 ata_host_set_remove(host_set);
5649 if (host_set2)
5650 ata_host_set_remove(host_set2);
5651
5652 pci_release_regions(pdev);
5653 pci_disable_device(pdev);
5654 dev_set_drvdata(dev, NULL);
5655 }
5656
5657 /* move to PCI subsystem */
5658 int pci_test_config_bits(struct pci_dev *pdev, const struct pci_bits *bits)
5659 {
5660 unsigned long tmp = 0;
5661
5662 switch (bits->width) {
5663 case 1: {
5664 u8 tmp8 = 0;
5665 pci_read_config_byte(pdev, bits->reg, &tmp8);
5666 tmp = tmp8;
5667 break;
5668 }
5669 case 2: {
5670 u16 tmp16 = 0;
5671 pci_read_config_word(pdev, bits->reg, &tmp16);
5672 tmp = tmp16;
5673 break;
5674 }
5675 case 4: {
5676 u32 tmp32 = 0;
5677 pci_read_config_dword(pdev, bits->reg, &tmp32);
5678 tmp = tmp32;
5679 break;
5680 }
5681
5682 default:
5683 return -EINVAL;
5684 }
5685
5686 tmp &= bits->mask;
5687
5688 return (tmp == bits->val) ? 1 : 0;
5689 }
5690
5691 int ata_pci_device_suspend(struct pci_dev *pdev, pm_message_t state)
5692 {
5693 pci_save_state(pdev);
5694 pci_disable_device(pdev);
5695 pci_set_power_state(pdev, PCI_D3hot);
5696 return 0;
5697 }
5698
5699 int ata_pci_device_resume(struct pci_dev *pdev)
5700 {
5701 pci_set_power_state(pdev, PCI_D0);
5702 pci_restore_state(pdev);
5703 pci_enable_device(pdev);
5704 pci_set_master(pdev);
5705 return 0;
5706 }
5707 #endif /* CONFIG_PCI */
5708
5709
5710 static int __init ata_init(void)
5711 {
5712 ata_wq = create_workqueue("ata");
5713 if (!ata_wq)
5714 return -ENOMEM;
5715
5716 ata_aux_wq = create_singlethread_workqueue("ata_aux");
5717 if (!ata_aux_wq) {
5718 destroy_workqueue(ata_wq);
5719 return -ENOMEM;
5720 }
5721
5722 printk(KERN_DEBUG "libata version " DRV_VERSION " loaded.\n");
5723 return 0;
5724 }
5725
5726 static void __exit ata_exit(void)
5727 {
5728 destroy_workqueue(ata_wq);
5729 destroy_workqueue(ata_aux_wq);
5730 }
5731
5732 module_init(ata_init);
5733 module_exit(ata_exit);
5734
5735 static unsigned long ratelimit_time;
5736 static spinlock_t ata_ratelimit_lock = SPIN_LOCK_UNLOCKED;
5737
5738 int ata_ratelimit(void)
5739 {
5740 int rc;
5741 unsigned long flags;
5742
5743 spin_lock_irqsave(&ata_ratelimit_lock, flags);
5744
5745 if (time_after(jiffies, ratelimit_time)) {
5746 rc = 1;
5747 ratelimit_time = jiffies + (HZ/5);
5748 } else
5749 rc = 0;
5750
5751 spin_unlock_irqrestore(&ata_ratelimit_lock, flags);
5752
5753 return rc;
5754 }
5755
5756 /**
5757 * ata_wait_register - wait until register value changes
5758 * @reg: IO-mapped register
5759 * @mask: Mask to apply to read register value
5760 * @val: Wait condition
5761 * @interval_msec: polling interval in milliseconds
5762 * @timeout_msec: timeout in milliseconds
5763 *
5764 * Waiting for some bits of register to change is a common
5765 * operation for ATA controllers. This function reads 32bit LE
5766 * IO-mapped register @reg and tests for the following condition.
5767 *
5768 * (*@reg & mask) != val
5769 *
5770 * If the condition is met, it returns; otherwise, the process is
5771 * repeated after @interval_msec until timeout.
5772 *
5773 * LOCKING:
5774 * Kernel thread context (may sleep)
5775 *
5776 * RETURNS:
5777 * The final register value.
5778 */
5779 u32 ata_wait_register(void __iomem *reg, u32 mask, u32 val,
5780 unsigned long interval_msec,
5781 unsigned long timeout_msec)
5782 {
5783 unsigned long timeout;
5784 u32 tmp;
5785
5786 tmp = ioread32(reg);
5787
5788 /* Calculate timeout _after_ the first read to make sure
5789 * preceding writes reach the controller before starting to
5790 * eat away the timeout.
5791 */
5792 timeout = jiffies + (timeout_msec * HZ) / 1000;
5793
5794 while ((tmp & mask) == val && time_before(jiffies, timeout)) {
5795 msleep(interval_msec);
5796 tmp = ioread32(reg);
5797 }
5798
5799 return tmp;
5800 }
5801
5802 /*
5803 * libata is essentially a library of internal helper functions for
5804 * low-level ATA host controller drivers. As such, the API/ABI is
5805 * likely to change as new drivers are added and updated.
5806 * Do not depend on ABI/API stability.
5807 */
5808
5809 EXPORT_SYMBOL_GPL(sata_deb_timing_boot);
5810 EXPORT_SYMBOL_GPL(sata_deb_timing_eh);
5811 EXPORT_SYMBOL_GPL(sata_deb_timing_before_fsrst);
5812 EXPORT_SYMBOL_GPL(ata_std_bios_param);
5813 EXPORT_SYMBOL_GPL(ata_std_ports);
5814 EXPORT_SYMBOL_GPL(ata_device_add);
5815 EXPORT_SYMBOL_GPL(ata_port_detach);
5816 EXPORT_SYMBOL_GPL(ata_host_set_remove);
5817 EXPORT_SYMBOL_GPL(ata_sg_init);
5818 EXPORT_SYMBOL_GPL(ata_sg_init_one);
5819 EXPORT_SYMBOL_GPL(ata_hsm_move);
5820 EXPORT_SYMBOL_GPL(ata_qc_complete);
5821 EXPORT_SYMBOL_GPL(ata_qc_complete_multiple);
5822 EXPORT_SYMBOL_GPL(ata_qc_issue_prot);
5823 EXPORT_SYMBOL_GPL(ata_tf_load);
5824 EXPORT_SYMBOL_GPL(ata_tf_read);
5825 EXPORT_SYMBOL_GPL(ata_noop_dev_select);
5826 EXPORT_SYMBOL_GPL(ata_std_dev_select);
5827 EXPORT_SYMBOL_GPL(ata_tf_to_fis);
5828 EXPORT_SYMBOL_GPL(ata_tf_from_fis);
5829 EXPORT_SYMBOL_GPL(ata_check_status);
5830 EXPORT_SYMBOL_GPL(ata_altstatus);
5831 EXPORT_SYMBOL_GPL(ata_exec_command);
5832 EXPORT_SYMBOL_GPL(ata_port_start);
5833 EXPORT_SYMBOL_GPL(ata_port_stop);
5834 EXPORT_SYMBOL_GPL(ata_host_stop);
5835 EXPORT_SYMBOL_GPL(ata_interrupt);
5836 EXPORT_SYMBOL_GPL(ata_mmio_data_xfer);
5837 EXPORT_SYMBOL_GPL(ata_pio_data_xfer);
5838 EXPORT_SYMBOL_GPL(ata_pio_data_xfer_noirq);
5839 EXPORT_SYMBOL_GPL(ata_qc_prep);
5840 EXPORT_SYMBOL_GPL(ata_noop_qc_prep);
5841 EXPORT_SYMBOL_GPL(ata_bmdma_setup);
5842 EXPORT_SYMBOL_GPL(ata_bmdma_start);
5843 EXPORT_SYMBOL_GPL(ata_bmdma_irq_clear);
5844 EXPORT_SYMBOL_GPL(ata_bmdma_status);
5845 EXPORT_SYMBOL_GPL(ata_bmdma_stop);
5846 EXPORT_SYMBOL_GPL(ata_bmdma_freeze);
5847 EXPORT_SYMBOL_GPL(ata_bmdma_thaw);
5848 EXPORT_SYMBOL_GPL(ata_bmdma_drive_eh);
5849 EXPORT_SYMBOL_GPL(ata_bmdma_error_handler);
5850 EXPORT_SYMBOL_GPL(ata_bmdma_post_internal_cmd);
5851 EXPORT_SYMBOL_GPL(ata_port_probe);
5852 EXPORT_SYMBOL_GPL(sata_set_spd);
5853 EXPORT_SYMBOL_GPL(sata_phy_debounce);
5854 EXPORT_SYMBOL_GPL(sata_phy_resume);
5855 EXPORT_SYMBOL_GPL(sata_phy_reset);
5856 EXPORT_SYMBOL_GPL(__sata_phy_reset);
5857 EXPORT_SYMBOL_GPL(ata_bus_reset);
5858 EXPORT_SYMBOL_GPL(ata_std_prereset);
5859 EXPORT_SYMBOL_GPL(ata_std_softreset);
5860 EXPORT_SYMBOL_GPL(sata_std_hardreset);
5861 EXPORT_SYMBOL_GPL(ata_std_postreset);
5862 EXPORT_SYMBOL_GPL(ata_dev_revalidate);
5863 EXPORT_SYMBOL_GPL(ata_dev_classify);
5864 EXPORT_SYMBOL_GPL(ata_dev_pair);
5865 EXPORT_SYMBOL_GPL(ata_port_disable);
5866 EXPORT_SYMBOL_GPL(ata_ratelimit);
5867 EXPORT_SYMBOL_GPL(ata_wait_register);
5868 EXPORT_SYMBOL_GPL(ata_busy_sleep);
5869 EXPORT_SYMBOL_GPL(ata_port_queue_task);
5870 EXPORT_SYMBOL_GPL(ata_scsi_ioctl);
5871 EXPORT_SYMBOL_GPL(ata_scsi_queuecmd);
5872 EXPORT_SYMBOL_GPL(ata_scsi_slave_config);
5873 EXPORT_SYMBOL_GPL(ata_scsi_slave_destroy);
5874 EXPORT_SYMBOL_GPL(ata_scsi_change_queue_depth);
5875 EXPORT_SYMBOL_GPL(ata_scsi_release);
5876 EXPORT_SYMBOL_GPL(ata_host_intr);
5877 EXPORT_SYMBOL_GPL(sata_scr_valid);
5878 EXPORT_SYMBOL_GPL(sata_scr_read);
5879 EXPORT_SYMBOL_GPL(sata_scr_write);
5880 EXPORT_SYMBOL_GPL(sata_scr_write_flush);
5881 EXPORT_SYMBOL_GPL(ata_port_online);
5882 EXPORT_SYMBOL_GPL(ata_port_offline);
5883 EXPORT_SYMBOL_GPL(ata_id_string);
5884 EXPORT_SYMBOL_GPL(ata_id_c_string);
5885 EXPORT_SYMBOL_GPL(ata_scsi_simulate);
5886
5887 EXPORT_SYMBOL_GPL(ata_pio_need_iordy);
5888 EXPORT_SYMBOL_GPL(ata_timing_compute);
5889 EXPORT_SYMBOL_GPL(ata_timing_merge);
5890
5891 #ifdef CONFIG_PCI
5892 EXPORT_SYMBOL_GPL(pci_test_config_bits);
5893 EXPORT_SYMBOL_GPL(ata_pci_host_stop);
5894 EXPORT_SYMBOL_GPL(ata_pci_init_native_mode);
5895 EXPORT_SYMBOL_GPL(ata_pci_init_one);
5896 EXPORT_SYMBOL_GPL(ata_pci_remove_one);
5897 EXPORT_SYMBOL_GPL(ata_pci_device_suspend);
5898 EXPORT_SYMBOL_GPL(ata_pci_device_resume);
5899 EXPORT_SYMBOL_GPL(ata_pci_default_filter);
5900 EXPORT_SYMBOL_GPL(ata_pci_clear_simplex);
5901 #endif /* CONFIG_PCI */
5902
5903 EXPORT_SYMBOL_GPL(ata_device_suspend);
5904 EXPORT_SYMBOL_GPL(ata_device_resume);
5905 EXPORT_SYMBOL_GPL(ata_scsi_device_suspend);
5906 EXPORT_SYMBOL_GPL(ata_scsi_device_resume);
5907
5908 EXPORT_SYMBOL_GPL(ata_eng_timeout);
5909 EXPORT_SYMBOL_GPL(ata_port_schedule_eh);
5910 EXPORT_SYMBOL_GPL(ata_port_abort);
5911 EXPORT_SYMBOL_GPL(ata_port_freeze);
5912 EXPORT_SYMBOL_GPL(ata_eh_freeze_port);
5913 EXPORT_SYMBOL_GPL(ata_eh_thaw_port);
5914 EXPORT_SYMBOL_GPL(ata_eh_qc_complete);
5915 EXPORT_SYMBOL_GPL(ata_eh_qc_retry);
5916 EXPORT_SYMBOL_GPL(ata_do_eh);
This page took 0.210639 seconds and 4 git commands to generate.