/spare/repo/netdev-2.6 branch 'master'
[deliverable/linux.git] / drivers / scsi / libata-core.c
1 /*
2 * libata-core.c - helper library for ATA
3 *
4 * Maintained by: Jeff Garzik <jgarzik@pobox.com>
5 * Please ALWAYS copy linux-ide@vger.kernel.org
6 * on emails.
7 *
8 * Copyright 2003-2004 Red Hat, Inc. All rights reserved.
9 * Copyright 2003-2004 Jeff Garzik
10 *
11 *
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2, or (at your option)
15 * any later version.
16 *
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
21 *
22 * You should have received a copy of the GNU General Public License
23 * along with this program; see the file COPYING. If not, write to
24 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
25 *
26 *
27 * libata documentation is available via 'make {ps|pdf}docs',
28 * as Documentation/DocBook/libata.*
29 *
30 * Hardware documentation available from http://www.t13.org/ and
31 * http://www.sata-io.org/
32 *
33 */
34
35 #include <linux/config.h>
36 #include <linux/kernel.h>
37 #include <linux/module.h>
38 #include <linux/pci.h>
39 #include <linux/init.h>
40 #include <linux/list.h>
41 #include <linux/mm.h>
42 #include <linux/highmem.h>
43 #include <linux/spinlock.h>
44 #include <linux/blkdev.h>
45 #include <linux/delay.h>
46 #include <linux/timer.h>
47 #include <linux/interrupt.h>
48 #include <linux/completion.h>
49 #include <linux/suspend.h>
50 #include <linux/workqueue.h>
51 #include <scsi/scsi.h>
52 #include "scsi.h"
53 #include "scsi_priv.h"
54 #include <scsi/scsi_host.h>
55 #include <linux/libata.h>
56 #include <asm/io.h>
57 #include <asm/semaphore.h>
58 #include <asm/byteorder.h>
59
60 #include "libata.h"
61
62 static unsigned int ata_busy_sleep (struct ata_port *ap,
63 unsigned long tmout_pat,
64 unsigned long tmout);
65 static void ata_set_mode(struct ata_port *ap);
66 static void ata_dev_set_xfermode(struct ata_port *ap, struct ata_device *dev);
67 static unsigned int ata_get_mode_mask(struct ata_port *ap, int shift);
68 static int fgb(u32 bitmap);
69 static int ata_choose_xfer_mode(struct ata_port *ap,
70 u8 *xfer_mode_out,
71 unsigned int *xfer_shift_out);
72 static int ata_qc_complete_noop(struct ata_queued_cmd *qc, u8 drv_stat);
73 static void __ata_qc_complete(struct ata_queued_cmd *qc);
74
75 static unsigned int ata_unique_id = 1;
76 static struct workqueue_struct *ata_wq;
77
78 MODULE_AUTHOR("Jeff Garzik");
79 MODULE_DESCRIPTION("Library module for ATA devices");
80 MODULE_LICENSE("GPL");
81 MODULE_VERSION(DRV_VERSION);
82
83 /**
84 * ata_tf_load - send taskfile registers to host controller
85 * @ap: Port to which output is sent
86 * @tf: ATA taskfile register set
87 *
88 * Outputs ATA taskfile to standard ATA host controller.
89 *
90 * LOCKING:
91 * Inherited from caller.
92 */
93
94 static void ata_tf_load_pio(struct ata_port *ap, struct ata_taskfile *tf)
95 {
96 struct ata_ioports *ioaddr = &ap->ioaddr;
97 unsigned int is_addr = tf->flags & ATA_TFLAG_ISADDR;
98
99 if (tf->ctl != ap->last_ctl) {
100 outb(tf->ctl, ioaddr->ctl_addr);
101 ap->last_ctl = tf->ctl;
102 ata_wait_idle(ap);
103 }
104
105 if (is_addr && (tf->flags & ATA_TFLAG_LBA48)) {
106 outb(tf->hob_feature, ioaddr->feature_addr);
107 outb(tf->hob_nsect, ioaddr->nsect_addr);
108 outb(tf->hob_lbal, ioaddr->lbal_addr);
109 outb(tf->hob_lbam, ioaddr->lbam_addr);
110 outb(tf->hob_lbah, ioaddr->lbah_addr);
111 VPRINTK("hob: feat 0x%X nsect 0x%X, lba 0x%X 0x%X 0x%X\n",
112 tf->hob_feature,
113 tf->hob_nsect,
114 tf->hob_lbal,
115 tf->hob_lbam,
116 tf->hob_lbah);
117 }
118
119 if (is_addr) {
120 outb(tf->feature, ioaddr->feature_addr);
121 outb(tf->nsect, ioaddr->nsect_addr);
122 outb(tf->lbal, ioaddr->lbal_addr);
123 outb(tf->lbam, ioaddr->lbam_addr);
124 outb(tf->lbah, ioaddr->lbah_addr);
125 VPRINTK("feat 0x%X nsect 0x%X lba 0x%X 0x%X 0x%X\n",
126 tf->feature,
127 tf->nsect,
128 tf->lbal,
129 tf->lbam,
130 tf->lbah);
131 }
132
133 if (tf->flags & ATA_TFLAG_DEVICE) {
134 outb(tf->device, ioaddr->device_addr);
135 VPRINTK("device 0x%X\n", tf->device);
136 }
137
138 ata_wait_idle(ap);
139 }
140
141 /**
142 * ata_tf_load_mmio - send taskfile registers to host controller
143 * @ap: Port to which output is sent
144 * @tf: ATA taskfile register set
145 *
146 * Outputs ATA taskfile to standard ATA host controller using MMIO.
147 *
148 * LOCKING:
149 * Inherited from caller.
150 */
151
152 static void ata_tf_load_mmio(struct ata_port *ap, struct ata_taskfile *tf)
153 {
154 struct ata_ioports *ioaddr = &ap->ioaddr;
155 unsigned int is_addr = tf->flags & ATA_TFLAG_ISADDR;
156
157 if (tf->ctl != ap->last_ctl) {
158 writeb(tf->ctl, (void __iomem *) ap->ioaddr.ctl_addr);
159 ap->last_ctl = tf->ctl;
160 ata_wait_idle(ap);
161 }
162
163 if (is_addr && (tf->flags & ATA_TFLAG_LBA48)) {
164 writeb(tf->hob_feature, (void __iomem *) ioaddr->feature_addr);
165 writeb(tf->hob_nsect, (void __iomem *) ioaddr->nsect_addr);
166 writeb(tf->hob_lbal, (void __iomem *) ioaddr->lbal_addr);
167 writeb(tf->hob_lbam, (void __iomem *) ioaddr->lbam_addr);
168 writeb(tf->hob_lbah, (void __iomem *) ioaddr->lbah_addr);
169 VPRINTK("hob: feat 0x%X nsect 0x%X, lba 0x%X 0x%X 0x%X\n",
170 tf->hob_feature,
171 tf->hob_nsect,
172 tf->hob_lbal,
173 tf->hob_lbam,
174 tf->hob_lbah);
175 }
176
177 if (is_addr) {
178 writeb(tf->feature, (void __iomem *) ioaddr->feature_addr);
179 writeb(tf->nsect, (void __iomem *) ioaddr->nsect_addr);
180 writeb(tf->lbal, (void __iomem *) ioaddr->lbal_addr);
181 writeb(tf->lbam, (void __iomem *) ioaddr->lbam_addr);
182 writeb(tf->lbah, (void __iomem *) ioaddr->lbah_addr);
183 VPRINTK("feat 0x%X nsect 0x%X lba 0x%X 0x%X 0x%X\n",
184 tf->feature,
185 tf->nsect,
186 tf->lbal,
187 tf->lbam,
188 tf->lbah);
189 }
190
191 if (tf->flags & ATA_TFLAG_DEVICE) {
192 writeb(tf->device, (void __iomem *) ioaddr->device_addr);
193 VPRINTK("device 0x%X\n", tf->device);
194 }
195
196 ata_wait_idle(ap);
197 }
198
199
200 /**
201 * ata_tf_load - send taskfile registers to host controller
202 * @ap: Port to which output is sent
203 * @tf: ATA taskfile register set
204 *
205 * Outputs ATA taskfile to standard ATA host controller using MMIO
206 * or PIO as indicated by the ATA_FLAG_MMIO flag.
207 * Writes the control, feature, nsect, lbal, lbam, and lbah registers.
208 * Optionally (ATA_TFLAG_LBA48) writes hob_feature, hob_nsect,
209 * hob_lbal, hob_lbam, and hob_lbah.
210 *
211 * This function waits for idle (!BUSY and !DRQ) after writing
212 * registers. If the control register has a new value, this
213 * function also waits for idle after writing control and before
214 * writing the remaining registers.
215 *
216 * May be used as the tf_load() entry in ata_port_operations.
217 *
218 * LOCKING:
219 * Inherited from caller.
220 */
221 void ata_tf_load(struct ata_port *ap, struct ata_taskfile *tf)
222 {
223 if (ap->flags & ATA_FLAG_MMIO)
224 ata_tf_load_mmio(ap, tf);
225 else
226 ata_tf_load_pio(ap, tf);
227 }
228
229 /**
230 * ata_exec_command_pio - issue ATA command to host controller
231 * @ap: port to which command is being issued
232 * @tf: ATA taskfile register set
233 *
234 * Issues PIO write to ATA command register, with proper
235 * synchronization with interrupt handler / other threads.
236 *
237 * LOCKING:
238 * spin_lock_irqsave(host_set lock)
239 */
240
241 static void ata_exec_command_pio(struct ata_port *ap, struct ata_taskfile *tf)
242 {
243 DPRINTK("ata%u: cmd 0x%X\n", ap->id, tf->command);
244
245 outb(tf->command, ap->ioaddr.command_addr);
246 ata_pause(ap);
247 }
248
249
250 /**
251 * ata_exec_command_mmio - issue ATA command to host controller
252 * @ap: port to which command is being issued
253 * @tf: ATA taskfile register set
254 *
255 * Issues MMIO write to ATA command register, with proper
256 * synchronization with interrupt handler / other threads.
257 *
258 * LOCKING:
259 * spin_lock_irqsave(host_set lock)
260 */
261
262 static void ata_exec_command_mmio(struct ata_port *ap, struct ata_taskfile *tf)
263 {
264 DPRINTK("ata%u: cmd 0x%X\n", ap->id, tf->command);
265
266 writeb(tf->command, (void __iomem *) ap->ioaddr.command_addr);
267 ata_pause(ap);
268 }
269
270
271 /**
272 * ata_exec_command - issue ATA command to host controller
273 * @ap: port to which command is being issued
274 * @tf: ATA taskfile register set
275 *
276 * Issues PIO/MMIO write to ATA command register, with proper
277 * synchronization with interrupt handler / other threads.
278 *
279 * LOCKING:
280 * spin_lock_irqsave(host_set lock)
281 */
282 void ata_exec_command(struct ata_port *ap, struct ata_taskfile *tf)
283 {
284 if (ap->flags & ATA_FLAG_MMIO)
285 ata_exec_command_mmio(ap, tf);
286 else
287 ata_exec_command_pio(ap, tf);
288 }
289
290 /**
291 * ata_exec - issue ATA command to host controller
292 * @ap: port to which command is being issued
293 * @tf: ATA taskfile register set
294 *
295 * Issues PIO/MMIO write to ATA command register, with proper
296 * synchronization with interrupt handler / other threads.
297 *
298 * LOCKING:
299 * Obtains host_set lock.
300 */
301
302 static inline void ata_exec(struct ata_port *ap, struct ata_taskfile *tf)
303 {
304 unsigned long flags;
305
306 DPRINTK("ata%u: cmd 0x%X\n", ap->id, tf->command);
307 spin_lock_irqsave(&ap->host_set->lock, flags);
308 ap->ops->exec_command(ap, tf);
309 spin_unlock_irqrestore(&ap->host_set->lock, flags);
310 }
311
312 /**
313 * ata_tf_to_host - issue ATA taskfile to host controller
314 * @ap: port to which command is being issued
315 * @tf: ATA taskfile register set
316 *
317 * Issues ATA taskfile register set to ATA host controller,
318 * with proper synchronization with interrupt handler and
319 * other threads.
320 *
321 * LOCKING:
322 * Obtains host_set lock.
323 */
324
325 static void ata_tf_to_host(struct ata_port *ap, struct ata_taskfile *tf)
326 {
327 ap->ops->tf_load(ap, tf);
328
329 ata_exec(ap, tf);
330 }
331
332 /**
333 * ata_tf_to_host_nolock - issue ATA taskfile to host controller
334 * @ap: port to which command is being issued
335 * @tf: ATA taskfile register set
336 *
337 * Issues ATA taskfile register set to ATA host controller,
338 * with proper synchronization with interrupt handler and
339 * other threads.
340 *
341 * LOCKING:
342 * spin_lock_irqsave(host_set lock)
343 */
344
345 void ata_tf_to_host_nolock(struct ata_port *ap, struct ata_taskfile *tf)
346 {
347 ap->ops->tf_load(ap, tf);
348 ap->ops->exec_command(ap, tf);
349 }
350
351 /**
352 * ata_tf_read_pio - input device's ATA taskfile shadow registers
353 * @ap: Port from which input is read
354 * @tf: ATA taskfile register set for storing input
355 *
356 * Reads ATA taskfile registers for currently-selected device
357 * into @tf.
358 *
359 * LOCKING:
360 * Inherited from caller.
361 */
362
363 static void ata_tf_read_pio(struct ata_port *ap, struct ata_taskfile *tf)
364 {
365 struct ata_ioports *ioaddr = &ap->ioaddr;
366
367 tf->nsect = inb(ioaddr->nsect_addr);
368 tf->lbal = inb(ioaddr->lbal_addr);
369 tf->lbam = inb(ioaddr->lbam_addr);
370 tf->lbah = inb(ioaddr->lbah_addr);
371 tf->device = inb(ioaddr->device_addr);
372
373 if (tf->flags & ATA_TFLAG_LBA48) {
374 outb(tf->ctl | ATA_HOB, ioaddr->ctl_addr);
375 tf->hob_feature = inb(ioaddr->error_addr);
376 tf->hob_nsect = inb(ioaddr->nsect_addr);
377 tf->hob_lbal = inb(ioaddr->lbal_addr);
378 tf->hob_lbam = inb(ioaddr->lbam_addr);
379 tf->hob_lbah = inb(ioaddr->lbah_addr);
380 }
381 }
382
383 /**
384 * ata_tf_read_mmio - input device's ATA taskfile shadow registers
385 * @ap: Port from which input is read
386 * @tf: ATA taskfile register set for storing input
387 *
388 * Reads ATA taskfile registers for currently-selected device
389 * into @tf via MMIO.
390 *
391 * LOCKING:
392 * Inherited from caller.
393 */
394
395 static void ata_tf_read_mmio(struct ata_port *ap, struct ata_taskfile *tf)
396 {
397 struct ata_ioports *ioaddr = &ap->ioaddr;
398
399 tf->nsect = readb((void __iomem *)ioaddr->nsect_addr);
400 tf->lbal = readb((void __iomem *)ioaddr->lbal_addr);
401 tf->lbam = readb((void __iomem *)ioaddr->lbam_addr);
402 tf->lbah = readb((void __iomem *)ioaddr->lbah_addr);
403 tf->device = readb((void __iomem *)ioaddr->device_addr);
404
405 if (tf->flags & ATA_TFLAG_LBA48) {
406 writeb(tf->ctl | ATA_HOB, (void __iomem *) ap->ioaddr.ctl_addr);
407 tf->hob_feature = readb((void __iomem *)ioaddr->error_addr);
408 tf->hob_nsect = readb((void __iomem *)ioaddr->nsect_addr);
409 tf->hob_lbal = readb((void __iomem *)ioaddr->lbal_addr);
410 tf->hob_lbam = readb((void __iomem *)ioaddr->lbam_addr);
411 tf->hob_lbah = readb((void __iomem *)ioaddr->lbah_addr);
412 }
413 }
414
415
416 /**
417 * ata_tf_read - input device's ATA taskfile shadow registers
418 * @ap: Port from which input is read
419 * @tf: ATA taskfile register set for storing input
420 *
421 * Reads ATA taskfile registers for currently-selected device
422 * into @tf.
423 *
424 * Reads nsect, lbal, lbam, lbah, and device. If ATA_TFLAG_LBA48
425 * is set, also reads the hob registers.
426 *
427 * May be used as the tf_read() entry in ata_port_operations.
428 *
429 * LOCKING:
430 * Inherited from caller.
431 */
432 void ata_tf_read(struct ata_port *ap, struct ata_taskfile *tf)
433 {
434 if (ap->flags & ATA_FLAG_MMIO)
435 ata_tf_read_mmio(ap, tf);
436 else
437 ata_tf_read_pio(ap, tf);
438 }
439
440 /**
441 * ata_check_status_pio - Read device status reg & clear interrupt
442 * @ap: port where the device is
443 *
444 * Reads ATA taskfile status register for currently-selected device
445 * and return its value. This also clears pending interrupts
446 * from this device
447 *
448 * LOCKING:
449 * Inherited from caller.
450 */
451 static u8 ata_check_status_pio(struct ata_port *ap)
452 {
453 return inb(ap->ioaddr.status_addr);
454 }
455
456 /**
457 * ata_check_status_mmio - Read device status reg & clear interrupt
458 * @ap: port where the device is
459 *
460 * Reads ATA taskfile status register for currently-selected device
461 * via MMIO and return its value. This also clears pending interrupts
462 * from this device
463 *
464 * LOCKING:
465 * Inherited from caller.
466 */
467 static u8 ata_check_status_mmio(struct ata_port *ap)
468 {
469 return readb((void __iomem *) ap->ioaddr.status_addr);
470 }
471
472
473 /**
474 * ata_check_status - Read device status reg & clear interrupt
475 * @ap: port where the device is
476 *
477 * Reads ATA taskfile status register for currently-selected device
478 * and return its value. This also clears pending interrupts
479 * from this device
480 *
481 * May be used as the check_status() entry in ata_port_operations.
482 *
483 * LOCKING:
484 * Inherited from caller.
485 */
486 u8 ata_check_status(struct ata_port *ap)
487 {
488 if (ap->flags & ATA_FLAG_MMIO)
489 return ata_check_status_mmio(ap);
490 return ata_check_status_pio(ap);
491 }
492
493
494 /**
495 * ata_altstatus - Read device alternate status reg
496 * @ap: port where the device is
497 *
498 * Reads ATA taskfile alternate status register for
499 * currently-selected device and return its value.
500 *
501 * Note: may NOT be used as the check_altstatus() entry in
502 * ata_port_operations.
503 *
504 * LOCKING:
505 * Inherited from caller.
506 */
507 u8 ata_altstatus(struct ata_port *ap)
508 {
509 if (ap->ops->check_altstatus)
510 return ap->ops->check_altstatus(ap);
511
512 if (ap->flags & ATA_FLAG_MMIO)
513 return readb((void __iomem *)ap->ioaddr.altstatus_addr);
514 return inb(ap->ioaddr.altstatus_addr);
515 }
516
517
518 /**
519 * ata_chk_err - Read device error reg
520 * @ap: port where the device is
521 *
522 * Reads ATA taskfile error register for
523 * currently-selected device and return its value.
524 *
525 * Note: may NOT be used as the check_err() entry in
526 * ata_port_operations.
527 *
528 * LOCKING:
529 * Inherited from caller.
530 */
531 u8 ata_chk_err(struct ata_port *ap)
532 {
533 if (ap->ops->check_err)
534 return ap->ops->check_err(ap);
535
536 if (ap->flags & ATA_FLAG_MMIO) {
537 return readb((void __iomem *) ap->ioaddr.error_addr);
538 }
539 return inb(ap->ioaddr.error_addr);
540 }
541
542 /**
543 * ata_tf_to_fis - Convert ATA taskfile to SATA FIS structure
544 * @tf: Taskfile to convert
545 * @fis: Buffer into which data will output
546 * @pmp: Port multiplier port
547 *
548 * Converts a standard ATA taskfile to a Serial ATA
549 * FIS structure (Register - Host to Device).
550 *
551 * LOCKING:
552 * Inherited from caller.
553 */
554
555 void ata_tf_to_fis(struct ata_taskfile *tf, u8 *fis, u8 pmp)
556 {
557 fis[0] = 0x27; /* Register - Host to Device FIS */
558 fis[1] = (pmp & 0xf) | (1 << 7); /* Port multiplier number,
559 bit 7 indicates Command FIS */
560 fis[2] = tf->command;
561 fis[3] = tf->feature;
562
563 fis[4] = tf->lbal;
564 fis[5] = tf->lbam;
565 fis[6] = tf->lbah;
566 fis[7] = tf->device;
567
568 fis[8] = tf->hob_lbal;
569 fis[9] = tf->hob_lbam;
570 fis[10] = tf->hob_lbah;
571 fis[11] = tf->hob_feature;
572
573 fis[12] = tf->nsect;
574 fis[13] = tf->hob_nsect;
575 fis[14] = 0;
576 fis[15] = tf->ctl;
577
578 fis[16] = 0;
579 fis[17] = 0;
580 fis[18] = 0;
581 fis[19] = 0;
582 }
583
584 /**
585 * ata_tf_from_fis - Convert SATA FIS to ATA taskfile
586 * @fis: Buffer from which data will be input
587 * @tf: Taskfile to output
588 *
589 * Converts a standard ATA taskfile to a Serial ATA
590 * FIS structure (Register - Host to Device).
591 *
592 * LOCKING:
593 * Inherited from caller.
594 */
595
596 void ata_tf_from_fis(u8 *fis, struct ata_taskfile *tf)
597 {
598 tf->command = fis[2]; /* status */
599 tf->feature = fis[3]; /* error */
600
601 tf->lbal = fis[4];
602 tf->lbam = fis[5];
603 tf->lbah = fis[6];
604 tf->device = fis[7];
605
606 tf->hob_lbal = fis[8];
607 tf->hob_lbam = fis[9];
608 tf->hob_lbah = fis[10];
609
610 tf->nsect = fis[12];
611 tf->hob_nsect = fis[13];
612 }
613
614 /**
615 * ata_prot_to_cmd - determine which read/write opcodes to use
616 * @protocol: ATA_PROT_xxx taskfile protocol
617 * @lba48: true is lba48 is present
618 *
619 * Given necessary input, determine which read/write commands
620 * to use to transfer data.
621 *
622 * LOCKING:
623 * None.
624 */
625 static int ata_prot_to_cmd(int protocol, int lba48)
626 {
627 int rcmd = 0, wcmd = 0;
628
629 switch (protocol) {
630 case ATA_PROT_PIO:
631 if (lba48) {
632 rcmd = ATA_CMD_PIO_READ_EXT;
633 wcmd = ATA_CMD_PIO_WRITE_EXT;
634 } else {
635 rcmd = ATA_CMD_PIO_READ;
636 wcmd = ATA_CMD_PIO_WRITE;
637 }
638 break;
639
640 case ATA_PROT_DMA:
641 if (lba48) {
642 rcmd = ATA_CMD_READ_EXT;
643 wcmd = ATA_CMD_WRITE_EXT;
644 } else {
645 rcmd = ATA_CMD_READ;
646 wcmd = ATA_CMD_WRITE;
647 }
648 break;
649
650 default:
651 return -1;
652 }
653
654 return rcmd | (wcmd << 8);
655 }
656
657 /**
658 * ata_dev_set_protocol - set taskfile protocol and r/w commands
659 * @dev: device to examine and configure
660 *
661 * Examine the device configuration, after we have
662 * read the identify-device page and configured the
663 * data transfer mode. Set internal state related to
664 * the ATA taskfile protocol (pio, pio mult, dma, etc.)
665 * and calculate the proper read/write commands to use.
666 *
667 * LOCKING:
668 * caller.
669 */
670 static void ata_dev_set_protocol(struct ata_device *dev)
671 {
672 int pio = (dev->flags & ATA_DFLAG_PIO);
673 int lba48 = (dev->flags & ATA_DFLAG_LBA48);
674 int proto, cmd;
675
676 if (pio)
677 proto = dev->xfer_protocol = ATA_PROT_PIO;
678 else
679 proto = dev->xfer_protocol = ATA_PROT_DMA;
680
681 cmd = ata_prot_to_cmd(proto, lba48);
682 if (cmd < 0)
683 BUG();
684
685 dev->read_cmd = cmd & 0xff;
686 dev->write_cmd = (cmd >> 8) & 0xff;
687 }
688
689 static const char * xfer_mode_str[] = {
690 "UDMA/16",
691 "UDMA/25",
692 "UDMA/33",
693 "UDMA/44",
694 "UDMA/66",
695 "UDMA/100",
696 "UDMA/133",
697 "UDMA7",
698 "MWDMA0",
699 "MWDMA1",
700 "MWDMA2",
701 "PIO0",
702 "PIO1",
703 "PIO2",
704 "PIO3",
705 "PIO4",
706 };
707
708 /**
709 * ata_udma_string - convert UDMA bit offset to string
710 * @mask: mask of bits supported; only highest bit counts.
711 *
712 * Determine string which represents the highest speed
713 * (highest bit in @udma_mask).
714 *
715 * LOCKING:
716 * None.
717 *
718 * RETURNS:
719 * Constant C string representing highest speed listed in
720 * @udma_mask, or the constant C string "<n/a>".
721 */
722
723 static const char *ata_mode_string(unsigned int mask)
724 {
725 int i;
726
727 for (i = 7; i >= 0; i--)
728 if (mask & (1 << i))
729 goto out;
730 for (i = ATA_SHIFT_MWDMA + 2; i >= ATA_SHIFT_MWDMA; i--)
731 if (mask & (1 << i))
732 goto out;
733 for (i = ATA_SHIFT_PIO + 4; i >= ATA_SHIFT_PIO; i--)
734 if (mask & (1 << i))
735 goto out;
736
737 return "<n/a>";
738
739 out:
740 return xfer_mode_str[i];
741 }
742
743 /**
744 * ata_pio_devchk - PATA device presence detection
745 * @ap: ATA channel to examine
746 * @device: Device to examine (starting at zero)
747 *
748 * This technique was originally described in
749 * Hale Landis's ATADRVR (www.ata-atapi.com), and
750 * later found its way into the ATA/ATAPI spec.
751 *
752 * Write a pattern to the ATA shadow registers,
753 * and if a device is present, it will respond by
754 * correctly storing and echoing back the
755 * ATA shadow register contents.
756 *
757 * LOCKING:
758 * caller.
759 */
760
761 static unsigned int ata_pio_devchk(struct ata_port *ap,
762 unsigned int device)
763 {
764 struct ata_ioports *ioaddr = &ap->ioaddr;
765 u8 nsect, lbal;
766
767 ap->ops->dev_select(ap, device);
768
769 outb(0x55, ioaddr->nsect_addr);
770 outb(0xaa, ioaddr->lbal_addr);
771
772 outb(0xaa, ioaddr->nsect_addr);
773 outb(0x55, ioaddr->lbal_addr);
774
775 outb(0x55, ioaddr->nsect_addr);
776 outb(0xaa, ioaddr->lbal_addr);
777
778 nsect = inb(ioaddr->nsect_addr);
779 lbal = inb(ioaddr->lbal_addr);
780
781 if ((nsect == 0x55) && (lbal == 0xaa))
782 return 1; /* we found a device */
783
784 return 0; /* nothing found */
785 }
786
787 /**
788 * ata_mmio_devchk - PATA device presence detection
789 * @ap: ATA channel to examine
790 * @device: Device to examine (starting at zero)
791 *
792 * This technique was originally described in
793 * Hale Landis's ATADRVR (www.ata-atapi.com), and
794 * later found its way into the ATA/ATAPI spec.
795 *
796 * Write a pattern to the ATA shadow registers,
797 * and if a device is present, it will respond by
798 * correctly storing and echoing back the
799 * ATA shadow register contents.
800 *
801 * LOCKING:
802 * caller.
803 */
804
805 static unsigned int ata_mmio_devchk(struct ata_port *ap,
806 unsigned int device)
807 {
808 struct ata_ioports *ioaddr = &ap->ioaddr;
809 u8 nsect, lbal;
810
811 ap->ops->dev_select(ap, device);
812
813 writeb(0x55, (void __iomem *) ioaddr->nsect_addr);
814 writeb(0xaa, (void __iomem *) ioaddr->lbal_addr);
815
816 writeb(0xaa, (void __iomem *) ioaddr->nsect_addr);
817 writeb(0x55, (void __iomem *) ioaddr->lbal_addr);
818
819 writeb(0x55, (void __iomem *) ioaddr->nsect_addr);
820 writeb(0xaa, (void __iomem *) ioaddr->lbal_addr);
821
822 nsect = readb((void __iomem *) ioaddr->nsect_addr);
823 lbal = readb((void __iomem *) ioaddr->lbal_addr);
824
825 if ((nsect == 0x55) && (lbal == 0xaa))
826 return 1; /* we found a device */
827
828 return 0; /* nothing found */
829 }
830
831 /**
832 * ata_devchk - PATA device presence detection
833 * @ap: ATA channel to examine
834 * @device: Device to examine (starting at zero)
835 *
836 * Dispatch ATA device presence detection, depending
837 * on whether we are using PIO or MMIO to talk to the
838 * ATA shadow registers.
839 *
840 * LOCKING:
841 * caller.
842 */
843
844 static unsigned int ata_devchk(struct ata_port *ap,
845 unsigned int device)
846 {
847 if (ap->flags & ATA_FLAG_MMIO)
848 return ata_mmio_devchk(ap, device);
849 return ata_pio_devchk(ap, device);
850 }
851
852 /**
853 * ata_dev_classify - determine device type based on ATA-spec signature
854 * @tf: ATA taskfile register set for device to be identified
855 *
856 * Determine from taskfile register contents whether a device is
857 * ATA or ATAPI, as per "Signature and persistence" section
858 * of ATA/PI spec (volume 1, sect 5.14).
859 *
860 * LOCKING:
861 * None.
862 *
863 * RETURNS:
864 * Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, or %ATA_DEV_UNKNOWN
865 * the event of failure.
866 */
867
868 unsigned int ata_dev_classify(struct ata_taskfile *tf)
869 {
870 /* Apple's open source Darwin code hints that some devices only
871 * put a proper signature into the LBA mid/high registers,
872 * So, we only check those. It's sufficient for uniqueness.
873 */
874
875 if (((tf->lbam == 0) && (tf->lbah == 0)) ||
876 ((tf->lbam == 0x3c) && (tf->lbah == 0xc3))) {
877 DPRINTK("found ATA device by sig\n");
878 return ATA_DEV_ATA;
879 }
880
881 if (((tf->lbam == 0x14) && (tf->lbah == 0xeb)) ||
882 ((tf->lbam == 0x69) && (tf->lbah == 0x96))) {
883 DPRINTK("found ATAPI device by sig\n");
884 return ATA_DEV_ATAPI;
885 }
886
887 DPRINTK("unknown device\n");
888 return ATA_DEV_UNKNOWN;
889 }
890
891 /**
892 * ata_dev_try_classify - Parse returned ATA device signature
893 * @ap: ATA channel to examine
894 * @device: Device to examine (starting at zero)
895 *
896 * After an event -- SRST, E.D.D., or SATA COMRESET -- occurs,
897 * an ATA/ATAPI-defined set of values is placed in the ATA
898 * shadow registers, indicating the results of device detection
899 * and diagnostics.
900 *
901 * Select the ATA device, and read the values from the ATA shadow
902 * registers. Then parse according to the Error register value,
903 * and the spec-defined values examined by ata_dev_classify().
904 *
905 * LOCKING:
906 * caller.
907 */
908
909 static u8 ata_dev_try_classify(struct ata_port *ap, unsigned int device)
910 {
911 struct ata_device *dev = &ap->device[device];
912 struct ata_taskfile tf;
913 unsigned int class;
914 u8 err;
915
916 ap->ops->dev_select(ap, device);
917
918 memset(&tf, 0, sizeof(tf));
919
920 err = ata_chk_err(ap);
921 ap->ops->tf_read(ap, &tf);
922
923 dev->class = ATA_DEV_NONE;
924
925 /* see if device passed diags */
926 if (err == 1)
927 /* do nothing */ ;
928 else if ((device == 0) && (err == 0x81))
929 /* do nothing */ ;
930 else
931 return err;
932
933 /* determine if device if ATA or ATAPI */
934 class = ata_dev_classify(&tf);
935 if (class == ATA_DEV_UNKNOWN)
936 return err;
937 if ((class == ATA_DEV_ATA) && (ata_chk_status(ap) == 0))
938 return err;
939
940 dev->class = class;
941
942 return err;
943 }
944
945 /**
946 * ata_dev_id_string - Convert IDENTIFY DEVICE page into string
947 * @id: IDENTIFY DEVICE results we will examine
948 * @s: string into which data is output
949 * @ofs: offset into identify device page
950 * @len: length of string to return. must be an even number.
951 *
952 * The strings in the IDENTIFY DEVICE page are broken up into
953 * 16-bit chunks. Run through the string, and output each
954 * 8-bit chunk linearly, regardless of platform.
955 *
956 * LOCKING:
957 * caller.
958 */
959
960 void ata_dev_id_string(u16 *id, unsigned char *s,
961 unsigned int ofs, unsigned int len)
962 {
963 unsigned int c;
964
965 while (len > 0) {
966 c = id[ofs] >> 8;
967 *s = c;
968 s++;
969
970 c = id[ofs] & 0xff;
971 *s = c;
972 s++;
973
974 ofs++;
975 len -= 2;
976 }
977 }
978
979
980 /**
981 * ata_noop_dev_select - Select device 0/1 on ATA bus
982 * @ap: ATA channel to manipulate
983 * @device: ATA device (numbered from zero) to select
984 *
985 * This function performs no actual function.
986 *
987 * May be used as the dev_select() entry in ata_port_operations.
988 *
989 * LOCKING:
990 * caller.
991 */
992 void ata_noop_dev_select (struct ata_port *ap, unsigned int device)
993 {
994 }
995
996
997 /**
998 * ata_std_dev_select - Select device 0/1 on ATA bus
999 * @ap: ATA channel to manipulate
1000 * @device: ATA device (numbered from zero) to select
1001 *
1002 * Use the method defined in the ATA specification to
1003 * make either device 0, or device 1, active on the
1004 * ATA channel. Works with both PIO and MMIO.
1005 *
1006 * May be used as the dev_select() entry in ata_port_operations.
1007 *
1008 * LOCKING:
1009 * caller.
1010 */
1011
1012 void ata_std_dev_select (struct ata_port *ap, unsigned int device)
1013 {
1014 u8 tmp;
1015
1016 if (device == 0)
1017 tmp = ATA_DEVICE_OBS;
1018 else
1019 tmp = ATA_DEVICE_OBS | ATA_DEV1;
1020
1021 if (ap->flags & ATA_FLAG_MMIO) {
1022 writeb(tmp, (void __iomem *) ap->ioaddr.device_addr);
1023 } else {
1024 outb(tmp, ap->ioaddr.device_addr);
1025 }
1026 ata_pause(ap); /* needed; also flushes, for mmio */
1027 }
1028
1029 /**
1030 * ata_dev_select - Select device 0/1 on ATA bus
1031 * @ap: ATA channel to manipulate
1032 * @device: ATA device (numbered from zero) to select
1033 * @wait: non-zero to wait for Status register BSY bit to clear
1034 * @can_sleep: non-zero if context allows sleeping
1035 *
1036 * Use the method defined in the ATA specification to
1037 * make either device 0, or device 1, active on the
1038 * ATA channel.
1039 *
1040 * This is a high-level version of ata_std_dev_select(),
1041 * which additionally provides the services of inserting
1042 * the proper pauses and status polling, where needed.
1043 *
1044 * LOCKING:
1045 * caller.
1046 */
1047
1048 void ata_dev_select(struct ata_port *ap, unsigned int device,
1049 unsigned int wait, unsigned int can_sleep)
1050 {
1051 VPRINTK("ENTER, ata%u: device %u, wait %u\n",
1052 ap->id, device, wait);
1053
1054 if (wait)
1055 ata_wait_idle(ap);
1056
1057 ap->ops->dev_select(ap, device);
1058
1059 if (wait) {
1060 if (can_sleep && ap->device[device].class == ATA_DEV_ATAPI)
1061 msleep(150);
1062 ata_wait_idle(ap);
1063 }
1064 }
1065
1066 /**
1067 * ata_dump_id - IDENTIFY DEVICE info debugging output
1068 * @dev: Device whose IDENTIFY DEVICE page we will dump
1069 *
1070 * Dump selected 16-bit words from a detected device's
1071 * IDENTIFY PAGE page.
1072 *
1073 * LOCKING:
1074 * caller.
1075 */
1076
1077 static inline void ata_dump_id(struct ata_device *dev)
1078 {
1079 DPRINTK("49==0x%04x "
1080 "53==0x%04x "
1081 "63==0x%04x "
1082 "64==0x%04x "
1083 "75==0x%04x \n",
1084 dev->id[49],
1085 dev->id[53],
1086 dev->id[63],
1087 dev->id[64],
1088 dev->id[75]);
1089 DPRINTK("80==0x%04x "
1090 "81==0x%04x "
1091 "82==0x%04x "
1092 "83==0x%04x "
1093 "84==0x%04x \n",
1094 dev->id[80],
1095 dev->id[81],
1096 dev->id[82],
1097 dev->id[83],
1098 dev->id[84]);
1099 DPRINTK("88==0x%04x "
1100 "93==0x%04x\n",
1101 dev->id[88],
1102 dev->id[93]);
1103 }
1104
1105 /**
1106 * ata_dev_identify - obtain IDENTIFY x DEVICE page
1107 * @ap: port on which device we wish to probe resides
1108 * @device: device bus address, starting at zero
1109 *
1110 * Following bus reset, we issue the IDENTIFY [PACKET] DEVICE
1111 * command, and read back the 512-byte device information page.
1112 * The device information page is fed to us via the standard
1113 * PIO-IN protocol, but we hand-code it here. (TODO: investigate
1114 * using standard PIO-IN paths)
1115 *
1116 * After reading the device information page, we use several
1117 * bits of information from it to initialize data structures
1118 * that will be used during the lifetime of the ata_device.
1119 * Other data from the info page is used to disqualify certain
1120 * older ATA devices we do not wish to support.
1121 *
1122 * LOCKING:
1123 * Inherited from caller. Some functions called by this function
1124 * obtain the host_set lock.
1125 */
1126
1127 static void ata_dev_identify(struct ata_port *ap, unsigned int device)
1128 {
1129 struct ata_device *dev = &ap->device[device];
1130 unsigned int i;
1131 u16 tmp;
1132 unsigned long xfer_modes;
1133 u8 status;
1134 unsigned int using_edd;
1135 DECLARE_COMPLETION(wait);
1136 struct ata_queued_cmd *qc;
1137 unsigned long flags;
1138 int rc;
1139
1140 if (!ata_dev_present(dev)) {
1141 DPRINTK("ENTER/EXIT (host %u, dev %u) -- nodev\n",
1142 ap->id, device);
1143 return;
1144 }
1145
1146 if (ap->flags & (ATA_FLAG_SRST | ATA_FLAG_SATA_RESET))
1147 using_edd = 0;
1148 else
1149 using_edd = 1;
1150
1151 DPRINTK("ENTER, host %u, dev %u\n", ap->id, device);
1152
1153 assert (dev->class == ATA_DEV_ATA || dev->class == ATA_DEV_ATAPI ||
1154 dev->class == ATA_DEV_NONE);
1155
1156 ata_dev_select(ap, device, 1, 1); /* select device 0/1 */
1157
1158 qc = ata_qc_new_init(ap, dev);
1159 BUG_ON(qc == NULL);
1160
1161 ata_sg_init_one(qc, dev->id, sizeof(dev->id));
1162 qc->dma_dir = DMA_FROM_DEVICE;
1163 qc->tf.protocol = ATA_PROT_PIO;
1164 qc->nsect = 1;
1165
1166 retry:
1167 if (dev->class == ATA_DEV_ATA) {
1168 qc->tf.command = ATA_CMD_ID_ATA;
1169 DPRINTK("do ATA identify\n");
1170 } else {
1171 qc->tf.command = ATA_CMD_ID_ATAPI;
1172 DPRINTK("do ATAPI identify\n");
1173 }
1174
1175 qc->waiting = &wait;
1176 qc->complete_fn = ata_qc_complete_noop;
1177
1178 spin_lock_irqsave(&ap->host_set->lock, flags);
1179 rc = ata_qc_issue(qc);
1180 spin_unlock_irqrestore(&ap->host_set->lock, flags);
1181
1182 if (rc)
1183 goto err_out;
1184 else
1185 wait_for_completion(&wait);
1186
1187 status = ata_chk_status(ap);
1188 if (status & ATA_ERR) {
1189 /*
1190 * arg! EDD works for all test cases, but seems to return
1191 * the ATA signature for some ATAPI devices. Until the
1192 * reason for this is found and fixed, we fix up the mess
1193 * here. If IDENTIFY DEVICE returns command aborted
1194 * (as ATAPI devices do), then we issue an
1195 * IDENTIFY PACKET DEVICE.
1196 *
1197 * ATA software reset (SRST, the default) does not appear
1198 * to have this problem.
1199 */
1200 if ((using_edd) && (qc->tf.command == ATA_CMD_ID_ATA)) {
1201 u8 err = ata_chk_err(ap);
1202 if (err & ATA_ABORTED) {
1203 dev->class = ATA_DEV_ATAPI;
1204 qc->cursg = 0;
1205 qc->cursg_ofs = 0;
1206 qc->cursect = 0;
1207 qc->nsect = 1;
1208 goto retry;
1209 }
1210 }
1211 goto err_out;
1212 }
1213
1214 swap_buf_le16(dev->id, ATA_ID_WORDS);
1215
1216 /* print device capabilities */
1217 printk(KERN_DEBUG "ata%u: dev %u cfg "
1218 "49:%04x 82:%04x 83:%04x 84:%04x 85:%04x 86:%04x 87:%04x 88:%04x\n",
1219 ap->id, device, dev->id[49],
1220 dev->id[82], dev->id[83], dev->id[84],
1221 dev->id[85], dev->id[86], dev->id[87],
1222 dev->id[88]);
1223
1224 /*
1225 * common ATA, ATAPI feature tests
1226 */
1227
1228 /* we require LBA and DMA support (bits 8 & 9 of word 49) */
1229 if (!ata_id_has_dma(dev->id) || !ata_id_has_lba(dev->id)) {
1230 printk(KERN_DEBUG "ata%u: no dma/lba\n", ap->id);
1231 goto err_out_nosup;
1232 }
1233
1234 /* quick-n-dirty find max transfer mode; for printk only */
1235 xfer_modes = dev->id[ATA_ID_UDMA_MODES];
1236 if (!xfer_modes)
1237 xfer_modes = (dev->id[ATA_ID_MWDMA_MODES]) << ATA_SHIFT_MWDMA;
1238 if (!xfer_modes) {
1239 xfer_modes = (dev->id[ATA_ID_PIO_MODES]) << (ATA_SHIFT_PIO + 3);
1240 xfer_modes |= (0x7 << ATA_SHIFT_PIO);
1241 }
1242
1243 ata_dump_id(dev);
1244
1245 /* ATA-specific feature tests */
1246 if (dev->class == ATA_DEV_ATA) {
1247 if (!ata_id_is_ata(dev->id)) /* sanity check */
1248 goto err_out_nosup;
1249
1250 tmp = dev->id[ATA_ID_MAJOR_VER];
1251 for (i = 14; i >= 1; i--)
1252 if (tmp & (1 << i))
1253 break;
1254
1255 /* we require at least ATA-3 */
1256 if (i < 3) {
1257 printk(KERN_DEBUG "ata%u: no ATA-3\n", ap->id);
1258 goto err_out_nosup;
1259 }
1260
1261 if (ata_id_has_lba48(dev->id)) {
1262 dev->flags |= ATA_DFLAG_LBA48;
1263 dev->n_sectors = ata_id_u64(dev->id, 100);
1264 } else {
1265 dev->n_sectors = ata_id_u32(dev->id, 60);
1266 }
1267
1268 ap->host->max_cmd_len = 16;
1269
1270 /* print device info to dmesg */
1271 printk(KERN_INFO "ata%u: dev %u ATA, max %s, %Lu sectors:%s\n",
1272 ap->id, device,
1273 ata_mode_string(xfer_modes),
1274 (unsigned long long)dev->n_sectors,
1275 dev->flags & ATA_DFLAG_LBA48 ? " lba48" : "");
1276 }
1277
1278 /* ATAPI-specific feature tests */
1279 else {
1280 if (ata_id_is_ata(dev->id)) /* sanity check */
1281 goto err_out_nosup;
1282
1283 rc = atapi_cdb_len(dev->id);
1284 if ((rc < 12) || (rc > ATAPI_CDB_LEN)) {
1285 printk(KERN_WARNING "ata%u: unsupported CDB len\n", ap->id);
1286 goto err_out_nosup;
1287 }
1288 ap->cdb_len = (unsigned int) rc;
1289 ap->host->max_cmd_len = (unsigned char) ap->cdb_len;
1290
1291 /* print device info to dmesg */
1292 printk(KERN_INFO "ata%u: dev %u ATAPI, max %s\n",
1293 ap->id, device,
1294 ata_mode_string(xfer_modes));
1295 }
1296
1297 DPRINTK("EXIT, drv_stat = 0x%x\n", ata_chk_status(ap));
1298 return;
1299
1300 err_out_nosup:
1301 printk(KERN_WARNING "ata%u: dev %u not supported, ignoring\n",
1302 ap->id, device);
1303 err_out:
1304 dev->class++; /* converts ATA_DEV_xxx into ATA_DEV_xxx_UNSUP */
1305 DPRINTK("EXIT, err\n");
1306 }
1307
1308
1309 static inline u8 ata_dev_knobble(struct ata_port *ap)
1310 {
1311 return ((ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(ap->device->id)));
1312 }
1313
1314 /**
1315 * ata_dev_config - Run device specific handlers and check for
1316 * SATA->PATA bridges
1317 * @ap: Bus
1318 * @i: Device
1319 *
1320 * LOCKING:
1321 */
1322
1323 void ata_dev_config(struct ata_port *ap, unsigned int i)
1324 {
1325 /* limit bridge transfers to udma5, 200 sectors */
1326 if (ata_dev_knobble(ap)) {
1327 printk(KERN_INFO "ata%u(%u): applying bridge limits\n",
1328 ap->id, ap->device->devno);
1329 ap->udma_mask &= ATA_UDMA5;
1330 ap->host->max_sectors = ATA_MAX_SECTORS;
1331 ap->host->hostt->max_sectors = ATA_MAX_SECTORS;
1332 ap->device->flags |= ATA_DFLAG_LOCK_SECTORS;
1333 }
1334
1335 if (ap->ops->dev_config)
1336 ap->ops->dev_config(ap, &ap->device[i]);
1337 }
1338
1339 /**
1340 * ata_bus_probe - Reset and probe ATA bus
1341 * @ap: Bus to probe
1342 *
1343 * Master ATA bus probing function. Initiates a hardware-dependent
1344 * bus reset, then attempts to identify any devices found on
1345 * the bus.
1346 *
1347 * LOCKING:
1348 * PCI/etc. bus probe sem.
1349 *
1350 * RETURNS:
1351 * Zero on success, non-zero on error.
1352 */
1353
1354 static int ata_bus_probe(struct ata_port *ap)
1355 {
1356 unsigned int i, found = 0;
1357
1358 ap->ops->phy_reset(ap);
1359 if (ap->flags & ATA_FLAG_PORT_DISABLED)
1360 goto err_out;
1361
1362 for (i = 0; i < ATA_MAX_DEVICES; i++) {
1363 ata_dev_identify(ap, i);
1364 if (ata_dev_present(&ap->device[i])) {
1365 found = 1;
1366 ata_dev_config(ap,i);
1367 }
1368 }
1369
1370 if ((!found) || (ap->flags & ATA_FLAG_PORT_DISABLED))
1371 goto err_out_disable;
1372
1373 ata_set_mode(ap);
1374 if (ap->flags & ATA_FLAG_PORT_DISABLED)
1375 goto err_out_disable;
1376
1377 return 0;
1378
1379 err_out_disable:
1380 ap->ops->port_disable(ap);
1381 err_out:
1382 return -1;
1383 }
1384
1385 /**
1386 * ata_port_probe - Mark port as enabled
1387 * @ap: Port for which we indicate enablement
1388 *
1389 * Modify @ap data structure such that the system
1390 * thinks that the entire port is enabled.
1391 *
1392 * LOCKING: host_set lock, or some other form of
1393 * serialization.
1394 */
1395
1396 void ata_port_probe(struct ata_port *ap)
1397 {
1398 ap->flags &= ~ATA_FLAG_PORT_DISABLED;
1399 }
1400
1401 /**
1402 * __sata_phy_reset - Wake/reset a low-level SATA PHY
1403 * @ap: SATA port associated with target SATA PHY.
1404 *
1405 * This function issues commands to standard SATA Sxxx
1406 * PHY registers, to wake up the phy (and device), and
1407 * clear any reset condition.
1408 *
1409 * LOCKING:
1410 * PCI/etc. bus probe sem.
1411 *
1412 */
1413 void __sata_phy_reset(struct ata_port *ap)
1414 {
1415 u32 sstatus;
1416 unsigned long timeout = jiffies + (HZ * 5);
1417
1418 if (ap->flags & ATA_FLAG_SATA_RESET) {
1419 /* issue phy wake/reset */
1420 scr_write_flush(ap, SCR_CONTROL, 0x301);
1421 /* Couldn't find anything in SATA I/II specs, but
1422 * AHCI-1.1 10.4.2 says at least 1 ms. */
1423 mdelay(1);
1424 }
1425 scr_write_flush(ap, SCR_CONTROL, 0x300); /* phy wake/clear reset */
1426
1427 /* wait for phy to become ready, if necessary */
1428 do {
1429 msleep(200);
1430 sstatus = scr_read(ap, SCR_STATUS);
1431 if ((sstatus & 0xf) != 1)
1432 break;
1433 } while (time_before(jiffies, timeout));
1434
1435 /* TODO: phy layer with polling, timeouts, etc. */
1436 if (sata_dev_present(ap))
1437 ata_port_probe(ap);
1438 else {
1439 sstatus = scr_read(ap, SCR_STATUS);
1440 printk(KERN_INFO "ata%u: no device found (phy stat %08x)\n",
1441 ap->id, sstatus);
1442 ata_port_disable(ap);
1443 }
1444
1445 if (ap->flags & ATA_FLAG_PORT_DISABLED)
1446 return;
1447
1448 if (ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT)) {
1449 ata_port_disable(ap);
1450 return;
1451 }
1452
1453 ap->cbl = ATA_CBL_SATA;
1454 }
1455
1456 /**
1457 * sata_phy_reset - Reset SATA bus.
1458 * @ap: SATA port associated with target SATA PHY.
1459 *
1460 * This function resets the SATA bus, and then probes
1461 * the bus for devices.
1462 *
1463 * LOCKING:
1464 * PCI/etc. bus probe sem.
1465 *
1466 */
1467 void sata_phy_reset(struct ata_port *ap)
1468 {
1469 __sata_phy_reset(ap);
1470 if (ap->flags & ATA_FLAG_PORT_DISABLED)
1471 return;
1472 ata_bus_reset(ap);
1473 }
1474
1475 /**
1476 * ata_port_disable - Disable port.
1477 * @ap: Port to be disabled.
1478 *
1479 * Modify @ap data structure such that the system
1480 * thinks that the entire port is disabled, and should
1481 * never attempt to probe or communicate with devices
1482 * on this port.
1483 *
1484 * LOCKING: host_set lock, or some other form of
1485 * serialization.
1486 */
1487
1488 void ata_port_disable(struct ata_port *ap)
1489 {
1490 ap->device[0].class = ATA_DEV_NONE;
1491 ap->device[1].class = ATA_DEV_NONE;
1492 ap->flags |= ATA_FLAG_PORT_DISABLED;
1493 }
1494
1495 static struct {
1496 unsigned int shift;
1497 u8 base;
1498 } xfer_mode_classes[] = {
1499 { ATA_SHIFT_UDMA, XFER_UDMA_0 },
1500 { ATA_SHIFT_MWDMA, XFER_MW_DMA_0 },
1501 { ATA_SHIFT_PIO, XFER_PIO_0 },
1502 };
1503
1504 static inline u8 base_from_shift(unsigned int shift)
1505 {
1506 int i;
1507
1508 for (i = 0; i < ARRAY_SIZE(xfer_mode_classes); i++)
1509 if (xfer_mode_classes[i].shift == shift)
1510 return xfer_mode_classes[i].base;
1511
1512 return 0xff;
1513 }
1514
1515 static void ata_dev_set_mode(struct ata_port *ap, struct ata_device *dev)
1516 {
1517 int ofs, idx;
1518 u8 base;
1519
1520 if (!ata_dev_present(dev) || (ap->flags & ATA_FLAG_PORT_DISABLED))
1521 return;
1522
1523 if (dev->xfer_shift == ATA_SHIFT_PIO)
1524 dev->flags |= ATA_DFLAG_PIO;
1525
1526 ata_dev_set_xfermode(ap, dev);
1527
1528 base = base_from_shift(dev->xfer_shift);
1529 ofs = dev->xfer_mode - base;
1530 idx = ofs + dev->xfer_shift;
1531 WARN_ON(idx >= ARRAY_SIZE(xfer_mode_str));
1532
1533 DPRINTK("idx=%d xfer_shift=%u, xfer_mode=0x%x, base=0x%x, offset=%d\n",
1534 idx, dev->xfer_shift, (int)dev->xfer_mode, (int)base, ofs);
1535
1536 printk(KERN_INFO "ata%u: dev %u configured for %s\n",
1537 ap->id, dev->devno, xfer_mode_str[idx]);
1538 }
1539
1540 static int ata_host_set_pio(struct ata_port *ap)
1541 {
1542 unsigned int mask;
1543 int x, i;
1544 u8 base, xfer_mode;
1545
1546 mask = ata_get_mode_mask(ap, ATA_SHIFT_PIO);
1547 x = fgb(mask);
1548 if (x < 0) {
1549 printk(KERN_WARNING "ata%u: no PIO support\n", ap->id);
1550 return -1;
1551 }
1552
1553 base = base_from_shift(ATA_SHIFT_PIO);
1554 xfer_mode = base + x;
1555
1556 DPRINTK("base 0x%x xfer_mode 0x%x mask 0x%x x %d\n",
1557 (int)base, (int)xfer_mode, mask, x);
1558
1559 for (i = 0; i < ATA_MAX_DEVICES; i++) {
1560 struct ata_device *dev = &ap->device[i];
1561 if (ata_dev_present(dev)) {
1562 dev->pio_mode = xfer_mode;
1563 dev->xfer_mode = xfer_mode;
1564 dev->xfer_shift = ATA_SHIFT_PIO;
1565 if (ap->ops->set_piomode)
1566 ap->ops->set_piomode(ap, dev);
1567 }
1568 }
1569
1570 return 0;
1571 }
1572
1573 static void ata_host_set_dma(struct ata_port *ap, u8 xfer_mode,
1574 unsigned int xfer_shift)
1575 {
1576 int i;
1577
1578 for (i = 0; i < ATA_MAX_DEVICES; i++) {
1579 struct ata_device *dev = &ap->device[i];
1580 if (ata_dev_present(dev)) {
1581 dev->dma_mode = xfer_mode;
1582 dev->xfer_mode = xfer_mode;
1583 dev->xfer_shift = xfer_shift;
1584 if (ap->ops->set_dmamode)
1585 ap->ops->set_dmamode(ap, dev);
1586 }
1587 }
1588 }
1589
1590 /**
1591 * ata_set_mode - Program timings and issue SET FEATURES - XFER
1592 * @ap: port on which timings will be programmed
1593 *
1594 * Set ATA device disk transfer mode (PIO3, UDMA6, etc.).
1595 *
1596 * LOCKING:
1597 * PCI/etc. bus probe sem.
1598 *
1599 */
1600 static void ata_set_mode(struct ata_port *ap)
1601 {
1602 unsigned int i, xfer_shift;
1603 u8 xfer_mode;
1604 int rc;
1605
1606 /* step 1: always set host PIO timings */
1607 rc = ata_host_set_pio(ap);
1608 if (rc)
1609 goto err_out;
1610
1611 /* step 2: choose the best data xfer mode */
1612 xfer_mode = xfer_shift = 0;
1613 rc = ata_choose_xfer_mode(ap, &xfer_mode, &xfer_shift);
1614 if (rc)
1615 goto err_out;
1616
1617 /* step 3: if that xfer mode isn't PIO, set host DMA timings */
1618 if (xfer_shift != ATA_SHIFT_PIO)
1619 ata_host_set_dma(ap, xfer_mode, xfer_shift);
1620
1621 /* step 4: update devices' xfer mode */
1622 ata_dev_set_mode(ap, &ap->device[0]);
1623 ata_dev_set_mode(ap, &ap->device[1]);
1624
1625 if (ap->flags & ATA_FLAG_PORT_DISABLED)
1626 return;
1627
1628 if (ap->ops->post_set_mode)
1629 ap->ops->post_set_mode(ap);
1630
1631 for (i = 0; i < 2; i++) {
1632 struct ata_device *dev = &ap->device[i];
1633 ata_dev_set_protocol(dev);
1634 }
1635
1636 return;
1637
1638 err_out:
1639 ata_port_disable(ap);
1640 }
1641
1642 /**
1643 * ata_busy_sleep - sleep until BSY clears, or timeout
1644 * @ap: port containing status register to be polled
1645 * @tmout_pat: impatience timeout
1646 * @tmout: overall timeout
1647 *
1648 * Sleep until ATA Status register bit BSY clears,
1649 * or a timeout occurs.
1650 *
1651 * LOCKING: None.
1652 *
1653 */
1654
1655 static unsigned int ata_busy_sleep (struct ata_port *ap,
1656 unsigned long tmout_pat,
1657 unsigned long tmout)
1658 {
1659 unsigned long timer_start, timeout;
1660 u8 status;
1661
1662 status = ata_busy_wait(ap, ATA_BUSY, 300);
1663 timer_start = jiffies;
1664 timeout = timer_start + tmout_pat;
1665 while ((status & ATA_BUSY) && (time_before(jiffies, timeout))) {
1666 msleep(50);
1667 status = ata_busy_wait(ap, ATA_BUSY, 3);
1668 }
1669
1670 if (status & ATA_BUSY)
1671 printk(KERN_WARNING "ata%u is slow to respond, "
1672 "please be patient\n", ap->id);
1673
1674 timeout = timer_start + tmout;
1675 while ((status & ATA_BUSY) && (time_before(jiffies, timeout))) {
1676 msleep(50);
1677 status = ata_chk_status(ap);
1678 }
1679
1680 if (status & ATA_BUSY) {
1681 printk(KERN_ERR "ata%u failed to respond (%lu secs)\n",
1682 ap->id, tmout / HZ);
1683 return 1;
1684 }
1685
1686 return 0;
1687 }
1688
1689 static void ata_bus_post_reset(struct ata_port *ap, unsigned int devmask)
1690 {
1691 struct ata_ioports *ioaddr = &ap->ioaddr;
1692 unsigned int dev0 = devmask & (1 << 0);
1693 unsigned int dev1 = devmask & (1 << 1);
1694 unsigned long timeout;
1695
1696 /* if device 0 was found in ata_devchk, wait for its
1697 * BSY bit to clear
1698 */
1699 if (dev0)
1700 ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT);
1701
1702 /* if device 1 was found in ata_devchk, wait for
1703 * register access, then wait for BSY to clear
1704 */
1705 timeout = jiffies + ATA_TMOUT_BOOT;
1706 while (dev1) {
1707 u8 nsect, lbal;
1708
1709 ap->ops->dev_select(ap, 1);
1710 if (ap->flags & ATA_FLAG_MMIO) {
1711 nsect = readb((void __iomem *) ioaddr->nsect_addr);
1712 lbal = readb((void __iomem *) ioaddr->lbal_addr);
1713 } else {
1714 nsect = inb(ioaddr->nsect_addr);
1715 lbal = inb(ioaddr->lbal_addr);
1716 }
1717 if ((nsect == 1) && (lbal == 1))
1718 break;
1719 if (time_after(jiffies, timeout)) {
1720 dev1 = 0;
1721 break;
1722 }
1723 msleep(50); /* give drive a breather */
1724 }
1725 if (dev1)
1726 ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT);
1727
1728 /* is all this really necessary? */
1729 ap->ops->dev_select(ap, 0);
1730 if (dev1)
1731 ap->ops->dev_select(ap, 1);
1732 if (dev0)
1733 ap->ops->dev_select(ap, 0);
1734 }
1735
1736 /**
1737 * ata_bus_edd - Issue EXECUTE DEVICE DIAGNOSTIC command.
1738 * @ap: Port to reset and probe
1739 *
1740 * Use the EXECUTE DEVICE DIAGNOSTIC command to reset and
1741 * probe the bus. Not often used these days.
1742 *
1743 * LOCKING:
1744 * PCI/etc. bus probe sem.
1745 *
1746 */
1747
1748 static unsigned int ata_bus_edd(struct ata_port *ap)
1749 {
1750 struct ata_taskfile tf;
1751
1752 /* set up execute-device-diag (bus reset) taskfile */
1753 /* also, take interrupts to a known state (disabled) */
1754 DPRINTK("execute-device-diag\n");
1755 ata_tf_init(ap, &tf, 0);
1756 tf.ctl |= ATA_NIEN;
1757 tf.command = ATA_CMD_EDD;
1758 tf.protocol = ATA_PROT_NODATA;
1759
1760 /* do bus reset */
1761 ata_tf_to_host(ap, &tf);
1762
1763 /* spec says at least 2ms. but who knows with those
1764 * crazy ATAPI devices...
1765 */
1766 msleep(150);
1767
1768 return ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT);
1769 }
1770
1771 static unsigned int ata_bus_softreset(struct ata_port *ap,
1772 unsigned int devmask)
1773 {
1774 struct ata_ioports *ioaddr = &ap->ioaddr;
1775
1776 DPRINTK("ata%u: bus reset via SRST\n", ap->id);
1777
1778 /* software reset. causes dev0 to be selected */
1779 if (ap->flags & ATA_FLAG_MMIO) {
1780 writeb(ap->ctl, (void __iomem *) ioaddr->ctl_addr);
1781 udelay(20); /* FIXME: flush */
1782 writeb(ap->ctl | ATA_SRST, (void __iomem *) ioaddr->ctl_addr);
1783 udelay(20); /* FIXME: flush */
1784 writeb(ap->ctl, (void __iomem *) ioaddr->ctl_addr);
1785 } else {
1786 outb(ap->ctl, ioaddr->ctl_addr);
1787 udelay(10);
1788 outb(ap->ctl | ATA_SRST, ioaddr->ctl_addr);
1789 udelay(10);
1790 outb(ap->ctl, ioaddr->ctl_addr);
1791 }
1792
1793 /* spec mandates ">= 2ms" before checking status.
1794 * We wait 150ms, because that was the magic delay used for
1795 * ATAPI devices in Hale Landis's ATADRVR, for the period of time
1796 * between when the ATA command register is written, and then
1797 * status is checked. Because waiting for "a while" before
1798 * checking status is fine, post SRST, we perform this magic
1799 * delay here as well.
1800 */
1801 msleep(150);
1802
1803 ata_bus_post_reset(ap, devmask);
1804
1805 return 0;
1806 }
1807
1808 /**
1809 * ata_bus_reset - reset host port and associated ATA channel
1810 * @ap: port to reset
1811 *
1812 * This is typically the first time we actually start issuing
1813 * commands to the ATA channel. We wait for BSY to clear, then
1814 * issue EXECUTE DEVICE DIAGNOSTIC command, polling for its
1815 * result. Determine what devices, if any, are on the channel
1816 * by looking at the device 0/1 error register. Look at the signature
1817 * stored in each device's taskfile registers, to determine if
1818 * the device is ATA or ATAPI.
1819 *
1820 * LOCKING:
1821 * PCI/etc. bus probe sem.
1822 * Obtains host_set lock.
1823 *
1824 * SIDE EFFECTS:
1825 * Sets ATA_FLAG_PORT_DISABLED if bus reset fails.
1826 */
1827
1828 void ata_bus_reset(struct ata_port *ap)
1829 {
1830 struct ata_ioports *ioaddr = &ap->ioaddr;
1831 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
1832 u8 err;
1833 unsigned int dev0, dev1 = 0, rc = 0, devmask = 0;
1834
1835 DPRINTK("ENTER, host %u, port %u\n", ap->id, ap->port_no);
1836
1837 /* determine if device 0/1 are present */
1838 if (ap->flags & ATA_FLAG_SATA_RESET)
1839 dev0 = 1;
1840 else {
1841 dev0 = ata_devchk(ap, 0);
1842 if (slave_possible)
1843 dev1 = ata_devchk(ap, 1);
1844 }
1845
1846 if (dev0)
1847 devmask |= (1 << 0);
1848 if (dev1)
1849 devmask |= (1 << 1);
1850
1851 /* select device 0 again */
1852 ap->ops->dev_select(ap, 0);
1853
1854 /* issue bus reset */
1855 if (ap->flags & ATA_FLAG_SRST)
1856 rc = ata_bus_softreset(ap, devmask);
1857 else if ((ap->flags & ATA_FLAG_SATA_RESET) == 0) {
1858 /* set up device control */
1859 if (ap->flags & ATA_FLAG_MMIO)
1860 writeb(ap->ctl, (void __iomem *) ioaddr->ctl_addr);
1861 else
1862 outb(ap->ctl, ioaddr->ctl_addr);
1863 rc = ata_bus_edd(ap);
1864 }
1865
1866 if (rc)
1867 goto err_out;
1868
1869 /*
1870 * determine by signature whether we have ATA or ATAPI devices
1871 */
1872 err = ata_dev_try_classify(ap, 0);
1873 if ((slave_possible) && (err != 0x81))
1874 ata_dev_try_classify(ap, 1);
1875
1876 /* re-enable interrupts */
1877 if (ap->ioaddr.ctl_addr) /* FIXME: hack. create a hook instead */
1878 ata_irq_on(ap);
1879
1880 /* is double-select really necessary? */
1881 if (ap->device[1].class != ATA_DEV_NONE)
1882 ap->ops->dev_select(ap, 1);
1883 if (ap->device[0].class != ATA_DEV_NONE)
1884 ap->ops->dev_select(ap, 0);
1885
1886 /* if no devices were detected, disable this port */
1887 if ((ap->device[0].class == ATA_DEV_NONE) &&
1888 (ap->device[1].class == ATA_DEV_NONE))
1889 goto err_out;
1890
1891 if (ap->flags & (ATA_FLAG_SATA_RESET | ATA_FLAG_SRST)) {
1892 /* set up device control for ATA_FLAG_SATA_RESET */
1893 if (ap->flags & ATA_FLAG_MMIO)
1894 writeb(ap->ctl, (void __iomem *) ioaddr->ctl_addr);
1895 else
1896 outb(ap->ctl, ioaddr->ctl_addr);
1897 }
1898
1899 DPRINTK("EXIT\n");
1900 return;
1901
1902 err_out:
1903 printk(KERN_ERR "ata%u: disabling port\n", ap->id);
1904 ap->ops->port_disable(ap);
1905
1906 DPRINTK("EXIT\n");
1907 }
1908
1909 static void ata_pr_blacklisted(struct ata_port *ap, struct ata_device *dev)
1910 {
1911 printk(KERN_WARNING "ata%u: dev %u is on DMA blacklist, disabling DMA\n",
1912 ap->id, dev->devno);
1913 }
1914
1915 static const char * ata_dma_blacklist [] = {
1916 "WDC AC11000H",
1917 "WDC AC22100H",
1918 "WDC AC32500H",
1919 "WDC AC33100H",
1920 "WDC AC31600H",
1921 "WDC AC32100H",
1922 "WDC AC23200L",
1923 "Compaq CRD-8241B",
1924 "CRD-8400B",
1925 "CRD-8480B",
1926 "CRD-8482B",
1927 "CRD-84",
1928 "SanDisk SDP3B",
1929 "SanDisk SDP3B-64",
1930 "SANYO CD-ROM CRD",
1931 "HITACHI CDR-8",
1932 "HITACHI CDR-8335",
1933 "HITACHI CDR-8435",
1934 "Toshiba CD-ROM XM-6202B",
1935 "TOSHIBA CD-ROM XM-1702BC",
1936 "CD-532E-A",
1937 "E-IDE CD-ROM CR-840",
1938 "CD-ROM Drive/F5A",
1939 "WPI CDD-820",
1940 "SAMSUNG CD-ROM SC-148C",
1941 "SAMSUNG CD-ROM SC",
1942 "SanDisk SDP3B-64",
1943 "ATAPI CD-ROM DRIVE 40X MAXIMUM",
1944 "_NEC DV5800A",
1945 };
1946
1947 static int ata_dma_blacklisted(struct ata_port *ap, struct ata_device *dev)
1948 {
1949 unsigned char model_num[40];
1950 char *s;
1951 unsigned int len;
1952 int i;
1953
1954 ata_dev_id_string(dev->id, model_num, ATA_ID_PROD_OFS,
1955 sizeof(model_num));
1956 s = &model_num[0];
1957 len = strnlen(s, sizeof(model_num));
1958
1959 /* ATAPI specifies that empty space is blank-filled; remove blanks */
1960 while ((len > 0) && (s[len - 1] == ' ')) {
1961 len--;
1962 s[len] = 0;
1963 }
1964
1965 for (i = 0; i < ARRAY_SIZE(ata_dma_blacklist); i++)
1966 if (!strncmp(ata_dma_blacklist[i], s, len))
1967 return 1;
1968
1969 return 0;
1970 }
1971
1972 static unsigned int ata_get_mode_mask(struct ata_port *ap, int shift)
1973 {
1974 struct ata_device *master, *slave;
1975 unsigned int mask;
1976
1977 master = &ap->device[0];
1978 slave = &ap->device[1];
1979
1980 assert (ata_dev_present(master) || ata_dev_present(slave));
1981
1982 if (shift == ATA_SHIFT_UDMA) {
1983 mask = ap->udma_mask;
1984 if (ata_dev_present(master)) {
1985 mask &= (master->id[ATA_ID_UDMA_MODES] & 0xff);
1986 if (ata_dma_blacklisted(ap, master)) {
1987 mask = 0;
1988 ata_pr_blacklisted(ap, master);
1989 }
1990 }
1991 if (ata_dev_present(slave)) {
1992 mask &= (slave->id[ATA_ID_UDMA_MODES] & 0xff);
1993 if (ata_dma_blacklisted(ap, slave)) {
1994 mask = 0;
1995 ata_pr_blacklisted(ap, slave);
1996 }
1997 }
1998 }
1999 else if (shift == ATA_SHIFT_MWDMA) {
2000 mask = ap->mwdma_mask;
2001 if (ata_dev_present(master)) {
2002 mask &= (master->id[ATA_ID_MWDMA_MODES] & 0x07);
2003 if (ata_dma_blacklisted(ap, master)) {
2004 mask = 0;
2005 ata_pr_blacklisted(ap, master);
2006 }
2007 }
2008 if (ata_dev_present(slave)) {
2009 mask &= (slave->id[ATA_ID_MWDMA_MODES] & 0x07);
2010 if (ata_dma_blacklisted(ap, slave)) {
2011 mask = 0;
2012 ata_pr_blacklisted(ap, slave);
2013 }
2014 }
2015 }
2016 else if (shift == ATA_SHIFT_PIO) {
2017 mask = ap->pio_mask;
2018 if (ata_dev_present(master)) {
2019 /* spec doesn't return explicit support for
2020 * PIO0-2, so we fake it
2021 */
2022 u16 tmp_mode = master->id[ATA_ID_PIO_MODES] & 0x03;
2023 tmp_mode <<= 3;
2024 tmp_mode |= 0x7;
2025 mask &= tmp_mode;
2026 }
2027 if (ata_dev_present(slave)) {
2028 /* spec doesn't return explicit support for
2029 * PIO0-2, so we fake it
2030 */
2031 u16 tmp_mode = slave->id[ATA_ID_PIO_MODES] & 0x03;
2032 tmp_mode <<= 3;
2033 tmp_mode |= 0x7;
2034 mask &= tmp_mode;
2035 }
2036 }
2037 else {
2038 mask = 0xffffffff; /* shut up compiler warning */
2039 BUG();
2040 }
2041
2042 return mask;
2043 }
2044
2045 /* find greatest bit */
2046 static int fgb(u32 bitmap)
2047 {
2048 unsigned int i;
2049 int x = -1;
2050
2051 for (i = 0; i < 32; i++)
2052 if (bitmap & (1 << i))
2053 x = i;
2054
2055 return x;
2056 }
2057
2058 /**
2059 * ata_choose_xfer_mode - attempt to find best transfer mode
2060 * @ap: Port for which an xfer mode will be selected
2061 * @xfer_mode_out: (output) SET FEATURES - XFER MODE code
2062 * @xfer_shift_out: (output) bit shift that selects this mode
2063 *
2064 * Based on host and device capabilities, determine the
2065 * maximum transfer mode that is amenable to all.
2066 *
2067 * LOCKING:
2068 * PCI/etc. bus probe sem.
2069 *
2070 * RETURNS:
2071 * Zero on success, negative on error.
2072 */
2073
2074 static int ata_choose_xfer_mode(struct ata_port *ap,
2075 u8 *xfer_mode_out,
2076 unsigned int *xfer_shift_out)
2077 {
2078 unsigned int mask, shift;
2079 int x, i;
2080
2081 for (i = 0; i < ARRAY_SIZE(xfer_mode_classes); i++) {
2082 shift = xfer_mode_classes[i].shift;
2083 mask = ata_get_mode_mask(ap, shift);
2084
2085 x = fgb(mask);
2086 if (x >= 0) {
2087 *xfer_mode_out = xfer_mode_classes[i].base + x;
2088 *xfer_shift_out = shift;
2089 return 0;
2090 }
2091 }
2092
2093 return -1;
2094 }
2095
2096 /**
2097 * ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command
2098 * @ap: Port associated with device @dev
2099 * @dev: Device to which command will be sent
2100 *
2101 * Issue SET FEATURES - XFER MODE command to device @dev
2102 * on port @ap.
2103 *
2104 * LOCKING:
2105 * PCI/etc. bus probe sem.
2106 */
2107
2108 static void ata_dev_set_xfermode(struct ata_port *ap, struct ata_device *dev)
2109 {
2110 DECLARE_COMPLETION(wait);
2111 struct ata_queued_cmd *qc;
2112 int rc;
2113 unsigned long flags;
2114
2115 /* set up set-features taskfile */
2116 DPRINTK("set features - xfer mode\n");
2117
2118 qc = ata_qc_new_init(ap, dev);
2119 BUG_ON(qc == NULL);
2120
2121 qc->tf.command = ATA_CMD_SET_FEATURES;
2122 qc->tf.feature = SETFEATURES_XFER;
2123 qc->tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
2124 qc->tf.protocol = ATA_PROT_NODATA;
2125 qc->tf.nsect = dev->xfer_mode;
2126
2127 qc->waiting = &wait;
2128 qc->complete_fn = ata_qc_complete_noop;
2129
2130 spin_lock_irqsave(&ap->host_set->lock, flags);
2131 rc = ata_qc_issue(qc);
2132 spin_unlock_irqrestore(&ap->host_set->lock, flags);
2133
2134 if (rc)
2135 ata_port_disable(ap);
2136 else
2137 wait_for_completion(&wait);
2138
2139 DPRINTK("EXIT\n");
2140 }
2141
2142 /**
2143 * ata_sg_clean - Unmap DMA memory associated with command
2144 * @qc: Command containing DMA memory to be released
2145 *
2146 * Unmap all mapped DMA memory associated with this command.
2147 *
2148 * LOCKING:
2149 * spin_lock_irqsave(host_set lock)
2150 */
2151
2152 static void ata_sg_clean(struct ata_queued_cmd *qc)
2153 {
2154 struct ata_port *ap = qc->ap;
2155 struct scatterlist *sg = qc->sg;
2156 int dir = qc->dma_dir;
2157
2158 assert(qc->flags & ATA_QCFLAG_DMAMAP);
2159 assert(sg != NULL);
2160
2161 if (qc->flags & ATA_QCFLAG_SINGLE)
2162 assert(qc->n_elem == 1);
2163
2164 DPRINTK("unmapping %u sg elements\n", qc->n_elem);
2165
2166 if (qc->flags & ATA_QCFLAG_SG)
2167 dma_unmap_sg(ap->host_set->dev, sg, qc->n_elem, dir);
2168 else
2169 dma_unmap_single(ap->host_set->dev, sg_dma_address(&sg[0]),
2170 sg_dma_len(&sg[0]), dir);
2171
2172 qc->flags &= ~ATA_QCFLAG_DMAMAP;
2173 qc->sg = NULL;
2174 }
2175
2176 /**
2177 * ata_fill_sg - Fill PCI IDE PRD table
2178 * @qc: Metadata associated with taskfile to be transferred
2179 *
2180 * Fill PCI IDE PRD (scatter-gather) table with segments
2181 * associated with the current disk command.
2182 *
2183 * LOCKING:
2184 * spin_lock_irqsave(host_set lock)
2185 *
2186 */
2187 static void ata_fill_sg(struct ata_queued_cmd *qc)
2188 {
2189 struct scatterlist *sg = qc->sg;
2190 struct ata_port *ap = qc->ap;
2191 unsigned int idx, nelem;
2192
2193 assert(sg != NULL);
2194 assert(qc->n_elem > 0);
2195
2196 idx = 0;
2197 for (nelem = qc->n_elem; nelem; nelem--,sg++) {
2198 u32 addr, offset;
2199 u32 sg_len, len;
2200
2201 /* determine if physical DMA addr spans 64K boundary.
2202 * Note h/w doesn't support 64-bit, so we unconditionally
2203 * truncate dma_addr_t to u32.
2204 */
2205 addr = (u32) sg_dma_address(sg);
2206 sg_len = sg_dma_len(sg);
2207
2208 while (sg_len) {
2209 offset = addr & 0xffff;
2210 len = sg_len;
2211 if ((offset + sg_len) > 0x10000)
2212 len = 0x10000 - offset;
2213
2214 ap->prd[idx].addr = cpu_to_le32(addr);
2215 ap->prd[idx].flags_len = cpu_to_le32(len & 0xffff);
2216 VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", idx, addr, len);
2217
2218 idx++;
2219 sg_len -= len;
2220 addr += len;
2221 }
2222 }
2223
2224 if (idx)
2225 ap->prd[idx - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT);
2226 }
2227 /**
2228 * ata_check_atapi_dma - Check whether ATAPI DMA can be supported
2229 * @qc: Metadata associated with taskfile to check
2230 *
2231 * Allow low-level driver to filter ATA PACKET commands, returning
2232 * a status indicating whether or not it is OK to use DMA for the
2233 * supplied PACKET command.
2234 *
2235 * LOCKING:
2236 * spin_lock_irqsave(host_set lock)
2237 *
2238 * RETURNS: 0 when ATAPI DMA can be used
2239 * nonzero otherwise
2240 */
2241 int ata_check_atapi_dma(struct ata_queued_cmd *qc)
2242 {
2243 struct ata_port *ap = qc->ap;
2244 int rc = 0; /* Assume ATAPI DMA is OK by default */
2245
2246 if (ap->ops->check_atapi_dma)
2247 rc = ap->ops->check_atapi_dma(qc);
2248
2249 return rc;
2250 }
2251 /**
2252 * ata_qc_prep - Prepare taskfile for submission
2253 * @qc: Metadata associated with taskfile to be prepared
2254 *
2255 * Prepare ATA taskfile for submission.
2256 *
2257 * LOCKING:
2258 * spin_lock_irqsave(host_set lock)
2259 */
2260 void ata_qc_prep(struct ata_queued_cmd *qc)
2261 {
2262 if (!(qc->flags & ATA_QCFLAG_DMAMAP))
2263 return;
2264
2265 ata_fill_sg(qc);
2266 }
2267
2268 /**
2269 * ata_sg_init_one - Associate command with memory buffer
2270 * @qc: Command to be associated
2271 * @buf: Memory buffer
2272 * @buflen: Length of memory buffer, in bytes.
2273 *
2274 * Initialize the data-related elements of queued_cmd @qc
2275 * to point to a single memory buffer, @buf of byte length @buflen.
2276 *
2277 * LOCKING:
2278 * spin_lock_irqsave(host_set lock)
2279 */
2280
2281 void ata_sg_init_one(struct ata_queued_cmd *qc, void *buf, unsigned int buflen)
2282 {
2283 struct scatterlist *sg;
2284
2285 qc->flags |= ATA_QCFLAG_SINGLE;
2286
2287 memset(&qc->sgent, 0, sizeof(qc->sgent));
2288 qc->sg = &qc->sgent;
2289 qc->n_elem = 1;
2290 qc->buf_virt = buf;
2291
2292 sg = qc->sg;
2293 sg->page = virt_to_page(buf);
2294 sg->offset = (unsigned long) buf & ~PAGE_MASK;
2295 sg->length = buflen;
2296 }
2297
2298 /**
2299 * ata_sg_init - Associate command with scatter-gather table.
2300 * @qc: Command to be associated
2301 * @sg: Scatter-gather table.
2302 * @n_elem: Number of elements in s/g table.
2303 *
2304 * Initialize the data-related elements of queued_cmd @qc
2305 * to point to a scatter-gather table @sg, containing @n_elem
2306 * elements.
2307 *
2308 * LOCKING:
2309 * spin_lock_irqsave(host_set lock)
2310 */
2311
2312 void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg,
2313 unsigned int n_elem)
2314 {
2315 qc->flags |= ATA_QCFLAG_SG;
2316 qc->sg = sg;
2317 qc->n_elem = n_elem;
2318 }
2319
2320 /**
2321 * ata_sg_setup_one - DMA-map the memory buffer associated with a command.
2322 * @qc: Command with memory buffer to be mapped.
2323 *
2324 * DMA-map the memory buffer associated with queued_cmd @qc.
2325 *
2326 * LOCKING:
2327 * spin_lock_irqsave(host_set lock)
2328 *
2329 * RETURNS:
2330 * Zero on success, negative on error.
2331 */
2332
2333 static int ata_sg_setup_one(struct ata_queued_cmd *qc)
2334 {
2335 struct ata_port *ap = qc->ap;
2336 int dir = qc->dma_dir;
2337 struct scatterlist *sg = qc->sg;
2338 dma_addr_t dma_address;
2339
2340 dma_address = dma_map_single(ap->host_set->dev, qc->buf_virt,
2341 sg->length, dir);
2342 if (dma_mapping_error(dma_address))
2343 return -1;
2344
2345 sg_dma_address(sg) = dma_address;
2346 sg_dma_len(sg) = sg->length;
2347
2348 DPRINTK("mapped buffer of %d bytes for %s\n", sg_dma_len(sg),
2349 qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
2350
2351 return 0;
2352 }
2353
2354 /**
2355 * ata_sg_setup - DMA-map the scatter-gather table associated with a command.
2356 * @qc: Command with scatter-gather table to be mapped.
2357 *
2358 * DMA-map the scatter-gather table associated with queued_cmd @qc.
2359 *
2360 * LOCKING:
2361 * spin_lock_irqsave(host_set lock)
2362 *
2363 * RETURNS:
2364 * Zero on success, negative on error.
2365 *
2366 */
2367
2368 static int ata_sg_setup(struct ata_queued_cmd *qc)
2369 {
2370 struct ata_port *ap = qc->ap;
2371 struct scatterlist *sg = qc->sg;
2372 int n_elem, dir;
2373
2374 VPRINTK("ENTER, ata%u\n", ap->id);
2375 assert(qc->flags & ATA_QCFLAG_SG);
2376
2377 dir = qc->dma_dir;
2378 n_elem = dma_map_sg(ap->host_set->dev, sg, qc->n_elem, dir);
2379 if (n_elem < 1)
2380 return -1;
2381
2382 DPRINTK("%d sg elements mapped\n", n_elem);
2383
2384 qc->n_elem = n_elem;
2385
2386 return 0;
2387 }
2388
2389 /**
2390 * ata_poll_qc_complete - turn irq back on and finish qc
2391 * @qc: Command to complete
2392 * @drv_stat: ATA status register content
2393 *
2394 * LOCKING:
2395 * None. (grabs host lock)
2396 */
2397
2398 void ata_poll_qc_complete(struct ata_queued_cmd *qc, u8 drv_stat)
2399 {
2400 struct ata_port *ap = qc->ap;
2401 unsigned long flags;
2402
2403 spin_lock_irqsave(&ap->host_set->lock, flags);
2404 ap->flags &= ~ATA_FLAG_NOINTR;
2405 ata_irq_on(ap);
2406 ata_qc_complete(qc, drv_stat);
2407 spin_unlock_irqrestore(&ap->host_set->lock, flags);
2408 }
2409
2410 /**
2411 * ata_pio_poll -
2412 * @ap:
2413 *
2414 * LOCKING:
2415 * None. (executing in kernel thread context)
2416 *
2417 * RETURNS:
2418 *
2419 */
2420
2421 static unsigned long ata_pio_poll(struct ata_port *ap)
2422 {
2423 u8 status;
2424 unsigned int poll_state = PIO_ST_UNKNOWN;
2425 unsigned int reg_state = PIO_ST_UNKNOWN;
2426 const unsigned int tmout_state = PIO_ST_TMOUT;
2427
2428 switch (ap->pio_task_state) {
2429 case PIO_ST:
2430 case PIO_ST_POLL:
2431 poll_state = PIO_ST_POLL;
2432 reg_state = PIO_ST;
2433 break;
2434 case PIO_ST_LAST:
2435 case PIO_ST_LAST_POLL:
2436 poll_state = PIO_ST_LAST_POLL;
2437 reg_state = PIO_ST_LAST;
2438 break;
2439 default:
2440 BUG();
2441 break;
2442 }
2443
2444 status = ata_chk_status(ap);
2445 if (status & ATA_BUSY) {
2446 if (time_after(jiffies, ap->pio_task_timeout)) {
2447 ap->pio_task_state = tmout_state;
2448 return 0;
2449 }
2450 ap->pio_task_state = poll_state;
2451 return ATA_SHORT_PAUSE;
2452 }
2453
2454 ap->pio_task_state = reg_state;
2455 return 0;
2456 }
2457
2458 /**
2459 * ata_pio_complete -
2460 * @ap:
2461 *
2462 * LOCKING:
2463 * None. (executing in kernel thread context)
2464 */
2465
2466 static void ata_pio_complete (struct ata_port *ap)
2467 {
2468 struct ata_queued_cmd *qc;
2469 u8 drv_stat;
2470
2471 /*
2472 * This is purely heuristic. This is a fast path. Sometimes when
2473 * we enter, BSY will be cleared in a chk-status or two. If not,
2474 * the drive is probably seeking or something. Snooze for a couple
2475 * msecs, then chk-status again. If still busy, fall back to
2476 * PIO_ST_POLL state.
2477 */
2478 drv_stat = ata_busy_wait(ap, ATA_BUSY | ATA_DRQ, 10);
2479 if (drv_stat & (ATA_BUSY | ATA_DRQ)) {
2480 msleep(2);
2481 drv_stat = ata_busy_wait(ap, ATA_BUSY | ATA_DRQ, 10);
2482 if (drv_stat & (ATA_BUSY | ATA_DRQ)) {
2483 ap->pio_task_state = PIO_ST_LAST_POLL;
2484 ap->pio_task_timeout = jiffies + ATA_TMOUT_PIO;
2485 return;
2486 }
2487 }
2488
2489 drv_stat = ata_wait_idle(ap);
2490 if (!ata_ok(drv_stat)) {
2491 ap->pio_task_state = PIO_ST_ERR;
2492 return;
2493 }
2494
2495 qc = ata_qc_from_tag(ap, ap->active_tag);
2496 assert(qc != NULL);
2497
2498 ap->pio_task_state = PIO_ST_IDLE;
2499
2500 ata_poll_qc_complete(qc, drv_stat);
2501 }
2502
2503
2504 /**
2505 * swap_buf_le16 -
2506 * @buf: Buffer to swap
2507 * @buf_words: Number of 16-bit words in buffer.
2508 *
2509 * Swap halves of 16-bit words if needed to convert from
2510 * little-endian byte order to native cpu byte order, or
2511 * vice-versa.
2512 *
2513 * LOCKING:
2514 */
2515 void swap_buf_le16(u16 *buf, unsigned int buf_words)
2516 {
2517 #ifdef __BIG_ENDIAN
2518 unsigned int i;
2519
2520 for (i = 0; i < buf_words; i++)
2521 buf[i] = le16_to_cpu(buf[i]);
2522 #endif /* __BIG_ENDIAN */
2523 }
2524
2525 /**
2526 * ata_mmio_data_xfer - Transfer data by MMIO
2527 * @ap: port to read/write
2528 * @buf: data buffer
2529 * @buflen: buffer length
2530 * @do_write: read/write
2531 *
2532 * Transfer data from/to the device data register by MMIO.
2533 *
2534 * LOCKING:
2535 * Inherited from caller.
2536 *
2537 */
2538
2539 static void ata_mmio_data_xfer(struct ata_port *ap, unsigned char *buf,
2540 unsigned int buflen, int write_data)
2541 {
2542 unsigned int i;
2543 unsigned int words = buflen >> 1;
2544 u16 *buf16 = (u16 *) buf;
2545 void __iomem *mmio = (void __iomem *)ap->ioaddr.data_addr;
2546
2547 /* Transfer multiple of 2 bytes */
2548 if (write_data) {
2549 for (i = 0; i < words; i++)
2550 writew(le16_to_cpu(buf16[i]), mmio);
2551 } else {
2552 for (i = 0; i < words; i++)
2553 buf16[i] = cpu_to_le16(readw(mmio));
2554 }
2555
2556 /* Transfer trailing 1 byte, if any. */
2557 if (unlikely(buflen & 0x01)) {
2558 u16 align_buf[1] = { 0 };
2559 unsigned char *trailing_buf = buf + buflen - 1;
2560
2561 if (write_data) {
2562 memcpy(align_buf, trailing_buf, 1);
2563 writew(le16_to_cpu(align_buf[0]), mmio);
2564 } else {
2565 align_buf[0] = cpu_to_le16(readw(mmio));
2566 memcpy(trailing_buf, align_buf, 1);
2567 }
2568 }
2569 }
2570
2571 /**
2572 * ata_pio_data_xfer - Transfer data by PIO
2573 * @ap: port to read/write
2574 * @buf: data buffer
2575 * @buflen: buffer length
2576 * @do_write: read/write
2577 *
2578 * Transfer data from/to the device data register by PIO.
2579 *
2580 * LOCKING:
2581 * Inherited from caller.
2582 *
2583 */
2584
2585 static void ata_pio_data_xfer(struct ata_port *ap, unsigned char *buf,
2586 unsigned int buflen, int write_data)
2587 {
2588 unsigned int words = buflen >> 1;
2589
2590 /* Transfer multiple of 2 bytes */
2591 if (write_data)
2592 outsw(ap->ioaddr.data_addr, buf, words);
2593 else
2594 insw(ap->ioaddr.data_addr, buf, words);
2595
2596 /* Transfer trailing 1 byte, if any. */
2597 if (unlikely(buflen & 0x01)) {
2598 u16 align_buf[1] = { 0 };
2599 unsigned char *trailing_buf = buf + buflen - 1;
2600
2601 if (write_data) {
2602 memcpy(align_buf, trailing_buf, 1);
2603 outw(le16_to_cpu(align_buf[0]), ap->ioaddr.data_addr);
2604 } else {
2605 align_buf[0] = cpu_to_le16(inw(ap->ioaddr.data_addr));
2606 memcpy(trailing_buf, align_buf, 1);
2607 }
2608 }
2609 }
2610
2611 /**
2612 * ata_data_xfer - Transfer data from/to the data register.
2613 * @ap: port to read/write
2614 * @buf: data buffer
2615 * @buflen: buffer length
2616 * @do_write: read/write
2617 *
2618 * Transfer data from/to the device data register.
2619 *
2620 * LOCKING:
2621 * Inherited from caller.
2622 *
2623 */
2624
2625 static void ata_data_xfer(struct ata_port *ap, unsigned char *buf,
2626 unsigned int buflen, int do_write)
2627 {
2628 if (ap->flags & ATA_FLAG_MMIO)
2629 ata_mmio_data_xfer(ap, buf, buflen, do_write);
2630 else
2631 ata_pio_data_xfer(ap, buf, buflen, do_write);
2632 }
2633
2634 /**
2635 * ata_pio_sector - Transfer ATA_SECT_SIZE (512 bytes) of data.
2636 * @qc: Command on going
2637 *
2638 * Transfer ATA_SECT_SIZE of data from/to the ATA device.
2639 *
2640 * LOCKING:
2641 * Inherited from caller.
2642 */
2643
2644 static void ata_pio_sector(struct ata_queued_cmd *qc)
2645 {
2646 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
2647 struct scatterlist *sg = qc->sg;
2648 struct ata_port *ap = qc->ap;
2649 struct page *page;
2650 unsigned int offset;
2651 unsigned char *buf;
2652
2653 if (qc->cursect == (qc->nsect - 1))
2654 ap->pio_task_state = PIO_ST_LAST;
2655
2656 page = sg[qc->cursg].page;
2657 offset = sg[qc->cursg].offset + qc->cursg_ofs * ATA_SECT_SIZE;
2658
2659 /* get the current page and offset */
2660 page = nth_page(page, (offset >> PAGE_SHIFT));
2661 offset %= PAGE_SIZE;
2662
2663 buf = kmap(page) + offset;
2664
2665 qc->cursect++;
2666 qc->cursg_ofs++;
2667
2668 if ((qc->cursg_ofs * ATA_SECT_SIZE) == (&sg[qc->cursg])->length) {
2669 qc->cursg++;
2670 qc->cursg_ofs = 0;
2671 }
2672
2673 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
2674
2675 /* do the actual data transfer */
2676 do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
2677 ata_data_xfer(ap, buf, ATA_SECT_SIZE, do_write);
2678
2679 kunmap(page);
2680 }
2681
2682 /**
2683 * __atapi_pio_bytes - Transfer data from/to the ATAPI device.
2684 * @qc: Command on going
2685 * @bytes: number of bytes
2686 *
2687 * Transfer Transfer data from/to the ATAPI device.
2688 *
2689 * LOCKING:
2690 * Inherited from caller.
2691 *
2692 */
2693
2694 static void __atapi_pio_bytes(struct ata_queued_cmd *qc, unsigned int bytes)
2695 {
2696 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
2697 struct scatterlist *sg = qc->sg;
2698 struct ata_port *ap = qc->ap;
2699 struct page *page;
2700 unsigned char *buf;
2701 unsigned int offset, count;
2702
2703 if (qc->curbytes + bytes >= qc->nbytes)
2704 ap->pio_task_state = PIO_ST_LAST;
2705
2706 next_sg:
2707 if (unlikely(qc->cursg >= qc->n_elem)) {
2708 /*
2709 * The end of qc->sg is reached and the device expects
2710 * more data to transfer. In order not to overrun qc->sg
2711 * and fulfill length specified in the byte count register,
2712 * - for read case, discard trailing data from the device
2713 * - for write case, padding zero data to the device
2714 */
2715 u16 pad_buf[1] = { 0 };
2716 unsigned int words = bytes >> 1;
2717 unsigned int i;
2718
2719 if (words) /* warning if bytes > 1 */
2720 printk(KERN_WARNING "ata%u: %u bytes trailing data\n",
2721 ap->id, bytes);
2722
2723 for (i = 0; i < words; i++)
2724 ata_data_xfer(ap, (unsigned char*)pad_buf, 2, do_write);
2725
2726 ap->pio_task_state = PIO_ST_LAST;
2727 return;
2728 }
2729
2730 sg = &qc->sg[qc->cursg];
2731
2732 page = sg->page;
2733 offset = sg->offset + qc->cursg_ofs;
2734
2735 /* get the current page and offset */
2736 page = nth_page(page, (offset >> PAGE_SHIFT));
2737 offset %= PAGE_SIZE;
2738
2739 /* don't overrun current sg */
2740 count = min(sg->length - qc->cursg_ofs, bytes);
2741
2742 /* don't cross page boundaries */
2743 count = min(count, (unsigned int)PAGE_SIZE - offset);
2744
2745 buf = kmap(page) + offset;
2746
2747 bytes -= count;
2748 qc->curbytes += count;
2749 qc->cursg_ofs += count;
2750
2751 if (qc->cursg_ofs == sg->length) {
2752 qc->cursg++;
2753 qc->cursg_ofs = 0;
2754 }
2755
2756 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
2757
2758 /* do the actual data transfer */
2759 ata_data_xfer(ap, buf, count, do_write);
2760
2761 kunmap(page);
2762
2763 if (bytes)
2764 goto next_sg;
2765 }
2766
2767 /**
2768 * atapi_pio_bytes - Transfer data from/to the ATAPI device.
2769 * @qc: Command on going
2770 *
2771 * Transfer Transfer data from/to the ATAPI device.
2772 *
2773 * LOCKING:
2774 * Inherited from caller.
2775 *
2776 */
2777
2778 static void atapi_pio_bytes(struct ata_queued_cmd *qc)
2779 {
2780 struct ata_port *ap = qc->ap;
2781 struct ata_device *dev = qc->dev;
2782 unsigned int ireason, bc_lo, bc_hi, bytes;
2783 int i_write, do_write = (qc->tf.flags & ATA_TFLAG_WRITE) ? 1 : 0;
2784
2785 ap->ops->tf_read(ap, &qc->tf);
2786 ireason = qc->tf.nsect;
2787 bc_lo = qc->tf.lbam;
2788 bc_hi = qc->tf.lbah;
2789 bytes = (bc_hi << 8) | bc_lo;
2790
2791 /* shall be cleared to zero, indicating xfer of data */
2792 if (ireason & (1 << 0))
2793 goto err_out;
2794
2795 /* make sure transfer direction matches expected */
2796 i_write = ((ireason & (1 << 1)) == 0) ? 1 : 0;
2797 if (do_write != i_write)
2798 goto err_out;
2799
2800 __atapi_pio_bytes(qc, bytes);
2801
2802 return;
2803
2804 err_out:
2805 printk(KERN_INFO "ata%u: dev %u: ATAPI check failed\n",
2806 ap->id, dev->devno);
2807 ap->pio_task_state = PIO_ST_ERR;
2808 }
2809
2810 /**
2811 * ata_pio_sector -
2812 * @ap:
2813 *
2814 * LOCKING:
2815 * None. (executing in kernel thread context)
2816 */
2817
2818 static void ata_pio_block(struct ata_port *ap)
2819 {
2820 struct ata_queued_cmd *qc;
2821 u8 status;
2822
2823 /*
2824 * This is purely hueristic. This is a fast path.
2825 * Sometimes when we enter, BSY will be cleared in
2826 * a chk-status or two. If not, the drive is probably seeking
2827 * or something. Snooze for a couple msecs, then
2828 * chk-status again. If still busy, fall back to
2829 * PIO_ST_POLL state.
2830 */
2831 status = ata_busy_wait(ap, ATA_BUSY, 5);
2832 if (status & ATA_BUSY) {
2833 msleep(2);
2834 status = ata_busy_wait(ap, ATA_BUSY, 10);
2835 if (status & ATA_BUSY) {
2836 ap->pio_task_state = PIO_ST_POLL;
2837 ap->pio_task_timeout = jiffies + ATA_TMOUT_PIO;
2838 return;
2839 }
2840 }
2841
2842 qc = ata_qc_from_tag(ap, ap->active_tag);
2843 assert(qc != NULL);
2844
2845 if (is_atapi_taskfile(&qc->tf)) {
2846 /* no more data to transfer or unsupported ATAPI command */
2847 if ((status & ATA_DRQ) == 0) {
2848 ap->pio_task_state = PIO_ST_IDLE;
2849
2850 ata_poll_qc_complete(qc, status);
2851 return;
2852 }
2853
2854 atapi_pio_bytes(qc);
2855 } else {
2856 /* handle BSY=0, DRQ=0 as error */
2857 if ((status & ATA_DRQ) == 0) {
2858 ap->pio_task_state = PIO_ST_ERR;
2859 return;
2860 }
2861
2862 ata_pio_sector(qc);
2863 }
2864 }
2865
2866 static void ata_pio_error(struct ata_port *ap)
2867 {
2868 struct ata_queued_cmd *qc;
2869 u8 drv_stat;
2870
2871 qc = ata_qc_from_tag(ap, ap->active_tag);
2872 assert(qc != NULL);
2873
2874 drv_stat = ata_chk_status(ap);
2875 printk(KERN_WARNING "ata%u: PIO error, drv_stat 0x%x\n",
2876 ap->id, drv_stat);
2877
2878 ap->pio_task_state = PIO_ST_IDLE;
2879
2880 ata_poll_qc_complete(qc, drv_stat | ATA_ERR);
2881 }
2882
2883 static void ata_pio_task(void *_data)
2884 {
2885 struct ata_port *ap = _data;
2886 unsigned long timeout = 0;
2887
2888 switch (ap->pio_task_state) {
2889 case PIO_ST_IDLE:
2890 return;
2891
2892 case PIO_ST:
2893 ata_pio_block(ap);
2894 break;
2895
2896 case PIO_ST_LAST:
2897 ata_pio_complete(ap);
2898 break;
2899
2900 case PIO_ST_POLL:
2901 case PIO_ST_LAST_POLL:
2902 timeout = ata_pio_poll(ap);
2903 break;
2904
2905 case PIO_ST_TMOUT:
2906 case PIO_ST_ERR:
2907 ata_pio_error(ap);
2908 return;
2909 }
2910
2911 if (timeout)
2912 queue_delayed_work(ata_wq, &ap->pio_task,
2913 timeout);
2914 else
2915 queue_work(ata_wq, &ap->pio_task);
2916 }
2917
2918 static void atapi_request_sense(struct ata_port *ap, struct ata_device *dev,
2919 struct scsi_cmnd *cmd)
2920 {
2921 DECLARE_COMPLETION(wait);
2922 struct ata_queued_cmd *qc;
2923 unsigned long flags;
2924 int rc;
2925
2926 DPRINTK("ATAPI request sense\n");
2927
2928 qc = ata_qc_new_init(ap, dev);
2929 BUG_ON(qc == NULL);
2930
2931 /* FIXME: is this needed? */
2932 memset(cmd->sense_buffer, 0, sizeof(cmd->sense_buffer));
2933
2934 ata_sg_init_one(qc, cmd->sense_buffer, sizeof(cmd->sense_buffer));
2935 qc->dma_dir = DMA_FROM_DEVICE;
2936
2937 memset(&qc->cdb, 0, ap->cdb_len);
2938 qc->cdb[0] = REQUEST_SENSE;
2939 qc->cdb[4] = SCSI_SENSE_BUFFERSIZE;
2940
2941 qc->tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
2942 qc->tf.command = ATA_CMD_PACKET;
2943
2944 qc->tf.protocol = ATA_PROT_ATAPI;
2945 qc->tf.lbam = (8 * 1024) & 0xff;
2946 qc->tf.lbah = (8 * 1024) >> 8;
2947 qc->nbytes = SCSI_SENSE_BUFFERSIZE;
2948
2949 qc->waiting = &wait;
2950 qc->complete_fn = ata_qc_complete_noop;
2951
2952 spin_lock_irqsave(&ap->host_set->lock, flags);
2953 rc = ata_qc_issue(qc);
2954 spin_unlock_irqrestore(&ap->host_set->lock, flags);
2955
2956 if (rc)
2957 ata_port_disable(ap);
2958 else
2959 wait_for_completion(&wait);
2960
2961 DPRINTK("EXIT\n");
2962 }
2963
2964 /**
2965 * ata_qc_timeout - Handle timeout of queued command
2966 * @qc: Command that timed out
2967 *
2968 * Some part of the kernel (currently, only the SCSI layer)
2969 * has noticed that the active command on port @ap has not
2970 * completed after a specified length of time. Handle this
2971 * condition by disabling DMA (if necessary) and completing
2972 * transactions, with error if necessary.
2973 *
2974 * This also handles the case of the "lost interrupt", where
2975 * for some reason (possibly hardware bug, possibly driver bug)
2976 * an interrupt was not delivered to the driver, even though the
2977 * transaction completed successfully.
2978 *
2979 * LOCKING:
2980 * Inherited from SCSI layer (none, can sleep)
2981 */
2982
2983 static void ata_qc_timeout(struct ata_queued_cmd *qc)
2984 {
2985 struct ata_port *ap = qc->ap;
2986 struct ata_host_set *host_set = ap->host_set;
2987 struct ata_device *dev = qc->dev;
2988 u8 host_stat = 0, drv_stat;
2989 unsigned long flags;
2990
2991 DPRINTK("ENTER\n");
2992
2993 /* FIXME: doesn't this conflict with timeout handling? */
2994 if (qc->dev->class == ATA_DEV_ATAPI && qc->scsicmd) {
2995 struct scsi_cmnd *cmd = qc->scsicmd;
2996
2997 if (!(cmd->eh_eflags & SCSI_EH_CANCEL_CMD)) {
2998
2999 /* finish completing original command */
3000 spin_lock_irqsave(&host_set->lock, flags);
3001 __ata_qc_complete(qc);
3002 spin_unlock_irqrestore(&host_set->lock, flags);
3003
3004 atapi_request_sense(ap, dev, cmd);
3005
3006 cmd->result = (CHECK_CONDITION << 1) | (DID_OK << 16);
3007 scsi_finish_command(cmd);
3008
3009 goto out;
3010 }
3011 }
3012
3013 spin_lock_irqsave(&host_set->lock, flags);
3014
3015 /* hack alert! We cannot use the supplied completion
3016 * function from inside the ->eh_strategy_handler() thread.
3017 * libata is the only user of ->eh_strategy_handler() in
3018 * any kernel, so the default scsi_done() assumes it is
3019 * not being called from the SCSI EH.
3020 */
3021 qc->scsidone = scsi_finish_command;
3022
3023 switch (qc->tf.protocol) {
3024
3025 case ATA_PROT_DMA:
3026 case ATA_PROT_ATAPI_DMA:
3027 host_stat = ap->ops->bmdma_status(ap);
3028
3029 /* before we do anything else, clear DMA-Start bit */
3030 ap->ops->bmdma_stop(qc);
3031
3032 /* fall through */
3033
3034 default:
3035 ata_altstatus(ap);
3036 drv_stat = ata_chk_status(ap);
3037
3038 /* ack bmdma irq events */
3039 ap->ops->irq_clear(ap);
3040
3041 printk(KERN_ERR "ata%u: command 0x%x timeout, stat 0x%x host_stat 0x%x\n",
3042 ap->id, qc->tf.command, drv_stat, host_stat);
3043
3044 /* complete taskfile transaction */
3045 ata_qc_complete(qc, drv_stat);
3046 break;
3047 }
3048
3049 spin_unlock_irqrestore(&host_set->lock, flags);
3050
3051 out:
3052 DPRINTK("EXIT\n");
3053 }
3054
3055 /**
3056 * ata_eng_timeout - Handle timeout of queued command
3057 * @ap: Port on which timed-out command is active
3058 *
3059 * Some part of the kernel (currently, only the SCSI layer)
3060 * has noticed that the active command on port @ap has not
3061 * completed after a specified length of time. Handle this
3062 * condition by disabling DMA (if necessary) and completing
3063 * transactions, with error if necessary.
3064 *
3065 * This also handles the case of the "lost interrupt", where
3066 * for some reason (possibly hardware bug, possibly driver bug)
3067 * an interrupt was not delivered to the driver, even though the
3068 * transaction completed successfully.
3069 *
3070 * LOCKING:
3071 * Inherited from SCSI layer (none, can sleep)
3072 */
3073
3074 void ata_eng_timeout(struct ata_port *ap)
3075 {
3076 struct ata_queued_cmd *qc;
3077
3078 DPRINTK("ENTER\n");
3079
3080 qc = ata_qc_from_tag(ap, ap->active_tag);
3081 if (!qc) {
3082 printk(KERN_ERR "ata%u: BUG: timeout without command\n",
3083 ap->id);
3084 goto out;
3085 }
3086
3087 ata_qc_timeout(qc);
3088
3089 out:
3090 DPRINTK("EXIT\n");
3091 }
3092
3093 /**
3094 * ata_qc_new - Request an available ATA command, for queueing
3095 * @ap: Port associated with device @dev
3096 * @dev: Device from whom we request an available command structure
3097 *
3098 * LOCKING:
3099 * None.
3100 */
3101
3102 static struct ata_queued_cmd *ata_qc_new(struct ata_port *ap)
3103 {
3104 struct ata_queued_cmd *qc = NULL;
3105 unsigned int i;
3106
3107 for (i = 0; i < ATA_MAX_QUEUE; i++)
3108 if (!test_and_set_bit(i, &ap->qactive)) {
3109 qc = ata_qc_from_tag(ap, i);
3110 break;
3111 }
3112
3113 if (qc)
3114 qc->tag = i;
3115
3116 return qc;
3117 }
3118
3119 /**
3120 * ata_qc_new_init - Request an available ATA command, and initialize it
3121 * @ap: Port associated with device @dev
3122 * @dev: Device from whom we request an available command structure
3123 *
3124 * LOCKING:
3125 * None.
3126 */
3127
3128 struct ata_queued_cmd *ata_qc_new_init(struct ata_port *ap,
3129 struct ata_device *dev)
3130 {
3131 struct ata_queued_cmd *qc;
3132
3133 qc = ata_qc_new(ap);
3134 if (qc) {
3135 qc->sg = NULL;
3136 qc->flags = 0;
3137 qc->scsicmd = NULL;
3138 qc->ap = ap;
3139 qc->dev = dev;
3140 qc->cursect = qc->cursg = qc->cursg_ofs = 0;
3141 qc->nsect = 0;
3142 qc->nbytes = qc->curbytes = 0;
3143
3144 ata_tf_init(ap, &qc->tf, dev->devno);
3145
3146 if (dev->flags & ATA_DFLAG_LBA48)
3147 qc->tf.flags |= ATA_TFLAG_LBA48;
3148 }
3149
3150 return qc;
3151 }
3152
3153 static int ata_qc_complete_noop(struct ata_queued_cmd *qc, u8 drv_stat)
3154 {
3155 return 0;
3156 }
3157
3158 static void __ata_qc_complete(struct ata_queued_cmd *qc)
3159 {
3160 struct ata_port *ap = qc->ap;
3161 unsigned int tag, do_clear = 0;
3162
3163 qc->flags = 0;
3164 tag = qc->tag;
3165 if (likely(ata_tag_valid(tag))) {
3166 if (tag == ap->active_tag)
3167 ap->active_tag = ATA_TAG_POISON;
3168 qc->tag = ATA_TAG_POISON;
3169 do_clear = 1;
3170 }
3171
3172 if (qc->waiting) {
3173 struct completion *waiting = qc->waiting;
3174 qc->waiting = NULL;
3175 complete(waiting);
3176 }
3177
3178 if (likely(do_clear))
3179 clear_bit(tag, &ap->qactive);
3180 }
3181
3182 /**
3183 * ata_qc_free - free unused ata_queued_cmd
3184 * @qc: Command to complete
3185 *
3186 * Designed to free unused ata_queued_cmd object
3187 * in case something prevents using it.
3188 *
3189 * LOCKING:
3190 * spin_lock_irqsave(host_set lock)
3191 *
3192 */
3193 void ata_qc_free(struct ata_queued_cmd *qc)
3194 {
3195 assert(qc != NULL); /* ata_qc_from_tag _might_ return NULL */
3196 assert(qc->waiting == NULL); /* nothing should be waiting */
3197
3198 __ata_qc_complete(qc);
3199 }
3200
3201 /**
3202 * ata_qc_complete - Complete an active ATA command
3203 * @qc: Command to complete
3204 * @drv_stat: ATA Status register contents
3205 *
3206 * Indicate to the mid and upper layers that an ATA
3207 * command has completed, with either an ok or not-ok status.
3208 *
3209 * LOCKING:
3210 * spin_lock_irqsave(host_set lock)
3211 *
3212 */
3213
3214 void ata_qc_complete(struct ata_queued_cmd *qc, u8 drv_stat)
3215 {
3216 int rc;
3217
3218 assert(qc != NULL); /* ata_qc_from_tag _might_ return NULL */
3219 assert(qc->flags & ATA_QCFLAG_ACTIVE);
3220
3221 if (likely(qc->flags & ATA_QCFLAG_DMAMAP))
3222 ata_sg_clean(qc);
3223
3224 /* atapi: mark qc as inactive to prevent the interrupt handler
3225 * from completing the command twice later, before the error handler
3226 * is called. (when rc != 0 and atapi request sense is needed)
3227 */
3228 qc->flags &= ~ATA_QCFLAG_ACTIVE;
3229
3230 /* call completion callback */
3231 rc = qc->complete_fn(qc, drv_stat);
3232
3233 /* if callback indicates not to complete command (non-zero),
3234 * return immediately
3235 */
3236 if (rc != 0)
3237 return;
3238
3239 __ata_qc_complete(qc);
3240
3241 VPRINTK("EXIT\n");
3242 }
3243
3244 static inline int ata_should_dma_map(struct ata_queued_cmd *qc)
3245 {
3246 struct ata_port *ap = qc->ap;
3247
3248 switch (qc->tf.protocol) {
3249 case ATA_PROT_DMA:
3250 case ATA_PROT_ATAPI_DMA:
3251 return 1;
3252
3253 case ATA_PROT_ATAPI:
3254 case ATA_PROT_PIO:
3255 case ATA_PROT_PIO_MULT:
3256 if (ap->flags & ATA_FLAG_PIO_DMA)
3257 return 1;
3258
3259 /* fall through */
3260
3261 default:
3262 return 0;
3263 }
3264
3265 /* never reached */
3266 }
3267
3268 /**
3269 * ata_qc_issue - issue taskfile to device
3270 * @qc: command to issue to device
3271 *
3272 * Prepare an ATA command to submission to device.
3273 * This includes mapping the data into a DMA-able
3274 * area, filling in the S/G table, and finally
3275 * writing the taskfile to hardware, starting the command.
3276 *
3277 * LOCKING:
3278 * spin_lock_irqsave(host_set lock)
3279 *
3280 * RETURNS:
3281 * Zero on success, negative on error.
3282 */
3283
3284 int ata_qc_issue(struct ata_queued_cmd *qc)
3285 {
3286 struct ata_port *ap = qc->ap;
3287
3288 if (ata_should_dma_map(qc)) {
3289 if (qc->flags & ATA_QCFLAG_SG) {
3290 if (ata_sg_setup(qc))
3291 goto err_out;
3292 } else if (qc->flags & ATA_QCFLAG_SINGLE) {
3293 if (ata_sg_setup_one(qc))
3294 goto err_out;
3295 }
3296 } else {
3297 qc->flags &= ~ATA_QCFLAG_DMAMAP;
3298 }
3299
3300 ap->ops->qc_prep(qc);
3301
3302 qc->ap->active_tag = qc->tag;
3303 qc->flags |= ATA_QCFLAG_ACTIVE;
3304
3305 return ap->ops->qc_issue(qc);
3306
3307 err_out:
3308 return -1;
3309 }
3310
3311
3312 /**
3313 * ata_qc_issue_prot - issue taskfile to device in proto-dependent manner
3314 * @qc: command to issue to device
3315 *
3316 * Using various libata functions and hooks, this function
3317 * starts an ATA command. ATA commands are grouped into
3318 * classes called "protocols", and issuing each type of protocol
3319 * is slightly different.
3320 *
3321 * May be used as the qc_issue() entry in ata_port_operations.
3322 *
3323 * LOCKING:
3324 * spin_lock_irqsave(host_set lock)
3325 *
3326 * RETURNS:
3327 * Zero on success, negative on error.
3328 */
3329
3330 int ata_qc_issue_prot(struct ata_queued_cmd *qc)
3331 {
3332 struct ata_port *ap = qc->ap;
3333
3334 ata_dev_select(ap, qc->dev->devno, 1, 0);
3335
3336 switch (qc->tf.protocol) {
3337 case ATA_PROT_NODATA:
3338 ata_tf_to_host_nolock(ap, &qc->tf);
3339 break;
3340
3341 case ATA_PROT_DMA:
3342 ap->ops->tf_load(ap, &qc->tf); /* load tf registers */
3343 ap->ops->bmdma_setup(qc); /* set up bmdma */
3344 ap->ops->bmdma_start(qc); /* initiate bmdma */
3345 break;
3346
3347 case ATA_PROT_PIO: /* load tf registers, initiate polling pio */
3348 ata_qc_set_polling(qc);
3349 ata_tf_to_host_nolock(ap, &qc->tf);
3350 ap->pio_task_state = PIO_ST;
3351 queue_work(ata_wq, &ap->pio_task);
3352 break;
3353
3354 case ATA_PROT_ATAPI:
3355 ata_qc_set_polling(qc);
3356 ata_tf_to_host_nolock(ap, &qc->tf);
3357 queue_work(ata_wq, &ap->packet_task);
3358 break;
3359
3360 case ATA_PROT_ATAPI_NODATA:
3361 ap->flags |= ATA_FLAG_NOINTR;
3362 ata_tf_to_host_nolock(ap, &qc->tf);
3363 queue_work(ata_wq, &ap->packet_task);
3364 break;
3365
3366 case ATA_PROT_ATAPI_DMA:
3367 ap->flags |= ATA_FLAG_NOINTR;
3368 ap->ops->tf_load(ap, &qc->tf); /* load tf registers */
3369 ap->ops->bmdma_setup(qc); /* set up bmdma */
3370 queue_work(ata_wq, &ap->packet_task);
3371 break;
3372
3373 default:
3374 WARN_ON(1);
3375 return -1;
3376 }
3377
3378 return 0;
3379 }
3380
3381 /**
3382 * ata_bmdma_setup_mmio - Set up PCI IDE BMDMA transaction
3383 * @qc: Info associated with this ATA transaction.
3384 *
3385 * LOCKING:
3386 * spin_lock_irqsave(host_set lock)
3387 */
3388
3389 static void ata_bmdma_setup_mmio (struct ata_queued_cmd *qc)
3390 {
3391 struct ata_port *ap = qc->ap;
3392 unsigned int rw = (qc->tf.flags & ATA_TFLAG_WRITE);
3393 u8 dmactl;
3394 void __iomem *mmio = (void __iomem *) ap->ioaddr.bmdma_addr;
3395
3396 /* load PRD table addr. */
3397 mb(); /* make sure PRD table writes are visible to controller */
3398 writel(ap->prd_dma, mmio + ATA_DMA_TABLE_OFS);
3399
3400 /* specify data direction, triple-check start bit is clear */
3401 dmactl = readb(mmio + ATA_DMA_CMD);
3402 dmactl &= ~(ATA_DMA_WR | ATA_DMA_START);
3403 if (!rw)
3404 dmactl |= ATA_DMA_WR;
3405 writeb(dmactl, mmio + ATA_DMA_CMD);
3406
3407 /* issue r/w command */
3408 ap->ops->exec_command(ap, &qc->tf);
3409 }
3410
3411 /**
3412 * ata_bmdma_start_mmio - Start a PCI IDE BMDMA transaction
3413 * @qc: Info associated with this ATA transaction.
3414 *
3415 * LOCKING:
3416 * spin_lock_irqsave(host_set lock)
3417 */
3418
3419 static void ata_bmdma_start_mmio (struct ata_queued_cmd *qc)
3420 {
3421 struct ata_port *ap = qc->ap;
3422 void __iomem *mmio = (void __iomem *) ap->ioaddr.bmdma_addr;
3423 u8 dmactl;
3424
3425 /* start host DMA transaction */
3426 dmactl = readb(mmio + ATA_DMA_CMD);
3427 writeb(dmactl | ATA_DMA_START, mmio + ATA_DMA_CMD);
3428
3429 /* Strictly, one may wish to issue a readb() here, to
3430 * flush the mmio write. However, control also passes
3431 * to the hardware at this point, and it will interrupt
3432 * us when we are to resume control. So, in effect,
3433 * we don't care when the mmio write flushes.
3434 * Further, a read of the DMA status register _immediately_
3435 * following the write may not be what certain flaky hardware
3436 * is expected, so I think it is best to not add a readb()
3437 * without first all the MMIO ATA cards/mobos.
3438 * Or maybe I'm just being paranoid.
3439 */
3440 }
3441
3442 /**
3443 * ata_bmdma_setup_pio - Set up PCI IDE BMDMA transaction (PIO)
3444 * @qc: Info associated with this ATA transaction.
3445 *
3446 * LOCKING:
3447 * spin_lock_irqsave(host_set lock)
3448 */
3449
3450 static void ata_bmdma_setup_pio (struct ata_queued_cmd *qc)
3451 {
3452 struct ata_port *ap = qc->ap;
3453 unsigned int rw = (qc->tf.flags & ATA_TFLAG_WRITE);
3454 u8 dmactl;
3455
3456 /* load PRD table addr. */
3457 outl(ap->prd_dma, ap->ioaddr.bmdma_addr + ATA_DMA_TABLE_OFS);
3458
3459 /* specify data direction, triple-check start bit is clear */
3460 dmactl = inb(ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
3461 dmactl &= ~(ATA_DMA_WR | ATA_DMA_START);
3462 if (!rw)
3463 dmactl |= ATA_DMA_WR;
3464 outb(dmactl, ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
3465
3466 /* issue r/w command */
3467 ap->ops->exec_command(ap, &qc->tf);
3468 }
3469
3470 /**
3471 * ata_bmdma_start_pio - Start a PCI IDE BMDMA transaction (PIO)
3472 * @qc: Info associated with this ATA transaction.
3473 *
3474 * LOCKING:
3475 * spin_lock_irqsave(host_set lock)
3476 */
3477
3478 static void ata_bmdma_start_pio (struct ata_queued_cmd *qc)
3479 {
3480 struct ata_port *ap = qc->ap;
3481 u8 dmactl;
3482
3483 /* start host DMA transaction */
3484 dmactl = inb(ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
3485 outb(dmactl | ATA_DMA_START,
3486 ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
3487 }
3488
3489
3490 /**
3491 * ata_bmdma_start - Start a PCI IDE BMDMA transaction
3492 * @qc: Info associated with this ATA transaction.
3493 *
3494 * Writes the ATA_DMA_START flag to the DMA command register.
3495 *
3496 * May be used as the bmdma_start() entry in ata_port_operations.
3497 *
3498 * LOCKING:
3499 * spin_lock_irqsave(host_set lock)
3500 */
3501 void ata_bmdma_start(struct ata_queued_cmd *qc)
3502 {
3503 if (qc->ap->flags & ATA_FLAG_MMIO)
3504 ata_bmdma_start_mmio(qc);
3505 else
3506 ata_bmdma_start_pio(qc);
3507 }
3508
3509
3510 /**
3511 * ata_bmdma_setup - Set up PCI IDE BMDMA transaction
3512 * @qc: Info associated with this ATA transaction.
3513 *
3514 * Writes address of PRD table to device's PRD Table Address
3515 * register, sets the DMA control register, and calls
3516 * ops->exec_command() to start the transfer.
3517 *
3518 * May be used as the bmdma_setup() entry in ata_port_operations.
3519 *
3520 * LOCKING:
3521 * spin_lock_irqsave(host_set lock)
3522 */
3523 void ata_bmdma_setup(struct ata_queued_cmd *qc)
3524 {
3525 if (qc->ap->flags & ATA_FLAG_MMIO)
3526 ata_bmdma_setup_mmio(qc);
3527 else
3528 ata_bmdma_setup_pio(qc);
3529 }
3530
3531
3532 /**
3533 * ata_bmdma_irq_clear - Clear PCI IDE BMDMA interrupt.
3534 * @ap: Port associated with this ATA transaction.
3535 *
3536 * Clear interrupt and error flags in DMA status register.
3537 *
3538 * May be used as the irq_clear() entry in ata_port_operations.
3539 *
3540 * LOCKING:
3541 * spin_lock_irqsave(host_set lock)
3542 */
3543
3544 void ata_bmdma_irq_clear(struct ata_port *ap)
3545 {
3546 if (ap->flags & ATA_FLAG_MMIO) {
3547 void __iomem *mmio = ((void __iomem *) ap->ioaddr.bmdma_addr) + ATA_DMA_STATUS;
3548 writeb(readb(mmio), mmio);
3549 } else {
3550 unsigned long addr = ap->ioaddr.bmdma_addr + ATA_DMA_STATUS;
3551 outb(inb(addr), addr);
3552 }
3553
3554 }
3555
3556
3557 /**
3558 * ata_bmdma_status - Read PCI IDE BMDMA status
3559 * @ap: Port associated with this ATA transaction.
3560 *
3561 * Read and return BMDMA status register.
3562 *
3563 * May be used as the bmdma_status() entry in ata_port_operations.
3564 *
3565 * LOCKING:
3566 * spin_lock_irqsave(host_set lock)
3567 */
3568
3569 u8 ata_bmdma_status(struct ata_port *ap)
3570 {
3571 u8 host_stat;
3572 if (ap->flags & ATA_FLAG_MMIO) {
3573 void __iomem *mmio = (void __iomem *) ap->ioaddr.bmdma_addr;
3574 host_stat = readb(mmio + ATA_DMA_STATUS);
3575 } else
3576 host_stat = inb(ap->ioaddr.bmdma_addr + ATA_DMA_STATUS);
3577 return host_stat;
3578 }
3579
3580
3581 /**
3582 * ata_bmdma_stop - Stop PCI IDE BMDMA transfer
3583 * @qc: Command we are ending DMA for
3584 *
3585 * Clears the ATA_DMA_START flag in the dma control register
3586 *
3587 * May be used as the bmdma_stop() entry in ata_port_operations.
3588 *
3589 * LOCKING:
3590 * spin_lock_irqsave(host_set lock)
3591 */
3592
3593 void ata_bmdma_stop(struct ata_queued_cmd *qc)
3594 {
3595 struct ata_port *ap = qc->ap;
3596 if (ap->flags & ATA_FLAG_MMIO) {
3597 void __iomem *mmio = (void __iomem *) ap->ioaddr.bmdma_addr;
3598
3599 /* clear start/stop bit */
3600 writeb(readb(mmio + ATA_DMA_CMD) & ~ATA_DMA_START,
3601 mmio + ATA_DMA_CMD);
3602 } else {
3603 /* clear start/stop bit */
3604 outb(inb(ap->ioaddr.bmdma_addr + ATA_DMA_CMD) & ~ATA_DMA_START,
3605 ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
3606 }
3607
3608 /* one-PIO-cycle guaranteed wait, per spec, for HDMA1:0 transition */
3609 ata_altstatus(ap); /* dummy read */
3610 }
3611
3612 /**
3613 * ata_host_intr - Handle host interrupt for given (port, task)
3614 * @ap: Port on which interrupt arrived (possibly...)
3615 * @qc: Taskfile currently active in engine
3616 *
3617 * Handle host interrupt for given queued command. Currently,
3618 * only DMA interrupts are handled. All other commands are
3619 * handled via polling with interrupts disabled (nIEN bit).
3620 *
3621 * LOCKING:
3622 * spin_lock_irqsave(host_set lock)
3623 *
3624 * RETURNS:
3625 * One if interrupt was handled, zero if not (shared irq).
3626 */
3627
3628 inline unsigned int ata_host_intr (struct ata_port *ap,
3629 struct ata_queued_cmd *qc)
3630 {
3631 u8 status, host_stat;
3632
3633 switch (qc->tf.protocol) {
3634
3635 case ATA_PROT_DMA:
3636 case ATA_PROT_ATAPI_DMA:
3637 case ATA_PROT_ATAPI:
3638 /* check status of DMA engine */
3639 host_stat = ap->ops->bmdma_status(ap);
3640 VPRINTK("ata%u: host_stat 0x%X\n", ap->id, host_stat);
3641
3642 /* if it's not our irq... */
3643 if (!(host_stat & ATA_DMA_INTR))
3644 goto idle_irq;
3645
3646 /* before we do anything else, clear DMA-Start bit */
3647 ap->ops->bmdma_stop(qc);
3648
3649 /* fall through */
3650
3651 case ATA_PROT_ATAPI_NODATA:
3652 case ATA_PROT_NODATA:
3653 /* check altstatus */
3654 status = ata_altstatus(ap);
3655 if (status & ATA_BUSY)
3656 goto idle_irq;
3657
3658 /* check main status, clearing INTRQ */
3659 status = ata_chk_status(ap);
3660 if (unlikely(status & ATA_BUSY))
3661 goto idle_irq;
3662 DPRINTK("ata%u: protocol %d (dev_stat 0x%X)\n",
3663 ap->id, qc->tf.protocol, status);
3664
3665 /* ack bmdma irq events */
3666 ap->ops->irq_clear(ap);
3667
3668 /* complete taskfile transaction */
3669 ata_qc_complete(qc, status);
3670 break;
3671
3672 default:
3673 goto idle_irq;
3674 }
3675
3676 return 1; /* irq handled */
3677
3678 idle_irq:
3679 ap->stats.idle_irq++;
3680
3681 #ifdef ATA_IRQ_TRAP
3682 if ((ap->stats.idle_irq % 1000) == 0) {
3683 handled = 1;
3684 ata_irq_ack(ap, 0); /* debug trap */
3685 printk(KERN_WARNING "ata%d: irq trap\n", ap->id);
3686 }
3687 #endif
3688 return 0; /* irq not handled */
3689 }
3690
3691 /**
3692 * ata_interrupt - Default ATA host interrupt handler
3693 * @irq: irq line (unused)
3694 * @dev_instance: pointer to our ata_host_set information structure
3695 * @regs: unused
3696 *
3697 * Default interrupt handler for PCI IDE devices. Calls
3698 * ata_host_intr() for each port that is not disabled.
3699 *
3700 * LOCKING:
3701 * Obtains host_set lock during operation.
3702 *
3703 * RETURNS:
3704 * IRQ_NONE or IRQ_HANDLED.
3705 *
3706 */
3707
3708 irqreturn_t ata_interrupt (int irq, void *dev_instance, struct pt_regs *regs)
3709 {
3710 struct ata_host_set *host_set = dev_instance;
3711 unsigned int i;
3712 unsigned int handled = 0;
3713 unsigned long flags;
3714
3715 /* TODO: make _irqsave conditional on x86 PCI IDE legacy mode */
3716 spin_lock_irqsave(&host_set->lock, flags);
3717
3718 for (i = 0; i < host_set->n_ports; i++) {
3719 struct ata_port *ap;
3720
3721 ap = host_set->ports[i];
3722 if (ap &&
3723 !(ap->flags & (ATA_FLAG_PORT_DISABLED | ATA_FLAG_NOINTR))) {
3724 struct ata_queued_cmd *qc;
3725
3726 qc = ata_qc_from_tag(ap, ap->active_tag);
3727 if (qc && (!(qc->tf.ctl & ATA_NIEN)) &&
3728 (qc->flags & ATA_QCFLAG_ACTIVE))
3729 handled |= ata_host_intr(ap, qc);
3730 }
3731 }
3732
3733 spin_unlock_irqrestore(&host_set->lock, flags);
3734
3735 return IRQ_RETVAL(handled);
3736 }
3737
3738 /**
3739 * atapi_packet_task - Write CDB bytes to hardware
3740 * @_data: Port to which ATAPI device is attached.
3741 *
3742 * When device has indicated its readiness to accept
3743 * a CDB, this function is called. Send the CDB.
3744 * If DMA is to be performed, exit immediately.
3745 * Otherwise, we are in polling mode, so poll
3746 * status under operation succeeds or fails.
3747 *
3748 * LOCKING:
3749 * Kernel thread context (may sleep)
3750 */
3751
3752 static void atapi_packet_task(void *_data)
3753 {
3754 struct ata_port *ap = _data;
3755 struct ata_queued_cmd *qc;
3756 u8 status;
3757
3758 qc = ata_qc_from_tag(ap, ap->active_tag);
3759 assert(qc != NULL);
3760 assert(qc->flags & ATA_QCFLAG_ACTIVE);
3761
3762 /* sleep-wait for BSY to clear */
3763 DPRINTK("busy wait\n");
3764 if (ata_busy_sleep(ap, ATA_TMOUT_CDB_QUICK, ATA_TMOUT_CDB))
3765 goto err_out;
3766
3767 /* make sure DRQ is set */
3768 status = ata_chk_status(ap);
3769 if ((status & (ATA_BUSY | ATA_DRQ)) != ATA_DRQ)
3770 goto err_out;
3771
3772 /* send SCSI cdb */
3773 DPRINTK("send cdb\n");
3774 assert(ap->cdb_len >= 12);
3775
3776 if (qc->tf.protocol == ATA_PROT_ATAPI_DMA ||
3777 qc->tf.protocol == ATA_PROT_ATAPI_NODATA) {
3778 unsigned long flags;
3779
3780 /* Once we're done issuing command and kicking bmdma,
3781 * irq handler takes over. To not lose irq, we need
3782 * to clear NOINTR flag before sending cdb, but
3783 * interrupt handler shouldn't be invoked before we're
3784 * finished. Hence, the following locking.
3785 */
3786 spin_lock_irqsave(&ap->host_set->lock, flags);
3787 ap->flags &= ~ATA_FLAG_NOINTR;
3788 ata_data_xfer(ap, qc->cdb, ap->cdb_len, 1);
3789 if (qc->tf.protocol == ATA_PROT_ATAPI_DMA)
3790 ap->ops->bmdma_start(qc); /* initiate bmdma */
3791 spin_unlock_irqrestore(&ap->host_set->lock, flags);
3792 } else {
3793 ata_data_xfer(ap, qc->cdb, ap->cdb_len, 1);
3794
3795 /* PIO commands are handled by polling */
3796 ap->pio_task_state = PIO_ST;
3797 queue_work(ata_wq, &ap->pio_task);
3798 }
3799
3800 return;
3801
3802 err_out:
3803 ata_poll_qc_complete(qc, ATA_ERR);
3804 }
3805
3806
3807 /**
3808 * ata_port_start - Set port up for dma.
3809 * @ap: Port to initialize
3810 *
3811 * Called just after data structures for each port are
3812 * initialized. Allocates space for PRD table.
3813 *
3814 * May be used as the port_start() entry in ata_port_operations.
3815 *
3816 * LOCKING:
3817 */
3818
3819 int ata_port_start (struct ata_port *ap)
3820 {
3821 struct device *dev = ap->host_set->dev;
3822
3823 ap->prd = dma_alloc_coherent(dev, ATA_PRD_TBL_SZ, &ap->prd_dma, GFP_KERNEL);
3824 if (!ap->prd)
3825 return -ENOMEM;
3826
3827 DPRINTK("prd alloc, virt %p, dma %llx\n", ap->prd, (unsigned long long) ap->prd_dma);
3828
3829 return 0;
3830 }
3831
3832
3833 /**
3834 * ata_port_stop - Undo ata_port_start()
3835 * @ap: Port to shut down
3836 *
3837 * Frees the PRD table.
3838 *
3839 * May be used as the port_stop() entry in ata_port_operations.
3840 *
3841 * LOCKING:
3842 */
3843
3844 void ata_port_stop (struct ata_port *ap)
3845 {
3846 struct device *dev = ap->host_set->dev;
3847
3848 dma_free_coherent(dev, ATA_PRD_TBL_SZ, ap->prd, ap->prd_dma);
3849 }
3850
3851 void ata_host_stop (struct ata_host_set *host_set)
3852 {
3853 if (host_set->mmio_base)
3854 iounmap(host_set->mmio_base);
3855 }
3856
3857
3858 /**
3859 * ata_host_remove - Unregister SCSI host structure with upper layers
3860 * @ap: Port to unregister
3861 * @do_unregister: 1 if we fully unregister, 0 to just stop the port
3862 *
3863 * LOCKING:
3864 */
3865
3866 static void ata_host_remove(struct ata_port *ap, unsigned int do_unregister)
3867 {
3868 struct Scsi_Host *sh = ap->host;
3869
3870 DPRINTK("ENTER\n");
3871
3872 if (do_unregister)
3873 scsi_remove_host(sh);
3874
3875 ap->ops->port_stop(ap);
3876 }
3877
3878 /**
3879 * ata_host_init - Initialize an ata_port structure
3880 * @ap: Structure to initialize
3881 * @host: associated SCSI mid-layer structure
3882 * @host_set: Collection of hosts to which @ap belongs
3883 * @ent: Probe information provided by low-level driver
3884 * @port_no: Port number associated with this ata_port
3885 *
3886 * Initialize a new ata_port structure, and its associated
3887 * scsi_host.
3888 *
3889 * LOCKING:
3890 * Inherited from caller.
3891 *
3892 */
3893
3894 static void ata_host_init(struct ata_port *ap, struct Scsi_Host *host,
3895 struct ata_host_set *host_set,
3896 struct ata_probe_ent *ent, unsigned int port_no)
3897 {
3898 unsigned int i;
3899
3900 host->max_id = 16;
3901 host->max_lun = 1;
3902 host->max_channel = 1;
3903 host->unique_id = ata_unique_id++;
3904 host->max_cmd_len = 12;
3905
3906 scsi_assign_lock(host, &host_set->lock);
3907
3908 ap->flags = ATA_FLAG_PORT_DISABLED;
3909 ap->id = host->unique_id;
3910 ap->host = host;
3911 ap->ctl = ATA_DEVCTL_OBS;
3912 ap->host_set = host_set;
3913 ap->port_no = port_no;
3914 ap->hard_port_no =
3915 ent->legacy_mode ? ent->hard_port_no : port_no;
3916 ap->pio_mask = ent->pio_mask;
3917 ap->mwdma_mask = ent->mwdma_mask;
3918 ap->udma_mask = ent->udma_mask;
3919 ap->flags |= ent->host_flags;
3920 ap->ops = ent->port_ops;
3921 ap->cbl = ATA_CBL_NONE;
3922 ap->active_tag = ATA_TAG_POISON;
3923 ap->last_ctl = 0xFF;
3924
3925 INIT_WORK(&ap->packet_task, atapi_packet_task, ap);
3926 INIT_WORK(&ap->pio_task, ata_pio_task, ap);
3927
3928 for (i = 0; i < ATA_MAX_DEVICES; i++)
3929 ap->device[i].devno = i;
3930
3931 #ifdef ATA_IRQ_TRAP
3932 ap->stats.unhandled_irq = 1;
3933 ap->stats.idle_irq = 1;
3934 #endif
3935
3936 memcpy(&ap->ioaddr, &ent->port[port_no], sizeof(struct ata_ioports));
3937 }
3938
3939 /**
3940 * ata_host_add - Attach low-level ATA driver to system
3941 * @ent: Information provided by low-level driver
3942 * @host_set: Collections of ports to which we add
3943 * @port_no: Port number associated with this host
3944 *
3945 * Attach low-level ATA driver to system.
3946 *
3947 * LOCKING:
3948 * PCI/etc. bus probe sem.
3949 *
3950 * RETURNS:
3951 * New ata_port on success, for NULL on error.
3952 *
3953 */
3954
3955 static struct ata_port * ata_host_add(struct ata_probe_ent *ent,
3956 struct ata_host_set *host_set,
3957 unsigned int port_no)
3958 {
3959 struct Scsi_Host *host;
3960 struct ata_port *ap;
3961 int rc;
3962
3963 DPRINTK("ENTER\n");
3964 host = scsi_host_alloc(ent->sht, sizeof(struct ata_port));
3965 if (!host)
3966 return NULL;
3967
3968 ap = (struct ata_port *) &host->hostdata[0];
3969
3970 ata_host_init(ap, host, host_set, ent, port_no);
3971
3972 rc = ap->ops->port_start(ap);
3973 if (rc)
3974 goto err_out;
3975
3976 return ap;
3977
3978 err_out:
3979 scsi_host_put(host);
3980 return NULL;
3981 }
3982
3983 /**
3984 * ata_device_add - Register hardware device with ATA and SCSI layers
3985 * @ent: Probe information describing hardware device to be registered
3986 *
3987 * This function processes the information provided in the probe
3988 * information struct @ent, allocates the necessary ATA and SCSI
3989 * host information structures, initializes them, and registers
3990 * everything with requisite kernel subsystems.
3991 *
3992 * This function requests irqs, probes the ATA bus, and probes
3993 * the SCSI bus.
3994 *
3995 * LOCKING:
3996 * PCI/etc. bus probe sem.
3997 *
3998 * RETURNS:
3999 * Number of ports registered. Zero on error (no ports registered).
4000 *
4001 */
4002
4003 int ata_device_add(struct ata_probe_ent *ent)
4004 {
4005 unsigned int count = 0, i;
4006 struct device *dev = ent->dev;
4007 struct ata_host_set *host_set;
4008
4009 DPRINTK("ENTER\n");
4010 /* alloc a container for our list of ATA ports (buses) */
4011 host_set = kmalloc(sizeof(struct ata_host_set) +
4012 (ent->n_ports * sizeof(void *)), GFP_KERNEL);
4013 if (!host_set)
4014 return 0;
4015 memset(host_set, 0, sizeof(struct ata_host_set) + (ent->n_ports * sizeof(void *)));
4016 spin_lock_init(&host_set->lock);
4017
4018 host_set->dev = dev;
4019 host_set->n_ports = ent->n_ports;
4020 host_set->irq = ent->irq;
4021 host_set->mmio_base = ent->mmio_base;
4022 host_set->private_data = ent->private_data;
4023 host_set->ops = ent->port_ops;
4024
4025 /* register each port bound to this device */
4026 for (i = 0; i < ent->n_ports; i++) {
4027 struct ata_port *ap;
4028 unsigned long xfer_mode_mask;
4029
4030 ap = ata_host_add(ent, host_set, i);
4031 if (!ap)
4032 goto err_out;
4033
4034 host_set->ports[i] = ap;
4035 xfer_mode_mask =(ap->udma_mask << ATA_SHIFT_UDMA) |
4036 (ap->mwdma_mask << ATA_SHIFT_MWDMA) |
4037 (ap->pio_mask << ATA_SHIFT_PIO);
4038
4039 /* print per-port info to dmesg */
4040 printk(KERN_INFO "ata%u: %cATA max %s cmd 0x%lX ctl 0x%lX "
4041 "bmdma 0x%lX irq %lu\n",
4042 ap->id,
4043 ap->flags & ATA_FLAG_SATA ? 'S' : 'P',
4044 ata_mode_string(xfer_mode_mask),
4045 ap->ioaddr.cmd_addr,
4046 ap->ioaddr.ctl_addr,
4047 ap->ioaddr.bmdma_addr,
4048 ent->irq);
4049
4050 ata_chk_status(ap);
4051 host_set->ops->irq_clear(ap);
4052 count++;
4053 }
4054
4055 if (!count) {
4056 kfree(host_set);
4057 return 0;
4058 }
4059
4060 /* obtain irq, that is shared between channels */
4061 if (request_irq(ent->irq, ent->port_ops->irq_handler, ent->irq_flags,
4062 DRV_NAME, host_set))
4063 goto err_out;
4064
4065 /* perform each probe synchronously */
4066 DPRINTK("probe begin\n");
4067 for (i = 0; i < count; i++) {
4068 struct ata_port *ap;
4069 int rc;
4070
4071 ap = host_set->ports[i];
4072
4073 DPRINTK("ata%u: probe begin\n", ap->id);
4074 rc = ata_bus_probe(ap);
4075 DPRINTK("ata%u: probe end\n", ap->id);
4076
4077 if (rc) {
4078 /* FIXME: do something useful here?
4079 * Current libata behavior will
4080 * tear down everything when
4081 * the module is removed
4082 * or the h/w is unplugged.
4083 */
4084 }
4085
4086 rc = scsi_add_host(ap->host, dev);
4087 if (rc) {
4088 printk(KERN_ERR "ata%u: scsi_add_host failed\n",
4089 ap->id);
4090 /* FIXME: do something useful here */
4091 /* FIXME: handle unconditional calls to
4092 * scsi_scan_host and ata_host_remove, below,
4093 * at the very least
4094 */
4095 }
4096 }
4097
4098 /* probes are done, now scan each port's disk(s) */
4099 DPRINTK("probe begin\n");
4100 for (i = 0; i < count; i++) {
4101 struct ata_port *ap = host_set->ports[i];
4102
4103 scsi_scan_host(ap->host);
4104 }
4105
4106 dev_set_drvdata(dev, host_set);
4107
4108 VPRINTK("EXIT, returning %u\n", ent->n_ports);
4109 return ent->n_ports; /* success */
4110
4111 err_out:
4112 for (i = 0; i < count; i++) {
4113 ata_host_remove(host_set->ports[i], 1);
4114 scsi_host_put(host_set->ports[i]->host);
4115 }
4116 kfree(host_set);
4117 VPRINTK("EXIT, returning 0\n");
4118 return 0;
4119 }
4120
4121 /**
4122 * ata_scsi_release - SCSI layer callback hook for host unload
4123 * @host: libata host to be unloaded
4124 *
4125 * Performs all duties necessary to shut down a libata port...
4126 * Kill port kthread, disable port, and release resources.
4127 *
4128 * LOCKING:
4129 * Inherited from SCSI layer.
4130 *
4131 * RETURNS:
4132 * One.
4133 */
4134
4135 int ata_scsi_release(struct Scsi_Host *host)
4136 {
4137 struct ata_port *ap = (struct ata_port *) &host->hostdata[0];
4138
4139 DPRINTK("ENTER\n");
4140
4141 ap->ops->port_disable(ap);
4142 ata_host_remove(ap, 0);
4143
4144 DPRINTK("EXIT\n");
4145 return 1;
4146 }
4147
4148 /**
4149 * ata_std_ports - initialize ioaddr with standard port offsets.
4150 * @ioaddr: IO address structure to be initialized
4151 *
4152 * Utility function which initializes data_addr, error_addr,
4153 * feature_addr, nsect_addr, lbal_addr, lbam_addr, lbah_addr,
4154 * device_addr, status_addr, and command_addr to standard offsets
4155 * relative to cmd_addr.
4156 *
4157 * Does not set ctl_addr, altstatus_addr, bmdma_addr, or scr_addr.
4158 */
4159
4160 void ata_std_ports(struct ata_ioports *ioaddr)
4161 {
4162 ioaddr->data_addr = ioaddr->cmd_addr + ATA_REG_DATA;
4163 ioaddr->error_addr = ioaddr->cmd_addr + ATA_REG_ERR;
4164 ioaddr->feature_addr = ioaddr->cmd_addr + ATA_REG_FEATURE;
4165 ioaddr->nsect_addr = ioaddr->cmd_addr + ATA_REG_NSECT;
4166 ioaddr->lbal_addr = ioaddr->cmd_addr + ATA_REG_LBAL;
4167 ioaddr->lbam_addr = ioaddr->cmd_addr + ATA_REG_LBAM;
4168 ioaddr->lbah_addr = ioaddr->cmd_addr + ATA_REG_LBAH;
4169 ioaddr->device_addr = ioaddr->cmd_addr + ATA_REG_DEVICE;
4170 ioaddr->status_addr = ioaddr->cmd_addr + ATA_REG_STATUS;
4171 ioaddr->command_addr = ioaddr->cmd_addr + ATA_REG_CMD;
4172 }
4173
4174 static struct ata_probe_ent *
4175 ata_probe_ent_alloc(struct device *dev, struct ata_port_info *port)
4176 {
4177 struct ata_probe_ent *probe_ent;
4178
4179 probe_ent = kmalloc(sizeof(*probe_ent), GFP_KERNEL);
4180 if (!probe_ent) {
4181 printk(KERN_ERR DRV_NAME "(%s): out of memory\n",
4182 kobject_name(&(dev->kobj)));
4183 return NULL;
4184 }
4185
4186 memset(probe_ent, 0, sizeof(*probe_ent));
4187
4188 INIT_LIST_HEAD(&probe_ent->node);
4189 probe_ent->dev = dev;
4190
4191 probe_ent->sht = port->sht;
4192 probe_ent->host_flags = port->host_flags;
4193 probe_ent->pio_mask = port->pio_mask;
4194 probe_ent->mwdma_mask = port->mwdma_mask;
4195 probe_ent->udma_mask = port->udma_mask;
4196 probe_ent->port_ops = port->port_ops;
4197
4198 return probe_ent;
4199 }
4200
4201
4202
4203 /**
4204 * ata_pci_init_native_mode - Initialize native-mode driver
4205 * @pdev: pci device to be initialized
4206 * @port: array[2] of pointers to port info structures.
4207 *
4208 * Utility function which allocates and initializes an
4209 * ata_probe_ent structure for a standard dual-port
4210 * PIO-based IDE controller. The returned ata_probe_ent
4211 * structure can be passed to ata_device_add(). The returned
4212 * ata_probe_ent structure should then be freed with kfree().
4213 */
4214
4215 #ifdef CONFIG_PCI
4216 struct ata_probe_ent *
4217 ata_pci_init_native_mode(struct pci_dev *pdev, struct ata_port_info **port)
4218 {
4219 struct ata_probe_ent *probe_ent =
4220 ata_probe_ent_alloc(pci_dev_to_dev(pdev), port[0]);
4221 if (!probe_ent)
4222 return NULL;
4223
4224 probe_ent->n_ports = 2;
4225 probe_ent->irq = pdev->irq;
4226 probe_ent->irq_flags = SA_SHIRQ;
4227
4228 probe_ent->port[0].cmd_addr = pci_resource_start(pdev, 0);
4229 probe_ent->port[0].altstatus_addr =
4230 probe_ent->port[0].ctl_addr =
4231 pci_resource_start(pdev, 1) | ATA_PCI_CTL_OFS;
4232 probe_ent->port[0].bmdma_addr = pci_resource_start(pdev, 4);
4233
4234 probe_ent->port[1].cmd_addr = pci_resource_start(pdev, 2);
4235 probe_ent->port[1].altstatus_addr =
4236 probe_ent->port[1].ctl_addr =
4237 pci_resource_start(pdev, 3) | ATA_PCI_CTL_OFS;
4238 probe_ent->port[1].bmdma_addr = pci_resource_start(pdev, 4) + 8;
4239
4240 ata_std_ports(&probe_ent->port[0]);
4241 ata_std_ports(&probe_ent->port[1]);
4242
4243 return probe_ent;
4244 }
4245
4246 static struct ata_probe_ent *
4247 ata_pci_init_legacy_mode(struct pci_dev *pdev, struct ata_port_info **port,
4248 struct ata_probe_ent **ppe2)
4249 {
4250 struct ata_probe_ent *probe_ent, *probe_ent2;
4251
4252 probe_ent = ata_probe_ent_alloc(pci_dev_to_dev(pdev), port[0]);
4253 if (!probe_ent)
4254 return NULL;
4255 probe_ent2 = ata_probe_ent_alloc(pci_dev_to_dev(pdev), port[1]);
4256 if (!probe_ent2) {
4257 kfree(probe_ent);
4258 return NULL;
4259 }
4260
4261 probe_ent->n_ports = 1;
4262 probe_ent->irq = 14;
4263
4264 probe_ent->hard_port_no = 0;
4265 probe_ent->legacy_mode = 1;
4266
4267 probe_ent2->n_ports = 1;
4268 probe_ent2->irq = 15;
4269
4270 probe_ent2->hard_port_no = 1;
4271 probe_ent2->legacy_mode = 1;
4272
4273 probe_ent->port[0].cmd_addr = 0x1f0;
4274 probe_ent->port[0].altstatus_addr =
4275 probe_ent->port[0].ctl_addr = 0x3f6;
4276 probe_ent->port[0].bmdma_addr = pci_resource_start(pdev, 4);
4277
4278 probe_ent2->port[0].cmd_addr = 0x170;
4279 probe_ent2->port[0].altstatus_addr =
4280 probe_ent2->port[0].ctl_addr = 0x376;
4281 probe_ent2->port[0].bmdma_addr = pci_resource_start(pdev, 4)+8;
4282
4283 ata_std_ports(&probe_ent->port[0]);
4284 ata_std_ports(&probe_ent2->port[0]);
4285
4286 *ppe2 = probe_ent2;
4287 return probe_ent;
4288 }
4289
4290 /**
4291 * ata_pci_init_one - Initialize/register PCI IDE host controller
4292 * @pdev: Controller to be initialized
4293 * @port_info: Information from low-level host driver
4294 * @n_ports: Number of ports attached to host controller
4295 *
4296 * This is a helper function which can be called from a driver's
4297 * xxx_init_one() probe function if the hardware uses traditional
4298 * IDE taskfile registers.
4299 *
4300 * This function calls pci_enable_device(), reserves its register
4301 * regions, sets the dma mask, enables bus master mode, and calls
4302 * ata_device_add()
4303 *
4304 * LOCKING:
4305 * Inherited from PCI layer (may sleep).
4306 *
4307 * RETURNS:
4308 * Zero on success, negative on errno-based value on error.
4309 *
4310 */
4311
4312 int ata_pci_init_one (struct pci_dev *pdev, struct ata_port_info **port_info,
4313 unsigned int n_ports)
4314 {
4315 struct ata_probe_ent *probe_ent, *probe_ent2 = NULL;
4316 struct ata_port_info *port[2];
4317 u8 tmp8, mask;
4318 unsigned int legacy_mode = 0;
4319 int disable_dev_on_err = 1;
4320 int rc;
4321
4322 DPRINTK("ENTER\n");
4323
4324 port[0] = port_info[0];
4325 if (n_ports > 1)
4326 port[1] = port_info[1];
4327 else
4328 port[1] = port[0];
4329
4330 if ((port[0]->host_flags & ATA_FLAG_NO_LEGACY) == 0
4331 && (pdev->class >> 8) == PCI_CLASS_STORAGE_IDE) {
4332 /* TODO: support transitioning to native mode? */
4333 pci_read_config_byte(pdev, PCI_CLASS_PROG, &tmp8);
4334 mask = (1 << 2) | (1 << 0);
4335 if ((tmp8 & mask) != mask)
4336 legacy_mode = (1 << 3);
4337 }
4338
4339 /* FIXME... */
4340 if ((!legacy_mode) && (n_ports > 1)) {
4341 printk(KERN_ERR "ata: BUG: native mode, n_ports > 1\n");
4342 return -EINVAL;
4343 }
4344
4345 rc = pci_enable_device(pdev);
4346 if (rc)
4347 return rc;
4348
4349 rc = pci_request_regions(pdev, DRV_NAME);
4350 if (rc) {
4351 disable_dev_on_err = 0;
4352 goto err_out;
4353 }
4354
4355 if (legacy_mode) {
4356 if (!request_region(0x1f0, 8, "libata")) {
4357 struct resource *conflict, res;
4358 res.start = 0x1f0;
4359 res.end = 0x1f0 + 8 - 1;
4360 conflict = ____request_resource(&ioport_resource, &res);
4361 if (!strcmp(conflict->name, "libata"))
4362 legacy_mode |= (1 << 0);
4363 else {
4364 disable_dev_on_err = 0;
4365 printk(KERN_WARNING "ata: 0x1f0 IDE port busy\n");
4366 }
4367 } else
4368 legacy_mode |= (1 << 0);
4369
4370 if (!request_region(0x170, 8, "libata")) {
4371 struct resource *conflict, res;
4372 res.start = 0x170;
4373 res.end = 0x170 + 8 - 1;
4374 conflict = ____request_resource(&ioport_resource, &res);
4375 if (!strcmp(conflict->name, "libata"))
4376 legacy_mode |= (1 << 1);
4377 else {
4378 disable_dev_on_err = 0;
4379 printk(KERN_WARNING "ata: 0x170 IDE port busy\n");
4380 }
4381 } else
4382 legacy_mode |= (1 << 1);
4383 }
4384
4385 /* we have legacy mode, but all ports are unavailable */
4386 if (legacy_mode == (1 << 3)) {
4387 rc = -EBUSY;
4388 goto err_out_regions;
4389 }
4390
4391 rc = pci_set_dma_mask(pdev, ATA_DMA_MASK);
4392 if (rc)
4393 goto err_out_regions;
4394 rc = pci_set_consistent_dma_mask(pdev, ATA_DMA_MASK);
4395 if (rc)
4396 goto err_out_regions;
4397
4398 if (legacy_mode) {
4399 probe_ent = ata_pci_init_legacy_mode(pdev, port, &probe_ent2);
4400 } else
4401 probe_ent = ata_pci_init_native_mode(pdev, port);
4402 if (!probe_ent) {
4403 rc = -ENOMEM;
4404 goto err_out_regions;
4405 }
4406
4407 pci_set_master(pdev);
4408
4409 /* FIXME: check ata_device_add return */
4410 if (legacy_mode) {
4411 if (legacy_mode & (1 << 0))
4412 ata_device_add(probe_ent);
4413 if (legacy_mode & (1 << 1))
4414 ata_device_add(probe_ent2);
4415 } else
4416 ata_device_add(probe_ent);
4417
4418 kfree(probe_ent);
4419 kfree(probe_ent2);
4420
4421 return 0;
4422
4423 err_out_regions:
4424 if (legacy_mode & (1 << 0))
4425 release_region(0x1f0, 8);
4426 if (legacy_mode & (1 << 1))
4427 release_region(0x170, 8);
4428 pci_release_regions(pdev);
4429 err_out:
4430 if (disable_dev_on_err)
4431 pci_disable_device(pdev);
4432 return rc;
4433 }
4434
4435 /**
4436 * ata_pci_remove_one - PCI layer callback for device removal
4437 * @pdev: PCI device that was removed
4438 *
4439 * PCI layer indicates to libata via this hook that
4440 * hot-unplug or module unload event has occured.
4441 * Handle this by unregistering all objects associated
4442 * with this PCI device. Free those objects. Then finally
4443 * release PCI resources and disable device.
4444 *
4445 * LOCKING:
4446 * Inherited from PCI layer (may sleep).
4447 */
4448
4449 void ata_pci_remove_one (struct pci_dev *pdev)
4450 {
4451 struct device *dev = pci_dev_to_dev(pdev);
4452 struct ata_host_set *host_set = dev_get_drvdata(dev);
4453 struct ata_port *ap;
4454 unsigned int i;
4455
4456 for (i = 0; i < host_set->n_ports; i++) {
4457 ap = host_set->ports[i];
4458
4459 scsi_remove_host(ap->host);
4460 }
4461
4462 free_irq(host_set->irq, host_set);
4463
4464 for (i = 0; i < host_set->n_ports; i++) {
4465 ap = host_set->ports[i];
4466
4467 ata_scsi_release(ap->host);
4468
4469 if ((ap->flags & ATA_FLAG_NO_LEGACY) == 0) {
4470 struct ata_ioports *ioaddr = &ap->ioaddr;
4471
4472 if (ioaddr->cmd_addr == 0x1f0)
4473 release_region(0x1f0, 8);
4474 else if (ioaddr->cmd_addr == 0x170)
4475 release_region(0x170, 8);
4476 }
4477
4478 scsi_host_put(ap->host);
4479 }
4480
4481 if (host_set->ops->host_stop)
4482 host_set->ops->host_stop(host_set);
4483
4484 kfree(host_set);
4485
4486 pci_release_regions(pdev);
4487 pci_disable_device(pdev);
4488 dev_set_drvdata(dev, NULL);
4489 }
4490
4491 /* move to PCI subsystem */
4492 int pci_test_config_bits(struct pci_dev *pdev, struct pci_bits *bits)
4493 {
4494 unsigned long tmp = 0;
4495
4496 switch (bits->width) {
4497 case 1: {
4498 u8 tmp8 = 0;
4499 pci_read_config_byte(pdev, bits->reg, &tmp8);
4500 tmp = tmp8;
4501 break;
4502 }
4503 case 2: {
4504 u16 tmp16 = 0;
4505 pci_read_config_word(pdev, bits->reg, &tmp16);
4506 tmp = tmp16;
4507 break;
4508 }
4509 case 4: {
4510 u32 tmp32 = 0;
4511 pci_read_config_dword(pdev, bits->reg, &tmp32);
4512 tmp = tmp32;
4513 break;
4514 }
4515
4516 default:
4517 return -EINVAL;
4518 }
4519
4520 tmp &= bits->mask;
4521
4522 return (tmp == bits->val) ? 1 : 0;
4523 }
4524 #endif /* CONFIG_PCI */
4525
4526
4527 static int __init ata_init(void)
4528 {
4529 ata_wq = create_workqueue("ata");
4530 if (!ata_wq)
4531 return -ENOMEM;
4532
4533 printk(KERN_DEBUG "libata version " DRV_VERSION " loaded.\n");
4534 return 0;
4535 }
4536
4537 static void __exit ata_exit(void)
4538 {
4539 destroy_workqueue(ata_wq);
4540 }
4541
4542 module_init(ata_init);
4543 module_exit(ata_exit);
4544
4545 /*
4546 * libata is essentially a library of internal helper functions for
4547 * low-level ATA host controller drivers. As such, the API/ABI is
4548 * likely to change as new drivers are added and updated.
4549 * Do not depend on ABI/API stability.
4550 */
4551
4552 EXPORT_SYMBOL_GPL(ata_std_bios_param);
4553 EXPORT_SYMBOL_GPL(ata_std_ports);
4554 EXPORT_SYMBOL_GPL(ata_device_add);
4555 EXPORT_SYMBOL_GPL(ata_sg_init);
4556 EXPORT_SYMBOL_GPL(ata_sg_init_one);
4557 EXPORT_SYMBOL_GPL(ata_qc_complete);
4558 EXPORT_SYMBOL_GPL(ata_qc_issue_prot);
4559 EXPORT_SYMBOL_GPL(ata_eng_timeout);
4560 EXPORT_SYMBOL_GPL(ata_tf_load);
4561 EXPORT_SYMBOL_GPL(ata_tf_read);
4562 EXPORT_SYMBOL_GPL(ata_noop_dev_select);
4563 EXPORT_SYMBOL_GPL(ata_std_dev_select);
4564 EXPORT_SYMBOL_GPL(ata_tf_to_fis);
4565 EXPORT_SYMBOL_GPL(ata_tf_from_fis);
4566 EXPORT_SYMBOL_GPL(ata_check_status);
4567 EXPORT_SYMBOL_GPL(ata_altstatus);
4568 EXPORT_SYMBOL_GPL(ata_chk_err);
4569 EXPORT_SYMBOL_GPL(ata_exec_command);
4570 EXPORT_SYMBOL_GPL(ata_port_start);
4571 EXPORT_SYMBOL_GPL(ata_port_stop);
4572 EXPORT_SYMBOL_GPL(ata_host_stop);
4573 EXPORT_SYMBOL_GPL(ata_interrupt);
4574 EXPORT_SYMBOL_GPL(ata_qc_prep);
4575 EXPORT_SYMBOL_GPL(ata_bmdma_setup);
4576 EXPORT_SYMBOL_GPL(ata_bmdma_start);
4577 EXPORT_SYMBOL_GPL(ata_bmdma_irq_clear);
4578 EXPORT_SYMBOL_GPL(ata_bmdma_status);
4579 EXPORT_SYMBOL_GPL(ata_bmdma_stop);
4580 EXPORT_SYMBOL_GPL(ata_port_probe);
4581 EXPORT_SYMBOL_GPL(sata_phy_reset);
4582 EXPORT_SYMBOL_GPL(__sata_phy_reset);
4583 EXPORT_SYMBOL_GPL(ata_bus_reset);
4584 EXPORT_SYMBOL_GPL(ata_port_disable);
4585 EXPORT_SYMBOL_GPL(ata_scsi_ioctl);
4586 EXPORT_SYMBOL_GPL(ata_scsi_queuecmd);
4587 EXPORT_SYMBOL_GPL(ata_scsi_error);
4588 EXPORT_SYMBOL_GPL(ata_scsi_slave_config);
4589 EXPORT_SYMBOL_GPL(ata_scsi_release);
4590 EXPORT_SYMBOL_GPL(ata_host_intr);
4591 EXPORT_SYMBOL_GPL(ata_dev_classify);
4592 EXPORT_SYMBOL_GPL(ata_dev_id_string);
4593 EXPORT_SYMBOL_GPL(ata_dev_config);
4594 EXPORT_SYMBOL_GPL(ata_scsi_simulate);
4595
4596 #ifdef CONFIG_PCI
4597 EXPORT_SYMBOL_GPL(pci_test_config_bits);
4598 EXPORT_SYMBOL_GPL(ata_pci_init_native_mode);
4599 EXPORT_SYMBOL_GPL(ata_pci_init_one);
4600 EXPORT_SYMBOL_GPL(ata_pci_remove_one);
4601 #endif /* CONFIG_PCI */
This page took 0.215344 seconds and 5 git commands to generate.