[PATCH] libata: Conditionally set host->max_cmd_len
[deliverable/linux.git] / drivers / scsi / libata-core.c
1 /*
2 * libata-core.c - helper library for ATA
3 *
4 * Maintained by: Jeff Garzik <jgarzik@pobox.com>
5 * Please ALWAYS copy linux-ide@vger.kernel.org
6 * on emails.
7 *
8 * Copyright 2003-2004 Red Hat, Inc. All rights reserved.
9 * Copyright 2003-2004 Jeff Garzik
10 *
11 *
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2, or (at your option)
15 * any later version.
16 *
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
21 *
22 * You should have received a copy of the GNU General Public License
23 * along with this program; see the file COPYING. If not, write to
24 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
25 *
26 *
27 * libata documentation is available via 'make {ps|pdf}docs',
28 * as Documentation/DocBook/libata.*
29 *
30 * Hardware documentation available from http://www.t13.org/ and
31 * http://www.sata-io.org/
32 *
33 */
34
35 #include <linux/kernel.h>
36 #include <linux/module.h>
37 #include <linux/pci.h>
38 #include <linux/init.h>
39 #include <linux/list.h>
40 #include <linux/mm.h>
41 #include <linux/highmem.h>
42 #include <linux/spinlock.h>
43 #include <linux/blkdev.h>
44 #include <linux/delay.h>
45 #include <linux/timer.h>
46 #include <linux/interrupt.h>
47 #include <linux/completion.h>
48 #include <linux/suspend.h>
49 #include <linux/workqueue.h>
50 #include <linux/jiffies.h>
51 #include <linux/scatterlist.h>
52 #include <scsi/scsi.h>
53 #include "scsi_priv.h"
54 #include <scsi/scsi_cmnd.h>
55 #include <scsi/scsi_host.h>
56 #include <linux/libata.h>
57 #include <asm/io.h>
58 #include <asm/semaphore.h>
59 #include <asm/byteorder.h>
60
61 #include "libata.h"
62
63 /* debounce timing parameters in msecs { interval, duration, timeout } */
64 const unsigned long sata_deb_timing_boot[] = { 5, 100, 2000 };
65 const unsigned long sata_deb_timing_eh[] = { 25, 500, 2000 };
66 const unsigned long sata_deb_timing_before_fsrst[] = { 100, 2000, 5000 };
67
68 static unsigned int ata_dev_init_params(struct ata_device *dev,
69 u16 heads, u16 sectors);
70 static unsigned int ata_dev_set_xfermode(struct ata_device *dev);
71 static void ata_dev_xfermask(struct ata_device *dev);
72
73 static unsigned int ata_unique_id = 1;
74 static struct workqueue_struct *ata_wq;
75
76 struct workqueue_struct *ata_aux_wq;
77
78 int atapi_enabled = 1;
79 module_param(atapi_enabled, int, 0444);
80 MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on)");
81
82 int atapi_dmadir = 0;
83 module_param(atapi_dmadir, int, 0444);
84 MODULE_PARM_DESC(atapi_dmadir, "Enable ATAPI DMADIR bridge support (0=off, 1=on)");
85
86 int libata_fua = 0;
87 module_param_named(fua, libata_fua, int, 0444);
88 MODULE_PARM_DESC(fua, "FUA support (0=off, 1=on)");
89
90 static int ata_probe_timeout = ATA_TMOUT_INTERNAL / HZ;
91 module_param(ata_probe_timeout, int, 0444);
92 MODULE_PARM_DESC(ata_probe_timeout, "Set ATA probing timeout (seconds)");
93
94 MODULE_AUTHOR("Jeff Garzik");
95 MODULE_DESCRIPTION("Library module for ATA devices");
96 MODULE_LICENSE("GPL");
97 MODULE_VERSION(DRV_VERSION);
98
99
100 /**
101 * ata_tf_to_fis - Convert ATA taskfile to SATA FIS structure
102 * @tf: Taskfile to convert
103 * @fis: Buffer into which data will output
104 * @pmp: Port multiplier port
105 *
106 * Converts a standard ATA taskfile to a Serial ATA
107 * FIS structure (Register - Host to Device).
108 *
109 * LOCKING:
110 * Inherited from caller.
111 */
112
113 void ata_tf_to_fis(const struct ata_taskfile *tf, u8 *fis, u8 pmp)
114 {
115 fis[0] = 0x27; /* Register - Host to Device FIS */
116 fis[1] = (pmp & 0xf) | (1 << 7); /* Port multiplier number,
117 bit 7 indicates Command FIS */
118 fis[2] = tf->command;
119 fis[3] = tf->feature;
120
121 fis[4] = tf->lbal;
122 fis[5] = tf->lbam;
123 fis[6] = tf->lbah;
124 fis[7] = tf->device;
125
126 fis[8] = tf->hob_lbal;
127 fis[9] = tf->hob_lbam;
128 fis[10] = tf->hob_lbah;
129 fis[11] = tf->hob_feature;
130
131 fis[12] = tf->nsect;
132 fis[13] = tf->hob_nsect;
133 fis[14] = 0;
134 fis[15] = tf->ctl;
135
136 fis[16] = 0;
137 fis[17] = 0;
138 fis[18] = 0;
139 fis[19] = 0;
140 }
141
142 /**
143 * ata_tf_from_fis - Convert SATA FIS to ATA taskfile
144 * @fis: Buffer from which data will be input
145 * @tf: Taskfile to output
146 *
147 * Converts a serial ATA FIS structure to a standard ATA taskfile.
148 *
149 * LOCKING:
150 * Inherited from caller.
151 */
152
153 void ata_tf_from_fis(const u8 *fis, struct ata_taskfile *tf)
154 {
155 tf->command = fis[2]; /* status */
156 tf->feature = fis[3]; /* error */
157
158 tf->lbal = fis[4];
159 tf->lbam = fis[5];
160 tf->lbah = fis[6];
161 tf->device = fis[7];
162
163 tf->hob_lbal = fis[8];
164 tf->hob_lbam = fis[9];
165 tf->hob_lbah = fis[10];
166
167 tf->nsect = fis[12];
168 tf->hob_nsect = fis[13];
169 }
170
171 static const u8 ata_rw_cmds[] = {
172 /* pio multi */
173 ATA_CMD_READ_MULTI,
174 ATA_CMD_WRITE_MULTI,
175 ATA_CMD_READ_MULTI_EXT,
176 ATA_CMD_WRITE_MULTI_EXT,
177 0,
178 0,
179 0,
180 ATA_CMD_WRITE_MULTI_FUA_EXT,
181 /* pio */
182 ATA_CMD_PIO_READ,
183 ATA_CMD_PIO_WRITE,
184 ATA_CMD_PIO_READ_EXT,
185 ATA_CMD_PIO_WRITE_EXT,
186 0,
187 0,
188 0,
189 0,
190 /* dma */
191 ATA_CMD_READ,
192 ATA_CMD_WRITE,
193 ATA_CMD_READ_EXT,
194 ATA_CMD_WRITE_EXT,
195 0,
196 0,
197 0,
198 ATA_CMD_WRITE_FUA_EXT
199 };
200
201 /**
202 * ata_rwcmd_protocol - set taskfile r/w commands and protocol
203 * @qc: command to examine and configure
204 *
205 * Examine the device configuration and tf->flags to calculate
206 * the proper read/write commands and protocol to use.
207 *
208 * LOCKING:
209 * caller.
210 */
211 int ata_rwcmd_protocol(struct ata_queued_cmd *qc)
212 {
213 struct ata_taskfile *tf = &qc->tf;
214 struct ata_device *dev = qc->dev;
215 u8 cmd;
216
217 int index, fua, lba48, write;
218
219 fua = (tf->flags & ATA_TFLAG_FUA) ? 4 : 0;
220 lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0;
221 write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0;
222
223 if (dev->flags & ATA_DFLAG_PIO) {
224 tf->protocol = ATA_PROT_PIO;
225 index = dev->multi_count ? 0 : 8;
226 } else if (lba48 && (qc->ap->flags & ATA_FLAG_PIO_LBA48)) {
227 /* Unable to use DMA due to host limitation */
228 tf->protocol = ATA_PROT_PIO;
229 index = dev->multi_count ? 0 : 8;
230 } else {
231 tf->protocol = ATA_PROT_DMA;
232 index = 16;
233 }
234
235 cmd = ata_rw_cmds[index + fua + lba48 + write];
236 if (cmd) {
237 tf->command = cmd;
238 return 0;
239 }
240 return -1;
241 }
242
243 /**
244 * ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask
245 * @pio_mask: pio_mask
246 * @mwdma_mask: mwdma_mask
247 * @udma_mask: udma_mask
248 *
249 * Pack @pio_mask, @mwdma_mask and @udma_mask into a single
250 * unsigned int xfer_mask.
251 *
252 * LOCKING:
253 * None.
254 *
255 * RETURNS:
256 * Packed xfer_mask.
257 */
258 static unsigned int ata_pack_xfermask(unsigned int pio_mask,
259 unsigned int mwdma_mask,
260 unsigned int udma_mask)
261 {
262 return ((pio_mask << ATA_SHIFT_PIO) & ATA_MASK_PIO) |
263 ((mwdma_mask << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA) |
264 ((udma_mask << ATA_SHIFT_UDMA) & ATA_MASK_UDMA);
265 }
266
267 /**
268 * ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks
269 * @xfer_mask: xfer_mask to unpack
270 * @pio_mask: resulting pio_mask
271 * @mwdma_mask: resulting mwdma_mask
272 * @udma_mask: resulting udma_mask
273 *
274 * Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask.
275 * Any NULL distination masks will be ignored.
276 */
277 static void ata_unpack_xfermask(unsigned int xfer_mask,
278 unsigned int *pio_mask,
279 unsigned int *mwdma_mask,
280 unsigned int *udma_mask)
281 {
282 if (pio_mask)
283 *pio_mask = (xfer_mask & ATA_MASK_PIO) >> ATA_SHIFT_PIO;
284 if (mwdma_mask)
285 *mwdma_mask = (xfer_mask & ATA_MASK_MWDMA) >> ATA_SHIFT_MWDMA;
286 if (udma_mask)
287 *udma_mask = (xfer_mask & ATA_MASK_UDMA) >> ATA_SHIFT_UDMA;
288 }
289
290 static const struct ata_xfer_ent {
291 int shift, bits;
292 u8 base;
293 } ata_xfer_tbl[] = {
294 { ATA_SHIFT_PIO, ATA_BITS_PIO, XFER_PIO_0 },
295 { ATA_SHIFT_MWDMA, ATA_BITS_MWDMA, XFER_MW_DMA_0 },
296 { ATA_SHIFT_UDMA, ATA_BITS_UDMA, XFER_UDMA_0 },
297 { -1, },
298 };
299
300 /**
301 * ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask
302 * @xfer_mask: xfer_mask of interest
303 *
304 * Return matching XFER_* value for @xfer_mask. Only the highest
305 * bit of @xfer_mask is considered.
306 *
307 * LOCKING:
308 * None.
309 *
310 * RETURNS:
311 * Matching XFER_* value, 0 if no match found.
312 */
313 static u8 ata_xfer_mask2mode(unsigned int xfer_mask)
314 {
315 int highbit = fls(xfer_mask) - 1;
316 const struct ata_xfer_ent *ent;
317
318 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
319 if (highbit >= ent->shift && highbit < ent->shift + ent->bits)
320 return ent->base + highbit - ent->shift;
321 return 0;
322 }
323
324 /**
325 * ata_xfer_mode2mask - Find matching xfer_mask for XFER_*
326 * @xfer_mode: XFER_* of interest
327 *
328 * Return matching xfer_mask for @xfer_mode.
329 *
330 * LOCKING:
331 * None.
332 *
333 * RETURNS:
334 * Matching xfer_mask, 0 if no match found.
335 */
336 static unsigned int ata_xfer_mode2mask(u8 xfer_mode)
337 {
338 const struct ata_xfer_ent *ent;
339
340 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
341 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
342 return 1 << (ent->shift + xfer_mode - ent->base);
343 return 0;
344 }
345
346 /**
347 * ata_xfer_mode2shift - Find matching xfer_shift for XFER_*
348 * @xfer_mode: XFER_* of interest
349 *
350 * Return matching xfer_shift for @xfer_mode.
351 *
352 * LOCKING:
353 * None.
354 *
355 * RETURNS:
356 * Matching xfer_shift, -1 if no match found.
357 */
358 static int ata_xfer_mode2shift(unsigned int xfer_mode)
359 {
360 const struct ata_xfer_ent *ent;
361
362 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
363 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
364 return ent->shift;
365 return -1;
366 }
367
368 /**
369 * ata_mode_string - convert xfer_mask to string
370 * @xfer_mask: mask of bits supported; only highest bit counts.
371 *
372 * Determine string which represents the highest speed
373 * (highest bit in @modemask).
374 *
375 * LOCKING:
376 * None.
377 *
378 * RETURNS:
379 * Constant C string representing highest speed listed in
380 * @mode_mask, or the constant C string "<n/a>".
381 */
382 static const char *ata_mode_string(unsigned int xfer_mask)
383 {
384 static const char * const xfer_mode_str[] = {
385 "PIO0",
386 "PIO1",
387 "PIO2",
388 "PIO3",
389 "PIO4",
390 "MWDMA0",
391 "MWDMA1",
392 "MWDMA2",
393 "UDMA/16",
394 "UDMA/25",
395 "UDMA/33",
396 "UDMA/44",
397 "UDMA/66",
398 "UDMA/100",
399 "UDMA/133",
400 "UDMA7",
401 };
402 int highbit;
403
404 highbit = fls(xfer_mask) - 1;
405 if (highbit >= 0 && highbit < ARRAY_SIZE(xfer_mode_str))
406 return xfer_mode_str[highbit];
407 return "<n/a>";
408 }
409
410 static const char *sata_spd_string(unsigned int spd)
411 {
412 static const char * const spd_str[] = {
413 "1.5 Gbps",
414 "3.0 Gbps",
415 };
416
417 if (spd == 0 || (spd - 1) >= ARRAY_SIZE(spd_str))
418 return "<unknown>";
419 return spd_str[spd - 1];
420 }
421
422 void ata_dev_disable(struct ata_device *dev)
423 {
424 if (ata_dev_enabled(dev) && ata_msg_drv(dev->ap)) {
425 ata_dev_printk(dev, KERN_WARNING, "disabled\n");
426 dev->class++;
427 }
428 }
429
430 /**
431 * ata_pio_devchk - PATA device presence detection
432 * @ap: ATA channel to examine
433 * @device: Device to examine (starting at zero)
434 *
435 * This technique was originally described in
436 * Hale Landis's ATADRVR (www.ata-atapi.com), and
437 * later found its way into the ATA/ATAPI spec.
438 *
439 * Write a pattern to the ATA shadow registers,
440 * and if a device is present, it will respond by
441 * correctly storing and echoing back the
442 * ATA shadow register contents.
443 *
444 * LOCKING:
445 * caller.
446 */
447
448 static unsigned int ata_pio_devchk(struct ata_port *ap,
449 unsigned int device)
450 {
451 struct ata_ioports *ioaddr = &ap->ioaddr;
452 u8 nsect, lbal;
453
454 ap->ops->dev_select(ap, device);
455
456 outb(0x55, ioaddr->nsect_addr);
457 outb(0xaa, ioaddr->lbal_addr);
458
459 outb(0xaa, ioaddr->nsect_addr);
460 outb(0x55, ioaddr->lbal_addr);
461
462 outb(0x55, ioaddr->nsect_addr);
463 outb(0xaa, ioaddr->lbal_addr);
464
465 nsect = inb(ioaddr->nsect_addr);
466 lbal = inb(ioaddr->lbal_addr);
467
468 if ((nsect == 0x55) && (lbal == 0xaa))
469 return 1; /* we found a device */
470
471 return 0; /* nothing found */
472 }
473
474 /**
475 * ata_mmio_devchk - PATA device presence detection
476 * @ap: ATA channel to examine
477 * @device: Device to examine (starting at zero)
478 *
479 * This technique was originally described in
480 * Hale Landis's ATADRVR (www.ata-atapi.com), and
481 * later found its way into the ATA/ATAPI spec.
482 *
483 * Write a pattern to the ATA shadow registers,
484 * and if a device is present, it will respond by
485 * correctly storing and echoing back the
486 * ATA shadow register contents.
487 *
488 * LOCKING:
489 * caller.
490 */
491
492 static unsigned int ata_mmio_devchk(struct ata_port *ap,
493 unsigned int device)
494 {
495 struct ata_ioports *ioaddr = &ap->ioaddr;
496 u8 nsect, lbal;
497
498 ap->ops->dev_select(ap, device);
499
500 writeb(0x55, (void __iomem *) ioaddr->nsect_addr);
501 writeb(0xaa, (void __iomem *) ioaddr->lbal_addr);
502
503 writeb(0xaa, (void __iomem *) ioaddr->nsect_addr);
504 writeb(0x55, (void __iomem *) ioaddr->lbal_addr);
505
506 writeb(0x55, (void __iomem *) ioaddr->nsect_addr);
507 writeb(0xaa, (void __iomem *) ioaddr->lbal_addr);
508
509 nsect = readb((void __iomem *) ioaddr->nsect_addr);
510 lbal = readb((void __iomem *) ioaddr->lbal_addr);
511
512 if ((nsect == 0x55) && (lbal == 0xaa))
513 return 1; /* we found a device */
514
515 return 0; /* nothing found */
516 }
517
518 /**
519 * ata_devchk - PATA device presence detection
520 * @ap: ATA channel to examine
521 * @device: Device to examine (starting at zero)
522 *
523 * Dispatch ATA device presence detection, depending
524 * on whether we are using PIO or MMIO to talk to the
525 * ATA shadow registers.
526 *
527 * LOCKING:
528 * caller.
529 */
530
531 static unsigned int ata_devchk(struct ata_port *ap,
532 unsigned int device)
533 {
534 if (ap->flags & ATA_FLAG_MMIO)
535 return ata_mmio_devchk(ap, device);
536 return ata_pio_devchk(ap, device);
537 }
538
539 /**
540 * ata_dev_classify - determine device type based on ATA-spec signature
541 * @tf: ATA taskfile register set for device to be identified
542 *
543 * Determine from taskfile register contents whether a device is
544 * ATA or ATAPI, as per "Signature and persistence" section
545 * of ATA/PI spec (volume 1, sect 5.14).
546 *
547 * LOCKING:
548 * None.
549 *
550 * RETURNS:
551 * Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, or %ATA_DEV_UNKNOWN
552 * the event of failure.
553 */
554
555 unsigned int ata_dev_classify(const struct ata_taskfile *tf)
556 {
557 /* Apple's open source Darwin code hints that some devices only
558 * put a proper signature into the LBA mid/high registers,
559 * So, we only check those. It's sufficient for uniqueness.
560 */
561
562 if (((tf->lbam == 0) && (tf->lbah == 0)) ||
563 ((tf->lbam == 0x3c) && (tf->lbah == 0xc3))) {
564 DPRINTK("found ATA device by sig\n");
565 return ATA_DEV_ATA;
566 }
567
568 if (((tf->lbam == 0x14) && (tf->lbah == 0xeb)) ||
569 ((tf->lbam == 0x69) && (tf->lbah == 0x96))) {
570 DPRINTK("found ATAPI device by sig\n");
571 return ATA_DEV_ATAPI;
572 }
573
574 DPRINTK("unknown device\n");
575 return ATA_DEV_UNKNOWN;
576 }
577
578 /**
579 * ata_dev_try_classify - Parse returned ATA device signature
580 * @ap: ATA channel to examine
581 * @device: Device to examine (starting at zero)
582 * @r_err: Value of error register on completion
583 *
584 * After an event -- SRST, E.D.D., or SATA COMRESET -- occurs,
585 * an ATA/ATAPI-defined set of values is placed in the ATA
586 * shadow registers, indicating the results of device detection
587 * and diagnostics.
588 *
589 * Select the ATA device, and read the values from the ATA shadow
590 * registers. Then parse according to the Error register value,
591 * and the spec-defined values examined by ata_dev_classify().
592 *
593 * LOCKING:
594 * caller.
595 *
596 * RETURNS:
597 * Device type - %ATA_DEV_ATA, %ATA_DEV_ATAPI or %ATA_DEV_NONE.
598 */
599
600 static unsigned int
601 ata_dev_try_classify(struct ata_port *ap, unsigned int device, u8 *r_err)
602 {
603 struct ata_taskfile tf;
604 unsigned int class;
605 u8 err;
606
607 ap->ops->dev_select(ap, device);
608
609 memset(&tf, 0, sizeof(tf));
610
611 ap->ops->tf_read(ap, &tf);
612 err = tf.feature;
613 if (r_err)
614 *r_err = err;
615
616 /* see if device passed diags */
617 if (err == 1)
618 /* do nothing */ ;
619 else if ((device == 0) && (err == 0x81))
620 /* do nothing */ ;
621 else
622 return ATA_DEV_NONE;
623
624 /* determine if device is ATA or ATAPI */
625 class = ata_dev_classify(&tf);
626
627 if (class == ATA_DEV_UNKNOWN)
628 return ATA_DEV_NONE;
629 if ((class == ATA_DEV_ATA) && (ata_chk_status(ap) == 0))
630 return ATA_DEV_NONE;
631 return class;
632 }
633
634 /**
635 * ata_id_string - Convert IDENTIFY DEVICE page into string
636 * @id: IDENTIFY DEVICE results we will examine
637 * @s: string into which data is output
638 * @ofs: offset into identify device page
639 * @len: length of string to return. must be an even number.
640 *
641 * The strings in the IDENTIFY DEVICE page are broken up into
642 * 16-bit chunks. Run through the string, and output each
643 * 8-bit chunk linearly, regardless of platform.
644 *
645 * LOCKING:
646 * caller.
647 */
648
649 void ata_id_string(const u16 *id, unsigned char *s,
650 unsigned int ofs, unsigned int len)
651 {
652 unsigned int c;
653
654 while (len > 0) {
655 c = id[ofs] >> 8;
656 *s = c;
657 s++;
658
659 c = id[ofs] & 0xff;
660 *s = c;
661 s++;
662
663 ofs++;
664 len -= 2;
665 }
666 }
667
668 /**
669 * ata_id_c_string - Convert IDENTIFY DEVICE page into C string
670 * @id: IDENTIFY DEVICE results we will examine
671 * @s: string into which data is output
672 * @ofs: offset into identify device page
673 * @len: length of string to return. must be an odd number.
674 *
675 * This function is identical to ata_id_string except that it
676 * trims trailing spaces and terminates the resulting string with
677 * null. @len must be actual maximum length (even number) + 1.
678 *
679 * LOCKING:
680 * caller.
681 */
682 void ata_id_c_string(const u16 *id, unsigned char *s,
683 unsigned int ofs, unsigned int len)
684 {
685 unsigned char *p;
686
687 WARN_ON(!(len & 1));
688
689 ata_id_string(id, s, ofs, len - 1);
690
691 p = s + strnlen(s, len - 1);
692 while (p > s && p[-1] == ' ')
693 p--;
694 *p = '\0';
695 }
696
697 static u64 ata_id_n_sectors(const u16 *id)
698 {
699 if (ata_id_has_lba(id)) {
700 if (ata_id_has_lba48(id))
701 return ata_id_u64(id, 100);
702 else
703 return ata_id_u32(id, 60);
704 } else {
705 if (ata_id_current_chs_valid(id))
706 return ata_id_u32(id, 57);
707 else
708 return id[1] * id[3] * id[6];
709 }
710 }
711
712 /**
713 * ata_noop_dev_select - Select device 0/1 on ATA bus
714 * @ap: ATA channel to manipulate
715 * @device: ATA device (numbered from zero) to select
716 *
717 * This function performs no actual function.
718 *
719 * May be used as the dev_select() entry in ata_port_operations.
720 *
721 * LOCKING:
722 * caller.
723 */
724 void ata_noop_dev_select (struct ata_port *ap, unsigned int device)
725 {
726 }
727
728
729 /**
730 * ata_std_dev_select - Select device 0/1 on ATA bus
731 * @ap: ATA channel to manipulate
732 * @device: ATA device (numbered from zero) to select
733 *
734 * Use the method defined in the ATA specification to
735 * make either device 0, or device 1, active on the
736 * ATA channel. Works with both PIO and MMIO.
737 *
738 * May be used as the dev_select() entry in ata_port_operations.
739 *
740 * LOCKING:
741 * caller.
742 */
743
744 void ata_std_dev_select (struct ata_port *ap, unsigned int device)
745 {
746 u8 tmp;
747
748 if (device == 0)
749 tmp = ATA_DEVICE_OBS;
750 else
751 tmp = ATA_DEVICE_OBS | ATA_DEV1;
752
753 if (ap->flags & ATA_FLAG_MMIO) {
754 writeb(tmp, (void __iomem *) ap->ioaddr.device_addr);
755 } else {
756 outb(tmp, ap->ioaddr.device_addr);
757 }
758 ata_pause(ap); /* needed; also flushes, for mmio */
759 }
760
761 /**
762 * ata_dev_select - Select device 0/1 on ATA bus
763 * @ap: ATA channel to manipulate
764 * @device: ATA device (numbered from zero) to select
765 * @wait: non-zero to wait for Status register BSY bit to clear
766 * @can_sleep: non-zero if context allows sleeping
767 *
768 * Use the method defined in the ATA specification to
769 * make either device 0, or device 1, active on the
770 * ATA channel.
771 *
772 * This is a high-level version of ata_std_dev_select(),
773 * which additionally provides the services of inserting
774 * the proper pauses and status polling, where needed.
775 *
776 * LOCKING:
777 * caller.
778 */
779
780 void ata_dev_select(struct ata_port *ap, unsigned int device,
781 unsigned int wait, unsigned int can_sleep)
782 {
783 if (ata_msg_probe(ap))
784 ata_port_printk(ap, KERN_INFO, "ata_dev_select: ENTER, ata%u: "
785 "device %u, wait %u\n", ap->id, device, wait);
786
787 if (wait)
788 ata_wait_idle(ap);
789
790 ap->ops->dev_select(ap, device);
791
792 if (wait) {
793 if (can_sleep && ap->device[device].class == ATA_DEV_ATAPI)
794 msleep(150);
795 ata_wait_idle(ap);
796 }
797 }
798
799 /**
800 * ata_dump_id - IDENTIFY DEVICE info debugging output
801 * @id: IDENTIFY DEVICE page to dump
802 *
803 * Dump selected 16-bit words from the given IDENTIFY DEVICE
804 * page.
805 *
806 * LOCKING:
807 * caller.
808 */
809
810 static inline void ata_dump_id(const u16 *id)
811 {
812 DPRINTK("49==0x%04x "
813 "53==0x%04x "
814 "63==0x%04x "
815 "64==0x%04x "
816 "75==0x%04x \n",
817 id[49],
818 id[53],
819 id[63],
820 id[64],
821 id[75]);
822 DPRINTK("80==0x%04x "
823 "81==0x%04x "
824 "82==0x%04x "
825 "83==0x%04x "
826 "84==0x%04x \n",
827 id[80],
828 id[81],
829 id[82],
830 id[83],
831 id[84]);
832 DPRINTK("88==0x%04x "
833 "93==0x%04x\n",
834 id[88],
835 id[93]);
836 }
837
838 /**
839 * ata_id_xfermask - Compute xfermask from the given IDENTIFY data
840 * @id: IDENTIFY data to compute xfer mask from
841 *
842 * Compute the xfermask for this device. This is not as trivial
843 * as it seems if we must consider early devices correctly.
844 *
845 * FIXME: pre IDE drive timing (do we care ?).
846 *
847 * LOCKING:
848 * None.
849 *
850 * RETURNS:
851 * Computed xfermask
852 */
853 static unsigned int ata_id_xfermask(const u16 *id)
854 {
855 unsigned int pio_mask, mwdma_mask, udma_mask;
856
857 /* Usual case. Word 53 indicates word 64 is valid */
858 if (id[ATA_ID_FIELD_VALID] & (1 << 1)) {
859 pio_mask = id[ATA_ID_PIO_MODES] & 0x03;
860 pio_mask <<= 3;
861 pio_mask |= 0x7;
862 } else {
863 /* If word 64 isn't valid then Word 51 high byte holds
864 * the PIO timing number for the maximum. Turn it into
865 * a mask.
866 */
867 pio_mask = (2 << (id[ATA_ID_OLD_PIO_MODES] & 0xFF)) - 1 ;
868
869 /* But wait.. there's more. Design your standards by
870 * committee and you too can get a free iordy field to
871 * process. However its the speeds not the modes that
872 * are supported... Note drivers using the timing API
873 * will get this right anyway
874 */
875 }
876
877 mwdma_mask = id[ATA_ID_MWDMA_MODES] & 0x07;
878
879 udma_mask = 0;
880 if (id[ATA_ID_FIELD_VALID] & (1 << 2))
881 udma_mask = id[ATA_ID_UDMA_MODES] & 0xff;
882
883 return ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
884 }
885
886 /**
887 * ata_port_queue_task - Queue port_task
888 * @ap: The ata_port to queue port_task for
889 * @fn: workqueue function to be scheduled
890 * @data: data value to pass to workqueue function
891 * @delay: delay time for workqueue function
892 *
893 * Schedule @fn(@data) for execution after @delay jiffies using
894 * port_task. There is one port_task per port and it's the
895 * user(low level driver)'s responsibility to make sure that only
896 * one task is active at any given time.
897 *
898 * libata core layer takes care of synchronization between
899 * port_task and EH. ata_port_queue_task() may be ignored for EH
900 * synchronization.
901 *
902 * LOCKING:
903 * Inherited from caller.
904 */
905 void ata_port_queue_task(struct ata_port *ap, void (*fn)(void *), void *data,
906 unsigned long delay)
907 {
908 int rc;
909
910 if (ap->flags & ATA_FLAG_FLUSH_PORT_TASK)
911 return;
912
913 PREPARE_WORK(&ap->port_task, fn, data);
914
915 if (!delay)
916 rc = queue_work(ata_wq, &ap->port_task);
917 else
918 rc = queue_delayed_work(ata_wq, &ap->port_task, delay);
919
920 /* rc == 0 means that another user is using port task */
921 WARN_ON(rc == 0);
922 }
923
924 /**
925 * ata_port_flush_task - Flush port_task
926 * @ap: The ata_port to flush port_task for
927 *
928 * After this function completes, port_task is guranteed not to
929 * be running or scheduled.
930 *
931 * LOCKING:
932 * Kernel thread context (may sleep)
933 */
934 void ata_port_flush_task(struct ata_port *ap)
935 {
936 unsigned long flags;
937
938 DPRINTK("ENTER\n");
939
940 spin_lock_irqsave(ap->lock, flags);
941 ap->flags |= ATA_FLAG_FLUSH_PORT_TASK;
942 spin_unlock_irqrestore(ap->lock, flags);
943
944 DPRINTK("flush #1\n");
945 flush_workqueue(ata_wq);
946
947 /*
948 * At this point, if a task is running, it's guaranteed to see
949 * the FLUSH flag; thus, it will never queue pio tasks again.
950 * Cancel and flush.
951 */
952 if (!cancel_delayed_work(&ap->port_task)) {
953 if (ata_msg_ctl(ap))
954 ata_port_printk(ap, KERN_DEBUG, "%s: flush #2\n",
955 __FUNCTION__);
956 flush_workqueue(ata_wq);
957 }
958
959 spin_lock_irqsave(ap->lock, flags);
960 ap->flags &= ~ATA_FLAG_FLUSH_PORT_TASK;
961 spin_unlock_irqrestore(ap->lock, flags);
962
963 if (ata_msg_ctl(ap))
964 ata_port_printk(ap, KERN_DEBUG, "%s: EXIT\n", __FUNCTION__);
965 }
966
967 void ata_qc_complete_internal(struct ata_queued_cmd *qc)
968 {
969 struct completion *waiting = qc->private_data;
970
971 complete(waiting);
972 }
973
974 /**
975 * ata_exec_internal - execute libata internal command
976 * @dev: Device to which the command is sent
977 * @tf: Taskfile registers for the command and the result
978 * @cdb: CDB for packet command
979 * @dma_dir: Data tranfer direction of the command
980 * @buf: Data buffer of the command
981 * @buflen: Length of data buffer
982 *
983 * Executes libata internal command with timeout. @tf contains
984 * command on entry and result on return. Timeout and error
985 * conditions are reported via return value. No recovery action
986 * is taken after a command times out. It's caller's duty to
987 * clean up after timeout.
988 *
989 * LOCKING:
990 * None. Should be called with kernel context, might sleep.
991 *
992 * RETURNS:
993 * Zero on success, AC_ERR_* mask on failure
994 */
995 unsigned ata_exec_internal(struct ata_device *dev,
996 struct ata_taskfile *tf, const u8 *cdb,
997 int dma_dir, void *buf, unsigned int buflen)
998 {
999 struct ata_port *ap = dev->ap;
1000 u8 command = tf->command;
1001 struct ata_queued_cmd *qc;
1002 unsigned int tag, preempted_tag;
1003 u32 preempted_sactive, preempted_qc_active;
1004 DECLARE_COMPLETION_ONSTACK(wait);
1005 unsigned long flags;
1006 unsigned int err_mask;
1007 int rc;
1008
1009 spin_lock_irqsave(ap->lock, flags);
1010
1011 /* no internal command while frozen */
1012 if (ap->flags & ATA_FLAG_FROZEN) {
1013 spin_unlock_irqrestore(ap->lock, flags);
1014 return AC_ERR_SYSTEM;
1015 }
1016
1017 /* initialize internal qc */
1018
1019 /* XXX: Tag 0 is used for drivers with legacy EH as some
1020 * drivers choke if any other tag is given. This breaks
1021 * ata_tag_internal() test for those drivers. Don't use new
1022 * EH stuff without converting to it.
1023 */
1024 if (ap->ops->error_handler)
1025 tag = ATA_TAG_INTERNAL;
1026 else
1027 tag = 0;
1028
1029 if (test_and_set_bit(tag, &ap->qc_allocated))
1030 BUG();
1031 qc = __ata_qc_from_tag(ap, tag);
1032
1033 qc->tag = tag;
1034 qc->scsicmd = NULL;
1035 qc->ap = ap;
1036 qc->dev = dev;
1037 ata_qc_reinit(qc);
1038
1039 preempted_tag = ap->active_tag;
1040 preempted_sactive = ap->sactive;
1041 preempted_qc_active = ap->qc_active;
1042 ap->active_tag = ATA_TAG_POISON;
1043 ap->sactive = 0;
1044 ap->qc_active = 0;
1045
1046 /* prepare & issue qc */
1047 qc->tf = *tf;
1048 if (cdb)
1049 memcpy(qc->cdb, cdb, ATAPI_CDB_LEN);
1050 qc->flags |= ATA_QCFLAG_RESULT_TF;
1051 qc->dma_dir = dma_dir;
1052 if (dma_dir != DMA_NONE) {
1053 ata_sg_init_one(qc, buf, buflen);
1054 qc->nsect = buflen / ATA_SECT_SIZE;
1055 }
1056
1057 qc->private_data = &wait;
1058 qc->complete_fn = ata_qc_complete_internal;
1059
1060 ata_qc_issue(qc);
1061
1062 spin_unlock_irqrestore(ap->lock, flags);
1063
1064 rc = wait_for_completion_timeout(&wait, ata_probe_timeout);
1065
1066 ata_port_flush_task(ap);
1067
1068 if (!rc) {
1069 spin_lock_irqsave(ap->lock, flags);
1070
1071 /* We're racing with irq here. If we lose, the
1072 * following test prevents us from completing the qc
1073 * twice. If we win, the port is frozen and will be
1074 * cleaned up by ->post_internal_cmd().
1075 */
1076 if (qc->flags & ATA_QCFLAG_ACTIVE) {
1077 qc->err_mask |= AC_ERR_TIMEOUT;
1078
1079 if (ap->ops->error_handler)
1080 ata_port_freeze(ap);
1081 else
1082 ata_qc_complete(qc);
1083
1084 if (ata_msg_warn(ap))
1085 ata_dev_printk(dev, KERN_WARNING,
1086 "qc timeout (cmd 0x%x)\n", command);
1087 }
1088
1089 spin_unlock_irqrestore(ap->lock, flags);
1090 }
1091
1092 /* do post_internal_cmd */
1093 if (ap->ops->post_internal_cmd)
1094 ap->ops->post_internal_cmd(qc);
1095
1096 if (qc->flags & ATA_QCFLAG_FAILED && !qc->err_mask) {
1097 if (ata_msg_warn(ap))
1098 ata_dev_printk(dev, KERN_WARNING,
1099 "zero err_mask for failed "
1100 "internal command, assuming AC_ERR_OTHER\n");
1101 qc->err_mask |= AC_ERR_OTHER;
1102 }
1103
1104 /* finish up */
1105 spin_lock_irqsave(ap->lock, flags);
1106
1107 *tf = qc->result_tf;
1108 err_mask = qc->err_mask;
1109
1110 ata_qc_free(qc);
1111 ap->active_tag = preempted_tag;
1112 ap->sactive = preempted_sactive;
1113 ap->qc_active = preempted_qc_active;
1114
1115 /* XXX - Some LLDDs (sata_mv) disable port on command failure.
1116 * Until those drivers are fixed, we detect the condition
1117 * here, fail the command with AC_ERR_SYSTEM and reenable the
1118 * port.
1119 *
1120 * Note that this doesn't change any behavior as internal
1121 * command failure results in disabling the device in the
1122 * higher layer for LLDDs without new reset/EH callbacks.
1123 *
1124 * Kill the following code as soon as those drivers are fixed.
1125 */
1126 if (ap->flags & ATA_FLAG_DISABLED) {
1127 err_mask |= AC_ERR_SYSTEM;
1128 ata_port_probe(ap);
1129 }
1130
1131 spin_unlock_irqrestore(ap->lock, flags);
1132
1133 return err_mask;
1134 }
1135
1136 /**
1137 * ata_do_simple_cmd - execute simple internal command
1138 * @dev: Device to which the command is sent
1139 * @cmd: Opcode to execute
1140 *
1141 * Execute a 'simple' command, that only consists of the opcode
1142 * 'cmd' itself, without filling any other registers
1143 *
1144 * LOCKING:
1145 * Kernel thread context (may sleep).
1146 *
1147 * RETURNS:
1148 * Zero on success, AC_ERR_* mask on failure
1149 */
1150 unsigned int ata_do_simple_cmd(struct ata_device *dev, u8 cmd)
1151 {
1152 struct ata_taskfile tf;
1153
1154 ata_tf_init(dev, &tf);
1155
1156 tf.command = cmd;
1157 tf.flags |= ATA_TFLAG_DEVICE;
1158 tf.protocol = ATA_PROT_NODATA;
1159
1160 return ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
1161 }
1162
1163 /**
1164 * ata_pio_need_iordy - check if iordy needed
1165 * @adev: ATA device
1166 *
1167 * Check if the current speed of the device requires IORDY. Used
1168 * by various controllers for chip configuration.
1169 */
1170
1171 unsigned int ata_pio_need_iordy(const struct ata_device *adev)
1172 {
1173 int pio;
1174 int speed = adev->pio_mode - XFER_PIO_0;
1175
1176 if (speed < 2)
1177 return 0;
1178 if (speed > 2)
1179 return 1;
1180
1181 /* If we have no drive specific rule, then PIO 2 is non IORDY */
1182
1183 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE */
1184 pio = adev->id[ATA_ID_EIDE_PIO];
1185 /* Is the speed faster than the drive allows non IORDY ? */
1186 if (pio) {
1187 /* This is cycle times not frequency - watch the logic! */
1188 if (pio > 240) /* PIO2 is 240nS per cycle */
1189 return 1;
1190 return 0;
1191 }
1192 }
1193 return 0;
1194 }
1195
1196 /**
1197 * ata_dev_read_id - Read ID data from the specified device
1198 * @dev: target device
1199 * @p_class: pointer to class of the target device (may be changed)
1200 * @post_reset: is this read ID post-reset?
1201 * @id: buffer to read IDENTIFY data into
1202 *
1203 * Read ID data from the specified device. ATA_CMD_ID_ATA is
1204 * performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI
1205 * devices. This function also issues ATA_CMD_INIT_DEV_PARAMS
1206 * for pre-ATA4 drives.
1207 *
1208 * LOCKING:
1209 * Kernel thread context (may sleep)
1210 *
1211 * RETURNS:
1212 * 0 on success, -errno otherwise.
1213 */
1214 int ata_dev_read_id(struct ata_device *dev, unsigned int *p_class,
1215 int post_reset, u16 *id)
1216 {
1217 struct ata_port *ap = dev->ap;
1218 unsigned int class = *p_class;
1219 struct ata_taskfile tf;
1220 unsigned int err_mask = 0;
1221 const char *reason;
1222 int rc;
1223
1224 if (ata_msg_ctl(ap))
1225 ata_dev_printk(dev, KERN_DEBUG, "%s: ENTER, host %u, dev %u\n",
1226 __FUNCTION__, ap->id, dev->devno);
1227
1228 ata_dev_select(ap, dev->devno, 1, 1); /* select device 0/1 */
1229
1230 retry:
1231 ata_tf_init(dev, &tf);
1232
1233 switch (class) {
1234 case ATA_DEV_ATA:
1235 tf.command = ATA_CMD_ID_ATA;
1236 break;
1237 case ATA_DEV_ATAPI:
1238 tf.command = ATA_CMD_ID_ATAPI;
1239 break;
1240 default:
1241 rc = -ENODEV;
1242 reason = "unsupported class";
1243 goto err_out;
1244 }
1245
1246 tf.protocol = ATA_PROT_PIO;
1247
1248 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_FROM_DEVICE,
1249 id, sizeof(id[0]) * ATA_ID_WORDS);
1250 if (err_mask) {
1251 rc = -EIO;
1252 reason = "I/O error";
1253 goto err_out;
1254 }
1255
1256 swap_buf_le16(id, ATA_ID_WORDS);
1257
1258 /* sanity check */
1259 if ((class == ATA_DEV_ATA) != (ata_id_is_ata(id) | ata_id_is_cfa(id))) {
1260 rc = -EINVAL;
1261 reason = "device reports illegal type";
1262 goto err_out;
1263 }
1264
1265 if (post_reset && class == ATA_DEV_ATA) {
1266 /*
1267 * The exact sequence expected by certain pre-ATA4 drives is:
1268 * SRST RESET
1269 * IDENTIFY
1270 * INITIALIZE DEVICE PARAMETERS
1271 * anything else..
1272 * Some drives were very specific about that exact sequence.
1273 */
1274 if (ata_id_major_version(id) < 4 || !ata_id_has_lba(id)) {
1275 err_mask = ata_dev_init_params(dev, id[3], id[6]);
1276 if (err_mask) {
1277 rc = -EIO;
1278 reason = "INIT_DEV_PARAMS failed";
1279 goto err_out;
1280 }
1281
1282 /* current CHS translation info (id[53-58]) might be
1283 * changed. reread the identify device info.
1284 */
1285 post_reset = 0;
1286 goto retry;
1287 }
1288 }
1289
1290 *p_class = class;
1291
1292 return 0;
1293
1294 err_out:
1295 if (ata_msg_warn(ap))
1296 ata_dev_printk(dev, KERN_WARNING, "failed to IDENTIFY "
1297 "(%s, err_mask=0x%x)\n", reason, err_mask);
1298 return rc;
1299 }
1300
1301 static inline u8 ata_dev_knobble(struct ata_device *dev)
1302 {
1303 return ((dev->ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(dev->id)));
1304 }
1305
1306 static void ata_dev_config_ncq(struct ata_device *dev,
1307 char *desc, size_t desc_sz)
1308 {
1309 struct ata_port *ap = dev->ap;
1310 int hdepth = 0, ddepth = ata_id_queue_depth(dev->id);
1311
1312 if (!ata_id_has_ncq(dev->id)) {
1313 desc[0] = '\0';
1314 return;
1315 }
1316
1317 if (ap->flags & ATA_FLAG_NCQ) {
1318 hdepth = min(ap->host->can_queue, ATA_MAX_QUEUE - 1);
1319 dev->flags |= ATA_DFLAG_NCQ;
1320 }
1321
1322 if (hdepth >= ddepth)
1323 snprintf(desc, desc_sz, "NCQ (depth %d)", ddepth);
1324 else
1325 snprintf(desc, desc_sz, "NCQ (depth %d/%d)", hdepth, ddepth);
1326 }
1327
1328 static void ata_set_port_max_cmd_len(struct ata_port *ap)
1329 {
1330 int i;
1331
1332 if (ap->host) {
1333 ap->host->max_cmd_len = 0;
1334 for (i = 0; i < ATA_MAX_DEVICES; i++)
1335 ap->host->max_cmd_len = max_t(unsigned int,
1336 ap->host->max_cmd_len,
1337 ap->device[i].cdb_len);
1338 }
1339 }
1340
1341 /**
1342 * ata_dev_configure - Configure the specified ATA/ATAPI device
1343 * @dev: Target device to configure
1344 * @print_info: Enable device info printout
1345 *
1346 * Configure @dev according to @dev->id. Generic and low-level
1347 * driver specific fixups are also applied.
1348 *
1349 * LOCKING:
1350 * Kernel thread context (may sleep)
1351 *
1352 * RETURNS:
1353 * 0 on success, -errno otherwise
1354 */
1355 int ata_dev_configure(struct ata_device *dev, int print_info)
1356 {
1357 struct ata_port *ap = dev->ap;
1358 const u16 *id = dev->id;
1359 unsigned int xfer_mask;
1360 int rc;
1361
1362 if (!ata_dev_enabled(dev) && ata_msg_info(ap)) {
1363 ata_dev_printk(dev, KERN_INFO,
1364 "%s: ENTER/EXIT (host %u, dev %u) -- nodev\n",
1365 __FUNCTION__, ap->id, dev->devno);
1366 return 0;
1367 }
1368
1369 if (ata_msg_probe(ap))
1370 ata_dev_printk(dev, KERN_DEBUG, "%s: ENTER, host %u, dev %u\n",
1371 __FUNCTION__, ap->id, dev->devno);
1372
1373 /* print device capabilities */
1374 if (ata_msg_probe(ap))
1375 ata_dev_printk(dev, KERN_DEBUG,
1376 "%s: cfg 49:%04x 82:%04x 83:%04x 84:%04x "
1377 "85:%04x 86:%04x 87:%04x 88:%04x\n",
1378 __FUNCTION__,
1379 id[49], id[82], id[83], id[84],
1380 id[85], id[86], id[87], id[88]);
1381
1382 /* initialize to-be-configured parameters */
1383 dev->flags &= ~ATA_DFLAG_CFG_MASK;
1384 dev->max_sectors = 0;
1385 dev->cdb_len = 0;
1386 dev->n_sectors = 0;
1387 dev->cylinders = 0;
1388 dev->heads = 0;
1389 dev->sectors = 0;
1390
1391 /*
1392 * common ATA, ATAPI feature tests
1393 */
1394
1395 /* find max transfer mode; for printk only */
1396 xfer_mask = ata_id_xfermask(id);
1397
1398 if (ata_msg_probe(ap))
1399 ata_dump_id(id);
1400
1401 /* ATA-specific feature tests */
1402 if (dev->class == ATA_DEV_ATA) {
1403 dev->n_sectors = ata_id_n_sectors(id);
1404
1405 if (ata_id_has_lba(id)) {
1406 const char *lba_desc;
1407 char ncq_desc[20];
1408
1409 lba_desc = "LBA";
1410 dev->flags |= ATA_DFLAG_LBA;
1411 if (ata_id_has_lba48(id)) {
1412 dev->flags |= ATA_DFLAG_LBA48;
1413 lba_desc = "LBA48";
1414 }
1415
1416 /* config NCQ */
1417 ata_dev_config_ncq(dev, ncq_desc, sizeof(ncq_desc));
1418
1419 /* print device info to dmesg */
1420 if (ata_msg_info(ap))
1421 ata_dev_printk(dev, KERN_INFO, "ATA-%d, "
1422 "max %s, %Lu sectors: %s %s\n",
1423 ata_id_major_version(id),
1424 ata_mode_string(xfer_mask),
1425 (unsigned long long)dev->n_sectors,
1426 lba_desc, ncq_desc);
1427 } else {
1428 /* CHS */
1429
1430 /* Default translation */
1431 dev->cylinders = id[1];
1432 dev->heads = id[3];
1433 dev->sectors = id[6];
1434
1435 if (ata_id_current_chs_valid(id)) {
1436 /* Current CHS translation is valid. */
1437 dev->cylinders = id[54];
1438 dev->heads = id[55];
1439 dev->sectors = id[56];
1440 }
1441
1442 /* print device info to dmesg */
1443 if (ata_msg_info(ap))
1444 ata_dev_printk(dev, KERN_INFO, "ATA-%d, "
1445 "max %s, %Lu sectors: CHS %u/%u/%u\n",
1446 ata_id_major_version(id),
1447 ata_mode_string(xfer_mask),
1448 (unsigned long long)dev->n_sectors,
1449 dev->cylinders, dev->heads,
1450 dev->sectors);
1451 }
1452
1453 if (dev->id[59] & 0x100) {
1454 dev->multi_count = dev->id[59] & 0xff;
1455 if (ata_msg_info(ap))
1456 ata_dev_printk(dev, KERN_INFO,
1457 "ata%u: dev %u multi count %u\n",
1458 ap->id, dev->devno, dev->multi_count);
1459 }
1460
1461 dev->cdb_len = 16;
1462 }
1463
1464 /* ATAPI-specific feature tests */
1465 else if (dev->class == ATA_DEV_ATAPI) {
1466 char *cdb_intr_string = "";
1467
1468 rc = atapi_cdb_len(id);
1469 if ((rc < 12) || (rc > ATAPI_CDB_LEN)) {
1470 if (ata_msg_warn(ap))
1471 ata_dev_printk(dev, KERN_WARNING,
1472 "unsupported CDB len\n");
1473 rc = -EINVAL;
1474 goto err_out_nosup;
1475 }
1476 dev->cdb_len = (unsigned int) rc;
1477
1478 if (ata_id_cdb_intr(dev->id)) {
1479 dev->flags |= ATA_DFLAG_CDB_INTR;
1480 cdb_intr_string = ", CDB intr";
1481 }
1482
1483 /* print device info to dmesg */
1484 if (ata_msg_info(ap))
1485 ata_dev_printk(dev, KERN_INFO, "ATAPI, max %s%s\n",
1486 ata_mode_string(xfer_mask),
1487 cdb_intr_string);
1488 }
1489
1490 ata_set_port_max_cmd_len(ap);
1491
1492 /* limit bridge transfers to udma5, 200 sectors */
1493 if (ata_dev_knobble(dev)) {
1494 if (ata_msg_info(ap))
1495 ata_dev_printk(dev, KERN_INFO,
1496 "applying bridge limits\n");
1497 dev->udma_mask &= ATA_UDMA5;
1498 dev->max_sectors = ATA_MAX_SECTORS;
1499 }
1500
1501 if (ap->ops->dev_config)
1502 ap->ops->dev_config(ap, dev);
1503
1504 if (ata_msg_probe(ap))
1505 ata_dev_printk(dev, KERN_DEBUG, "%s: EXIT, drv_stat = 0x%x\n",
1506 __FUNCTION__, ata_chk_status(ap));
1507 return 0;
1508
1509 err_out_nosup:
1510 if (ata_msg_probe(ap))
1511 ata_dev_printk(dev, KERN_DEBUG,
1512 "%s: EXIT, err\n", __FUNCTION__);
1513 return rc;
1514 }
1515
1516 /**
1517 * ata_bus_probe - Reset and probe ATA bus
1518 * @ap: Bus to probe
1519 *
1520 * Master ATA bus probing function. Initiates a hardware-dependent
1521 * bus reset, then attempts to identify any devices found on
1522 * the bus.
1523 *
1524 * LOCKING:
1525 * PCI/etc. bus probe sem.
1526 *
1527 * RETURNS:
1528 * Zero on success, negative errno otherwise.
1529 */
1530
1531 static int ata_bus_probe(struct ata_port *ap)
1532 {
1533 unsigned int classes[ATA_MAX_DEVICES];
1534 int tries[ATA_MAX_DEVICES];
1535 int i, rc, down_xfermask;
1536 struct ata_device *dev;
1537
1538 ata_port_probe(ap);
1539
1540 for (i = 0; i < ATA_MAX_DEVICES; i++)
1541 tries[i] = ATA_PROBE_MAX_TRIES;
1542
1543 retry:
1544 down_xfermask = 0;
1545
1546 /* reset and determine device classes */
1547 ap->ops->phy_reset(ap);
1548
1549 for (i = 0; i < ATA_MAX_DEVICES; i++) {
1550 dev = &ap->device[i];
1551
1552 if (!(ap->flags & ATA_FLAG_DISABLED) &&
1553 dev->class != ATA_DEV_UNKNOWN)
1554 classes[dev->devno] = dev->class;
1555 else
1556 classes[dev->devno] = ATA_DEV_NONE;
1557
1558 dev->class = ATA_DEV_UNKNOWN;
1559 }
1560
1561 ata_port_probe(ap);
1562
1563 /* after the reset the device state is PIO 0 and the controller
1564 state is undefined. Record the mode */
1565
1566 for (i = 0; i < ATA_MAX_DEVICES; i++)
1567 ap->device[i].pio_mode = XFER_PIO_0;
1568
1569 /* read IDENTIFY page and configure devices */
1570 for (i = 0; i < ATA_MAX_DEVICES; i++) {
1571 dev = &ap->device[i];
1572
1573 if (tries[i])
1574 dev->class = classes[i];
1575
1576 if (!ata_dev_enabled(dev))
1577 continue;
1578
1579 rc = ata_dev_read_id(dev, &dev->class, 1, dev->id);
1580 if (rc)
1581 goto fail;
1582
1583 rc = ata_dev_configure(dev, 1);
1584 if (rc)
1585 goto fail;
1586 }
1587
1588 /* configure transfer mode */
1589 rc = ata_set_mode(ap, &dev);
1590 if (rc) {
1591 down_xfermask = 1;
1592 goto fail;
1593 }
1594
1595 for (i = 0; i < ATA_MAX_DEVICES; i++)
1596 if (ata_dev_enabled(&ap->device[i]))
1597 return 0;
1598
1599 /* no device present, disable port */
1600 ata_port_disable(ap);
1601 ap->ops->port_disable(ap);
1602 return -ENODEV;
1603
1604 fail:
1605 switch (rc) {
1606 case -EINVAL:
1607 case -ENODEV:
1608 tries[dev->devno] = 0;
1609 break;
1610 case -EIO:
1611 sata_down_spd_limit(ap);
1612 /* fall through */
1613 default:
1614 tries[dev->devno]--;
1615 if (down_xfermask &&
1616 ata_down_xfermask_limit(dev, tries[dev->devno] == 1))
1617 tries[dev->devno] = 0;
1618 }
1619
1620 if (!tries[dev->devno]) {
1621 ata_down_xfermask_limit(dev, 1);
1622 ata_dev_disable(dev);
1623 }
1624
1625 goto retry;
1626 }
1627
1628 /**
1629 * ata_port_probe - Mark port as enabled
1630 * @ap: Port for which we indicate enablement
1631 *
1632 * Modify @ap data structure such that the system
1633 * thinks that the entire port is enabled.
1634 *
1635 * LOCKING: host_set lock, or some other form of
1636 * serialization.
1637 */
1638
1639 void ata_port_probe(struct ata_port *ap)
1640 {
1641 ap->flags &= ~ATA_FLAG_DISABLED;
1642 }
1643
1644 /**
1645 * sata_print_link_status - Print SATA link status
1646 * @ap: SATA port to printk link status about
1647 *
1648 * This function prints link speed and status of a SATA link.
1649 *
1650 * LOCKING:
1651 * None.
1652 */
1653 static void sata_print_link_status(struct ata_port *ap)
1654 {
1655 u32 sstatus, scontrol, tmp;
1656
1657 if (sata_scr_read(ap, SCR_STATUS, &sstatus))
1658 return;
1659 sata_scr_read(ap, SCR_CONTROL, &scontrol);
1660
1661 if (ata_port_online(ap)) {
1662 tmp = (sstatus >> 4) & 0xf;
1663 ata_port_printk(ap, KERN_INFO,
1664 "SATA link up %s (SStatus %X SControl %X)\n",
1665 sata_spd_string(tmp), sstatus, scontrol);
1666 } else {
1667 ata_port_printk(ap, KERN_INFO,
1668 "SATA link down (SStatus %X SControl %X)\n",
1669 sstatus, scontrol);
1670 }
1671 }
1672
1673 /**
1674 * __sata_phy_reset - Wake/reset a low-level SATA PHY
1675 * @ap: SATA port associated with target SATA PHY.
1676 *
1677 * This function issues commands to standard SATA Sxxx
1678 * PHY registers, to wake up the phy (and device), and
1679 * clear any reset condition.
1680 *
1681 * LOCKING:
1682 * PCI/etc. bus probe sem.
1683 *
1684 */
1685 void __sata_phy_reset(struct ata_port *ap)
1686 {
1687 u32 sstatus;
1688 unsigned long timeout = jiffies + (HZ * 5);
1689
1690 if (ap->flags & ATA_FLAG_SATA_RESET) {
1691 /* issue phy wake/reset */
1692 sata_scr_write_flush(ap, SCR_CONTROL, 0x301);
1693 /* Couldn't find anything in SATA I/II specs, but
1694 * AHCI-1.1 10.4.2 says at least 1 ms. */
1695 mdelay(1);
1696 }
1697 /* phy wake/clear reset */
1698 sata_scr_write_flush(ap, SCR_CONTROL, 0x300);
1699
1700 /* wait for phy to become ready, if necessary */
1701 do {
1702 msleep(200);
1703 sata_scr_read(ap, SCR_STATUS, &sstatus);
1704 if ((sstatus & 0xf) != 1)
1705 break;
1706 } while (time_before(jiffies, timeout));
1707
1708 /* print link status */
1709 sata_print_link_status(ap);
1710
1711 /* TODO: phy layer with polling, timeouts, etc. */
1712 if (!ata_port_offline(ap))
1713 ata_port_probe(ap);
1714 else
1715 ata_port_disable(ap);
1716
1717 if (ap->flags & ATA_FLAG_DISABLED)
1718 return;
1719
1720 if (ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT)) {
1721 ata_port_disable(ap);
1722 return;
1723 }
1724
1725 ap->cbl = ATA_CBL_SATA;
1726 }
1727
1728 /**
1729 * sata_phy_reset - Reset SATA bus.
1730 * @ap: SATA port associated with target SATA PHY.
1731 *
1732 * This function resets the SATA bus, and then probes
1733 * the bus for devices.
1734 *
1735 * LOCKING:
1736 * PCI/etc. bus probe sem.
1737 *
1738 */
1739 void sata_phy_reset(struct ata_port *ap)
1740 {
1741 __sata_phy_reset(ap);
1742 if (ap->flags & ATA_FLAG_DISABLED)
1743 return;
1744 ata_bus_reset(ap);
1745 }
1746
1747 /**
1748 * ata_dev_pair - return other device on cable
1749 * @adev: device
1750 *
1751 * Obtain the other device on the same cable, or if none is
1752 * present NULL is returned
1753 */
1754
1755 struct ata_device *ata_dev_pair(struct ata_device *adev)
1756 {
1757 struct ata_port *ap = adev->ap;
1758 struct ata_device *pair = &ap->device[1 - adev->devno];
1759 if (!ata_dev_enabled(pair))
1760 return NULL;
1761 return pair;
1762 }
1763
1764 /**
1765 * ata_port_disable - Disable port.
1766 * @ap: Port to be disabled.
1767 *
1768 * Modify @ap data structure such that the system
1769 * thinks that the entire port is disabled, and should
1770 * never attempt to probe or communicate with devices
1771 * on this port.
1772 *
1773 * LOCKING: host_set lock, or some other form of
1774 * serialization.
1775 */
1776
1777 void ata_port_disable(struct ata_port *ap)
1778 {
1779 ap->device[0].class = ATA_DEV_NONE;
1780 ap->device[1].class = ATA_DEV_NONE;
1781 ap->flags |= ATA_FLAG_DISABLED;
1782 }
1783
1784 /**
1785 * sata_down_spd_limit - adjust SATA spd limit downward
1786 * @ap: Port to adjust SATA spd limit for
1787 *
1788 * Adjust SATA spd limit of @ap downward. Note that this
1789 * function only adjusts the limit. The change must be applied
1790 * using sata_set_spd().
1791 *
1792 * LOCKING:
1793 * Inherited from caller.
1794 *
1795 * RETURNS:
1796 * 0 on success, negative errno on failure
1797 */
1798 int sata_down_spd_limit(struct ata_port *ap)
1799 {
1800 u32 sstatus, spd, mask;
1801 int rc, highbit;
1802
1803 rc = sata_scr_read(ap, SCR_STATUS, &sstatus);
1804 if (rc)
1805 return rc;
1806
1807 mask = ap->sata_spd_limit;
1808 if (mask <= 1)
1809 return -EINVAL;
1810 highbit = fls(mask) - 1;
1811 mask &= ~(1 << highbit);
1812
1813 spd = (sstatus >> 4) & 0xf;
1814 if (spd <= 1)
1815 return -EINVAL;
1816 spd--;
1817 mask &= (1 << spd) - 1;
1818 if (!mask)
1819 return -EINVAL;
1820
1821 ap->sata_spd_limit = mask;
1822
1823 ata_port_printk(ap, KERN_WARNING, "limiting SATA link speed to %s\n",
1824 sata_spd_string(fls(mask)));
1825
1826 return 0;
1827 }
1828
1829 static int __sata_set_spd_needed(struct ata_port *ap, u32 *scontrol)
1830 {
1831 u32 spd, limit;
1832
1833 if (ap->sata_spd_limit == UINT_MAX)
1834 limit = 0;
1835 else
1836 limit = fls(ap->sata_spd_limit);
1837
1838 spd = (*scontrol >> 4) & 0xf;
1839 *scontrol = (*scontrol & ~0xf0) | ((limit & 0xf) << 4);
1840
1841 return spd != limit;
1842 }
1843
1844 /**
1845 * sata_set_spd_needed - is SATA spd configuration needed
1846 * @ap: Port in question
1847 *
1848 * Test whether the spd limit in SControl matches
1849 * @ap->sata_spd_limit. This function is used to determine
1850 * whether hardreset is necessary to apply SATA spd
1851 * configuration.
1852 *
1853 * LOCKING:
1854 * Inherited from caller.
1855 *
1856 * RETURNS:
1857 * 1 if SATA spd configuration is needed, 0 otherwise.
1858 */
1859 int sata_set_spd_needed(struct ata_port *ap)
1860 {
1861 u32 scontrol;
1862
1863 if (sata_scr_read(ap, SCR_CONTROL, &scontrol))
1864 return 0;
1865
1866 return __sata_set_spd_needed(ap, &scontrol);
1867 }
1868
1869 /**
1870 * sata_set_spd - set SATA spd according to spd limit
1871 * @ap: Port to set SATA spd for
1872 *
1873 * Set SATA spd of @ap according to sata_spd_limit.
1874 *
1875 * LOCKING:
1876 * Inherited from caller.
1877 *
1878 * RETURNS:
1879 * 0 if spd doesn't need to be changed, 1 if spd has been
1880 * changed. Negative errno if SCR registers are inaccessible.
1881 */
1882 int sata_set_spd(struct ata_port *ap)
1883 {
1884 u32 scontrol;
1885 int rc;
1886
1887 if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
1888 return rc;
1889
1890 if (!__sata_set_spd_needed(ap, &scontrol))
1891 return 0;
1892
1893 if ((rc = sata_scr_write(ap, SCR_CONTROL, scontrol)))
1894 return rc;
1895
1896 return 1;
1897 }
1898
1899 /*
1900 * This mode timing computation functionality is ported over from
1901 * drivers/ide/ide-timing.h and was originally written by Vojtech Pavlik
1902 */
1903 /*
1904 * PIO 0-5, MWDMA 0-2 and UDMA 0-6 timings (in nanoseconds).
1905 * These were taken from ATA/ATAPI-6 standard, rev 0a, except
1906 * for PIO 5, which is a nonstandard extension and UDMA6, which
1907 * is currently supported only by Maxtor drives.
1908 */
1909
1910 static const struct ata_timing ata_timing[] = {
1911
1912 { XFER_UDMA_6, 0, 0, 0, 0, 0, 0, 0, 15 },
1913 { XFER_UDMA_5, 0, 0, 0, 0, 0, 0, 0, 20 },
1914 { XFER_UDMA_4, 0, 0, 0, 0, 0, 0, 0, 30 },
1915 { XFER_UDMA_3, 0, 0, 0, 0, 0, 0, 0, 45 },
1916
1917 { XFER_UDMA_2, 0, 0, 0, 0, 0, 0, 0, 60 },
1918 { XFER_UDMA_1, 0, 0, 0, 0, 0, 0, 0, 80 },
1919 { XFER_UDMA_0, 0, 0, 0, 0, 0, 0, 0, 120 },
1920
1921 /* { XFER_UDMA_SLOW, 0, 0, 0, 0, 0, 0, 0, 150 }, */
1922
1923 { XFER_MW_DMA_2, 25, 0, 0, 0, 70, 25, 120, 0 },
1924 { XFER_MW_DMA_1, 45, 0, 0, 0, 80, 50, 150, 0 },
1925 { XFER_MW_DMA_0, 60, 0, 0, 0, 215, 215, 480, 0 },
1926
1927 { XFER_SW_DMA_2, 60, 0, 0, 0, 120, 120, 240, 0 },
1928 { XFER_SW_DMA_1, 90, 0, 0, 0, 240, 240, 480, 0 },
1929 { XFER_SW_DMA_0, 120, 0, 0, 0, 480, 480, 960, 0 },
1930
1931 /* { XFER_PIO_5, 20, 50, 30, 100, 50, 30, 100, 0 }, */
1932 { XFER_PIO_4, 25, 70, 25, 120, 70, 25, 120, 0 },
1933 { XFER_PIO_3, 30, 80, 70, 180, 80, 70, 180, 0 },
1934
1935 { XFER_PIO_2, 30, 290, 40, 330, 100, 90, 240, 0 },
1936 { XFER_PIO_1, 50, 290, 93, 383, 125, 100, 383, 0 },
1937 { XFER_PIO_0, 70, 290, 240, 600, 165, 150, 600, 0 },
1938
1939 /* { XFER_PIO_SLOW, 120, 290, 240, 960, 290, 240, 960, 0 }, */
1940
1941 { 0xFF }
1942 };
1943
1944 #define ENOUGH(v,unit) (((v)-1)/(unit)+1)
1945 #define EZ(v,unit) ((v)?ENOUGH(v,unit):0)
1946
1947 static void ata_timing_quantize(const struct ata_timing *t, struct ata_timing *q, int T, int UT)
1948 {
1949 q->setup = EZ(t->setup * 1000, T);
1950 q->act8b = EZ(t->act8b * 1000, T);
1951 q->rec8b = EZ(t->rec8b * 1000, T);
1952 q->cyc8b = EZ(t->cyc8b * 1000, T);
1953 q->active = EZ(t->active * 1000, T);
1954 q->recover = EZ(t->recover * 1000, T);
1955 q->cycle = EZ(t->cycle * 1000, T);
1956 q->udma = EZ(t->udma * 1000, UT);
1957 }
1958
1959 void ata_timing_merge(const struct ata_timing *a, const struct ata_timing *b,
1960 struct ata_timing *m, unsigned int what)
1961 {
1962 if (what & ATA_TIMING_SETUP ) m->setup = max(a->setup, b->setup);
1963 if (what & ATA_TIMING_ACT8B ) m->act8b = max(a->act8b, b->act8b);
1964 if (what & ATA_TIMING_REC8B ) m->rec8b = max(a->rec8b, b->rec8b);
1965 if (what & ATA_TIMING_CYC8B ) m->cyc8b = max(a->cyc8b, b->cyc8b);
1966 if (what & ATA_TIMING_ACTIVE ) m->active = max(a->active, b->active);
1967 if (what & ATA_TIMING_RECOVER) m->recover = max(a->recover, b->recover);
1968 if (what & ATA_TIMING_CYCLE ) m->cycle = max(a->cycle, b->cycle);
1969 if (what & ATA_TIMING_UDMA ) m->udma = max(a->udma, b->udma);
1970 }
1971
1972 static const struct ata_timing* ata_timing_find_mode(unsigned short speed)
1973 {
1974 const struct ata_timing *t;
1975
1976 for (t = ata_timing; t->mode != speed; t++)
1977 if (t->mode == 0xFF)
1978 return NULL;
1979 return t;
1980 }
1981
1982 int ata_timing_compute(struct ata_device *adev, unsigned short speed,
1983 struct ata_timing *t, int T, int UT)
1984 {
1985 const struct ata_timing *s;
1986 struct ata_timing p;
1987
1988 /*
1989 * Find the mode.
1990 */
1991
1992 if (!(s = ata_timing_find_mode(speed)))
1993 return -EINVAL;
1994
1995 memcpy(t, s, sizeof(*s));
1996
1997 /*
1998 * If the drive is an EIDE drive, it can tell us it needs extended
1999 * PIO/MW_DMA cycle timing.
2000 */
2001
2002 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE drive */
2003 memset(&p, 0, sizeof(p));
2004 if(speed >= XFER_PIO_0 && speed <= XFER_SW_DMA_0) {
2005 if (speed <= XFER_PIO_2) p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO];
2006 else p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO_IORDY];
2007 } else if(speed >= XFER_MW_DMA_0 && speed <= XFER_MW_DMA_2) {
2008 p.cycle = adev->id[ATA_ID_EIDE_DMA_MIN];
2009 }
2010 ata_timing_merge(&p, t, t, ATA_TIMING_CYCLE | ATA_TIMING_CYC8B);
2011 }
2012
2013 /*
2014 * Convert the timing to bus clock counts.
2015 */
2016
2017 ata_timing_quantize(t, t, T, UT);
2018
2019 /*
2020 * Even in DMA/UDMA modes we still use PIO access for IDENTIFY,
2021 * S.M.A.R.T * and some other commands. We have to ensure that the
2022 * DMA cycle timing is slower/equal than the fastest PIO timing.
2023 */
2024
2025 if (speed > XFER_PIO_4) {
2026 ata_timing_compute(adev, adev->pio_mode, &p, T, UT);
2027 ata_timing_merge(&p, t, t, ATA_TIMING_ALL);
2028 }
2029
2030 /*
2031 * Lengthen active & recovery time so that cycle time is correct.
2032 */
2033
2034 if (t->act8b + t->rec8b < t->cyc8b) {
2035 t->act8b += (t->cyc8b - (t->act8b + t->rec8b)) / 2;
2036 t->rec8b = t->cyc8b - t->act8b;
2037 }
2038
2039 if (t->active + t->recover < t->cycle) {
2040 t->active += (t->cycle - (t->active + t->recover)) / 2;
2041 t->recover = t->cycle - t->active;
2042 }
2043
2044 return 0;
2045 }
2046
2047 /**
2048 * ata_down_xfermask_limit - adjust dev xfer masks downward
2049 * @dev: Device to adjust xfer masks
2050 * @force_pio0: Force PIO0
2051 *
2052 * Adjust xfer masks of @dev downward. Note that this function
2053 * does not apply the change. Invoking ata_set_mode() afterwards
2054 * will apply the limit.
2055 *
2056 * LOCKING:
2057 * Inherited from caller.
2058 *
2059 * RETURNS:
2060 * 0 on success, negative errno on failure
2061 */
2062 int ata_down_xfermask_limit(struct ata_device *dev, int force_pio0)
2063 {
2064 unsigned long xfer_mask;
2065 int highbit;
2066
2067 xfer_mask = ata_pack_xfermask(dev->pio_mask, dev->mwdma_mask,
2068 dev->udma_mask);
2069
2070 if (!xfer_mask)
2071 goto fail;
2072 /* don't gear down to MWDMA from UDMA, go directly to PIO */
2073 if (xfer_mask & ATA_MASK_UDMA)
2074 xfer_mask &= ~ATA_MASK_MWDMA;
2075
2076 highbit = fls(xfer_mask) - 1;
2077 xfer_mask &= ~(1 << highbit);
2078 if (force_pio0)
2079 xfer_mask &= 1 << ATA_SHIFT_PIO;
2080 if (!xfer_mask)
2081 goto fail;
2082
2083 ata_unpack_xfermask(xfer_mask, &dev->pio_mask, &dev->mwdma_mask,
2084 &dev->udma_mask);
2085
2086 ata_dev_printk(dev, KERN_WARNING, "limiting speed to %s\n",
2087 ata_mode_string(xfer_mask));
2088
2089 return 0;
2090
2091 fail:
2092 return -EINVAL;
2093 }
2094
2095 static int ata_dev_set_mode(struct ata_device *dev)
2096 {
2097 unsigned int err_mask;
2098 int rc;
2099
2100 dev->flags &= ~ATA_DFLAG_PIO;
2101 if (dev->xfer_shift == ATA_SHIFT_PIO)
2102 dev->flags |= ATA_DFLAG_PIO;
2103
2104 err_mask = ata_dev_set_xfermode(dev);
2105 if (err_mask) {
2106 ata_dev_printk(dev, KERN_ERR, "failed to set xfermode "
2107 "(err_mask=0x%x)\n", err_mask);
2108 return -EIO;
2109 }
2110
2111 rc = ata_dev_revalidate(dev, 0);
2112 if (rc)
2113 return rc;
2114
2115 DPRINTK("xfer_shift=%u, xfer_mode=0x%x\n",
2116 dev->xfer_shift, (int)dev->xfer_mode);
2117
2118 ata_dev_printk(dev, KERN_INFO, "configured for %s\n",
2119 ata_mode_string(ata_xfer_mode2mask(dev->xfer_mode)));
2120 return 0;
2121 }
2122
2123 /**
2124 * ata_set_mode - Program timings and issue SET FEATURES - XFER
2125 * @ap: port on which timings will be programmed
2126 * @r_failed_dev: out paramter for failed device
2127 *
2128 * Set ATA device disk transfer mode (PIO3, UDMA6, etc.). If
2129 * ata_set_mode() fails, pointer to the failing device is
2130 * returned in @r_failed_dev.
2131 *
2132 * LOCKING:
2133 * PCI/etc. bus probe sem.
2134 *
2135 * RETURNS:
2136 * 0 on success, negative errno otherwise
2137 */
2138 int ata_set_mode(struct ata_port *ap, struct ata_device **r_failed_dev)
2139 {
2140 struct ata_device *dev;
2141 int i, rc = 0, used_dma = 0, found = 0;
2142
2143 /* has private set_mode? */
2144 if (ap->ops->set_mode) {
2145 /* FIXME: make ->set_mode handle no device case and
2146 * return error code and failing device on failure.
2147 */
2148 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2149 if (ata_dev_enabled(&ap->device[i])) {
2150 ap->ops->set_mode(ap);
2151 break;
2152 }
2153 }
2154 return 0;
2155 }
2156
2157 /* step 1: calculate xfer_mask */
2158 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2159 unsigned int pio_mask, dma_mask;
2160
2161 dev = &ap->device[i];
2162
2163 if (!ata_dev_enabled(dev))
2164 continue;
2165
2166 ata_dev_xfermask(dev);
2167
2168 pio_mask = ata_pack_xfermask(dev->pio_mask, 0, 0);
2169 dma_mask = ata_pack_xfermask(0, dev->mwdma_mask, dev->udma_mask);
2170 dev->pio_mode = ata_xfer_mask2mode(pio_mask);
2171 dev->dma_mode = ata_xfer_mask2mode(dma_mask);
2172
2173 found = 1;
2174 if (dev->dma_mode)
2175 used_dma = 1;
2176 }
2177 if (!found)
2178 goto out;
2179
2180 /* step 2: always set host PIO timings */
2181 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2182 dev = &ap->device[i];
2183 if (!ata_dev_enabled(dev))
2184 continue;
2185
2186 if (!dev->pio_mode) {
2187 ata_dev_printk(dev, KERN_WARNING, "no PIO support\n");
2188 rc = -EINVAL;
2189 goto out;
2190 }
2191
2192 dev->xfer_mode = dev->pio_mode;
2193 dev->xfer_shift = ATA_SHIFT_PIO;
2194 if (ap->ops->set_piomode)
2195 ap->ops->set_piomode(ap, dev);
2196 }
2197
2198 /* step 3: set host DMA timings */
2199 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2200 dev = &ap->device[i];
2201
2202 if (!ata_dev_enabled(dev) || !dev->dma_mode)
2203 continue;
2204
2205 dev->xfer_mode = dev->dma_mode;
2206 dev->xfer_shift = ata_xfer_mode2shift(dev->dma_mode);
2207 if (ap->ops->set_dmamode)
2208 ap->ops->set_dmamode(ap, dev);
2209 }
2210
2211 /* step 4: update devices' xfer mode */
2212 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2213 dev = &ap->device[i];
2214
2215 if (!ata_dev_enabled(dev))
2216 continue;
2217
2218 rc = ata_dev_set_mode(dev);
2219 if (rc)
2220 goto out;
2221 }
2222
2223 /* Record simplex status. If we selected DMA then the other
2224 * host channels are not permitted to do so.
2225 */
2226 if (used_dma && (ap->host_set->flags & ATA_HOST_SIMPLEX))
2227 ap->host_set->simplex_claimed = 1;
2228
2229 /* step5: chip specific finalisation */
2230 if (ap->ops->post_set_mode)
2231 ap->ops->post_set_mode(ap);
2232
2233 out:
2234 if (rc)
2235 *r_failed_dev = dev;
2236 return rc;
2237 }
2238
2239 /**
2240 * ata_tf_to_host - issue ATA taskfile to host controller
2241 * @ap: port to which command is being issued
2242 * @tf: ATA taskfile register set
2243 *
2244 * Issues ATA taskfile register set to ATA host controller,
2245 * with proper synchronization with interrupt handler and
2246 * other threads.
2247 *
2248 * LOCKING:
2249 * spin_lock_irqsave(host_set lock)
2250 */
2251
2252 static inline void ata_tf_to_host(struct ata_port *ap,
2253 const struct ata_taskfile *tf)
2254 {
2255 ap->ops->tf_load(ap, tf);
2256 ap->ops->exec_command(ap, tf);
2257 }
2258
2259 /**
2260 * ata_busy_sleep - sleep until BSY clears, or timeout
2261 * @ap: port containing status register to be polled
2262 * @tmout_pat: impatience timeout
2263 * @tmout: overall timeout
2264 *
2265 * Sleep until ATA Status register bit BSY clears,
2266 * or a timeout occurs.
2267 *
2268 * LOCKING: None.
2269 */
2270
2271 unsigned int ata_busy_sleep (struct ata_port *ap,
2272 unsigned long tmout_pat, unsigned long tmout)
2273 {
2274 unsigned long timer_start, timeout;
2275 u8 status;
2276
2277 status = ata_busy_wait(ap, ATA_BUSY, 300);
2278 timer_start = jiffies;
2279 timeout = timer_start + tmout_pat;
2280 while ((status & ATA_BUSY) && (time_before(jiffies, timeout))) {
2281 msleep(50);
2282 status = ata_busy_wait(ap, ATA_BUSY, 3);
2283 }
2284
2285 if (status & ATA_BUSY)
2286 ata_port_printk(ap, KERN_WARNING,
2287 "port is slow to respond, please be patient\n");
2288
2289 timeout = timer_start + tmout;
2290 while ((status & ATA_BUSY) && (time_before(jiffies, timeout))) {
2291 msleep(50);
2292 status = ata_chk_status(ap);
2293 }
2294
2295 if (status & ATA_BUSY) {
2296 ata_port_printk(ap, KERN_ERR, "port failed to respond "
2297 "(%lu secs)\n", tmout / HZ);
2298 return 1;
2299 }
2300
2301 return 0;
2302 }
2303
2304 static void ata_bus_post_reset(struct ata_port *ap, unsigned int devmask)
2305 {
2306 struct ata_ioports *ioaddr = &ap->ioaddr;
2307 unsigned int dev0 = devmask & (1 << 0);
2308 unsigned int dev1 = devmask & (1 << 1);
2309 unsigned long timeout;
2310
2311 /* if device 0 was found in ata_devchk, wait for its
2312 * BSY bit to clear
2313 */
2314 if (dev0)
2315 ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT);
2316
2317 /* if device 1 was found in ata_devchk, wait for
2318 * register access, then wait for BSY to clear
2319 */
2320 timeout = jiffies + ATA_TMOUT_BOOT;
2321 while (dev1) {
2322 u8 nsect, lbal;
2323
2324 ap->ops->dev_select(ap, 1);
2325 if (ap->flags & ATA_FLAG_MMIO) {
2326 nsect = readb((void __iomem *) ioaddr->nsect_addr);
2327 lbal = readb((void __iomem *) ioaddr->lbal_addr);
2328 } else {
2329 nsect = inb(ioaddr->nsect_addr);
2330 lbal = inb(ioaddr->lbal_addr);
2331 }
2332 if ((nsect == 1) && (lbal == 1))
2333 break;
2334 if (time_after(jiffies, timeout)) {
2335 dev1 = 0;
2336 break;
2337 }
2338 msleep(50); /* give drive a breather */
2339 }
2340 if (dev1)
2341 ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT);
2342
2343 /* is all this really necessary? */
2344 ap->ops->dev_select(ap, 0);
2345 if (dev1)
2346 ap->ops->dev_select(ap, 1);
2347 if (dev0)
2348 ap->ops->dev_select(ap, 0);
2349 }
2350
2351 static unsigned int ata_bus_softreset(struct ata_port *ap,
2352 unsigned int devmask)
2353 {
2354 struct ata_ioports *ioaddr = &ap->ioaddr;
2355
2356 DPRINTK("ata%u: bus reset via SRST\n", ap->id);
2357
2358 /* software reset. causes dev0 to be selected */
2359 if (ap->flags & ATA_FLAG_MMIO) {
2360 writeb(ap->ctl, (void __iomem *) ioaddr->ctl_addr);
2361 udelay(20); /* FIXME: flush */
2362 writeb(ap->ctl | ATA_SRST, (void __iomem *) ioaddr->ctl_addr);
2363 udelay(20); /* FIXME: flush */
2364 writeb(ap->ctl, (void __iomem *) ioaddr->ctl_addr);
2365 } else {
2366 outb(ap->ctl, ioaddr->ctl_addr);
2367 udelay(10);
2368 outb(ap->ctl | ATA_SRST, ioaddr->ctl_addr);
2369 udelay(10);
2370 outb(ap->ctl, ioaddr->ctl_addr);
2371 }
2372
2373 /* spec mandates ">= 2ms" before checking status.
2374 * We wait 150ms, because that was the magic delay used for
2375 * ATAPI devices in Hale Landis's ATADRVR, for the period of time
2376 * between when the ATA command register is written, and then
2377 * status is checked. Because waiting for "a while" before
2378 * checking status is fine, post SRST, we perform this magic
2379 * delay here as well.
2380 *
2381 * Old drivers/ide uses the 2mS rule and then waits for ready
2382 */
2383 msleep(150);
2384
2385 /* Before we perform post reset processing we want to see if
2386 * the bus shows 0xFF because the odd clown forgets the D7
2387 * pulldown resistor.
2388 */
2389 if (ata_check_status(ap) == 0xFF) {
2390 ata_port_printk(ap, KERN_ERR, "SRST failed (status 0xFF)\n");
2391 return AC_ERR_OTHER;
2392 }
2393
2394 ata_bus_post_reset(ap, devmask);
2395
2396 return 0;
2397 }
2398
2399 /**
2400 * ata_bus_reset - reset host port and associated ATA channel
2401 * @ap: port to reset
2402 *
2403 * This is typically the first time we actually start issuing
2404 * commands to the ATA channel. We wait for BSY to clear, then
2405 * issue EXECUTE DEVICE DIAGNOSTIC command, polling for its
2406 * result. Determine what devices, if any, are on the channel
2407 * by looking at the device 0/1 error register. Look at the signature
2408 * stored in each device's taskfile registers, to determine if
2409 * the device is ATA or ATAPI.
2410 *
2411 * LOCKING:
2412 * PCI/etc. bus probe sem.
2413 * Obtains host_set lock.
2414 *
2415 * SIDE EFFECTS:
2416 * Sets ATA_FLAG_DISABLED if bus reset fails.
2417 */
2418
2419 void ata_bus_reset(struct ata_port *ap)
2420 {
2421 struct ata_ioports *ioaddr = &ap->ioaddr;
2422 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
2423 u8 err;
2424 unsigned int dev0, dev1 = 0, devmask = 0;
2425
2426 DPRINTK("ENTER, host %u, port %u\n", ap->id, ap->port_no);
2427
2428 /* determine if device 0/1 are present */
2429 if (ap->flags & ATA_FLAG_SATA_RESET)
2430 dev0 = 1;
2431 else {
2432 dev0 = ata_devchk(ap, 0);
2433 if (slave_possible)
2434 dev1 = ata_devchk(ap, 1);
2435 }
2436
2437 if (dev0)
2438 devmask |= (1 << 0);
2439 if (dev1)
2440 devmask |= (1 << 1);
2441
2442 /* select device 0 again */
2443 ap->ops->dev_select(ap, 0);
2444
2445 /* issue bus reset */
2446 if (ap->flags & ATA_FLAG_SRST)
2447 if (ata_bus_softreset(ap, devmask))
2448 goto err_out;
2449
2450 /*
2451 * determine by signature whether we have ATA or ATAPI devices
2452 */
2453 ap->device[0].class = ata_dev_try_classify(ap, 0, &err);
2454 if ((slave_possible) && (err != 0x81))
2455 ap->device[1].class = ata_dev_try_classify(ap, 1, &err);
2456
2457 /* re-enable interrupts */
2458 if (ap->ioaddr.ctl_addr) /* FIXME: hack. create a hook instead */
2459 ata_irq_on(ap);
2460
2461 /* is double-select really necessary? */
2462 if (ap->device[1].class != ATA_DEV_NONE)
2463 ap->ops->dev_select(ap, 1);
2464 if (ap->device[0].class != ATA_DEV_NONE)
2465 ap->ops->dev_select(ap, 0);
2466
2467 /* if no devices were detected, disable this port */
2468 if ((ap->device[0].class == ATA_DEV_NONE) &&
2469 (ap->device[1].class == ATA_DEV_NONE))
2470 goto err_out;
2471
2472 if (ap->flags & (ATA_FLAG_SATA_RESET | ATA_FLAG_SRST)) {
2473 /* set up device control for ATA_FLAG_SATA_RESET */
2474 if (ap->flags & ATA_FLAG_MMIO)
2475 writeb(ap->ctl, (void __iomem *) ioaddr->ctl_addr);
2476 else
2477 outb(ap->ctl, ioaddr->ctl_addr);
2478 }
2479
2480 DPRINTK("EXIT\n");
2481 return;
2482
2483 err_out:
2484 ata_port_printk(ap, KERN_ERR, "disabling port\n");
2485 ap->ops->port_disable(ap);
2486
2487 DPRINTK("EXIT\n");
2488 }
2489
2490 /**
2491 * sata_phy_debounce - debounce SATA phy status
2492 * @ap: ATA port to debounce SATA phy status for
2493 * @params: timing parameters { interval, duratinon, timeout } in msec
2494 *
2495 * Make sure SStatus of @ap reaches stable state, determined by
2496 * holding the same value where DET is not 1 for @duration polled
2497 * every @interval, before @timeout. Timeout constraints the
2498 * beginning of the stable state. Because, after hot unplugging,
2499 * DET gets stuck at 1 on some controllers, this functions waits
2500 * until timeout then returns 0 if DET is stable at 1.
2501 *
2502 * LOCKING:
2503 * Kernel thread context (may sleep)
2504 *
2505 * RETURNS:
2506 * 0 on success, -errno on failure.
2507 */
2508 int sata_phy_debounce(struct ata_port *ap, const unsigned long *params)
2509 {
2510 unsigned long interval_msec = params[0];
2511 unsigned long duration = params[1] * HZ / 1000;
2512 unsigned long timeout = jiffies + params[2] * HZ / 1000;
2513 unsigned long last_jiffies;
2514 u32 last, cur;
2515 int rc;
2516
2517 if ((rc = sata_scr_read(ap, SCR_STATUS, &cur)))
2518 return rc;
2519 cur &= 0xf;
2520
2521 last = cur;
2522 last_jiffies = jiffies;
2523
2524 while (1) {
2525 msleep(interval_msec);
2526 if ((rc = sata_scr_read(ap, SCR_STATUS, &cur)))
2527 return rc;
2528 cur &= 0xf;
2529
2530 /* DET stable? */
2531 if (cur == last) {
2532 if (cur == 1 && time_before(jiffies, timeout))
2533 continue;
2534 if (time_after(jiffies, last_jiffies + duration))
2535 return 0;
2536 continue;
2537 }
2538
2539 /* unstable, start over */
2540 last = cur;
2541 last_jiffies = jiffies;
2542
2543 /* check timeout */
2544 if (time_after(jiffies, timeout))
2545 return -EBUSY;
2546 }
2547 }
2548
2549 /**
2550 * sata_phy_resume - resume SATA phy
2551 * @ap: ATA port to resume SATA phy for
2552 * @params: timing parameters { interval, duratinon, timeout } in msec
2553 *
2554 * Resume SATA phy of @ap and debounce it.
2555 *
2556 * LOCKING:
2557 * Kernel thread context (may sleep)
2558 *
2559 * RETURNS:
2560 * 0 on success, -errno on failure.
2561 */
2562 int sata_phy_resume(struct ata_port *ap, const unsigned long *params)
2563 {
2564 u32 scontrol;
2565 int rc;
2566
2567 if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
2568 return rc;
2569
2570 scontrol = (scontrol & 0x0f0) | 0x300;
2571
2572 if ((rc = sata_scr_write(ap, SCR_CONTROL, scontrol)))
2573 return rc;
2574
2575 /* Some PHYs react badly if SStatus is pounded immediately
2576 * after resuming. Delay 200ms before debouncing.
2577 */
2578 msleep(200);
2579
2580 return sata_phy_debounce(ap, params);
2581 }
2582
2583 static void ata_wait_spinup(struct ata_port *ap)
2584 {
2585 struct ata_eh_context *ehc = &ap->eh_context;
2586 unsigned long end, secs;
2587 int rc;
2588
2589 /* first, debounce phy if SATA */
2590 if (ap->cbl == ATA_CBL_SATA) {
2591 rc = sata_phy_debounce(ap, sata_deb_timing_eh);
2592
2593 /* if debounced successfully and offline, no need to wait */
2594 if ((rc == 0 || rc == -EOPNOTSUPP) && ata_port_offline(ap))
2595 return;
2596 }
2597
2598 /* okay, let's give the drive time to spin up */
2599 end = ehc->i.hotplug_timestamp + ATA_SPINUP_WAIT * HZ / 1000;
2600 secs = ((end - jiffies) + HZ - 1) / HZ;
2601
2602 if (time_after(jiffies, end))
2603 return;
2604
2605 if (secs > 5)
2606 ata_port_printk(ap, KERN_INFO, "waiting for device to spin up "
2607 "(%lu secs)\n", secs);
2608
2609 schedule_timeout_uninterruptible(end - jiffies);
2610 }
2611
2612 /**
2613 * ata_std_prereset - prepare for reset
2614 * @ap: ATA port to be reset
2615 *
2616 * @ap is about to be reset. Initialize it.
2617 *
2618 * LOCKING:
2619 * Kernel thread context (may sleep)
2620 *
2621 * RETURNS:
2622 * 0 on success, -errno otherwise.
2623 */
2624 int ata_std_prereset(struct ata_port *ap)
2625 {
2626 struct ata_eh_context *ehc = &ap->eh_context;
2627 const unsigned long *timing;
2628 int rc;
2629
2630 /* hotplug? */
2631 if (ehc->i.flags & ATA_EHI_HOTPLUGGED) {
2632 if (ap->flags & ATA_FLAG_HRST_TO_RESUME)
2633 ehc->i.action |= ATA_EH_HARDRESET;
2634 if (ap->flags & ATA_FLAG_SKIP_D2H_BSY)
2635 ata_wait_spinup(ap);
2636 }
2637
2638 /* if we're about to do hardreset, nothing more to do */
2639 if (ehc->i.action & ATA_EH_HARDRESET)
2640 return 0;
2641
2642 /* if SATA, resume phy */
2643 if (ap->cbl == ATA_CBL_SATA) {
2644 if (ap->flags & ATA_FLAG_LOADING)
2645 timing = sata_deb_timing_boot;
2646 else
2647 timing = sata_deb_timing_eh;
2648
2649 rc = sata_phy_resume(ap, timing);
2650 if (rc && rc != -EOPNOTSUPP) {
2651 /* phy resume failed */
2652 ata_port_printk(ap, KERN_WARNING, "failed to resume "
2653 "link for reset (errno=%d)\n", rc);
2654 return rc;
2655 }
2656 }
2657
2658 /* Wait for !BSY if the controller can wait for the first D2H
2659 * Reg FIS and we don't know that no device is attached.
2660 */
2661 if (!(ap->flags & ATA_FLAG_SKIP_D2H_BSY) && !ata_port_offline(ap))
2662 ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT);
2663
2664 return 0;
2665 }
2666
2667 /**
2668 * ata_std_softreset - reset host port via ATA SRST
2669 * @ap: port to reset
2670 * @classes: resulting classes of attached devices
2671 *
2672 * Reset host port using ATA SRST.
2673 *
2674 * LOCKING:
2675 * Kernel thread context (may sleep)
2676 *
2677 * RETURNS:
2678 * 0 on success, -errno otherwise.
2679 */
2680 int ata_std_softreset(struct ata_port *ap, unsigned int *classes)
2681 {
2682 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
2683 unsigned int devmask = 0, err_mask;
2684 u8 err;
2685
2686 DPRINTK("ENTER\n");
2687
2688 if (ata_port_offline(ap)) {
2689 classes[0] = ATA_DEV_NONE;
2690 goto out;
2691 }
2692
2693 /* determine if device 0/1 are present */
2694 if (ata_devchk(ap, 0))
2695 devmask |= (1 << 0);
2696 if (slave_possible && ata_devchk(ap, 1))
2697 devmask |= (1 << 1);
2698
2699 /* select device 0 again */
2700 ap->ops->dev_select(ap, 0);
2701
2702 /* issue bus reset */
2703 DPRINTK("about to softreset, devmask=%x\n", devmask);
2704 err_mask = ata_bus_softreset(ap, devmask);
2705 if (err_mask) {
2706 ata_port_printk(ap, KERN_ERR, "SRST failed (err_mask=0x%x)\n",
2707 err_mask);
2708 return -EIO;
2709 }
2710
2711 /* determine by signature whether we have ATA or ATAPI devices */
2712 classes[0] = ata_dev_try_classify(ap, 0, &err);
2713 if (slave_possible && err != 0x81)
2714 classes[1] = ata_dev_try_classify(ap, 1, &err);
2715
2716 out:
2717 DPRINTK("EXIT, classes[0]=%u [1]=%u\n", classes[0], classes[1]);
2718 return 0;
2719 }
2720
2721 /**
2722 * sata_std_hardreset - reset host port via SATA phy reset
2723 * @ap: port to reset
2724 * @class: resulting class of attached device
2725 *
2726 * SATA phy-reset host port using DET bits of SControl register.
2727 *
2728 * LOCKING:
2729 * Kernel thread context (may sleep)
2730 *
2731 * RETURNS:
2732 * 0 on success, -errno otherwise.
2733 */
2734 int sata_std_hardreset(struct ata_port *ap, unsigned int *class)
2735 {
2736 u32 scontrol;
2737 int rc;
2738
2739 DPRINTK("ENTER\n");
2740
2741 if (sata_set_spd_needed(ap)) {
2742 /* SATA spec says nothing about how to reconfigure
2743 * spd. To be on the safe side, turn off phy during
2744 * reconfiguration. This works for at least ICH7 AHCI
2745 * and Sil3124.
2746 */
2747 if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
2748 return rc;
2749
2750 scontrol = (scontrol & 0x0f0) | 0x302;
2751
2752 if ((rc = sata_scr_write(ap, SCR_CONTROL, scontrol)))
2753 return rc;
2754
2755 sata_set_spd(ap);
2756 }
2757
2758 /* issue phy wake/reset */
2759 if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
2760 return rc;
2761
2762 scontrol = (scontrol & 0x0f0) | 0x301;
2763
2764 if ((rc = sata_scr_write_flush(ap, SCR_CONTROL, scontrol)))
2765 return rc;
2766
2767 /* Couldn't find anything in SATA I/II specs, but AHCI-1.1
2768 * 10.4.2 says at least 1 ms.
2769 */
2770 msleep(1);
2771
2772 /* bring phy back */
2773 sata_phy_resume(ap, sata_deb_timing_eh);
2774
2775 /* TODO: phy layer with polling, timeouts, etc. */
2776 if (ata_port_offline(ap)) {
2777 *class = ATA_DEV_NONE;
2778 DPRINTK("EXIT, link offline\n");
2779 return 0;
2780 }
2781
2782 if (ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT)) {
2783 ata_port_printk(ap, KERN_ERR,
2784 "COMRESET failed (device not ready)\n");
2785 return -EIO;
2786 }
2787
2788 ap->ops->dev_select(ap, 0); /* probably unnecessary */
2789
2790 *class = ata_dev_try_classify(ap, 0, NULL);
2791
2792 DPRINTK("EXIT, class=%u\n", *class);
2793 return 0;
2794 }
2795
2796 /**
2797 * ata_std_postreset - standard postreset callback
2798 * @ap: the target ata_port
2799 * @classes: classes of attached devices
2800 *
2801 * This function is invoked after a successful reset. Note that
2802 * the device might have been reset more than once using
2803 * different reset methods before postreset is invoked.
2804 *
2805 * LOCKING:
2806 * Kernel thread context (may sleep)
2807 */
2808 void ata_std_postreset(struct ata_port *ap, unsigned int *classes)
2809 {
2810 u32 serror;
2811
2812 DPRINTK("ENTER\n");
2813
2814 /* print link status */
2815 sata_print_link_status(ap);
2816
2817 /* clear SError */
2818 if (sata_scr_read(ap, SCR_ERROR, &serror) == 0)
2819 sata_scr_write(ap, SCR_ERROR, serror);
2820
2821 /* re-enable interrupts */
2822 if (!ap->ops->error_handler) {
2823 /* FIXME: hack. create a hook instead */
2824 if (ap->ioaddr.ctl_addr)
2825 ata_irq_on(ap);
2826 }
2827
2828 /* is double-select really necessary? */
2829 if (classes[0] != ATA_DEV_NONE)
2830 ap->ops->dev_select(ap, 1);
2831 if (classes[1] != ATA_DEV_NONE)
2832 ap->ops->dev_select(ap, 0);
2833
2834 /* bail out if no device is present */
2835 if (classes[0] == ATA_DEV_NONE && classes[1] == ATA_DEV_NONE) {
2836 DPRINTK("EXIT, no device\n");
2837 return;
2838 }
2839
2840 /* set up device control */
2841 if (ap->ioaddr.ctl_addr) {
2842 if (ap->flags & ATA_FLAG_MMIO)
2843 writeb(ap->ctl, (void __iomem *) ap->ioaddr.ctl_addr);
2844 else
2845 outb(ap->ctl, ap->ioaddr.ctl_addr);
2846 }
2847
2848 DPRINTK("EXIT\n");
2849 }
2850
2851 /**
2852 * ata_dev_same_device - Determine whether new ID matches configured device
2853 * @dev: device to compare against
2854 * @new_class: class of the new device
2855 * @new_id: IDENTIFY page of the new device
2856 *
2857 * Compare @new_class and @new_id against @dev and determine
2858 * whether @dev is the device indicated by @new_class and
2859 * @new_id.
2860 *
2861 * LOCKING:
2862 * None.
2863 *
2864 * RETURNS:
2865 * 1 if @dev matches @new_class and @new_id, 0 otherwise.
2866 */
2867 static int ata_dev_same_device(struct ata_device *dev, unsigned int new_class,
2868 const u16 *new_id)
2869 {
2870 const u16 *old_id = dev->id;
2871 unsigned char model[2][41], serial[2][21];
2872 u64 new_n_sectors;
2873
2874 if (dev->class != new_class) {
2875 ata_dev_printk(dev, KERN_INFO, "class mismatch %d != %d\n",
2876 dev->class, new_class);
2877 return 0;
2878 }
2879
2880 ata_id_c_string(old_id, model[0], ATA_ID_PROD_OFS, sizeof(model[0]));
2881 ata_id_c_string(new_id, model[1], ATA_ID_PROD_OFS, sizeof(model[1]));
2882 ata_id_c_string(old_id, serial[0], ATA_ID_SERNO_OFS, sizeof(serial[0]));
2883 ata_id_c_string(new_id, serial[1], ATA_ID_SERNO_OFS, sizeof(serial[1]));
2884 new_n_sectors = ata_id_n_sectors(new_id);
2885
2886 if (strcmp(model[0], model[1])) {
2887 ata_dev_printk(dev, KERN_INFO, "model number mismatch "
2888 "'%s' != '%s'\n", model[0], model[1]);
2889 return 0;
2890 }
2891
2892 if (strcmp(serial[0], serial[1])) {
2893 ata_dev_printk(dev, KERN_INFO, "serial number mismatch "
2894 "'%s' != '%s'\n", serial[0], serial[1]);
2895 return 0;
2896 }
2897
2898 if (dev->class == ATA_DEV_ATA && dev->n_sectors != new_n_sectors) {
2899 ata_dev_printk(dev, KERN_INFO, "n_sectors mismatch "
2900 "%llu != %llu\n",
2901 (unsigned long long)dev->n_sectors,
2902 (unsigned long long)new_n_sectors);
2903 return 0;
2904 }
2905
2906 return 1;
2907 }
2908
2909 /**
2910 * ata_dev_revalidate - Revalidate ATA device
2911 * @dev: device to revalidate
2912 * @post_reset: is this revalidation after reset?
2913 *
2914 * Re-read IDENTIFY page and make sure @dev is still attached to
2915 * the port.
2916 *
2917 * LOCKING:
2918 * Kernel thread context (may sleep)
2919 *
2920 * RETURNS:
2921 * 0 on success, negative errno otherwise
2922 */
2923 int ata_dev_revalidate(struct ata_device *dev, int post_reset)
2924 {
2925 unsigned int class = dev->class;
2926 u16 *id = (void *)dev->ap->sector_buf;
2927 int rc;
2928
2929 if (!ata_dev_enabled(dev)) {
2930 rc = -ENODEV;
2931 goto fail;
2932 }
2933
2934 /* read ID data */
2935 rc = ata_dev_read_id(dev, &class, post_reset, id);
2936 if (rc)
2937 goto fail;
2938
2939 /* is the device still there? */
2940 if (!ata_dev_same_device(dev, class, id)) {
2941 rc = -ENODEV;
2942 goto fail;
2943 }
2944
2945 memcpy(dev->id, id, sizeof(id[0]) * ATA_ID_WORDS);
2946
2947 /* configure device according to the new ID */
2948 rc = ata_dev_configure(dev, 0);
2949 if (rc == 0)
2950 return 0;
2951
2952 fail:
2953 ata_dev_printk(dev, KERN_ERR, "revalidation failed (errno=%d)\n", rc);
2954 return rc;
2955 }
2956
2957 static const char * const ata_dma_blacklist [] = {
2958 "WDC AC11000H", NULL,
2959 "WDC AC22100H", NULL,
2960 "WDC AC32500H", NULL,
2961 "WDC AC33100H", NULL,
2962 "WDC AC31600H", NULL,
2963 "WDC AC32100H", "24.09P07",
2964 "WDC AC23200L", "21.10N21",
2965 "Compaq CRD-8241B", NULL,
2966 "CRD-8400B", NULL,
2967 "CRD-8480B", NULL,
2968 "CRD-8482B", NULL,
2969 "CRD-84", NULL,
2970 "SanDisk SDP3B", NULL,
2971 "SanDisk SDP3B-64", NULL,
2972 "SANYO CD-ROM CRD", NULL,
2973 "HITACHI CDR-8", NULL,
2974 "HITACHI CDR-8335", NULL,
2975 "HITACHI CDR-8435", NULL,
2976 "Toshiba CD-ROM XM-6202B", NULL,
2977 "TOSHIBA CD-ROM XM-1702BC", NULL,
2978 "CD-532E-A", NULL,
2979 "E-IDE CD-ROM CR-840", NULL,
2980 "CD-ROM Drive/F5A", NULL,
2981 "WPI CDD-820", NULL,
2982 "SAMSUNG CD-ROM SC-148C", NULL,
2983 "SAMSUNG CD-ROM SC", NULL,
2984 "SanDisk SDP3B-64", NULL,
2985 "ATAPI CD-ROM DRIVE 40X MAXIMUM",NULL,
2986 "_NEC DV5800A", NULL,
2987 "SAMSUNG CD-ROM SN-124", "N001"
2988 };
2989
2990 static int ata_strim(char *s, size_t len)
2991 {
2992 len = strnlen(s, len);
2993
2994 /* ATAPI specifies that empty space is blank-filled; remove blanks */
2995 while ((len > 0) && (s[len - 1] == ' ')) {
2996 len--;
2997 s[len] = 0;
2998 }
2999 return len;
3000 }
3001
3002 static int ata_dma_blacklisted(const struct ata_device *dev)
3003 {
3004 unsigned char model_num[40];
3005 unsigned char model_rev[16];
3006 unsigned int nlen, rlen;
3007 int i;
3008
3009 /* We don't support polling DMA.
3010 * DMA blacklist those ATAPI devices with CDB-intr (and use PIO)
3011 * if the LLDD handles only interrupts in the HSM_ST_LAST state.
3012 */
3013 if ((dev->ap->flags & ATA_FLAG_PIO_POLLING) &&
3014 (dev->flags & ATA_DFLAG_CDB_INTR))
3015 return 1;
3016
3017 ata_id_string(dev->id, model_num, ATA_ID_PROD_OFS,
3018 sizeof(model_num));
3019 ata_id_string(dev->id, model_rev, ATA_ID_FW_REV_OFS,
3020 sizeof(model_rev));
3021 nlen = ata_strim(model_num, sizeof(model_num));
3022 rlen = ata_strim(model_rev, sizeof(model_rev));
3023
3024 for (i = 0; i < ARRAY_SIZE(ata_dma_blacklist); i += 2) {
3025 if (!strncmp(ata_dma_blacklist[i], model_num, nlen)) {
3026 if (ata_dma_blacklist[i+1] == NULL)
3027 return 1;
3028 if (!strncmp(ata_dma_blacklist[i], model_rev, rlen))
3029 return 1;
3030 }
3031 }
3032 return 0;
3033 }
3034
3035 /**
3036 * ata_dev_xfermask - Compute supported xfermask of the given device
3037 * @dev: Device to compute xfermask for
3038 *
3039 * Compute supported xfermask of @dev and store it in
3040 * dev->*_mask. This function is responsible for applying all
3041 * known limits including host controller limits, device
3042 * blacklist, etc...
3043 *
3044 * FIXME: The current implementation limits all transfer modes to
3045 * the fastest of the lowested device on the port. This is not
3046 * required on most controllers.
3047 *
3048 * LOCKING:
3049 * None.
3050 */
3051 static void ata_dev_xfermask(struct ata_device *dev)
3052 {
3053 struct ata_port *ap = dev->ap;
3054 struct ata_host_set *hs = ap->host_set;
3055 unsigned long xfer_mask;
3056 int i;
3057
3058 xfer_mask = ata_pack_xfermask(ap->pio_mask,
3059 ap->mwdma_mask, ap->udma_mask);
3060
3061 /* Apply cable rule here. Don't apply it early because when
3062 * we handle hot plug the cable type can itself change.
3063 */
3064 if (ap->cbl == ATA_CBL_PATA40)
3065 xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA);
3066
3067 /* FIXME: Use port-wide xfermask for now */
3068 for (i = 0; i < ATA_MAX_DEVICES; i++) {
3069 struct ata_device *d = &ap->device[i];
3070
3071 if (ata_dev_absent(d))
3072 continue;
3073
3074 if (ata_dev_disabled(d)) {
3075 /* to avoid violating device selection timing */
3076 xfer_mask &= ata_pack_xfermask(d->pio_mask,
3077 UINT_MAX, UINT_MAX);
3078 continue;
3079 }
3080
3081 xfer_mask &= ata_pack_xfermask(d->pio_mask,
3082 d->mwdma_mask, d->udma_mask);
3083 xfer_mask &= ata_id_xfermask(d->id);
3084 if (ata_dma_blacklisted(d))
3085 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
3086 }
3087
3088 if (ata_dma_blacklisted(dev))
3089 ata_dev_printk(dev, KERN_WARNING,
3090 "device is on DMA blacklist, disabling DMA\n");
3091
3092 if (hs->flags & ATA_HOST_SIMPLEX) {
3093 if (hs->simplex_claimed)
3094 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
3095 }
3096
3097 if (ap->ops->mode_filter)
3098 xfer_mask = ap->ops->mode_filter(ap, dev, xfer_mask);
3099
3100 ata_unpack_xfermask(xfer_mask, &dev->pio_mask,
3101 &dev->mwdma_mask, &dev->udma_mask);
3102 }
3103
3104 /**
3105 * ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command
3106 * @dev: Device to which command will be sent
3107 *
3108 * Issue SET FEATURES - XFER MODE command to device @dev
3109 * on port @ap.
3110 *
3111 * LOCKING:
3112 * PCI/etc. bus probe sem.
3113 *
3114 * RETURNS:
3115 * 0 on success, AC_ERR_* mask otherwise.
3116 */
3117
3118 static unsigned int ata_dev_set_xfermode(struct ata_device *dev)
3119 {
3120 struct ata_taskfile tf;
3121 unsigned int err_mask;
3122
3123 /* set up set-features taskfile */
3124 DPRINTK("set features - xfer mode\n");
3125
3126 ata_tf_init(dev, &tf);
3127 tf.command = ATA_CMD_SET_FEATURES;
3128 tf.feature = SETFEATURES_XFER;
3129 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
3130 tf.protocol = ATA_PROT_NODATA;
3131 tf.nsect = dev->xfer_mode;
3132
3133 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
3134
3135 DPRINTK("EXIT, err_mask=%x\n", err_mask);
3136 return err_mask;
3137 }
3138
3139 /**
3140 * ata_dev_init_params - Issue INIT DEV PARAMS command
3141 * @dev: Device to which command will be sent
3142 * @heads: Number of heads (taskfile parameter)
3143 * @sectors: Number of sectors (taskfile parameter)
3144 *
3145 * LOCKING:
3146 * Kernel thread context (may sleep)
3147 *
3148 * RETURNS:
3149 * 0 on success, AC_ERR_* mask otherwise.
3150 */
3151 static unsigned int ata_dev_init_params(struct ata_device *dev,
3152 u16 heads, u16 sectors)
3153 {
3154 struct ata_taskfile tf;
3155 unsigned int err_mask;
3156
3157 /* Number of sectors per track 1-255. Number of heads 1-16 */
3158 if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16)
3159 return AC_ERR_INVALID;
3160
3161 /* set up init dev params taskfile */
3162 DPRINTK("init dev params \n");
3163
3164 ata_tf_init(dev, &tf);
3165 tf.command = ATA_CMD_INIT_DEV_PARAMS;
3166 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
3167 tf.protocol = ATA_PROT_NODATA;
3168 tf.nsect = sectors;
3169 tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */
3170
3171 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
3172
3173 DPRINTK("EXIT, err_mask=%x\n", err_mask);
3174 return err_mask;
3175 }
3176
3177 /**
3178 * ata_sg_clean - Unmap DMA memory associated with command
3179 * @qc: Command containing DMA memory to be released
3180 *
3181 * Unmap all mapped DMA memory associated with this command.
3182 *
3183 * LOCKING:
3184 * spin_lock_irqsave(host_set lock)
3185 */
3186
3187 static void ata_sg_clean(struct ata_queued_cmd *qc)
3188 {
3189 struct ata_port *ap = qc->ap;
3190 struct scatterlist *sg = qc->__sg;
3191 int dir = qc->dma_dir;
3192 void *pad_buf = NULL;
3193
3194 WARN_ON(!(qc->flags & ATA_QCFLAG_DMAMAP));
3195 WARN_ON(sg == NULL);
3196
3197 if (qc->flags & ATA_QCFLAG_SINGLE)
3198 WARN_ON(qc->n_elem > 1);
3199
3200 VPRINTK("unmapping %u sg elements\n", qc->n_elem);
3201
3202 /* if we padded the buffer out to 32-bit bound, and data
3203 * xfer direction is from-device, we must copy from the
3204 * pad buffer back into the supplied buffer
3205 */
3206 if (qc->pad_len && !(qc->tf.flags & ATA_TFLAG_WRITE))
3207 pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
3208
3209 if (qc->flags & ATA_QCFLAG_SG) {
3210 if (qc->n_elem)
3211 dma_unmap_sg(ap->dev, sg, qc->n_elem, dir);
3212 /* restore last sg */
3213 sg[qc->orig_n_elem - 1].length += qc->pad_len;
3214 if (pad_buf) {
3215 struct scatterlist *psg = &qc->pad_sgent;
3216 void *addr = kmap_atomic(psg->page, KM_IRQ0);
3217 memcpy(addr + psg->offset, pad_buf, qc->pad_len);
3218 kunmap_atomic(addr, KM_IRQ0);
3219 }
3220 } else {
3221 if (qc->n_elem)
3222 dma_unmap_single(ap->dev,
3223 sg_dma_address(&sg[0]), sg_dma_len(&sg[0]),
3224 dir);
3225 /* restore sg */
3226 sg->length += qc->pad_len;
3227 if (pad_buf)
3228 memcpy(qc->buf_virt + sg->length - qc->pad_len,
3229 pad_buf, qc->pad_len);
3230 }
3231
3232 qc->flags &= ~ATA_QCFLAG_DMAMAP;
3233 qc->__sg = NULL;
3234 }
3235
3236 /**
3237 * ata_fill_sg - Fill PCI IDE PRD table
3238 * @qc: Metadata associated with taskfile to be transferred
3239 *
3240 * Fill PCI IDE PRD (scatter-gather) table with segments
3241 * associated with the current disk command.
3242 *
3243 * LOCKING:
3244 * spin_lock_irqsave(host_set lock)
3245 *
3246 */
3247 static void ata_fill_sg(struct ata_queued_cmd *qc)
3248 {
3249 struct ata_port *ap = qc->ap;
3250 struct scatterlist *sg;
3251 unsigned int idx;
3252
3253 WARN_ON(qc->__sg == NULL);
3254 WARN_ON(qc->n_elem == 0 && qc->pad_len == 0);
3255
3256 idx = 0;
3257 ata_for_each_sg(sg, qc) {
3258 u32 addr, offset;
3259 u32 sg_len, len;
3260
3261 /* determine if physical DMA addr spans 64K boundary.
3262 * Note h/w doesn't support 64-bit, so we unconditionally
3263 * truncate dma_addr_t to u32.
3264 */
3265 addr = (u32) sg_dma_address(sg);
3266 sg_len = sg_dma_len(sg);
3267
3268 while (sg_len) {
3269 offset = addr & 0xffff;
3270 len = sg_len;
3271 if ((offset + sg_len) > 0x10000)
3272 len = 0x10000 - offset;
3273
3274 ap->prd[idx].addr = cpu_to_le32(addr);
3275 ap->prd[idx].flags_len = cpu_to_le32(len & 0xffff);
3276 VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", idx, addr, len);
3277
3278 idx++;
3279 sg_len -= len;
3280 addr += len;
3281 }
3282 }
3283
3284 if (idx)
3285 ap->prd[idx - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT);
3286 }
3287 /**
3288 * ata_check_atapi_dma - Check whether ATAPI DMA can be supported
3289 * @qc: Metadata associated with taskfile to check
3290 *
3291 * Allow low-level driver to filter ATA PACKET commands, returning
3292 * a status indicating whether or not it is OK to use DMA for the
3293 * supplied PACKET command.
3294 *
3295 * LOCKING:
3296 * spin_lock_irqsave(host_set lock)
3297 *
3298 * RETURNS: 0 when ATAPI DMA can be used
3299 * nonzero otherwise
3300 */
3301 int ata_check_atapi_dma(struct ata_queued_cmd *qc)
3302 {
3303 struct ata_port *ap = qc->ap;
3304 int rc = 0; /* Assume ATAPI DMA is OK by default */
3305
3306 if (ap->ops->check_atapi_dma)
3307 rc = ap->ops->check_atapi_dma(qc);
3308
3309 return rc;
3310 }
3311 /**
3312 * ata_qc_prep - Prepare taskfile for submission
3313 * @qc: Metadata associated with taskfile to be prepared
3314 *
3315 * Prepare ATA taskfile for submission.
3316 *
3317 * LOCKING:
3318 * spin_lock_irqsave(host_set lock)
3319 */
3320 void ata_qc_prep(struct ata_queued_cmd *qc)
3321 {
3322 if (!(qc->flags & ATA_QCFLAG_DMAMAP))
3323 return;
3324
3325 ata_fill_sg(qc);
3326 }
3327
3328 void ata_noop_qc_prep(struct ata_queued_cmd *qc) { }
3329
3330 /**
3331 * ata_sg_init_one - Associate command with memory buffer
3332 * @qc: Command to be associated
3333 * @buf: Memory buffer
3334 * @buflen: Length of memory buffer, in bytes.
3335 *
3336 * Initialize the data-related elements of queued_cmd @qc
3337 * to point to a single memory buffer, @buf of byte length @buflen.
3338 *
3339 * LOCKING:
3340 * spin_lock_irqsave(host_set lock)
3341 */
3342
3343 void ata_sg_init_one(struct ata_queued_cmd *qc, void *buf, unsigned int buflen)
3344 {
3345 struct scatterlist *sg;
3346
3347 qc->flags |= ATA_QCFLAG_SINGLE;
3348
3349 memset(&qc->sgent, 0, sizeof(qc->sgent));
3350 qc->__sg = &qc->sgent;
3351 qc->n_elem = 1;
3352 qc->orig_n_elem = 1;
3353 qc->buf_virt = buf;
3354 qc->nbytes = buflen;
3355
3356 sg = qc->__sg;
3357 sg_init_one(sg, buf, buflen);
3358 }
3359
3360 /**
3361 * ata_sg_init - Associate command with scatter-gather table.
3362 * @qc: Command to be associated
3363 * @sg: Scatter-gather table.
3364 * @n_elem: Number of elements in s/g table.
3365 *
3366 * Initialize the data-related elements of queued_cmd @qc
3367 * to point to a scatter-gather table @sg, containing @n_elem
3368 * elements.
3369 *
3370 * LOCKING:
3371 * spin_lock_irqsave(host_set lock)
3372 */
3373
3374 void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg,
3375 unsigned int n_elem)
3376 {
3377 qc->flags |= ATA_QCFLAG_SG;
3378 qc->__sg = sg;
3379 qc->n_elem = n_elem;
3380 qc->orig_n_elem = n_elem;
3381 }
3382
3383 /**
3384 * ata_sg_setup_one - DMA-map the memory buffer associated with a command.
3385 * @qc: Command with memory buffer to be mapped.
3386 *
3387 * DMA-map the memory buffer associated with queued_cmd @qc.
3388 *
3389 * LOCKING:
3390 * spin_lock_irqsave(host_set lock)
3391 *
3392 * RETURNS:
3393 * Zero on success, negative on error.
3394 */
3395
3396 static int ata_sg_setup_one(struct ata_queued_cmd *qc)
3397 {
3398 struct ata_port *ap = qc->ap;
3399 int dir = qc->dma_dir;
3400 struct scatterlist *sg = qc->__sg;
3401 dma_addr_t dma_address;
3402 int trim_sg = 0;
3403
3404 /* we must lengthen transfers to end on a 32-bit boundary */
3405 qc->pad_len = sg->length & 3;
3406 if (qc->pad_len) {
3407 void *pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
3408 struct scatterlist *psg = &qc->pad_sgent;
3409
3410 WARN_ON(qc->dev->class != ATA_DEV_ATAPI);
3411
3412 memset(pad_buf, 0, ATA_DMA_PAD_SZ);
3413
3414 if (qc->tf.flags & ATA_TFLAG_WRITE)
3415 memcpy(pad_buf, qc->buf_virt + sg->length - qc->pad_len,
3416 qc->pad_len);
3417
3418 sg_dma_address(psg) = ap->pad_dma + (qc->tag * ATA_DMA_PAD_SZ);
3419 sg_dma_len(psg) = ATA_DMA_PAD_SZ;
3420 /* trim sg */
3421 sg->length -= qc->pad_len;
3422 if (sg->length == 0)
3423 trim_sg = 1;
3424
3425 DPRINTK("padding done, sg->length=%u pad_len=%u\n",
3426 sg->length, qc->pad_len);
3427 }
3428
3429 if (trim_sg) {
3430 qc->n_elem--;
3431 goto skip_map;
3432 }
3433
3434 dma_address = dma_map_single(ap->dev, qc->buf_virt,
3435 sg->length, dir);
3436 if (dma_mapping_error(dma_address)) {
3437 /* restore sg */
3438 sg->length += qc->pad_len;
3439 return -1;
3440 }
3441
3442 sg_dma_address(sg) = dma_address;
3443 sg_dma_len(sg) = sg->length;
3444
3445 skip_map:
3446 DPRINTK("mapped buffer of %d bytes for %s\n", sg_dma_len(sg),
3447 qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
3448
3449 return 0;
3450 }
3451
3452 /**
3453 * ata_sg_setup - DMA-map the scatter-gather table associated with a command.
3454 * @qc: Command with scatter-gather table to be mapped.
3455 *
3456 * DMA-map the scatter-gather table associated with queued_cmd @qc.
3457 *
3458 * LOCKING:
3459 * spin_lock_irqsave(host_set lock)
3460 *
3461 * RETURNS:
3462 * Zero on success, negative on error.
3463 *
3464 */
3465
3466 static int ata_sg_setup(struct ata_queued_cmd *qc)
3467 {
3468 struct ata_port *ap = qc->ap;
3469 struct scatterlist *sg = qc->__sg;
3470 struct scatterlist *lsg = &sg[qc->n_elem - 1];
3471 int n_elem, pre_n_elem, dir, trim_sg = 0;
3472
3473 VPRINTK("ENTER, ata%u\n", ap->id);
3474 WARN_ON(!(qc->flags & ATA_QCFLAG_SG));
3475
3476 /* we must lengthen transfers to end on a 32-bit boundary */
3477 qc->pad_len = lsg->length & 3;
3478 if (qc->pad_len) {
3479 void *pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
3480 struct scatterlist *psg = &qc->pad_sgent;
3481 unsigned int offset;
3482
3483 WARN_ON(qc->dev->class != ATA_DEV_ATAPI);
3484
3485 memset(pad_buf, 0, ATA_DMA_PAD_SZ);
3486
3487 /*
3488 * psg->page/offset are used to copy to-be-written
3489 * data in this function or read data in ata_sg_clean.
3490 */
3491 offset = lsg->offset + lsg->length - qc->pad_len;
3492 psg->page = nth_page(lsg->page, offset >> PAGE_SHIFT);
3493 psg->offset = offset_in_page(offset);
3494
3495 if (qc->tf.flags & ATA_TFLAG_WRITE) {
3496 void *addr = kmap_atomic(psg->page, KM_IRQ0);
3497 memcpy(pad_buf, addr + psg->offset, qc->pad_len);
3498 kunmap_atomic(addr, KM_IRQ0);
3499 }
3500
3501 sg_dma_address(psg) = ap->pad_dma + (qc->tag * ATA_DMA_PAD_SZ);
3502 sg_dma_len(psg) = ATA_DMA_PAD_SZ;
3503 /* trim last sg */
3504 lsg->length -= qc->pad_len;
3505 if (lsg->length == 0)
3506 trim_sg = 1;
3507
3508 DPRINTK("padding done, sg[%d].length=%u pad_len=%u\n",
3509 qc->n_elem - 1, lsg->length, qc->pad_len);
3510 }
3511
3512 pre_n_elem = qc->n_elem;
3513 if (trim_sg && pre_n_elem)
3514 pre_n_elem--;
3515
3516 if (!pre_n_elem) {
3517 n_elem = 0;
3518 goto skip_map;
3519 }
3520
3521 dir = qc->dma_dir;
3522 n_elem = dma_map_sg(ap->dev, sg, pre_n_elem, dir);
3523 if (n_elem < 1) {
3524 /* restore last sg */
3525 lsg->length += qc->pad_len;
3526 return -1;
3527 }
3528
3529 DPRINTK("%d sg elements mapped\n", n_elem);
3530
3531 skip_map:
3532 qc->n_elem = n_elem;
3533
3534 return 0;
3535 }
3536
3537 /**
3538 * swap_buf_le16 - swap halves of 16-bit words in place
3539 * @buf: Buffer to swap
3540 * @buf_words: Number of 16-bit words in buffer.
3541 *
3542 * Swap halves of 16-bit words if needed to convert from
3543 * little-endian byte order to native cpu byte order, or
3544 * vice-versa.
3545 *
3546 * LOCKING:
3547 * Inherited from caller.
3548 */
3549 void swap_buf_le16(u16 *buf, unsigned int buf_words)
3550 {
3551 #ifdef __BIG_ENDIAN
3552 unsigned int i;
3553
3554 for (i = 0; i < buf_words; i++)
3555 buf[i] = le16_to_cpu(buf[i]);
3556 #endif /* __BIG_ENDIAN */
3557 }
3558
3559 /**
3560 * ata_mmio_data_xfer - Transfer data by MMIO
3561 * @adev: device for this I/O
3562 * @buf: data buffer
3563 * @buflen: buffer length
3564 * @write_data: read/write
3565 *
3566 * Transfer data from/to the device data register by MMIO.
3567 *
3568 * LOCKING:
3569 * Inherited from caller.
3570 */
3571
3572 void ata_mmio_data_xfer(struct ata_device *adev, unsigned char *buf,
3573 unsigned int buflen, int write_data)
3574 {
3575 struct ata_port *ap = adev->ap;
3576 unsigned int i;
3577 unsigned int words = buflen >> 1;
3578 u16 *buf16 = (u16 *) buf;
3579 void __iomem *mmio = (void __iomem *)ap->ioaddr.data_addr;
3580
3581 /* Transfer multiple of 2 bytes */
3582 if (write_data) {
3583 for (i = 0; i < words; i++)
3584 writew(le16_to_cpu(buf16[i]), mmio);
3585 } else {
3586 for (i = 0; i < words; i++)
3587 buf16[i] = cpu_to_le16(readw(mmio));
3588 }
3589
3590 /* Transfer trailing 1 byte, if any. */
3591 if (unlikely(buflen & 0x01)) {
3592 u16 align_buf[1] = { 0 };
3593 unsigned char *trailing_buf = buf + buflen - 1;
3594
3595 if (write_data) {
3596 memcpy(align_buf, trailing_buf, 1);
3597 writew(le16_to_cpu(align_buf[0]), mmio);
3598 } else {
3599 align_buf[0] = cpu_to_le16(readw(mmio));
3600 memcpy(trailing_buf, align_buf, 1);
3601 }
3602 }
3603 }
3604
3605 /**
3606 * ata_pio_data_xfer - Transfer data by PIO
3607 * @adev: device to target
3608 * @buf: data buffer
3609 * @buflen: buffer length
3610 * @write_data: read/write
3611 *
3612 * Transfer data from/to the device data register by PIO.
3613 *
3614 * LOCKING:
3615 * Inherited from caller.
3616 */
3617
3618 void ata_pio_data_xfer(struct ata_device *adev, unsigned char *buf,
3619 unsigned int buflen, int write_data)
3620 {
3621 struct ata_port *ap = adev->ap;
3622 unsigned int words = buflen >> 1;
3623
3624 /* Transfer multiple of 2 bytes */
3625 if (write_data)
3626 outsw(ap->ioaddr.data_addr, buf, words);
3627 else
3628 insw(ap->ioaddr.data_addr, buf, words);
3629
3630 /* Transfer trailing 1 byte, if any. */
3631 if (unlikely(buflen & 0x01)) {
3632 u16 align_buf[1] = { 0 };
3633 unsigned char *trailing_buf = buf + buflen - 1;
3634
3635 if (write_data) {
3636 memcpy(align_buf, trailing_buf, 1);
3637 outw(le16_to_cpu(align_buf[0]), ap->ioaddr.data_addr);
3638 } else {
3639 align_buf[0] = cpu_to_le16(inw(ap->ioaddr.data_addr));
3640 memcpy(trailing_buf, align_buf, 1);
3641 }
3642 }
3643 }
3644
3645 /**
3646 * ata_pio_data_xfer_noirq - Transfer data by PIO
3647 * @adev: device to target
3648 * @buf: data buffer
3649 * @buflen: buffer length
3650 * @write_data: read/write
3651 *
3652 * Transfer data from/to the device data register by PIO. Do the
3653 * transfer with interrupts disabled.
3654 *
3655 * LOCKING:
3656 * Inherited from caller.
3657 */
3658
3659 void ata_pio_data_xfer_noirq(struct ata_device *adev, unsigned char *buf,
3660 unsigned int buflen, int write_data)
3661 {
3662 unsigned long flags;
3663 local_irq_save(flags);
3664 ata_pio_data_xfer(adev, buf, buflen, write_data);
3665 local_irq_restore(flags);
3666 }
3667
3668
3669 /**
3670 * ata_pio_sector - Transfer ATA_SECT_SIZE (512 bytes) of data.
3671 * @qc: Command on going
3672 *
3673 * Transfer ATA_SECT_SIZE of data from/to the ATA device.
3674 *
3675 * LOCKING:
3676 * Inherited from caller.
3677 */
3678
3679 static void ata_pio_sector(struct ata_queued_cmd *qc)
3680 {
3681 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
3682 struct scatterlist *sg = qc->__sg;
3683 struct ata_port *ap = qc->ap;
3684 struct page *page;
3685 unsigned int offset;
3686 unsigned char *buf;
3687
3688 if (qc->cursect == (qc->nsect - 1))
3689 ap->hsm_task_state = HSM_ST_LAST;
3690
3691 page = sg[qc->cursg].page;
3692 offset = sg[qc->cursg].offset + qc->cursg_ofs * ATA_SECT_SIZE;
3693
3694 /* get the current page and offset */
3695 page = nth_page(page, (offset >> PAGE_SHIFT));
3696 offset %= PAGE_SIZE;
3697
3698 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
3699
3700 if (PageHighMem(page)) {
3701 unsigned long flags;
3702
3703 /* FIXME: use a bounce buffer */
3704 local_irq_save(flags);
3705 buf = kmap_atomic(page, KM_IRQ0);
3706
3707 /* do the actual data transfer */
3708 ap->ops->data_xfer(qc->dev, buf + offset, ATA_SECT_SIZE, do_write);
3709
3710 kunmap_atomic(buf, KM_IRQ0);
3711 local_irq_restore(flags);
3712 } else {
3713 buf = page_address(page);
3714 ap->ops->data_xfer(qc->dev, buf + offset, ATA_SECT_SIZE, do_write);
3715 }
3716
3717 qc->cursect++;
3718 qc->cursg_ofs++;
3719
3720 if ((qc->cursg_ofs * ATA_SECT_SIZE) == (&sg[qc->cursg])->length) {
3721 qc->cursg++;
3722 qc->cursg_ofs = 0;
3723 }
3724 }
3725
3726 /**
3727 * ata_pio_sectors - Transfer one or many 512-byte sectors.
3728 * @qc: Command on going
3729 *
3730 * Transfer one or many ATA_SECT_SIZE of data from/to the
3731 * ATA device for the DRQ request.
3732 *
3733 * LOCKING:
3734 * Inherited from caller.
3735 */
3736
3737 static void ata_pio_sectors(struct ata_queued_cmd *qc)
3738 {
3739 if (is_multi_taskfile(&qc->tf)) {
3740 /* READ/WRITE MULTIPLE */
3741 unsigned int nsect;
3742
3743 WARN_ON(qc->dev->multi_count == 0);
3744
3745 nsect = min(qc->nsect - qc->cursect, qc->dev->multi_count);
3746 while (nsect--)
3747 ata_pio_sector(qc);
3748 } else
3749 ata_pio_sector(qc);
3750 }
3751
3752 /**
3753 * atapi_send_cdb - Write CDB bytes to hardware
3754 * @ap: Port to which ATAPI device is attached.
3755 * @qc: Taskfile currently active
3756 *
3757 * When device has indicated its readiness to accept
3758 * a CDB, this function is called. Send the CDB.
3759 *
3760 * LOCKING:
3761 * caller.
3762 */
3763
3764 static void atapi_send_cdb(struct ata_port *ap, struct ata_queued_cmd *qc)
3765 {
3766 /* send SCSI cdb */
3767 DPRINTK("send cdb\n");
3768 WARN_ON(qc->dev->cdb_len < 12);
3769
3770 ap->ops->data_xfer(qc->dev, qc->cdb, qc->dev->cdb_len, 1);
3771 ata_altstatus(ap); /* flush */
3772
3773 switch (qc->tf.protocol) {
3774 case ATA_PROT_ATAPI:
3775 ap->hsm_task_state = HSM_ST;
3776 break;
3777 case ATA_PROT_ATAPI_NODATA:
3778 ap->hsm_task_state = HSM_ST_LAST;
3779 break;
3780 case ATA_PROT_ATAPI_DMA:
3781 ap->hsm_task_state = HSM_ST_LAST;
3782 /* initiate bmdma */
3783 ap->ops->bmdma_start(qc);
3784 break;
3785 }
3786 }
3787
3788 /**
3789 * __atapi_pio_bytes - Transfer data from/to the ATAPI device.
3790 * @qc: Command on going
3791 * @bytes: number of bytes
3792 *
3793 * Transfer Transfer data from/to the ATAPI device.
3794 *
3795 * LOCKING:
3796 * Inherited from caller.
3797 *
3798 */
3799
3800 static void __atapi_pio_bytes(struct ata_queued_cmd *qc, unsigned int bytes)
3801 {
3802 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
3803 struct scatterlist *sg = qc->__sg;
3804 struct ata_port *ap = qc->ap;
3805 struct page *page;
3806 unsigned char *buf;
3807 unsigned int offset, count;
3808
3809 if (qc->curbytes + bytes >= qc->nbytes)
3810 ap->hsm_task_state = HSM_ST_LAST;
3811
3812 next_sg:
3813 if (unlikely(qc->cursg >= qc->n_elem)) {
3814 /*
3815 * The end of qc->sg is reached and the device expects
3816 * more data to transfer. In order not to overrun qc->sg
3817 * and fulfill length specified in the byte count register,
3818 * - for read case, discard trailing data from the device
3819 * - for write case, padding zero data to the device
3820 */
3821 u16 pad_buf[1] = { 0 };
3822 unsigned int words = bytes >> 1;
3823 unsigned int i;
3824
3825 if (words) /* warning if bytes > 1 */
3826 ata_dev_printk(qc->dev, KERN_WARNING,
3827 "%u bytes trailing data\n", bytes);
3828
3829 for (i = 0; i < words; i++)
3830 ap->ops->data_xfer(qc->dev, (unsigned char*)pad_buf, 2, do_write);
3831
3832 ap->hsm_task_state = HSM_ST_LAST;
3833 return;
3834 }
3835
3836 sg = &qc->__sg[qc->cursg];
3837
3838 page = sg->page;
3839 offset = sg->offset + qc->cursg_ofs;
3840
3841 /* get the current page and offset */
3842 page = nth_page(page, (offset >> PAGE_SHIFT));
3843 offset %= PAGE_SIZE;
3844
3845 /* don't overrun current sg */
3846 count = min(sg->length - qc->cursg_ofs, bytes);
3847
3848 /* don't cross page boundaries */
3849 count = min(count, (unsigned int)PAGE_SIZE - offset);
3850
3851 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
3852
3853 if (PageHighMem(page)) {
3854 unsigned long flags;
3855
3856 /* FIXME: use bounce buffer */
3857 local_irq_save(flags);
3858 buf = kmap_atomic(page, KM_IRQ0);
3859
3860 /* do the actual data transfer */
3861 ap->ops->data_xfer(qc->dev, buf + offset, count, do_write);
3862
3863 kunmap_atomic(buf, KM_IRQ0);
3864 local_irq_restore(flags);
3865 } else {
3866 buf = page_address(page);
3867 ap->ops->data_xfer(qc->dev, buf + offset, count, do_write);
3868 }
3869
3870 bytes -= count;
3871 qc->curbytes += count;
3872 qc->cursg_ofs += count;
3873
3874 if (qc->cursg_ofs == sg->length) {
3875 qc->cursg++;
3876 qc->cursg_ofs = 0;
3877 }
3878
3879 if (bytes)
3880 goto next_sg;
3881 }
3882
3883 /**
3884 * atapi_pio_bytes - Transfer data from/to the ATAPI device.
3885 * @qc: Command on going
3886 *
3887 * Transfer Transfer data from/to the ATAPI device.
3888 *
3889 * LOCKING:
3890 * Inherited from caller.
3891 */
3892
3893 static void atapi_pio_bytes(struct ata_queued_cmd *qc)
3894 {
3895 struct ata_port *ap = qc->ap;
3896 struct ata_device *dev = qc->dev;
3897 unsigned int ireason, bc_lo, bc_hi, bytes;
3898 int i_write, do_write = (qc->tf.flags & ATA_TFLAG_WRITE) ? 1 : 0;
3899
3900 /* Abuse qc->result_tf for temp storage of intermediate TF
3901 * here to save some kernel stack usage.
3902 * For normal completion, qc->result_tf is not relevant. For
3903 * error, qc->result_tf is later overwritten by ata_qc_complete().
3904 * So, the correctness of qc->result_tf is not affected.
3905 */
3906 ap->ops->tf_read(ap, &qc->result_tf);
3907 ireason = qc->result_tf.nsect;
3908 bc_lo = qc->result_tf.lbam;
3909 bc_hi = qc->result_tf.lbah;
3910 bytes = (bc_hi << 8) | bc_lo;
3911
3912 /* shall be cleared to zero, indicating xfer of data */
3913 if (ireason & (1 << 0))
3914 goto err_out;
3915
3916 /* make sure transfer direction matches expected */
3917 i_write = ((ireason & (1 << 1)) == 0) ? 1 : 0;
3918 if (do_write != i_write)
3919 goto err_out;
3920
3921 VPRINTK("ata%u: xfering %d bytes\n", ap->id, bytes);
3922
3923 __atapi_pio_bytes(qc, bytes);
3924
3925 return;
3926
3927 err_out:
3928 ata_dev_printk(dev, KERN_INFO, "ATAPI check failed\n");
3929 qc->err_mask |= AC_ERR_HSM;
3930 ap->hsm_task_state = HSM_ST_ERR;
3931 }
3932
3933 /**
3934 * ata_hsm_ok_in_wq - Check if the qc can be handled in the workqueue.
3935 * @ap: the target ata_port
3936 * @qc: qc on going
3937 *
3938 * RETURNS:
3939 * 1 if ok in workqueue, 0 otherwise.
3940 */
3941
3942 static inline int ata_hsm_ok_in_wq(struct ata_port *ap, struct ata_queued_cmd *qc)
3943 {
3944 if (qc->tf.flags & ATA_TFLAG_POLLING)
3945 return 1;
3946
3947 if (ap->hsm_task_state == HSM_ST_FIRST) {
3948 if (qc->tf.protocol == ATA_PROT_PIO &&
3949 (qc->tf.flags & ATA_TFLAG_WRITE))
3950 return 1;
3951
3952 if (is_atapi_taskfile(&qc->tf) &&
3953 !(qc->dev->flags & ATA_DFLAG_CDB_INTR))
3954 return 1;
3955 }
3956
3957 return 0;
3958 }
3959
3960 /**
3961 * ata_hsm_qc_complete - finish a qc running on standard HSM
3962 * @qc: Command to complete
3963 * @in_wq: 1 if called from workqueue, 0 otherwise
3964 *
3965 * Finish @qc which is running on standard HSM.
3966 *
3967 * LOCKING:
3968 * If @in_wq is zero, spin_lock_irqsave(host_set lock).
3969 * Otherwise, none on entry and grabs host lock.
3970 */
3971 static void ata_hsm_qc_complete(struct ata_queued_cmd *qc, int in_wq)
3972 {
3973 struct ata_port *ap = qc->ap;
3974 unsigned long flags;
3975
3976 if (ap->ops->error_handler) {
3977 if (in_wq) {
3978 spin_lock_irqsave(ap->lock, flags);
3979
3980 /* EH might have kicked in while host_set lock
3981 * is released.
3982 */
3983 qc = ata_qc_from_tag(ap, qc->tag);
3984 if (qc) {
3985 if (likely(!(qc->err_mask & AC_ERR_HSM))) {
3986 ata_irq_on(ap);
3987 ata_qc_complete(qc);
3988 } else
3989 ata_port_freeze(ap);
3990 }
3991
3992 spin_unlock_irqrestore(ap->lock, flags);
3993 } else {
3994 if (likely(!(qc->err_mask & AC_ERR_HSM)))
3995 ata_qc_complete(qc);
3996 else
3997 ata_port_freeze(ap);
3998 }
3999 } else {
4000 if (in_wq) {
4001 spin_lock_irqsave(ap->lock, flags);
4002 ata_irq_on(ap);
4003 ata_qc_complete(qc);
4004 spin_unlock_irqrestore(ap->lock, flags);
4005 } else
4006 ata_qc_complete(qc);
4007 }
4008
4009 ata_altstatus(ap); /* flush */
4010 }
4011
4012 /**
4013 * ata_hsm_move - move the HSM to the next state.
4014 * @ap: the target ata_port
4015 * @qc: qc on going
4016 * @status: current device status
4017 * @in_wq: 1 if called from workqueue, 0 otherwise
4018 *
4019 * RETURNS:
4020 * 1 when poll next status needed, 0 otherwise.
4021 */
4022 int ata_hsm_move(struct ata_port *ap, struct ata_queued_cmd *qc,
4023 u8 status, int in_wq)
4024 {
4025 unsigned long flags = 0;
4026 int poll_next;
4027
4028 WARN_ON((qc->flags & ATA_QCFLAG_ACTIVE) == 0);
4029
4030 /* Make sure ata_qc_issue_prot() does not throw things
4031 * like DMA polling into the workqueue. Notice that
4032 * in_wq is not equivalent to (qc->tf.flags & ATA_TFLAG_POLLING).
4033 */
4034 WARN_ON(in_wq != ata_hsm_ok_in_wq(ap, qc));
4035
4036 fsm_start:
4037 DPRINTK("ata%u: protocol %d task_state %d (dev_stat 0x%X)\n",
4038 ap->id, qc->tf.protocol, ap->hsm_task_state, status);
4039
4040 switch (ap->hsm_task_state) {
4041 case HSM_ST_FIRST:
4042 /* Send first data block or PACKET CDB */
4043
4044 /* If polling, we will stay in the work queue after
4045 * sending the data. Otherwise, interrupt handler
4046 * takes over after sending the data.
4047 */
4048 poll_next = (qc->tf.flags & ATA_TFLAG_POLLING);
4049
4050 /* check device status */
4051 if (unlikely((status & ATA_DRQ) == 0)) {
4052 /* handle BSY=0, DRQ=0 as error */
4053 if (likely(status & (ATA_ERR | ATA_DF)))
4054 /* device stops HSM for abort/error */
4055 qc->err_mask |= AC_ERR_DEV;
4056 else
4057 /* HSM violation. Let EH handle this */
4058 qc->err_mask |= AC_ERR_HSM;
4059
4060 ap->hsm_task_state = HSM_ST_ERR;
4061 goto fsm_start;
4062 }
4063
4064 /* Device should not ask for data transfer (DRQ=1)
4065 * when it finds something wrong.
4066 * We ignore DRQ here and stop the HSM by
4067 * changing hsm_task_state to HSM_ST_ERR and
4068 * let the EH abort the command or reset the device.
4069 */
4070 if (unlikely(status & (ATA_ERR | ATA_DF))) {
4071 printk(KERN_WARNING "ata%d: DRQ=1 with device error, dev_stat 0x%X\n",
4072 ap->id, status);
4073 qc->err_mask |= AC_ERR_HSM;
4074 ap->hsm_task_state = HSM_ST_ERR;
4075 goto fsm_start;
4076 }
4077
4078 /* Send the CDB (atapi) or the first data block (ata pio out).
4079 * During the state transition, interrupt handler shouldn't
4080 * be invoked before the data transfer is complete and
4081 * hsm_task_state is changed. Hence, the following locking.
4082 */
4083 if (in_wq)
4084 spin_lock_irqsave(ap->lock, flags);
4085
4086 if (qc->tf.protocol == ATA_PROT_PIO) {
4087 /* PIO data out protocol.
4088 * send first data block.
4089 */
4090
4091 /* ata_pio_sectors() might change the state
4092 * to HSM_ST_LAST. so, the state is changed here
4093 * before ata_pio_sectors().
4094 */
4095 ap->hsm_task_state = HSM_ST;
4096 ata_pio_sectors(qc);
4097 ata_altstatus(ap); /* flush */
4098 } else
4099 /* send CDB */
4100 atapi_send_cdb(ap, qc);
4101
4102 if (in_wq)
4103 spin_unlock_irqrestore(ap->lock, flags);
4104
4105 /* if polling, ata_pio_task() handles the rest.
4106 * otherwise, interrupt handler takes over from here.
4107 */
4108 break;
4109
4110 case HSM_ST:
4111 /* complete command or read/write the data register */
4112 if (qc->tf.protocol == ATA_PROT_ATAPI) {
4113 /* ATAPI PIO protocol */
4114 if ((status & ATA_DRQ) == 0) {
4115 /* No more data to transfer or device error.
4116 * Device error will be tagged in HSM_ST_LAST.
4117 */
4118 ap->hsm_task_state = HSM_ST_LAST;
4119 goto fsm_start;
4120 }
4121
4122 /* Device should not ask for data transfer (DRQ=1)
4123 * when it finds something wrong.
4124 * We ignore DRQ here and stop the HSM by
4125 * changing hsm_task_state to HSM_ST_ERR and
4126 * let the EH abort the command or reset the device.
4127 */
4128 if (unlikely(status & (ATA_ERR | ATA_DF))) {
4129 printk(KERN_WARNING "ata%d: DRQ=1 with device error, dev_stat 0x%X\n",
4130 ap->id, status);
4131 qc->err_mask |= AC_ERR_HSM;
4132 ap->hsm_task_state = HSM_ST_ERR;
4133 goto fsm_start;
4134 }
4135
4136 atapi_pio_bytes(qc);
4137
4138 if (unlikely(ap->hsm_task_state == HSM_ST_ERR))
4139 /* bad ireason reported by device */
4140 goto fsm_start;
4141
4142 } else {
4143 /* ATA PIO protocol */
4144 if (unlikely((status & ATA_DRQ) == 0)) {
4145 /* handle BSY=0, DRQ=0 as error */
4146 if (likely(status & (ATA_ERR | ATA_DF)))
4147 /* device stops HSM for abort/error */
4148 qc->err_mask |= AC_ERR_DEV;
4149 else
4150 /* HSM violation. Let EH handle this */
4151 qc->err_mask |= AC_ERR_HSM;
4152
4153 ap->hsm_task_state = HSM_ST_ERR;
4154 goto fsm_start;
4155 }
4156
4157 /* For PIO reads, some devices may ask for
4158 * data transfer (DRQ=1) alone with ERR=1.
4159 * We respect DRQ here and transfer one
4160 * block of junk data before changing the
4161 * hsm_task_state to HSM_ST_ERR.
4162 *
4163 * For PIO writes, ERR=1 DRQ=1 doesn't make
4164 * sense since the data block has been
4165 * transferred to the device.
4166 */
4167 if (unlikely(status & (ATA_ERR | ATA_DF))) {
4168 /* data might be corrputed */
4169 qc->err_mask |= AC_ERR_DEV;
4170
4171 if (!(qc->tf.flags & ATA_TFLAG_WRITE)) {
4172 ata_pio_sectors(qc);
4173 ata_altstatus(ap);
4174 status = ata_wait_idle(ap);
4175 }
4176
4177 if (status & (ATA_BUSY | ATA_DRQ))
4178 qc->err_mask |= AC_ERR_HSM;
4179
4180 /* ata_pio_sectors() might change the
4181 * state to HSM_ST_LAST. so, the state
4182 * is changed after ata_pio_sectors().
4183 */
4184 ap->hsm_task_state = HSM_ST_ERR;
4185 goto fsm_start;
4186 }
4187
4188 ata_pio_sectors(qc);
4189
4190 if (ap->hsm_task_state == HSM_ST_LAST &&
4191 (!(qc->tf.flags & ATA_TFLAG_WRITE))) {
4192 /* all data read */
4193 ata_altstatus(ap);
4194 status = ata_wait_idle(ap);
4195 goto fsm_start;
4196 }
4197 }
4198
4199 ata_altstatus(ap); /* flush */
4200 poll_next = 1;
4201 break;
4202
4203 case HSM_ST_LAST:
4204 if (unlikely(!ata_ok(status))) {
4205 qc->err_mask |= __ac_err_mask(status);
4206 ap->hsm_task_state = HSM_ST_ERR;
4207 goto fsm_start;
4208 }
4209
4210 /* no more data to transfer */
4211 DPRINTK("ata%u: dev %u command complete, drv_stat 0x%x\n",
4212 ap->id, qc->dev->devno, status);
4213
4214 WARN_ON(qc->err_mask);
4215
4216 ap->hsm_task_state = HSM_ST_IDLE;
4217
4218 /* complete taskfile transaction */
4219 ata_hsm_qc_complete(qc, in_wq);
4220
4221 poll_next = 0;
4222 break;
4223
4224 case HSM_ST_ERR:
4225 /* make sure qc->err_mask is available to
4226 * know what's wrong and recover
4227 */
4228 WARN_ON(qc->err_mask == 0);
4229
4230 ap->hsm_task_state = HSM_ST_IDLE;
4231
4232 /* complete taskfile transaction */
4233 ata_hsm_qc_complete(qc, in_wq);
4234
4235 poll_next = 0;
4236 break;
4237 default:
4238 poll_next = 0;
4239 BUG();
4240 }
4241
4242 return poll_next;
4243 }
4244
4245 static void ata_pio_task(void *_data)
4246 {
4247 struct ata_queued_cmd *qc = _data;
4248 struct ata_port *ap = qc->ap;
4249 u8 status;
4250 int poll_next;
4251
4252 fsm_start:
4253 WARN_ON(ap->hsm_task_state == HSM_ST_IDLE);
4254
4255 /*
4256 * This is purely heuristic. This is a fast path.
4257 * Sometimes when we enter, BSY will be cleared in
4258 * a chk-status or two. If not, the drive is probably seeking
4259 * or something. Snooze for a couple msecs, then
4260 * chk-status again. If still busy, queue delayed work.
4261 */
4262 status = ata_busy_wait(ap, ATA_BUSY, 5);
4263 if (status & ATA_BUSY) {
4264 msleep(2);
4265 status = ata_busy_wait(ap, ATA_BUSY, 10);
4266 if (status & ATA_BUSY) {
4267 ata_port_queue_task(ap, ata_pio_task, qc, ATA_SHORT_PAUSE);
4268 return;
4269 }
4270 }
4271
4272 /* move the HSM */
4273 poll_next = ata_hsm_move(ap, qc, status, 1);
4274
4275 /* another command or interrupt handler
4276 * may be running at this point.
4277 */
4278 if (poll_next)
4279 goto fsm_start;
4280 }
4281
4282 /**
4283 * ata_qc_new - Request an available ATA command, for queueing
4284 * @ap: Port associated with device @dev
4285 * @dev: Device from whom we request an available command structure
4286 *
4287 * LOCKING:
4288 * None.
4289 */
4290
4291 static struct ata_queued_cmd *ata_qc_new(struct ata_port *ap)
4292 {
4293 struct ata_queued_cmd *qc = NULL;
4294 unsigned int i;
4295
4296 /* no command while frozen */
4297 if (unlikely(ap->flags & ATA_FLAG_FROZEN))
4298 return NULL;
4299
4300 /* the last tag is reserved for internal command. */
4301 for (i = 0; i < ATA_MAX_QUEUE - 1; i++)
4302 if (!test_and_set_bit(i, &ap->qc_allocated)) {
4303 qc = __ata_qc_from_tag(ap, i);
4304 break;
4305 }
4306
4307 if (qc)
4308 qc->tag = i;
4309
4310 return qc;
4311 }
4312
4313 /**
4314 * ata_qc_new_init - Request an available ATA command, and initialize it
4315 * @dev: Device from whom we request an available command structure
4316 *
4317 * LOCKING:
4318 * None.
4319 */
4320
4321 struct ata_queued_cmd *ata_qc_new_init(struct ata_device *dev)
4322 {
4323 struct ata_port *ap = dev->ap;
4324 struct ata_queued_cmd *qc;
4325
4326 qc = ata_qc_new(ap);
4327 if (qc) {
4328 qc->scsicmd = NULL;
4329 qc->ap = ap;
4330 qc->dev = dev;
4331
4332 ata_qc_reinit(qc);
4333 }
4334
4335 return qc;
4336 }
4337
4338 /**
4339 * ata_qc_free - free unused ata_queued_cmd
4340 * @qc: Command to complete
4341 *
4342 * Designed to free unused ata_queued_cmd object
4343 * in case something prevents using it.
4344 *
4345 * LOCKING:
4346 * spin_lock_irqsave(host_set lock)
4347 */
4348 void ata_qc_free(struct ata_queued_cmd *qc)
4349 {
4350 struct ata_port *ap = qc->ap;
4351 unsigned int tag;
4352
4353 WARN_ON(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
4354
4355 qc->flags = 0;
4356 tag = qc->tag;
4357 if (likely(ata_tag_valid(tag))) {
4358 qc->tag = ATA_TAG_POISON;
4359 clear_bit(tag, &ap->qc_allocated);
4360 }
4361 }
4362
4363 void __ata_qc_complete(struct ata_queued_cmd *qc)
4364 {
4365 struct ata_port *ap = qc->ap;
4366
4367 WARN_ON(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
4368 WARN_ON(!(qc->flags & ATA_QCFLAG_ACTIVE));
4369
4370 if (likely(qc->flags & ATA_QCFLAG_DMAMAP))
4371 ata_sg_clean(qc);
4372
4373 /* command should be marked inactive atomically with qc completion */
4374 if (qc->tf.protocol == ATA_PROT_NCQ)
4375 ap->sactive &= ~(1 << qc->tag);
4376 else
4377 ap->active_tag = ATA_TAG_POISON;
4378
4379 /* atapi: mark qc as inactive to prevent the interrupt handler
4380 * from completing the command twice later, before the error handler
4381 * is called. (when rc != 0 and atapi request sense is needed)
4382 */
4383 qc->flags &= ~ATA_QCFLAG_ACTIVE;
4384 ap->qc_active &= ~(1 << qc->tag);
4385
4386 /* call completion callback */
4387 qc->complete_fn(qc);
4388 }
4389
4390 /**
4391 * ata_qc_complete - Complete an active ATA command
4392 * @qc: Command to complete
4393 * @err_mask: ATA Status register contents
4394 *
4395 * Indicate to the mid and upper layers that an ATA
4396 * command has completed, with either an ok or not-ok status.
4397 *
4398 * LOCKING:
4399 * spin_lock_irqsave(host_set lock)
4400 */
4401 void ata_qc_complete(struct ata_queued_cmd *qc)
4402 {
4403 struct ata_port *ap = qc->ap;
4404
4405 /* XXX: New EH and old EH use different mechanisms to
4406 * synchronize EH with regular execution path.
4407 *
4408 * In new EH, a failed qc is marked with ATA_QCFLAG_FAILED.
4409 * Normal execution path is responsible for not accessing a
4410 * failed qc. libata core enforces the rule by returning NULL
4411 * from ata_qc_from_tag() for failed qcs.
4412 *
4413 * Old EH depends on ata_qc_complete() nullifying completion
4414 * requests if ATA_QCFLAG_EH_SCHEDULED is set. Old EH does
4415 * not synchronize with interrupt handler. Only PIO task is
4416 * taken care of.
4417 */
4418 if (ap->ops->error_handler) {
4419 WARN_ON(ap->flags & ATA_FLAG_FROZEN);
4420
4421 if (unlikely(qc->err_mask))
4422 qc->flags |= ATA_QCFLAG_FAILED;
4423
4424 if (unlikely(qc->flags & ATA_QCFLAG_FAILED)) {
4425 if (!ata_tag_internal(qc->tag)) {
4426 /* always fill result TF for failed qc */
4427 ap->ops->tf_read(ap, &qc->result_tf);
4428 ata_qc_schedule_eh(qc);
4429 return;
4430 }
4431 }
4432
4433 /* read result TF if requested */
4434 if (qc->flags & ATA_QCFLAG_RESULT_TF)
4435 ap->ops->tf_read(ap, &qc->result_tf);
4436
4437 __ata_qc_complete(qc);
4438 } else {
4439 if (qc->flags & ATA_QCFLAG_EH_SCHEDULED)
4440 return;
4441
4442 /* read result TF if failed or requested */
4443 if (qc->err_mask || qc->flags & ATA_QCFLAG_RESULT_TF)
4444 ap->ops->tf_read(ap, &qc->result_tf);
4445
4446 __ata_qc_complete(qc);
4447 }
4448 }
4449
4450 /**
4451 * ata_qc_complete_multiple - Complete multiple qcs successfully
4452 * @ap: port in question
4453 * @qc_active: new qc_active mask
4454 * @finish_qc: LLDD callback invoked before completing a qc
4455 *
4456 * Complete in-flight commands. This functions is meant to be
4457 * called from low-level driver's interrupt routine to complete
4458 * requests normally. ap->qc_active and @qc_active is compared
4459 * and commands are completed accordingly.
4460 *
4461 * LOCKING:
4462 * spin_lock_irqsave(host_set lock)
4463 *
4464 * RETURNS:
4465 * Number of completed commands on success, -errno otherwise.
4466 */
4467 int ata_qc_complete_multiple(struct ata_port *ap, u32 qc_active,
4468 void (*finish_qc)(struct ata_queued_cmd *))
4469 {
4470 int nr_done = 0;
4471 u32 done_mask;
4472 int i;
4473
4474 done_mask = ap->qc_active ^ qc_active;
4475
4476 if (unlikely(done_mask & qc_active)) {
4477 ata_port_printk(ap, KERN_ERR, "illegal qc_active transition "
4478 "(%08x->%08x)\n", ap->qc_active, qc_active);
4479 return -EINVAL;
4480 }
4481
4482 for (i = 0; i < ATA_MAX_QUEUE; i++) {
4483 struct ata_queued_cmd *qc;
4484
4485 if (!(done_mask & (1 << i)))
4486 continue;
4487
4488 if ((qc = ata_qc_from_tag(ap, i))) {
4489 if (finish_qc)
4490 finish_qc(qc);
4491 ata_qc_complete(qc);
4492 nr_done++;
4493 }
4494 }
4495
4496 return nr_done;
4497 }
4498
4499 static inline int ata_should_dma_map(struct ata_queued_cmd *qc)
4500 {
4501 struct ata_port *ap = qc->ap;
4502
4503 switch (qc->tf.protocol) {
4504 case ATA_PROT_NCQ:
4505 case ATA_PROT_DMA:
4506 case ATA_PROT_ATAPI_DMA:
4507 return 1;
4508
4509 case ATA_PROT_ATAPI:
4510 case ATA_PROT_PIO:
4511 if (ap->flags & ATA_FLAG_PIO_DMA)
4512 return 1;
4513
4514 /* fall through */
4515
4516 default:
4517 return 0;
4518 }
4519
4520 /* never reached */
4521 }
4522
4523 /**
4524 * ata_qc_issue - issue taskfile to device
4525 * @qc: command to issue to device
4526 *
4527 * Prepare an ATA command to submission to device.
4528 * This includes mapping the data into a DMA-able
4529 * area, filling in the S/G table, and finally
4530 * writing the taskfile to hardware, starting the command.
4531 *
4532 * LOCKING:
4533 * spin_lock_irqsave(host_set lock)
4534 */
4535 void ata_qc_issue(struct ata_queued_cmd *qc)
4536 {
4537 struct ata_port *ap = qc->ap;
4538
4539 /* Make sure only one non-NCQ command is outstanding. The
4540 * check is skipped for old EH because it reuses active qc to
4541 * request ATAPI sense.
4542 */
4543 WARN_ON(ap->ops->error_handler && ata_tag_valid(ap->active_tag));
4544
4545 if (qc->tf.protocol == ATA_PROT_NCQ) {
4546 WARN_ON(ap->sactive & (1 << qc->tag));
4547 ap->sactive |= 1 << qc->tag;
4548 } else {
4549 WARN_ON(ap->sactive);
4550 ap->active_tag = qc->tag;
4551 }
4552
4553 qc->flags |= ATA_QCFLAG_ACTIVE;
4554 ap->qc_active |= 1 << qc->tag;
4555
4556 if (ata_should_dma_map(qc)) {
4557 if (qc->flags & ATA_QCFLAG_SG) {
4558 if (ata_sg_setup(qc))
4559 goto sg_err;
4560 } else if (qc->flags & ATA_QCFLAG_SINGLE) {
4561 if (ata_sg_setup_one(qc))
4562 goto sg_err;
4563 }
4564 } else {
4565 qc->flags &= ~ATA_QCFLAG_DMAMAP;
4566 }
4567
4568 ap->ops->qc_prep(qc);
4569
4570 qc->err_mask |= ap->ops->qc_issue(qc);
4571 if (unlikely(qc->err_mask))
4572 goto err;
4573 return;
4574
4575 sg_err:
4576 qc->flags &= ~ATA_QCFLAG_DMAMAP;
4577 qc->err_mask |= AC_ERR_SYSTEM;
4578 err:
4579 ata_qc_complete(qc);
4580 }
4581
4582 /**
4583 * ata_qc_issue_prot - issue taskfile to device in proto-dependent manner
4584 * @qc: command to issue to device
4585 *
4586 * Using various libata functions and hooks, this function
4587 * starts an ATA command. ATA commands are grouped into
4588 * classes called "protocols", and issuing each type of protocol
4589 * is slightly different.
4590 *
4591 * May be used as the qc_issue() entry in ata_port_operations.
4592 *
4593 * LOCKING:
4594 * spin_lock_irqsave(host_set lock)
4595 *
4596 * RETURNS:
4597 * Zero on success, AC_ERR_* mask on failure
4598 */
4599
4600 unsigned int ata_qc_issue_prot(struct ata_queued_cmd *qc)
4601 {
4602 struct ata_port *ap = qc->ap;
4603
4604 /* Use polling pio if the LLD doesn't handle
4605 * interrupt driven pio and atapi CDB interrupt.
4606 */
4607 if (ap->flags & ATA_FLAG_PIO_POLLING) {
4608 switch (qc->tf.protocol) {
4609 case ATA_PROT_PIO:
4610 case ATA_PROT_ATAPI:
4611 case ATA_PROT_ATAPI_NODATA:
4612 qc->tf.flags |= ATA_TFLAG_POLLING;
4613 break;
4614 case ATA_PROT_ATAPI_DMA:
4615 if (qc->dev->flags & ATA_DFLAG_CDB_INTR)
4616 /* see ata_dma_blacklisted() */
4617 BUG();
4618 break;
4619 default:
4620 break;
4621 }
4622 }
4623
4624 /* select the device */
4625 ata_dev_select(ap, qc->dev->devno, 1, 0);
4626
4627 /* start the command */
4628 switch (qc->tf.protocol) {
4629 case ATA_PROT_NODATA:
4630 if (qc->tf.flags & ATA_TFLAG_POLLING)
4631 ata_qc_set_polling(qc);
4632
4633 ata_tf_to_host(ap, &qc->tf);
4634 ap->hsm_task_state = HSM_ST_LAST;
4635
4636 if (qc->tf.flags & ATA_TFLAG_POLLING)
4637 ata_port_queue_task(ap, ata_pio_task, qc, 0);
4638
4639 break;
4640
4641 case ATA_PROT_DMA:
4642 WARN_ON(qc->tf.flags & ATA_TFLAG_POLLING);
4643
4644 ap->ops->tf_load(ap, &qc->tf); /* load tf registers */
4645 ap->ops->bmdma_setup(qc); /* set up bmdma */
4646 ap->ops->bmdma_start(qc); /* initiate bmdma */
4647 ap->hsm_task_state = HSM_ST_LAST;
4648 break;
4649
4650 case ATA_PROT_PIO:
4651 if (qc->tf.flags & ATA_TFLAG_POLLING)
4652 ata_qc_set_polling(qc);
4653
4654 ata_tf_to_host(ap, &qc->tf);
4655
4656 if (qc->tf.flags & ATA_TFLAG_WRITE) {
4657 /* PIO data out protocol */
4658 ap->hsm_task_state = HSM_ST_FIRST;
4659 ata_port_queue_task(ap, ata_pio_task, qc, 0);
4660
4661 /* always send first data block using
4662 * the ata_pio_task() codepath.
4663 */
4664 } else {
4665 /* PIO data in protocol */
4666 ap->hsm_task_state = HSM_ST;
4667
4668 if (qc->tf.flags & ATA_TFLAG_POLLING)
4669 ata_port_queue_task(ap, ata_pio_task, qc, 0);
4670
4671 /* if polling, ata_pio_task() handles the rest.
4672 * otherwise, interrupt handler takes over from here.
4673 */
4674 }
4675
4676 break;
4677
4678 case ATA_PROT_ATAPI:
4679 case ATA_PROT_ATAPI_NODATA:
4680 if (qc->tf.flags & ATA_TFLAG_POLLING)
4681 ata_qc_set_polling(qc);
4682
4683 ata_tf_to_host(ap, &qc->tf);
4684
4685 ap->hsm_task_state = HSM_ST_FIRST;
4686
4687 /* send cdb by polling if no cdb interrupt */
4688 if ((!(qc->dev->flags & ATA_DFLAG_CDB_INTR)) ||
4689 (qc->tf.flags & ATA_TFLAG_POLLING))
4690 ata_port_queue_task(ap, ata_pio_task, qc, 0);
4691 break;
4692
4693 case ATA_PROT_ATAPI_DMA:
4694 WARN_ON(qc->tf.flags & ATA_TFLAG_POLLING);
4695
4696 ap->ops->tf_load(ap, &qc->tf); /* load tf registers */
4697 ap->ops->bmdma_setup(qc); /* set up bmdma */
4698 ap->hsm_task_state = HSM_ST_FIRST;
4699
4700 /* send cdb by polling if no cdb interrupt */
4701 if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
4702 ata_port_queue_task(ap, ata_pio_task, qc, 0);
4703 break;
4704
4705 default:
4706 WARN_ON(1);
4707 return AC_ERR_SYSTEM;
4708 }
4709
4710 return 0;
4711 }
4712
4713 /**
4714 * ata_host_intr - Handle host interrupt for given (port, task)
4715 * @ap: Port on which interrupt arrived (possibly...)
4716 * @qc: Taskfile currently active in engine
4717 *
4718 * Handle host interrupt for given queued command. Currently,
4719 * only DMA interrupts are handled. All other commands are
4720 * handled via polling with interrupts disabled (nIEN bit).
4721 *
4722 * LOCKING:
4723 * spin_lock_irqsave(host_set lock)
4724 *
4725 * RETURNS:
4726 * One if interrupt was handled, zero if not (shared irq).
4727 */
4728
4729 inline unsigned int ata_host_intr (struct ata_port *ap,
4730 struct ata_queued_cmd *qc)
4731 {
4732 u8 status, host_stat = 0;
4733
4734 VPRINTK("ata%u: protocol %d task_state %d\n",
4735 ap->id, qc->tf.protocol, ap->hsm_task_state);
4736
4737 /* Check whether we are expecting interrupt in this state */
4738 switch (ap->hsm_task_state) {
4739 case HSM_ST_FIRST:
4740 /* Some pre-ATAPI-4 devices assert INTRQ
4741 * at this state when ready to receive CDB.
4742 */
4743
4744 /* Check the ATA_DFLAG_CDB_INTR flag is enough here.
4745 * The flag was turned on only for atapi devices.
4746 * No need to check is_atapi_taskfile(&qc->tf) again.
4747 */
4748 if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
4749 goto idle_irq;
4750 break;
4751 case HSM_ST_LAST:
4752 if (qc->tf.protocol == ATA_PROT_DMA ||
4753 qc->tf.protocol == ATA_PROT_ATAPI_DMA) {
4754 /* check status of DMA engine */
4755 host_stat = ap->ops->bmdma_status(ap);
4756 VPRINTK("ata%u: host_stat 0x%X\n", ap->id, host_stat);
4757
4758 /* if it's not our irq... */
4759 if (!(host_stat & ATA_DMA_INTR))
4760 goto idle_irq;
4761
4762 /* before we do anything else, clear DMA-Start bit */
4763 ap->ops->bmdma_stop(qc);
4764
4765 if (unlikely(host_stat & ATA_DMA_ERR)) {
4766 /* error when transfering data to/from memory */
4767 qc->err_mask |= AC_ERR_HOST_BUS;
4768 ap->hsm_task_state = HSM_ST_ERR;
4769 }
4770 }
4771 break;
4772 case HSM_ST:
4773 break;
4774 default:
4775 goto idle_irq;
4776 }
4777
4778 /* check altstatus */
4779 status = ata_altstatus(ap);
4780 if (status & ATA_BUSY)
4781 goto idle_irq;
4782
4783 /* check main status, clearing INTRQ */
4784 status = ata_chk_status(ap);
4785 if (unlikely(status & ATA_BUSY))
4786 goto idle_irq;
4787
4788 /* ack bmdma irq events */
4789 ap->ops->irq_clear(ap);
4790
4791 ata_hsm_move(ap, qc, status, 0);
4792 return 1; /* irq handled */
4793
4794 idle_irq:
4795 ap->stats.idle_irq++;
4796
4797 #ifdef ATA_IRQ_TRAP
4798 if ((ap->stats.idle_irq % 1000) == 0) {
4799 ata_irq_ack(ap, 0); /* debug trap */
4800 ata_port_printk(ap, KERN_WARNING, "irq trap\n");
4801 return 1;
4802 }
4803 #endif
4804 return 0; /* irq not handled */
4805 }
4806
4807 /**
4808 * ata_interrupt - Default ATA host interrupt handler
4809 * @irq: irq line (unused)
4810 * @dev_instance: pointer to our ata_host_set information structure
4811 * @regs: unused
4812 *
4813 * Default interrupt handler for PCI IDE devices. Calls
4814 * ata_host_intr() for each port that is not disabled.
4815 *
4816 * LOCKING:
4817 * Obtains host_set lock during operation.
4818 *
4819 * RETURNS:
4820 * IRQ_NONE or IRQ_HANDLED.
4821 */
4822
4823 irqreturn_t ata_interrupt (int irq, void *dev_instance, struct pt_regs *regs)
4824 {
4825 struct ata_host_set *host_set = dev_instance;
4826 unsigned int i;
4827 unsigned int handled = 0;
4828 unsigned long flags;
4829
4830 /* TODO: make _irqsave conditional on x86 PCI IDE legacy mode */
4831 spin_lock_irqsave(&host_set->lock, flags);
4832
4833 for (i = 0; i < host_set->n_ports; i++) {
4834 struct ata_port *ap;
4835
4836 ap = host_set->ports[i];
4837 if (ap &&
4838 !(ap->flags & ATA_FLAG_DISABLED)) {
4839 struct ata_queued_cmd *qc;
4840
4841 qc = ata_qc_from_tag(ap, ap->active_tag);
4842 if (qc && (!(qc->tf.flags & ATA_TFLAG_POLLING)) &&
4843 (qc->flags & ATA_QCFLAG_ACTIVE))
4844 handled |= ata_host_intr(ap, qc);
4845 }
4846 }
4847
4848 spin_unlock_irqrestore(&host_set->lock, flags);
4849
4850 return IRQ_RETVAL(handled);
4851 }
4852
4853 /**
4854 * sata_scr_valid - test whether SCRs are accessible
4855 * @ap: ATA port to test SCR accessibility for
4856 *
4857 * Test whether SCRs are accessible for @ap.
4858 *
4859 * LOCKING:
4860 * None.
4861 *
4862 * RETURNS:
4863 * 1 if SCRs are accessible, 0 otherwise.
4864 */
4865 int sata_scr_valid(struct ata_port *ap)
4866 {
4867 return ap->cbl == ATA_CBL_SATA && ap->ops->scr_read;
4868 }
4869
4870 /**
4871 * sata_scr_read - read SCR register of the specified port
4872 * @ap: ATA port to read SCR for
4873 * @reg: SCR to read
4874 * @val: Place to store read value
4875 *
4876 * Read SCR register @reg of @ap into *@val. This function is
4877 * guaranteed to succeed if the cable type of the port is SATA
4878 * and the port implements ->scr_read.
4879 *
4880 * LOCKING:
4881 * None.
4882 *
4883 * RETURNS:
4884 * 0 on success, negative errno on failure.
4885 */
4886 int sata_scr_read(struct ata_port *ap, int reg, u32 *val)
4887 {
4888 if (sata_scr_valid(ap)) {
4889 *val = ap->ops->scr_read(ap, reg);
4890 return 0;
4891 }
4892 return -EOPNOTSUPP;
4893 }
4894
4895 /**
4896 * sata_scr_write - write SCR register of the specified port
4897 * @ap: ATA port to write SCR for
4898 * @reg: SCR to write
4899 * @val: value to write
4900 *
4901 * Write @val to SCR register @reg of @ap. This function is
4902 * guaranteed to succeed if the cable type of the port is SATA
4903 * and the port implements ->scr_read.
4904 *
4905 * LOCKING:
4906 * None.
4907 *
4908 * RETURNS:
4909 * 0 on success, negative errno on failure.
4910 */
4911 int sata_scr_write(struct ata_port *ap, int reg, u32 val)
4912 {
4913 if (sata_scr_valid(ap)) {
4914 ap->ops->scr_write(ap, reg, val);
4915 return 0;
4916 }
4917 return -EOPNOTSUPP;
4918 }
4919
4920 /**
4921 * sata_scr_write_flush - write SCR register of the specified port and flush
4922 * @ap: ATA port to write SCR for
4923 * @reg: SCR to write
4924 * @val: value to write
4925 *
4926 * This function is identical to sata_scr_write() except that this
4927 * function performs flush after writing to the register.
4928 *
4929 * LOCKING:
4930 * None.
4931 *
4932 * RETURNS:
4933 * 0 on success, negative errno on failure.
4934 */
4935 int sata_scr_write_flush(struct ata_port *ap, int reg, u32 val)
4936 {
4937 if (sata_scr_valid(ap)) {
4938 ap->ops->scr_write(ap, reg, val);
4939 ap->ops->scr_read(ap, reg);
4940 return 0;
4941 }
4942 return -EOPNOTSUPP;
4943 }
4944
4945 /**
4946 * ata_port_online - test whether the given port is online
4947 * @ap: ATA port to test
4948 *
4949 * Test whether @ap is online. Note that this function returns 0
4950 * if online status of @ap cannot be obtained, so
4951 * ata_port_online(ap) != !ata_port_offline(ap).
4952 *
4953 * LOCKING:
4954 * None.
4955 *
4956 * RETURNS:
4957 * 1 if the port online status is available and online.
4958 */
4959 int ata_port_online(struct ata_port *ap)
4960 {
4961 u32 sstatus;
4962
4963 if (!sata_scr_read(ap, SCR_STATUS, &sstatus) && (sstatus & 0xf) == 0x3)
4964 return 1;
4965 return 0;
4966 }
4967
4968 /**
4969 * ata_port_offline - test whether the given port is offline
4970 * @ap: ATA port to test
4971 *
4972 * Test whether @ap is offline. Note that this function returns
4973 * 0 if offline status of @ap cannot be obtained, so
4974 * ata_port_online(ap) != !ata_port_offline(ap).
4975 *
4976 * LOCKING:
4977 * None.
4978 *
4979 * RETURNS:
4980 * 1 if the port offline status is available and offline.
4981 */
4982 int ata_port_offline(struct ata_port *ap)
4983 {
4984 u32 sstatus;
4985
4986 if (!sata_scr_read(ap, SCR_STATUS, &sstatus) && (sstatus & 0xf) != 0x3)
4987 return 1;
4988 return 0;
4989 }
4990
4991 int ata_flush_cache(struct ata_device *dev)
4992 {
4993 unsigned int err_mask;
4994 u8 cmd;
4995
4996 if (!ata_try_flush_cache(dev))
4997 return 0;
4998
4999 if (ata_id_has_flush_ext(dev->id))
5000 cmd = ATA_CMD_FLUSH_EXT;
5001 else
5002 cmd = ATA_CMD_FLUSH;
5003
5004 err_mask = ata_do_simple_cmd(dev, cmd);
5005 if (err_mask) {
5006 ata_dev_printk(dev, KERN_ERR, "failed to flush cache\n");
5007 return -EIO;
5008 }
5009
5010 return 0;
5011 }
5012
5013 static int ata_standby_drive(struct ata_device *dev)
5014 {
5015 unsigned int err_mask;
5016
5017 err_mask = ata_do_simple_cmd(dev, ATA_CMD_STANDBYNOW1);
5018 if (err_mask) {
5019 ata_dev_printk(dev, KERN_ERR, "failed to standby drive "
5020 "(err_mask=0x%x)\n", err_mask);
5021 return -EIO;
5022 }
5023
5024 return 0;
5025 }
5026
5027 static int ata_start_drive(struct ata_device *dev)
5028 {
5029 unsigned int err_mask;
5030
5031 err_mask = ata_do_simple_cmd(dev, ATA_CMD_IDLEIMMEDIATE);
5032 if (err_mask) {
5033 ata_dev_printk(dev, KERN_ERR, "failed to start drive "
5034 "(err_mask=0x%x)\n", err_mask);
5035 return -EIO;
5036 }
5037
5038 return 0;
5039 }
5040
5041 /**
5042 * ata_device_resume - wakeup a previously suspended devices
5043 * @dev: the device to resume
5044 *
5045 * Kick the drive back into action, by sending it an idle immediate
5046 * command and making sure its transfer mode matches between drive
5047 * and host.
5048 *
5049 */
5050 int ata_device_resume(struct ata_device *dev)
5051 {
5052 struct ata_port *ap = dev->ap;
5053
5054 if (ap->flags & ATA_FLAG_SUSPENDED) {
5055 struct ata_device *failed_dev;
5056
5057 ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT);
5058 ata_busy_wait(ap, ATA_BUSY | ATA_DRQ, 200000);
5059
5060 ap->flags &= ~ATA_FLAG_SUSPENDED;
5061 while (ata_set_mode(ap, &failed_dev))
5062 ata_dev_disable(failed_dev);
5063 }
5064 if (!ata_dev_enabled(dev))
5065 return 0;
5066 if (dev->class == ATA_DEV_ATA)
5067 ata_start_drive(dev);
5068
5069 return 0;
5070 }
5071
5072 /**
5073 * ata_device_suspend - prepare a device for suspend
5074 * @dev: the device to suspend
5075 * @state: target power management state
5076 *
5077 * Flush the cache on the drive, if appropriate, then issue a
5078 * standbynow command.
5079 */
5080 int ata_device_suspend(struct ata_device *dev, pm_message_t state)
5081 {
5082 struct ata_port *ap = dev->ap;
5083
5084 if (!ata_dev_enabled(dev))
5085 return 0;
5086 if (dev->class == ATA_DEV_ATA)
5087 ata_flush_cache(dev);
5088
5089 if (state.event != PM_EVENT_FREEZE)
5090 ata_standby_drive(dev);
5091 ap->flags |= ATA_FLAG_SUSPENDED;
5092 return 0;
5093 }
5094
5095 /**
5096 * ata_port_start - Set port up for dma.
5097 * @ap: Port to initialize
5098 *
5099 * Called just after data structures for each port are
5100 * initialized. Allocates space for PRD table.
5101 *
5102 * May be used as the port_start() entry in ata_port_operations.
5103 *
5104 * LOCKING:
5105 * Inherited from caller.
5106 */
5107
5108 int ata_port_start (struct ata_port *ap)
5109 {
5110 struct device *dev = ap->dev;
5111 int rc;
5112
5113 ap->prd = dma_alloc_coherent(dev, ATA_PRD_TBL_SZ, &ap->prd_dma, GFP_KERNEL);
5114 if (!ap->prd)
5115 return -ENOMEM;
5116
5117 rc = ata_pad_alloc(ap, dev);
5118 if (rc) {
5119 dma_free_coherent(dev, ATA_PRD_TBL_SZ, ap->prd, ap->prd_dma);
5120 return rc;
5121 }
5122
5123 DPRINTK("prd alloc, virt %p, dma %llx\n", ap->prd, (unsigned long long) ap->prd_dma);
5124
5125 return 0;
5126 }
5127
5128
5129 /**
5130 * ata_port_stop - Undo ata_port_start()
5131 * @ap: Port to shut down
5132 *
5133 * Frees the PRD table.
5134 *
5135 * May be used as the port_stop() entry in ata_port_operations.
5136 *
5137 * LOCKING:
5138 * Inherited from caller.
5139 */
5140
5141 void ata_port_stop (struct ata_port *ap)
5142 {
5143 struct device *dev = ap->dev;
5144
5145 dma_free_coherent(dev, ATA_PRD_TBL_SZ, ap->prd, ap->prd_dma);
5146 ata_pad_free(ap, dev);
5147 }
5148
5149 void ata_host_stop (struct ata_host_set *host_set)
5150 {
5151 if (host_set->mmio_base)
5152 iounmap(host_set->mmio_base);
5153 }
5154
5155
5156 /**
5157 * ata_host_remove - Unregister SCSI host structure with upper layers
5158 * @ap: Port to unregister
5159 * @do_unregister: 1 if we fully unregister, 0 to just stop the port
5160 *
5161 * LOCKING:
5162 * Inherited from caller.
5163 */
5164
5165 static void ata_host_remove(struct ata_port *ap, unsigned int do_unregister)
5166 {
5167 struct Scsi_Host *sh = ap->host;
5168
5169 DPRINTK("ENTER\n");
5170
5171 if (do_unregister)
5172 scsi_remove_host(sh);
5173
5174 ap->ops->port_stop(ap);
5175 }
5176
5177 /**
5178 * ata_dev_init - Initialize an ata_device structure
5179 * @dev: Device structure to initialize
5180 *
5181 * Initialize @dev in preparation for probing.
5182 *
5183 * LOCKING:
5184 * Inherited from caller.
5185 */
5186 void ata_dev_init(struct ata_device *dev)
5187 {
5188 struct ata_port *ap = dev->ap;
5189 unsigned long flags;
5190
5191 /* SATA spd limit is bound to the first device */
5192 ap->sata_spd_limit = ap->hw_sata_spd_limit;
5193
5194 /* High bits of dev->flags are used to record warm plug
5195 * requests which occur asynchronously. Synchronize using
5196 * host_set lock.
5197 */
5198 spin_lock_irqsave(ap->lock, flags);
5199 dev->flags &= ~ATA_DFLAG_INIT_MASK;
5200 spin_unlock_irqrestore(ap->lock, flags);
5201
5202 memset((void *)dev + ATA_DEVICE_CLEAR_OFFSET, 0,
5203 sizeof(*dev) - ATA_DEVICE_CLEAR_OFFSET);
5204 dev->pio_mask = UINT_MAX;
5205 dev->mwdma_mask = UINT_MAX;
5206 dev->udma_mask = UINT_MAX;
5207 }
5208
5209 /**
5210 * ata_host_init - Initialize an ata_port structure
5211 * @ap: Structure to initialize
5212 * @host: associated SCSI mid-layer structure
5213 * @host_set: Collection of hosts to which @ap belongs
5214 * @ent: Probe information provided by low-level driver
5215 * @port_no: Port number associated with this ata_port
5216 *
5217 * Initialize a new ata_port structure, and its associated
5218 * scsi_host.
5219 *
5220 * LOCKING:
5221 * Inherited from caller.
5222 */
5223 static void ata_host_init(struct ata_port *ap, struct Scsi_Host *host,
5224 struct ata_host_set *host_set,
5225 const struct ata_probe_ent *ent, unsigned int port_no)
5226 {
5227 unsigned int i;
5228
5229 host->max_id = 16;
5230 host->max_lun = 1;
5231 host->max_channel = 1;
5232 host->unique_id = ata_unique_id++;
5233 host->max_cmd_len = 12;
5234
5235 ap->lock = &host_set->lock;
5236 ap->flags = ATA_FLAG_DISABLED;
5237 ap->id = host->unique_id;
5238 ap->host = host;
5239 ap->ctl = ATA_DEVCTL_OBS;
5240 ap->host_set = host_set;
5241 ap->dev = ent->dev;
5242 ap->port_no = port_no;
5243 ap->hard_port_no =
5244 ent->legacy_mode ? ent->hard_port_no : port_no;
5245 ap->pio_mask = ent->pio_mask;
5246 ap->mwdma_mask = ent->mwdma_mask;
5247 ap->udma_mask = ent->udma_mask;
5248 ap->flags |= ent->host_flags;
5249 ap->ops = ent->port_ops;
5250 ap->hw_sata_spd_limit = UINT_MAX;
5251 ap->active_tag = ATA_TAG_POISON;
5252 ap->last_ctl = 0xFF;
5253
5254 #if defined(ATA_VERBOSE_DEBUG)
5255 /* turn on all debugging levels */
5256 ap->msg_enable = 0x00FF;
5257 #elif defined(ATA_DEBUG)
5258 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_INFO | ATA_MSG_CTL | ATA_MSG_WARN | ATA_MSG_ERR;
5259 #else
5260 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_ERR | ATA_MSG_WARN;
5261 #endif
5262
5263 INIT_WORK(&ap->port_task, NULL, NULL);
5264 INIT_WORK(&ap->hotplug_task, ata_scsi_hotplug, ap);
5265 INIT_WORK(&ap->scsi_rescan_task, ata_scsi_dev_rescan, ap);
5266 INIT_LIST_HEAD(&ap->eh_done_q);
5267 init_waitqueue_head(&ap->eh_wait_q);
5268
5269 /* set cable type */
5270 ap->cbl = ATA_CBL_NONE;
5271 if (ap->flags & ATA_FLAG_SATA)
5272 ap->cbl = ATA_CBL_SATA;
5273
5274 for (i = 0; i < ATA_MAX_DEVICES; i++) {
5275 struct ata_device *dev = &ap->device[i];
5276 dev->ap = ap;
5277 dev->devno = i;
5278 ata_dev_init(dev);
5279 }
5280
5281 #ifdef ATA_IRQ_TRAP
5282 ap->stats.unhandled_irq = 1;
5283 ap->stats.idle_irq = 1;
5284 #endif
5285
5286 memcpy(&ap->ioaddr, &ent->port[port_no], sizeof(struct ata_ioports));
5287 }
5288
5289 /**
5290 * ata_host_add - Attach low-level ATA driver to system
5291 * @ent: Information provided by low-level driver
5292 * @host_set: Collections of ports to which we add
5293 * @port_no: Port number associated with this host
5294 *
5295 * Attach low-level ATA driver to system.
5296 *
5297 * LOCKING:
5298 * PCI/etc. bus probe sem.
5299 *
5300 * RETURNS:
5301 * New ata_port on success, for NULL on error.
5302 */
5303
5304 static struct ata_port * ata_host_add(const struct ata_probe_ent *ent,
5305 struct ata_host_set *host_set,
5306 unsigned int port_no)
5307 {
5308 struct Scsi_Host *host;
5309 struct ata_port *ap;
5310 int rc;
5311
5312 DPRINTK("ENTER\n");
5313
5314 if (!ent->port_ops->error_handler &&
5315 !(ent->host_flags & (ATA_FLAG_SATA_RESET | ATA_FLAG_SRST))) {
5316 printk(KERN_ERR "ata%u: no reset mechanism available\n",
5317 port_no);
5318 return NULL;
5319 }
5320
5321 host = scsi_host_alloc(ent->sht, sizeof(struct ata_port));
5322 if (!host)
5323 return NULL;
5324
5325 host->transportt = &ata_scsi_transport_template;
5326
5327 ap = ata_shost_to_port(host);
5328
5329 ata_host_init(ap, host, host_set, ent, port_no);
5330
5331 rc = ap->ops->port_start(ap);
5332 if (rc)
5333 goto err_out;
5334
5335 return ap;
5336
5337 err_out:
5338 scsi_host_put(host);
5339 return NULL;
5340 }
5341
5342 /**
5343 * ata_device_add - Register hardware device with ATA and SCSI layers
5344 * @ent: Probe information describing hardware device to be registered
5345 *
5346 * This function processes the information provided in the probe
5347 * information struct @ent, allocates the necessary ATA and SCSI
5348 * host information structures, initializes them, and registers
5349 * everything with requisite kernel subsystems.
5350 *
5351 * This function requests irqs, probes the ATA bus, and probes
5352 * the SCSI bus.
5353 *
5354 * LOCKING:
5355 * PCI/etc. bus probe sem.
5356 *
5357 * RETURNS:
5358 * Number of ports registered. Zero on error (no ports registered).
5359 */
5360 int ata_device_add(const struct ata_probe_ent *ent)
5361 {
5362 unsigned int count = 0, i;
5363 struct device *dev = ent->dev;
5364 struct ata_host_set *host_set;
5365 int rc;
5366
5367 DPRINTK("ENTER\n");
5368 /* alloc a container for our list of ATA ports (buses) */
5369 host_set = kzalloc(sizeof(struct ata_host_set) +
5370 (ent->n_ports * sizeof(void *)), GFP_KERNEL);
5371 if (!host_set)
5372 return 0;
5373 spin_lock_init(&host_set->lock);
5374
5375 host_set->dev = dev;
5376 host_set->n_ports = ent->n_ports;
5377 host_set->irq = ent->irq;
5378 host_set->mmio_base = ent->mmio_base;
5379 host_set->private_data = ent->private_data;
5380 host_set->ops = ent->port_ops;
5381 host_set->flags = ent->host_set_flags;
5382
5383 /* register each port bound to this device */
5384 for (i = 0; i < ent->n_ports; i++) {
5385 struct ata_port *ap;
5386 unsigned long xfer_mode_mask;
5387
5388 ap = ata_host_add(ent, host_set, i);
5389 if (!ap)
5390 goto err_out;
5391
5392 host_set->ports[i] = ap;
5393 xfer_mode_mask =(ap->udma_mask << ATA_SHIFT_UDMA) |
5394 (ap->mwdma_mask << ATA_SHIFT_MWDMA) |
5395 (ap->pio_mask << ATA_SHIFT_PIO);
5396
5397 /* print per-port info to dmesg */
5398 ata_port_printk(ap, KERN_INFO, "%cATA max %s cmd 0x%lX "
5399 "ctl 0x%lX bmdma 0x%lX irq %lu\n",
5400 ap->flags & ATA_FLAG_SATA ? 'S' : 'P',
5401 ata_mode_string(xfer_mode_mask),
5402 ap->ioaddr.cmd_addr,
5403 ap->ioaddr.ctl_addr,
5404 ap->ioaddr.bmdma_addr,
5405 ent->irq);
5406
5407 ata_chk_status(ap);
5408 host_set->ops->irq_clear(ap);
5409 ata_eh_freeze_port(ap); /* freeze port before requesting IRQ */
5410 count++;
5411 }
5412
5413 if (!count)
5414 goto err_free_ret;
5415
5416 /* obtain irq, that is shared between channels */
5417 rc = request_irq(ent->irq, ent->port_ops->irq_handler, ent->irq_flags,
5418 DRV_NAME, host_set);
5419 if (rc) {
5420 dev_printk(KERN_ERR, dev, "irq %lu request failed: %d\n",
5421 ent->irq, rc);
5422 goto err_out;
5423 }
5424
5425 /* perform each probe synchronously */
5426 DPRINTK("probe begin\n");
5427 for (i = 0; i < count; i++) {
5428 struct ata_port *ap;
5429 u32 scontrol;
5430 int rc;
5431
5432 ap = host_set->ports[i];
5433
5434 /* init sata_spd_limit to the current value */
5435 if (sata_scr_read(ap, SCR_CONTROL, &scontrol) == 0) {
5436 int spd = (scontrol >> 4) & 0xf;
5437 ap->hw_sata_spd_limit &= (1 << spd) - 1;
5438 }
5439 ap->sata_spd_limit = ap->hw_sata_spd_limit;
5440
5441 rc = scsi_add_host(ap->host, dev);
5442 if (rc) {
5443 ata_port_printk(ap, KERN_ERR, "scsi_add_host failed\n");
5444 /* FIXME: do something useful here */
5445 /* FIXME: handle unconditional calls to
5446 * scsi_scan_host and ata_host_remove, below,
5447 * at the very least
5448 */
5449 }
5450
5451 if (ap->ops->error_handler) {
5452 unsigned long flags;
5453
5454 ata_port_probe(ap);
5455
5456 /* kick EH for boot probing */
5457 spin_lock_irqsave(ap->lock, flags);
5458
5459 ap->eh_info.probe_mask = (1 << ATA_MAX_DEVICES) - 1;
5460 ap->eh_info.action |= ATA_EH_SOFTRESET;
5461
5462 ap->flags |= ATA_FLAG_LOADING;
5463 ata_port_schedule_eh(ap);
5464
5465 spin_unlock_irqrestore(ap->lock, flags);
5466
5467 /* wait for EH to finish */
5468 ata_port_wait_eh(ap);
5469 } else {
5470 DPRINTK("ata%u: bus probe begin\n", ap->id);
5471 rc = ata_bus_probe(ap);
5472 DPRINTK("ata%u: bus probe end\n", ap->id);
5473
5474 if (rc) {
5475 /* FIXME: do something useful here?
5476 * Current libata behavior will
5477 * tear down everything when
5478 * the module is removed
5479 * or the h/w is unplugged.
5480 */
5481 }
5482 }
5483 }
5484
5485 /* probes are done, now scan each port's disk(s) */
5486 DPRINTK("host probe begin\n");
5487 for (i = 0; i < count; i++) {
5488 struct ata_port *ap = host_set->ports[i];
5489
5490 ata_scsi_scan_host(ap);
5491 }
5492
5493 dev_set_drvdata(dev, host_set);
5494
5495 VPRINTK("EXIT, returning %u\n", ent->n_ports);
5496 return ent->n_ports; /* success */
5497
5498 err_out:
5499 for (i = 0; i < count; i++) {
5500 ata_host_remove(host_set->ports[i], 1);
5501 scsi_host_put(host_set->ports[i]->host);
5502 }
5503 err_free_ret:
5504 kfree(host_set);
5505 VPRINTK("EXIT, returning 0\n");
5506 return 0;
5507 }
5508
5509 /**
5510 * ata_port_detach - Detach ATA port in prepration of device removal
5511 * @ap: ATA port to be detached
5512 *
5513 * Detach all ATA devices and the associated SCSI devices of @ap;
5514 * then, remove the associated SCSI host. @ap is guaranteed to
5515 * be quiescent on return from this function.
5516 *
5517 * LOCKING:
5518 * Kernel thread context (may sleep).
5519 */
5520 void ata_port_detach(struct ata_port *ap)
5521 {
5522 unsigned long flags;
5523 int i;
5524
5525 if (!ap->ops->error_handler)
5526 return;
5527
5528 /* tell EH we're leaving & flush EH */
5529 spin_lock_irqsave(ap->lock, flags);
5530 ap->flags |= ATA_FLAG_UNLOADING;
5531 spin_unlock_irqrestore(ap->lock, flags);
5532
5533 ata_port_wait_eh(ap);
5534
5535 /* EH is now guaranteed to see UNLOADING, so no new device
5536 * will be attached. Disable all existing devices.
5537 */
5538 spin_lock_irqsave(ap->lock, flags);
5539
5540 for (i = 0; i < ATA_MAX_DEVICES; i++)
5541 ata_dev_disable(&ap->device[i]);
5542
5543 spin_unlock_irqrestore(ap->lock, flags);
5544
5545 /* Final freeze & EH. All in-flight commands are aborted. EH
5546 * will be skipped and retrials will be terminated with bad
5547 * target.
5548 */
5549 spin_lock_irqsave(ap->lock, flags);
5550 ata_port_freeze(ap); /* won't be thawed */
5551 spin_unlock_irqrestore(ap->lock, flags);
5552
5553 ata_port_wait_eh(ap);
5554
5555 /* Flush hotplug task. The sequence is similar to
5556 * ata_port_flush_task().
5557 */
5558 flush_workqueue(ata_aux_wq);
5559 cancel_delayed_work(&ap->hotplug_task);
5560 flush_workqueue(ata_aux_wq);
5561
5562 /* remove the associated SCSI host */
5563 scsi_remove_host(ap->host);
5564 }
5565
5566 /**
5567 * ata_host_set_remove - PCI layer callback for device removal
5568 * @host_set: ATA host set that was removed
5569 *
5570 * Unregister all objects associated with this host set. Free those
5571 * objects.
5572 *
5573 * LOCKING:
5574 * Inherited from calling layer (may sleep).
5575 */
5576
5577 void ata_host_set_remove(struct ata_host_set *host_set)
5578 {
5579 unsigned int i;
5580
5581 for (i = 0; i < host_set->n_ports; i++)
5582 ata_port_detach(host_set->ports[i]);
5583
5584 free_irq(host_set->irq, host_set);
5585
5586 for (i = 0; i < host_set->n_ports; i++) {
5587 struct ata_port *ap = host_set->ports[i];
5588
5589 ata_scsi_release(ap->host);
5590
5591 if ((ap->flags & ATA_FLAG_NO_LEGACY) == 0) {
5592 struct ata_ioports *ioaddr = &ap->ioaddr;
5593
5594 if (ioaddr->cmd_addr == 0x1f0)
5595 release_region(0x1f0, 8);
5596 else if (ioaddr->cmd_addr == 0x170)
5597 release_region(0x170, 8);
5598 }
5599
5600 scsi_host_put(ap->host);
5601 }
5602
5603 if (host_set->ops->host_stop)
5604 host_set->ops->host_stop(host_set);
5605
5606 kfree(host_set);
5607 }
5608
5609 /**
5610 * ata_scsi_release - SCSI layer callback hook for host unload
5611 * @host: libata host to be unloaded
5612 *
5613 * Performs all duties necessary to shut down a libata port...
5614 * Kill port kthread, disable port, and release resources.
5615 *
5616 * LOCKING:
5617 * Inherited from SCSI layer.
5618 *
5619 * RETURNS:
5620 * One.
5621 */
5622
5623 int ata_scsi_release(struct Scsi_Host *host)
5624 {
5625 struct ata_port *ap = ata_shost_to_port(host);
5626
5627 DPRINTK("ENTER\n");
5628
5629 ap->ops->port_disable(ap);
5630 ata_host_remove(ap, 0);
5631
5632 DPRINTK("EXIT\n");
5633 return 1;
5634 }
5635
5636 /**
5637 * ata_std_ports - initialize ioaddr with standard port offsets.
5638 * @ioaddr: IO address structure to be initialized
5639 *
5640 * Utility function which initializes data_addr, error_addr,
5641 * feature_addr, nsect_addr, lbal_addr, lbam_addr, lbah_addr,
5642 * device_addr, status_addr, and command_addr to standard offsets
5643 * relative to cmd_addr.
5644 *
5645 * Does not set ctl_addr, altstatus_addr, bmdma_addr, or scr_addr.
5646 */
5647
5648 void ata_std_ports(struct ata_ioports *ioaddr)
5649 {
5650 ioaddr->data_addr = ioaddr->cmd_addr + ATA_REG_DATA;
5651 ioaddr->error_addr = ioaddr->cmd_addr + ATA_REG_ERR;
5652 ioaddr->feature_addr = ioaddr->cmd_addr + ATA_REG_FEATURE;
5653 ioaddr->nsect_addr = ioaddr->cmd_addr + ATA_REG_NSECT;
5654 ioaddr->lbal_addr = ioaddr->cmd_addr + ATA_REG_LBAL;
5655 ioaddr->lbam_addr = ioaddr->cmd_addr + ATA_REG_LBAM;
5656 ioaddr->lbah_addr = ioaddr->cmd_addr + ATA_REG_LBAH;
5657 ioaddr->device_addr = ioaddr->cmd_addr + ATA_REG_DEVICE;
5658 ioaddr->status_addr = ioaddr->cmd_addr + ATA_REG_STATUS;
5659 ioaddr->command_addr = ioaddr->cmd_addr + ATA_REG_CMD;
5660 }
5661
5662
5663 #ifdef CONFIG_PCI
5664
5665 void ata_pci_host_stop (struct ata_host_set *host_set)
5666 {
5667 struct pci_dev *pdev = to_pci_dev(host_set->dev);
5668
5669 pci_iounmap(pdev, host_set->mmio_base);
5670 }
5671
5672 /**
5673 * ata_pci_remove_one - PCI layer callback for device removal
5674 * @pdev: PCI device that was removed
5675 *
5676 * PCI layer indicates to libata via this hook that
5677 * hot-unplug or module unload event has occurred.
5678 * Handle this by unregistering all objects associated
5679 * with this PCI device. Free those objects. Then finally
5680 * release PCI resources and disable device.
5681 *
5682 * LOCKING:
5683 * Inherited from PCI layer (may sleep).
5684 */
5685
5686 void ata_pci_remove_one (struct pci_dev *pdev)
5687 {
5688 struct device *dev = pci_dev_to_dev(pdev);
5689 struct ata_host_set *host_set = dev_get_drvdata(dev);
5690 struct ata_host_set *host_set2 = host_set->next;
5691
5692 ata_host_set_remove(host_set);
5693 if (host_set2)
5694 ata_host_set_remove(host_set2);
5695
5696 pci_release_regions(pdev);
5697 pci_disable_device(pdev);
5698 dev_set_drvdata(dev, NULL);
5699 }
5700
5701 /* move to PCI subsystem */
5702 int pci_test_config_bits(struct pci_dev *pdev, const struct pci_bits *bits)
5703 {
5704 unsigned long tmp = 0;
5705
5706 switch (bits->width) {
5707 case 1: {
5708 u8 tmp8 = 0;
5709 pci_read_config_byte(pdev, bits->reg, &tmp8);
5710 tmp = tmp8;
5711 break;
5712 }
5713 case 2: {
5714 u16 tmp16 = 0;
5715 pci_read_config_word(pdev, bits->reg, &tmp16);
5716 tmp = tmp16;
5717 break;
5718 }
5719 case 4: {
5720 u32 tmp32 = 0;
5721 pci_read_config_dword(pdev, bits->reg, &tmp32);
5722 tmp = tmp32;
5723 break;
5724 }
5725
5726 default:
5727 return -EINVAL;
5728 }
5729
5730 tmp &= bits->mask;
5731
5732 return (tmp == bits->val) ? 1 : 0;
5733 }
5734
5735 int ata_pci_device_suspend(struct pci_dev *pdev, pm_message_t state)
5736 {
5737 pci_save_state(pdev);
5738 pci_disable_device(pdev);
5739 pci_set_power_state(pdev, PCI_D3hot);
5740 return 0;
5741 }
5742
5743 int ata_pci_device_resume(struct pci_dev *pdev)
5744 {
5745 pci_set_power_state(pdev, PCI_D0);
5746 pci_restore_state(pdev);
5747 pci_enable_device(pdev);
5748 pci_set_master(pdev);
5749 return 0;
5750 }
5751 #endif /* CONFIG_PCI */
5752
5753
5754 static int __init ata_init(void)
5755 {
5756 ata_probe_timeout *= HZ;
5757 ata_wq = create_workqueue("ata");
5758 if (!ata_wq)
5759 return -ENOMEM;
5760
5761 ata_aux_wq = create_singlethread_workqueue("ata_aux");
5762 if (!ata_aux_wq) {
5763 destroy_workqueue(ata_wq);
5764 return -ENOMEM;
5765 }
5766
5767 printk(KERN_DEBUG "libata version " DRV_VERSION " loaded.\n");
5768 return 0;
5769 }
5770
5771 static void __exit ata_exit(void)
5772 {
5773 destroy_workqueue(ata_wq);
5774 destroy_workqueue(ata_aux_wq);
5775 }
5776
5777 module_init(ata_init);
5778 module_exit(ata_exit);
5779
5780 static unsigned long ratelimit_time;
5781 static DEFINE_SPINLOCK(ata_ratelimit_lock);
5782
5783 int ata_ratelimit(void)
5784 {
5785 int rc;
5786 unsigned long flags;
5787
5788 spin_lock_irqsave(&ata_ratelimit_lock, flags);
5789
5790 if (time_after(jiffies, ratelimit_time)) {
5791 rc = 1;
5792 ratelimit_time = jiffies + (HZ/5);
5793 } else
5794 rc = 0;
5795
5796 spin_unlock_irqrestore(&ata_ratelimit_lock, flags);
5797
5798 return rc;
5799 }
5800
5801 /**
5802 * ata_wait_register - wait until register value changes
5803 * @reg: IO-mapped register
5804 * @mask: Mask to apply to read register value
5805 * @val: Wait condition
5806 * @interval_msec: polling interval in milliseconds
5807 * @timeout_msec: timeout in milliseconds
5808 *
5809 * Waiting for some bits of register to change is a common
5810 * operation for ATA controllers. This function reads 32bit LE
5811 * IO-mapped register @reg and tests for the following condition.
5812 *
5813 * (*@reg & mask) != val
5814 *
5815 * If the condition is met, it returns; otherwise, the process is
5816 * repeated after @interval_msec until timeout.
5817 *
5818 * LOCKING:
5819 * Kernel thread context (may sleep)
5820 *
5821 * RETURNS:
5822 * The final register value.
5823 */
5824 u32 ata_wait_register(void __iomem *reg, u32 mask, u32 val,
5825 unsigned long interval_msec,
5826 unsigned long timeout_msec)
5827 {
5828 unsigned long timeout;
5829 u32 tmp;
5830
5831 tmp = ioread32(reg);
5832
5833 /* Calculate timeout _after_ the first read to make sure
5834 * preceding writes reach the controller before starting to
5835 * eat away the timeout.
5836 */
5837 timeout = jiffies + (timeout_msec * HZ) / 1000;
5838
5839 while ((tmp & mask) == val && time_before(jiffies, timeout)) {
5840 msleep(interval_msec);
5841 tmp = ioread32(reg);
5842 }
5843
5844 return tmp;
5845 }
5846
5847 /*
5848 * libata is essentially a library of internal helper functions for
5849 * low-level ATA host controller drivers. As such, the API/ABI is
5850 * likely to change as new drivers are added and updated.
5851 * Do not depend on ABI/API stability.
5852 */
5853
5854 EXPORT_SYMBOL_GPL(sata_deb_timing_boot);
5855 EXPORT_SYMBOL_GPL(sata_deb_timing_eh);
5856 EXPORT_SYMBOL_GPL(sata_deb_timing_before_fsrst);
5857 EXPORT_SYMBOL_GPL(ata_std_bios_param);
5858 EXPORT_SYMBOL_GPL(ata_std_ports);
5859 EXPORT_SYMBOL_GPL(ata_device_add);
5860 EXPORT_SYMBOL_GPL(ata_port_detach);
5861 EXPORT_SYMBOL_GPL(ata_host_set_remove);
5862 EXPORT_SYMBOL_GPL(ata_sg_init);
5863 EXPORT_SYMBOL_GPL(ata_sg_init_one);
5864 EXPORT_SYMBOL_GPL(ata_hsm_move);
5865 EXPORT_SYMBOL_GPL(ata_qc_complete);
5866 EXPORT_SYMBOL_GPL(ata_qc_complete_multiple);
5867 EXPORT_SYMBOL_GPL(ata_qc_issue_prot);
5868 EXPORT_SYMBOL_GPL(ata_tf_load);
5869 EXPORT_SYMBOL_GPL(ata_tf_read);
5870 EXPORT_SYMBOL_GPL(ata_noop_dev_select);
5871 EXPORT_SYMBOL_GPL(ata_std_dev_select);
5872 EXPORT_SYMBOL_GPL(ata_tf_to_fis);
5873 EXPORT_SYMBOL_GPL(ata_tf_from_fis);
5874 EXPORT_SYMBOL_GPL(ata_check_status);
5875 EXPORT_SYMBOL_GPL(ata_altstatus);
5876 EXPORT_SYMBOL_GPL(ata_exec_command);
5877 EXPORT_SYMBOL_GPL(ata_port_start);
5878 EXPORT_SYMBOL_GPL(ata_port_stop);
5879 EXPORT_SYMBOL_GPL(ata_host_stop);
5880 EXPORT_SYMBOL_GPL(ata_interrupt);
5881 EXPORT_SYMBOL_GPL(ata_mmio_data_xfer);
5882 EXPORT_SYMBOL_GPL(ata_pio_data_xfer);
5883 EXPORT_SYMBOL_GPL(ata_pio_data_xfer_noirq);
5884 EXPORT_SYMBOL_GPL(ata_qc_prep);
5885 EXPORT_SYMBOL_GPL(ata_noop_qc_prep);
5886 EXPORT_SYMBOL_GPL(ata_bmdma_setup);
5887 EXPORT_SYMBOL_GPL(ata_bmdma_start);
5888 EXPORT_SYMBOL_GPL(ata_bmdma_irq_clear);
5889 EXPORT_SYMBOL_GPL(ata_bmdma_status);
5890 EXPORT_SYMBOL_GPL(ata_bmdma_stop);
5891 EXPORT_SYMBOL_GPL(ata_bmdma_freeze);
5892 EXPORT_SYMBOL_GPL(ata_bmdma_thaw);
5893 EXPORT_SYMBOL_GPL(ata_bmdma_drive_eh);
5894 EXPORT_SYMBOL_GPL(ata_bmdma_error_handler);
5895 EXPORT_SYMBOL_GPL(ata_bmdma_post_internal_cmd);
5896 EXPORT_SYMBOL_GPL(ata_port_probe);
5897 EXPORT_SYMBOL_GPL(sata_set_spd);
5898 EXPORT_SYMBOL_GPL(sata_phy_debounce);
5899 EXPORT_SYMBOL_GPL(sata_phy_resume);
5900 EXPORT_SYMBOL_GPL(sata_phy_reset);
5901 EXPORT_SYMBOL_GPL(__sata_phy_reset);
5902 EXPORT_SYMBOL_GPL(ata_bus_reset);
5903 EXPORT_SYMBOL_GPL(ata_std_prereset);
5904 EXPORT_SYMBOL_GPL(ata_std_softreset);
5905 EXPORT_SYMBOL_GPL(sata_std_hardreset);
5906 EXPORT_SYMBOL_GPL(ata_std_postreset);
5907 EXPORT_SYMBOL_GPL(ata_dev_revalidate);
5908 EXPORT_SYMBOL_GPL(ata_dev_classify);
5909 EXPORT_SYMBOL_GPL(ata_dev_pair);
5910 EXPORT_SYMBOL_GPL(ata_port_disable);
5911 EXPORT_SYMBOL_GPL(ata_ratelimit);
5912 EXPORT_SYMBOL_GPL(ata_wait_register);
5913 EXPORT_SYMBOL_GPL(ata_busy_sleep);
5914 EXPORT_SYMBOL_GPL(ata_port_queue_task);
5915 EXPORT_SYMBOL_GPL(ata_scsi_ioctl);
5916 EXPORT_SYMBOL_GPL(ata_scsi_queuecmd);
5917 EXPORT_SYMBOL_GPL(ata_scsi_slave_config);
5918 EXPORT_SYMBOL_GPL(ata_scsi_slave_destroy);
5919 EXPORT_SYMBOL_GPL(ata_scsi_change_queue_depth);
5920 EXPORT_SYMBOL_GPL(ata_scsi_release);
5921 EXPORT_SYMBOL_GPL(ata_host_intr);
5922 EXPORT_SYMBOL_GPL(sata_scr_valid);
5923 EXPORT_SYMBOL_GPL(sata_scr_read);
5924 EXPORT_SYMBOL_GPL(sata_scr_write);
5925 EXPORT_SYMBOL_GPL(sata_scr_write_flush);
5926 EXPORT_SYMBOL_GPL(ata_port_online);
5927 EXPORT_SYMBOL_GPL(ata_port_offline);
5928 EXPORT_SYMBOL_GPL(ata_id_string);
5929 EXPORT_SYMBOL_GPL(ata_id_c_string);
5930 EXPORT_SYMBOL_GPL(ata_scsi_simulate);
5931
5932 EXPORT_SYMBOL_GPL(ata_pio_need_iordy);
5933 EXPORT_SYMBOL_GPL(ata_timing_compute);
5934 EXPORT_SYMBOL_GPL(ata_timing_merge);
5935
5936 #ifdef CONFIG_PCI
5937 EXPORT_SYMBOL_GPL(pci_test_config_bits);
5938 EXPORT_SYMBOL_GPL(ata_pci_host_stop);
5939 EXPORT_SYMBOL_GPL(ata_pci_init_native_mode);
5940 EXPORT_SYMBOL_GPL(ata_pci_init_one);
5941 EXPORT_SYMBOL_GPL(ata_pci_remove_one);
5942 EXPORT_SYMBOL_GPL(ata_pci_device_suspend);
5943 EXPORT_SYMBOL_GPL(ata_pci_device_resume);
5944 EXPORT_SYMBOL_GPL(ata_pci_default_filter);
5945 EXPORT_SYMBOL_GPL(ata_pci_clear_simplex);
5946 #endif /* CONFIG_PCI */
5947
5948 EXPORT_SYMBOL_GPL(ata_device_suspend);
5949 EXPORT_SYMBOL_GPL(ata_device_resume);
5950 EXPORT_SYMBOL_GPL(ata_scsi_device_suspend);
5951 EXPORT_SYMBOL_GPL(ata_scsi_device_resume);
5952
5953 EXPORT_SYMBOL_GPL(ata_eng_timeout);
5954 EXPORT_SYMBOL_GPL(ata_port_schedule_eh);
5955 EXPORT_SYMBOL_GPL(ata_port_abort);
5956 EXPORT_SYMBOL_GPL(ata_port_freeze);
5957 EXPORT_SYMBOL_GPL(ata_eh_freeze_port);
5958 EXPORT_SYMBOL_GPL(ata_eh_thaw_port);
5959 EXPORT_SYMBOL_GPL(ata_eh_qc_complete);
5960 EXPORT_SYMBOL_GPL(ata_eh_qc_retry);
5961 EXPORT_SYMBOL_GPL(ata_do_eh);
This page took 0.155809 seconds and 5 git commands to generate.