e6044455ca4533c33c88a2d95c516510a0685dc9
[deliverable/linux.git] / drivers / scsi / libata-core.c
1 /*
2 * libata-core.c - helper library for ATA
3 *
4 * Maintained by: Jeff Garzik <jgarzik@pobox.com>
5 * Please ALWAYS copy linux-ide@vger.kernel.org
6 * on emails.
7 *
8 * Copyright 2003-2004 Red Hat, Inc. All rights reserved.
9 * Copyright 2003-2004 Jeff Garzik
10 *
11 *
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2, or (at your option)
15 * any later version.
16 *
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
21 *
22 * You should have received a copy of the GNU General Public License
23 * along with this program; see the file COPYING. If not, write to
24 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
25 *
26 *
27 * libata documentation is available via 'make {ps|pdf}docs',
28 * as Documentation/DocBook/libata.*
29 *
30 * Hardware documentation available from http://www.t13.org/ and
31 * http://www.sata-io.org/
32 *
33 */
34
35 #include <linux/config.h>
36 #include <linux/kernel.h>
37 #include <linux/module.h>
38 #include <linux/pci.h>
39 #include <linux/init.h>
40 #include <linux/list.h>
41 #include <linux/mm.h>
42 #include <linux/highmem.h>
43 #include <linux/spinlock.h>
44 #include <linux/blkdev.h>
45 #include <linux/delay.h>
46 #include <linux/timer.h>
47 #include <linux/interrupt.h>
48 #include <linux/completion.h>
49 #include <linux/suspend.h>
50 #include <linux/workqueue.h>
51 #include <linux/jiffies.h>
52 #include <linux/scatterlist.h>
53 #include <scsi/scsi.h>
54 #include "scsi_priv.h"
55 #include <scsi/scsi_cmnd.h>
56 #include <scsi/scsi_host.h>
57 #include <linux/libata.h>
58 #include <asm/io.h>
59 #include <asm/semaphore.h>
60 #include <asm/byteorder.h>
61
62 #include "libata.h"
63
64 static unsigned int ata_busy_sleep (struct ata_port *ap,
65 unsigned long tmout_pat,
66 unsigned long tmout);
67 static void ata_dev_reread_id(struct ata_port *ap, struct ata_device *dev);
68 static void ata_dev_init_params(struct ata_port *ap, struct ata_device *dev);
69 static void ata_set_mode(struct ata_port *ap);
70 static void ata_dev_set_xfermode(struct ata_port *ap, struct ata_device *dev);
71 static unsigned int ata_get_mode_mask(const struct ata_port *ap, int shift);
72 static int fgb(u32 bitmap);
73 static int ata_choose_xfer_mode(const struct ata_port *ap,
74 u8 *xfer_mode_out,
75 unsigned int *xfer_shift_out);
76 static void __ata_qc_complete(struct ata_queued_cmd *qc);
77
78 static unsigned int ata_unique_id = 1;
79 static struct workqueue_struct *ata_wq;
80
81 int atapi_enabled = 0;
82 module_param(atapi_enabled, int, 0444);
83 MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on)");
84
85 MODULE_AUTHOR("Jeff Garzik");
86 MODULE_DESCRIPTION("Library module for ATA devices");
87 MODULE_LICENSE("GPL");
88 MODULE_VERSION(DRV_VERSION);
89
90 /**
91 * ata_tf_load_pio - send taskfile registers to host controller
92 * @ap: Port to which output is sent
93 * @tf: ATA taskfile register set
94 *
95 * Outputs ATA taskfile to standard ATA host controller.
96 *
97 * LOCKING:
98 * Inherited from caller.
99 */
100
101 static void ata_tf_load_pio(struct ata_port *ap, const struct ata_taskfile *tf)
102 {
103 struct ata_ioports *ioaddr = &ap->ioaddr;
104 unsigned int is_addr = tf->flags & ATA_TFLAG_ISADDR;
105
106 if (tf->ctl != ap->last_ctl) {
107 outb(tf->ctl, ioaddr->ctl_addr);
108 ap->last_ctl = tf->ctl;
109 ata_wait_idle(ap);
110 }
111
112 if (is_addr && (tf->flags & ATA_TFLAG_LBA48)) {
113 outb(tf->hob_feature, ioaddr->feature_addr);
114 outb(tf->hob_nsect, ioaddr->nsect_addr);
115 outb(tf->hob_lbal, ioaddr->lbal_addr);
116 outb(tf->hob_lbam, ioaddr->lbam_addr);
117 outb(tf->hob_lbah, ioaddr->lbah_addr);
118 VPRINTK("hob: feat 0x%X nsect 0x%X, lba 0x%X 0x%X 0x%X\n",
119 tf->hob_feature,
120 tf->hob_nsect,
121 tf->hob_lbal,
122 tf->hob_lbam,
123 tf->hob_lbah);
124 }
125
126 if (is_addr) {
127 outb(tf->feature, ioaddr->feature_addr);
128 outb(tf->nsect, ioaddr->nsect_addr);
129 outb(tf->lbal, ioaddr->lbal_addr);
130 outb(tf->lbam, ioaddr->lbam_addr);
131 outb(tf->lbah, ioaddr->lbah_addr);
132 VPRINTK("feat 0x%X nsect 0x%X lba 0x%X 0x%X 0x%X\n",
133 tf->feature,
134 tf->nsect,
135 tf->lbal,
136 tf->lbam,
137 tf->lbah);
138 }
139
140 if (tf->flags & ATA_TFLAG_DEVICE) {
141 outb(tf->device, ioaddr->device_addr);
142 VPRINTK("device 0x%X\n", tf->device);
143 }
144
145 ata_wait_idle(ap);
146 }
147
148 /**
149 * ata_tf_load_mmio - send taskfile registers to host controller
150 * @ap: Port to which output is sent
151 * @tf: ATA taskfile register set
152 *
153 * Outputs ATA taskfile to standard ATA host controller using MMIO.
154 *
155 * LOCKING:
156 * Inherited from caller.
157 */
158
159 static void ata_tf_load_mmio(struct ata_port *ap, const struct ata_taskfile *tf)
160 {
161 struct ata_ioports *ioaddr = &ap->ioaddr;
162 unsigned int is_addr = tf->flags & ATA_TFLAG_ISADDR;
163
164 if (tf->ctl != ap->last_ctl) {
165 writeb(tf->ctl, (void __iomem *) ap->ioaddr.ctl_addr);
166 ap->last_ctl = tf->ctl;
167 ata_wait_idle(ap);
168 }
169
170 if (is_addr && (tf->flags & ATA_TFLAG_LBA48)) {
171 writeb(tf->hob_feature, (void __iomem *) ioaddr->feature_addr);
172 writeb(tf->hob_nsect, (void __iomem *) ioaddr->nsect_addr);
173 writeb(tf->hob_lbal, (void __iomem *) ioaddr->lbal_addr);
174 writeb(tf->hob_lbam, (void __iomem *) ioaddr->lbam_addr);
175 writeb(tf->hob_lbah, (void __iomem *) ioaddr->lbah_addr);
176 VPRINTK("hob: feat 0x%X nsect 0x%X, lba 0x%X 0x%X 0x%X\n",
177 tf->hob_feature,
178 tf->hob_nsect,
179 tf->hob_lbal,
180 tf->hob_lbam,
181 tf->hob_lbah);
182 }
183
184 if (is_addr) {
185 writeb(tf->feature, (void __iomem *) ioaddr->feature_addr);
186 writeb(tf->nsect, (void __iomem *) ioaddr->nsect_addr);
187 writeb(tf->lbal, (void __iomem *) ioaddr->lbal_addr);
188 writeb(tf->lbam, (void __iomem *) ioaddr->lbam_addr);
189 writeb(tf->lbah, (void __iomem *) ioaddr->lbah_addr);
190 VPRINTK("feat 0x%X nsect 0x%X lba 0x%X 0x%X 0x%X\n",
191 tf->feature,
192 tf->nsect,
193 tf->lbal,
194 tf->lbam,
195 tf->lbah);
196 }
197
198 if (tf->flags & ATA_TFLAG_DEVICE) {
199 writeb(tf->device, (void __iomem *) ioaddr->device_addr);
200 VPRINTK("device 0x%X\n", tf->device);
201 }
202
203 ata_wait_idle(ap);
204 }
205
206
207 /**
208 * ata_tf_load - send taskfile registers to host controller
209 * @ap: Port to which output is sent
210 * @tf: ATA taskfile register set
211 *
212 * Outputs ATA taskfile to standard ATA host controller using MMIO
213 * or PIO as indicated by the ATA_FLAG_MMIO flag.
214 * Writes the control, feature, nsect, lbal, lbam, and lbah registers.
215 * Optionally (ATA_TFLAG_LBA48) writes hob_feature, hob_nsect,
216 * hob_lbal, hob_lbam, and hob_lbah.
217 *
218 * This function waits for idle (!BUSY and !DRQ) after writing
219 * registers. If the control register has a new value, this
220 * function also waits for idle after writing control and before
221 * writing the remaining registers.
222 *
223 * May be used as the tf_load() entry in ata_port_operations.
224 *
225 * LOCKING:
226 * Inherited from caller.
227 */
228 void ata_tf_load(struct ata_port *ap, const struct ata_taskfile *tf)
229 {
230 if (ap->flags & ATA_FLAG_MMIO)
231 ata_tf_load_mmio(ap, tf);
232 else
233 ata_tf_load_pio(ap, tf);
234 }
235
236 /**
237 * ata_exec_command_pio - issue ATA command to host controller
238 * @ap: port to which command is being issued
239 * @tf: ATA taskfile register set
240 *
241 * Issues PIO write to ATA command register, with proper
242 * synchronization with interrupt handler / other threads.
243 *
244 * LOCKING:
245 * spin_lock_irqsave(host_set lock)
246 */
247
248 static void ata_exec_command_pio(struct ata_port *ap, const struct ata_taskfile *tf)
249 {
250 DPRINTK("ata%u: cmd 0x%X\n", ap->id, tf->command);
251
252 outb(tf->command, ap->ioaddr.command_addr);
253 ata_pause(ap);
254 }
255
256
257 /**
258 * ata_exec_command_mmio - issue ATA command to host controller
259 * @ap: port to which command is being issued
260 * @tf: ATA taskfile register set
261 *
262 * Issues MMIO write to ATA command register, with proper
263 * synchronization with interrupt handler / other threads.
264 *
265 * LOCKING:
266 * spin_lock_irqsave(host_set lock)
267 */
268
269 static void ata_exec_command_mmio(struct ata_port *ap, const struct ata_taskfile *tf)
270 {
271 DPRINTK("ata%u: cmd 0x%X\n", ap->id, tf->command);
272
273 writeb(tf->command, (void __iomem *) ap->ioaddr.command_addr);
274 ata_pause(ap);
275 }
276
277
278 /**
279 * ata_exec_command - issue ATA command to host controller
280 * @ap: port to which command is being issued
281 * @tf: ATA taskfile register set
282 *
283 * Issues PIO/MMIO write to ATA command register, with proper
284 * synchronization with interrupt handler / other threads.
285 *
286 * LOCKING:
287 * spin_lock_irqsave(host_set lock)
288 */
289 void ata_exec_command(struct ata_port *ap, const struct ata_taskfile *tf)
290 {
291 if (ap->flags & ATA_FLAG_MMIO)
292 ata_exec_command_mmio(ap, tf);
293 else
294 ata_exec_command_pio(ap, tf);
295 }
296
297 /**
298 * ata_tf_to_host - issue ATA taskfile to host controller
299 * @ap: port to which command is being issued
300 * @tf: ATA taskfile register set
301 *
302 * Issues ATA taskfile register set to ATA host controller,
303 * with proper synchronization with interrupt handler and
304 * other threads.
305 *
306 * LOCKING:
307 * spin_lock_irqsave(host_set lock)
308 */
309
310 static inline void ata_tf_to_host(struct ata_port *ap,
311 const struct ata_taskfile *tf)
312 {
313 ap->ops->tf_load(ap, tf);
314 ap->ops->exec_command(ap, tf);
315 }
316
317 /**
318 * ata_tf_read_pio - input device's ATA taskfile shadow registers
319 * @ap: Port from which input is read
320 * @tf: ATA taskfile register set for storing input
321 *
322 * Reads ATA taskfile registers for currently-selected device
323 * into @tf.
324 *
325 * LOCKING:
326 * Inherited from caller.
327 */
328
329 static void ata_tf_read_pio(struct ata_port *ap, struct ata_taskfile *tf)
330 {
331 struct ata_ioports *ioaddr = &ap->ioaddr;
332
333 tf->command = ata_check_status(ap);
334 tf->feature = inb(ioaddr->error_addr);
335 tf->nsect = inb(ioaddr->nsect_addr);
336 tf->lbal = inb(ioaddr->lbal_addr);
337 tf->lbam = inb(ioaddr->lbam_addr);
338 tf->lbah = inb(ioaddr->lbah_addr);
339 tf->device = inb(ioaddr->device_addr);
340
341 if (tf->flags & ATA_TFLAG_LBA48) {
342 outb(tf->ctl | ATA_HOB, ioaddr->ctl_addr);
343 tf->hob_feature = inb(ioaddr->error_addr);
344 tf->hob_nsect = inb(ioaddr->nsect_addr);
345 tf->hob_lbal = inb(ioaddr->lbal_addr);
346 tf->hob_lbam = inb(ioaddr->lbam_addr);
347 tf->hob_lbah = inb(ioaddr->lbah_addr);
348 }
349 }
350
351 /**
352 * ata_tf_read_mmio - input device's ATA taskfile shadow registers
353 * @ap: Port from which input is read
354 * @tf: ATA taskfile register set for storing input
355 *
356 * Reads ATA taskfile registers for currently-selected device
357 * into @tf via MMIO.
358 *
359 * LOCKING:
360 * Inherited from caller.
361 */
362
363 static void ata_tf_read_mmio(struct ata_port *ap, struct ata_taskfile *tf)
364 {
365 struct ata_ioports *ioaddr = &ap->ioaddr;
366
367 tf->command = ata_check_status(ap);
368 tf->feature = readb((void __iomem *)ioaddr->error_addr);
369 tf->nsect = readb((void __iomem *)ioaddr->nsect_addr);
370 tf->lbal = readb((void __iomem *)ioaddr->lbal_addr);
371 tf->lbam = readb((void __iomem *)ioaddr->lbam_addr);
372 tf->lbah = readb((void __iomem *)ioaddr->lbah_addr);
373 tf->device = readb((void __iomem *)ioaddr->device_addr);
374
375 if (tf->flags & ATA_TFLAG_LBA48) {
376 writeb(tf->ctl | ATA_HOB, (void __iomem *) ap->ioaddr.ctl_addr);
377 tf->hob_feature = readb((void __iomem *)ioaddr->error_addr);
378 tf->hob_nsect = readb((void __iomem *)ioaddr->nsect_addr);
379 tf->hob_lbal = readb((void __iomem *)ioaddr->lbal_addr);
380 tf->hob_lbam = readb((void __iomem *)ioaddr->lbam_addr);
381 tf->hob_lbah = readb((void __iomem *)ioaddr->lbah_addr);
382 }
383 }
384
385
386 /**
387 * ata_tf_read - input device's ATA taskfile shadow registers
388 * @ap: Port from which input is read
389 * @tf: ATA taskfile register set for storing input
390 *
391 * Reads ATA taskfile registers for currently-selected device
392 * into @tf.
393 *
394 * Reads nsect, lbal, lbam, lbah, and device. If ATA_TFLAG_LBA48
395 * is set, also reads the hob registers.
396 *
397 * May be used as the tf_read() entry in ata_port_operations.
398 *
399 * LOCKING:
400 * Inherited from caller.
401 */
402 void ata_tf_read(struct ata_port *ap, struct ata_taskfile *tf)
403 {
404 if (ap->flags & ATA_FLAG_MMIO)
405 ata_tf_read_mmio(ap, tf);
406 else
407 ata_tf_read_pio(ap, tf);
408 }
409
410 /**
411 * ata_check_status_pio - Read device status reg & clear interrupt
412 * @ap: port where the device is
413 *
414 * Reads ATA taskfile status register for currently-selected device
415 * and return its value. This also clears pending interrupts
416 * from this device
417 *
418 * LOCKING:
419 * Inherited from caller.
420 */
421 static u8 ata_check_status_pio(struct ata_port *ap)
422 {
423 return inb(ap->ioaddr.status_addr);
424 }
425
426 /**
427 * ata_check_status_mmio - Read device status reg & clear interrupt
428 * @ap: port where the device is
429 *
430 * Reads ATA taskfile status register for currently-selected device
431 * via MMIO and return its value. This also clears pending interrupts
432 * from this device
433 *
434 * LOCKING:
435 * Inherited from caller.
436 */
437 static u8 ata_check_status_mmio(struct ata_port *ap)
438 {
439 return readb((void __iomem *) ap->ioaddr.status_addr);
440 }
441
442
443 /**
444 * ata_check_status - Read device status reg & clear interrupt
445 * @ap: port where the device is
446 *
447 * Reads ATA taskfile status register for currently-selected device
448 * and return its value. This also clears pending interrupts
449 * from this device
450 *
451 * May be used as the check_status() entry in ata_port_operations.
452 *
453 * LOCKING:
454 * Inherited from caller.
455 */
456 u8 ata_check_status(struct ata_port *ap)
457 {
458 if (ap->flags & ATA_FLAG_MMIO)
459 return ata_check_status_mmio(ap);
460 return ata_check_status_pio(ap);
461 }
462
463
464 /**
465 * ata_altstatus - Read device alternate status reg
466 * @ap: port where the device is
467 *
468 * Reads ATA taskfile alternate status register for
469 * currently-selected device and return its value.
470 *
471 * Note: may NOT be used as the check_altstatus() entry in
472 * ata_port_operations.
473 *
474 * LOCKING:
475 * Inherited from caller.
476 */
477 u8 ata_altstatus(struct ata_port *ap)
478 {
479 if (ap->ops->check_altstatus)
480 return ap->ops->check_altstatus(ap);
481
482 if (ap->flags & ATA_FLAG_MMIO)
483 return readb((void __iomem *)ap->ioaddr.altstatus_addr);
484 return inb(ap->ioaddr.altstatus_addr);
485 }
486
487
488 /**
489 * ata_tf_to_fis - Convert ATA taskfile to SATA FIS structure
490 * @tf: Taskfile to convert
491 * @fis: Buffer into which data will output
492 * @pmp: Port multiplier port
493 *
494 * Converts a standard ATA taskfile to a Serial ATA
495 * FIS structure (Register - Host to Device).
496 *
497 * LOCKING:
498 * Inherited from caller.
499 */
500
501 void ata_tf_to_fis(const struct ata_taskfile *tf, u8 *fis, u8 pmp)
502 {
503 fis[0] = 0x27; /* Register - Host to Device FIS */
504 fis[1] = (pmp & 0xf) | (1 << 7); /* Port multiplier number,
505 bit 7 indicates Command FIS */
506 fis[2] = tf->command;
507 fis[3] = tf->feature;
508
509 fis[4] = tf->lbal;
510 fis[5] = tf->lbam;
511 fis[6] = tf->lbah;
512 fis[7] = tf->device;
513
514 fis[8] = tf->hob_lbal;
515 fis[9] = tf->hob_lbam;
516 fis[10] = tf->hob_lbah;
517 fis[11] = tf->hob_feature;
518
519 fis[12] = tf->nsect;
520 fis[13] = tf->hob_nsect;
521 fis[14] = 0;
522 fis[15] = tf->ctl;
523
524 fis[16] = 0;
525 fis[17] = 0;
526 fis[18] = 0;
527 fis[19] = 0;
528 }
529
530 /**
531 * ata_tf_from_fis - Convert SATA FIS to ATA taskfile
532 * @fis: Buffer from which data will be input
533 * @tf: Taskfile to output
534 *
535 * Converts a serial ATA FIS structure to a standard ATA taskfile.
536 *
537 * LOCKING:
538 * Inherited from caller.
539 */
540
541 void ata_tf_from_fis(const u8 *fis, struct ata_taskfile *tf)
542 {
543 tf->command = fis[2]; /* status */
544 tf->feature = fis[3]; /* error */
545
546 tf->lbal = fis[4];
547 tf->lbam = fis[5];
548 tf->lbah = fis[6];
549 tf->device = fis[7];
550
551 tf->hob_lbal = fis[8];
552 tf->hob_lbam = fis[9];
553 tf->hob_lbah = fis[10];
554
555 tf->nsect = fis[12];
556 tf->hob_nsect = fis[13];
557 }
558
559 static const u8 ata_rw_cmds[] = {
560 /* pio multi */
561 ATA_CMD_READ_MULTI,
562 ATA_CMD_WRITE_MULTI,
563 ATA_CMD_READ_MULTI_EXT,
564 ATA_CMD_WRITE_MULTI_EXT,
565 0,
566 0,
567 0,
568 ATA_CMD_WRITE_MULTI_FUA_EXT,
569 /* pio */
570 ATA_CMD_PIO_READ,
571 ATA_CMD_PIO_WRITE,
572 ATA_CMD_PIO_READ_EXT,
573 ATA_CMD_PIO_WRITE_EXT,
574 0,
575 0,
576 0,
577 0,
578 /* dma */
579 ATA_CMD_READ,
580 ATA_CMD_WRITE,
581 ATA_CMD_READ_EXT,
582 ATA_CMD_WRITE_EXT,
583 0,
584 0,
585 0,
586 ATA_CMD_WRITE_FUA_EXT
587 };
588
589 /**
590 * ata_rwcmd_protocol - set taskfile r/w commands and protocol
591 * @qc: command to examine and configure
592 *
593 * Examine the device configuration and tf->flags to calculate
594 * the proper read/write commands and protocol to use.
595 *
596 * LOCKING:
597 * caller.
598 */
599 int ata_rwcmd_protocol(struct ata_queued_cmd *qc)
600 {
601 struct ata_taskfile *tf = &qc->tf;
602 struct ata_device *dev = qc->dev;
603 u8 cmd;
604
605 int index, fua, lba48, write;
606
607 fua = (tf->flags & ATA_TFLAG_FUA) ? 4 : 0;
608 lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0;
609 write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0;
610
611 if (dev->flags & ATA_DFLAG_PIO) {
612 tf->protocol = ATA_PROT_PIO;
613 index = dev->multi_count ? 0 : 8;
614 } else if (lba48 && (qc->ap->flags & ATA_FLAG_PIO_LBA48)) {
615 /* Unable to use DMA due to host limitation */
616 tf->protocol = ATA_PROT_PIO;
617 index = dev->multi_count ? 0 : 4;
618 } else {
619 tf->protocol = ATA_PROT_DMA;
620 index = 16;
621 }
622
623 cmd = ata_rw_cmds[index + fua + lba48 + write];
624 if (cmd) {
625 tf->command = cmd;
626 return 0;
627 }
628 return -1;
629 }
630
631 static const char * const xfer_mode_str[] = {
632 "UDMA/16",
633 "UDMA/25",
634 "UDMA/33",
635 "UDMA/44",
636 "UDMA/66",
637 "UDMA/100",
638 "UDMA/133",
639 "UDMA7",
640 "MWDMA0",
641 "MWDMA1",
642 "MWDMA2",
643 "PIO0",
644 "PIO1",
645 "PIO2",
646 "PIO3",
647 "PIO4",
648 };
649
650 /**
651 * ata_udma_string - convert UDMA bit offset to string
652 * @mask: mask of bits supported; only highest bit counts.
653 *
654 * Determine string which represents the highest speed
655 * (highest bit in @udma_mask).
656 *
657 * LOCKING:
658 * None.
659 *
660 * RETURNS:
661 * Constant C string representing highest speed listed in
662 * @udma_mask, or the constant C string "<n/a>".
663 */
664
665 static const char *ata_mode_string(unsigned int mask)
666 {
667 int i;
668
669 for (i = 7; i >= 0; i--)
670 if (mask & (1 << i))
671 goto out;
672 for (i = ATA_SHIFT_MWDMA + 2; i >= ATA_SHIFT_MWDMA; i--)
673 if (mask & (1 << i))
674 goto out;
675 for (i = ATA_SHIFT_PIO + 4; i >= ATA_SHIFT_PIO; i--)
676 if (mask & (1 << i))
677 goto out;
678
679 return "<n/a>";
680
681 out:
682 return xfer_mode_str[i];
683 }
684
685 /**
686 * ata_pio_devchk - PATA device presence detection
687 * @ap: ATA channel to examine
688 * @device: Device to examine (starting at zero)
689 *
690 * This technique was originally described in
691 * Hale Landis's ATADRVR (www.ata-atapi.com), and
692 * later found its way into the ATA/ATAPI spec.
693 *
694 * Write a pattern to the ATA shadow registers,
695 * and if a device is present, it will respond by
696 * correctly storing and echoing back the
697 * ATA shadow register contents.
698 *
699 * LOCKING:
700 * caller.
701 */
702
703 static unsigned int ata_pio_devchk(struct ata_port *ap,
704 unsigned int device)
705 {
706 struct ata_ioports *ioaddr = &ap->ioaddr;
707 u8 nsect, lbal;
708
709 ap->ops->dev_select(ap, device);
710
711 outb(0x55, ioaddr->nsect_addr);
712 outb(0xaa, ioaddr->lbal_addr);
713
714 outb(0xaa, ioaddr->nsect_addr);
715 outb(0x55, ioaddr->lbal_addr);
716
717 outb(0x55, ioaddr->nsect_addr);
718 outb(0xaa, ioaddr->lbal_addr);
719
720 nsect = inb(ioaddr->nsect_addr);
721 lbal = inb(ioaddr->lbal_addr);
722
723 if ((nsect == 0x55) && (lbal == 0xaa))
724 return 1; /* we found a device */
725
726 return 0; /* nothing found */
727 }
728
729 /**
730 * ata_mmio_devchk - PATA device presence detection
731 * @ap: ATA channel to examine
732 * @device: Device to examine (starting at zero)
733 *
734 * This technique was originally described in
735 * Hale Landis's ATADRVR (www.ata-atapi.com), and
736 * later found its way into the ATA/ATAPI spec.
737 *
738 * Write a pattern to the ATA shadow registers,
739 * and if a device is present, it will respond by
740 * correctly storing and echoing back the
741 * ATA shadow register contents.
742 *
743 * LOCKING:
744 * caller.
745 */
746
747 static unsigned int ata_mmio_devchk(struct ata_port *ap,
748 unsigned int device)
749 {
750 struct ata_ioports *ioaddr = &ap->ioaddr;
751 u8 nsect, lbal;
752
753 ap->ops->dev_select(ap, device);
754
755 writeb(0x55, (void __iomem *) ioaddr->nsect_addr);
756 writeb(0xaa, (void __iomem *) ioaddr->lbal_addr);
757
758 writeb(0xaa, (void __iomem *) ioaddr->nsect_addr);
759 writeb(0x55, (void __iomem *) ioaddr->lbal_addr);
760
761 writeb(0x55, (void __iomem *) ioaddr->nsect_addr);
762 writeb(0xaa, (void __iomem *) ioaddr->lbal_addr);
763
764 nsect = readb((void __iomem *) ioaddr->nsect_addr);
765 lbal = readb((void __iomem *) ioaddr->lbal_addr);
766
767 if ((nsect == 0x55) && (lbal == 0xaa))
768 return 1; /* we found a device */
769
770 return 0; /* nothing found */
771 }
772
773 /**
774 * ata_devchk - PATA device presence detection
775 * @ap: ATA channel to examine
776 * @device: Device to examine (starting at zero)
777 *
778 * Dispatch ATA device presence detection, depending
779 * on whether we are using PIO or MMIO to talk to the
780 * ATA shadow registers.
781 *
782 * LOCKING:
783 * caller.
784 */
785
786 static unsigned int ata_devchk(struct ata_port *ap,
787 unsigned int device)
788 {
789 if (ap->flags & ATA_FLAG_MMIO)
790 return ata_mmio_devchk(ap, device);
791 return ata_pio_devchk(ap, device);
792 }
793
794 /**
795 * ata_dev_classify - determine device type based on ATA-spec signature
796 * @tf: ATA taskfile register set for device to be identified
797 *
798 * Determine from taskfile register contents whether a device is
799 * ATA or ATAPI, as per "Signature and persistence" section
800 * of ATA/PI spec (volume 1, sect 5.14).
801 *
802 * LOCKING:
803 * None.
804 *
805 * RETURNS:
806 * Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, or %ATA_DEV_UNKNOWN
807 * the event of failure.
808 */
809
810 unsigned int ata_dev_classify(const struct ata_taskfile *tf)
811 {
812 /* Apple's open source Darwin code hints that some devices only
813 * put a proper signature into the LBA mid/high registers,
814 * So, we only check those. It's sufficient for uniqueness.
815 */
816
817 if (((tf->lbam == 0) && (tf->lbah == 0)) ||
818 ((tf->lbam == 0x3c) && (tf->lbah == 0xc3))) {
819 DPRINTK("found ATA device by sig\n");
820 return ATA_DEV_ATA;
821 }
822
823 if (((tf->lbam == 0x14) && (tf->lbah == 0xeb)) ||
824 ((tf->lbam == 0x69) && (tf->lbah == 0x96))) {
825 DPRINTK("found ATAPI device by sig\n");
826 return ATA_DEV_ATAPI;
827 }
828
829 DPRINTK("unknown device\n");
830 return ATA_DEV_UNKNOWN;
831 }
832
833 /**
834 * ata_dev_try_classify - Parse returned ATA device signature
835 * @ap: ATA channel to examine
836 * @device: Device to examine (starting at zero)
837 *
838 * After an event -- SRST, E.D.D., or SATA COMRESET -- occurs,
839 * an ATA/ATAPI-defined set of values is placed in the ATA
840 * shadow registers, indicating the results of device detection
841 * and diagnostics.
842 *
843 * Select the ATA device, and read the values from the ATA shadow
844 * registers. Then parse according to the Error register value,
845 * and the spec-defined values examined by ata_dev_classify().
846 *
847 * LOCKING:
848 * caller.
849 */
850
851 static u8 ata_dev_try_classify(struct ata_port *ap, unsigned int device)
852 {
853 struct ata_device *dev = &ap->device[device];
854 struct ata_taskfile tf;
855 unsigned int class;
856 u8 err;
857
858 ap->ops->dev_select(ap, device);
859
860 memset(&tf, 0, sizeof(tf));
861
862 ap->ops->tf_read(ap, &tf);
863 err = tf.feature;
864
865 dev->class = ATA_DEV_NONE;
866
867 /* see if device passed diags */
868 if (err == 1)
869 /* do nothing */ ;
870 else if ((device == 0) && (err == 0x81))
871 /* do nothing */ ;
872 else
873 return err;
874
875 /* determine if device if ATA or ATAPI */
876 class = ata_dev_classify(&tf);
877 if (class == ATA_DEV_UNKNOWN)
878 return err;
879 if ((class == ATA_DEV_ATA) && (ata_chk_status(ap) == 0))
880 return err;
881
882 dev->class = class;
883
884 return err;
885 }
886
887 /**
888 * ata_dev_id_string - Convert IDENTIFY DEVICE page into string
889 * @id: IDENTIFY DEVICE results we will examine
890 * @s: string into which data is output
891 * @ofs: offset into identify device page
892 * @len: length of string to return. must be an even number.
893 *
894 * The strings in the IDENTIFY DEVICE page are broken up into
895 * 16-bit chunks. Run through the string, and output each
896 * 8-bit chunk linearly, regardless of platform.
897 *
898 * LOCKING:
899 * caller.
900 */
901
902 void ata_dev_id_string(const u16 *id, unsigned char *s,
903 unsigned int ofs, unsigned int len)
904 {
905 unsigned int c;
906
907 while (len > 0) {
908 c = id[ofs] >> 8;
909 *s = c;
910 s++;
911
912 c = id[ofs] & 0xff;
913 *s = c;
914 s++;
915
916 ofs++;
917 len -= 2;
918 }
919 }
920
921
922 /**
923 * ata_noop_dev_select - Select device 0/1 on ATA bus
924 * @ap: ATA channel to manipulate
925 * @device: ATA device (numbered from zero) to select
926 *
927 * This function performs no actual function.
928 *
929 * May be used as the dev_select() entry in ata_port_operations.
930 *
931 * LOCKING:
932 * caller.
933 */
934 void ata_noop_dev_select (struct ata_port *ap, unsigned int device)
935 {
936 }
937
938
939 /**
940 * ata_std_dev_select - Select device 0/1 on ATA bus
941 * @ap: ATA channel to manipulate
942 * @device: ATA device (numbered from zero) to select
943 *
944 * Use the method defined in the ATA specification to
945 * make either device 0, or device 1, active on the
946 * ATA channel. Works with both PIO and MMIO.
947 *
948 * May be used as the dev_select() entry in ata_port_operations.
949 *
950 * LOCKING:
951 * caller.
952 */
953
954 void ata_std_dev_select (struct ata_port *ap, unsigned int device)
955 {
956 u8 tmp;
957
958 if (device == 0)
959 tmp = ATA_DEVICE_OBS;
960 else
961 tmp = ATA_DEVICE_OBS | ATA_DEV1;
962
963 if (ap->flags & ATA_FLAG_MMIO) {
964 writeb(tmp, (void __iomem *) ap->ioaddr.device_addr);
965 } else {
966 outb(tmp, ap->ioaddr.device_addr);
967 }
968 ata_pause(ap); /* needed; also flushes, for mmio */
969 }
970
971 /**
972 * ata_dev_select - Select device 0/1 on ATA bus
973 * @ap: ATA channel to manipulate
974 * @device: ATA device (numbered from zero) to select
975 * @wait: non-zero to wait for Status register BSY bit to clear
976 * @can_sleep: non-zero if context allows sleeping
977 *
978 * Use the method defined in the ATA specification to
979 * make either device 0, or device 1, active on the
980 * ATA channel.
981 *
982 * This is a high-level version of ata_std_dev_select(),
983 * which additionally provides the services of inserting
984 * the proper pauses and status polling, where needed.
985 *
986 * LOCKING:
987 * caller.
988 */
989
990 void ata_dev_select(struct ata_port *ap, unsigned int device,
991 unsigned int wait, unsigned int can_sleep)
992 {
993 VPRINTK("ENTER, ata%u: device %u, wait %u\n",
994 ap->id, device, wait);
995
996 if (wait)
997 ata_wait_idle(ap);
998
999 ap->ops->dev_select(ap, device);
1000
1001 if (wait) {
1002 if (can_sleep && ap->device[device].class == ATA_DEV_ATAPI)
1003 msleep(150);
1004 ata_wait_idle(ap);
1005 }
1006 }
1007
1008 /**
1009 * ata_dump_id - IDENTIFY DEVICE info debugging output
1010 * @dev: Device whose IDENTIFY DEVICE page we will dump
1011 *
1012 * Dump selected 16-bit words from a detected device's
1013 * IDENTIFY PAGE page.
1014 *
1015 * LOCKING:
1016 * caller.
1017 */
1018
1019 static inline void ata_dump_id(const struct ata_device *dev)
1020 {
1021 DPRINTK("49==0x%04x "
1022 "53==0x%04x "
1023 "63==0x%04x "
1024 "64==0x%04x "
1025 "75==0x%04x \n",
1026 dev->id[49],
1027 dev->id[53],
1028 dev->id[63],
1029 dev->id[64],
1030 dev->id[75]);
1031 DPRINTK("80==0x%04x "
1032 "81==0x%04x "
1033 "82==0x%04x "
1034 "83==0x%04x "
1035 "84==0x%04x \n",
1036 dev->id[80],
1037 dev->id[81],
1038 dev->id[82],
1039 dev->id[83],
1040 dev->id[84]);
1041 DPRINTK("88==0x%04x "
1042 "93==0x%04x\n",
1043 dev->id[88],
1044 dev->id[93]);
1045 }
1046
1047 /*
1048 * Compute the PIO modes available for this device. This is not as
1049 * trivial as it seems if we must consider early devices correctly.
1050 *
1051 * FIXME: pre IDE drive timing (do we care ?).
1052 */
1053
1054 static unsigned int ata_pio_modes(const struct ata_device *adev)
1055 {
1056 u16 modes;
1057
1058 /* Usual case. Word 53 indicates word 64 is valid */
1059 if (adev->id[ATA_ID_FIELD_VALID] & (1 << 1)) {
1060 modes = adev->id[ATA_ID_PIO_MODES] & 0x03;
1061 modes <<= 3;
1062 modes |= 0x7;
1063 return modes;
1064 }
1065
1066 /* If word 64 isn't valid then Word 51 high byte holds the PIO timing
1067 number for the maximum. Turn it into a mask and return it */
1068 modes = (2 << ((adev->id[ATA_ID_OLD_PIO_MODES] >> 8) & 0xFF)) - 1 ;
1069 return modes;
1070 /* But wait.. there's more. Design your standards by committee and
1071 you too can get a free iordy field to process. However its the
1072 speeds not the modes that are supported... Note drivers using the
1073 timing API will get this right anyway */
1074 }
1075
1076 struct ata_exec_internal_arg {
1077 unsigned int err_mask;
1078 struct ata_taskfile *tf;
1079 struct completion *waiting;
1080 };
1081
1082 int ata_qc_complete_internal(struct ata_queued_cmd *qc)
1083 {
1084 struct ata_exec_internal_arg *arg = qc->private_data;
1085 struct completion *waiting = arg->waiting;
1086
1087 if (!(qc->err_mask & ~AC_ERR_DEV))
1088 qc->ap->ops->tf_read(qc->ap, arg->tf);
1089 arg->err_mask = qc->err_mask;
1090 arg->waiting = NULL;
1091 complete(waiting);
1092
1093 return 0;
1094 }
1095
1096 /**
1097 * ata_exec_internal - execute libata internal command
1098 * @ap: Port to which the command is sent
1099 * @dev: Device to which the command is sent
1100 * @tf: Taskfile registers for the command and the result
1101 * @dma_dir: Data tranfer direction of the command
1102 * @buf: Data buffer of the command
1103 * @buflen: Length of data buffer
1104 *
1105 * Executes libata internal command with timeout. @tf contains
1106 * command on entry and result on return. Timeout and error
1107 * conditions are reported via return value. No recovery action
1108 * is taken after a command times out. It's caller's duty to
1109 * clean up after timeout.
1110 *
1111 * LOCKING:
1112 * None. Should be called with kernel context, might sleep.
1113 */
1114
1115 static unsigned
1116 ata_exec_internal(struct ata_port *ap, struct ata_device *dev,
1117 struct ata_taskfile *tf,
1118 int dma_dir, void *buf, unsigned int buflen)
1119 {
1120 u8 command = tf->command;
1121 struct ata_queued_cmd *qc;
1122 DECLARE_COMPLETION(wait);
1123 unsigned long flags;
1124 struct ata_exec_internal_arg arg;
1125
1126 spin_lock_irqsave(&ap->host_set->lock, flags);
1127
1128 qc = ata_qc_new_init(ap, dev);
1129 BUG_ON(qc == NULL);
1130
1131 qc->tf = *tf;
1132 qc->dma_dir = dma_dir;
1133 if (dma_dir != DMA_NONE) {
1134 ata_sg_init_one(qc, buf, buflen);
1135 qc->nsect = buflen / ATA_SECT_SIZE;
1136 }
1137
1138 arg.waiting = &wait;
1139 arg.tf = tf;
1140 qc->private_data = &arg;
1141 qc->complete_fn = ata_qc_complete_internal;
1142
1143 if (ata_qc_issue(qc))
1144 goto issue_fail;
1145
1146 spin_unlock_irqrestore(&ap->host_set->lock, flags);
1147
1148 if (!wait_for_completion_timeout(&wait, ATA_TMOUT_INTERNAL)) {
1149 spin_lock_irqsave(&ap->host_set->lock, flags);
1150
1151 /* We're racing with irq here. If we lose, the
1152 * following test prevents us from completing the qc
1153 * again. If completion irq occurs after here but
1154 * before the caller cleans up, it will result in a
1155 * spurious interrupt. We can live with that.
1156 */
1157 if (arg.waiting) {
1158 qc->err_mask = AC_ERR_OTHER;
1159 ata_qc_complete(qc);
1160 printk(KERN_WARNING "ata%u: qc timeout (cmd 0x%x)\n",
1161 ap->id, command);
1162 }
1163
1164 spin_unlock_irqrestore(&ap->host_set->lock, flags);
1165 }
1166
1167 return arg.err_mask;
1168
1169 issue_fail:
1170 ata_qc_free(qc);
1171 spin_unlock_irqrestore(&ap->host_set->lock, flags);
1172 return AC_ERR_OTHER;
1173 }
1174
1175 /**
1176 * ata_pio_need_iordy - check if iordy needed
1177 * @adev: ATA device
1178 *
1179 * Check if the current speed of the device requires IORDY. Used
1180 * by various controllers for chip configuration.
1181 */
1182
1183 unsigned int ata_pio_need_iordy(const struct ata_device *adev)
1184 {
1185 int pio;
1186 int speed = adev->pio_mode - XFER_PIO_0;
1187
1188 if (speed < 2)
1189 return 0;
1190 if (speed > 2)
1191 return 1;
1192
1193 /* If we have no drive specific rule, then PIO 2 is non IORDY */
1194
1195 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE */
1196 pio = adev->id[ATA_ID_EIDE_PIO];
1197 /* Is the speed faster than the drive allows non IORDY ? */
1198 if (pio) {
1199 /* This is cycle times not frequency - watch the logic! */
1200 if (pio > 240) /* PIO2 is 240nS per cycle */
1201 return 1;
1202 return 0;
1203 }
1204 }
1205 return 0;
1206 }
1207
1208 /**
1209 * ata_dev_identify - obtain IDENTIFY x DEVICE page
1210 * @ap: port on which device we wish to probe resides
1211 * @device: device bus address, starting at zero
1212 *
1213 * Following bus reset, we issue the IDENTIFY [PACKET] DEVICE
1214 * command, and read back the 512-byte device information page.
1215 * The device information page is fed to us via the standard
1216 * PIO-IN protocol, but we hand-code it here. (TODO: investigate
1217 * using standard PIO-IN paths)
1218 *
1219 * After reading the device information page, we use several
1220 * bits of information from it to initialize data structures
1221 * that will be used during the lifetime of the ata_device.
1222 * Other data from the info page is used to disqualify certain
1223 * older ATA devices we do not wish to support.
1224 *
1225 * LOCKING:
1226 * Inherited from caller. Some functions called by this function
1227 * obtain the host_set lock.
1228 */
1229
1230 static void ata_dev_identify(struct ata_port *ap, unsigned int device)
1231 {
1232 struct ata_device *dev = &ap->device[device];
1233 unsigned int major_version;
1234 u16 tmp;
1235 unsigned long xfer_modes;
1236 unsigned int using_edd;
1237 struct ata_taskfile tf;
1238 unsigned int err_mask;
1239 int rc;
1240
1241 if (!ata_dev_present(dev)) {
1242 DPRINTK("ENTER/EXIT (host %u, dev %u) -- nodev\n",
1243 ap->id, device);
1244 return;
1245 }
1246
1247 if (ap->flags & (ATA_FLAG_SRST | ATA_FLAG_SATA_RESET))
1248 using_edd = 0;
1249 else
1250 using_edd = 1;
1251
1252 DPRINTK("ENTER, host %u, dev %u\n", ap->id, device);
1253
1254 assert (dev->class == ATA_DEV_ATA || dev->class == ATA_DEV_ATAPI ||
1255 dev->class == ATA_DEV_NONE);
1256
1257 ata_dev_select(ap, device, 1, 1); /* select device 0/1 */
1258
1259 retry:
1260 ata_tf_init(ap, &tf, device);
1261
1262 if (dev->class == ATA_DEV_ATA) {
1263 tf.command = ATA_CMD_ID_ATA;
1264 DPRINTK("do ATA identify\n");
1265 } else {
1266 tf.command = ATA_CMD_ID_ATAPI;
1267 DPRINTK("do ATAPI identify\n");
1268 }
1269
1270 tf.protocol = ATA_PROT_PIO;
1271
1272 err_mask = ata_exec_internal(ap, dev, &tf, DMA_FROM_DEVICE,
1273 dev->id, sizeof(dev->id));
1274
1275 if (err_mask) {
1276 if (err_mask & ~AC_ERR_DEV)
1277 goto err_out;
1278
1279 /*
1280 * arg! EDD works for all test cases, but seems to return
1281 * the ATA signature for some ATAPI devices. Until the
1282 * reason for this is found and fixed, we fix up the mess
1283 * here. If IDENTIFY DEVICE returns command aborted
1284 * (as ATAPI devices do), then we issue an
1285 * IDENTIFY PACKET DEVICE.
1286 *
1287 * ATA software reset (SRST, the default) does not appear
1288 * to have this problem.
1289 */
1290 if ((using_edd) && (dev->class == ATA_DEV_ATA)) {
1291 u8 err = tf.feature;
1292 if (err & ATA_ABORTED) {
1293 dev->class = ATA_DEV_ATAPI;
1294 goto retry;
1295 }
1296 }
1297 goto err_out;
1298 }
1299
1300 swap_buf_le16(dev->id, ATA_ID_WORDS);
1301
1302 /* print device capabilities */
1303 printk(KERN_DEBUG "ata%u: dev %u cfg "
1304 "49:%04x 82:%04x 83:%04x 84:%04x 85:%04x 86:%04x 87:%04x 88:%04x\n",
1305 ap->id, device, dev->id[49],
1306 dev->id[82], dev->id[83], dev->id[84],
1307 dev->id[85], dev->id[86], dev->id[87],
1308 dev->id[88]);
1309
1310 /*
1311 * common ATA, ATAPI feature tests
1312 */
1313
1314 /* we require DMA support (bits 8 of word 49) */
1315 if (!ata_id_has_dma(dev->id)) {
1316 printk(KERN_DEBUG "ata%u: no dma\n", ap->id);
1317 goto err_out_nosup;
1318 }
1319
1320 /* quick-n-dirty find max transfer mode; for printk only */
1321 xfer_modes = dev->id[ATA_ID_UDMA_MODES];
1322 if (!xfer_modes)
1323 xfer_modes = (dev->id[ATA_ID_MWDMA_MODES]) << ATA_SHIFT_MWDMA;
1324 if (!xfer_modes)
1325 xfer_modes = ata_pio_modes(dev);
1326
1327 ata_dump_id(dev);
1328
1329 /* ATA-specific feature tests */
1330 if (dev->class == ATA_DEV_ATA) {
1331 if (!ata_id_is_ata(dev->id)) /* sanity check */
1332 goto err_out_nosup;
1333
1334 /* get major version */
1335 tmp = dev->id[ATA_ID_MAJOR_VER];
1336 for (major_version = 14; major_version >= 1; major_version--)
1337 if (tmp & (1 << major_version))
1338 break;
1339
1340 /*
1341 * The exact sequence expected by certain pre-ATA4 drives is:
1342 * SRST RESET
1343 * IDENTIFY
1344 * INITIALIZE DEVICE PARAMETERS
1345 * anything else..
1346 * Some drives were very specific about that exact sequence.
1347 */
1348 if (major_version < 4 || (!ata_id_has_lba(dev->id))) {
1349 ata_dev_init_params(ap, dev);
1350
1351 /* current CHS translation info (id[53-58]) might be
1352 * changed. reread the identify device info.
1353 */
1354 ata_dev_reread_id(ap, dev);
1355 }
1356
1357 if (ata_id_has_lba(dev->id)) {
1358 dev->flags |= ATA_DFLAG_LBA;
1359
1360 if (ata_id_has_lba48(dev->id)) {
1361 dev->flags |= ATA_DFLAG_LBA48;
1362 dev->n_sectors = ata_id_u64(dev->id, 100);
1363 } else {
1364 dev->n_sectors = ata_id_u32(dev->id, 60);
1365 }
1366
1367 /* print device info to dmesg */
1368 printk(KERN_INFO "ata%u: dev %u ATA-%d, max %s, %Lu sectors:%s\n",
1369 ap->id, device,
1370 major_version,
1371 ata_mode_string(xfer_modes),
1372 (unsigned long long)dev->n_sectors,
1373 dev->flags & ATA_DFLAG_LBA48 ? " LBA48" : " LBA");
1374 } else {
1375 /* CHS */
1376
1377 /* Default translation */
1378 dev->cylinders = dev->id[1];
1379 dev->heads = dev->id[3];
1380 dev->sectors = dev->id[6];
1381 dev->n_sectors = dev->cylinders * dev->heads * dev->sectors;
1382
1383 if (ata_id_current_chs_valid(dev->id)) {
1384 /* Current CHS translation is valid. */
1385 dev->cylinders = dev->id[54];
1386 dev->heads = dev->id[55];
1387 dev->sectors = dev->id[56];
1388
1389 dev->n_sectors = ata_id_u32(dev->id, 57);
1390 }
1391
1392 /* print device info to dmesg */
1393 printk(KERN_INFO "ata%u: dev %u ATA-%d, max %s, %Lu sectors: CHS %d/%d/%d\n",
1394 ap->id, device,
1395 major_version,
1396 ata_mode_string(xfer_modes),
1397 (unsigned long long)dev->n_sectors,
1398 (int)dev->cylinders, (int)dev->heads, (int)dev->sectors);
1399
1400 }
1401
1402 ap->host->max_cmd_len = 16;
1403 }
1404
1405 /* ATAPI-specific feature tests */
1406 else if (dev->class == ATA_DEV_ATAPI) {
1407 if (ata_id_is_ata(dev->id)) /* sanity check */
1408 goto err_out_nosup;
1409
1410 rc = atapi_cdb_len(dev->id);
1411 if ((rc < 12) || (rc > ATAPI_CDB_LEN)) {
1412 printk(KERN_WARNING "ata%u: unsupported CDB len\n", ap->id);
1413 goto err_out_nosup;
1414 }
1415 ap->cdb_len = (unsigned int) rc;
1416 ap->host->max_cmd_len = (unsigned char) ap->cdb_len;
1417
1418 /* print device info to dmesg */
1419 printk(KERN_INFO "ata%u: dev %u ATAPI, max %s\n",
1420 ap->id, device,
1421 ata_mode_string(xfer_modes));
1422 }
1423
1424 DPRINTK("EXIT, drv_stat = 0x%x\n", ata_chk_status(ap));
1425 return;
1426
1427 err_out_nosup:
1428 printk(KERN_WARNING "ata%u: dev %u not supported, ignoring\n",
1429 ap->id, device);
1430 err_out:
1431 dev->class++; /* converts ATA_DEV_xxx into ATA_DEV_xxx_UNSUP */
1432 DPRINTK("EXIT, err\n");
1433 }
1434
1435
1436 static inline u8 ata_dev_knobble(const struct ata_port *ap)
1437 {
1438 return ((ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(ap->device->id)));
1439 }
1440
1441 /**
1442 * ata_dev_config - Run device specific handlers and check for
1443 * SATA->PATA bridges
1444 * @ap: Bus
1445 * @i: Device
1446 *
1447 * LOCKING:
1448 */
1449
1450 void ata_dev_config(struct ata_port *ap, unsigned int i)
1451 {
1452 /* limit bridge transfers to udma5, 200 sectors */
1453 if (ata_dev_knobble(ap)) {
1454 printk(KERN_INFO "ata%u(%u): applying bridge limits\n",
1455 ap->id, ap->device->devno);
1456 ap->udma_mask &= ATA_UDMA5;
1457 ap->host->max_sectors = ATA_MAX_SECTORS;
1458 ap->host->hostt->max_sectors = ATA_MAX_SECTORS;
1459 ap->device->flags |= ATA_DFLAG_LOCK_SECTORS;
1460 }
1461
1462 if (ap->ops->dev_config)
1463 ap->ops->dev_config(ap, &ap->device[i]);
1464 }
1465
1466 /**
1467 * ata_bus_probe - Reset and probe ATA bus
1468 * @ap: Bus to probe
1469 *
1470 * Master ATA bus probing function. Initiates a hardware-dependent
1471 * bus reset, then attempts to identify any devices found on
1472 * the bus.
1473 *
1474 * LOCKING:
1475 * PCI/etc. bus probe sem.
1476 *
1477 * RETURNS:
1478 * Zero on success, non-zero on error.
1479 */
1480
1481 static int ata_bus_probe(struct ata_port *ap)
1482 {
1483 unsigned int i, found = 0;
1484
1485 ap->ops->phy_reset(ap);
1486 if (ap->flags & ATA_FLAG_PORT_DISABLED)
1487 goto err_out;
1488
1489 for (i = 0; i < ATA_MAX_DEVICES; i++) {
1490 ata_dev_identify(ap, i);
1491 if (ata_dev_present(&ap->device[i])) {
1492 found = 1;
1493 ata_dev_config(ap,i);
1494 }
1495 }
1496
1497 if ((!found) || (ap->flags & ATA_FLAG_PORT_DISABLED))
1498 goto err_out_disable;
1499
1500 ata_set_mode(ap);
1501 if (ap->flags & ATA_FLAG_PORT_DISABLED)
1502 goto err_out_disable;
1503
1504 return 0;
1505
1506 err_out_disable:
1507 ap->ops->port_disable(ap);
1508 err_out:
1509 return -1;
1510 }
1511
1512 /**
1513 * ata_port_probe - Mark port as enabled
1514 * @ap: Port for which we indicate enablement
1515 *
1516 * Modify @ap data structure such that the system
1517 * thinks that the entire port is enabled.
1518 *
1519 * LOCKING: host_set lock, or some other form of
1520 * serialization.
1521 */
1522
1523 void ata_port_probe(struct ata_port *ap)
1524 {
1525 ap->flags &= ~ATA_FLAG_PORT_DISABLED;
1526 }
1527
1528 /**
1529 * __sata_phy_reset - Wake/reset a low-level SATA PHY
1530 * @ap: SATA port associated with target SATA PHY.
1531 *
1532 * This function issues commands to standard SATA Sxxx
1533 * PHY registers, to wake up the phy (and device), and
1534 * clear any reset condition.
1535 *
1536 * LOCKING:
1537 * PCI/etc. bus probe sem.
1538 *
1539 */
1540 void __sata_phy_reset(struct ata_port *ap)
1541 {
1542 u32 sstatus;
1543 unsigned long timeout = jiffies + (HZ * 5);
1544
1545 if (ap->flags & ATA_FLAG_SATA_RESET) {
1546 /* issue phy wake/reset */
1547 scr_write_flush(ap, SCR_CONTROL, 0x301);
1548 /* Couldn't find anything in SATA I/II specs, but
1549 * AHCI-1.1 10.4.2 says at least 1 ms. */
1550 mdelay(1);
1551 }
1552 scr_write_flush(ap, SCR_CONTROL, 0x300); /* phy wake/clear reset */
1553
1554 /* wait for phy to become ready, if necessary */
1555 do {
1556 msleep(200);
1557 sstatus = scr_read(ap, SCR_STATUS);
1558 if ((sstatus & 0xf) != 1)
1559 break;
1560 } while (time_before(jiffies, timeout));
1561
1562 /* TODO: phy layer with polling, timeouts, etc. */
1563 sstatus = scr_read(ap, SCR_STATUS);
1564 if (sata_dev_present(ap)) {
1565 const char *speed;
1566 u32 tmp;
1567
1568 tmp = (sstatus >> 4) & 0xf;
1569 if (tmp & (1 << 0))
1570 speed = "1.5";
1571 else if (tmp & (1 << 1))
1572 speed = "3.0";
1573 else
1574 speed = "<unknown>";
1575 printk(KERN_INFO "ata%u: SATA link up %s Gbps (SStatus %X)\n",
1576 ap->id, speed, sstatus);
1577 ata_port_probe(ap);
1578 } else {
1579 printk(KERN_INFO "ata%u: SATA link down (SStatus %X)\n",
1580 ap->id, sstatus);
1581 ata_port_disable(ap);
1582 }
1583
1584 if (ap->flags & ATA_FLAG_PORT_DISABLED)
1585 return;
1586
1587 if (ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT)) {
1588 ata_port_disable(ap);
1589 return;
1590 }
1591
1592 ap->cbl = ATA_CBL_SATA;
1593 }
1594
1595 /**
1596 * sata_phy_reset - Reset SATA bus.
1597 * @ap: SATA port associated with target SATA PHY.
1598 *
1599 * This function resets the SATA bus, and then probes
1600 * the bus for devices.
1601 *
1602 * LOCKING:
1603 * PCI/etc. bus probe sem.
1604 *
1605 */
1606 void sata_phy_reset(struct ata_port *ap)
1607 {
1608 __sata_phy_reset(ap);
1609 if (ap->flags & ATA_FLAG_PORT_DISABLED)
1610 return;
1611 ata_bus_reset(ap);
1612 }
1613
1614 /**
1615 * ata_port_disable - Disable port.
1616 * @ap: Port to be disabled.
1617 *
1618 * Modify @ap data structure such that the system
1619 * thinks that the entire port is disabled, and should
1620 * never attempt to probe or communicate with devices
1621 * on this port.
1622 *
1623 * LOCKING: host_set lock, or some other form of
1624 * serialization.
1625 */
1626
1627 void ata_port_disable(struct ata_port *ap)
1628 {
1629 ap->device[0].class = ATA_DEV_NONE;
1630 ap->device[1].class = ATA_DEV_NONE;
1631 ap->flags |= ATA_FLAG_PORT_DISABLED;
1632 }
1633
1634 /*
1635 * This mode timing computation functionality is ported over from
1636 * drivers/ide/ide-timing.h and was originally written by Vojtech Pavlik
1637 */
1638 /*
1639 * PIO 0-5, MWDMA 0-2 and UDMA 0-6 timings (in nanoseconds).
1640 * These were taken from ATA/ATAPI-6 standard, rev 0a, except
1641 * for PIO 5, which is a nonstandard extension and UDMA6, which
1642 * is currently supported only by Maxtor drives.
1643 */
1644
1645 static const struct ata_timing ata_timing[] = {
1646
1647 { XFER_UDMA_6, 0, 0, 0, 0, 0, 0, 0, 15 },
1648 { XFER_UDMA_5, 0, 0, 0, 0, 0, 0, 0, 20 },
1649 { XFER_UDMA_4, 0, 0, 0, 0, 0, 0, 0, 30 },
1650 { XFER_UDMA_3, 0, 0, 0, 0, 0, 0, 0, 45 },
1651
1652 { XFER_UDMA_2, 0, 0, 0, 0, 0, 0, 0, 60 },
1653 { XFER_UDMA_1, 0, 0, 0, 0, 0, 0, 0, 80 },
1654 { XFER_UDMA_0, 0, 0, 0, 0, 0, 0, 0, 120 },
1655
1656 /* { XFER_UDMA_SLOW, 0, 0, 0, 0, 0, 0, 0, 150 }, */
1657
1658 { XFER_MW_DMA_2, 25, 0, 0, 0, 70, 25, 120, 0 },
1659 { XFER_MW_DMA_1, 45, 0, 0, 0, 80, 50, 150, 0 },
1660 { XFER_MW_DMA_0, 60, 0, 0, 0, 215, 215, 480, 0 },
1661
1662 { XFER_SW_DMA_2, 60, 0, 0, 0, 120, 120, 240, 0 },
1663 { XFER_SW_DMA_1, 90, 0, 0, 0, 240, 240, 480, 0 },
1664 { XFER_SW_DMA_0, 120, 0, 0, 0, 480, 480, 960, 0 },
1665
1666 /* { XFER_PIO_5, 20, 50, 30, 100, 50, 30, 100, 0 }, */
1667 { XFER_PIO_4, 25, 70, 25, 120, 70, 25, 120, 0 },
1668 { XFER_PIO_3, 30, 80, 70, 180, 80, 70, 180, 0 },
1669
1670 { XFER_PIO_2, 30, 290, 40, 330, 100, 90, 240, 0 },
1671 { XFER_PIO_1, 50, 290, 93, 383, 125, 100, 383, 0 },
1672 { XFER_PIO_0, 70, 290, 240, 600, 165, 150, 600, 0 },
1673
1674 /* { XFER_PIO_SLOW, 120, 290, 240, 960, 290, 240, 960, 0 }, */
1675
1676 { 0xFF }
1677 };
1678
1679 #define ENOUGH(v,unit) (((v)-1)/(unit)+1)
1680 #define EZ(v,unit) ((v)?ENOUGH(v,unit):0)
1681
1682 static void ata_timing_quantize(const struct ata_timing *t, struct ata_timing *q, int T, int UT)
1683 {
1684 q->setup = EZ(t->setup * 1000, T);
1685 q->act8b = EZ(t->act8b * 1000, T);
1686 q->rec8b = EZ(t->rec8b * 1000, T);
1687 q->cyc8b = EZ(t->cyc8b * 1000, T);
1688 q->active = EZ(t->active * 1000, T);
1689 q->recover = EZ(t->recover * 1000, T);
1690 q->cycle = EZ(t->cycle * 1000, T);
1691 q->udma = EZ(t->udma * 1000, UT);
1692 }
1693
1694 void ata_timing_merge(const struct ata_timing *a, const struct ata_timing *b,
1695 struct ata_timing *m, unsigned int what)
1696 {
1697 if (what & ATA_TIMING_SETUP ) m->setup = max(a->setup, b->setup);
1698 if (what & ATA_TIMING_ACT8B ) m->act8b = max(a->act8b, b->act8b);
1699 if (what & ATA_TIMING_REC8B ) m->rec8b = max(a->rec8b, b->rec8b);
1700 if (what & ATA_TIMING_CYC8B ) m->cyc8b = max(a->cyc8b, b->cyc8b);
1701 if (what & ATA_TIMING_ACTIVE ) m->active = max(a->active, b->active);
1702 if (what & ATA_TIMING_RECOVER) m->recover = max(a->recover, b->recover);
1703 if (what & ATA_TIMING_CYCLE ) m->cycle = max(a->cycle, b->cycle);
1704 if (what & ATA_TIMING_UDMA ) m->udma = max(a->udma, b->udma);
1705 }
1706
1707 static const struct ata_timing* ata_timing_find_mode(unsigned short speed)
1708 {
1709 const struct ata_timing *t;
1710
1711 for (t = ata_timing; t->mode != speed; t++)
1712 if (t->mode == 0xFF)
1713 return NULL;
1714 return t;
1715 }
1716
1717 int ata_timing_compute(struct ata_device *adev, unsigned short speed,
1718 struct ata_timing *t, int T, int UT)
1719 {
1720 const struct ata_timing *s;
1721 struct ata_timing p;
1722
1723 /*
1724 * Find the mode.
1725 */
1726
1727 if (!(s = ata_timing_find_mode(speed)))
1728 return -EINVAL;
1729
1730 memcpy(t, s, sizeof(*s));
1731
1732 /*
1733 * If the drive is an EIDE drive, it can tell us it needs extended
1734 * PIO/MW_DMA cycle timing.
1735 */
1736
1737 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE drive */
1738 memset(&p, 0, sizeof(p));
1739 if(speed >= XFER_PIO_0 && speed <= XFER_SW_DMA_0) {
1740 if (speed <= XFER_PIO_2) p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO];
1741 else p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO_IORDY];
1742 } else if(speed >= XFER_MW_DMA_0 && speed <= XFER_MW_DMA_2) {
1743 p.cycle = adev->id[ATA_ID_EIDE_DMA_MIN];
1744 }
1745 ata_timing_merge(&p, t, t, ATA_TIMING_CYCLE | ATA_TIMING_CYC8B);
1746 }
1747
1748 /*
1749 * Convert the timing to bus clock counts.
1750 */
1751
1752 ata_timing_quantize(t, t, T, UT);
1753
1754 /*
1755 * Even in DMA/UDMA modes we still use PIO access for IDENTIFY, S.M.A.R.T
1756 * and some other commands. We have to ensure that the DMA cycle timing is
1757 * slower/equal than the fastest PIO timing.
1758 */
1759
1760 if (speed > XFER_PIO_4) {
1761 ata_timing_compute(adev, adev->pio_mode, &p, T, UT);
1762 ata_timing_merge(&p, t, t, ATA_TIMING_ALL);
1763 }
1764
1765 /*
1766 * Lenghten active & recovery time so that cycle time is correct.
1767 */
1768
1769 if (t->act8b + t->rec8b < t->cyc8b) {
1770 t->act8b += (t->cyc8b - (t->act8b + t->rec8b)) / 2;
1771 t->rec8b = t->cyc8b - t->act8b;
1772 }
1773
1774 if (t->active + t->recover < t->cycle) {
1775 t->active += (t->cycle - (t->active + t->recover)) / 2;
1776 t->recover = t->cycle - t->active;
1777 }
1778
1779 return 0;
1780 }
1781
1782 static const struct {
1783 unsigned int shift;
1784 u8 base;
1785 } xfer_mode_classes[] = {
1786 { ATA_SHIFT_UDMA, XFER_UDMA_0 },
1787 { ATA_SHIFT_MWDMA, XFER_MW_DMA_0 },
1788 { ATA_SHIFT_PIO, XFER_PIO_0 },
1789 };
1790
1791 static u8 base_from_shift(unsigned int shift)
1792 {
1793 int i;
1794
1795 for (i = 0; i < ARRAY_SIZE(xfer_mode_classes); i++)
1796 if (xfer_mode_classes[i].shift == shift)
1797 return xfer_mode_classes[i].base;
1798
1799 return 0xff;
1800 }
1801
1802 static void ata_dev_set_mode(struct ata_port *ap, struct ata_device *dev)
1803 {
1804 int ofs, idx;
1805 u8 base;
1806
1807 if (!ata_dev_present(dev) || (ap->flags & ATA_FLAG_PORT_DISABLED))
1808 return;
1809
1810 if (dev->xfer_shift == ATA_SHIFT_PIO)
1811 dev->flags |= ATA_DFLAG_PIO;
1812
1813 ata_dev_set_xfermode(ap, dev);
1814
1815 base = base_from_shift(dev->xfer_shift);
1816 ofs = dev->xfer_mode - base;
1817 idx = ofs + dev->xfer_shift;
1818 WARN_ON(idx >= ARRAY_SIZE(xfer_mode_str));
1819
1820 DPRINTK("idx=%d xfer_shift=%u, xfer_mode=0x%x, base=0x%x, offset=%d\n",
1821 idx, dev->xfer_shift, (int)dev->xfer_mode, (int)base, ofs);
1822
1823 printk(KERN_INFO "ata%u: dev %u configured for %s\n",
1824 ap->id, dev->devno, xfer_mode_str[idx]);
1825 }
1826
1827 static int ata_host_set_pio(struct ata_port *ap)
1828 {
1829 unsigned int mask;
1830 int x, i;
1831 u8 base, xfer_mode;
1832
1833 mask = ata_get_mode_mask(ap, ATA_SHIFT_PIO);
1834 x = fgb(mask);
1835 if (x < 0) {
1836 printk(KERN_WARNING "ata%u: no PIO support\n", ap->id);
1837 return -1;
1838 }
1839
1840 base = base_from_shift(ATA_SHIFT_PIO);
1841 xfer_mode = base + x;
1842
1843 DPRINTK("base 0x%x xfer_mode 0x%x mask 0x%x x %d\n",
1844 (int)base, (int)xfer_mode, mask, x);
1845
1846 for (i = 0; i < ATA_MAX_DEVICES; i++) {
1847 struct ata_device *dev = &ap->device[i];
1848 if (ata_dev_present(dev)) {
1849 dev->pio_mode = xfer_mode;
1850 dev->xfer_mode = xfer_mode;
1851 dev->xfer_shift = ATA_SHIFT_PIO;
1852 if (ap->ops->set_piomode)
1853 ap->ops->set_piomode(ap, dev);
1854 }
1855 }
1856
1857 return 0;
1858 }
1859
1860 static void ata_host_set_dma(struct ata_port *ap, u8 xfer_mode,
1861 unsigned int xfer_shift)
1862 {
1863 int i;
1864
1865 for (i = 0; i < ATA_MAX_DEVICES; i++) {
1866 struct ata_device *dev = &ap->device[i];
1867 if (ata_dev_present(dev)) {
1868 dev->dma_mode = xfer_mode;
1869 dev->xfer_mode = xfer_mode;
1870 dev->xfer_shift = xfer_shift;
1871 if (ap->ops->set_dmamode)
1872 ap->ops->set_dmamode(ap, dev);
1873 }
1874 }
1875 }
1876
1877 /**
1878 * ata_set_mode - Program timings and issue SET FEATURES - XFER
1879 * @ap: port on which timings will be programmed
1880 *
1881 * Set ATA device disk transfer mode (PIO3, UDMA6, etc.).
1882 *
1883 * LOCKING:
1884 * PCI/etc. bus probe sem.
1885 *
1886 */
1887 static void ata_set_mode(struct ata_port *ap)
1888 {
1889 unsigned int xfer_shift;
1890 u8 xfer_mode;
1891 int rc;
1892
1893 /* step 1: always set host PIO timings */
1894 rc = ata_host_set_pio(ap);
1895 if (rc)
1896 goto err_out;
1897
1898 /* step 2: choose the best data xfer mode */
1899 xfer_mode = xfer_shift = 0;
1900 rc = ata_choose_xfer_mode(ap, &xfer_mode, &xfer_shift);
1901 if (rc)
1902 goto err_out;
1903
1904 /* step 3: if that xfer mode isn't PIO, set host DMA timings */
1905 if (xfer_shift != ATA_SHIFT_PIO)
1906 ata_host_set_dma(ap, xfer_mode, xfer_shift);
1907
1908 /* step 4: update devices' xfer mode */
1909 ata_dev_set_mode(ap, &ap->device[0]);
1910 ata_dev_set_mode(ap, &ap->device[1]);
1911
1912 if (ap->flags & ATA_FLAG_PORT_DISABLED)
1913 return;
1914
1915 if (ap->ops->post_set_mode)
1916 ap->ops->post_set_mode(ap);
1917
1918 return;
1919
1920 err_out:
1921 ata_port_disable(ap);
1922 }
1923
1924 /**
1925 * ata_busy_sleep - sleep until BSY clears, or timeout
1926 * @ap: port containing status register to be polled
1927 * @tmout_pat: impatience timeout
1928 * @tmout: overall timeout
1929 *
1930 * Sleep until ATA Status register bit BSY clears,
1931 * or a timeout occurs.
1932 *
1933 * LOCKING: None.
1934 *
1935 */
1936
1937 static unsigned int ata_busy_sleep (struct ata_port *ap,
1938 unsigned long tmout_pat,
1939 unsigned long tmout)
1940 {
1941 unsigned long timer_start, timeout;
1942 u8 status;
1943
1944 status = ata_busy_wait(ap, ATA_BUSY, 300);
1945 timer_start = jiffies;
1946 timeout = timer_start + tmout_pat;
1947 while ((status & ATA_BUSY) && (time_before(jiffies, timeout))) {
1948 msleep(50);
1949 status = ata_busy_wait(ap, ATA_BUSY, 3);
1950 }
1951
1952 if (status & ATA_BUSY)
1953 printk(KERN_WARNING "ata%u is slow to respond, "
1954 "please be patient\n", ap->id);
1955
1956 timeout = timer_start + tmout;
1957 while ((status & ATA_BUSY) && (time_before(jiffies, timeout))) {
1958 msleep(50);
1959 status = ata_chk_status(ap);
1960 }
1961
1962 if (status & ATA_BUSY) {
1963 printk(KERN_ERR "ata%u failed to respond (%lu secs)\n",
1964 ap->id, tmout / HZ);
1965 return 1;
1966 }
1967
1968 return 0;
1969 }
1970
1971 static void ata_bus_post_reset(struct ata_port *ap, unsigned int devmask)
1972 {
1973 struct ata_ioports *ioaddr = &ap->ioaddr;
1974 unsigned int dev0 = devmask & (1 << 0);
1975 unsigned int dev1 = devmask & (1 << 1);
1976 unsigned long timeout;
1977
1978 /* if device 0 was found in ata_devchk, wait for its
1979 * BSY bit to clear
1980 */
1981 if (dev0)
1982 ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT);
1983
1984 /* if device 1 was found in ata_devchk, wait for
1985 * register access, then wait for BSY to clear
1986 */
1987 timeout = jiffies + ATA_TMOUT_BOOT;
1988 while (dev1) {
1989 u8 nsect, lbal;
1990
1991 ap->ops->dev_select(ap, 1);
1992 if (ap->flags & ATA_FLAG_MMIO) {
1993 nsect = readb((void __iomem *) ioaddr->nsect_addr);
1994 lbal = readb((void __iomem *) ioaddr->lbal_addr);
1995 } else {
1996 nsect = inb(ioaddr->nsect_addr);
1997 lbal = inb(ioaddr->lbal_addr);
1998 }
1999 if ((nsect == 1) && (lbal == 1))
2000 break;
2001 if (time_after(jiffies, timeout)) {
2002 dev1 = 0;
2003 break;
2004 }
2005 msleep(50); /* give drive a breather */
2006 }
2007 if (dev1)
2008 ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT);
2009
2010 /* is all this really necessary? */
2011 ap->ops->dev_select(ap, 0);
2012 if (dev1)
2013 ap->ops->dev_select(ap, 1);
2014 if (dev0)
2015 ap->ops->dev_select(ap, 0);
2016 }
2017
2018 /**
2019 * ata_bus_edd - Issue EXECUTE DEVICE DIAGNOSTIC command.
2020 * @ap: Port to reset and probe
2021 *
2022 * Use the EXECUTE DEVICE DIAGNOSTIC command to reset and
2023 * probe the bus. Not often used these days.
2024 *
2025 * LOCKING:
2026 * PCI/etc. bus probe sem.
2027 * Obtains host_set lock.
2028 *
2029 */
2030
2031 static unsigned int ata_bus_edd(struct ata_port *ap)
2032 {
2033 struct ata_taskfile tf;
2034 unsigned long flags;
2035
2036 /* set up execute-device-diag (bus reset) taskfile */
2037 /* also, take interrupts to a known state (disabled) */
2038 DPRINTK("execute-device-diag\n");
2039 ata_tf_init(ap, &tf, 0);
2040 tf.ctl |= ATA_NIEN;
2041 tf.command = ATA_CMD_EDD;
2042 tf.protocol = ATA_PROT_NODATA;
2043
2044 /* do bus reset */
2045 spin_lock_irqsave(&ap->host_set->lock, flags);
2046 ata_tf_to_host(ap, &tf);
2047 spin_unlock_irqrestore(&ap->host_set->lock, flags);
2048
2049 /* spec says at least 2ms. but who knows with those
2050 * crazy ATAPI devices...
2051 */
2052 msleep(150);
2053
2054 return ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT);
2055 }
2056
2057 static unsigned int ata_bus_softreset(struct ata_port *ap,
2058 unsigned int devmask)
2059 {
2060 struct ata_ioports *ioaddr = &ap->ioaddr;
2061
2062 DPRINTK("ata%u: bus reset via SRST\n", ap->id);
2063
2064 /* software reset. causes dev0 to be selected */
2065 if (ap->flags & ATA_FLAG_MMIO) {
2066 writeb(ap->ctl, (void __iomem *) ioaddr->ctl_addr);
2067 udelay(20); /* FIXME: flush */
2068 writeb(ap->ctl | ATA_SRST, (void __iomem *) ioaddr->ctl_addr);
2069 udelay(20); /* FIXME: flush */
2070 writeb(ap->ctl, (void __iomem *) ioaddr->ctl_addr);
2071 } else {
2072 outb(ap->ctl, ioaddr->ctl_addr);
2073 udelay(10);
2074 outb(ap->ctl | ATA_SRST, ioaddr->ctl_addr);
2075 udelay(10);
2076 outb(ap->ctl, ioaddr->ctl_addr);
2077 }
2078
2079 /* spec mandates ">= 2ms" before checking status.
2080 * We wait 150ms, because that was the magic delay used for
2081 * ATAPI devices in Hale Landis's ATADRVR, for the period of time
2082 * between when the ATA command register is written, and then
2083 * status is checked. Because waiting for "a while" before
2084 * checking status is fine, post SRST, we perform this magic
2085 * delay here as well.
2086 */
2087 msleep(150);
2088
2089 ata_bus_post_reset(ap, devmask);
2090
2091 return 0;
2092 }
2093
2094 /**
2095 * ata_bus_reset - reset host port and associated ATA channel
2096 * @ap: port to reset
2097 *
2098 * This is typically the first time we actually start issuing
2099 * commands to the ATA channel. We wait for BSY to clear, then
2100 * issue EXECUTE DEVICE DIAGNOSTIC command, polling for its
2101 * result. Determine what devices, if any, are on the channel
2102 * by looking at the device 0/1 error register. Look at the signature
2103 * stored in each device's taskfile registers, to determine if
2104 * the device is ATA or ATAPI.
2105 *
2106 * LOCKING:
2107 * PCI/etc. bus probe sem.
2108 * Obtains host_set lock.
2109 *
2110 * SIDE EFFECTS:
2111 * Sets ATA_FLAG_PORT_DISABLED if bus reset fails.
2112 */
2113
2114 void ata_bus_reset(struct ata_port *ap)
2115 {
2116 struct ata_ioports *ioaddr = &ap->ioaddr;
2117 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
2118 u8 err;
2119 unsigned int dev0, dev1 = 0, rc = 0, devmask = 0;
2120
2121 DPRINTK("ENTER, host %u, port %u\n", ap->id, ap->port_no);
2122
2123 /* determine if device 0/1 are present */
2124 if (ap->flags & ATA_FLAG_SATA_RESET)
2125 dev0 = 1;
2126 else {
2127 dev0 = ata_devchk(ap, 0);
2128 if (slave_possible)
2129 dev1 = ata_devchk(ap, 1);
2130 }
2131
2132 if (dev0)
2133 devmask |= (1 << 0);
2134 if (dev1)
2135 devmask |= (1 << 1);
2136
2137 /* select device 0 again */
2138 ap->ops->dev_select(ap, 0);
2139
2140 /* issue bus reset */
2141 if (ap->flags & ATA_FLAG_SRST)
2142 rc = ata_bus_softreset(ap, devmask);
2143 else if ((ap->flags & ATA_FLAG_SATA_RESET) == 0) {
2144 /* set up device control */
2145 if (ap->flags & ATA_FLAG_MMIO)
2146 writeb(ap->ctl, (void __iomem *) ioaddr->ctl_addr);
2147 else
2148 outb(ap->ctl, ioaddr->ctl_addr);
2149 rc = ata_bus_edd(ap);
2150 }
2151
2152 if (rc)
2153 goto err_out;
2154
2155 /*
2156 * determine by signature whether we have ATA or ATAPI devices
2157 */
2158 err = ata_dev_try_classify(ap, 0);
2159 if ((slave_possible) && (err != 0x81))
2160 ata_dev_try_classify(ap, 1);
2161
2162 /* re-enable interrupts */
2163 if (ap->ioaddr.ctl_addr) /* FIXME: hack. create a hook instead */
2164 ata_irq_on(ap);
2165
2166 /* is double-select really necessary? */
2167 if (ap->device[1].class != ATA_DEV_NONE)
2168 ap->ops->dev_select(ap, 1);
2169 if (ap->device[0].class != ATA_DEV_NONE)
2170 ap->ops->dev_select(ap, 0);
2171
2172 /* if no devices were detected, disable this port */
2173 if ((ap->device[0].class == ATA_DEV_NONE) &&
2174 (ap->device[1].class == ATA_DEV_NONE))
2175 goto err_out;
2176
2177 if (ap->flags & (ATA_FLAG_SATA_RESET | ATA_FLAG_SRST)) {
2178 /* set up device control for ATA_FLAG_SATA_RESET */
2179 if (ap->flags & ATA_FLAG_MMIO)
2180 writeb(ap->ctl, (void __iomem *) ioaddr->ctl_addr);
2181 else
2182 outb(ap->ctl, ioaddr->ctl_addr);
2183 }
2184
2185 DPRINTK("EXIT\n");
2186 return;
2187
2188 err_out:
2189 printk(KERN_ERR "ata%u: disabling port\n", ap->id);
2190 ap->ops->port_disable(ap);
2191
2192 DPRINTK("EXIT\n");
2193 }
2194
2195 static void ata_pr_blacklisted(const struct ata_port *ap,
2196 const struct ata_device *dev)
2197 {
2198 printk(KERN_WARNING "ata%u: dev %u is on DMA blacklist, disabling DMA\n",
2199 ap->id, dev->devno);
2200 }
2201
2202 static const char * const ata_dma_blacklist [] = {
2203 "WDC AC11000H",
2204 "WDC AC22100H",
2205 "WDC AC32500H",
2206 "WDC AC33100H",
2207 "WDC AC31600H",
2208 "WDC AC32100H",
2209 "WDC AC23200L",
2210 "Compaq CRD-8241B",
2211 "CRD-8400B",
2212 "CRD-8480B",
2213 "CRD-8482B",
2214 "CRD-84",
2215 "SanDisk SDP3B",
2216 "SanDisk SDP3B-64",
2217 "SANYO CD-ROM CRD",
2218 "HITACHI CDR-8",
2219 "HITACHI CDR-8335",
2220 "HITACHI CDR-8435",
2221 "Toshiba CD-ROM XM-6202B",
2222 "TOSHIBA CD-ROM XM-1702BC",
2223 "CD-532E-A",
2224 "E-IDE CD-ROM CR-840",
2225 "CD-ROM Drive/F5A",
2226 "WPI CDD-820",
2227 "SAMSUNG CD-ROM SC-148C",
2228 "SAMSUNG CD-ROM SC",
2229 "SanDisk SDP3B-64",
2230 "ATAPI CD-ROM DRIVE 40X MAXIMUM",
2231 "_NEC DV5800A",
2232 };
2233
2234 static int ata_dma_blacklisted(const struct ata_device *dev)
2235 {
2236 unsigned char model_num[40];
2237 char *s;
2238 unsigned int len;
2239 int i;
2240
2241 ata_dev_id_string(dev->id, model_num, ATA_ID_PROD_OFS,
2242 sizeof(model_num));
2243 s = &model_num[0];
2244 len = strnlen(s, sizeof(model_num));
2245
2246 /* ATAPI specifies that empty space is blank-filled; remove blanks */
2247 while ((len > 0) && (s[len - 1] == ' ')) {
2248 len--;
2249 s[len] = 0;
2250 }
2251
2252 for (i = 0; i < ARRAY_SIZE(ata_dma_blacklist); i++)
2253 if (!strncmp(ata_dma_blacklist[i], s, len))
2254 return 1;
2255
2256 return 0;
2257 }
2258
2259 static unsigned int ata_get_mode_mask(const struct ata_port *ap, int shift)
2260 {
2261 const struct ata_device *master, *slave;
2262 unsigned int mask;
2263
2264 master = &ap->device[0];
2265 slave = &ap->device[1];
2266
2267 assert (ata_dev_present(master) || ata_dev_present(slave));
2268
2269 if (shift == ATA_SHIFT_UDMA) {
2270 mask = ap->udma_mask;
2271 if (ata_dev_present(master)) {
2272 mask &= (master->id[ATA_ID_UDMA_MODES] & 0xff);
2273 if (ata_dma_blacklisted(master)) {
2274 mask = 0;
2275 ata_pr_blacklisted(ap, master);
2276 }
2277 }
2278 if (ata_dev_present(slave)) {
2279 mask &= (slave->id[ATA_ID_UDMA_MODES] & 0xff);
2280 if (ata_dma_blacklisted(slave)) {
2281 mask = 0;
2282 ata_pr_blacklisted(ap, slave);
2283 }
2284 }
2285 }
2286 else if (shift == ATA_SHIFT_MWDMA) {
2287 mask = ap->mwdma_mask;
2288 if (ata_dev_present(master)) {
2289 mask &= (master->id[ATA_ID_MWDMA_MODES] & 0x07);
2290 if (ata_dma_blacklisted(master)) {
2291 mask = 0;
2292 ata_pr_blacklisted(ap, master);
2293 }
2294 }
2295 if (ata_dev_present(slave)) {
2296 mask &= (slave->id[ATA_ID_MWDMA_MODES] & 0x07);
2297 if (ata_dma_blacklisted(slave)) {
2298 mask = 0;
2299 ata_pr_blacklisted(ap, slave);
2300 }
2301 }
2302 }
2303 else if (shift == ATA_SHIFT_PIO) {
2304 mask = ap->pio_mask;
2305 if (ata_dev_present(master)) {
2306 /* spec doesn't return explicit support for
2307 * PIO0-2, so we fake it
2308 */
2309 u16 tmp_mode = master->id[ATA_ID_PIO_MODES] & 0x03;
2310 tmp_mode <<= 3;
2311 tmp_mode |= 0x7;
2312 mask &= tmp_mode;
2313 }
2314 if (ata_dev_present(slave)) {
2315 /* spec doesn't return explicit support for
2316 * PIO0-2, so we fake it
2317 */
2318 u16 tmp_mode = slave->id[ATA_ID_PIO_MODES] & 0x03;
2319 tmp_mode <<= 3;
2320 tmp_mode |= 0x7;
2321 mask &= tmp_mode;
2322 }
2323 }
2324 else {
2325 mask = 0xffffffff; /* shut up compiler warning */
2326 BUG();
2327 }
2328
2329 return mask;
2330 }
2331
2332 /* find greatest bit */
2333 static int fgb(u32 bitmap)
2334 {
2335 unsigned int i;
2336 int x = -1;
2337
2338 for (i = 0; i < 32; i++)
2339 if (bitmap & (1 << i))
2340 x = i;
2341
2342 return x;
2343 }
2344
2345 /**
2346 * ata_choose_xfer_mode - attempt to find best transfer mode
2347 * @ap: Port for which an xfer mode will be selected
2348 * @xfer_mode_out: (output) SET FEATURES - XFER MODE code
2349 * @xfer_shift_out: (output) bit shift that selects this mode
2350 *
2351 * Based on host and device capabilities, determine the
2352 * maximum transfer mode that is amenable to all.
2353 *
2354 * LOCKING:
2355 * PCI/etc. bus probe sem.
2356 *
2357 * RETURNS:
2358 * Zero on success, negative on error.
2359 */
2360
2361 static int ata_choose_xfer_mode(const struct ata_port *ap,
2362 u8 *xfer_mode_out,
2363 unsigned int *xfer_shift_out)
2364 {
2365 unsigned int mask, shift;
2366 int x, i;
2367
2368 for (i = 0; i < ARRAY_SIZE(xfer_mode_classes); i++) {
2369 shift = xfer_mode_classes[i].shift;
2370 mask = ata_get_mode_mask(ap, shift);
2371
2372 x = fgb(mask);
2373 if (x >= 0) {
2374 *xfer_mode_out = xfer_mode_classes[i].base + x;
2375 *xfer_shift_out = shift;
2376 return 0;
2377 }
2378 }
2379
2380 return -1;
2381 }
2382
2383 /**
2384 * ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command
2385 * @ap: Port associated with device @dev
2386 * @dev: Device to which command will be sent
2387 *
2388 * Issue SET FEATURES - XFER MODE command to device @dev
2389 * on port @ap.
2390 *
2391 * LOCKING:
2392 * PCI/etc. bus probe sem.
2393 */
2394
2395 static void ata_dev_set_xfermode(struct ata_port *ap, struct ata_device *dev)
2396 {
2397 struct ata_taskfile tf;
2398
2399 /* set up set-features taskfile */
2400 DPRINTK("set features - xfer mode\n");
2401
2402 ata_tf_init(ap, &tf, dev->devno);
2403 tf.command = ATA_CMD_SET_FEATURES;
2404 tf.feature = SETFEATURES_XFER;
2405 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
2406 tf.protocol = ATA_PROT_NODATA;
2407 tf.nsect = dev->xfer_mode;
2408
2409 if (ata_exec_internal(ap, dev, &tf, DMA_NONE, NULL, 0)) {
2410 printk(KERN_ERR "ata%u: failed to set xfermode, disabled\n",
2411 ap->id);
2412 ata_port_disable(ap);
2413 }
2414
2415 DPRINTK("EXIT\n");
2416 }
2417
2418 /**
2419 * ata_dev_reread_id - Reread the device identify device info
2420 * @ap: port where the device is
2421 * @dev: device to reread the identify device info
2422 *
2423 * LOCKING:
2424 */
2425
2426 static void ata_dev_reread_id(struct ata_port *ap, struct ata_device *dev)
2427 {
2428 struct ata_taskfile tf;
2429
2430 ata_tf_init(ap, &tf, dev->devno);
2431
2432 if (dev->class == ATA_DEV_ATA) {
2433 tf.command = ATA_CMD_ID_ATA;
2434 DPRINTK("do ATA identify\n");
2435 } else {
2436 tf.command = ATA_CMD_ID_ATAPI;
2437 DPRINTK("do ATAPI identify\n");
2438 }
2439
2440 tf.flags |= ATA_TFLAG_DEVICE;
2441 tf.protocol = ATA_PROT_PIO;
2442
2443 if (ata_exec_internal(ap, dev, &tf, DMA_FROM_DEVICE,
2444 dev->id, sizeof(dev->id)))
2445 goto err_out;
2446
2447 swap_buf_le16(dev->id, ATA_ID_WORDS);
2448
2449 ata_dump_id(dev);
2450
2451 DPRINTK("EXIT\n");
2452
2453 return;
2454 err_out:
2455 printk(KERN_ERR "ata%u: failed to reread ID, disabled\n", ap->id);
2456 ata_port_disable(ap);
2457 }
2458
2459 /**
2460 * ata_dev_init_params - Issue INIT DEV PARAMS command
2461 * @ap: Port associated with device @dev
2462 * @dev: Device to which command will be sent
2463 *
2464 * LOCKING:
2465 */
2466
2467 static void ata_dev_init_params(struct ata_port *ap, struct ata_device *dev)
2468 {
2469 struct ata_taskfile tf;
2470 u16 sectors = dev->id[6];
2471 u16 heads = dev->id[3];
2472
2473 /* Number of sectors per track 1-255. Number of heads 1-16 */
2474 if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16)
2475 return;
2476
2477 /* set up init dev params taskfile */
2478 DPRINTK("init dev params \n");
2479
2480 ata_tf_init(ap, &tf, dev->devno);
2481 tf.command = ATA_CMD_INIT_DEV_PARAMS;
2482 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
2483 tf.protocol = ATA_PROT_NODATA;
2484 tf.nsect = sectors;
2485 tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */
2486
2487 if (ata_exec_internal(ap, dev, &tf, DMA_NONE, NULL, 0)) {
2488 printk(KERN_ERR "ata%u: failed to init parameters, disabled\n",
2489 ap->id);
2490 ata_port_disable(ap);
2491 }
2492
2493 DPRINTK("EXIT\n");
2494 }
2495
2496 /**
2497 * ata_sg_clean - Unmap DMA memory associated with command
2498 * @qc: Command containing DMA memory to be released
2499 *
2500 * Unmap all mapped DMA memory associated with this command.
2501 *
2502 * LOCKING:
2503 * spin_lock_irqsave(host_set lock)
2504 */
2505
2506 static void ata_sg_clean(struct ata_queued_cmd *qc)
2507 {
2508 struct ata_port *ap = qc->ap;
2509 struct scatterlist *sg = qc->__sg;
2510 int dir = qc->dma_dir;
2511 void *pad_buf = NULL;
2512
2513 assert(qc->flags & ATA_QCFLAG_DMAMAP);
2514 assert(sg != NULL);
2515
2516 if (qc->flags & ATA_QCFLAG_SINGLE)
2517 assert(qc->n_elem == 1);
2518
2519 VPRINTK("unmapping %u sg elements\n", qc->n_elem);
2520
2521 /* if we padded the buffer out to 32-bit bound, and data
2522 * xfer direction is from-device, we must copy from the
2523 * pad buffer back into the supplied buffer
2524 */
2525 if (qc->pad_len && !(qc->tf.flags & ATA_TFLAG_WRITE))
2526 pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
2527
2528 if (qc->flags & ATA_QCFLAG_SG) {
2529 if (qc->n_elem)
2530 dma_unmap_sg(ap->host_set->dev, sg, qc->n_elem, dir);
2531 /* restore last sg */
2532 sg[qc->orig_n_elem - 1].length += qc->pad_len;
2533 if (pad_buf) {
2534 struct scatterlist *psg = &qc->pad_sgent;
2535 void *addr = kmap_atomic(psg->page, KM_IRQ0);
2536 memcpy(addr + psg->offset, pad_buf, qc->pad_len);
2537 kunmap_atomic(addr, KM_IRQ0);
2538 }
2539 } else {
2540 if (sg_dma_len(&sg[0]) > 0)
2541 dma_unmap_single(ap->host_set->dev,
2542 sg_dma_address(&sg[0]), sg_dma_len(&sg[0]),
2543 dir);
2544 /* restore sg */
2545 sg->length += qc->pad_len;
2546 if (pad_buf)
2547 memcpy(qc->buf_virt + sg->length - qc->pad_len,
2548 pad_buf, qc->pad_len);
2549 }
2550
2551 qc->flags &= ~ATA_QCFLAG_DMAMAP;
2552 qc->__sg = NULL;
2553 }
2554
2555 /**
2556 * ata_fill_sg - Fill PCI IDE PRD table
2557 * @qc: Metadata associated with taskfile to be transferred
2558 *
2559 * Fill PCI IDE PRD (scatter-gather) table with segments
2560 * associated with the current disk command.
2561 *
2562 * LOCKING:
2563 * spin_lock_irqsave(host_set lock)
2564 *
2565 */
2566 static void ata_fill_sg(struct ata_queued_cmd *qc)
2567 {
2568 struct ata_port *ap = qc->ap;
2569 struct scatterlist *sg;
2570 unsigned int idx;
2571
2572 assert(qc->__sg != NULL);
2573 assert(qc->n_elem > 0);
2574
2575 idx = 0;
2576 ata_for_each_sg(sg, qc) {
2577 u32 addr, offset;
2578 u32 sg_len, len;
2579
2580 /* determine if physical DMA addr spans 64K boundary.
2581 * Note h/w doesn't support 64-bit, so we unconditionally
2582 * truncate dma_addr_t to u32.
2583 */
2584 addr = (u32) sg_dma_address(sg);
2585 sg_len = sg_dma_len(sg);
2586
2587 while (sg_len) {
2588 offset = addr & 0xffff;
2589 len = sg_len;
2590 if ((offset + sg_len) > 0x10000)
2591 len = 0x10000 - offset;
2592
2593 ap->prd[idx].addr = cpu_to_le32(addr);
2594 ap->prd[idx].flags_len = cpu_to_le32(len & 0xffff);
2595 VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", idx, addr, len);
2596
2597 idx++;
2598 sg_len -= len;
2599 addr += len;
2600 }
2601 }
2602
2603 if (idx)
2604 ap->prd[idx - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT);
2605 }
2606 /**
2607 * ata_check_atapi_dma - Check whether ATAPI DMA can be supported
2608 * @qc: Metadata associated with taskfile to check
2609 *
2610 * Allow low-level driver to filter ATA PACKET commands, returning
2611 * a status indicating whether or not it is OK to use DMA for the
2612 * supplied PACKET command.
2613 *
2614 * LOCKING:
2615 * spin_lock_irqsave(host_set lock)
2616 *
2617 * RETURNS: 0 when ATAPI DMA can be used
2618 * nonzero otherwise
2619 */
2620 int ata_check_atapi_dma(struct ata_queued_cmd *qc)
2621 {
2622 struct ata_port *ap = qc->ap;
2623 int rc = 0; /* Assume ATAPI DMA is OK by default */
2624
2625 if (ap->ops->check_atapi_dma)
2626 rc = ap->ops->check_atapi_dma(qc);
2627
2628 return rc;
2629 }
2630 /**
2631 * ata_qc_prep - Prepare taskfile for submission
2632 * @qc: Metadata associated with taskfile to be prepared
2633 *
2634 * Prepare ATA taskfile for submission.
2635 *
2636 * LOCKING:
2637 * spin_lock_irqsave(host_set lock)
2638 */
2639 void ata_qc_prep(struct ata_queued_cmd *qc)
2640 {
2641 if (!(qc->flags & ATA_QCFLAG_DMAMAP))
2642 return;
2643
2644 ata_fill_sg(qc);
2645 }
2646
2647 /**
2648 * ata_sg_init_one - Associate command with memory buffer
2649 * @qc: Command to be associated
2650 * @buf: Memory buffer
2651 * @buflen: Length of memory buffer, in bytes.
2652 *
2653 * Initialize the data-related elements of queued_cmd @qc
2654 * to point to a single memory buffer, @buf of byte length @buflen.
2655 *
2656 * LOCKING:
2657 * spin_lock_irqsave(host_set lock)
2658 */
2659
2660 void ata_sg_init_one(struct ata_queued_cmd *qc, void *buf, unsigned int buflen)
2661 {
2662 struct scatterlist *sg;
2663
2664 qc->flags |= ATA_QCFLAG_SINGLE;
2665
2666 memset(&qc->sgent, 0, sizeof(qc->sgent));
2667 qc->__sg = &qc->sgent;
2668 qc->n_elem = 1;
2669 qc->orig_n_elem = 1;
2670 qc->buf_virt = buf;
2671
2672 sg = qc->__sg;
2673 sg_init_one(sg, buf, buflen);
2674 }
2675
2676 /**
2677 * ata_sg_init - Associate command with scatter-gather table.
2678 * @qc: Command to be associated
2679 * @sg: Scatter-gather table.
2680 * @n_elem: Number of elements in s/g table.
2681 *
2682 * Initialize the data-related elements of queued_cmd @qc
2683 * to point to a scatter-gather table @sg, containing @n_elem
2684 * elements.
2685 *
2686 * LOCKING:
2687 * spin_lock_irqsave(host_set lock)
2688 */
2689
2690 void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg,
2691 unsigned int n_elem)
2692 {
2693 qc->flags |= ATA_QCFLAG_SG;
2694 qc->__sg = sg;
2695 qc->n_elem = n_elem;
2696 qc->orig_n_elem = n_elem;
2697 }
2698
2699 /**
2700 * ata_sg_setup_one - DMA-map the memory buffer associated with a command.
2701 * @qc: Command with memory buffer to be mapped.
2702 *
2703 * DMA-map the memory buffer associated with queued_cmd @qc.
2704 *
2705 * LOCKING:
2706 * spin_lock_irqsave(host_set lock)
2707 *
2708 * RETURNS:
2709 * Zero on success, negative on error.
2710 */
2711
2712 static int ata_sg_setup_one(struct ata_queued_cmd *qc)
2713 {
2714 struct ata_port *ap = qc->ap;
2715 int dir = qc->dma_dir;
2716 struct scatterlist *sg = qc->__sg;
2717 dma_addr_t dma_address;
2718
2719 /* we must lengthen transfers to end on a 32-bit boundary */
2720 qc->pad_len = sg->length & 3;
2721 if (qc->pad_len) {
2722 void *pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
2723 struct scatterlist *psg = &qc->pad_sgent;
2724
2725 assert(qc->dev->class == ATA_DEV_ATAPI);
2726
2727 memset(pad_buf, 0, ATA_DMA_PAD_SZ);
2728
2729 if (qc->tf.flags & ATA_TFLAG_WRITE)
2730 memcpy(pad_buf, qc->buf_virt + sg->length - qc->pad_len,
2731 qc->pad_len);
2732
2733 sg_dma_address(psg) = ap->pad_dma + (qc->tag * ATA_DMA_PAD_SZ);
2734 sg_dma_len(psg) = ATA_DMA_PAD_SZ;
2735 /* trim sg */
2736 sg->length -= qc->pad_len;
2737
2738 DPRINTK("padding done, sg->length=%u pad_len=%u\n",
2739 sg->length, qc->pad_len);
2740 }
2741
2742 if (!sg->length) {
2743 sg_dma_address(sg) = 0;
2744 goto skip_map;
2745 }
2746
2747 dma_address = dma_map_single(ap->host_set->dev, qc->buf_virt,
2748 sg->length, dir);
2749 if (dma_mapping_error(dma_address)) {
2750 /* restore sg */
2751 sg->length += qc->pad_len;
2752 return -1;
2753 }
2754
2755 sg_dma_address(sg) = dma_address;
2756 skip_map:
2757 sg_dma_len(sg) = sg->length;
2758
2759 DPRINTK("mapped buffer of %d bytes for %s\n", sg_dma_len(sg),
2760 qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
2761
2762 return 0;
2763 }
2764
2765 /**
2766 * ata_sg_setup - DMA-map the scatter-gather table associated with a command.
2767 * @qc: Command with scatter-gather table to be mapped.
2768 *
2769 * DMA-map the scatter-gather table associated with queued_cmd @qc.
2770 *
2771 * LOCKING:
2772 * spin_lock_irqsave(host_set lock)
2773 *
2774 * RETURNS:
2775 * Zero on success, negative on error.
2776 *
2777 */
2778
2779 static int ata_sg_setup(struct ata_queued_cmd *qc)
2780 {
2781 struct ata_port *ap = qc->ap;
2782 struct scatterlist *sg = qc->__sg;
2783 struct scatterlist *lsg = &sg[qc->n_elem - 1];
2784 int n_elem, pre_n_elem, dir, trim_sg = 0;
2785
2786 VPRINTK("ENTER, ata%u\n", ap->id);
2787 assert(qc->flags & ATA_QCFLAG_SG);
2788
2789 /* we must lengthen transfers to end on a 32-bit boundary */
2790 qc->pad_len = lsg->length & 3;
2791 if (qc->pad_len) {
2792 void *pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
2793 struct scatterlist *psg = &qc->pad_sgent;
2794 unsigned int offset;
2795
2796 assert(qc->dev->class == ATA_DEV_ATAPI);
2797
2798 memset(pad_buf, 0, ATA_DMA_PAD_SZ);
2799
2800 /*
2801 * psg->page/offset are used to copy to-be-written
2802 * data in this function or read data in ata_sg_clean.
2803 */
2804 offset = lsg->offset + lsg->length - qc->pad_len;
2805 psg->page = nth_page(lsg->page, offset >> PAGE_SHIFT);
2806 psg->offset = offset_in_page(offset);
2807
2808 if (qc->tf.flags & ATA_TFLAG_WRITE) {
2809 void *addr = kmap_atomic(psg->page, KM_IRQ0);
2810 memcpy(pad_buf, addr + psg->offset, qc->pad_len);
2811 kunmap_atomic(addr, KM_IRQ0);
2812 }
2813
2814 sg_dma_address(psg) = ap->pad_dma + (qc->tag * ATA_DMA_PAD_SZ);
2815 sg_dma_len(psg) = ATA_DMA_PAD_SZ;
2816 /* trim last sg */
2817 lsg->length -= qc->pad_len;
2818 if (lsg->length == 0)
2819 trim_sg = 1;
2820
2821 DPRINTK("padding done, sg[%d].length=%u pad_len=%u\n",
2822 qc->n_elem - 1, lsg->length, qc->pad_len);
2823 }
2824
2825 pre_n_elem = qc->n_elem;
2826 if (trim_sg && pre_n_elem)
2827 pre_n_elem--;
2828
2829 if (!pre_n_elem) {
2830 n_elem = 0;
2831 goto skip_map;
2832 }
2833
2834 dir = qc->dma_dir;
2835 n_elem = dma_map_sg(ap->host_set->dev, sg, pre_n_elem, dir);
2836 if (n_elem < 1) {
2837 /* restore last sg */
2838 lsg->length += qc->pad_len;
2839 return -1;
2840 }
2841
2842 DPRINTK("%d sg elements mapped\n", n_elem);
2843
2844 skip_map:
2845 qc->n_elem = n_elem;
2846
2847 return 0;
2848 }
2849
2850 /**
2851 * ata_poll_qc_complete - turn irq back on and finish qc
2852 * @qc: Command to complete
2853 * @err_mask: ATA status register content
2854 *
2855 * LOCKING:
2856 * None. (grabs host lock)
2857 */
2858
2859 void ata_poll_qc_complete(struct ata_queued_cmd *qc)
2860 {
2861 struct ata_port *ap = qc->ap;
2862 unsigned long flags;
2863
2864 spin_lock_irqsave(&ap->host_set->lock, flags);
2865 ap->flags &= ~ATA_FLAG_NOINTR;
2866 ata_irq_on(ap);
2867 ata_qc_complete(qc);
2868 spin_unlock_irqrestore(&ap->host_set->lock, flags);
2869 }
2870
2871 /**
2872 * ata_pio_poll -
2873 * @ap: the target ata_port
2874 *
2875 * LOCKING:
2876 * None. (executing in kernel thread context)
2877 *
2878 * RETURNS:
2879 * timeout value to use
2880 */
2881
2882 static unsigned long ata_pio_poll(struct ata_port *ap)
2883 {
2884 struct ata_queued_cmd *qc;
2885 u8 status;
2886 unsigned int poll_state = HSM_ST_UNKNOWN;
2887 unsigned int reg_state = HSM_ST_UNKNOWN;
2888
2889 qc = ata_qc_from_tag(ap, ap->active_tag);
2890 assert(qc != NULL);
2891
2892 switch (ap->hsm_task_state) {
2893 case HSM_ST:
2894 case HSM_ST_POLL:
2895 poll_state = HSM_ST_POLL;
2896 reg_state = HSM_ST;
2897 break;
2898 case HSM_ST_LAST:
2899 case HSM_ST_LAST_POLL:
2900 poll_state = HSM_ST_LAST_POLL;
2901 reg_state = HSM_ST_LAST;
2902 break;
2903 default:
2904 BUG();
2905 break;
2906 }
2907
2908 status = ata_chk_status(ap);
2909 if (status & ATA_BUSY) {
2910 if (time_after(jiffies, ap->pio_task_timeout)) {
2911 qc->err_mask |= AC_ERR_ATA_BUS;
2912 ap->hsm_task_state = HSM_ST_TMOUT;
2913 return 0;
2914 }
2915 ap->hsm_task_state = poll_state;
2916 return ATA_SHORT_PAUSE;
2917 }
2918
2919 ap->hsm_task_state = reg_state;
2920 return 0;
2921 }
2922
2923 /**
2924 * ata_pio_complete - check if drive is busy or idle
2925 * @ap: the target ata_port
2926 *
2927 * LOCKING:
2928 * None. (executing in kernel thread context)
2929 *
2930 * RETURNS:
2931 * Non-zero if qc completed, zero otherwise.
2932 */
2933
2934 static int ata_pio_complete (struct ata_port *ap)
2935 {
2936 struct ata_queued_cmd *qc;
2937 u8 drv_stat;
2938
2939 /*
2940 * This is purely heuristic. This is a fast path. Sometimes when
2941 * we enter, BSY will be cleared in a chk-status or two. If not,
2942 * the drive is probably seeking or something. Snooze for a couple
2943 * msecs, then chk-status again. If still busy, fall back to
2944 * HSM_ST_POLL state.
2945 */
2946 drv_stat = ata_busy_wait(ap, ATA_BUSY, 10);
2947 if (drv_stat & ATA_BUSY) {
2948 msleep(2);
2949 drv_stat = ata_busy_wait(ap, ATA_BUSY, 10);
2950 if (drv_stat & ATA_BUSY) {
2951 ap->hsm_task_state = HSM_ST_LAST_POLL;
2952 ap->pio_task_timeout = jiffies + ATA_TMOUT_PIO;
2953 return 0;
2954 }
2955 }
2956
2957 qc = ata_qc_from_tag(ap, ap->active_tag);
2958 assert(qc != NULL);
2959
2960 drv_stat = ata_wait_idle(ap);
2961 if (!ata_ok(drv_stat)) {
2962 qc->err_mask |= __ac_err_mask(drv_stat);
2963 ap->hsm_task_state = HSM_ST_ERR;
2964 return 0;
2965 }
2966
2967 ap->hsm_task_state = HSM_ST_IDLE;
2968
2969 assert(qc->err_mask == 0);
2970 ata_poll_qc_complete(qc);
2971
2972 /* another command may start at this point */
2973
2974 return 1;
2975 }
2976
2977
2978 /**
2979 * swap_buf_le16 - swap halves of 16-words in place
2980 * @buf: Buffer to swap
2981 * @buf_words: Number of 16-bit words in buffer.
2982 *
2983 * Swap halves of 16-bit words if needed to convert from
2984 * little-endian byte order to native cpu byte order, or
2985 * vice-versa.
2986 *
2987 * LOCKING:
2988 * Inherited from caller.
2989 */
2990 void swap_buf_le16(u16 *buf, unsigned int buf_words)
2991 {
2992 #ifdef __BIG_ENDIAN
2993 unsigned int i;
2994
2995 for (i = 0; i < buf_words; i++)
2996 buf[i] = le16_to_cpu(buf[i]);
2997 #endif /* __BIG_ENDIAN */
2998 }
2999
3000 /**
3001 * ata_mmio_data_xfer - Transfer data by MMIO
3002 * @ap: port to read/write
3003 * @buf: data buffer
3004 * @buflen: buffer length
3005 * @write_data: read/write
3006 *
3007 * Transfer data from/to the device data register by MMIO.
3008 *
3009 * LOCKING:
3010 * Inherited from caller.
3011 */
3012
3013 static void ata_mmio_data_xfer(struct ata_port *ap, unsigned char *buf,
3014 unsigned int buflen, int write_data)
3015 {
3016 unsigned int i;
3017 unsigned int words = buflen >> 1;
3018 u16 *buf16 = (u16 *) buf;
3019 void __iomem *mmio = (void __iomem *)ap->ioaddr.data_addr;
3020
3021 /* Transfer multiple of 2 bytes */
3022 if (write_data) {
3023 for (i = 0; i < words; i++)
3024 writew(le16_to_cpu(buf16[i]), mmio);
3025 } else {
3026 for (i = 0; i < words; i++)
3027 buf16[i] = cpu_to_le16(readw(mmio));
3028 }
3029
3030 /* Transfer trailing 1 byte, if any. */
3031 if (unlikely(buflen & 0x01)) {
3032 u16 align_buf[1] = { 0 };
3033 unsigned char *trailing_buf = buf + buflen - 1;
3034
3035 if (write_data) {
3036 memcpy(align_buf, trailing_buf, 1);
3037 writew(le16_to_cpu(align_buf[0]), mmio);
3038 } else {
3039 align_buf[0] = cpu_to_le16(readw(mmio));
3040 memcpy(trailing_buf, align_buf, 1);
3041 }
3042 }
3043 }
3044
3045 /**
3046 * ata_pio_data_xfer - Transfer data by PIO
3047 * @ap: port to read/write
3048 * @buf: data buffer
3049 * @buflen: buffer length
3050 * @write_data: read/write
3051 *
3052 * Transfer data from/to the device data register by PIO.
3053 *
3054 * LOCKING:
3055 * Inherited from caller.
3056 */
3057
3058 static void ata_pio_data_xfer(struct ata_port *ap, unsigned char *buf,
3059 unsigned int buflen, int write_data)
3060 {
3061 unsigned int words = buflen >> 1;
3062
3063 /* Transfer multiple of 2 bytes */
3064 if (write_data)
3065 outsw(ap->ioaddr.data_addr, buf, words);
3066 else
3067 insw(ap->ioaddr.data_addr, buf, words);
3068
3069 /* Transfer trailing 1 byte, if any. */
3070 if (unlikely(buflen & 0x01)) {
3071 u16 align_buf[1] = { 0 };
3072 unsigned char *trailing_buf = buf + buflen - 1;
3073
3074 if (write_data) {
3075 memcpy(align_buf, trailing_buf, 1);
3076 outw(le16_to_cpu(align_buf[0]), ap->ioaddr.data_addr);
3077 } else {
3078 align_buf[0] = cpu_to_le16(inw(ap->ioaddr.data_addr));
3079 memcpy(trailing_buf, align_buf, 1);
3080 }
3081 }
3082 }
3083
3084 /**
3085 * ata_data_xfer - Transfer data from/to the data register.
3086 * @ap: port to read/write
3087 * @buf: data buffer
3088 * @buflen: buffer length
3089 * @do_write: read/write
3090 *
3091 * Transfer data from/to the device data register.
3092 *
3093 * LOCKING:
3094 * Inherited from caller.
3095 */
3096
3097 static void ata_data_xfer(struct ata_port *ap, unsigned char *buf,
3098 unsigned int buflen, int do_write)
3099 {
3100 if (ap->flags & ATA_FLAG_MMIO)
3101 ata_mmio_data_xfer(ap, buf, buflen, do_write);
3102 else
3103 ata_pio_data_xfer(ap, buf, buflen, do_write);
3104 }
3105
3106 /**
3107 * ata_pio_sector - Transfer ATA_SECT_SIZE (512 bytes) of data.
3108 * @qc: Command on going
3109 *
3110 * Transfer ATA_SECT_SIZE of data from/to the ATA device.
3111 *
3112 * LOCKING:
3113 * Inherited from caller.
3114 */
3115
3116 static void ata_pio_sector(struct ata_queued_cmd *qc)
3117 {
3118 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
3119 struct scatterlist *sg = qc->__sg;
3120 struct ata_port *ap = qc->ap;
3121 struct page *page;
3122 unsigned int offset;
3123 unsigned char *buf;
3124
3125 if (qc->cursect == (qc->nsect - 1))
3126 ap->hsm_task_state = HSM_ST_LAST;
3127
3128 page = sg[qc->cursg].page;
3129 offset = sg[qc->cursg].offset + qc->cursg_ofs * ATA_SECT_SIZE;
3130
3131 /* get the current page and offset */
3132 page = nth_page(page, (offset >> PAGE_SHIFT));
3133 offset %= PAGE_SIZE;
3134
3135 buf = kmap(page) + offset;
3136
3137 qc->cursect++;
3138 qc->cursg_ofs++;
3139
3140 if ((qc->cursg_ofs * ATA_SECT_SIZE) == (&sg[qc->cursg])->length) {
3141 qc->cursg++;
3142 qc->cursg_ofs = 0;
3143 }
3144
3145 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
3146
3147 /* do the actual data transfer */
3148 do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
3149 ata_data_xfer(ap, buf, ATA_SECT_SIZE, do_write);
3150
3151 kunmap(page);
3152 }
3153
3154 /**
3155 * __atapi_pio_bytes - Transfer data from/to the ATAPI device.
3156 * @qc: Command on going
3157 * @bytes: number of bytes
3158 *
3159 * Transfer Transfer data from/to the ATAPI device.
3160 *
3161 * LOCKING:
3162 * Inherited from caller.
3163 *
3164 */
3165
3166 static void __atapi_pio_bytes(struct ata_queued_cmd *qc, unsigned int bytes)
3167 {
3168 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
3169 struct scatterlist *sg = qc->__sg;
3170 struct ata_port *ap = qc->ap;
3171 struct page *page;
3172 unsigned char *buf;
3173 unsigned int offset, count;
3174
3175 if (qc->curbytes + bytes >= qc->nbytes)
3176 ap->hsm_task_state = HSM_ST_LAST;
3177
3178 next_sg:
3179 if (unlikely(qc->cursg >= qc->n_elem)) {
3180 /*
3181 * The end of qc->sg is reached and the device expects
3182 * more data to transfer. In order not to overrun qc->sg
3183 * and fulfill length specified in the byte count register,
3184 * - for read case, discard trailing data from the device
3185 * - for write case, padding zero data to the device
3186 */
3187 u16 pad_buf[1] = { 0 };
3188 unsigned int words = bytes >> 1;
3189 unsigned int i;
3190
3191 if (words) /* warning if bytes > 1 */
3192 printk(KERN_WARNING "ata%u: %u bytes trailing data\n",
3193 ap->id, bytes);
3194
3195 for (i = 0; i < words; i++)
3196 ata_data_xfer(ap, (unsigned char*)pad_buf, 2, do_write);
3197
3198 ap->hsm_task_state = HSM_ST_LAST;
3199 return;
3200 }
3201
3202 sg = &qc->__sg[qc->cursg];
3203
3204 page = sg->page;
3205 offset = sg->offset + qc->cursg_ofs;
3206
3207 /* get the current page and offset */
3208 page = nth_page(page, (offset >> PAGE_SHIFT));
3209 offset %= PAGE_SIZE;
3210
3211 /* don't overrun current sg */
3212 count = min(sg->length - qc->cursg_ofs, bytes);
3213
3214 /* don't cross page boundaries */
3215 count = min(count, (unsigned int)PAGE_SIZE - offset);
3216
3217 buf = kmap(page) + offset;
3218
3219 bytes -= count;
3220 qc->curbytes += count;
3221 qc->cursg_ofs += count;
3222
3223 if (qc->cursg_ofs == sg->length) {
3224 qc->cursg++;
3225 qc->cursg_ofs = 0;
3226 }
3227
3228 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
3229
3230 /* do the actual data transfer */
3231 ata_data_xfer(ap, buf, count, do_write);
3232
3233 kunmap(page);
3234
3235 if (bytes)
3236 goto next_sg;
3237 }
3238
3239 /**
3240 * atapi_pio_bytes - Transfer data from/to the ATAPI device.
3241 * @qc: Command on going
3242 *
3243 * Transfer Transfer data from/to the ATAPI device.
3244 *
3245 * LOCKING:
3246 * Inherited from caller.
3247 */
3248
3249 static void atapi_pio_bytes(struct ata_queued_cmd *qc)
3250 {
3251 struct ata_port *ap = qc->ap;
3252 struct ata_device *dev = qc->dev;
3253 unsigned int ireason, bc_lo, bc_hi, bytes;
3254 int i_write, do_write = (qc->tf.flags & ATA_TFLAG_WRITE) ? 1 : 0;
3255
3256 ap->ops->tf_read(ap, &qc->tf);
3257 ireason = qc->tf.nsect;
3258 bc_lo = qc->tf.lbam;
3259 bc_hi = qc->tf.lbah;
3260 bytes = (bc_hi << 8) | bc_lo;
3261
3262 /* shall be cleared to zero, indicating xfer of data */
3263 if (ireason & (1 << 0))
3264 goto err_out;
3265
3266 /* make sure transfer direction matches expected */
3267 i_write = ((ireason & (1 << 1)) == 0) ? 1 : 0;
3268 if (do_write != i_write)
3269 goto err_out;
3270
3271 __atapi_pio_bytes(qc, bytes);
3272
3273 return;
3274
3275 err_out:
3276 printk(KERN_INFO "ata%u: dev %u: ATAPI check failed\n",
3277 ap->id, dev->devno);
3278 qc->err_mask |= AC_ERR_ATA_BUS;
3279 ap->hsm_task_state = HSM_ST_ERR;
3280 }
3281
3282 /**
3283 * ata_pio_block - start PIO on a block
3284 * @ap: the target ata_port
3285 *
3286 * LOCKING:
3287 * None. (executing in kernel thread context)
3288 */
3289
3290 static void ata_pio_block(struct ata_port *ap)
3291 {
3292 struct ata_queued_cmd *qc;
3293 u8 status;
3294
3295 /*
3296 * This is purely heuristic. This is a fast path.
3297 * Sometimes when we enter, BSY will be cleared in
3298 * a chk-status or two. If not, the drive is probably seeking
3299 * or something. Snooze for a couple msecs, then
3300 * chk-status again. If still busy, fall back to
3301 * HSM_ST_POLL state.
3302 */
3303 status = ata_busy_wait(ap, ATA_BUSY, 5);
3304 if (status & ATA_BUSY) {
3305 msleep(2);
3306 status = ata_busy_wait(ap, ATA_BUSY, 10);
3307 if (status & ATA_BUSY) {
3308 ap->hsm_task_state = HSM_ST_POLL;
3309 ap->pio_task_timeout = jiffies + ATA_TMOUT_PIO;
3310 return;
3311 }
3312 }
3313
3314 qc = ata_qc_from_tag(ap, ap->active_tag);
3315 assert(qc != NULL);
3316
3317 /* check error */
3318 if (status & (ATA_ERR | ATA_DF)) {
3319 qc->err_mask |= AC_ERR_DEV;
3320 ap->hsm_task_state = HSM_ST_ERR;
3321 return;
3322 }
3323
3324 /* transfer data if any */
3325 if (is_atapi_taskfile(&qc->tf)) {
3326 /* DRQ=0 means no more data to transfer */
3327 if ((status & ATA_DRQ) == 0) {
3328 ap->hsm_task_state = HSM_ST_LAST;
3329 return;
3330 }
3331
3332 atapi_pio_bytes(qc);
3333 } else {
3334 /* handle BSY=0, DRQ=0 as error */
3335 if ((status & ATA_DRQ) == 0) {
3336 qc->err_mask |= AC_ERR_ATA_BUS;
3337 ap->hsm_task_state = HSM_ST_ERR;
3338 return;
3339 }
3340
3341 ata_pio_sector(qc);
3342 }
3343 }
3344
3345 static void ata_pio_error(struct ata_port *ap)
3346 {
3347 struct ata_queued_cmd *qc;
3348
3349 printk(KERN_WARNING "ata%u: PIO error\n", ap->id);
3350
3351 qc = ata_qc_from_tag(ap, ap->active_tag);
3352 assert(qc != NULL);
3353
3354 /* make sure qc->err_mask is available to
3355 * know what's wrong and recover
3356 */
3357 assert(qc->err_mask);
3358
3359 ap->hsm_task_state = HSM_ST_IDLE;
3360
3361 ata_poll_qc_complete(qc);
3362 }
3363
3364 static void ata_pio_task(void *_data)
3365 {
3366 struct ata_port *ap = _data;
3367 unsigned long timeout;
3368 int qc_completed;
3369
3370 fsm_start:
3371 timeout = 0;
3372 qc_completed = 0;
3373
3374 switch (ap->hsm_task_state) {
3375 case HSM_ST_IDLE:
3376 return;
3377
3378 case HSM_ST:
3379 ata_pio_block(ap);
3380 break;
3381
3382 case HSM_ST_LAST:
3383 qc_completed = ata_pio_complete(ap);
3384 break;
3385
3386 case HSM_ST_POLL:
3387 case HSM_ST_LAST_POLL:
3388 timeout = ata_pio_poll(ap);
3389 break;
3390
3391 case HSM_ST_TMOUT:
3392 case HSM_ST_ERR:
3393 ata_pio_error(ap);
3394 return;
3395 }
3396
3397 if (timeout)
3398 queue_delayed_work(ata_wq, &ap->pio_task, timeout);
3399 else if (!qc_completed)
3400 goto fsm_start;
3401 }
3402
3403 /**
3404 * ata_qc_timeout - Handle timeout of queued command
3405 * @qc: Command that timed out
3406 *
3407 * Some part of the kernel (currently, only the SCSI layer)
3408 * has noticed that the active command on port @ap has not
3409 * completed after a specified length of time. Handle this
3410 * condition by disabling DMA (if necessary) and completing
3411 * transactions, with error if necessary.
3412 *
3413 * This also handles the case of the "lost interrupt", where
3414 * for some reason (possibly hardware bug, possibly driver bug)
3415 * an interrupt was not delivered to the driver, even though the
3416 * transaction completed successfully.
3417 *
3418 * LOCKING:
3419 * Inherited from SCSI layer (none, can sleep)
3420 */
3421
3422 static void ata_qc_timeout(struct ata_queued_cmd *qc)
3423 {
3424 struct ata_port *ap = qc->ap;
3425 struct ata_host_set *host_set = ap->host_set;
3426 u8 host_stat = 0, drv_stat;
3427 unsigned long flags;
3428
3429 DPRINTK("ENTER\n");
3430
3431 spin_lock_irqsave(&host_set->lock, flags);
3432
3433 /* hack alert! We cannot use the supplied completion
3434 * function from inside the ->eh_strategy_handler() thread.
3435 * libata is the only user of ->eh_strategy_handler() in
3436 * any kernel, so the default scsi_done() assumes it is
3437 * not being called from the SCSI EH.
3438 */
3439 qc->scsidone = scsi_finish_command;
3440
3441 switch (qc->tf.protocol) {
3442
3443 case ATA_PROT_DMA:
3444 case ATA_PROT_ATAPI_DMA:
3445 host_stat = ap->ops->bmdma_status(ap);
3446
3447 /* before we do anything else, clear DMA-Start bit */
3448 ap->ops->bmdma_stop(qc);
3449
3450 /* fall through */
3451
3452 default:
3453 ata_altstatus(ap);
3454 drv_stat = ata_chk_status(ap);
3455
3456 /* ack bmdma irq events */
3457 ap->ops->irq_clear(ap);
3458
3459 printk(KERN_ERR "ata%u: command 0x%x timeout, stat 0x%x host_stat 0x%x\n",
3460 ap->id, qc->tf.command, drv_stat, host_stat);
3461
3462 /* complete taskfile transaction */
3463 qc->err_mask |= ac_err_mask(drv_stat);
3464 ata_qc_complete(qc);
3465 break;
3466 }
3467
3468 spin_unlock_irqrestore(&host_set->lock, flags);
3469
3470 DPRINTK("EXIT\n");
3471 }
3472
3473 /**
3474 * ata_eng_timeout - Handle timeout of queued command
3475 * @ap: Port on which timed-out command is active
3476 *
3477 * Some part of the kernel (currently, only the SCSI layer)
3478 * has noticed that the active command on port @ap has not
3479 * completed after a specified length of time. Handle this
3480 * condition by disabling DMA (if necessary) and completing
3481 * transactions, with error if necessary.
3482 *
3483 * This also handles the case of the "lost interrupt", where
3484 * for some reason (possibly hardware bug, possibly driver bug)
3485 * an interrupt was not delivered to the driver, even though the
3486 * transaction completed successfully.
3487 *
3488 * LOCKING:
3489 * Inherited from SCSI layer (none, can sleep)
3490 */
3491
3492 void ata_eng_timeout(struct ata_port *ap)
3493 {
3494 struct ata_queued_cmd *qc;
3495
3496 DPRINTK("ENTER\n");
3497
3498 qc = ata_qc_from_tag(ap, ap->active_tag);
3499 if (qc)
3500 ata_qc_timeout(qc);
3501 else {
3502 printk(KERN_ERR "ata%u: BUG: timeout without command\n",
3503 ap->id);
3504 goto out;
3505 }
3506
3507 out:
3508 DPRINTK("EXIT\n");
3509 }
3510
3511 /**
3512 * ata_qc_new - Request an available ATA command, for queueing
3513 * @ap: Port associated with device @dev
3514 * @dev: Device from whom we request an available command structure
3515 *
3516 * LOCKING:
3517 * None.
3518 */
3519
3520 static struct ata_queued_cmd *ata_qc_new(struct ata_port *ap)
3521 {
3522 struct ata_queued_cmd *qc = NULL;
3523 unsigned int i;
3524
3525 for (i = 0; i < ATA_MAX_QUEUE; i++)
3526 if (!test_and_set_bit(i, &ap->qactive)) {
3527 qc = ata_qc_from_tag(ap, i);
3528 break;
3529 }
3530
3531 if (qc)
3532 qc->tag = i;
3533
3534 return qc;
3535 }
3536
3537 /**
3538 * ata_qc_new_init - Request an available ATA command, and initialize it
3539 * @ap: Port associated with device @dev
3540 * @dev: Device from whom we request an available command structure
3541 *
3542 * LOCKING:
3543 * None.
3544 */
3545
3546 struct ata_queued_cmd *ata_qc_new_init(struct ata_port *ap,
3547 struct ata_device *dev)
3548 {
3549 struct ata_queued_cmd *qc;
3550
3551 qc = ata_qc_new(ap);
3552 if (qc) {
3553 qc->scsicmd = NULL;
3554 qc->ap = ap;
3555 qc->dev = dev;
3556
3557 ata_qc_reinit(qc);
3558 }
3559
3560 return qc;
3561 }
3562
3563 static void __ata_qc_complete(struct ata_queued_cmd *qc)
3564 {
3565 struct ata_port *ap = qc->ap;
3566 unsigned int tag;
3567
3568 qc->flags = 0;
3569 tag = qc->tag;
3570 if (likely(ata_tag_valid(tag))) {
3571 if (tag == ap->active_tag)
3572 ap->active_tag = ATA_TAG_POISON;
3573 qc->tag = ATA_TAG_POISON;
3574 clear_bit(tag, &ap->qactive);
3575 }
3576 }
3577
3578 /**
3579 * ata_qc_free - free unused ata_queued_cmd
3580 * @qc: Command to complete
3581 *
3582 * Designed to free unused ata_queued_cmd object
3583 * in case something prevents using it.
3584 *
3585 * LOCKING:
3586 * spin_lock_irqsave(host_set lock)
3587 */
3588 void ata_qc_free(struct ata_queued_cmd *qc)
3589 {
3590 assert(qc != NULL); /* ata_qc_from_tag _might_ return NULL */
3591
3592 __ata_qc_complete(qc);
3593 }
3594
3595 /**
3596 * ata_qc_complete - Complete an active ATA command
3597 * @qc: Command to complete
3598 * @err_mask: ATA Status register contents
3599 *
3600 * Indicate to the mid and upper layers that an ATA
3601 * command has completed, with either an ok or not-ok status.
3602 *
3603 * LOCKING:
3604 * spin_lock_irqsave(host_set lock)
3605 */
3606
3607 void ata_qc_complete(struct ata_queued_cmd *qc)
3608 {
3609 int rc;
3610
3611 assert(qc != NULL); /* ata_qc_from_tag _might_ return NULL */
3612 assert(qc->flags & ATA_QCFLAG_ACTIVE);
3613
3614 if (likely(qc->flags & ATA_QCFLAG_DMAMAP))
3615 ata_sg_clean(qc);
3616
3617 /* atapi: mark qc as inactive to prevent the interrupt handler
3618 * from completing the command twice later, before the error handler
3619 * is called. (when rc != 0 and atapi request sense is needed)
3620 */
3621 qc->flags &= ~ATA_QCFLAG_ACTIVE;
3622
3623 /* call completion callback */
3624 rc = qc->complete_fn(qc);
3625
3626 /* if callback indicates not to complete command (non-zero),
3627 * return immediately
3628 */
3629 if (rc != 0)
3630 return;
3631
3632 __ata_qc_complete(qc);
3633
3634 VPRINTK("EXIT\n");
3635 }
3636
3637 static inline int ata_should_dma_map(struct ata_queued_cmd *qc)
3638 {
3639 struct ata_port *ap = qc->ap;
3640
3641 switch (qc->tf.protocol) {
3642 case ATA_PROT_DMA:
3643 case ATA_PROT_ATAPI_DMA:
3644 return 1;
3645
3646 case ATA_PROT_ATAPI:
3647 case ATA_PROT_PIO:
3648 case ATA_PROT_PIO_MULT:
3649 if (ap->flags & ATA_FLAG_PIO_DMA)
3650 return 1;
3651
3652 /* fall through */
3653
3654 default:
3655 return 0;
3656 }
3657
3658 /* never reached */
3659 }
3660
3661 /**
3662 * ata_qc_issue - issue taskfile to device
3663 * @qc: command to issue to device
3664 *
3665 * Prepare an ATA command to submission to device.
3666 * This includes mapping the data into a DMA-able
3667 * area, filling in the S/G table, and finally
3668 * writing the taskfile to hardware, starting the command.
3669 *
3670 * LOCKING:
3671 * spin_lock_irqsave(host_set lock)
3672 *
3673 * RETURNS:
3674 * Zero on success, negative on error.
3675 */
3676
3677 int ata_qc_issue(struct ata_queued_cmd *qc)
3678 {
3679 struct ata_port *ap = qc->ap;
3680
3681 if (ata_should_dma_map(qc)) {
3682 if (qc->flags & ATA_QCFLAG_SG) {
3683 if (ata_sg_setup(qc))
3684 goto err_out;
3685 } else if (qc->flags & ATA_QCFLAG_SINGLE) {
3686 if (ata_sg_setup_one(qc))
3687 goto err_out;
3688 }
3689 } else {
3690 qc->flags &= ~ATA_QCFLAG_DMAMAP;
3691 }
3692
3693 ap->ops->qc_prep(qc);
3694
3695 qc->ap->active_tag = qc->tag;
3696 qc->flags |= ATA_QCFLAG_ACTIVE;
3697
3698 return ap->ops->qc_issue(qc);
3699
3700 err_out:
3701 return -1;
3702 }
3703
3704
3705 /**
3706 * ata_qc_issue_prot - issue taskfile to device in proto-dependent manner
3707 * @qc: command to issue to device
3708 *
3709 * Using various libata functions and hooks, this function
3710 * starts an ATA command. ATA commands are grouped into
3711 * classes called "protocols", and issuing each type of protocol
3712 * is slightly different.
3713 *
3714 * May be used as the qc_issue() entry in ata_port_operations.
3715 *
3716 * LOCKING:
3717 * spin_lock_irqsave(host_set lock)
3718 *
3719 * RETURNS:
3720 * Zero on success, negative on error.
3721 */
3722
3723 int ata_qc_issue_prot(struct ata_queued_cmd *qc)
3724 {
3725 struct ata_port *ap = qc->ap;
3726
3727 ata_dev_select(ap, qc->dev->devno, 1, 0);
3728
3729 switch (qc->tf.protocol) {
3730 case ATA_PROT_NODATA:
3731 ata_tf_to_host(ap, &qc->tf);
3732 break;
3733
3734 case ATA_PROT_DMA:
3735 ap->ops->tf_load(ap, &qc->tf); /* load tf registers */
3736 ap->ops->bmdma_setup(qc); /* set up bmdma */
3737 ap->ops->bmdma_start(qc); /* initiate bmdma */
3738 break;
3739
3740 case ATA_PROT_PIO: /* load tf registers, initiate polling pio */
3741 ata_qc_set_polling(qc);
3742 ata_tf_to_host(ap, &qc->tf);
3743 ap->hsm_task_state = HSM_ST;
3744 queue_work(ata_wq, &ap->pio_task);
3745 break;
3746
3747 case ATA_PROT_ATAPI:
3748 ata_qc_set_polling(qc);
3749 ata_tf_to_host(ap, &qc->tf);
3750 queue_work(ata_wq, &ap->packet_task);
3751 break;
3752
3753 case ATA_PROT_ATAPI_NODATA:
3754 ap->flags |= ATA_FLAG_NOINTR;
3755 ata_tf_to_host(ap, &qc->tf);
3756 queue_work(ata_wq, &ap->packet_task);
3757 break;
3758
3759 case ATA_PROT_ATAPI_DMA:
3760 ap->flags |= ATA_FLAG_NOINTR;
3761 ap->ops->tf_load(ap, &qc->tf); /* load tf registers */
3762 ap->ops->bmdma_setup(qc); /* set up bmdma */
3763 queue_work(ata_wq, &ap->packet_task);
3764 break;
3765
3766 default:
3767 WARN_ON(1);
3768 return -1;
3769 }
3770
3771 return 0;
3772 }
3773
3774 /**
3775 * ata_bmdma_setup_mmio - Set up PCI IDE BMDMA transaction
3776 * @qc: Info associated with this ATA transaction.
3777 *
3778 * LOCKING:
3779 * spin_lock_irqsave(host_set lock)
3780 */
3781
3782 static void ata_bmdma_setup_mmio (struct ata_queued_cmd *qc)
3783 {
3784 struct ata_port *ap = qc->ap;
3785 unsigned int rw = (qc->tf.flags & ATA_TFLAG_WRITE);
3786 u8 dmactl;
3787 void __iomem *mmio = (void __iomem *) ap->ioaddr.bmdma_addr;
3788
3789 /* load PRD table addr. */
3790 mb(); /* make sure PRD table writes are visible to controller */
3791 writel(ap->prd_dma, mmio + ATA_DMA_TABLE_OFS);
3792
3793 /* specify data direction, triple-check start bit is clear */
3794 dmactl = readb(mmio + ATA_DMA_CMD);
3795 dmactl &= ~(ATA_DMA_WR | ATA_DMA_START);
3796 if (!rw)
3797 dmactl |= ATA_DMA_WR;
3798 writeb(dmactl, mmio + ATA_DMA_CMD);
3799
3800 /* issue r/w command */
3801 ap->ops->exec_command(ap, &qc->tf);
3802 }
3803
3804 /**
3805 * ata_bmdma_start_mmio - Start a PCI IDE BMDMA transaction
3806 * @qc: Info associated with this ATA transaction.
3807 *
3808 * LOCKING:
3809 * spin_lock_irqsave(host_set lock)
3810 */
3811
3812 static void ata_bmdma_start_mmio (struct ata_queued_cmd *qc)
3813 {
3814 struct ata_port *ap = qc->ap;
3815 void __iomem *mmio = (void __iomem *) ap->ioaddr.bmdma_addr;
3816 u8 dmactl;
3817
3818 /* start host DMA transaction */
3819 dmactl = readb(mmio + ATA_DMA_CMD);
3820 writeb(dmactl | ATA_DMA_START, mmio + ATA_DMA_CMD);
3821
3822 /* Strictly, one may wish to issue a readb() here, to
3823 * flush the mmio write. However, control also passes
3824 * to the hardware at this point, and it will interrupt
3825 * us when we are to resume control. So, in effect,
3826 * we don't care when the mmio write flushes.
3827 * Further, a read of the DMA status register _immediately_
3828 * following the write may not be what certain flaky hardware
3829 * is expected, so I think it is best to not add a readb()
3830 * without first all the MMIO ATA cards/mobos.
3831 * Or maybe I'm just being paranoid.
3832 */
3833 }
3834
3835 /**
3836 * ata_bmdma_setup_pio - Set up PCI IDE BMDMA transaction (PIO)
3837 * @qc: Info associated with this ATA transaction.
3838 *
3839 * LOCKING:
3840 * spin_lock_irqsave(host_set lock)
3841 */
3842
3843 static void ata_bmdma_setup_pio (struct ata_queued_cmd *qc)
3844 {
3845 struct ata_port *ap = qc->ap;
3846 unsigned int rw = (qc->tf.flags & ATA_TFLAG_WRITE);
3847 u8 dmactl;
3848
3849 /* load PRD table addr. */
3850 outl(ap->prd_dma, ap->ioaddr.bmdma_addr + ATA_DMA_TABLE_OFS);
3851
3852 /* specify data direction, triple-check start bit is clear */
3853 dmactl = inb(ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
3854 dmactl &= ~(ATA_DMA_WR | ATA_DMA_START);
3855 if (!rw)
3856 dmactl |= ATA_DMA_WR;
3857 outb(dmactl, ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
3858
3859 /* issue r/w command */
3860 ap->ops->exec_command(ap, &qc->tf);
3861 }
3862
3863 /**
3864 * ata_bmdma_start_pio - Start a PCI IDE BMDMA transaction (PIO)
3865 * @qc: Info associated with this ATA transaction.
3866 *
3867 * LOCKING:
3868 * spin_lock_irqsave(host_set lock)
3869 */
3870
3871 static void ata_bmdma_start_pio (struct ata_queued_cmd *qc)
3872 {
3873 struct ata_port *ap = qc->ap;
3874 u8 dmactl;
3875
3876 /* start host DMA transaction */
3877 dmactl = inb(ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
3878 outb(dmactl | ATA_DMA_START,
3879 ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
3880 }
3881
3882
3883 /**
3884 * ata_bmdma_start - Start a PCI IDE BMDMA transaction
3885 * @qc: Info associated with this ATA transaction.
3886 *
3887 * Writes the ATA_DMA_START flag to the DMA command register.
3888 *
3889 * May be used as the bmdma_start() entry in ata_port_operations.
3890 *
3891 * LOCKING:
3892 * spin_lock_irqsave(host_set lock)
3893 */
3894 void ata_bmdma_start(struct ata_queued_cmd *qc)
3895 {
3896 if (qc->ap->flags & ATA_FLAG_MMIO)
3897 ata_bmdma_start_mmio(qc);
3898 else
3899 ata_bmdma_start_pio(qc);
3900 }
3901
3902
3903 /**
3904 * ata_bmdma_setup - Set up PCI IDE BMDMA transaction
3905 * @qc: Info associated with this ATA transaction.
3906 *
3907 * Writes address of PRD table to device's PRD Table Address
3908 * register, sets the DMA control register, and calls
3909 * ops->exec_command() to start the transfer.
3910 *
3911 * May be used as the bmdma_setup() entry in ata_port_operations.
3912 *
3913 * LOCKING:
3914 * spin_lock_irqsave(host_set lock)
3915 */
3916 void ata_bmdma_setup(struct ata_queued_cmd *qc)
3917 {
3918 if (qc->ap->flags & ATA_FLAG_MMIO)
3919 ata_bmdma_setup_mmio(qc);
3920 else
3921 ata_bmdma_setup_pio(qc);
3922 }
3923
3924
3925 /**
3926 * ata_bmdma_irq_clear - Clear PCI IDE BMDMA interrupt.
3927 * @ap: Port associated with this ATA transaction.
3928 *
3929 * Clear interrupt and error flags in DMA status register.
3930 *
3931 * May be used as the irq_clear() entry in ata_port_operations.
3932 *
3933 * LOCKING:
3934 * spin_lock_irqsave(host_set lock)
3935 */
3936
3937 void ata_bmdma_irq_clear(struct ata_port *ap)
3938 {
3939 if (ap->flags & ATA_FLAG_MMIO) {
3940 void __iomem *mmio = ((void __iomem *) ap->ioaddr.bmdma_addr) + ATA_DMA_STATUS;
3941 writeb(readb(mmio), mmio);
3942 } else {
3943 unsigned long addr = ap->ioaddr.bmdma_addr + ATA_DMA_STATUS;
3944 outb(inb(addr), addr);
3945 }
3946
3947 }
3948
3949
3950 /**
3951 * ata_bmdma_status - Read PCI IDE BMDMA status
3952 * @ap: Port associated with this ATA transaction.
3953 *
3954 * Read and return BMDMA status register.
3955 *
3956 * May be used as the bmdma_status() entry in ata_port_operations.
3957 *
3958 * LOCKING:
3959 * spin_lock_irqsave(host_set lock)
3960 */
3961
3962 u8 ata_bmdma_status(struct ata_port *ap)
3963 {
3964 u8 host_stat;
3965 if (ap->flags & ATA_FLAG_MMIO) {
3966 void __iomem *mmio = (void __iomem *) ap->ioaddr.bmdma_addr;
3967 host_stat = readb(mmio + ATA_DMA_STATUS);
3968 } else
3969 host_stat = inb(ap->ioaddr.bmdma_addr + ATA_DMA_STATUS);
3970 return host_stat;
3971 }
3972
3973
3974 /**
3975 * ata_bmdma_stop - Stop PCI IDE BMDMA transfer
3976 * @qc: Command we are ending DMA for
3977 *
3978 * Clears the ATA_DMA_START flag in the dma control register
3979 *
3980 * May be used as the bmdma_stop() entry in ata_port_operations.
3981 *
3982 * LOCKING:
3983 * spin_lock_irqsave(host_set lock)
3984 */
3985
3986 void ata_bmdma_stop(struct ata_queued_cmd *qc)
3987 {
3988 struct ata_port *ap = qc->ap;
3989 if (ap->flags & ATA_FLAG_MMIO) {
3990 void __iomem *mmio = (void __iomem *) ap->ioaddr.bmdma_addr;
3991
3992 /* clear start/stop bit */
3993 writeb(readb(mmio + ATA_DMA_CMD) & ~ATA_DMA_START,
3994 mmio + ATA_DMA_CMD);
3995 } else {
3996 /* clear start/stop bit */
3997 outb(inb(ap->ioaddr.bmdma_addr + ATA_DMA_CMD) & ~ATA_DMA_START,
3998 ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
3999 }
4000
4001 /* one-PIO-cycle guaranteed wait, per spec, for HDMA1:0 transition */
4002 ata_altstatus(ap); /* dummy read */
4003 }
4004
4005 /**
4006 * ata_host_intr - Handle host interrupt for given (port, task)
4007 * @ap: Port on which interrupt arrived (possibly...)
4008 * @qc: Taskfile currently active in engine
4009 *
4010 * Handle host interrupt for given queued command. Currently,
4011 * only DMA interrupts are handled. All other commands are
4012 * handled via polling with interrupts disabled (nIEN bit).
4013 *
4014 * LOCKING:
4015 * spin_lock_irqsave(host_set lock)
4016 *
4017 * RETURNS:
4018 * One if interrupt was handled, zero if not (shared irq).
4019 */
4020
4021 inline unsigned int ata_host_intr (struct ata_port *ap,
4022 struct ata_queued_cmd *qc)
4023 {
4024 u8 status, host_stat;
4025
4026 switch (qc->tf.protocol) {
4027
4028 case ATA_PROT_DMA:
4029 case ATA_PROT_ATAPI_DMA:
4030 case ATA_PROT_ATAPI:
4031 /* check status of DMA engine */
4032 host_stat = ap->ops->bmdma_status(ap);
4033 VPRINTK("ata%u: host_stat 0x%X\n", ap->id, host_stat);
4034
4035 /* if it's not our irq... */
4036 if (!(host_stat & ATA_DMA_INTR))
4037 goto idle_irq;
4038
4039 /* before we do anything else, clear DMA-Start bit */
4040 ap->ops->bmdma_stop(qc);
4041
4042 /* fall through */
4043
4044 case ATA_PROT_ATAPI_NODATA:
4045 case ATA_PROT_NODATA:
4046 /* check altstatus */
4047 status = ata_altstatus(ap);
4048 if (status & ATA_BUSY)
4049 goto idle_irq;
4050
4051 /* check main status, clearing INTRQ */
4052 status = ata_chk_status(ap);
4053 if (unlikely(status & ATA_BUSY))
4054 goto idle_irq;
4055 DPRINTK("ata%u: protocol %d (dev_stat 0x%X)\n",
4056 ap->id, qc->tf.protocol, status);
4057
4058 /* ack bmdma irq events */
4059 ap->ops->irq_clear(ap);
4060
4061 /* complete taskfile transaction */
4062 qc->err_mask |= ac_err_mask(status);
4063 ata_qc_complete(qc);
4064 break;
4065
4066 default:
4067 goto idle_irq;
4068 }
4069
4070 return 1; /* irq handled */
4071
4072 idle_irq:
4073 ap->stats.idle_irq++;
4074
4075 #ifdef ATA_IRQ_TRAP
4076 if ((ap->stats.idle_irq % 1000) == 0) {
4077 handled = 1;
4078 ata_irq_ack(ap, 0); /* debug trap */
4079 printk(KERN_WARNING "ata%d: irq trap\n", ap->id);
4080 }
4081 #endif
4082 return 0; /* irq not handled */
4083 }
4084
4085 /**
4086 * ata_interrupt - Default ATA host interrupt handler
4087 * @irq: irq line (unused)
4088 * @dev_instance: pointer to our ata_host_set information structure
4089 * @regs: unused
4090 *
4091 * Default interrupt handler for PCI IDE devices. Calls
4092 * ata_host_intr() for each port that is not disabled.
4093 *
4094 * LOCKING:
4095 * Obtains host_set lock during operation.
4096 *
4097 * RETURNS:
4098 * IRQ_NONE or IRQ_HANDLED.
4099 */
4100
4101 irqreturn_t ata_interrupt (int irq, void *dev_instance, struct pt_regs *regs)
4102 {
4103 struct ata_host_set *host_set = dev_instance;
4104 unsigned int i;
4105 unsigned int handled = 0;
4106 unsigned long flags;
4107
4108 /* TODO: make _irqsave conditional on x86 PCI IDE legacy mode */
4109 spin_lock_irqsave(&host_set->lock, flags);
4110
4111 for (i = 0; i < host_set->n_ports; i++) {
4112 struct ata_port *ap;
4113
4114 ap = host_set->ports[i];
4115 if (ap &&
4116 !(ap->flags & (ATA_FLAG_PORT_DISABLED | ATA_FLAG_NOINTR))) {
4117 struct ata_queued_cmd *qc;
4118
4119 qc = ata_qc_from_tag(ap, ap->active_tag);
4120 if (qc && (!(qc->tf.ctl & ATA_NIEN)) &&
4121 (qc->flags & ATA_QCFLAG_ACTIVE))
4122 handled |= ata_host_intr(ap, qc);
4123 }
4124 }
4125
4126 spin_unlock_irqrestore(&host_set->lock, flags);
4127
4128 return IRQ_RETVAL(handled);
4129 }
4130
4131 /**
4132 * atapi_packet_task - Write CDB bytes to hardware
4133 * @_data: Port to which ATAPI device is attached.
4134 *
4135 * When device has indicated its readiness to accept
4136 * a CDB, this function is called. Send the CDB.
4137 * If DMA is to be performed, exit immediately.
4138 * Otherwise, we are in polling mode, so poll
4139 * status under operation succeeds or fails.
4140 *
4141 * LOCKING:
4142 * Kernel thread context (may sleep)
4143 */
4144
4145 static void atapi_packet_task(void *_data)
4146 {
4147 struct ata_port *ap = _data;
4148 struct ata_queued_cmd *qc;
4149 u8 status;
4150
4151 qc = ata_qc_from_tag(ap, ap->active_tag);
4152 assert(qc != NULL);
4153 assert(qc->flags & ATA_QCFLAG_ACTIVE);
4154
4155 /* sleep-wait for BSY to clear */
4156 DPRINTK("busy wait\n");
4157 if (ata_busy_sleep(ap, ATA_TMOUT_CDB_QUICK, ATA_TMOUT_CDB)) {
4158 qc->err_mask |= AC_ERR_ATA_BUS;
4159 goto err_out;
4160 }
4161
4162 /* make sure DRQ is set */
4163 status = ata_chk_status(ap);
4164 if ((status & (ATA_BUSY | ATA_DRQ)) != ATA_DRQ) {
4165 qc->err_mask |= AC_ERR_ATA_BUS;
4166 goto err_out;
4167 }
4168
4169 /* send SCSI cdb */
4170 DPRINTK("send cdb\n");
4171 assert(ap->cdb_len >= 12);
4172
4173 if (qc->tf.protocol == ATA_PROT_ATAPI_DMA ||
4174 qc->tf.protocol == ATA_PROT_ATAPI_NODATA) {
4175 unsigned long flags;
4176
4177 /* Once we're done issuing command and kicking bmdma,
4178 * irq handler takes over. To not lose irq, we need
4179 * to clear NOINTR flag before sending cdb, but
4180 * interrupt handler shouldn't be invoked before we're
4181 * finished. Hence, the following locking.
4182 */
4183 spin_lock_irqsave(&ap->host_set->lock, flags);
4184 ap->flags &= ~ATA_FLAG_NOINTR;
4185 ata_data_xfer(ap, qc->cdb, ap->cdb_len, 1);
4186 if (qc->tf.protocol == ATA_PROT_ATAPI_DMA)
4187 ap->ops->bmdma_start(qc); /* initiate bmdma */
4188 spin_unlock_irqrestore(&ap->host_set->lock, flags);
4189 } else {
4190 ata_data_xfer(ap, qc->cdb, ap->cdb_len, 1);
4191
4192 /* PIO commands are handled by polling */
4193 ap->hsm_task_state = HSM_ST;
4194 queue_work(ata_wq, &ap->pio_task);
4195 }
4196
4197 return;
4198
4199 err_out:
4200 ata_poll_qc_complete(qc);
4201 }
4202
4203
4204 /**
4205 * ata_port_start - Set port up for dma.
4206 * @ap: Port to initialize
4207 *
4208 * Called just after data structures for each port are
4209 * initialized. Allocates space for PRD table.
4210 *
4211 * May be used as the port_start() entry in ata_port_operations.
4212 *
4213 * LOCKING:
4214 * Inherited from caller.
4215 */
4216
4217 /*
4218 * Execute a 'simple' command, that only consists of the opcode 'cmd' itself,
4219 * without filling any other registers
4220 */
4221 static int ata_do_simple_cmd(struct ata_port *ap, struct ata_device *dev,
4222 u8 cmd)
4223 {
4224 struct ata_taskfile tf;
4225 int err;
4226
4227 ata_tf_init(ap, &tf, dev->devno);
4228
4229 tf.command = cmd;
4230 tf.flags |= ATA_TFLAG_DEVICE;
4231 tf.protocol = ATA_PROT_NODATA;
4232
4233 err = ata_exec_internal(ap, dev, &tf, DMA_NONE, NULL, 0);
4234 if (err)
4235 printk(KERN_ERR "%s: ata command failed: %d\n",
4236 __FUNCTION__, err);
4237
4238 return err;
4239 }
4240
4241 static int ata_flush_cache(struct ata_port *ap, struct ata_device *dev)
4242 {
4243 u8 cmd;
4244
4245 if (!ata_try_flush_cache(dev))
4246 return 0;
4247
4248 if (ata_id_has_flush_ext(dev->id))
4249 cmd = ATA_CMD_FLUSH_EXT;
4250 else
4251 cmd = ATA_CMD_FLUSH;
4252
4253 return ata_do_simple_cmd(ap, dev, cmd);
4254 }
4255
4256 static int ata_standby_drive(struct ata_port *ap, struct ata_device *dev)
4257 {
4258 return ata_do_simple_cmd(ap, dev, ATA_CMD_STANDBYNOW1);
4259 }
4260
4261 static int ata_start_drive(struct ata_port *ap, struct ata_device *dev)
4262 {
4263 return ata_do_simple_cmd(ap, dev, ATA_CMD_IDLEIMMEDIATE);
4264 }
4265
4266 /**
4267 * ata_device_resume - wakeup a previously suspended devices
4268 *
4269 * Kick the drive back into action, by sending it an idle immediate
4270 * command and making sure its transfer mode matches between drive
4271 * and host.
4272 *
4273 */
4274 int ata_device_resume(struct ata_port *ap, struct ata_device *dev)
4275 {
4276 if (ap->flags & ATA_FLAG_SUSPENDED) {
4277 ap->flags &= ~ATA_FLAG_SUSPENDED;
4278 ata_set_mode(ap);
4279 }
4280 if (!ata_dev_present(dev))
4281 return 0;
4282 if (dev->class == ATA_DEV_ATA)
4283 ata_start_drive(ap, dev);
4284
4285 return 0;
4286 }
4287
4288 /**
4289 * ata_device_suspend - prepare a device for suspend
4290 *
4291 * Flush the cache on the drive, if appropriate, then issue a
4292 * standbynow command.
4293 *
4294 */
4295 int ata_device_suspend(struct ata_port *ap, struct ata_device *dev)
4296 {
4297 if (!ata_dev_present(dev))
4298 return 0;
4299 if (dev->class == ATA_DEV_ATA)
4300 ata_flush_cache(ap, dev);
4301
4302 ata_standby_drive(ap, dev);
4303 ap->flags |= ATA_FLAG_SUSPENDED;
4304 return 0;
4305 }
4306
4307 int ata_port_start (struct ata_port *ap)
4308 {
4309 struct device *dev = ap->host_set->dev;
4310 int rc;
4311
4312 ap->prd = dma_alloc_coherent(dev, ATA_PRD_TBL_SZ, &ap->prd_dma, GFP_KERNEL);
4313 if (!ap->prd)
4314 return -ENOMEM;
4315
4316 rc = ata_pad_alloc(ap, dev);
4317 if (rc) {
4318 dma_free_coherent(dev, ATA_PRD_TBL_SZ, ap->prd, ap->prd_dma);
4319 return rc;
4320 }
4321
4322 DPRINTK("prd alloc, virt %p, dma %llx\n", ap->prd, (unsigned long long) ap->prd_dma);
4323
4324 return 0;
4325 }
4326
4327
4328 /**
4329 * ata_port_stop - Undo ata_port_start()
4330 * @ap: Port to shut down
4331 *
4332 * Frees the PRD table.
4333 *
4334 * May be used as the port_stop() entry in ata_port_operations.
4335 *
4336 * LOCKING:
4337 * Inherited from caller.
4338 */
4339
4340 void ata_port_stop (struct ata_port *ap)
4341 {
4342 struct device *dev = ap->host_set->dev;
4343
4344 dma_free_coherent(dev, ATA_PRD_TBL_SZ, ap->prd, ap->prd_dma);
4345 ata_pad_free(ap, dev);
4346 }
4347
4348 void ata_host_stop (struct ata_host_set *host_set)
4349 {
4350 if (host_set->mmio_base)
4351 iounmap(host_set->mmio_base);
4352 }
4353
4354
4355 /**
4356 * ata_host_remove - Unregister SCSI host structure with upper layers
4357 * @ap: Port to unregister
4358 * @do_unregister: 1 if we fully unregister, 0 to just stop the port
4359 *
4360 * LOCKING:
4361 * Inherited from caller.
4362 */
4363
4364 static void ata_host_remove(struct ata_port *ap, unsigned int do_unregister)
4365 {
4366 struct Scsi_Host *sh = ap->host;
4367
4368 DPRINTK("ENTER\n");
4369
4370 if (do_unregister)
4371 scsi_remove_host(sh);
4372
4373 ap->ops->port_stop(ap);
4374 }
4375
4376 /**
4377 * ata_host_init - Initialize an ata_port structure
4378 * @ap: Structure to initialize
4379 * @host: associated SCSI mid-layer structure
4380 * @host_set: Collection of hosts to which @ap belongs
4381 * @ent: Probe information provided by low-level driver
4382 * @port_no: Port number associated with this ata_port
4383 *
4384 * Initialize a new ata_port structure, and its associated
4385 * scsi_host.
4386 *
4387 * LOCKING:
4388 * Inherited from caller.
4389 */
4390
4391 static void ata_host_init(struct ata_port *ap, struct Scsi_Host *host,
4392 struct ata_host_set *host_set,
4393 const struct ata_probe_ent *ent, unsigned int port_no)
4394 {
4395 unsigned int i;
4396
4397 host->max_id = 16;
4398 host->max_lun = 1;
4399 host->max_channel = 1;
4400 host->unique_id = ata_unique_id++;
4401 host->max_cmd_len = 12;
4402
4403 ap->flags = ATA_FLAG_PORT_DISABLED;
4404 ap->id = host->unique_id;
4405 ap->host = host;
4406 ap->ctl = ATA_DEVCTL_OBS;
4407 ap->host_set = host_set;
4408 ap->port_no = port_no;
4409 ap->hard_port_no =
4410 ent->legacy_mode ? ent->hard_port_no : port_no;
4411 ap->pio_mask = ent->pio_mask;
4412 ap->mwdma_mask = ent->mwdma_mask;
4413 ap->udma_mask = ent->udma_mask;
4414 ap->flags |= ent->host_flags;
4415 ap->ops = ent->port_ops;
4416 ap->cbl = ATA_CBL_NONE;
4417 ap->active_tag = ATA_TAG_POISON;
4418 ap->last_ctl = 0xFF;
4419
4420 INIT_WORK(&ap->packet_task, atapi_packet_task, ap);
4421 INIT_WORK(&ap->pio_task, ata_pio_task, ap);
4422
4423 for (i = 0; i < ATA_MAX_DEVICES; i++)
4424 ap->device[i].devno = i;
4425
4426 #ifdef ATA_IRQ_TRAP
4427 ap->stats.unhandled_irq = 1;
4428 ap->stats.idle_irq = 1;
4429 #endif
4430
4431 memcpy(&ap->ioaddr, &ent->port[port_no], sizeof(struct ata_ioports));
4432 }
4433
4434 /**
4435 * ata_host_add - Attach low-level ATA driver to system
4436 * @ent: Information provided by low-level driver
4437 * @host_set: Collections of ports to which we add
4438 * @port_no: Port number associated with this host
4439 *
4440 * Attach low-level ATA driver to system.
4441 *
4442 * LOCKING:
4443 * PCI/etc. bus probe sem.
4444 *
4445 * RETURNS:
4446 * New ata_port on success, for NULL on error.
4447 */
4448
4449 static struct ata_port * ata_host_add(const struct ata_probe_ent *ent,
4450 struct ata_host_set *host_set,
4451 unsigned int port_no)
4452 {
4453 struct Scsi_Host *host;
4454 struct ata_port *ap;
4455 int rc;
4456
4457 DPRINTK("ENTER\n");
4458 host = scsi_host_alloc(ent->sht, sizeof(struct ata_port));
4459 if (!host)
4460 return NULL;
4461
4462 ap = (struct ata_port *) &host->hostdata[0];
4463
4464 ata_host_init(ap, host, host_set, ent, port_no);
4465
4466 rc = ap->ops->port_start(ap);
4467 if (rc)
4468 goto err_out;
4469
4470 return ap;
4471
4472 err_out:
4473 scsi_host_put(host);
4474 return NULL;
4475 }
4476
4477 /**
4478 * ata_device_add - Register hardware device with ATA and SCSI layers
4479 * @ent: Probe information describing hardware device to be registered
4480 *
4481 * This function processes the information provided in the probe
4482 * information struct @ent, allocates the necessary ATA and SCSI
4483 * host information structures, initializes them, and registers
4484 * everything with requisite kernel subsystems.
4485 *
4486 * This function requests irqs, probes the ATA bus, and probes
4487 * the SCSI bus.
4488 *
4489 * LOCKING:
4490 * PCI/etc. bus probe sem.
4491 *
4492 * RETURNS:
4493 * Number of ports registered. Zero on error (no ports registered).
4494 */
4495
4496 int ata_device_add(const struct ata_probe_ent *ent)
4497 {
4498 unsigned int count = 0, i;
4499 struct device *dev = ent->dev;
4500 struct ata_host_set *host_set;
4501
4502 DPRINTK("ENTER\n");
4503 /* alloc a container for our list of ATA ports (buses) */
4504 host_set = kzalloc(sizeof(struct ata_host_set) +
4505 (ent->n_ports * sizeof(void *)), GFP_KERNEL);
4506 if (!host_set)
4507 return 0;
4508 spin_lock_init(&host_set->lock);
4509
4510 host_set->dev = dev;
4511 host_set->n_ports = ent->n_ports;
4512 host_set->irq = ent->irq;
4513 host_set->mmio_base = ent->mmio_base;
4514 host_set->private_data = ent->private_data;
4515 host_set->ops = ent->port_ops;
4516
4517 /* register each port bound to this device */
4518 for (i = 0; i < ent->n_ports; i++) {
4519 struct ata_port *ap;
4520 unsigned long xfer_mode_mask;
4521
4522 ap = ata_host_add(ent, host_set, i);
4523 if (!ap)
4524 goto err_out;
4525
4526 host_set->ports[i] = ap;
4527 xfer_mode_mask =(ap->udma_mask << ATA_SHIFT_UDMA) |
4528 (ap->mwdma_mask << ATA_SHIFT_MWDMA) |
4529 (ap->pio_mask << ATA_SHIFT_PIO);
4530
4531 /* print per-port info to dmesg */
4532 printk(KERN_INFO "ata%u: %cATA max %s cmd 0x%lX ctl 0x%lX "
4533 "bmdma 0x%lX irq %lu\n",
4534 ap->id,
4535 ap->flags & ATA_FLAG_SATA ? 'S' : 'P',
4536 ata_mode_string(xfer_mode_mask),
4537 ap->ioaddr.cmd_addr,
4538 ap->ioaddr.ctl_addr,
4539 ap->ioaddr.bmdma_addr,
4540 ent->irq);
4541
4542 ata_chk_status(ap);
4543 host_set->ops->irq_clear(ap);
4544 count++;
4545 }
4546
4547 if (!count)
4548 goto err_free_ret;
4549
4550 /* obtain irq, that is shared between channels */
4551 if (request_irq(ent->irq, ent->port_ops->irq_handler, ent->irq_flags,
4552 DRV_NAME, host_set))
4553 goto err_out;
4554
4555 /* perform each probe synchronously */
4556 DPRINTK("probe begin\n");
4557 for (i = 0; i < count; i++) {
4558 struct ata_port *ap;
4559 int rc;
4560
4561 ap = host_set->ports[i];
4562
4563 DPRINTK("ata%u: probe begin\n", ap->id);
4564 rc = ata_bus_probe(ap);
4565 DPRINTK("ata%u: probe end\n", ap->id);
4566
4567 if (rc) {
4568 /* FIXME: do something useful here?
4569 * Current libata behavior will
4570 * tear down everything when
4571 * the module is removed
4572 * or the h/w is unplugged.
4573 */
4574 }
4575
4576 rc = scsi_add_host(ap->host, dev);
4577 if (rc) {
4578 printk(KERN_ERR "ata%u: scsi_add_host failed\n",
4579 ap->id);
4580 /* FIXME: do something useful here */
4581 /* FIXME: handle unconditional calls to
4582 * scsi_scan_host and ata_host_remove, below,
4583 * at the very least
4584 */
4585 }
4586 }
4587
4588 /* probes are done, now scan each port's disk(s) */
4589 DPRINTK("probe begin\n");
4590 for (i = 0; i < count; i++) {
4591 struct ata_port *ap = host_set->ports[i];
4592
4593 ata_scsi_scan_host(ap);
4594 }
4595
4596 dev_set_drvdata(dev, host_set);
4597
4598 VPRINTK("EXIT, returning %u\n", ent->n_ports);
4599 return ent->n_ports; /* success */
4600
4601 err_out:
4602 for (i = 0; i < count; i++) {
4603 ata_host_remove(host_set->ports[i], 1);
4604 scsi_host_put(host_set->ports[i]->host);
4605 }
4606 err_free_ret:
4607 kfree(host_set);
4608 VPRINTK("EXIT, returning 0\n");
4609 return 0;
4610 }
4611
4612 /**
4613 * ata_host_set_remove - PCI layer callback for device removal
4614 * @host_set: ATA host set that was removed
4615 *
4616 * Unregister all objects associated with this host set. Free those
4617 * objects.
4618 *
4619 * LOCKING:
4620 * Inherited from calling layer (may sleep).
4621 */
4622
4623 void ata_host_set_remove(struct ata_host_set *host_set)
4624 {
4625 struct ata_port *ap;
4626 unsigned int i;
4627
4628 for (i = 0; i < host_set->n_ports; i++) {
4629 ap = host_set->ports[i];
4630 scsi_remove_host(ap->host);
4631 }
4632
4633 free_irq(host_set->irq, host_set);
4634
4635 for (i = 0; i < host_set->n_ports; i++) {
4636 ap = host_set->ports[i];
4637
4638 ata_scsi_release(ap->host);
4639
4640 if ((ap->flags & ATA_FLAG_NO_LEGACY) == 0) {
4641 struct ata_ioports *ioaddr = &ap->ioaddr;
4642
4643 if (ioaddr->cmd_addr == 0x1f0)
4644 release_region(0x1f0, 8);
4645 else if (ioaddr->cmd_addr == 0x170)
4646 release_region(0x170, 8);
4647 }
4648
4649 scsi_host_put(ap->host);
4650 }
4651
4652 if (host_set->ops->host_stop)
4653 host_set->ops->host_stop(host_set);
4654
4655 kfree(host_set);
4656 }
4657
4658 /**
4659 * ata_scsi_release - SCSI layer callback hook for host unload
4660 * @host: libata host to be unloaded
4661 *
4662 * Performs all duties necessary to shut down a libata port...
4663 * Kill port kthread, disable port, and release resources.
4664 *
4665 * LOCKING:
4666 * Inherited from SCSI layer.
4667 *
4668 * RETURNS:
4669 * One.
4670 */
4671
4672 int ata_scsi_release(struct Scsi_Host *host)
4673 {
4674 struct ata_port *ap = (struct ata_port *) &host->hostdata[0];
4675
4676 DPRINTK("ENTER\n");
4677
4678 ap->ops->port_disable(ap);
4679 ata_host_remove(ap, 0);
4680
4681 DPRINTK("EXIT\n");
4682 return 1;
4683 }
4684
4685 /**
4686 * ata_std_ports - initialize ioaddr with standard port offsets.
4687 * @ioaddr: IO address structure to be initialized
4688 *
4689 * Utility function which initializes data_addr, error_addr,
4690 * feature_addr, nsect_addr, lbal_addr, lbam_addr, lbah_addr,
4691 * device_addr, status_addr, and command_addr to standard offsets
4692 * relative to cmd_addr.
4693 *
4694 * Does not set ctl_addr, altstatus_addr, bmdma_addr, or scr_addr.
4695 */
4696
4697 void ata_std_ports(struct ata_ioports *ioaddr)
4698 {
4699 ioaddr->data_addr = ioaddr->cmd_addr + ATA_REG_DATA;
4700 ioaddr->error_addr = ioaddr->cmd_addr + ATA_REG_ERR;
4701 ioaddr->feature_addr = ioaddr->cmd_addr + ATA_REG_FEATURE;
4702 ioaddr->nsect_addr = ioaddr->cmd_addr + ATA_REG_NSECT;
4703 ioaddr->lbal_addr = ioaddr->cmd_addr + ATA_REG_LBAL;
4704 ioaddr->lbam_addr = ioaddr->cmd_addr + ATA_REG_LBAM;
4705 ioaddr->lbah_addr = ioaddr->cmd_addr + ATA_REG_LBAH;
4706 ioaddr->device_addr = ioaddr->cmd_addr + ATA_REG_DEVICE;
4707 ioaddr->status_addr = ioaddr->cmd_addr + ATA_REG_STATUS;
4708 ioaddr->command_addr = ioaddr->cmd_addr + ATA_REG_CMD;
4709 }
4710
4711 static struct ata_probe_ent *
4712 ata_probe_ent_alloc(struct device *dev, const struct ata_port_info *port)
4713 {
4714 struct ata_probe_ent *probe_ent;
4715
4716 probe_ent = kzalloc(sizeof(*probe_ent), GFP_KERNEL);
4717 if (!probe_ent) {
4718 printk(KERN_ERR DRV_NAME "(%s): out of memory\n",
4719 kobject_name(&(dev->kobj)));
4720 return NULL;
4721 }
4722
4723 INIT_LIST_HEAD(&probe_ent->node);
4724 probe_ent->dev = dev;
4725
4726 probe_ent->sht = port->sht;
4727 probe_ent->host_flags = port->host_flags;
4728 probe_ent->pio_mask = port->pio_mask;
4729 probe_ent->mwdma_mask = port->mwdma_mask;
4730 probe_ent->udma_mask = port->udma_mask;
4731 probe_ent->port_ops = port->port_ops;
4732
4733 return probe_ent;
4734 }
4735
4736
4737
4738 #ifdef CONFIG_PCI
4739
4740 void ata_pci_host_stop (struct ata_host_set *host_set)
4741 {
4742 struct pci_dev *pdev = to_pci_dev(host_set->dev);
4743
4744 pci_iounmap(pdev, host_set->mmio_base);
4745 }
4746
4747 /**
4748 * ata_pci_init_native_mode - Initialize native-mode driver
4749 * @pdev: pci device to be initialized
4750 * @port: array[2] of pointers to port info structures.
4751 * @ports: bitmap of ports present
4752 *
4753 * Utility function which allocates and initializes an
4754 * ata_probe_ent structure for a standard dual-port
4755 * PIO-based IDE controller. The returned ata_probe_ent
4756 * structure can be passed to ata_device_add(). The returned
4757 * ata_probe_ent structure should then be freed with kfree().
4758 *
4759 * The caller need only pass the address of the primary port, the
4760 * secondary will be deduced automatically. If the device has non
4761 * standard secondary port mappings this function can be called twice,
4762 * once for each interface.
4763 */
4764
4765 struct ata_probe_ent *
4766 ata_pci_init_native_mode(struct pci_dev *pdev, struct ata_port_info **port, int ports)
4767 {
4768 struct ata_probe_ent *probe_ent =
4769 ata_probe_ent_alloc(pci_dev_to_dev(pdev), port[0]);
4770 int p = 0;
4771
4772 if (!probe_ent)
4773 return NULL;
4774
4775 probe_ent->irq = pdev->irq;
4776 probe_ent->irq_flags = SA_SHIRQ;
4777 probe_ent->private_data = port[0]->private_data;
4778
4779 if (ports & ATA_PORT_PRIMARY) {
4780 probe_ent->port[p].cmd_addr = pci_resource_start(pdev, 0);
4781 probe_ent->port[p].altstatus_addr =
4782 probe_ent->port[p].ctl_addr =
4783 pci_resource_start(pdev, 1) | ATA_PCI_CTL_OFS;
4784 probe_ent->port[p].bmdma_addr = pci_resource_start(pdev, 4);
4785 ata_std_ports(&probe_ent->port[p]);
4786 p++;
4787 }
4788
4789 if (ports & ATA_PORT_SECONDARY) {
4790 probe_ent->port[p].cmd_addr = pci_resource_start(pdev, 2);
4791 probe_ent->port[p].altstatus_addr =
4792 probe_ent->port[p].ctl_addr =
4793 pci_resource_start(pdev, 3) | ATA_PCI_CTL_OFS;
4794 probe_ent->port[p].bmdma_addr = pci_resource_start(pdev, 4) + 8;
4795 ata_std_ports(&probe_ent->port[p]);
4796 p++;
4797 }
4798
4799 probe_ent->n_ports = p;
4800 return probe_ent;
4801 }
4802
4803 static struct ata_probe_ent *ata_pci_init_legacy_port(struct pci_dev *pdev, struct ata_port_info *port, int port_num)
4804 {
4805 struct ata_probe_ent *probe_ent;
4806
4807 probe_ent = ata_probe_ent_alloc(pci_dev_to_dev(pdev), port);
4808 if (!probe_ent)
4809 return NULL;
4810
4811 probe_ent->legacy_mode = 1;
4812 probe_ent->n_ports = 1;
4813 probe_ent->hard_port_no = port_num;
4814 probe_ent->private_data = port->private_data;
4815
4816 switch(port_num)
4817 {
4818 case 0:
4819 probe_ent->irq = 14;
4820 probe_ent->port[0].cmd_addr = 0x1f0;
4821 probe_ent->port[0].altstatus_addr =
4822 probe_ent->port[0].ctl_addr = 0x3f6;
4823 break;
4824 case 1:
4825 probe_ent->irq = 15;
4826 probe_ent->port[0].cmd_addr = 0x170;
4827 probe_ent->port[0].altstatus_addr =
4828 probe_ent->port[0].ctl_addr = 0x376;
4829 break;
4830 }
4831 probe_ent->port[0].bmdma_addr = pci_resource_start(pdev, 4) + 8 * port_num;
4832 ata_std_ports(&probe_ent->port[0]);
4833 return probe_ent;
4834 }
4835
4836 /**
4837 * ata_pci_init_one - Initialize/register PCI IDE host controller
4838 * @pdev: Controller to be initialized
4839 * @port_info: Information from low-level host driver
4840 * @n_ports: Number of ports attached to host controller
4841 *
4842 * This is a helper function which can be called from a driver's
4843 * xxx_init_one() probe function if the hardware uses traditional
4844 * IDE taskfile registers.
4845 *
4846 * This function calls pci_enable_device(), reserves its register
4847 * regions, sets the dma mask, enables bus master mode, and calls
4848 * ata_device_add()
4849 *
4850 * LOCKING:
4851 * Inherited from PCI layer (may sleep).
4852 *
4853 * RETURNS:
4854 * Zero on success, negative on errno-based value on error.
4855 */
4856
4857 int ata_pci_init_one (struct pci_dev *pdev, struct ata_port_info **port_info,
4858 unsigned int n_ports)
4859 {
4860 struct ata_probe_ent *probe_ent = NULL, *probe_ent2 = NULL;
4861 struct ata_port_info *port[2];
4862 u8 tmp8, mask;
4863 unsigned int legacy_mode = 0;
4864 int disable_dev_on_err = 1;
4865 int rc;
4866
4867 DPRINTK("ENTER\n");
4868
4869 port[0] = port_info[0];
4870 if (n_ports > 1)
4871 port[1] = port_info[1];
4872 else
4873 port[1] = port[0];
4874
4875 if ((port[0]->host_flags & ATA_FLAG_NO_LEGACY) == 0
4876 && (pdev->class >> 8) == PCI_CLASS_STORAGE_IDE) {
4877 /* TODO: What if one channel is in native mode ... */
4878 pci_read_config_byte(pdev, PCI_CLASS_PROG, &tmp8);
4879 mask = (1 << 2) | (1 << 0);
4880 if ((tmp8 & mask) != mask)
4881 legacy_mode = (1 << 3);
4882 }
4883
4884 /* FIXME... */
4885 if ((!legacy_mode) && (n_ports > 2)) {
4886 printk(KERN_ERR "ata: BUG: native mode, n_ports > 2\n");
4887 n_ports = 2;
4888 /* For now */
4889 }
4890
4891 /* FIXME: Really for ATA it isn't safe because the device may be
4892 multi-purpose and we want to leave it alone if it was already
4893 enabled. Secondly for shared use as Arjan says we want refcounting
4894
4895 Checking dev->is_enabled is insufficient as this is not set at
4896 boot for the primary video which is BIOS enabled
4897 */
4898
4899 rc = pci_enable_device(pdev);
4900 if (rc)
4901 return rc;
4902
4903 rc = pci_request_regions(pdev, DRV_NAME);
4904 if (rc) {
4905 disable_dev_on_err = 0;
4906 goto err_out;
4907 }
4908
4909 /* FIXME: Should use platform specific mappers for legacy port ranges */
4910 if (legacy_mode) {
4911 if (!request_region(0x1f0, 8, "libata")) {
4912 struct resource *conflict, res;
4913 res.start = 0x1f0;
4914 res.end = 0x1f0 + 8 - 1;
4915 conflict = ____request_resource(&ioport_resource, &res);
4916 if (!strcmp(conflict->name, "libata"))
4917 legacy_mode |= (1 << 0);
4918 else {
4919 disable_dev_on_err = 0;
4920 printk(KERN_WARNING "ata: 0x1f0 IDE port busy\n");
4921 }
4922 } else
4923 legacy_mode |= (1 << 0);
4924
4925 if (!request_region(0x170, 8, "libata")) {
4926 struct resource *conflict, res;
4927 res.start = 0x170;
4928 res.end = 0x170 + 8 - 1;
4929 conflict = ____request_resource(&ioport_resource, &res);
4930 if (!strcmp(conflict->name, "libata"))
4931 legacy_mode |= (1 << 1);
4932 else {
4933 disable_dev_on_err = 0;
4934 printk(KERN_WARNING "ata: 0x170 IDE port busy\n");
4935 }
4936 } else
4937 legacy_mode |= (1 << 1);
4938 }
4939
4940 /* we have legacy mode, but all ports are unavailable */
4941 if (legacy_mode == (1 << 3)) {
4942 rc = -EBUSY;
4943 goto err_out_regions;
4944 }
4945
4946 rc = pci_set_dma_mask(pdev, ATA_DMA_MASK);
4947 if (rc)
4948 goto err_out_regions;
4949 rc = pci_set_consistent_dma_mask(pdev, ATA_DMA_MASK);
4950 if (rc)
4951 goto err_out_regions;
4952
4953 if (legacy_mode) {
4954 if (legacy_mode & (1 << 0))
4955 probe_ent = ata_pci_init_legacy_port(pdev, port[0], 0);
4956 if (legacy_mode & (1 << 1))
4957 probe_ent2 = ata_pci_init_legacy_port(pdev, port[1], 1);
4958 } else {
4959 if (n_ports == 2)
4960 probe_ent = ata_pci_init_native_mode(pdev, port, ATA_PORT_PRIMARY | ATA_PORT_SECONDARY);
4961 else
4962 probe_ent = ata_pci_init_native_mode(pdev, port, ATA_PORT_PRIMARY);
4963 }
4964 if (!probe_ent && !probe_ent2) {
4965 rc = -ENOMEM;
4966 goto err_out_regions;
4967 }
4968
4969 pci_set_master(pdev);
4970
4971 /* FIXME: check ata_device_add return */
4972 if (legacy_mode) {
4973 if (legacy_mode & (1 << 0))
4974 ata_device_add(probe_ent);
4975 if (legacy_mode & (1 << 1))
4976 ata_device_add(probe_ent2);
4977 } else
4978 ata_device_add(probe_ent);
4979
4980 kfree(probe_ent);
4981 kfree(probe_ent2);
4982
4983 return 0;
4984
4985 err_out_regions:
4986 if (legacy_mode & (1 << 0))
4987 release_region(0x1f0, 8);
4988 if (legacy_mode & (1 << 1))
4989 release_region(0x170, 8);
4990 pci_release_regions(pdev);
4991 err_out:
4992 if (disable_dev_on_err)
4993 pci_disable_device(pdev);
4994 return rc;
4995 }
4996
4997 /**
4998 * ata_pci_remove_one - PCI layer callback for device removal
4999 * @pdev: PCI device that was removed
5000 *
5001 * PCI layer indicates to libata via this hook that
5002 * hot-unplug or module unload event has occurred.
5003 * Handle this by unregistering all objects associated
5004 * with this PCI device. Free those objects. Then finally
5005 * release PCI resources and disable device.
5006 *
5007 * LOCKING:
5008 * Inherited from PCI layer (may sleep).
5009 */
5010
5011 void ata_pci_remove_one (struct pci_dev *pdev)
5012 {
5013 struct device *dev = pci_dev_to_dev(pdev);
5014 struct ata_host_set *host_set = dev_get_drvdata(dev);
5015
5016 ata_host_set_remove(host_set);
5017 pci_release_regions(pdev);
5018 pci_disable_device(pdev);
5019 dev_set_drvdata(dev, NULL);
5020 }
5021
5022 /* move to PCI subsystem */
5023 int pci_test_config_bits(struct pci_dev *pdev, const struct pci_bits *bits)
5024 {
5025 unsigned long tmp = 0;
5026
5027 switch (bits->width) {
5028 case 1: {
5029 u8 tmp8 = 0;
5030 pci_read_config_byte(pdev, bits->reg, &tmp8);
5031 tmp = tmp8;
5032 break;
5033 }
5034 case 2: {
5035 u16 tmp16 = 0;
5036 pci_read_config_word(pdev, bits->reg, &tmp16);
5037 tmp = tmp16;
5038 break;
5039 }
5040 case 4: {
5041 u32 tmp32 = 0;
5042 pci_read_config_dword(pdev, bits->reg, &tmp32);
5043 tmp = tmp32;
5044 break;
5045 }
5046
5047 default:
5048 return -EINVAL;
5049 }
5050
5051 tmp &= bits->mask;
5052
5053 return (tmp == bits->val) ? 1 : 0;
5054 }
5055
5056 int ata_pci_device_suspend(struct pci_dev *pdev, pm_message_t state)
5057 {
5058 pci_save_state(pdev);
5059 pci_disable_device(pdev);
5060 pci_set_power_state(pdev, PCI_D3hot);
5061 return 0;
5062 }
5063
5064 int ata_pci_device_resume(struct pci_dev *pdev)
5065 {
5066 pci_set_power_state(pdev, PCI_D0);
5067 pci_restore_state(pdev);
5068 pci_enable_device(pdev);
5069 pci_set_master(pdev);
5070 return 0;
5071 }
5072 #endif /* CONFIG_PCI */
5073
5074
5075 static int __init ata_init(void)
5076 {
5077 ata_wq = create_workqueue("ata");
5078 if (!ata_wq)
5079 return -ENOMEM;
5080
5081 printk(KERN_DEBUG "libata version " DRV_VERSION " loaded.\n");
5082 return 0;
5083 }
5084
5085 static void __exit ata_exit(void)
5086 {
5087 destroy_workqueue(ata_wq);
5088 }
5089
5090 module_init(ata_init);
5091 module_exit(ata_exit);
5092
5093 static unsigned long ratelimit_time;
5094 static spinlock_t ata_ratelimit_lock = SPIN_LOCK_UNLOCKED;
5095
5096 int ata_ratelimit(void)
5097 {
5098 int rc;
5099 unsigned long flags;
5100
5101 spin_lock_irqsave(&ata_ratelimit_lock, flags);
5102
5103 if (time_after(jiffies, ratelimit_time)) {
5104 rc = 1;
5105 ratelimit_time = jiffies + (HZ/5);
5106 } else
5107 rc = 0;
5108
5109 spin_unlock_irqrestore(&ata_ratelimit_lock, flags);
5110
5111 return rc;
5112 }
5113
5114 /*
5115 * libata is essentially a library of internal helper functions for
5116 * low-level ATA host controller drivers. As such, the API/ABI is
5117 * likely to change as new drivers are added and updated.
5118 * Do not depend on ABI/API stability.
5119 */
5120
5121 EXPORT_SYMBOL_GPL(ata_std_bios_param);
5122 EXPORT_SYMBOL_GPL(ata_std_ports);
5123 EXPORT_SYMBOL_GPL(ata_device_add);
5124 EXPORT_SYMBOL_GPL(ata_host_set_remove);
5125 EXPORT_SYMBOL_GPL(ata_sg_init);
5126 EXPORT_SYMBOL_GPL(ata_sg_init_one);
5127 EXPORT_SYMBOL_GPL(ata_qc_complete);
5128 EXPORT_SYMBOL_GPL(ata_qc_issue_prot);
5129 EXPORT_SYMBOL_GPL(ata_eng_timeout);
5130 EXPORT_SYMBOL_GPL(ata_tf_load);
5131 EXPORT_SYMBOL_GPL(ata_tf_read);
5132 EXPORT_SYMBOL_GPL(ata_noop_dev_select);
5133 EXPORT_SYMBOL_GPL(ata_std_dev_select);
5134 EXPORT_SYMBOL_GPL(ata_tf_to_fis);
5135 EXPORT_SYMBOL_GPL(ata_tf_from_fis);
5136 EXPORT_SYMBOL_GPL(ata_check_status);
5137 EXPORT_SYMBOL_GPL(ata_altstatus);
5138 EXPORT_SYMBOL_GPL(ata_exec_command);
5139 EXPORT_SYMBOL_GPL(ata_port_start);
5140 EXPORT_SYMBOL_GPL(ata_port_stop);
5141 EXPORT_SYMBOL_GPL(ata_host_stop);
5142 EXPORT_SYMBOL_GPL(ata_interrupt);
5143 EXPORT_SYMBOL_GPL(ata_qc_prep);
5144 EXPORT_SYMBOL_GPL(ata_bmdma_setup);
5145 EXPORT_SYMBOL_GPL(ata_bmdma_start);
5146 EXPORT_SYMBOL_GPL(ata_bmdma_irq_clear);
5147 EXPORT_SYMBOL_GPL(ata_bmdma_status);
5148 EXPORT_SYMBOL_GPL(ata_bmdma_stop);
5149 EXPORT_SYMBOL_GPL(ata_port_probe);
5150 EXPORT_SYMBOL_GPL(sata_phy_reset);
5151 EXPORT_SYMBOL_GPL(__sata_phy_reset);
5152 EXPORT_SYMBOL_GPL(ata_bus_reset);
5153 EXPORT_SYMBOL_GPL(ata_port_disable);
5154 EXPORT_SYMBOL_GPL(ata_ratelimit);
5155 EXPORT_SYMBOL_GPL(ata_scsi_ioctl);
5156 EXPORT_SYMBOL_GPL(ata_scsi_queuecmd);
5157 EXPORT_SYMBOL_GPL(ata_scsi_error);
5158 EXPORT_SYMBOL_GPL(ata_scsi_slave_config);
5159 EXPORT_SYMBOL_GPL(ata_scsi_release);
5160 EXPORT_SYMBOL_GPL(ata_host_intr);
5161 EXPORT_SYMBOL_GPL(ata_dev_classify);
5162 EXPORT_SYMBOL_GPL(ata_dev_id_string);
5163 EXPORT_SYMBOL_GPL(ata_dev_config);
5164 EXPORT_SYMBOL_GPL(ata_scsi_simulate);
5165
5166 EXPORT_SYMBOL_GPL(ata_pio_need_iordy);
5167 EXPORT_SYMBOL_GPL(ata_timing_compute);
5168 EXPORT_SYMBOL_GPL(ata_timing_merge);
5169
5170 #ifdef CONFIG_PCI
5171 EXPORT_SYMBOL_GPL(pci_test_config_bits);
5172 EXPORT_SYMBOL_GPL(ata_pci_host_stop);
5173 EXPORT_SYMBOL_GPL(ata_pci_init_native_mode);
5174 EXPORT_SYMBOL_GPL(ata_pci_init_one);
5175 EXPORT_SYMBOL_GPL(ata_pci_remove_one);
5176 EXPORT_SYMBOL_GPL(ata_pci_device_suspend);
5177 EXPORT_SYMBOL_GPL(ata_pci_device_resume);
5178 #endif /* CONFIG_PCI */
5179
5180 EXPORT_SYMBOL_GPL(ata_device_suspend);
5181 EXPORT_SYMBOL_GPL(ata_device_resume);
5182 EXPORT_SYMBOL_GPL(ata_scsi_device_suspend);
5183 EXPORT_SYMBOL_GPL(ata_scsi_device_resume);
This page took 0.249048 seconds and 4 git commands to generate.