[PATCH] libata: improve ata_bus_probe()
[deliverable/linux.git] / drivers / scsi / libata-core.c
1 /*
2 * libata-core.c - helper library for ATA
3 *
4 * Maintained by: Jeff Garzik <jgarzik@pobox.com>
5 * Please ALWAYS copy linux-ide@vger.kernel.org
6 * on emails.
7 *
8 * Copyright 2003-2004 Red Hat, Inc. All rights reserved.
9 * Copyright 2003-2004 Jeff Garzik
10 *
11 *
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2, or (at your option)
15 * any later version.
16 *
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
21 *
22 * You should have received a copy of the GNU General Public License
23 * along with this program; see the file COPYING. If not, write to
24 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
25 *
26 *
27 * libata documentation is available via 'make {ps|pdf}docs',
28 * as Documentation/DocBook/libata.*
29 *
30 * Hardware documentation available from http://www.t13.org/ and
31 * http://www.sata-io.org/
32 *
33 */
34
35 #include <linux/config.h>
36 #include <linux/kernel.h>
37 #include <linux/module.h>
38 #include <linux/pci.h>
39 #include <linux/init.h>
40 #include <linux/list.h>
41 #include <linux/mm.h>
42 #include <linux/highmem.h>
43 #include <linux/spinlock.h>
44 #include <linux/blkdev.h>
45 #include <linux/delay.h>
46 #include <linux/timer.h>
47 #include <linux/interrupt.h>
48 #include <linux/completion.h>
49 #include <linux/suspend.h>
50 #include <linux/workqueue.h>
51 #include <linux/jiffies.h>
52 #include <linux/scatterlist.h>
53 #include <scsi/scsi.h>
54 #include "scsi_priv.h"
55 #include <scsi/scsi_cmnd.h>
56 #include <scsi/scsi_host.h>
57 #include <linux/libata.h>
58 #include <asm/io.h>
59 #include <asm/semaphore.h>
60 #include <asm/byteorder.h>
61
62 #include "libata.h"
63
64 static unsigned int ata_dev_init_params(struct ata_port *ap,
65 struct ata_device *dev,
66 u16 heads,
67 u16 sectors);
68 static int ata_down_xfermask_limit(struct ata_port *ap, struct ata_device *dev,
69 int force_pio0);
70 static int ata_down_sata_spd_limit(struct ata_port *ap);
71 static int ata_set_mode(struct ata_port *ap, struct ata_device **r_failed_dev);
72 static unsigned int ata_dev_set_xfermode(struct ata_port *ap,
73 struct ata_device *dev);
74 static void ata_dev_xfermask(struct ata_port *ap, struct ata_device *dev);
75
76 static unsigned int ata_unique_id = 1;
77 static struct workqueue_struct *ata_wq;
78
79 int atapi_enabled = 1;
80 module_param(atapi_enabled, int, 0444);
81 MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on)");
82
83 int libata_fua = 0;
84 module_param_named(fua, libata_fua, int, 0444);
85 MODULE_PARM_DESC(fua, "FUA support (0=off, 1=on)");
86
87 MODULE_AUTHOR("Jeff Garzik");
88 MODULE_DESCRIPTION("Library module for ATA devices");
89 MODULE_LICENSE("GPL");
90 MODULE_VERSION(DRV_VERSION);
91
92
93 /**
94 * ata_tf_to_fis - Convert ATA taskfile to SATA FIS structure
95 * @tf: Taskfile to convert
96 * @fis: Buffer into which data will output
97 * @pmp: Port multiplier port
98 *
99 * Converts a standard ATA taskfile to a Serial ATA
100 * FIS structure (Register - Host to Device).
101 *
102 * LOCKING:
103 * Inherited from caller.
104 */
105
106 void ata_tf_to_fis(const struct ata_taskfile *tf, u8 *fis, u8 pmp)
107 {
108 fis[0] = 0x27; /* Register - Host to Device FIS */
109 fis[1] = (pmp & 0xf) | (1 << 7); /* Port multiplier number,
110 bit 7 indicates Command FIS */
111 fis[2] = tf->command;
112 fis[3] = tf->feature;
113
114 fis[4] = tf->lbal;
115 fis[5] = tf->lbam;
116 fis[6] = tf->lbah;
117 fis[7] = tf->device;
118
119 fis[8] = tf->hob_lbal;
120 fis[9] = tf->hob_lbam;
121 fis[10] = tf->hob_lbah;
122 fis[11] = tf->hob_feature;
123
124 fis[12] = tf->nsect;
125 fis[13] = tf->hob_nsect;
126 fis[14] = 0;
127 fis[15] = tf->ctl;
128
129 fis[16] = 0;
130 fis[17] = 0;
131 fis[18] = 0;
132 fis[19] = 0;
133 }
134
135 /**
136 * ata_tf_from_fis - Convert SATA FIS to ATA taskfile
137 * @fis: Buffer from which data will be input
138 * @tf: Taskfile to output
139 *
140 * Converts a serial ATA FIS structure to a standard ATA taskfile.
141 *
142 * LOCKING:
143 * Inherited from caller.
144 */
145
146 void ata_tf_from_fis(const u8 *fis, struct ata_taskfile *tf)
147 {
148 tf->command = fis[2]; /* status */
149 tf->feature = fis[3]; /* error */
150
151 tf->lbal = fis[4];
152 tf->lbam = fis[5];
153 tf->lbah = fis[6];
154 tf->device = fis[7];
155
156 tf->hob_lbal = fis[8];
157 tf->hob_lbam = fis[9];
158 tf->hob_lbah = fis[10];
159
160 tf->nsect = fis[12];
161 tf->hob_nsect = fis[13];
162 }
163
164 static const u8 ata_rw_cmds[] = {
165 /* pio multi */
166 ATA_CMD_READ_MULTI,
167 ATA_CMD_WRITE_MULTI,
168 ATA_CMD_READ_MULTI_EXT,
169 ATA_CMD_WRITE_MULTI_EXT,
170 0,
171 0,
172 0,
173 ATA_CMD_WRITE_MULTI_FUA_EXT,
174 /* pio */
175 ATA_CMD_PIO_READ,
176 ATA_CMD_PIO_WRITE,
177 ATA_CMD_PIO_READ_EXT,
178 ATA_CMD_PIO_WRITE_EXT,
179 0,
180 0,
181 0,
182 0,
183 /* dma */
184 ATA_CMD_READ,
185 ATA_CMD_WRITE,
186 ATA_CMD_READ_EXT,
187 ATA_CMD_WRITE_EXT,
188 0,
189 0,
190 0,
191 ATA_CMD_WRITE_FUA_EXT
192 };
193
194 /**
195 * ata_rwcmd_protocol - set taskfile r/w commands and protocol
196 * @qc: command to examine and configure
197 *
198 * Examine the device configuration and tf->flags to calculate
199 * the proper read/write commands and protocol to use.
200 *
201 * LOCKING:
202 * caller.
203 */
204 int ata_rwcmd_protocol(struct ata_queued_cmd *qc)
205 {
206 struct ata_taskfile *tf = &qc->tf;
207 struct ata_device *dev = qc->dev;
208 u8 cmd;
209
210 int index, fua, lba48, write;
211
212 fua = (tf->flags & ATA_TFLAG_FUA) ? 4 : 0;
213 lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0;
214 write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0;
215
216 if (dev->flags & ATA_DFLAG_PIO) {
217 tf->protocol = ATA_PROT_PIO;
218 index = dev->multi_count ? 0 : 8;
219 } else if (lba48 && (qc->ap->flags & ATA_FLAG_PIO_LBA48)) {
220 /* Unable to use DMA due to host limitation */
221 tf->protocol = ATA_PROT_PIO;
222 index = dev->multi_count ? 0 : 8;
223 } else {
224 tf->protocol = ATA_PROT_DMA;
225 index = 16;
226 }
227
228 cmd = ata_rw_cmds[index + fua + lba48 + write];
229 if (cmd) {
230 tf->command = cmd;
231 return 0;
232 }
233 return -1;
234 }
235
236 /**
237 * ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask
238 * @pio_mask: pio_mask
239 * @mwdma_mask: mwdma_mask
240 * @udma_mask: udma_mask
241 *
242 * Pack @pio_mask, @mwdma_mask and @udma_mask into a single
243 * unsigned int xfer_mask.
244 *
245 * LOCKING:
246 * None.
247 *
248 * RETURNS:
249 * Packed xfer_mask.
250 */
251 static unsigned int ata_pack_xfermask(unsigned int pio_mask,
252 unsigned int mwdma_mask,
253 unsigned int udma_mask)
254 {
255 return ((pio_mask << ATA_SHIFT_PIO) & ATA_MASK_PIO) |
256 ((mwdma_mask << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA) |
257 ((udma_mask << ATA_SHIFT_UDMA) & ATA_MASK_UDMA);
258 }
259
260 /**
261 * ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks
262 * @xfer_mask: xfer_mask to unpack
263 * @pio_mask: resulting pio_mask
264 * @mwdma_mask: resulting mwdma_mask
265 * @udma_mask: resulting udma_mask
266 *
267 * Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask.
268 * Any NULL distination masks will be ignored.
269 */
270 static void ata_unpack_xfermask(unsigned int xfer_mask,
271 unsigned int *pio_mask,
272 unsigned int *mwdma_mask,
273 unsigned int *udma_mask)
274 {
275 if (pio_mask)
276 *pio_mask = (xfer_mask & ATA_MASK_PIO) >> ATA_SHIFT_PIO;
277 if (mwdma_mask)
278 *mwdma_mask = (xfer_mask & ATA_MASK_MWDMA) >> ATA_SHIFT_MWDMA;
279 if (udma_mask)
280 *udma_mask = (xfer_mask & ATA_MASK_UDMA) >> ATA_SHIFT_UDMA;
281 }
282
283 static const struct ata_xfer_ent {
284 int shift, bits;
285 u8 base;
286 } ata_xfer_tbl[] = {
287 { ATA_SHIFT_PIO, ATA_BITS_PIO, XFER_PIO_0 },
288 { ATA_SHIFT_MWDMA, ATA_BITS_MWDMA, XFER_MW_DMA_0 },
289 { ATA_SHIFT_UDMA, ATA_BITS_UDMA, XFER_UDMA_0 },
290 { -1, },
291 };
292
293 /**
294 * ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask
295 * @xfer_mask: xfer_mask of interest
296 *
297 * Return matching XFER_* value for @xfer_mask. Only the highest
298 * bit of @xfer_mask is considered.
299 *
300 * LOCKING:
301 * None.
302 *
303 * RETURNS:
304 * Matching XFER_* value, 0 if no match found.
305 */
306 static u8 ata_xfer_mask2mode(unsigned int xfer_mask)
307 {
308 int highbit = fls(xfer_mask) - 1;
309 const struct ata_xfer_ent *ent;
310
311 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
312 if (highbit >= ent->shift && highbit < ent->shift + ent->bits)
313 return ent->base + highbit - ent->shift;
314 return 0;
315 }
316
317 /**
318 * ata_xfer_mode2mask - Find matching xfer_mask for XFER_*
319 * @xfer_mode: XFER_* of interest
320 *
321 * Return matching xfer_mask for @xfer_mode.
322 *
323 * LOCKING:
324 * None.
325 *
326 * RETURNS:
327 * Matching xfer_mask, 0 if no match found.
328 */
329 static unsigned int ata_xfer_mode2mask(u8 xfer_mode)
330 {
331 const struct ata_xfer_ent *ent;
332
333 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
334 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
335 return 1 << (ent->shift + xfer_mode - ent->base);
336 return 0;
337 }
338
339 /**
340 * ata_xfer_mode2shift - Find matching xfer_shift for XFER_*
341 * @xfer_mode: XFER_* of interest
342 *
343 * Return matching xfer_shift for @xfer_mode.
344 *
345 * LOCKING:
346 * None.
347 *
348 * RETURNS:
349 * Matching xfer_shift, -1 if no match found.
350 */
351 static int ata_xfer_mode2shift(unsigned int xfer_mode)
352 {
353 const struct ata_xfer_ent *ent;
354
355 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
356 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
357 return ent->shift;
358 return -1;
359 }
360
361 /**
362 * ata_mode_string - convert xfer_mask to string
363 * @xfer_mask: mask of bits supported; only highest bit counts.
364 *
365 * Determine string which represents the highest speed
366 * (highest bit in @modemask).
367 *
368 * LOCKING:
369 * None.
370 *
371 * RETURNS:
372 * Constant C string representing highest speed listed in
373 * @mode_mask, or the constant C string "<n/a>".
374 */
375 static const char *ata_mode_string(unsigned int xfer_mask)
376 {
377 static const char * const xfer_mode_str[] = {
378 "PIO0",
379 "PIO1",
380 "PIO2",
381 "PIO3",
382 "PIO4",
383 "MWDMA0",
384 "MWDMA1",
385 "MWDMA2",
386 "UDMA/16",
387 "UDMA/25",
388 "UDMA/33",
389 "UDMA/44",
390 "UDMA/66",
391 "UDMA/100",
392 "UDMA/133",
393 "UDMA7",
394 };
395 int highbit;
396
397 highbit = fls(xfer_mask) - 1;
398 if (highbit >= 0 && highbit < ARRAY_SIZE(xfer_mode_str))
399 return xfer_mode_str[highbit];
400 return "<n/a>";
401 }
402
403 static const char *sata_spd_string(unsigned int spd)
404 {
405 static const char * const spd_str[] = {
406 "1.5 Gbps",
407 "3.0 Gbps",
408 };
409
410 if (spd == 0 || (spd - 1) >= ARRAY_SIZE(spd_str))
411 return "<unknown>";
412 return spd_str[spd - 1];
413 }
414
415 static void ata_dev_disable(struct ata_port *ap, struct ata_device *dev)
416 {
417 if (ata_dev_enabled(dev)) {
418 printk(KERN_WARNING "ata%u: dev %u disabled\n",
419 ap->id, dev->devno);
420 dev->class++;
421 }
422 }
423
424 /**
425 * ata_pio_devchk - PATA device presence detection
426 * @ap: ATA channel to examine
427 * @device: Device to examine (starting at zero)
428 *
429 * This technique was originally described in
430 * Hale Landis's ATADRVR (www.ata-atapi.com), and
431 * later found its way into the ATA/ATAPI spec.
432 *
433 * Write a pattern to the ATA shadow registers,
434 * and if a device is present, it will respond by
435 * correctly storing and echoing back the
436 * ATA shadow register contents.
437 *
438 * LOCKING:
439 * caller.
440 */
441
442 static unsigned int ata_pio_devchk(struct ata_port *ap,
443 unsigned int device)
444 {
445 struct ata_ioports *ioaddr = &ap->ioaddr;
446 u8 nsect, lbal;
447
448 ap->ops->dev_select(ap, device);
449
450 outb(0x55, ioaddr->nsect_addr);
451 outb(0xaa, ioaddr->lbal_addr);
452
453 outb(0xaa, ioaddr->nsect_addr);
454 outb(0x55, ioaddr->lbal_addr);
455
456 outb(0x55, ioaddr->nsect_addr);
457 outb(0xaa, ioaddr->lbal_addr);
458
459 nsect = inb(ioaddr->nsect_addr);
460 lbal = inb(ioaddr->lbal_addr);
461
462 if ((nsect == 0x55) && (lbal == 0xaa))
463 return 1; /* we found a device */
464
465 return 0; /* nothing found */
466 }
467
468 /**
469 * ata_mmio_devchk - PATA device presence detection
470 * @ap: ATA channel to examine
471 * @device: Device to examine (starting at zero)
472 *
473 * This technique was originally described in
474 * Hale Landis's ATADRVR (www.ata-atapi.com), and
475 * later found its way into the ATA/ATAPI spec.
476 *
477 * Write a pattern to the ATA shadow registers,
478 * and if a device is present, it will respond by
479 * correctly storing and echoing back the
480 * ATA shadow register contents.
481 *
482 * LOCKING:
483 * caller.
484 */
485
486 static unsigned int ata_mmio_devchk(struct ata_port *ap,
487 unsigned int device)
488 {
489 struct ata_ioports *ioaddr = &ap->ioaddr;
490 u8 nsect, lbal;
491
492 ap->ops->dev_select(ap, device);
493
494 writeb(0x55, (void __iomem *) ioaddr->nsect_addr);
495 writeb(0xaa, (void __iomem *) ioaddr->lbal_addr);
496
497 writeb(0xaa, (void __iomem *) ioaddr->nsect_addr);
498 writeb(0x55, (void __iomem *) ioaddr->lbal_addr);
499
500 writeb(0x55, (void __iomem *) ioaddr->nsect_addr);
501 writeb(0xaa, (void __iomem *) ioaddr->lbal_addr);
502
503 nsect = readb((void __iomem *) ioaddr->nsect_addr);
504 lbal = readb((void __iomem *) ioaddr->lbal_addr);
505
506 if ((nsect == 0x55) && (lbal == 0xaa))
507 return 1; /* we found a device */
508
509 return 0; /* nothing found */
510 }
511
512 /**
513 * ata_devchk - PATA device presence detection
514 * @ap: ATA channel to examine
515 * @device: Device to examine (starting at zero)
516 *
517 * Dispatch ATA device presence detection, depending
518 * on whether we are using PIO or MMIO to talk to the
519 * ATA shadow registers.
520 *
521 * LOCKING:
522 * caller.
523 */
524
525 static unsigned int ata_devchk(struct ata_port *ap,
526 unsigned int device)
527 {
528 if (ap->flags & ATA_FLAG_MMIO)
529 return ata_mmio_devchk(ap, device);
530 return ata_pio_devchk(ap, device);
531 }
532
533 /**
534 * ata_dev_classify - determine device type based on ATA-spec signature
535 * @tf: ATA taskfile register set for device to be identified
536 *
537 * Determine from taskfile register contents whether a device is
538 * ATA or ATAPI, as per "Signature and persistence" section
539 * of ATA/PI spec (volume 1, sect 5.14).
540 *
541 * LOCKING:
542 * None.
543 *
544 * RETURNS:
545 * Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, or %ATA_DEV_UNKNOWN
546 * the event of failure.
547 */
548
549 unsigned int ata_dev_classify(const struct ata_taskfile *tf)
550 {
551 /* Apple's open source Darwin code hints that some devices only
552 * put a proper signature into the LBA mid/high registers,
553 * So, we only check those. It's sufficient for uniqueness.
554 */
555
556 if (((tf->lbam == 0) && (tf->lbah == 0)) ||
557 ((tf->lbam == 0x3c) && (tf->lbah == 0xc3))) {
558 DPRINTK("found ATA device by sig\n");
559 return ATA_DEV_ATA;
560 }
561
562 if (((tf->lbam == 0x14) && (tf->lbah == 0xeb)) ||
563 ((tf->lbam == 0x69) && (tf->lbah == 0x96))) {
564 DPRINTK("found ATAPI device by sig\n");
565 return ATA_DEV_ATAPI;
566 }
567
568 DPRINTK("unknown device\n");
569 return ATA_DEV_UNKNOWN;
570 }
571
572 /**
573 * ata_dev_try_classify - Parse returned ATA device signature
574 * @ap: ATA channel to examine
575 * @device: Device to examine (starting at zero)
576 * @r_err: Value of error register on completion
577 *
578 * After an event -- SRST, E.D.D., or SATA COMRESET -- occurs,
579 * an ATA/ATAPI-defined set of values is placed in the ATA
580 * shadow registers, indicating the results of device detection
581 * and diagnostics.
582 *
583 * Select the ATA device, and read the values from the ATA shadow
584 * registers. Then parse according to the Error register value,
585 * and the spec-defined values examined by ata_dev_classify().
586 *
587 * LOCKING:
588 * caller.
589 *
590 * RETURNS:
591 * Device type - %ATA_DEV_ATA, %ATA_DEV_ATAPI or %ATA_DEV_NONE.
592 */
593
594 static unsigned int
595 ata_dev_try_classify(struct ata_port *ap, unsigned int device, u8 *r_err)
596 {
597 struct ata_taskfile tf;
598 unsigned int class;
599 u8 err;
600
601 ap->ops->dev_select(ap, device);
602
603 memset(&tf, 0, sizeof(tf));
604
605 ap->ops->tf_read(ap, &tf);
606 err = tf.feature;
607 if (r_err)
608 *r_err = err;
609
610 /* see if device passed diags */
611 if (err == 1)
612 /* do nothing */ ;
613 else if ((device == 0) && (err == 0x81))
614 /* do nothing */ ;
615 else
616 return ATA_DEV_NONE;
617
618 /* determine if device is ATA or ATAPI */
619 class = ata_dev_classify(&tf);
620
621 if (class == ATA_DEV_UNKNOWN)
622 return ATA_DEV_NONE;
623 if ((class == ATA_DEV_ATA) && (ata_chk_status(ap) == 0))
624 return ATA_DEV_NONE;
625 return class;
626 }
627
628 /**
629 * ata_id_string - Convert IDENTIFY DEVICE page into string
630 * @id: IDENTIFY DEVICE results we will examine
631 * @s: string into which data is output
632 * @ofs: offset into identify device page
633 * @len: length of string to return. must be an even number.
634 *
635 * The strings in the IDENTIFY DEVICE page are broken up into
636 * 16-bit chunks. Run through the string, and output each
637 * 8-bit chunk linearly, regardless of platform.
638 *
639 * LOCKING:
640 * caller.
641 */
642
643 void ata_id_string(const u16 *id, unsigned char *s,
644 unsigned int ofs, unsigned int len)
645 {
646 unsigned int c;
647
648 while (len > 0) {
649 c = id[ofs] >> 8;
650 *s = c;
651 s++;
652
653 c = id[ofs] & 0xff;
654 *s = c;
655 s++;
656
657 ofs++;
658 len -= 2;
659 }
660 }
661
662 /**
663 * ata_id_c_string - Convert IDENTIFY DEVICE page into C string
664 * @id: IDENTIFY DEVICE results we will examine
665 * @s: string into which data is output
666 * @ofs: offset into identify device page
667 * @len: length of string to return. must be an odd number.
668 *
669 * This function is identical to ata_id_string except that it
670 * trims trailing spaces and terminates the resulting string with
671 * null. @len must be actual maximum length (even number) + 1.
672 *
673 * LOCKING:
674 * caller.
675 */
676 void ata_id_c_string(const u16 *id, unsigned char *s,
677 unsigned int ofs, unsigned int len)
678 {
679 unsigned char *p;
680
681 WARN_ON(!(len & 1));
682
683 ata_id_string(id, s, ofs, len - 1);
684
685 p = s + strnlen(s, len - 1);
686 while (p > s && p[-1] == ' ')
687 p--;
688 *p = '\0';
689 }
690
691 static u64 ata_id_n_sectors(const u16 *id)
692 {
693 if (ata_id_has_lba(id)) {
694 if (ata_id_has_lba48(id))
695 return ata_id_u64(id, 100);
696 else
697 return ata_id_u32(id, 60);
698 } else {
699 if (ata_id_current_chs_valid(id))
700 return ata_id_u32(id, 57);
701 else
702 return id[1] * id[3] * id[6];
703 }
704 }
705
706 /**
707 * ata_noop_dev_select - Select device 0/1 on ATA bus
708 * @ap: ATA channel to manipulate
709 * @device: ATA device (numbered from zero) to select
710 *
711 * This function performs no actual function.
712 *
713 * May be used as the dev_select() entry in ata_port_operations.
714 *
715 * LOCKING:
716 * caller.
717 */
718 void ata_noop_dev_select (struct ata_port *ap, unsigned int device)
719 {
720 }
721
722
723 /**
724 * ata_std_dev_select - Select device 0/1 on ATA bus
725 * @ap: ATA channel to manipulate
726 * @device: ATA device (numbered from zero) to select
727 *
728 * Use the method defined in the ATA specification to
729 * make either device 0, or device 1, active on the
730 * ATA channel. Works with both PIO and MMIO.
731 *
732 * May be used as the dev_select() entry in ata_port_operations.
733 *
734 * LOCKING:
735 * caller.
736 */
737
738 void ata_std_dev_select (struct ata_port *ap, unsigned int device)
739 {
740 u8 tmp;
741
742 if (device == 0)
743 tmp = ATA_DEVICE_OBS;
744 else
745 tmp = ATA_DEVICE_OBS | ATA_DEV1;
746
747 if (ap->flags & ATA_FLAG_MMIO) {
748 writeb(tmp, (void __iomem *) ap->ioaddr.device_addr);
749 } else {
750 outb(tmp, ap->ioaddr.device_addr);
751 }
752 ata_pause(ap); /* needed; also flushes, for mmio */
753 }
754
755 /**
756 * ata_dev_select - Select device 0/1 on ATA bus
757 * @ap: ATA channel to manipulate
758 * @device: ATA device (numbered from zero) to select
759 * @wait: non-zero to wait for Status register BSY bit to clear
760 * @can_sleep: non-zero if context allows sleeping
761 *
762 * Use the method defined in the ATA specification to
763 * make either device 0, or device 1, active on the
764 * ATA channel.
765 *
766 * This is a high-level version of ata_std_dev_select(),
767 * which additionally provides the services of inserting
768 * the proper pauses and status polling, where needed.
769 *
770 * LOCKING:
771 * caller.
772 */
773
774 void ata_dev_select(struct ata_port *ap, unsigned int device,
775 unsigned int wait, unsigned int can_sleep)
776 {
777 VPRINTK("ENTER, ata%u: device %u, wait %u\n",
778 ap->id, device, wait);
779
780 if (wait)
781 ata_wait_idle(ap);
782
783 ap->ops->dev_select(ap, device);
784
785 if (wait) {
786 if (can_sleep && ap->device[device].class == ATA_DEV_ATAPI)
787 msleep(150);
788 ata_wait_idle(ap);
789 }
790 }
791
792 /**
793 * ata_dump_id - IDENTIFY DEVICE info debugging output
794 * @id: IDENTIFY DEVICE page to dump
795 *
796 * Dump selected 16-bit words from the given IDENTIFY DEVICE
797 * page.
798 *
799 * LOCKING:
800 * caller.
801 */
802
803 static inline void ata_dump_id(const u16 *id)
804 {
805 DPRINTK("49==0x%04x "
806 "53==0x%04x "
807 "63==0x%04x "
808 "64==0x%04x "
809 "75==0x%04x \n",
810 id[49],
811 id[53],
812 id[63],
813 id[64],
814 id[75]);
815 DPRINTK("80==0x%04x "
816 "81==0x%04x "
817 "82==0x%04x "
818 "83==0x%04x "
819 "84==0x%04x \n",
820 id[80],
821 id[81],
822 id[82],
823 id[83],
824 id[84]);
825 DPRINTK("88==0x%04x "
826 "93==0x%04x\n",
827 id[88],
828 id[93]);
829 }
830
831 /**
832 * ata_id_xfermask - Compute xfermask from the given IDENTIFY data
833 * @id: IDENTIFY data to compute xfer mask from
834 *
835 * Compute the xfermask for this device. This is not as trivial
836 * as it seems if we must consider early devices correctly.
837 *
838 * FIXME: pre IDE drive timing (do we care ?).
839 *
840 * LOCKING:
841 * None.
842 *
843 * RETURNS:
844 * Computed xfermask
845 */
846 static unsigned int ata_id_xfermask(const u16 *id)
847 {
848 unsigned int pio_mask, mwdma_mask, udma_mask;
849
850 /* Usual case. Word 53 indicates word 64 is valid */
851 if (id[ATA_ID_FIELD_VALID] & (1 << 1)) {
852 pio_mask = id[ATA_ID_PIO_MODES] & 0x03;
853 pio_mask <<= 3;
854 pio_mask |= 0x7;
855 } else {
856 /* If word 64 isn't valid then Word 51 high byte holds
857 * the PIO timing number for the maximum. Turn it into
858 * a mask.
859 */
860 pio_mask = (2 << (id[ATA_ID_OLD_PIO_MODES] & 0xFF)) - 1 ;
861
862 /* But wait.. there's more. Design your standards by
863 * committee and you too can get a free iordy field to
864 * process. However its the speeds not the modes that
865 * are supported... Note drivers using the timing API
866 * will get this right anyway
867 */
868 }
869
870 mwdma_mask = id[ATA_ID_MWDMA_MODES] & 0x07;
871
872 udma_mask = 0;
873 if (id[ATA_ID_FIELD_VALID] & (1 << 2))
874 udma_mask = id[ATA_ID_UDMA_MODES] & 0xff;
875
876 return ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
877 }
878
879 /**
880 * ata_port_queue_task - Queue port_task
881 * @ap: The ata_port to queue port_task for
882 *
883 * Schedule @fn(@data) for execution after @delay jiffies using
884 * port_task. There is one port_task per port and it's the
885 * user(low level driver)'s responsibility to make sure that only
886 * one task is active at any given time.
887 *
888 * libata core layer takes care of synchronization between
889 * port_task and EH. ata_port_queue_task() may be ignored for EH
890 * synchronization.
891 *
892 * LOCKING:
893 * Inherited from caller.
894 */
895 void ata_port_queue_task(struct ata_port *ap, void (*fn)(void *), void *data,
896 unsigned long delay)
897 {
898 int rc;
899
900 if (ap->flags & ATA_FLAG_FLUSH_PORT_TASK)
901 return;
902
903 PREPARE_WORK(&ap->port_task, fn, data);
904
905 if (!delay)
906 rc = queue_work(ata_wq, &ap->port_task);
907 else
908 rc = queue_delayed_work(ata_wq, &ap->port_task, delay);
909
910 /* rc == 0 means that another user is using port task */
911 WARN_ON(rc == 0);
912 }
913
914 /**
915 * ata_port_flush_task - Flush port_task
916 * @ap: The ata_port to flush port_task for
917 *
918 * After this function completes, port_task is guranteed not to
919 * be running or scheduled.
920 *
921 * LOCKING:
922 * Kernel thread context (may sleep)
923 */
924 void ata_port_flush_task(struct ata_port *ap)
925 {
926 unsigned long flags;
927
928 DPRINTK("ENTER\n");
929
930 spin_lock_irqsave(&ap->host_set->lock, flags);
931 ap->flags |= ATA_FLAG_FLUSH_PORT_TASK;
932 spin_unlock_irqrestore(&ap->host_set->lock, flags);
933
934 DPRINTK("flush #1\n");
935 flush_workqueue(ata_wq);
936
937 /*
938 * At this point, if a task is running, it's guaranteed to see
939 * the FLUSH flag; thus, it will never queue pio tasks again.
940 * Cancel and flush.
941 */
942 if (!cancel_delayed_work(&ap->port_task)) {
943 DPRINTK("flush #2\n");
944 flush_workqueue(ata_wq);
945 }
946
947 spin_lock_irqsave(&ap->host_set->lock, flags);
948 ap->flags &= ~ATA_FLAG_FLUSH_PORT_TASK;
949 spin_unlock_irqrestore(&ap->host_set->lock, flags);
950
951 DPRINTK("EXIT\n");
952 }
953
954 void ata_qc_complete_internal(struct ata_queued_cmd *qc)
955 {
956 struct completion *waiting = qc->private_data;
957
958 qc->ap->ops->tf_read(qc->ap, &qc->tf);
959 complete(waiting);
960 }
961
962 /**
963 * ata_exec_internal - execute libata internal command
964 * @ap: Port to which the command is sent
965 * @dev: Device to which the command is sent
966 * @tf: Taskfile registers for the command and the result
967 * @dma_dir: Data tranfer direction of the command
968 * @buf: Data buffer of the command
969 * @buflen: Length of data buffer
970 *
971 * Executes libata internal command with timeout. @tf contains
972 * command on entry and result on return. Timeout and error
973 * conditions are reported via return value. No recovery action
974 * is taken after a command times out. It's caller's duty to
975 * clean up after timeout.
976 *
977 * LOCKING:
978 * None. Should be called with kernel context, might sleep.
979 */
980
981 static unsigned
982 ata_exec_internal(struct ata_port *ap, struct ata_device *dev,
983 struct ata_taskfile *tf,
984 int dma_dir, void *buf, unsigned int buflen)
985 {
986 u8 command = tf->command;
987 struct ata_queued_cmd *qc;
988 DECLARE_COMPLETION(wait);
989 unsigned long flags;
990 unsigned int err_mask;
991
992 spin_lock_irqsave(&ap->host_set->lock, flags);
993
994 qc = ata_qc_new_init(ap, dev);
995 BUG_ON(qc == NULL);
996
997 qc->tf = *tf;
998 qc->dma_dir = dma_dir;
999 if (dma_dir != DMA_NONE) {
1000 ata_sg_init_one(qc, buf, buflen);
1001 qc->nsect = buflen / ATA_SECT_SIZE;
1002 }
1003
1004 qc->private_data = &wait;
1005 qc->complete_fn = ata_qc_complete_internal;
1006
1007 ata_qc_issue(qc);
1008
1009 spin_unlock_irqrestore(&ap->host_set->lock, flags);
1010
1011 if (!wait_for_completion_timeout(&wait, ATA_TMOUT_INTERNAL)) {
1012 ata_port_flush_task(ap);
1013
1014 spin_lock_irqsave(&ap->host_set->lock, flags);
1015
1016 /* We're racing with irq here. If we lose, the
1017 * following test prevents us from completing the qc
1018 * again. If completion irq occurs after here but
1019 * before the caller cleans up, it will result in a
1020 * spurious interrupt. We can live with that.
1021 */
1022 if (qc->flags & ATA_QCFLAG_ACTIVE) {
1023 qc->err_mask = AC_ERR_TIMEOUT;
1024 ata_qc_complete(qc);
1025 printk(KERN_WARNING "ata%u: qc timeout (cmd 0x%x)\n",
1026 ap->id, command);
1027 }
1028
1029 spin_unlock_irqrestore(&ap->host_set->lock, flags);
1030 }
1031
1032 *tf = qc->tf;
1033 err_mask = qc->err_mask;
1034
1035 ata_qc_free(qc);
1036
1037 /* XXX - Some LLDDs (sata_mv) disable port on command failure.
1038 * Until those drivers are fixed, we detect the condition
1039 * here, fail the command with AC_ERR_SYSTEM and reenable the
1040 * port.
1041 *
1042 * Note that this doesn't change any behavior as internal
1043 * command failure results in disabling the device in the
1044 * higher layer for LLDDs without new reset/EH callbacks.
1045 *
1046 * Kill the following code as soon as those drivers are fixed.
1047 */
1048 if (ap->flags & ATA_FLAG_PORT_DISABLED) {
1049 err_mask |= AC_ERR_SYSTEM;
1050 ata_port_probe(ap);
1051 }
1052
1053 return err_mask;
1054 }
1055
1056 /**
1057 * ata_pio_need_iordy - check if iordy needed
1058 * @adev: ATA device
1059 *
1060 * Check if the current speed of the device requires IORDY. Used
1061 * by various controllers for chip configuration.
1062 */
1063
1064 unsigned int ata_pio_need_iordy(const struct ata_device *adev)
1065 {
1066 int pio;
1067 int speed = adev->pio_mode - XFER_PIO_0;
1068
1069 if (speed < 2)
1070 return 0;
1071 if (speed > 2)
1072 return 1;
1073
1074 /* If we have no drive specific rule, then PIO 2 is non IORDY */
1075
1076 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE */
1077 pio = adev->id[ATA_ID_EIDE_PIO];
1078 /* Is the speed faster than the drive allows non IORDY ? */
1079 if (pio) {
1080 /* This is cycle times not frequency - watch the logic! */
1081 if (pio > 240) /* PIO2 is 240nS per cycle */
1082 return 1;
1083 return 0;
1084 }
1085 }
1086 return 0;
1087 }
1088
1089 /**
1090 * ata_dev_read_id - Read ID data from the specified device
1091 * @ap: port on which target device resides
1092 * @dev: target device
1093 * @p_class: pointer to class of the target device (may be changed)
1094 * @post_reset: is this read ID post-reset?
1095 * @p_id: read IDENTIFY page (newly allocated)
1096 *
1097 * Read ID data from the specified device. ATA_CMD_ID_ATA is
1098 * performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI
1099 * devices. This function also issues ATA_CMD_INIT_DEV_PARAMS
1100 * for pre-ATA4 drives.
1101 *
1102 * LOCKING:
1103 * Kernel thread context (may sleep)
1104 *
1105 * RETURNS:
1106 * 0 on success, -errno otherwise.
1107 */
1108 static int ata_dev_read_id(struct ata_port *ap, struct ata_device *dev,
1109 unsigned int *p_class, int post_reset, u16 **p_id)
1110 {
1111 unsigned int class = *p_class;
1112 struct ata_taskfile tf;
1113 unsigned int err_mask = 0;
1114 u16 *id;
1115 const char *reason;
1116 int rc;
1117
1118 DPRINTK("ENTER, host %u, dev %u\n", ap->id, dev->devno);
1119
1120 ata_dev_select(ap, dev->devno, 1, 1); /* select device 0/1 */
1121
1122 id = kmalloc(sizeof(id[0]) * ATA_ID_WORDS, GFP_KERNEL);
1123 if (id == NULL) {
1124 rc = -ENOMEM;
1125 reason = "out of memory";
1126 goto err_out;
1127 }
1128
1129 retry:
1130 ata_tf_init(ap, &tf, dev->devno);
1131
1132 switch (class) {
1133 case ATA_DEV_ATA:
1134 tf.command = ATA_CMD_ID_ATA;
1135 break;
1136 case ATA_DEV_ATAPI:
1137 tf.command = ATA_CMD_ID_ATAPI;
1138 break;
1139 default:
1140 rc = -ENODEV;
1141 reason = "unsupported class";
1142 goto err_out;
1143 }
1144
1145 tf.protocol = ATA_PROT_PIO;
1146
1147 err_mask = ata_exec_internal(ap, dev, &tf, DMA_FROM_DEVICE,
1148 id, sizeof(id[0]) * ATA_ID_WORDS);
1149 if (err_mask) {
1150 rc = -EIO;
1151 reason = "I/O error";
1152 goto err_out;
1153 }
1154
1155 swap_buf_le16(id, ATA_ID_WORDS);
1156
1157 /* sanity check */
1158 if ((class == ATA_DEV_ATA) != (ata_id_is_ata(id) | ata_id_is_cfa(id))) {
1159 rc = -EINVAL;
1160 reason = "device reports illegal type";
1161 goto err_out;
1162 }
1163
1164 if (post_reset && class == ATA_DEV_ATA) {
1165 /*
1166 * The exact sequence expected by certain pre-ATA4 drives is:
1167 * SRST RESET
1168 * IDENTIFY
1169 * INITIALIZE DEVICE PARAMETERS
1170 * anything else..
1171 * Some drives were very specific about that exact sequence.
1172 */
1173 if (ata_id_major_version(id) < 4 || !ata_id_has_lba(id)) {
1174 err_mask = ata_dev_init_params(ap, dev, id[3], id[6]);
1175 if (err_mask) {
1176 rc = -EIO;
1177 reason = "INIT_DEV_PARAMS failed";
1178 goto err_out;
1179 }
1180
1181 /* current CHS translation info (id[53-58]) might be
1182 * changed. reread the identify device info.
1183 */
1184 post_reset = 0;
1185 goto retry;
1186 }
1187 }
1188
1189 *p_class = class;
1190 *p_id = id;
1191 return 0;
1192
1193 err_out:
1194 printk(KERN_WARNING "ata%u: dev %u failed to IDENTIFY (%s)\n",
1195 ap->id, dev->devno, reason);
1196 kfree(id);
1197 return rc;
1198 }
1199
1200 static inline u8 ata_dev_knobble(const struct ata_port *ap,
1201 struct ata_device *dev)
1202 {
1203 return ((ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(dev->id)));
1204 }
1205
1206 /**
1207 * ata_dev_configure - Configure the specified ATA/ATAPI device
1208 * @ap: Port on which target device resides
1209 * @dev: Target device to configure
1210 * @print_info: Enable device info printout
1211 *
1212 * Configure @dev according to @dev->id. Generic and low-level
1213 * driver specific fixups are also applied.
1214 *
1215 * LOCKING:
1216 * Kernel thread context (may sleep)
1217 *
1218 * RETURNS:
1219 * 0 on success, -errno otherwise
1220 */
1221 static int ata_dev_configure(struct ata_port *ap, struct ata_device *dev,
1222 int print_info)
1223 {
1224 const u16 *id = dev->id;
1225 unsigned int xfer_mask;
1226 int i, rc;
1227
1228 if (!ata_dev_enabled(dev)) {
1229 DPRINTK("ENTER/EXIT (host %u, dev %u) -- nodev\n",
1230 ap->id, dev->devno);
1231 return 0;
1232 }
1233
1234 DPRINTK("ENTER, host %u, dev %u\n", ap->id, dev->devno);
1235
1236 /* print device capabilities */
1237 if (print_info)
1238 printk(KERN_DEBUG "ata%u: dev %u cfg 49:%04x 82:%04x 83:%04x "
1239 "84:%04x 85:%04x 86:%04x 87:%04x 88:%04x\n",
1240 ap->id, dev->devno, id[49], id[82], id[83],
1241 id[84], id[85], id[86], id[87], id[88]);
1242
1243 /* initialize to-be-configured parameters */
1244 dev->flags = 0;
1245 dev->max_sectors = 0;
1246 dev->cdb_len = 0;
1247 dev->n_sectors = 0;
1248 dev->cylinders = 0;
1249 dev->heads = 0;
1250 dev->sectors = 0;
1251
1252 /*
1253 * common ATA, ATAPI feature tests
1254 */
1255
1256 /* find max transfer mode; for printk only */
1257 xfer_mask = ata_id_xfermask(id);
1258
1259 ata_dump_id(id);
1260
1261 /* ATA-specific feature tests */
1262 if (dev->class == ATA_DEV_ATA) {
1263 dev->n_sectors = ata_id_n_sectors(id);
1264
1265 if (ata_id_has_lba(id)) {
1266 const char *lba_desc;
1267
1268 lba_desc = "LBA";
1269 dev->flags |= ATA_DFLAG_LBA;
1270 if (ata_id_has_lba48(id)) {
1271 dev->flags |= ATA_DFLAG_LBA48;
1272 lba_desc = "LBA48";
1273 }
1274
1275 /* print device info to dmesg */
1276 if (print_info)
1277 printk(KERN_INFO "ata%u: dev %u ATA-%d, "
1278 "max %s, %Lu sectors: %s\n",
1279 ap->id, dev->devno,
1280 ata_id_major_version(id),
1281 ata_mode_string(xfer_mask),
1282 (unsigned long long)dev->n_sectors,
1283 lba_desc);
1284 } else {
1285 /* CHS */
1286
1287 /* Default translation */
1288 dev->cylinders = id[1];
1289 dev->heads = id[3];
1290 dev->sectors = id[6];
1291
1292 if (ata_id_current_chs_valid(id)) {
1293 /* Current CHS translation is valid. */
1294 dev->cylinders = id[54];
1295 dev->heads = id[55];
1296 dev->sectors = id[56];
1297 }
1298
1299 /* print device info to dmesg */
1300 if (print_info)
1301 printk(KERN_INFO "ata%u: dev %u ATA-%d, "
1302 "max %s, %Lu sectors: CHS %u/%u/%u\n",
1303 ap->id, dev->devno,
1304 ata_id_major_version(id),
1305 ata_mode_string(xfer_mask),
1306 (unsigned long long)dev->n_sectors,
1307 dev->cylinders, dev->heads, dev->sectors);
1308 }
1309
1310 dev->cdb_len = 16;
1311 }
1312
1313 /* ATAPI-specific feature tests */
1314 else if (dev->class == ATA_DEV_ATAPI) {
1315 rc = atapi_cdb_len(id);
1316 if ((rc < 12) || (rc > ATAPI_CDB_LEN)) {
1317 printk(KERN_WARNING "ata%u: unsupported CDB len\n", ap->id);
1318 rc = -EINVAL;
1319 goto err_out_nosup;
1320 }
1321 dev->cdb_len = (unsigned int) rc;
1322
1323 /* print device info to dmesg */
1324 if (print_info)
1325 printk(KERN_INFO "ata%u: dev %u ATAPI, max %s\n",
1326 ap->id, dev->devno, ata_mode_string(xfer_mask));
1327 }
1328
1329 ap->host->max_cmd_len = 0;
1330 for (i = 0; i < ATA_MAX_DEVICES; i++)
1331 ap->host->max_cmd_len = max_t(unsigned int,
1332 ap->host->max_cmd_len,
1333 ap->device[i].cdb_len);
1334
1335 /* limit bridge transfers to udma5, 200 sectors */
1336 if (ata_dev_knobble(ap, dev)) {
1337 if (print_info)
1338 printk(KERN_INFO "ata%u(%u): applying bridge limits\n",
1339 ap->id, dev->devno);
1340 dev->udma_mask &= ATA_UDMA5;
1341 dev->max_sectors = ATA_MAX_SECTORS;
1342 }
1343
1344 if (ap->ops->dev_config)
1345 ap->ops->dev_config(ap, dev);
1346
1347 DPRINTK("EXIT, drv_stat = 0x%x\n", ata_chk_status(ap));
1348 return 0;
1349
1350 err_out_nosup:
1351 DPRINTK("EXIT, err\n");
1352 return rc;
1353 }
1354
1355 /**
1356 * ata_bus_probe - Reset and probe ATA bus
1357 * @ap: Bus to probe
1358 *
1359 * Master ATA bus probing function. Initiates a hardware-dependent
1360 * bus reset, then attempts to identify any devices found on
1361 * the bus.
1362 *
1363 * LOCKING:
1364 * PCI/etc. bus probe sem.
1365 *
1366 * RETURNS:
1367 * Zero on success, negative errno otherwise.
1368 */
1369
1370 static int ata_bus_probe(struct ata_port *ap)
1371 {
1372 unsigned int classes[ATA_MAX_DEVICES];
1373 int tries[ATA_MAX_DEVICES];
1374 int i, rc, down_xfermask;
1375 struct ata_device *dev;
1376
1377 ata_port_probe(ap);
1378
1379 for (i = 0; i < ATA_MAX_DEVICES; i++)
1380 tries[i] = ATA_PROBE_MAX_TRIES;
1381
1382 retry:
1383 down_xfermask = 0;
1384
1385 /* reset and determine device classes */
1386 for (i = 0; i < ATA_MAX_DEVICES; i++)
1387 classes[i] = ATA_DEV_UNKNOWN;
1388
1389 if (ap->ops->probe_reset) {
1390 rc = ap->ops->probe_reset(ap, classes);
1391 if (rc) {
1392 printk("ata%u: reset failed (errno=%d)\n", ap->id, rc);
1393 return rc;
1394 }
1395 } else {
1396 ap->ops->phy_reset(ap);
1397
1398 if (!(ap->flags & ATA_FLAG_PORT_DISABLED))
1399 for (i = 0; i < ATA_MAX_DEVICES; i++)
1400 classes[i] = ap->device[i].class;
1401
1402 ata_port_probe(ap);
1403 }
1404
1405 for (i = 0; i < ATA_MAX_DEVICES; i++)
1406 if (classes[i] == ATA_DEV_UNKNOWN)
1407 classes[i] = ATA_DEV_NONE;
1408
1409 /* read IDENTIFY page and configure devices */
1410 for (i = 0; i < ATA_MAX_DEVICES; i++) {
1411 dev = &ap->device[i];
1412 dev->class = classes[i];
1413
1414 if (!tries[i]) {
1415 ata_down_xfermask_limit(ap, dev, 1);
1416 ata_dev_disable(ap, dev);
1417 }
1418
1419 if (!ata_dev_enabled(dev))
1420 continue;
1421
1422 kfree(dev->id);
1423 dev->id = NULL;
1424 rc = ata_dev_read_id(ap, dev, &dev->class, 1, &dev->id);
1425 if (rc)
1426 goto fail;
1427
1428 rc = ata_dev_configure(ap, dev, 1);
1429 if (rc)
1430 goto fail;
1431 }
1432
1433 /* configure transfer mode */
1434 if (ap->ops->set_mode) {
1435 /* FIXME: make ->set_mode handle no device case and
1436 * return error code and failing device on failure as
1437 * ata_set_mode() does.
1438 */
1439 for (i = 0; i < ATA_MAX_DEVICES; i++)
1440 if (ata_dev_enabled(&ap->device[i])) {
1441 ap->ops->set_mode(ap);
1442 break;
1443 }
1444 rc = 0;
1445 } else {
1446 rc = ata_set_mode(ap, &dev);
1447 if (rc) {
1448 down_xfermask = 1;
1449 goto fail;
1450 }
1451 }
1452
1453 for (i = 0; i < ATA_MAX_DEVICES; i++)
1454 if (ata_dev_enabled(&ap->device[i]))
1455 return 0;
1456
1457 /* no device present, disable port */
1458 ata_port_disable(ap);
1459 ap->ops->port_disable(ap);
1460 return -ENODEV;
1461
1462 fail:
1463 switch (rc) {
1464 case -EINVAL:
1465 case -ENODEV:
1466 tries[dev->devno] = 0;
1467 break;
1468 case -EIO:
1469 ata_down_sata_spd_limit(ap);
1470 /* fall through */
1471 default:
1472 tries[dev->devno]--;
1473 if (down_xfermask &&
1474 ata_down_xfermask_limit(ap, dev, tries[dev->devno] == 1))
1475 tries[dev->devno] = 0;
1476 }
1477
1478 goto retry;
1479 }
1480
1481 /**
1482 * ata_port_probe - Mark port as enabled
1483 * @ap: Port for which we indicate enablement
1484 *
1485 * Modify @ap data structure such that the system
1486 * thinks that the entire port is enabled.
1487 *
1488 * LOCKING: host_set lock, or some other form of
1489 * serialization.
1490 */
1491
1492 void ata_port_probe(struct ata_port *ap)
1493 {
1494 ap->flags &= ~ATA_FLAG_PORT_DISABLED;
1495 }
1496
1497 /**
1498 * sata_print_link_status - Print SATA link status
1499 * @ap: SATA port to printk link status about
1500 *
1501 * This function prints link speed and status of a SATA link.
1502 *
1503 * LOCKING:
1504 * None.
1505 */
1506 static void sata_print_link_status(struct ata_port *ap)
1507 {
1508 u32 sstatus, tmp;
1509
1510 if (!ap->ops->scr_read)
1511 return;
1512
1513 sstatus = scr_read(ap, SCR_STATUS);
1514
1515 if (sata_dev_present(ap)) {
1516 tmp = (sstatus >> 4) & 0xf;
1517 printk(KERN_INFO "ata%u: SATA link up %s (SStatus %X)\n",
1518 ap->id, sata_spd_string(tmp), sstatus);
1519 } else {
1520 printk(KERN_INFO "ata%u: SATA link down (SStatus %X)\n",
1521 ap->id, sstatus);
1522 }
1523 }
1524
1525 /**
1526 * __sata_phy_reset - Wake/reset a low-level SATA PHY
1527 * @ap: SATA port associated with target SATA PHY.
1528 *
1529 * This function issues commands to standard SATA Sxxx
1530 * PHY registers, to wake up the phy (and device), and
1531 * clear any reset condition.
1532 *
1533 * LOCKING:
1534 * PCI/etc. bus probe sem.
1535 *
1536 */
1537 void __sata_phy_reset(struct ata_port *ap)
1538 {
1539 u32 sstatus;
1540 unsigned long timeout = jiffies + (HZ * 5);
1541
1542 if (ap->flags & ATA_FLAG_SATA_RESET) {
1543 /* issue phy wake/reset */
1544 scr_write_flush(ap, SCR_CONTROL, 0x301);
1545 /* Couldn't find anything in SATA I/II specs, but
1546 * AHCI-1.1 10.4.2 says at least 1 ms. */
1547 mdelay(1);
1548 }
1549 scr_write_flush(ap, SCR_CONTROL, 0x300); /* phy wake/clear reset */
1550
1551 /* wait for phy to become ready, if necessary */
1552 do {
1553 msleep(200);
1554 sstatus = scr_read(ap, SCR_STATUS);
1555 if ((sstatus & 0xf) != 1)
1556 break;
1557 } while (time_before(jiffies, timeout));
1558
1559 /* print link status */
1560 sata_print_link_status(ap);
1561
1562 /* TODO: phy layer with polling, timeouts, etc. */
1563 if (sata_dev_present(ap))
1564 ata_port_probe(ap);
1565 else
1566 ata_port_disable(ap);
1567
1568 if (ap->flags & ATA_FLAG_PORT_DISABLED)
1569 return;
1570
1571 if (ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT)) {
1572 ata_port_disable(ap);
1573 return;
1574 }
1575
1576 ap->cbl = ATA_CBL_SATA;
1577 }
1578
1579 /**
1580 * sata_phy_reset - Reset SATA bus.
1581 * @ap: SATA port associated with target SATA PHY.
1582 *
1583 * This function resets the SATA bus, and then probes
1584 * the bus for devices.
1585 *
1586 * LOCKING:
1587 * PCI/etc. bus probe sem.
1588 *
1589 */
1590 void sata_phy_reset(struct ata_port *ap)
1591 {
1592 __sata_phy_reset(ap);
1593 if (ap->flags & ATA_FLAG_PORT_DISABLED)
1594 return;
1595 ata_bus_reset(ap);
1596 }
1597
1598 /**
1599 * ata_dev_pair - return other device on cable
1600 * @ap: port
1601 * @adev: device
1602 *
1603 * Obtain the other device on the same cable, or if none is
1604 * present NULL is returned
1605 */
1606
1607 struct ata_device *ata_dev_pair(struct ata_port *ap, struct ata_device *adev)
1608 {
1609 struct ata_device *pair = &ap->device[1 - adev->devno];
1610 if (!ata_dev_enabled(pair))
1611 return NULL;
1612 return pair;
1613 }
1614
1615 /**
1616 * ata_port_disable - Disable port.
1617 * @ap: Port to be disabled.
1618 *
1619 * Modify @ap data structure such that the system
1620 * thinks that the entire port is disabled, and should
1621 * never attempt to probe or communicate with devices
1622 * on this port.
1623 *
1624 * LOCKING: host_set lock, or some other form of
1625 * serialization.
1626 */
1627
1628 void ata_port_disable(struct ata_port *ap)
1629 {
1630 ap->device[0].class = ATA_DEV_NONE;
1631 ap->device[1].class = ATA_DEV_NONE;
1632 ap->flags |= ATA_FLAG_PORT_DISABLED;
1633 }
1634
1635 /**
1636 * ata_down_sata_spd_limit - adjust SATA spd limit downward
1637 * @ap: Port to adjust SATA spd limit for
1638 *
1639 * Adjust SATA spd limit of @ap downward. Note that this
1640 * function only adjusts the limit. The change must be applied
1641 * using ata_set_sata_spd().
1642 *
1643 * LOCKING:
1644 * Inherited from caller.
1645 *
1646 * RETURNS:
1647 * 0 on success, negative errno on failure
1648 */
1649 static int ata_down_sata_spd_limit(struct ata_port *ap)
1650 {
1651 u32 spd, mask;
1652 int highbit;
1653
1654 if (ap->cbl != ATA_CBL_SATA || !ap->ops->scr_read)
1655 return -EOPNOTSUPP;
1656
1657 mask = ap->sata_spd_limit;
1658 if (mask <= 1)
1659 return -EINVAL;
1660 highbit = fls(mask) - 1;
1661 mask &= ~(1 << highbit);
1662
1663 spd = (scr_read(ap, SCR_STATUS) >> 4) & 0xf;
1664 if (spd <= 1)
1665 return -EINVAL;
1666 spd--;
1667 mask &= (1 << spd) - 1;
1668 if (!mask)
1669 return -EINVAL;
1670
1671 ap->sata_spd_limit = mask;
1672
1673 printk(KERN_WARNING "ata%u: limiting SATA link speed to %s\n",
1674 ap->id, sata_spd_string(fls(mask)));
1675
1676 return 0;
1677 }
1678
1679 static int __ata_set_sata_spd_needed(struct ata_port *ap, u32 *scontrol)
1680 {
1681 u32 spd, limit;
1682
1683 if (ap->sata_spd_limit == UINT_MAX)
1684 limit = 0;
1685 else
1686 limit = fls(ap->sata_spd_limit);
1687
1688 spd = (*scontrol >> 4) & 0xf;
1689 *scontrol = (*scontrol & ~0xf0) | ((limit & 0xf) << 4);
1690
1691 return spd != limit;
1692 }
1693
1694 /**
1695 * ata_set_sata_spd_needed - is SATA spd configuration needed
1696 * @ap: Port in question
1697 *
1698 * Test whether the spd limit in SControl matches
1699 * @ap->sata_spd_limit. This function is used to determine
1700 * whether hardreset is necessary to apply SATA spd
1701 * configuration.
1702 *
1703 * LOCKING:
1704 * Inherited from caller.
1705 *
1706 * RETURNS:
1707 * 1 if SATA spd configuration is needed, 0 otherwise.
1708 */
1709 static int ata_set_sata_spd_needed(struct ata_port *ap)
1710 {
1711 u32 scontrol;
1712
1713 if (ap->cbl != ATA_CBL_SATA || !ap->ops->scr_read)
1714 return 0;
1715
1716 scontrol = scr_read(ap, SCR_CONTROL);
1717
1718 return __ata_set_sata_spd_needed(ap, &scontrol);
1719 }
1720
1721 /**
1722 * ata_set_sata_spd - set SATA spd according to spd limit
1723 * @ap: Port to set SATA spd for
1724 *
1725 * Set SATA spd of @ap according to sata_spd_limit.
1726 *
1727 * LOCKING:
1728 * Inherited from caller.
1729 *
1730 * RETURNS:
1731 * 0 if spd doesn't need to be changed, 1 if spd has been
1732 * changed. -EOPNOTSUPP if SCR registers are inaccessible.
1733 */
1734 static int ata_set_sata_spd(struct ata_port *ap)
1735 {
1736 u32 scontrol;
1737
1738 if (ap->cbl != ATA_CBL_SATA || !ap->ops->scr_read)
1739 return -EOPNOTSUPP;
1740
1741 scontrol = scr_read(ap, SCR_CONTROL);
1742 if (!__ata_set_sata_spd_needed(ap, &scontrol))
1743 return 0;
1744
1745 scr_write(ap, SCR_CONTROL, scontrol);
1746 return 1;
1747 }
1748
1749 /*
1750 * This mode timing computation functionality is ported over from
1751 * drivers/ide/ide-timing.h and was originally written by Vojtech Pavlik
1752 */
1753 /*
1754 * PIO 0-5, MWDMA 0-2 and UDMA 0-6 timings (in nanoseconds).
1755 * These were taken from ATA/ATAPI-6 standard, rev 0a, except
1756 * for PIO 5, which is a nonstandard extension and UDMA6, which
1757 * is currently supported only by Maxtor drives.
1758 */
1759
1760 static const struct ata_timing ata_timing[] = {
1761
1762 { XFER_UDMA_6, 0, 0, 0, 0, 0, 0, 0, 15 },
1763 { XFER_UDMA_5, 0, 0, 0, 0, 0, 0, 0, 20 },
1764 { XFER_UDMA_4, 0, 0, 0, 0, 0, 0, 0, 30 },
1765 { XFER_UDMA_3, 0, 0, 0, 0, 0, 0, 0, 45 },
1766
1767 { XFER_UDMA_2, 0, 0, 0, 0, 0, 0, 0, 60 },
1768 { XFER_UDMA_1, 0, 0, 0, 0, 0, 0, 0, 80 },
1769 { XFER_UDMA_0, 0, 0, 0, 0, 0, 0, 0, 120 },
1770
1771 /* { XFER_UDMA_SLOW, 0, 0, 0, 0, 0, 0, 0, 150 }, */
1772
1773 { XFER_MW_DMA_2, 25, 0, 0, 0, 70, 25, 120, 0 },
1774 { XFER_MW_DMA_1, 45, 0, 0, 0, 80, 50, 150, 0 },
1775 { XFER_MW_DMA_0, 60, 0, 0, 0, 215, 215, 480, 0 },
1776
1777 { XFER_SW_DMA_2, 60, 0, 0, 0, 120, 120, 240, 0 },
1778 { XFER_SW_DMA_1, 90, 0, 0, 0, 240, 240, 480, 0 },
1779 { XFER_SW_DMA_0, 120, 0, 0, 0, 480, 480, 960, 0 },
1780
1781 /* { XFER_PIO_5, 20, 50, 30, 100, 50, 30, 100, 0 }, */
1782 { XFER_PIO_4, 25, 70, 25, 120, 70, 25, 120, 0 },
1783 { XFER_PIO_3, 30, 80, 70, 180, 80, 70, 180, 0 },
1784
1785 { XFER_PIO_2, 30, 290, 40, 330, 100, 90, 240, 0 },
1786 { XFER_PIO_1, 50, 290, 93, 383, 125, 100, 383, 0 },
1787 { XFER_PIO_0, 70, 290, 240, 600, 165, 150, 600, 0 },
1788
1789 /* { XFER_PIO_SLOW, 120, 290, 240, 960, 290, 240, 960, 0 }, */
1790
1791 { 0xFF }
1792 };
1793
1794 #define ENOUGH(v,unit) (((v)-1)/(unit)+1)
1795 #define EZ(v,unit) ((v)?ENOUGH(v,unit):0)
1796
1797 static void ata_timing_quantize(const struct ata_timing *t, struct ata_timing *q, int T, int UT)
1798 {
1799 q->setup = EZ(t->setup * 1000, T);
1800 q->act8b = EZ(t->act8b * 1000, T);
1801 q->rec8b = EZ(t->rec8b * 1000, T);
1802 q->cyc8b = EZ(t->cyc8b * 1000, T);
1803 q->active = EZ(t->active * 1000, T);
1804 q->recover = EZ(t->recover * 1000, T);
1805 q->cycle = EZ(t->cycle * 1000, T);
1806 q->udma = EZ(t->udma * 1000, UT);
1807 }
1808
1809 void ata_timing_merge(const struct ata_timing *a, const struct ata_timing *b,
1810 struct ata_timing *m, unsigned int what)
1811 {
1812 if (what & ATA_TIMING_SETUP ) m->setup = max(a->setup, b->setup);
1813 if (what & ATA_TIMING_ACT8B ) m->act8b = max(a->act8b, b->act8b);
1814 if (what & ATA_TIMING_REC8B ) m->rec8b = max(a->rec8b, b->rec8b);
1815 if (what & ATA_TIMING_CYC8B ) m->cyc8b = max(a->cyc8b, b->cyc8b);
1816 if (what & ATA_TIMING_ACTIVE ) m->active = max(a->active, b->active);
1817 if (what & ATA_TIMING_RECOVER) m->recover = max(a->recover, b->recover);
1818 if (what & ATA_TIMING_CYCLE ) m->cycle = max(a->cycle, b->cycle);
1819 if (what & ATA_TIMING_UDMA ) m->udma = max(a->udma, b->udma);
1820 }
1821
1822 static const struct ata_timing* ata_timing_find_mode(unsigned short speed)
1823 {
1824 const struct ata_timing *t;
1825
1826 for (t = ata_timing; t->mode != speed; t++)
1827 if (t->mode == 0xFF)
1828 return NULL;
1829 return t;
1830 }
1831
1832 int ata_timing_compute(struct ata_device *adev, unsigned short speed,
1833 struct ata_timing *t, int T, int UT)
1834 {
1835 const struct ata_timing *s;
1836 struct ata_timing p;
1837
1838 /*
1839 * Find the mode.
1840 */
1841
1842 if (!(s = ata_timing_find_mode(speed)))
1843 return -EINVAL;
1844
1845 memcpy(t, s, sizeof(*s));
1846
1847 /*
1848 * If the drive is an EIDE drive, it can tell us it needs extended
1849 * PIO/MW_DMA cycle timing.
1850 */
1851
1852 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE drive */
1853 memset(&p, 0, sizeof(p));
1854 if(speed >= XFER_PIO_0 && speed <= XFER_SW_DMA_0) {
1855 if (speed <= XFER_PIO_2) p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO];
1856 else p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO_IORDY];
1857 } else if(speed >= XFER_MW_DMA_0 && speed <= XFER_MW_DMA_2) {
1858 p.cycle = adev->id[ATA_ID_EIDE_DMA_MIN];
1859 }
1860 ata_timing_merge(&p, t, t, ATA_TIMING_CYCLE | ATA_TIMING_CYC8B);
1861 }
1862
1863 /*
1864 * Convert the timing to bus clock counts.
1865 */
1866
1867 ata_timing_quantize(t, t, T, UT);
1868
1869 /*
1870 * Even in DMA/UDMA modes we still use PIO access for IDENTIFY,
1871 * S.M.A.R.T * and some other commands. We have to ensure that the
1872 * DMA cycle timing is slower/equal than the fastest PIO timing.
1873 */
1874
1875 if (speed > XFER_PIO_4) {
1876 ata_timing_compute(adev, adev->pio_mode, &p, T, UT);
1877 ata_timing_merge(&p, t, t, ATA_TIMING_ALL);
1878 }
1879
1880 /*
1881 * Lengthen active & recovery time so that cycle time is correct.
1882 */
1883
1884 if (t->act8b + t->rec8b < t->cyc8b) {
1885 t->act8b += (t->cyc8b - (t->act8b + t->rec8b)) / 2;
1886 t->rec8b = t->cyc8b - t->act8b;
1887 }
1888
1889 if (t->active + t->recover < t->cycle) {
1890 t->active += (t->cycle - (t->active + t->recover)) / 2;
1891 t->recover = t->cycle - t->active;
1892 }
1893
1894 return 0;
1895 }
1896
1897 /**
1898 * ata_down_xfermask_limit - adjust dev xfer masks downward
1899 * @ap: Port associated with device @dev
1900 * @dev: Device to adjust xfer masks
1901 * @force_pio0: Force PIO0
1902 *
1903 * Adjust xfer masks of @dev downward. Note that this function
1904 * does not apply the change. Invoking ata_set_mode() afterwards
1905 * will apply the limit.
1906 *
1907 * LOCKING:
1908 * Inherited from caller.
1909 *
1910 * RETURNS:
1911 * 0 on success, negative errno on failure
1912 */
1913 static int ata_down_xfermask_limit(struct ata_port *ap, struct ata_device *dev,
1914 int force_pio0)
1915 {
1916 unsigned long xfer_mask;
1917 int highbit;
1918
1919 xfer_mask = ata_pack_xfermask(dev->pio_mask, dev->mwdma_mask,
1920 dev->udma_mask);
1921
1922 if (!xfer_mask)
1923 goto fail;
1924 /* don't gear down to MWDMA from UDMA, go directly to PIO */
1925 if (xfer_mask & ATA_MASK_UDMA)
1926 xfer_mask &= ~ATA_MASK_MWDMA;
1927
1928 highbit = fls(xfer_mask) - 1;
1929 xfer_mask &= ~(1 << highbit);
1930 if (force_pio0)
1931 xfer_mask &= 1 << ATA_SHIFT_PIO;
1932 if (!xfer_mask)
1933 goto fail;
1934
1935 ata_unpack_xfermask(xfer_mask, &dev->pio_mask, &dev->mwdma_mask,
1936 &dev->udma_mask);
1937
1938 printk(KERN_WARNING "ata%u: dev %u limiting speed to %s\n",
1939 ap->id, dev->devno, ata_mode_string(xfer_mask));
1940
1941 return 0;
1942
1943 fail:
1944 return -EINVAL;
1945 }
1946
1947 static int ata_dev_set_mode(struct ata_port *ap, struct ata_device *dev)
1948 {
1949 unsigned int err_mask;
1950 int rc;
1951
1952 if (dev->xfer_shift == ATA_SHIFT_PIO)
1953 dev->flags |= ATA_DFLAG_PIO;
1954
1955 err_mask = ata_dev_set_xfermode(ap, dev);
1956 if (err_mask) {
1957 printk(KERN_ERR
1958 "ata%u: failed to set xfermode (err_mask=0x%x)\n",
1959 ap->id, err_mask);
1960 return -EIO;
1961 }
1962
1963 rc = ata_dev_revalidate(ap, dev, 0);
1964 if (rc) {
1965 printk(KERN_ERR
1966 "ata%u: failed to revalidate after set xfermode\n",
1967 ap->id);
1968 return rc;
1969 }
1970
1971 DPRINTK("xfer_shift=%u, xfer_mode=0x%x\n",
1972 dev->xfer_shift, (int)dev->xfer_mode);
1973
1974 printk(KERN_INFO "ata%u: dev %u configured for %s\n",
1975 ap->id, dev->devno,
1976 ata_mode_string(ata_xfer_mode2mask(dev->xfer_mode)));
1977 return 0;
1978 }
1979
1980 /**
1981 * ata_set_mode - Program timings and issue SET FEATURES - XFER
1982 * @ap: port on which timings will be programmed
1983 * @r_failed_dev: out paramter for failed device
1984 *
1985 * Set ATA device disk transfer mode (PIO3, UDMA6, etc.). If
1986 * ata_set_mode() fails, pointer to the failing device is
1987 * returned in @r_failed_dev.
1988 *
1989 * LOCKING:
1990 * PCI/etc. bus probe sem.
1991 *
1992 * RETURNS:
1993 * 0 on success, negative errno otherwise
1994 */
1995 static int ata_set_mode(struct ata_port *ap, struct ata_device **r_failed_dev)
1996 {
1997 struct ata_device *dev;
1998 int i, rc = 0, used_dma = 0, found = 0;
1999
2000 /* step 1: calculate xfer_mask */
2001 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2002 unsigned int pio_mask, dma_mask;
2003
2004 dev = &ap->device[i];
2005
2006 if (!ata_dev_enabled(dev))
2007 continue;
2008
2009 ata_dev_xfermask(ap, dev);
2010
2011 pio_mask = ata_pack_xfermask(dev->pio_mask, 0, 0);
2012 dma_mask = ata_pack_xfermask(0, dev->mwdma_mask, dev->udma_mask);
2013 dev->pio_mode = ata_xfer_mask2mode(pio_mask);
2014 dev->dma_mode = ata_xfer_mask2mode(dma_mask);
2015
2016 found = 1;
2017 if (dev->dma_mode)
2018 used_dma = 1;
2019 }
2020 if (!found)
2021 goto out;
2022
2023 /* step 2: always set host PIO timings */
2024 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2025 dev = &ap->device[i];
2026 if (!ata_dev_enabled(dev))
2027 continue;
2028
2029 if (!dev->pio_mode) {
2030 printk(KERN_WARNING "ata%u: dev %u no PIO support\n",
2031 ap->id, dev->devno);
2032 rc = -EINVAL;
2033 goto out;
2034 }
2035
2036 dev->xfer_mode = dev->pio_mode;
2037 dev->xfer_shift = ATA_SHIFT_PIO;
2038 if (ap->ops->set_piomode)
2039 ap->ops->set_piomode(ap, dev);
2040 }
2041
2042 /* step 3: set host DMA timings */
2043 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2044 dev = &ap->device[i];
2045
2046 if (!ata_dev_enabled(dev) || !dev->dma_mode)
2047 continue;
2048
2049 dev->xfer_mode = dev->dma_mode;
2050 dev->xfer_shift = ata_xfer_mode2shift(dev->dma_mode);
2051 if (ap->ops->set_dmamode)
2052 ap->ops->set_dmamode(ap, dev);
2053 }
2054
2055 /* step 4: update devices' xfer mode */
2056 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2057 dev = &ap->device[i];
2058
2059 if (!ata_dev_enabled(dev))
2060 continue;
2061
2062 rc = ata_dev_set_mode(ap, dev);
2063 if (rc)
2064 goto out;
2065 }
2066
2067 /* Record simplex status. If we selected DMA then the other
2068 * host channels are not permitted to do so.
2069 */
2070 if (used_dma && (ap->host_set->flags & ATA_HOST_SIMPLEX))
2071 ap->host_set->simplex_claimed = 1;
2072
2073 /* step5: chip specific finalisation */
2074 if (ap->ops->post_set_mode)
2075 ap->ops->post_set_mode(ap);
2076
2077 out:
2078 if (rc)
2079 *r_failed_dev = dev;
2080 return rc;
2081 }
2082
2083 /**
2084 * ata_tf_to_host - issue ATA taskfile to host controller
2085 * @ap: port to which command is being issued
2086 * @tf: ATA taskfile register set
2087 *
2088 * Issues ATA taskfile register set to ATA host controller,
2089 * with proper synchronization with interrupt handler and
2090 * other threads.
2091 *
2092 * LOCKING:
2093 * spin_lock_irqsave(host_set lock)
2094 */
2095
2096 static inline void ata_tf_to_host(struct ata_port *ap,
2097 const struct ata_taskfile *tf)
2098 {
2099 ap->ops->tf_load(ap, tf);
2100 ap->ops->exec_command(ap, tf);
2101 }
2102
2103 /**
2104 * ata_busy_sleep - sleep until BSY clears, or timeout
2105 * @ap: port containing status register to be polled
2106 * @tmout_pat: impatience timeout
2107 * @tmout: overall timeout
2108 *
2109 * Sleep until ATA Status register bit BSY clears,
2110 * or a timeout occurs.
2111 *
2112 * LOCKING: None.
2113 */
2114
2115 unsigned int ata_busy_sleep (struct ata_port *ap,
2116 unsigned long tmout_pat, unsigned long tmout)
2117 {
2118 unsigned long timer_start, timeout;
2119 u8 status;
2120
2121 status = ata_busy_wait(ap, ATA_BUSY, 300);
2122 timer_start = jiffies;
2123 timeout = timer_start + tmout_pat;
2124 while ((status & ATA_BUSY) && (time_before(jiffies, timeout))) {
2125 msleep(50);
2126 status = ata_busy_wait(ap, ATA_BUSY, 3);
2127 }
2128
2129 if (status & ATA_BUSY)
2130 printk(KERN_WARNING "ata%u is slow to respond, "
2131 "please be patient\n", ap->id);
2132
2133 timeout = timer_start + tmout;
2134 while ((status & ATA_BUSY) && (time_before(jiffies, timeout))) {
2135 msleep(50);
2136 status = ata_chk_status(ap);
2137 }
2138
2139 if (status & ATA_BUSY) {
2140 printk(KERN_ERR "ata%u failed to respond (%lu secs)\n",
2141 ap->id, tmout / HZ);
2142 return 1;
2143 }
2144
2145 return 0;
2146 }
2147
2148 static void ata_bus_post_reset(struct ata_port *ap, unsigned int devmask)
2149 {
2150 struct ata_ioports *ioaddr = &ap->ioaddr;
2151 unsigned int dev0 = devmask & (1 << 0);
2152 unsigned int dev1 = devmask & (1 << 1);
2153 unsigned long timeout;
2154
2155 /* if device 0 was found in ata_devchk, wait for its
2156 * BSY bit to clear
2157 */
2158 if (dev0)
2159 ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT);
2160
2161 /* if device 1 was found in ata_devchk, wait for
2162 * register access, then wait for BSY to clear
2163 */
2164 timeout = jiffies + ATA_TMOUT_BOOT;
2165 while (dev1) {
2166 u8 nsect, lbal;
2167
2168 ap->ops->dev_select(ap, 1);
2169 if (ap->flags & ATA_FLAG_MMIO) {
2170 nsect = readb((void __iomem *) ioaddr->nsect_addr);
2171 lbal = readb((void __iomem *) ioaddr->lbal_addr);
2172 } else {
2173 nsect = inb(ioaddr->nsect_addr);
2174 lbal = inb(ioaddr->lbal_addr);
2175 }
2176 if ((nsect == 1) && (lbal == 1))
2177 break;
2178 if (time_after(jiffies, timeout)) {
2179 dev1 = 0;
2180 break;
2181 }
2182 msleep(50); /* give drive a breather */
2183 }
2184 if (dev1)
2185 ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT);
2186
2187 /* is all this really necessary? */
2188 ap->ops->dev_select(ap, 0);
2189 if (dev1)
2190 ap->ops->dev_select(ap, 1);
2191 if (dev0)
2192 ap->ops->dev_select(ap, 0);
2193 }
2194
2195 static unsigned int ata_bus_softreset(struct ata_port *ap,
2196 unsigned int devmask)
2197 {
2198 struct ata_ioports *ioaddr = &ap->ioaddr;
2199
2200 DPRINTK("ata%u: bus reset via SRST\n", ap->id);
2201
2202 /* software reset. causes dev0 to be selected */
2203 if (ap->flags & ATA_FLAG_MMIO) {
2204 writeb(ap->ctl, (void __iomem *) ioaddr->ctl_addr);
2205 udelay(20); /* FIXME: flush */
2206 writeb(ap->ctl | ATA_SRST, (void __iomem *) ioaddr->ctl_addr);
2207 udelay(20); /* FIXME: flush */
2208 writeb(ap->ctl, (void __iomem *) ioaddr->ctl_addr);
2209 } else {
2210 outb(ap->ctl, ioaddr->ctl_addr);
2211 udelay(10);
2212 outb(ap->ctl | ATA_SRST, ioaddr->ctl_addr);
2213 udelay(10);
2214 outb(ap->ctl, ioaddr->ctl_addr);
2215 }
2216
2217 /* spec mandates ">= 2ms" before checking status.
2218 * We wait 150ms, because that was the magic delay used for
2219 * ATAPI devices in Hale Landis's ATADRVR, for the period of time
2220 * between when the ATA command register is written, and then
2221 * status is checked. Because waiting for "a while" before
2222 * checking status is fine, post SRST, we perform this magic
2223 * delay here as well.
2224 *
2225 * Old drivers/ide uses the 2mS rule and then waits for ready
2226 */
2227 msleep(150);
2228
2229 /* Before we perform post reset processing we want to see if
2230 * the bus shows 0xFF because the odd clown forgets the D7
2231 * pulldown resistor.
2232 */
2233 if (ata_check_status(ap) == 0xFF)
2234 return AC_ERR_OTHER;
2235
2236 ata_bus_post_reset(ap, devmask);
2237
2238 return 0;
2239 }
2240
2241 /**
2242 * ata_bus_reset - reset host port and associated ATA channel
2243 * @ap: port to reset
2244 *
2245 * This is typically the first time we actually start issuing
2246 * commands to the ATA channel. We wait for BSY to clear, then
2247 * issue EXECUTE DEVICE DIAGNOSTIC command, polling for its
2248 * result. Determine what devices, if any, are on the channel
2249 * by looking at the device 0/1 error register. Look at the signature
2250 * stored in each device's taskfile registers, to determine if
2251 * the device is ATA or ATAPI.
2252 *
2253 * LOCKING:
2254 * PCI/etc. bus probe sem.
2255 * Obtains host_set lock.
2256 *
2257 * SIDE EFFECTS:
2258 * Sets ATA_FLAG_PORT_DISABLED if bus reset fails.
2259 */
2260
2261 void ata_bus_reset(struct ata_port *ap)
2262 {
2263 struct ata_ioports *ioaddr = &ap->ioaddr;
2264 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
2265 u8 err;
2266 unsigned int dev0, dev1 = 0, devmask = 0;
2267
2268 DPRINTK("ENTER, host %u, port %u\n", ap->id, ap->port_no);
2269
2270 /* determine if device 0/1 are present */
2271 if (ap->flags & ATA_FLAG_SATA_RESET)
2272 dev0 = 1;
2273 else {
2274 dev0 = ata_devchk(ap, 0);
2275 if (slave_possible)
2276 dev1 = ata_devchk(ap, 1);
2277 }
2278
2279 if (dev0)
2280 devmask |= (1 << 0);
2281 if (dev1)
2282 devmask |= (1 << 1);
2283
2284 /* select device 0 again */
2285 ap->ops->dev_select(ap, 0);
2286
2287 /* issue bus reset */
2288 if (ap->flags & ATA_FLAG_SRST)
2289 if (ata_bus_softreset(ap, devmask))
2290 goto err_out;
2291
2292 /*
2293 * determine by signature whether we have ATA or ATAPI devices
2294 */
2295 ap->device[0].class = ata_dev_try_classify(ap, 0, &err);
2296 if ((slave_possible) && (err != 0x81))
2297 ap->device[1].class = ata_dev_try_classify(ap, 1, &err);
2298
2299 /* re-enable interrupts */
2300 if (ap->ioaddr.ctl_addr) /* FIXME: hack. create a hook instead */
2301 ata_irq_on(ap);
2302
2303 /* is double-select really necessary? */
2304 if (ap->device[1].class != ATA_DEV_NONE)
2305 ap->ops->dev_select(ap, 1);
2306 if (ap->device[0].class != ATA_DEV_NONE)
2307 ap->ops->dev_select(ap, 0);
2308
2309 /* if no devices were detected, disable this port */
2310 if ((ap->device[0].class == ATA_DEV_NONE) &&
2311 (ap->device[1].class == ATA_DEV_NONE))
2312 goto err_out;
2313
2314 if (ap->flags & (ATA_FLAG_SATA_RESET | ATA_FLAG_SRST)) {
2315 /* set up device control for ATA_FLAG_SATA_RESET */
2316 if (ap->flags & ATA_FLAG_MMIO)
2317 writeb(ap->ctl, (void __iomem *) ioaddr->ctl_addr);
2318 else
2319 outb(ap->ctl, ioaddr->ctl_addr);
2320 }
2321
2322 DPRINTK("EXIT\n");
2323 return;
2324
2325 err_out:
2326 printk(KERN_ERR "ata%u: disabling port\n", ap->id);
2327 ap->ops->port_disable(ap);
2328
2329 DPRINTK("EXIT\n");
2330 }
2331
2332 static int sata_phy_resume(struct ata_port *ap)
2333 {
2334 unsigned long timeout = jiffies + (HZ * 5);
2335 u32 scontrol, sstatus;
2336
2337 scontrol = scr_read(ap, SCR_CONTROL);
2338 scontrol = (scontrol & 0x0f0) | 0x300;
2339 scr_write_flush(ap, SCR_CONTROL, scontrol);
2340
2341 /* Wait for phy to become ready, if necessary. */
2342 do {
2343 msleep(200);
2344 sstatus = scr_read(ap, SCR_STATUS);
2345 if ((sstatus & 0xf) != 1)
2346 return 0;
2347 } while (time_before(jiffies, timeout));
2348
2349 return -1;
2350 }
2351
2352 /**
2353 * ata_std_probeinit - initialize probing
2354 * @ap: port to be probed
2355 *
2356 * @ap is about to be probed. Initialize it. This function is
2357 * to be used as standard callback for ata_drive_probe_reset().
2358 *
2359 * NOTE!!! Do not use this function as probeinit if a low level
2360 * driver implements only hardreset. Just pass NULL as probeinit
2361 * in that case. Using this function is probably okay but doing
2362 * so makes reset sequence different from the original
2363 * ->phy_reset implementation and Jeff nervous. :-P
2364 */
2365 void ata_std_probeinit(struct ata_port *ap)
2366 {
2367 if ((ap->flags & ATA_FLAG_SATA) && ap->ops->scr_read) {
2368 u32 spd;
2369
2370 sata_phy_resume(ap);
2371
2372 spd = (scr_read(ap, SCR_CONTROL) & 0xf0) >> 4;
2373 if (spd)
2374 ap->sata_spd_limit &= (1 << spd) - 1;
2375
2376 if (sata_dev_present(ap))
2377 ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT);
2378 }
2379 }
2380
2381 /**
2382 * ata_std_softreset - reset host port via ATA SRST
2383 * @ap: port to reset
2384 * @verbose: fail verbosely
2385 * @classes: resulting classes of attached devices
2386 *
2387 * Reset host port using ATA SRST. This function is to be used
2388 * as standard callback for ata_drive_*_reset() functions.
2389 *
2390 * LOCKING:
2391 * Kernel thread context (may sleep)
2392 *
2393 * RETURNS:
2394 * 0 on success, -errno otherwise.
2395 */
2396 int ata_std_softreset(struct ata_port *ap, int verbose, unsigned int *classes)
2397 {
2398 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
2399 unsigned int devmask = 0, err_mask;
2400 u8 err;
2401
2402 DPRINTK("ENTER\n");
2403
2404 if (ap->ops->scr_read && !sata_dev_present(ap)) {
2405 classes[0] = ATA_DEV_NONE;
2406 goto out;
2407 }
2408
2409 /* determine if device 0/1 are present */
2410 if (ata_devchk(ap, 0))
2411 devmask |= (1 << 0);
2412 if (slave_possible && ata_devchk(ap, 1))
2413 devmask |= (1 << 1);
2414
2415 /* select device 0 again */
2416 ap->ops->dev_select(ap, 0);
2417
2418 /* issue bus reset */
2419 DPRINTK("about to softreset, devmask=%x\n", devmask);
2420 err_mask = ata_bus_softreset(ap, devmask);
2421 if (err_mask) {
2422 if (verbose)
2423 printk(KERN_ERR "ata%u: SRST failed (err_mask=0x%x)\n",
2424 ap->id, err_mask);
2425 else
2426 DPRINTK("EXIT, softreset failed (err_mask=0x%x)\n",
2427 err_mask);
2428 return -EIO;
2429 }
2430
2431 /* determine by signature whether we have ATA or ATAPI devices */
2432 classes[0] = ata_dev_try_classify(ap, 0, &err);
2433 if (slave_possible && err != 0x81)
2434 classes[1] = ata_dev_try_classify(ap, 1, &err);
2435
2436 out:
2437 DPRINTK("EXIT, classes[0]=%u [1]=%u\n", classes[0], classes[1]);
2438 return 0;
2439 }
2440
2441 /**
2442 * sata_std_hardreset - reset host port via SATA phy reset
2443 * @ap: port to reset
2444 * @verbose: fail verbosely
2445 * @class: resulting class of attached device
2446 *
2447 * SATA phy-reset host port using DET bits of SControl register.
2448 * This function is to be used as standard callback for
2449 * ata_drive_*_reset().
2450 *
2451 * LOCKING:
2452 * Kernel thread context (may sleep)
2453 *
2454 * RETURNS:
2455 * 0 on success, -errno otherwise.
2456 */
2457 int sata_std_hardreset(struct ata_port *ap, int verbose, unsigned int *class)
2458 {
2459 u32 scontrol;
2460
2461 DPRINTK("ENTER\n");
2462
2463 if (ata_set_sata_spd_needed(ap)) {
2464 /* SATA spec says nothing about how to reconfigure
2465 * spd. To be on the safe side, turn off phy during
2466 * reconfiguration. This works for at least ICH7 AHCI
2467 * and Sil3124.
2468 */
2469 scontrol = scr_read(ap, SCR_CONTROL);
2470 scontrol = (scontrol & 0x0f0) | 0x302;
2471 scr_write_flush(ap, SCR_CONTROL, scontrol);
2472
2473 ata_set_sata_spd(ap);
2474 }
2475
2476 /* issue phy wake/reset */
2477 scontrol = scr_read(ap, SCR_CONTROL);
2478 scontrol = (scontrol & 0x0f0) | 0x301;
2479 scr_write_flush(ap, SCR_CONTROL, scontrol);
2480
2481 /* Couldn't find anything in SATA I/II specs, but AHCI-1.1
2482 * 10.4.2 says at least 1 ms.
2483 */
2484 msleep(1);
2485
2486 /* bring phy back */
2487 sata_phy_resume(ap);
2488
2489 /* TODO: phy layer with polling, timeouts, etc. */
2490 if (!sata_dev_present(ap)) {
2491 *class = ATA_DEV_NONE;
2492 DPRINTK("EXIT, link offline\n");
2493 return 0;
2494 }
2495
2496 if (ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT)) {
2497 if (verbose)
2498 printk(KERN_ERR "ata%u: COMRESET failed "
2499 "(device not ready)\n", ap->id);
2500 else
2501 DPRINTK("EXIT, device not ready\n");
2502 return -EIO;
2503 }
2504
2505 ap->ops->dev_select(ap, 0); /* probably unnecessary */
2506
2507 *class = ata_dev_try_classify(ap, 0, NULL);
2508
2509 DPRINTK("EXIT, class=%u\n", *class);
2510 return 0;
2511 }
2512
2513 /**
2514 * ata_std_postreset - standard postreset callback
2515 * @ap: the target ata_port
2516 * @classes: classes of attached devices
2517 *
2518 * This function is invoked after a successful reset. Note that
2519 * the device might have been reset more than once using
2520 * different reset methods before postreset is invoked.
2521 *
2522 * This function is to be used as standard callback for
2523 * ata_drive_*_reset().
2524 *
2525 * LOCKING:
2526 * Kernel thread context (may sleep)
2527 */
2528 void ata_std_postreset(struct ata_port *ap, unsigned int *classes)
2529 {
2530 DPRINTK("ENTER\n");
2531
2532 /* set cable type if it isn't already set */
2533 if (ap->cbl == ATA_CBL_NONE && ap->flags & ATA_FLAG_SATA)
2534 ap->cbl = ATA_CBL_SATA;
2535
2536 /* print link status */
2537 if (ap->cbl == ATA_CBL_SATA)
2538 sata_print_link_status(ap);
2539
2540 /* re-enable interrupts */
2541 if (ap->ioaddr.ctl_addr) /* FIXME: hack. create a hook instead */
2542 ata_irq_on(ap);
2543
2544 /* is double-select really necessary? */
2545 if (classes[0] != ATA_DEV_NONE)
2546 ap->ops->dev_select(ap, 1);
2547 if (classes[1] != ATA_DEV_NONE)
2548 ap->ops->dev_select(ap, 0);
2549
2550 /* bail out if no device is present */
2551 if (classes[0] == ATA_DEV_NONE && classes[1] == ATA_DEV_NONE) {
2552 DPRINTK("EXIT, no device\n");
2553 return;
2554 }
2555
2556 /* set up device control */
2557 if (ap->ioaddr.ctl_addr) {
2558 if (ap->flags & ATA_FLAG_MMIO)
2559 writeb(ap->ctl, (void __iomem *) ap->ioaddr.ctl_addr);
2560 else
2561 outb(ap->ctl, ap->ioaddr.ctl_addr);
2562 }
2563
2564 DPRINTK("EXIT\n");
2565 }
2566
2567 /**
2568 * ata_std_probe_reset - standard probe reset method
2569 * @ap: prot to perform probe-reset
2570 * @classes: resulting classes of attached devices
2571 *
2572 * The stock off-the-shelf ->probe_reset method.
2573 *
2574 * LOCKING:
2575 * Kernel thread context (may sleep)
2576 *
2577 * RETURNS:
2578 * 0 on success, -errno otherwise.
2579 */
2580 int ata_std_probe_reset(struct ata_port *ap, unsigned int *classes)
2581 {
2582 ata_reset_fn_t hardreset;
2583
2584 hardreset = NULL;
2585 if (ap->flags & ATA_FLAG_SATA && ap->ops->scr_read)
2586 hardreset = sata_std_hardreset;
2587
2588 return ata_drive_probe_reset(ap, ata_std_probeinit,
2589 ata_std_softreset, hardreset,
2590 ata_std_postreset, classes);
2591 }
2592
2593 static int ata_do_reset(struct ata_port *ap,
2594 ata_reset_fn_t reset, ata_postreset_fn_t postreset,
2595 int verbose, unsigned int *classes)
2596 {
2597 int i, rc;
2598
2599 for (i = 0; i < ATA_MAX_DEVICES; i++)
2600 classes[i] = ATA_DEV_UNKNOWN;
2601
2602 rc = reset(ap, verbose, classes);
2603 if (rc)
2604 return rc;
2605
2606 /* If any class isn't ATA_DEV_UNKNOWN, consider classification
2607 * is complete and convert all ATA_DEV_UNKNOWN to
2608 * ATA_DEV_NONE.
2609 */
2610 for (i = 0; i < ATA_MAX_DEVICES; i++)
2611 if (classes[i] != ATA_DEV_UNKNOWN)
2612 break;
2613
2614 if (i < ATA_MAX_DEVICES)
2615 for (i = 0; i < ATA_MAX_DEVICES; i++)
2616 if (classes[i] == ATA_DEV_UNKNOWN)
2617 classes[i] = ATA_DEV_NONE;
2618
2619 if (postreset)
2620 postreset(ap, classes);
2621
2622 return 0;
2623 }
2624
2625 /**
2626 * ata_drive_probe_reset - Perform probe reset with given methods
2627 * @ap: port to reset
2628 * @probeinit: probeinit method (can be NULL)
2629 * @softreset: softreset method (can be NULL)
2630 * @hardreset: hardreset method (can be NULL)
2631 * @postreset: postreset method (can be NULL)
2632 * @classes: resulting classes of attached devices
2633 *
2634 * Reset the specified port and classify attached devices using
2635 * given methods. This function prefers softreset but tries all
2636 * possible reset sequences to reset and classify devices. This
2637 * function is intended to be used for constructing ->probe_reset
2638 * callback by low level drivers.
2639 *
2640 * Reset methods should follow the following rules.
2641 *
2642 * - Return 0 on sucess, -errno on failure.
2643 * - If classification is supported, fill classes[] with
2644 * recognized class codes.
2645 * - If classification is not supported, leave classes[] alone.
2646 * - If verbose is non-zero, print error message on failure;
2647 * otherwise, shut up.
2648 *
2649 * LOCKING:
2650 * Kernel thread context (may sleep)
2651 *
2652 * RETURNS:
2653 * 0 on success, -EINVAL if no reset method is avaliable, -ENODEV
2654 * if classification fails, and any error code from reset
2655 * methods.
2656 */
2657 int ata_drive_probe_reset(struct ata_port *ap, ata_probeinit_fn_t probeinit,
2658 ata_reset_fn_t softreset, ata_reset_fn_t hardreset,
2659 ata_postreset_fn_t postreset, unsigned int *classes)
2660 {
2661 int rc = -EINVAL;
2662
2663 if (probeinit)
2664 probeinit(ap);
2665
2666 if (softreset && !ata_set_sata_spd_needed(ap)) {
2667 rc = ata_do_reset(ap, softreset, postreset, 0, classes);
2668 if (rc == 0 && classes[0] != ATA_DEV_UNKNOWN)
2669 goto done;
2670 printk(KERN_INFO "ata%u: softreset failed, will try "
2671 "hardreset in 5 secs\n", ap->id);
2672 ssleep(5);
2673 }
2674
2675 if (!hardreset)
2676 goto done;
2677
2678 while (1) {
2679 rc = ata_do_reset(ap, hardreset, postreset, 0, classes);
2680 if (rc == 0) {
2681 if (classes[0] != ATA_DEV_UNKNOWN)
2682 goto done;
2683 break;
2684 }
2685
2686 if (ata_down_sata_spd_limit(ap))
2687 goto done;
2688
2689 printk(KERN_INFO "ata%u: hardreset failed, will retry "
2690 "in 5 secs\n", ap->id);
2691 ssleep(5);
2692 }
2693
2694 if (softreset) {
2695 printk(KERN_INFO "ata%u: hardreset succeeded without "
2696 "classification, will retry softreset in 5 secs\n",
2697 ap->id);
2698 ssleep(5);
2699
2700 rc = ata_do_reset(ap, softreset, postreset, 0, classes);
2701 }
2702
2703 done:
2704 if (rc == 0 && classes[0] == ATA_DEV_UNKNOWN)
2705 rc = -ENODEV;
2706 return rc;
2707 }
2708
2709 /**
2710 * ata_dev_same_device - Determine whether new ID matches configured device
2711 * @ap: port on which the device to compare against resides
2712 * @dev: device to compare against
2713 * @new_class: class of the new device
2714 * @new_id: IDENTIFY page of the new device
2715 *
2716 * Compare @new_class and @new_id against @dev and determine
2717 * whether @dev is the device indicated by @new_class and
2718 * @new_id.
2719 *
2720 * LOCKING:
2721 * None.
2722 *
2723 * RETURNS:
2724 * 1 if @dev matches @new_class and @new_id, 0 otherwise.
2725 */
2726 static int ata_dev_same_device(struct ata_port *ap, struct ata_device *dev,
2727 unsigned int new_class, const u16 *new_id)
2728 {
2729 const u16 *old_id = dev->id;
2730 unsigned char model[2][41], serial[2][21];
2731 u64 new_n_sectors;
2732
2733 if (dev->class != new_class) {
2734 printk(KERN_INFO
2735 "ata%u: dev %u class mismatch %d != %d\n",
2736 ap->id, dev->devno, dev->class, new_class);
2737 return 0;
2738 }
2739
2740 ata_id_c_string(old_id, model[0], ATA_ID_PROD_OFS, sizeof(model[0]));
2741 ata_id_c_string(new_id, model[1], ATA_ID_PROD_OFS, sizeof(model[1]));
2742 ata_id_c_string(old_id, serial[0], ATA_ID_SERNO_OFS, sizeof(serial[0]));
2743 ata_id_c_string(new_id, serial[1], ATA_ID_SERNO_OFS, sizeof(serial[1]));
2744 new_n_sectors = ata_id_n_sectors(new_id);
2745
2746 if (strcmp(model[0], model[1])) {
2747 printk(KERN_INFO
2748 "ata%u: dev %u model number mismatch '%s' != '%s'\n",
2749 ap->id, dev->devno, model[0], model[1]);
2750 return 0;
2751 }
2752
2753 if (strcmp(serial[0], serial[1])) {
2754 printk(KERN_INFO
2755 "ata%u: dev %u serial number mismatch '%s' != '%s'\n",
2756 ap->id, dev->devno, serial[0], serial[1]);
2757 return 0;
2758 }
2759
2760 if (dev->class == ATA_DEV_ATA && dev->n_sectors != new_n_sectors) {
2761 printk(KERN_INFO
2762 "ata%u: dev %u n_sectors mismatch %llu != %llu\n",
2763 ap->id, dev->devno, (unsigned long long)dev->n_sectors,
2764 (unsigned long long)new_n_sectors);
2765 return 0;
2766 }
2767
2768 return 1;
2769 }
2770
2771 /**
2772 * ata_dev_revalidate - Revalidate ATA device
2773 * @ap: port on which the device to revalidate resides
2774 * @dev: device to revalidate
2775 * @post_reset: is this revalidation after reset?
2776 *
2777 * Re-read IDENTIFY page and make sure @dev is still attached to
2778 * the port.
2779 *
2780 * LOCKING:
2781 * Kernel thread context (may sleep)
2782 *
2783 * RETURNS:
2784 * 0 on success, negative errno otherwise
2785 */
2786 int ata_dev_revalidate(struct ata_port *ap, struct ata_device *dev,
2787 int post_reset)
2788 {
2789 unsigned int class;
2790 u16 *id;
2791 int rc;
2792
2793 if (!ata_dev_enabled(dev))
2794 return -ENODEV;
2795
2796 class = dev->class;
2797 id = NULL;
2798
2799 /* allocate & read ID data */
2800 rc = ata_dev_read_id(ap, dev, &class, post_reset, &id);
2801 if (rc)
2802 goto fail;
2803
2804 /* is the device still there? */
2805 if (!ata_dev_same_device(ap, dev, class, id)) {
2806 rc = -ENODEV;
2807 goto fail;
2808 }
2809
2810 kfree(dev->id);
2811 dev->id = id;
2812
2813 /* configure device according to the new ID */
2814 return ata_dev_configure(ap, dev, 0);
2815
2816 fail:
2817 printk(KERN_ERR "ata%u: dev %u revalidation failed (errno=%d)\n",
2818 ap->id, dev->devno, rc);
2819 kfree(id);
2820 return rc;
2821 }
2822
2823 static const char * const ata_dma_blacklist [] = {
2824 "WDC AC11000H", NULL,
2825 "WDC AC22100H", NULL,
2826 "WDC AC32500H", NULL,
2827 "WDC AC33100H", NULL,
2828 "WDC AC31600H", NULL,
2829 "WDC AC32100H", "24.09P07",
2830 "WDC AC23200L", "21.10N21",
2831 "Compaq CRD-8241B", NULL,
2832 "CRD-8400B", NULL,
2833 "CRD-8480B", NULL,
2834 "CRD-8482B", NULL,
2835 "CRD-84", NULL,
2836 "SanDisk SDP3B", NULL,
2837 "SanDisk SDP3B-64", NULL,
2838 "SANYO CD-ROM CRD", NULL,
2839 "HITACHI CDR-8", NULL,
2840 "HITACHI CDR-8335", NULL,
2841 "HITACHI CDR-8435", NULL,
2842 "Toshiba CD-ROM XM-6202B", NULL,
2843 "TOSHIBA CD-ROM XM-1702BC", NULL,
2844 "CD-532E-A", NULL,
2845 "E-IDE CD-ROM CR-840", NULL,
2846 "CD-ROM Drive/F5A", NULL,
2847 "WPI CDD-820", NULL,
2848 "SAMSUNG CD-ROM SC-148C", NULL,
2849 "SAMSUNG CD-ROM SC", NULL,
2850 "SanDisk SDP3B-64", NULL,
2851 "ATAPI CD-ROM DRIVE 40X MAXIMUM",NULL,
2852 "_NEC DV5800A", NULL,
2853 "SAMSUNG CD-ROM SN-124", "N001"
2854 };
2855
2856 static int ata_strim(char *s, size_t len)
2857 {
2858 len = strnlen(s, len);
2859
2860 /* ATAPI specifies that empty space is blank-filled; remove blanks */
2861 while ((len > 0) && (s[len - 1] == ' ')) {
2862 len--;
2863 s[len] = 0;
2864 }
2865 return len;
2866 }
2867
2868 static int ata_dma_blacklisted(const struct ata_device *dev)
2869 {
2870 unsigned char model_num[40];
2871 unsigned char model_rev[16];
2872 unsigned int nlen, rlen;
2873 int i;
2874
2875 ata_id_string(dev->id, model_num, ATA_ID_PROD_OFS,
2876 sizeof(model_num));
2877 ata_id_string(dev->id, model_rev, ATA_ID_FW_REV_OFS,
2878 sizeof(model_rev));
2879 nlen = ata_strim(model_num, sizeof(model_num));
2880 rlen = ata_strim(model_rev, sizeof(model_rev));
2881
2882 for (i = 0; i < ARRAY_SIZE(ata_dma_blacklist); i += 2) {
2883 if (!strncmp(ata_dma_blacklist[i], model_num, nlen)) {
2884 if (ata_dma_blacklist[i+1] == NULL)
2885 return 1;
2886 if (!strncmp(ata_dma_blacklist[i], model_rev, rlen))
2887 return 1;
2888 }
2889 }
2890 return 0;
2891 }
2892
2893 /**
2894 * ata_dev_xfermask - Compute supported xfermask of the given device
2895 * @ap: Port on which the device to compute xfermask for resides
2896 * @dev: Device to compute xfermask for
2897 *
2898 * Compute supported xfermask of @dev and store it in
2899 * dev->*_mask. This function is responsible for applying all
2900 * known limits including host controller limits, device
2901 * blacklist, etc...
2902 *
2903 * FIXME: The current implementation limits all transfer modes to
2904 * the fastest of the lowested device on the port. This is not
2905 * required on most controllers.
2906 *
2907 * LOCKING:
2908 * None.
2909 */
2910 static void ata_dev_xfermask(struct ata_port *ap, struct ata_device *dev)
2911 {
2912 struct ata_host_set *hs = ap->host_set;
2913 unsigned long xfer_mask;
2914 int i;
2915
2916 xfer_mask = ata_pack_xfermask(ap->pio_mask, ap->mwdma_mask,
2917 ap->udma_mask);
2918
2919 /* FIXME: Use port-wide xfermask for now */
2920 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2921 struct ata_device *d = &ap->device[i];
2922 if (!ata_dev_enabled(d))
2923 continue;
2924 xfer_mask &= ata_pack_xfermask(d->pio_mask, d->mwdma_mask,
2925 d->udma_mask);
2926 xfer_mask &= ata_id_xfermask(d->id);
2927 if (ata_dma_blacklisted(d))
2928 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
2929 /* Apply cable rule here. Don't apply it early because when
2930 we handle hot plug the cable type can itself change */
2931 if (ap->cbl == ATA_CBL_PATA40)
2932 xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA);
2933 }
2934
2935 if (ata_dma_blacklisted(dev))
2936 printk(KERN_WARNING "ata%u: dev %u is on DMA blacklist, "
2937 "disabling DMA\n", ap->id, dev->devno);
2938
2939 if (hs->flags & ATA_HOST_SIMPLEX) {
2940 if (hs->simplex_claimed)
2941 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
2942 }
2943 if (ap->ops->mode_filter)
2944 xfer_mask = ap->ops->mode_filter(ap, dev, xfer_mask);
2945
2946 ata_unpack_xfermask(xfer_mask, &dev->pio_mask, &dev->mwdma_mask,
2947 &dev->udma_mask);
2948 }
2949
2950 /**
2951 * ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command
2952 * @ap: Port associated with device @dev
2953 * @dev: Device to which command will be sent
2954 *
2955 * Issue SET FEATURES - XFER MODE command to device @dev
2956 * on port @ap.
2957 *
2958 * LOCKING:
2959 * PCI/etc. bus probe sem.
2960 *
2961 * RETURNS:
2962 * 0 on success, AC_ERR_* mask otherwise.
2963 */
2964
2965 static unsigned int ata_dev_set_xfermode(struct ata_port *ap,
2966 struct ata_device *dev)
2967 {
2968 struct ata_taskfile tf;
2969 unsigned int err_mask;
2970
2971 /* set up set-features taskfile */
2972 DPRINTK("set features - xfer mode\n");
2973
2974 ata_tf_init(ap, &tf, dev->devno);
2975 tf.command = ATA_CMD_SET_FEATURES;
2976 tf.feature = SETFEATURES_XFER;
2977 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
2978 tf.protocol = ATA_PROT_NODATA;
2979 tf.nsect = dev->xfer_mode;
2980
2981 err_mask = ata_exec_internal(ap, dev, &tf, DMA_NONE, NULL, 0);
2982
2983 DPRINTK("EXIT, err_mask=%x\n", err_mask);
2984 return err_mask;
2985 }
2986
2987 /**
2988 * ata_dev_init_params - Issue INIT DEV PARAMS command
2989 * @ap: Port associated with device @dev
2990 * @dev: Device to which command will be sent
2991 *
2992 * LOCKING:
2993 * Kernel thread context (may sleep)
2994 *
2995 * RETURNS:
2996 * 0 on success, AC_ERR_* mask otherwise.
2997 */
2998
2999 static unsigned int ata_dev_init_params(struct ata_port *ap,
3000 struct ata_device *dev,
3001 u16 heads,
3002 u16 sectors)
3003 {
3004 struct ata_taskfile tf;
3005 unsigned int err_mask;
3006
3007 /* Number of sectors per track 1-255. Number of heads 1-16 */
3008 if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16)
3009 return AC_ERR_INVALID;
3010
3011 /* set up init dev params taskfile */
3012 DPRINTK("init dev params \n");
3013
3014 ata_tf_init(ap, &tf, dev->devno);
3015 tf.command = ATA_CMD_INIT_DEV_PARAMS;
3016 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
3017 tf.protocol = ATA_PROT_NODATA;
3018 tf.nsect = sectors;
3019 tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */
3020
3021 err_mask = ata_exec_internal(ap, dev, &tf, DMA_NONE, NULL, 0);
3022
3023 DPRINTK("EXIT, err_mask=%x\n", err_mask);
3024 return err_mask;
3025 }
3026
3027 /**
3028 * ata_sg_clean - Unmap DMA memory associated with command
3029 * @qc: Command containing DMA memory to be released
3030 *
3031 * Unmap all mapped DMA memory associated with this command.
3032 *
3033 * LOCKING:
3034 * spin_lock_irqsave(host_set lock)
3035 */
3036
3037 static void ata_sg_clean(struct ata_queued_cmd *qc)
3038 {
3039 struct ata_port *ap = qc->ap;
3040 struct scatterlist *sg = qc->__sg;
3041 int dir = qc->dma_dir;
3042 void *pad_buf = NULL;
3043
3044 WARN_ON(!(qc->flags & ATA_QCFLAG_DMAMAP));
3045 WARN_ON(sg == NULL);
3046
3047 if (qc->flags & ATA_QCFLAG_SINGLE)
3048 WARN_ON(qc->n_elem > 1);
3049
3050 VPRINTK("unmapping %u sg elements\n", qc->n_elem);
3051
3052 /* if we padded the buffer out to 32-bit bound, and data
3053 * xfer direction is from-device, we must copy from the
3054 * pad buffer back into the supplied buffer
3055 */
3056 if (qc->pad_len && !(qc->tf.flags & ATA_TFLAG_WRITE))
3057 pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
3058
3059 if (qc->flags & ATA_QCFLAG_SG) {
3060 if (qc->n_elem)
3061 dma_unmap_sg(ap->dev, sg, qc->n_elem, dir);
3062 /* restore last sg */
3063 sg[qc->orig_n_elem - 1].length += qc->pad_len;
3064 if (pad_buf) {
3065 struct scatterlist *psg = &qc->pad_sgent;
3066 void *addr = kmap_atomic(psg->page, KM_IRQ0);
3067 memcpy(addr + psg->offset, pad_buf, qc->pad_len);
3068 kunmap_atomic(addr, KM_IRQ0);
3069 }
3070 } else {
3071 if (qc->n_elem)
3072 dma_unmap_single(ap->dev,
3073 sg_dma_address(&sg[0]), sg_dma_len(&sg[0]),
3074 dir);
3075 /* restore sg */
3076 sg->length += qc->pad_len;
3077 if (pad_buf)
3078 memcpy(qc->buf_virt + sg->length - qc->pad_len,
3079 pad_buf, qc->pad_len);
3080 }
3081
3082 qc->flags &= ~ATA_QCFLAG_DMAMAP;
3083 qc->__sg = NULL;
3084 }
3085
3086 /**
3087 * ata_fill_sg - Fill PCI IDE PRD table
3088 * @qc: Metadata associated with taskfile to be transferred
3089 *
3090 * Fill PCI IDE PRD (scatter-gather) table with segments
3091 * associated with the current disk command.
3092 *
3093 * LOCKING:
3094 * spin_lock_irqsave(host_set lock)
3095 *
3096 */
3097 static void ata_fill_sg(struct ata_queued_cmd *qc)
3098 {
3099 struct ata_port *ap = qc->ap;
3100 struct scatterlist *sg;
3101 unsigned int idx;
3102
3103 WARN_ON(qc->__sg == NULL);
3104 WARN_ON(qc->n_elem == 0 && qc->pad_len == 0);
3105
3106 idx = 0;
3107 ata_for_each_sg(sg, qc) {
3108 u32 addr, offset;
3109 u32 sg_len, len;
3110
3111 /* determine if physical DMA addr spans 64K boundary.
3112 * Note h/w doesn't support 64-bit, so we unconditionally
3113 * truncate dma_addr_t to u32.
3114 */
3115 addr = (u32) sg_dma_address(sg);
3116 sg_len = sg_dma_len(sg);
3117
3118 while (sg_len) {
3119 offset = addr & 0xffff;
3120 len = sg_len;
3121 if ((offset + sg_len) > 0x10000)
3122 len = 0x10000 - offset;
3123
3124 ap->prd[idx].addr = cpu_to_le32(addr);
3125 ap->prd[idx].flags_len = cpu_to_le32(len & 0xffff);
3126 VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", idx, addr, len);
3127
3128 idx++;
3129 sg_len -= len;
3130 addr += len;
3131 }
3132 }
3133
3134 if (idx)
3135 ap->prd[idx - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT);
3136 }
3137 /**
3138 * ata_check_atapi_dma - Check whether ATAPI DMA can be supported
3139 * @qc: Metadata associated with taskfile to check
3140 *
3141 * Allow low-level driver to filter ATA PACKET commands, returning
3142 * a status indicating whether or not it is OK to use DMA for the
3143 * supplied PACKET command.
3144 *
3145 * LOCKING:
3146 * spin_lock_irqsave(host_set lock)
3147 *
3148 * RETURNS: 0 when ATAPI DMA can be used
3149 * nonzero otherwise
3150 */
3151 int ata_check_atapi_dma(struct ata_queued_cmd *qc)
3152 {
3153 struct ata_port *ap = qc->ap;
3154 int rc = 0; /* Assume ATAPI DMA is OK by default */
3155
3156 if (ap->ops->check_atapi_dma)
3157 rc = ap->ops->check_atapi_dma(qc);
3158
3159 return rc;
3160 }
3161 /**
3162 * ata_qc_prep - Prepare taskfile for submission
3163 * @qc: Metadata associated with taskfile to be prepared
3164 *
3165 * Prepare ATA taskfile for submission.
3166 *
3167 * LOCKING:
3168 * spin_lock_irqsave(host_set lock)
3169 */
3170 void ata_qc_prep(struct ata_queued_cmd *qc)
3171 {
3172 if (!(qc->flags & ATA_QCFLAG_DMAMAP))
3173 return;
3174
3175 ata_fill_sg(qc);
3176 }
3177
3178 void ata_noop_qc_prep(struct ata_queued_cmd *qc) { }
3179
3180 /**
3181 * ata_sg_init_one - Associate command with memory buffer
3182 * @qc: Command to be associated
3183 * @buf: Memory buffer
3184 * @buflen: Length of memory buffer, in bytes.
3185 *
3186 * Initialize the data-related elements of queued_cmd @qc
3187 * to point to a single memory buffer, @buf of byte length @buflen.
3188 *
3189 * LOCKING:
3190 * spin_lock_irqsave(host_set lock)
3191 */
3192
3193 void ata_sg_init_one(struct ata_queued_cmd *qc, void *buf, unsigned int buflen)
3194 {
3195 struct scatterlist *sg;
3196
3197 qc->flags |= ATA_QCFLAG_SINGLE;
3198
3199 memset(&qc->sgent, 0, sizeof(qc->sgent));
3200 qc->__sg = &qc->sgent;
3201 qc->n_elem = 1;
3202 qc->orig_n_elem = 1;
3203 qc->buf_virt = buf;
3204
3205 sg = qc->__sg;
3206 sg_init_one(sg, buf, buflen);
3207 }
3208
3209 /**
3210 * ata_sg_init - Associate command with scatter-gather table.
3211 * @qc: Command to be associated
3212 * @sg: Scatter-gather table.
3213 * @n_elem: Number of elements in s/g table.
3214 *
3215 * Initialize the data-related elements of queued_cmd @qc
3216 * to point to a scatter-gather table @sg, containing @n_elem
3217 * elements.
3218 *
3219 * LOCKING:
3220 * spin_lock_irqsave(host_set lock)
3221 */
3222
3223 void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg,
3224 unsigned int n_elem)
3225 {
3226 qc->flags |= ATA_QCFLAG_SG;
3227 qc->__sg = sg;
3228 qc->n_elem = n_elem;
3229 qc->orig_n_elem = n_elem;
3230 }
3231
3232 /**
3233 * ata_sg_setup_one - DMA-map the memory buffer associated with a command.
3234 * @qc: Command with memory buffer to be mapped.
3235 *
3236 * DMA-map the memory buffer associated with queued_cmd @qc.
3237 *
3238 * LOCKING:
3239 * spin_lock_irqsave(host_set lock)
3240 *
3241 * RETURNS:
3242 * Zero on success, negative on error.
3243 */
3244
3245 static int ata_sg_setup_one(struct ata_queued_cmd *qc)
3246 {
3247 struct ata_port *ap = qc->ap;
3248 int dir = qc->dma_dir;
3249 struct scatterlist *sg = qc->__sg;
3250 dma_addr_t dma_address;
3251 int trim_sg = 0;
3252
3253 /* we must lengthen transfers to end on a 32-bit boundary */
3254 qc->pad_len = sg->length & 3;
3255 if (qc->pad_len) {
3256 void *pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
3257 struct scatterlist *psg = &qc->pad_sgent;
3258
3259 WARN_ON(qc->dev->class != ATA_DEV_ATAPI);
3260
3261 memset(pad_buf, 0, ATA_DMA_PAD_SZ);
3262
3263 if (qc->tf.flags & ATA_TFLAG_WRITE)
3264 memcpy(pad_buf, qc->buf_virt + sg->length - qc->pad_len,
3265 qc->pad_len);
3266
3267 sg_dma_address(psg) = ap->pad_dma + (qc->tag * ATA_DMA_PAD_SZ);
3268 sg_dma_len(psg) = ATA_DMA_PAD_SZ;
3269 /* trim sg */
3270 sg->length -= qc->pad_len;
3271 if (sg->length == 0)
3272 trim_sg = 1;
3273
3274 DPRINTK("padding done, sg->length=%u pad_len=%u\n",
3275 sg->length, qc->pad_len);
3276 }
3277
3278 if (trim_sg) {
3279 qc->n_elem--;
3280 goto skip_map;
3281 }
3282
3283 dma_address = dma_map_single(ap->dev, qc->buf_virt,
3284 sg->length, dir);
3285 if (dma_mapping_error(dma_address)) {
3286 /* restore sg */
3287 sg->length += qc->pad_len;
3288 return -1;
3289 }
3290
3291 sg_dma_address(sg) = dma_address;
3292 sg_dma_len(sg) = sg->length;
3293
3294 skip_map:
3295 DPRINTK("mapped buffer of %d bytes for %s\n", sg_dma_len(sg),
3296 qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
3297
3298 return 0;
3299 }
3300
3301 /**
3302 * ata_sg_setup - DMA-map the scatter-gather table associated with a command.
3303 * @qc: Command with scatter-gather table to be mapped.
3304 *
3305 * DMA-map the scatter-gather table associated with queued_cmd @qc.
3306 *
3307 * LOCKING:
3308 * spin_lock_irqsave(host_set lock)
3309 *
3310 * RETURNS:
3311 * Zero on success, negative on error.
3312 *
3313 */
3314
3315 static int ata_sg_setup(struct ata_queued_cmd *qc)
3316 {
3317 struct ata_port *ap = qc->ap;
3318 struct scatterlist *sg = qc->__sg;
3319 struct scatterlist *lsg = &sg[qc->n_elem - 1];
3320 int n_elem, pre_n_elem, dir, trim_sg = 0;
3321
3322 VPRINTK("ENTER, ata%u\n", ap->id);
3323 WARN_ON(!(qc->flags & ATA_QCFLAG_SG));
3324
3325 /* we must lengthen transfers to end on a 32-bit boundary */
3326 qc->pad_len = lsg->length & 3;
3327 if (qc->pad_len) {
3328 void *pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
3329 struct scatterlist *psg = &qc->pad_sgent;
3330 unsigned int offset;
3331
3332 WARN_ON(qc->dev->class != ATA_DEV_ATAPI);
3333
3334 memset(pad_buf, 0, ATA_DMA_PAD_SZ);
3335
3336 /*
3337 * psg->page/offset are used to copy to-be-written
3338 * data in this function or read data in ata_sg_clean.
3339 */
3340 offset = lsg->offset + lsg->length - qc->pad_len;
3341 psg->page = nth_page(lsg->page, offset >> PAGE_SHIFT);
3342 psg->offset = offset_in_page(offset);
3343
3344 if (qc->tf.flags & ATA_TFLAG_WRITE) {
3345 void *addr = kmap_atomic(psg->page, KM_IRQ0);
3346 memcpy(pad_buf, addr + psg->offset, qc->pad_len);
3347 kunmap_atomic(addr, KM_IRQ0);
3348 }
3349
3350 sg_dma_address(psg) = ap->pad_dma + (qc->tag * ATA_DMA_PAD_SZ);
3351 sg_dma_len(psg) = ATA_DMA_PAD_SZ;
3352 /* trim last sg */
3353 lsg->length -= qc->pad_len;
3354 if (lsg->length == 0)
3355 trim_sg = 1;
3356
3357 DPRINTK("padding done, sg[%d].length=%u pad_len=%u\n",
3358 qc->n_elem - 1, lsg->length, qc->pad_len);
3359 }
3360
3361 pre_n_elem = qc->n_elem;
3362 if (trim_sg && pre_n_elem)
3363 pre_n_elem--;
3364
3365 if (!pre_n_elem) {
3366 n_elem = 0;
3367 goto skip_map;
3368 }
3369
3370 dir = qc->dma_dir;
3371 n_elem = dma_map_sg(ap->dev, sg, pre_n_elem, dir);
3372 if (n_elem < 1) {
3373 /* restore last sg */
3374 lsg->length += qc->pad_len;
3375 return -1;
3376 }
3377
3378 DPRINTK("%d sg elements mapped\n", n_elem);
3379
3380 skip_map:
3381 qc->n_elem = n_elem;
3382
3383 return 0;
3384 }
3385
3386 /**
3387 * ata_poll_qc_complete - turn irq back on and finish qc
3388 * @qc: Command to complete
3389 * @err_mask: ATA status register content
3390 *
3391 * LOCKING:
3392 * None. (grabs host lock)
3393 */
3394
3395 void ata_poll_qc_complete(struct ata_queued_cmd *qc)
3396 {
3397 struct ata_port *ap = qc->ap;
3398 unsigned long flags;
3399
3400 spin_lock_irqsave(&ap->host_set->lock, flags);
3401 ap->flags &= ~ATA_FLAG_NOINTR;
3402 ata_irq_on(ap);
3403 ata_qc_complete(qc);
3404 spin_unlock_irqrestore(&ap->host_set->lock, flags);
3405 }
3406
3407 /**
3408 * ata_pio_poll - poll using PIO, depending on current state
3409 * @ap: the target ata_port
3410 *
3411 * LOCKING:
3412 * None. (executing in kernel thread context)
3413 *
3414 * RETURNS:
3415 * timeout value to use
3416 */
3417
3418 static unsigned long ata_pio_poll(struct ata_port *ap)
3419 {
3420 struct ata_queued_cmd *qc;
3421 u8 status;
3422 unsigned int poll_state = HSM_ST_UNKNOWN;
3423 unsigned int reg_state = HSM_ST_UNKNOWN;
3424
3425 qc = ata_qc_from_tag(ap, ap->active_tag);
3426 WARN_ON(qc == NULL);
3427
3428 switch (ap->hsm_task_state) {
3429 case HSM_ST:
3430 case HSM_ST_POLL:
3431 poll_state = HSM_ST_POLL;
3432 reg_state = HSM_ST;
3433 break;
3434 case HSM_ST_LAST:
3435 case HSM_ST_LAST_POLL:
3436 poll_state = HSM_ST_LAST_POLL;
3437 reg_state = HSM_ST_LAST;
3438 break;
3439 default:
3440 BUG();
3441 break;
3442 }
3443
3444 status = ata_chk_status(ap);
3445 if (status & ATA_BUSY) {
3446 if (time_after(jiffies, ap->pio_task_timeout)) {
3447 qc->err_mask |= AC_ERR_TIMEOUT;
3448 ap->hsm_task_state = HSM_ST_TMOUT;
3449 return 0;
3450 }
3451 ap->hsm_task_state = poll_state;
3452 return ATA_SHORT_PAUSE;
3453 }
3454
3455 ap->hsm_task_state = reg_state;
3456 return 0;
3457 }
3458
3459 /**
3460 * ata_pio_complete - check if drive is busy or idle
3461 * @ap: the target ata_port
3462 *
3463 * LOCKING:
3464 * None. (executing in kernel thread context)
3465 *
3466 * RETURNS:
3467 * Non-zero if qc completed, zero otherwise.
3468 */
3469
3470 static int ata_pio_complete (struct ata_port *ap)
3471 {
3472 struct ata_queued_cmd *qc;
3473 u8 drv_stat;
3474
3475 /*
3476 * This is purely heuristic. This is a fast path. Sometimes when
3477 * we enter, BSY will be cleared in a chk-status or two. If not,
3478 * the drive is probably seeking or something. Snooze for a couple
3479 * msecs, then chk-status again. If still busy, fall back to
3480 * HSM_ST_POLL state.
3481 */
3482 drv_stat = ata_busy_wait(ap, ATA_BUSY, 10);
3483 if (drv_stat & ATA_BUSY) {
3484 msleep(2);
3485 drv_stat = ata_busy_wait(ap, ATA_BUSY, 10);
3486 if (drv_stat & ATA_BUSY) {
3487 ap->hsm_task_state = HSM_ST_LAST_POLL;
3488 ap->pio_task_timeout = jiffies + ATA_TMOUT_PIO;
3489 return 0;
3490 }
3491 }
3492
3493 qc = ata_qc_from_tag(ap, ap->active_tag);
3494 WARN_ON(qc == NULL);
3495
3496 drv_stat = ata_wait_idle(ap);
3497 if (!ata_ok(drv_stat)) {
3498 qc->err_mask |= __ac_err_mask(drv_stat);
3499 ap->hsm_task_state = HSM_ST_ERR;
3500 return 0;
3501 }
3502
3503 ap->hsm_task_state = HSM_ST_IDLE;
3504
3505 WARN_ON(qc->err_mask);
3506 ata_poll_qc_complete(qc);
3507
3508 /* another command may start at this point */
3509
3510 return 1;
3511 }
3512
3513
3514 /**
3515 * swap_buf_le16 - swap halves of 16-bit words in place
3516 * @buf: Buffer to swap
3517 * @buf_words: Number of 16-bit words in buffer.
3518 *
3519 * Swap halves of 16-bit words if needed to convert from
3520 * little-endian byte order to native cpu byte order, or
3521 * vice-versa.
3522 *
3523 * LOCKING:
3524 * Inherited from caller.
3525 */
3526 void swap_buf_le16(u16 *buf, unsigned int buf_words)
3527 {
3528 #ifdef __BIG_ENDIAN
3529 unsigned int i;
3530
3531 for (i = 0; i < buf_words; i++)
3532 buf[i] = le16_to_cpu(buf[i]);
3533 #endif /* __BIG_ENDIAN */
3534 }
3535
3536 /**
3537 * ata_mmio_data_xfer - Transfer data by MMIO
3538 * @ap: port to read/write
3539 * @buf: data buffer
3540 * @buflen: buffer length
3541 * @write_data: read/write
3542 *
3543 * Transfer data from/to the device data register by MMIO.
3544 *
3545 * LOCKING:
3546 * Inherited from caller.
3547 */
3548
3549 static void ata_mmio_data_xfer(struct ata_port *ap, unsigned char *buf,
3550 unsigned int buflen, int write_data)
3551 {
3552 unsigned int i;
3553 unsigned int words = buflen >> 1;
3554 u16 *buf16 = (u16 *) buf;
3555 void __iomem *mmio = (void __iomem *)ap->ioaddr.data_addr;
3556
3557 /* Transfer multiple of 2 bytes */
3558 if (write_data) {
3559 for (i = 0; i < words; i++)
3560 writew(le16_to_cpu(buf16[i]), mmio);
3561 } else {
3562 for (i = 0; i < words; i++)
3563 buf16[i] = cpu_to_le16(readw(mmio));
3564 }
3565
3566 /* Transfer trailing 1 byte, if any. */
3567 if (unlikely(buflen & 0x01)) {
3568 u16 align_buf[1] = { 0 };
3569 unsigned char *trailing_buf = buf + buflen - 1;
3570
3571 if (write_data) {
3572 memcpy(align_buf, trailing_buf, 1);
3573 writew(le16_to_cpu(align_buf[0]), mmio);
3574 } else {
3575 align_buf[0] = cpu_to_le16(readw(mmio));
3576 memcpy(trailing_buf, align_buf, 1);
3577 }
3578 }
3579 }
3580
3581 /**
3582 * ata_pio_data_xfer - Transfer data by PIO
3583 * @ap: port to read/write
3584 * @buf: data buffer
3585 * @buflen: buffer length
3586 * @write_data: read/write
3587 *
3588 * Transfer data from/to the device data register by PIO.
3589 *
3590 * LOCKING:
3591 * Inherited from caller.
3592 */
3593
3594 static void ata_pio_data_xfer(struct ata_port *ap, unsigned char *buf,
3595 unsigned int buflen, int write_data)
3596 {
3597 unsigned int words = buflen >> 1;
3598
3599 /* Transfer multiple of 2 bytes */
3600 if (write_data)
3601 outsw(ap->ioaddr.data_addr, buf, words);
3602 else
3603 insw(ap->ioaddr.data_addr, buf, words);
3604
3605 /* Transfer trailing 1 byte, if any. */
3606 if (unlikely(buflen & 0x01)) {
3607 u16 align_buf[1] = { 0 };
3608 unsigned char *trailing_buf = buf + buflen - 1;
3609
3610 if (write_data) {
3611 memcpy(align_buf, trailing_buf, 1);
3612 outw(le16_to_cpu(align_buf[0]), ap->ioaddr.data_addr);
3613 } else {
3614 align_buf[0] = cpu_to_le16(inw(ap->ioaddr.data_addr));
3615 memcpy(trailing_buf, align_buf, 1);
3616 }
3617 }
3618 }
3619
3620 /**
3621 * ata_data_xfer - Transfer data from/to the data register.
3622 * @ap: port to read/write
3623 * @buf: data buffer
3624 * @buflen: buffer length
3625 * @do_write: read/write
3626 *
3627 * Transfer data from/to the device data register.
3628 *
3629 * LOCKING:
3630 * Inherited from caller.
3631 */
3632
3633 static void ata_data_xfer(struct ata_port *ap, unsigned char *buf,
3634 unsigned int buflen, int do_write)
3635 {
3636 /* Make the crap hardware pay the costs not the good stuff */
3637 if (unlikely(ap->flags & ATA_FLAG_IRQ_MASK)) {
3638 unsigned long flags;
3639 local_irq_save(flags);
3640 if (ap->flags & ATA_FLAG_MMIO)
3641 ata_mmio_data_xfer(ap, buf, buflen, do_write);
3642 else
3643 ata_pio_data_xfer(ap, buf, buflen, do_write);
3644 local_irq_restore(flags);
3645 } else {
3646 if (ap->flags & ATA_FLAG_MMIO)
3647 ata_mmio_data_xfer(ap, buf, buflen, do_write);
3648 else
3649 ata_pio_data_xfer(ap, buf, buflen, do_write);
3650 }
3651 }
3652
3653 /**
3654 * ata_pio_sector - Transfer ATA_SECT_SIZE (512 bytes) of data.
3655 * @qc: Command on going
3656 *
3657 * Transfer ATA_SECT_SIZE of data from/to the ATA device.
3658 *
3659 * LOCKING:
3660 * Inherited from caller.
3661 */
3662
3663 static void ata_pio_sector(struct ata_queued_cmd *qc)
3664 {
3665 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
3666 struct scatterlist *sg = qc->__sg;
3667 struct ata_port *ap = qc->ap;
3668 struct page *page;
3669 unsigned int offset;
3670 unsigned char *buf;
3671
3672 if (qc->cursect == (qc->nsect - 1))
3673 ap->hsm_task_state = HSM_ST_LAST;
3674
3675 page = sg[qc->cursg].page;
3676 offset = sg[qc->cursg].offset + qc->cursg_ofs * ATA_SECT_SIZE;
3677
3678 /* get the current page and offset */
3679 page = nth_page(page, (offset >> PAGE_SHIFT));
3680 offset %= PAGE_SIZE;
3681
3682 buf = kmap(page) + offset;
3683
3684 qc->cursect++;
3685 qc->cursg_ofs++;
3686
3687 if ((qc->cursg_ofs * ATA_SECT_SIZE) == (&sg[qc->cursg])->length) {
3688 qc->cursg++;
3689 qc->cursg_ofs = 0;
3690 }
3691
3692 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
3693
3694 /* do the actual data transfer */
3695 do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
3696 ata_data_xfer(ap, buf, ATA_SECT_SIZE, do_write);
3697
3698 kunmap(page);
3699 }
3700
3701 /**
3702 * __atapi_pio_bytes - Transfer data from/to the ATAPI device.
3703 * @qc: Command on going
3704 * @bytes: number of bytes
3705 *
3706 * Transfer Transfer data from/to the ATAPI device.
3707 *
3708 * LOCKING:
3709 * Inherited from caller.
3710 *
3711 */
3712
3713 static void __atapi_pio_bytes(struct ata_queued_cmd *qc, unsigned int bytes)
3714 {
3715 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
3716 struct scatterlist *sg = qc->__sg;
3717 struct ata_port *ap = qc->ap;
3718 struct page *page;
3719 unsigned char *buf;
3720 unsigned int offset, count;
3721
3722 if (qc->curbytes + bytes >= qc->nbytes)
3723 ap->hsm_task_state = HSM_ST_LAST;
3724
3725 next_sg:
3726 if (unlikely(qc->cursg >= qc->n_elem)) {
3727 /*
3728 * The end of qc->sg is reached and the device expects
3729 * more data to transfer. In order not to overrun qc->sg
3730 * and fulfill length specified in the byte count register,
3731 * - for read case, discard trailing data from the device
3732 * - for write case, padding zero data to the device
3733 */
3734 u16 pad_buf[1] = { 0 };
3735 unsigned int words = bytes >> 1;
3736 unsigned int i;
3737
3738 if (words) /* warning if bytes > 1 */
3739 printk(KERN_WARNING "ata%u: %u bytes trailing data\n",
3740 ap->id, bytes);
3741
3742 for (i = 0; i < words; i++)
3743 ata_data_xfer(ap, (unsigned char*)pad_buf, 2, do_write);
3744
3745 ap->hsm_task_state = HSM_ST_LAST;
3746 return;
3747 }
3748
3749 sg = &qc->__sg[qc->cursg];
3750
3751 page = sg->page;
3752 offset = sg->offset + qc->cursg_ofs;
3753
3754 /* get the current page and offset */
3755 page = nth_page(page, (offset >> PAGE_SHIFT));
3756 offset %= PAGE_SIZE;
3757
3758 /* don't overrun current sg */
3759 count = min(sg->length - qc->cursg_ofs, bytes);
3760
3761 /* don't cross page boundaries */
3762 count = min(count, (unsigned int)PAGE_SIZE - offset);
3763
3764 buf = kmap(page) + offset;
3765
3766 bytes -= count;
3767 qc->curbytes += count;
3768 qc->cursg_ofs += count;
3769
3770 if (qc->cursg_ofs == sg->length) {
3771 qc->cursg++;
3772 qc->cursg_ofs = 0;
3773 }
3774
3775 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
3776
3777 /* do the actual data transfer */
3778 ata_data_xfer(ap, buf, count, do_write);
3779
3780 kunmap(page);
3781
3782 if (bytes)
3783 goto next_sg;
3784 }
3785
3786 /**
3787 * atapi_pio_bytes - Transfer data from/to the ATAPI device.
3788 * @qc: Command on going
3789 *
3790 * Transfer Transfer data from/to the ATAPI device.
3791 *
3792 * LOCKING:
3793 * Inherited from caller.
3794 */
3795
3796 static void atapi_pio_bytes(struct ata_queued_cmd *qc)
3797 {
3798 struct ata_port *ap = qc->ap;
3799 struct ata_device *dev = qc->dev;
3800 unsigned int ireason, bc_lo, bc_hi, bytes;
3801 int i_write, do_write = (qc->tf.flags & ATA_TFLAG_WRITE) ? 1 : 0;
3802
3803 ap->ops->tf_read(ap, &qc->tf);
3804 ireason = qc->tf.nsect;
3805 bc_lo = qc->tf.lbam;
3806 bc_hi = qc->tf.lbah;
3807 bytes = (bc_hi << 8) | bc_lo;
3808
3809 /* shall be cleared to zero, indicating xfer of data */
3810 if (ireason & (1 << 0))
3811 goto err_out;
3812
3813 /* make sure transfer direction matches expected */
3814 i_write = ((ireason & (1 << 1)) == 0) ? 1 : 0;
3815 if (do_write != i_write)
3816 goto err_out;
3817
3818 __atapi_pio_bytes(qc, bytes);
3819
3820 return;
3821
3822 err_out:
3823 printk(KERN_INFO "ata%u: dev %u: ATAPI check failed\n",
3824 ap->id, dev->devno);
3825 qc->err_mask |= AC_ERR_HSM;
3826 ap->hsm_task_state = HSM_ST_ERR;
3827 }
3828
3829 /**
3830 * ata_pio_block - start PIO on a block
3831 * @ap: the target ata_port
3832 *
3833 * LOCKING:
3834 * None. (executing in kernel thread context)
3835 */
3836
3837 static void ata_pio_block(struct ata_port *ap)
3838 {
3839 struct ata_queued_cmd *qc;
3840 u8 status;
3841
3842 /*
3843 * This is purely heuristic. This is a fast path.
3844 * Sometimes when we enter, BSY will be cleared in
3845 * a chk-status or two. If not, the drive is probably seeking
3846 * or something. Snooze for a couple msecs, then
3847 * chk-status again. If still busy, fall back to
3848 * HSM_ST_POLL state.
3849 */
3850 status = ata_busy_wait(ap, ATA_BUSY, 5);
3851 if (status & ATA_BUSY) {
3852 msleep(2);
3853 status = ata_busy_wait(ap, ATA_BUSY, 10);
3854 if (status & ATA_BUSY) {
3855 ap->hsm_task_state = HSM_ST_POLL;
3856 ap->pio_task_timeout = jiffies + ATA_TMOUT_PIO;
3857 return;
3858 }
3859 }
3860
3861 qc = ata_qc_from_tag(ap, ap->active_tag);
3862 WARN_ON(qc == NULL);
3863
3864 /* check error */
3865 if (status & (ATA_ERR | ATA_DF)) {
3866 qc->err_mask |= AC_ERR_DEV;
3867 ap->hsm_task_state = HSM_ST_ERR;
3868 return;
3869 }
3870
3871 /* transfer data if any */
3872 if (is_atapi_taskfile(&qc->tf)) {
3873 /* DRQ=0 means no more data to transfer */
3874 if ((status & ATA_DRQ) == 0) {
3875 ap->hsm_task_state = HSM_ST_LAST;
3876 return;
3877 }
3878
3879 atapi_pio_bytes(qc);
3880 } else {
3881 /* handle BSY=0, DRQ=0 as error */
3882 if ((status & ATA_DRQ) == 0) {
3883 qc->err_mask |= AC_ERR_HSM;
3884 ap->hsm_task_state = HSM_ST_ERR;
3885 return;
3886 }
3887
3888 ata_pio_sector(qc);
3889 }
3890 }
3891
3892 static void ata_pio_error(struct ata_port *ap)
3893 {
3894 struct ata_queued_cmd *qc;
3895
3896 qc = ata_qc_from_tag(ap, ap->active_tag);
3897 WARN_ON(qc == NULL);
3898
3899 if (qc->tf.command != ATA_CMD_PACKET)
3900 printk(KERN_WARNING "ata%u: PIO error\n", ap->id);
3901
3902 /* make sure qc->err_mask is available to
3903 * know what's wrong and recover
3904 */
3905 WARN_ON(qc->err_mask == 0);
3906
3907 ap->hsm_task_state = HSM_ST_IDLE;
3908
3909 ata_poll_qc_complete(qc);
3910 }
3911
3912 static void ata_pio_task(void *_data)
3913 {
3914 struct ata_port *ap = _data;
3915 unsigned long timeout;
3916 int qc_completed;
3917
3918 fsm_start:
3919 timeout = 0;
3920 qc_completed = 0;
3921
3922 switch (ap->hsm_task_state) {
3923 case HSM_ST_IDLE:
3924 return;
3925
3926 case HSM_ST:
3927 ata_pio_block(ap);
3928 break;
3929
3930 case HSM_ST_LAST:
3931 qc_completed = ata_pio_complete(ap);
3932 break;
3933
3934 case HSM_ST_POLL:
3935 case HSM_ST_LAST_POLL:
3936 timeout = ata_pio_poll(ap);
3937 break;
3938
3939 case HSM_ST_TMOUT:
3940 case HSM_ST_ERR:
3941 ata_pio_error(ap);
3942 return;
3943 }
3944
3945 if (timeout)
3946 ata_port_queue_task(ap, ata_pio_task, ap, timeout);
3947 else if (!qc_completed)
3948 goto fsm_start;
3949 }
3950
3951 /**
3952 * atapi_packet_task - Write CDB bytes to hardware
3953 * @_data: Port to which ATAPI device is attached.
3954 *
3955 * When device has indicated its readiness to accept
3956 * a CDB, this function is called. Send the CDB.
3957 * If DMA is to be performed, exit immediately.
3958 * Otherwise, we are in polling mode, so poll
3959 * status under operation succeeds or fails.
3960 *
3961 * LOCKING:
3962 * Kernel thread context (may sleep)
3963 */
3964
3965 static void atapi_packet_task(void *_data)
3966 {
3967 struct ata_port *ap = _data;
3968 struct ata_queued_cmd *qc;
3969 u8 status;
3970
3971 qc = ata_qc_from_tag(ap, ap->active_tag);
3972 WARN_ON(qc == NULL);
3973 WARN_ON(!(qc->flags & ATA_QCFLAG_ACTIVE));
3974
3975 /* sleep-wait for BSY to clear */
3976 DPRINTK("busy wait\n");
3977 if (ata_busy_sleep(ap, ATA_TMOUT_CDB_QUICK, ATA_TMOUT_CDB)) {
3978 qc->err_mask |= AC_ERR_TIMEOUT;
3979 goto err_out;
3980 }
3981
3982 /* make sure DRQ is set */
3983 status = ata_chk_status(ap);
3984 if ((status & (ATA_BUSY | ATA_DRQ)) != ATA_DRQ) {
3985 qc->err_mask |= AC_ERR_HSM;
3986 goto err_out;
3987 }
3988
3989 /* send SCSI cdb */
3990 DPRINTK("send cdb\n");
3991 WARN_ON(qc->dev->cdb_len < 12);
3992
3993 if (qc->tf.protocol == ATA_PROT_ATAPI_DMA ||
3994 qc->tf.protocol == ATA_PROT_ATAPI_NODATA) {
3995 unsigned long flags;
3996
3997 /* Once we're done issuing command and kicking bmdma,
3998 * irq handler takes over. To not lose irq, we need
3999 * to clear NOINTR flag before sending cdb, but
4000 * interrupt handler shouldn't be invoked before we're
4001 * finished. Hence, the following locking.
4002 */
4003 spin_lock_irqsave(&ap->host_set->lock, flags);
4004 ap->flags &= ~ATA_FLAG_NOINTR;
4005 ata_data_xfer(ap, qc->cdb, qc->dev->cdb_len, 1);
4006 if (qc->tf.protocol == ATA_PROT_ATAPI_DMA)
4007 ap->ops->bmdma_start(qc); /* initiate bmdma */
4008 spin_unlock_irqrestore(&ap->host_set->lock, flags);
4009 } else {
4010 ata_data_xfer(ap, qc->cdb, qc->dev->cdb_len, 1);
4011
4012 /* PIO commands are handled by polling */
4013 ap->hsm_task_state = HSM_ST;
4014 ata_port_queue_task(ap, ata_pio_task, ap, 0);
4015 }
4016
4017 return;
4018
4019 err_out:
4020 ata_poll_qc_complete(qc);
4021 }
4022
4023 /**
4024 * ata_qc_timeout - Handle timeout of queued command
4025 * @qc: Command that timed out
4026 *
4027 * Some part of the kernel (currently, only the SCSI layer)
4028 * has noticed that the active command on port @ap has not
4029 * completed after a specified length of time. Handle this
4030 * condition by disabling DMA (if necessary) and completing
4031 * transactions, with error if necessary.
4032 *
4033 * This also handles the case of the "lost interrupt", where
4034 * for some reason (possibly hardware bug, possibly driver bug)
4035 * an interrupt was not delivered to the driver, even though the
4036 * transaction completed successfully.
4037 *
4038 * LOCKING:
4039 * Inherited from SCSI layer (none, can sleep)
4040 */
4041
4042 static void ata_qc_timeout(struct ata_queued_cmd *qc)
4043 {
4044 struct ata_port *ap = qc->ap;
4045 struct ata_host_set *host_set = ap->host_set;
4046 u8 host_stat = 0, drv_stat;
4047 unsigned long flags;
4048
4049 DPRINTK("ENTER\n");
4050
4051 ap->hsm_task_state = HSM_ST_IDLE;
4052
4053 spin_lock_irqsave(&host_set->lock, flags);
4054
4055 switch (qc->tf.protocol) {
4056
4057 case ATA_PROT_DMA:
4058 case ATA_PROT_ATAPI_DMA:
4059 host_stat = ap->ops->bmdma_status(ap);
4060
4061 /* before we do anything else, clear DMA-Start bit */
4062 ap->ops->bmdma_stop(qc);
4063
4064 /* fall through */
4065
4066 default:
4067 ata_altstatus(ap);
4068 drv_stat = ata_chk_status(ap);
4069
4070 /* ack bmdma irq events */
4071 ap->ops->irq_clear(ap);
4072
4073 printk(KERN_ERR "ata%u: command 0x%x timeout, stat 0x%x host_stat 0x%x\n",
4074 ap->id, qc->tf.command, drv_stat, host_stat);
4075
4076 /* complete taskfile transaction */
4077 qc->err_mask |= ac_err_mask(drv_stat);
4078 break;
4079 }
4080
4081 spin_unlock_irqrestore(&host_set->lock, flags);
4082
4083 ata_eh_qc_complete(qc);
4084
4085 DPRINTK("EXIT\n");
4086 }
4087
4088 /**
4089 * ata_eng_timeout - Handle timeout of queued command
4090 * @ap: Port on which timed-out command is active
4091 *
4092 * Some part of the kernel (currently, only the SCSI layer)
4093 * has noticed that the active command on port @ap has not
4094 * completed after a specified length of time. Handle this
4095 * condition by disabling DMA (if necessary) and completing
4096 * transactions, with error if necessary.
4097 *
4098 * This also handles the case of the "lost interrupt", where
4099 * for some reason (possibly hardware bug, possibly driver bug)
4100 * an interrupt was not delivered to the driver, even though the
4101 * transaction completed successfully.
4102 *
4103 * LOCKING:
4104 * Inherited from SCSI layer (none, can sleep)
4105 */
4106
4107 void ata_eng_timeout(struct ata_port *ap)
4108 {
4109 DPRINTK("ENTER\n");
4110
4111 ata_qc_timeout(ata_qc_from_tag(ap, ap->active_tag));
4112
4113 DPRINTK("EXIT\n");
4114 }
4115
4116 /**
4117 * ata_qc_new - Request an available ATA command, for queueing
4118 * @ap: Port associated with device @dev
4119 * @dev: Device from whom we request an available command structure
4120 *
4121 * LOCKING:
4122 * None.
4123 */
4124
4125 static struct ata_queued_cmd *ata_qc_new(struct ata_port *ap)
4126 {
4127 struct ata_queued_cmd *qc = NULL;
4128 unsigned int i;
4129
4130 for (i = 0; i < ATA_MAX_QUEUE; i++)
4131 if (!test_and_set_bit(i, &ap->qactive)) {
4132 qc = ata_qc_from_tag(ap, i);
4133 break;
4134 }
4135
4136 if (qc)
4137 qc->tag = i;
4138
4139 return qc;
4140 }
4141
4142 /**
4143 * ata_qc_new_init - Request an available ATA command, and initialize it
4144 * @ap: Port associated with device @dev
4145 * @dev: Device from whom we request an available command structure
4146 *
4147 * LOCKING:
4148 * None.
4149 */
4150
4151 struct ata_queued_cmd *ata_qc_new_init(struct ata_port *ap,
4152 struct ata_device *dev)
4153 {
4154 struct ata_queued_cmd *qc;
4155
4156 qc = ata_qc_new(ap);
4157 if (qc) {
4158 qc->scsicmd = NULL;
4159 qc->ap = ap;
4160 qc->dev = dev;
4161
4162 ata_qc_reinit(qc);
4163 }
4164
4165 return qc;
4166 }
4167
4168 /**
4169 * ata_qc_free - free unused ata_queued_cmd
4170 * @qc: Command to complete
4171 *
4172 * Designed to free unused ata_queued_cmd object
4173 * in case something prevents using it.
4174 *
4175 * LOCKING:
4176 * spin_lock_irqsave(host_set lock)
4177 */
4178 void ata_qc_free(struct ata_queued_cmd *qc)
4179 {
4180 struct ata_port *ap = qc->ap;
4181 unsigned int tag;
4182
4183 WARN_ON(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
4184
4185 qc->flags = 0;
4186 tag = qc->tag;
4187 if (likely(ata_tag_valid(tag))) {
4188 if (tag == ap->active_tag)
4189 ap->active_tag = ATA_TAG_POISON;
4190 qc->tag = ATA_TAG_POISON;
4191 clear_bit(tag, &ap->qactive);
4192 }
4193 }
4194
4195 void __ata_qc_complete(struct ata_queued_cmd *qc)
4196 {
4197 WARN_ON(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
4198 WARN_ON(!(qc->flags & ATA_QCFLAG_ACTIVE));
4199
4200 if (likely(qc->flags & ATA_QCFLAG_DMAMAP))
4201 ata_sg_clean(qc);
4202
4203 /* atapi: mark qc as inactive to prevent the interrupt handler
4204 * from completing the command twice later, before the error handler
4205 * is called. (when rc != 0 and atapi request sense is needed)
4206 */
4207 qc->flags &= ~ATA_QCFLAG_ACTIVE;
4208
4209 /* call completion callback */
4210 qc->complete_fn(qc);
4211 }
4212
4213 static inline int ata_should_dma_map(struct ata_queued_cmd *qc)
4214 {
4215 struct ata_port *ap = qc->ap;
4216
4217 switch (qc->tf.protocol) {
4218 case ATA_PROT_DMA:
4219 case ATA_PROT_ATAPI_DMA:
4220 return 1;
4221
4222 case ATA_PROT_ATAPI:
4223 case ATA_PROT_PIO:
4224 if (ap->flags & ATA_FLAG_PIO_DMA)
4225 return 1;
4226
4227 /* fall through */
4228
4229 default:
4230 return 0;
4231 }
4232
4233 /* never reached */
4234 }
4235
4236 /**
4237 * ata_qc_issue - issue taskfile to device
4238 * @qc: command to issue to device
4239 *
4240 * Prepare an ATA command to submission to device.
4241 * This includes mapping the data into a DMA-able
4242 * area, filling in the S/G table, and finally
4243 * writing the taskfile to hardware, starting the command.
4244 *
4245 * LOCKING:
4246 * spin_lock_irqsave(host_set lock)
4247 */
4248 void ata_qc_issue(struct ata_queued_cmd *qc)
4249 {
4250 struct ata_port *ap = qc->ap;
4251
4252 qc->ap->active_tag = qc->tag;
4253 qc->flags |= ATA_QCFLAG_ACTIVE;
4254
4255 if (ata_should_dma_map(qc)) {
4256 if (qc->flags & ATA_QCFLAG_SG) {
4257 if (ata_sg_setup(qc))
4258 goto sg_err;
4259 } else if (qc->flags & ATA_QCFLAG_SINGLE) {
4260 if (ata_sg_setup_one(qc))
4261 goto sg_err;
4262 }
4263 } else {
4264 qc->flags &= ~ATA_QCFLAG_DMAMAP;
4265 }
4266
4267 ap->ops->qc_prep(qc);
4268
4269 qc->err_mask |= ap->ops->qc_issue(qc);
4270 if (unlikely(qc->err_mask))
4271 goto err;
4272 return;
4273
4274 sg_err:
4275 qc->flags &= ~ATA_QCFLAG_DMAMAP;
4276 qc->err_mask |= AC_ERR_SYSTEM;
4277 err:
4278 ata_qc_complete(qc);
4279 }
4280
4281 /**
4282 * ata_qc_issue_prot - issue taskfile to device in proto-dependent manner
4283 * @qc: command to issue to device
4284 *
4285 * Using various libata functions and hooks, this function
4286 * starts an ATA command. ATA commands are grouped into
4287 * classes called "protocols", and issuing each type of protocol
4288 * is slightly different.
4289 *
4290 * May be used as the qc_issue() entry in ata_port_operations.
4291 *
4292 * LOCKING:
4293 * spin_lock_irqsave(host_set lock)
4294 *
4295 * RETURNS:
4296 * Zero on success, AC_ERR_* mask on failure
4297 */
4298
4299 unsigned int ata_qc_issue_prot(struct ata_queued_cmd *qc)
4300 {
4301 struct ata_port *ap = qc->ap;
4302
4303 ata_dev_select(ap, qc->dev->devno, 1, 0);
4304
4305 switch (qc->tf.protocol) {
4306 case ATA_PROT_NODATA:
4307 ata_tf_to_host(ap, &qc->tf);
4308 break;
4309
4310 case ATA_PROT_DMA:
4311 ap->ops->tf_load(ap, &qc->tf); /* load tf registers */
4312 ap->ops->bmdma_setup(qc); /* set up bmdma */
4313 ap->ops->bmdma_start(qc); /* initiate bmdma */
4314 break;
4315
4316 case ATA_PROT_PIO: /* load tf registers, initiate polling pio */
4317 ata_qc_set_polling(qc);
4318 ata_tf_to_host(ap, &qc->tf);
4319 ap->hsm_task_state = HSM_ST;
4320 ata_port_queue_task(ap, ata_pio_task, ap, 0);
4321 break;
4322
4323 case ATA_PROT_ATAPI:
4324 ata_qc_set_polling(qc);
4325 ata_tf_to_host(ap, &qc->tf);
4326 ata_port_queue_task(ap, atapi_packet_task, ap, 0);
4327 break;
4328
4329 case ATA_PROT_ATAPI_NODATA:
4330 ap->flags |= ATA_FLAG_NOINTR;
4331 ata_tf_to_host(ap, &qc->tf);
4332 ata_port_queue_task(ap, atapi_packet_task, ap, 0);
4333 break;
4334
4335 case ATA_PROT_ATAPI_DMA:
4336 ap->flags |= ATA_FLAG_NOINTR;
4337 ap->ops->tf_load(ap, &qc->tf); /* load tf registers */
4338 ap->ops->bmdma_setup(qc); /* set up bmdma */
4339 ata_port_queue_task(ap, atapi_packet_task, ap, 0);
4340 break;
4341
4342 default:
4343 WARN_ON(1);
4344 return AC_ERR_SYSTEM;
4345 }
4346
4347 return 0;
4348 }
4349
4350 /**
4351 * ata_host_intr - Handle host interrupt for given (port, task)
4352 * @ap: Port on which interrupt arrived (possibly...)
4353 * @qc: Taskfile currently active in engine
4354 *
4355 * Handle host interrupt for given queued command. Currently,
4356 * only DMA interrupts are handled. All other commands are
4357 * handled via polling with interrupts disabled (nIEN bit).
4358 *
4359 * LOCKING:
4360 * spin_lock_irqsave(host_set lock)
4361 *
4362 * RETURNS:
4363 * One if interrupt was handled, zero if not (shared irq).
4364 */
4365
4366 inline unsigned int ata_host_intr (struct ata_port *ap,
4367 struct ata_queued_cmd *qc)
4368 {
4369 u8 status, host_stat;
4370
4371 switch (qc->tf.protocol) {
4372
4373 case ATA_PROT_DMA:
4374 case ATA_PROT_ATAPI_DMA:
4375 case ATA_PROT_ATAPI:
4376 /* check status of DMA engine */
4377 host_stat = ap->ops->bmdma_status(ap);
4378 VPRINTK("ata%u: host_stat 0x%X\n", ap->id, host_stat);
4379
4380 /* if it's not our irq... */
4381 if (!(host_stat & ATA_DMA_INTR))
4382 goto idle_irq;
4383
4384 /* before we do anything else, clear DMA-Start bit */
4385 ap->ops->bmdma_stop(qc);
4386
4387 /* fall through */
4388
4389 case ATA_PROT_ATAPI_NODATA:
4390 case ATA_PROT_NODATA:
4391 /* check altstatus */
4392 status = ata_altstatus(ap);
4393 if (status & ATA_BUSY)
4394 goto idle_irq;
4395
4396 /* check main status, clearing INTRQ */
4397 status = ata_chk_status(ap);
4398 if (unlikely(status & ATA_BUSY))
4399 goto idle_irq;
4400 DPRINTK("ata%u: protocol %d (dev_stat 0x%X)\n",
4401 ap->id, qc->tf.protocol, status);
4402
4403 /* ack bmdma irq events */
4404 ap->ops->irq_clear(ap);
4405
4406 /* complete taskfile transaction */
4407 qc->err_mask |= ac_err_mask(status);
4408 ata_qc_complete(qc);
4409 break;
4410
4411 default:
4412 goto idle_irq;
4413 }
4414
4415 return 1; /* irq handled */
4416
4417 idle_irq:
4418 ap->stats.idle_irq++;
4419
4420 #ifdef ATA_IRQ_TRAP
4421 if ((ap->stats.idle_irq % 1000) == 0) {
4422 ata_irq_ack(ap, 0); /* debug trap */
4423 printk(KERN_WARNING "ata%d: irq trap\n", ap->id);
4424 return 1;
4425 }
4426 #endif
4427 return 0; /* irq not handled */
4428 }
4429
4430 /**
4431 * ata_interrupt - Default ATA host interrupt handler
4432 * @irq: irq line (unused)
4433 * @dev_instance: pointer to our ata_host_set information structure
4434 * @regs: unused
4435 *
4436 * Default interrupt handler for PCI IDE devices. Calls
4437 * ata_host_intr() for each port that is not disabled.
4438 *
4439 * LOCKING:
4440 * Obtains host_set lock during operation.
4441 *
4442 * RETURNS:
4443 * IRQ_NONE or IRQ_HANDLED.
4444 */
4445
4446 irqreturn_t ata_interrupt (int irq, void *dev_instance, struct pt_regs *regs)
4447 {
4448 struct ata_host_set *host_set = dev_instance;
4449 unsigned int i;
4450 unsigned int handled = 0;
4451 unsigned long flags;
4452
4453 /* TODO: make _irqsave conditional on x86 PCI IDE legacy mode */
4454 spin_lock_irqsave(&host_set->lock, flags);
4455
4456 for (i = 0; i < host_set->n_ports; i++) {
4457 struct ata_port *ap;
4458
4459 ap = host_set->ports[i];
4460 if (ap &&
4461 !(ap->flags & (ATA_FLAG_PORT_DISABLED | ATA_FLAG_NOINTR))) {
4462 struct ata_queued_cmd *qc;
4463
4464 qc = ata_qc_from_tag(ap, ap->active_tag);
4465 if (qc && (!(qc->tf.ctl & ATA_NIEN)) &&
4466 (qc->flags & ATA_QCFLAG_ACTIVE))
4467 handled |= ata_host_intr(ap, qc);
4468 }
4469 }
4470
4471 spin_unlock_irqrestore(&host_set->lock, flags);
4472
4473 return IRQ_RETVAL(handled);
4474 }
4475
4476
4477 /*
4478 * Execute a 'simple' command, that only consists of the opcode 'cmd' itself,
4479 * without filling any other registers
4480 */
4481 static int ata_do_simple_cmd(struct ata_port *ap, struct ata_device *dev,
4482 u8 cmd)
4483 {
4484 struct ata_taskfile tf;
4485 int err;
4486
4487 ata_tf_init(ap, &tf, dev->devno);
4488
4489 tf.command = cmd;
4490 tf.flags |= ATA_TFLAG_DEVICE;
4491 tf.protocol = ATA_PROT_NODATA;
4492
4493 err = ata_exec_internal(ap, dev, &tf, DMA_NONE, NULL, 0);
4494 if (err)
4495 printk(KERN_ERR "%s: ata command failed: %d\n",
4496 __FUNCTION__, err);
4497
4498 return err;
4499 }
4500
4501 static int ata_flush_cache(struct ata_port *ap, struct ata_device *dev)
4502 {
4503 u8 cmd;
4504
4505 if (!ata_try_flush_cache(dev))
4506 return 0;
4507
4508 if (ata_id_has_flush_ext(dev->id))
4509 cmd = ATA_CMD_FLUSH_EXT;
4510 else
4511 cmd = ATA_CMD_FLUSH;
4512
4513 return ata_do_simple_cmd(ap, dev, cmd);
4514 }
4515
4516 static int ata_standby_drive(struct ata_port *ap, struct ata_device *dev)
4517 {
4518 return ata_do_simple_cmd(ap, dev, ATA_CMD_STANDBYNOW1);
4519 }
4520
4521 static int ata_start_drive(struct ata_port *ap, struct ata_device *dev)
4522 {
4523 return ata_do_simple_cmd(ap, dev, ATA_CMD_IDLEIMMEDIATE);
4524 }
4525
4526 /**
4527 * ata_device_resume - wakeup a previously suspended devices
4528 * @ap: port the device is connected to
4529 * @dev: the device to resume
4530 *
4531 * Kick the drive back into action, by sending it an idle immediate
4532 * command and making sure its transfer mode matches between drive
4533 * and host.
4534 *
4535 */
4536 int ata_device_resume(struct ata_port *ap, struct ata_device *dev)
4537 {
4538 if (ap->flags & ATA_FLAG_SUSPENDED) {
4539 struct ata_device *failed_dev;
4540 ap->flags &= ~ATA_FLAG_SUSPENDED;
4541 while (ata_set_mode(ap, &failed_dev))
4542 ata_dev_disable(ap, failed_dev);
4543 }
4544 if (!ata_dev_enabled(dev))
4545 return 0;
4546 if (dev->class == ATA_DEV_ATA)
4547 ata_start_drive(ap, dev);
4548
4549 return 0;
4550 }
4551
4552 /**
4553 * ata_device_suspend - prepare a device for suspend
4554 * @ap: port the device is connected to
4555 * @dev: the device to suspend
4556 *
4557 * Flush the cache on the drive, if appropriate, then issue a
4558 * standbynow command.
4559 */
4560 int ata_device_suspend(struct ata_port *ap, struct ata_device *dev, pm_message_t state)
4561 {
4562 if (!ata_dev_enabled(dev))
4563 return 0;
4564 if (dev->class == ATA_DEV_ATA)
4565 ata_flush_cache(ap, dev);
4566
4567 if (state.event != PM_EVENT_FREEZE)
4568 ata_standby_drive(ap, dev);
4569 ap->flags |= ATA_FLAG_SUSPENDED;
4570 return 0;
4571 }
4572
4573 /**
4574 * ata_port_start - Set port up for dma.
4575 * @ap: Port to initialize
4576 *
4577 * Called just after data structures for each port are
4578 * initialized. Allocates space for PRD table.
4579 *
4580 * May be used as the port_start() entry in ata_port_operations.
4581 *
4582 * LOCKING:
4583 * Inherited from caller.
4584 */
4585
4586 int ata_port_start (struct ata_port *ap)
4587 {
4588 struct device *dev = ap->dev;
4589 int rc;
4590
4591 ap->prd = dma_alloc_coherent(dev, ATA_PRD_TBL_SZ, &ap->prd_dma, GFP_KERNEL);
4592 if (!ap->prd)
4593 return -ENOMEM;
4594
4595 rc = ata_pad_alloc(ap, dev);
4596 if (rc) {
4597 dma_free_coherent(dev, ATA_PRD_TBL_SZ, ap->prd, ap->prd_dma);
4598 return rc;
4599 }
4600
4601 DPRINTK("prd alloc, virt %p, dma %llx\n", ap->prd, (unsigned long long) ap->prd_dma);
4602
4603 return 0;
4604 }
4605
4606
4607 /**
4608 * ata_port_stop - Undo ata_port_start()
4609 * @ap: Port to shut down
4610 *
4611 * Frees the PRD table.
4612 *
4613 * May be used as the port_stop() entry in ata_port_operations.
4614 *
4615 * LOCKING:
4616 * Inherited from caller.
4617 */
4618
4619 void ata_port_stop (struct ata_port *ap)
4620 {
4621 struct device *dev = ap->dev;
4622
4623 dma_free_coherent(dev, ATA_PRD_TBL_SZ, ap->prd, ap->prd_dma);
4624 ata_pad_free(ap, dev);
4625 }
4626
4627 void ata_host_stop (struct ata_host_set *host_set)
4628 {
4629 if (host_set->mmio_base)
4630 iounmap(host_set->mmio_base);
4631 }
4632
4633
4634 /**
4635 * ata_host_remove - Unregister SCSI host structure with upper layers
4636 * @ap: Port to unregister
4637 * @do_unregister: 1 if we fully unregister, 0 to just stop the port
4638 *
4639 * LOCKING:
4640 * Inherited from caller.
4641 */
4642
4643 static void ata_host_remove(struct ata_port *ap, unsigned int do_unregister)
4644 {
4645 struct Scsi_Host *sh = ap->host;
4646
4647 DPRINTK("ENTER\n");
4648
4649 if (do_unregister)
4650 scsi_remove_host(sh);
4651
4652 ap->ops->port_stop(ap);
4653 }
4654
4655 /**
4656 * ata_host_init - Initialize an ata_port structure
4657 * @ap: Structure to initialize
4658 * @host: associated SCSI mid-layer structure
4659 * @host_set: Collection of hosts to which @ap belongs
4660 * @ent: Probe information provided by low-level driver
4661 * @port_no: Port number associated with this ata_port
4662 *
4663 * Initialize a new ata_port structure, and its associated
4664 * scsi_host.
4665 *
4666 * LOCKING:
4667 * Inherited from caller.
4668 */
4669
4670 static void ata_host_init(struct ata_port *ap, struct Scsi_Host *host,
4671 struct ata_host_set *host_set,
4672 const struct ata_probe_ent *ent, unsigned int port_no)
4673 {
4674 unsigned int i;
4675
4676 host->max_id = 16;
4677 host->max_lun = 1;
4678 host->max_channel = 1;
4679 host->unique_id = ata_unique_id++;
4680 host->max_cmd_len = 12;
4681
4682 ap->flags = ATA_FLAG_PORT_DISABLED;
4683 ap->id = host->unique_id;
4684 ap->host = host;
4685 ap->ctl = ATA_DEVCTL_OBS;
4686 ap->host_set = host_set;
4687 ap->dev = ent->dev;
4688 ap->port_no = port_no;
4689 ap->hard_port_no =
4690 ent->legacy_mode ? ent->hard_port_no : port_no;
4691 ap->pio_mask = ent->pio_mask;
4692 ap->mwdma_mask = ent->mwdma_mask;
4693 ap->udma_mask = ent->udma_mask;
4694 ap->flags |= ent->host_flags;
4695 ap->ops = ent->port_ops;
4696 ap->cbl = ATA_CBL_NONE;
4697 ap->sata_spd_limit = UINT_MAX;
4698 ap->active_tag = ATA_TAG_POISON;
4699 ap->last_ctl = 0xFF;
4700
4701 INIT_WORK(&ap->port_task, NULL, NULL);
4702 INIT_LIST_HEAD(&ap->eh_done_q);
4703
4704 for (i = 0; i < ATA_MAX_DEVICES; i++) {
4705 struct ata_device *dev = &ap->device[i];
4706 dev->devno = i;
4707 dev->pio_mask = UINT_MAX;
4708 dev->mwdma_mask = UINT_MAX;
4709 dev->udma_mask = UINT_MAX;
4710 }
4711
4712 #ifdef ATA_IRQ_TRAP
4713 ap->stats.unhandled_irq = 1;
4714 ap->stats.idle_irq = 1;
4715 #endif
4716
4717 memcpy(&ap->ioaddr, &ent->port[port_no], sizeof(struct ata_ioports));
4718 }
4719
4720 /**
4721 * ata_host_add - Attach low-level ATA driver to system
4722 * @ent: Information provided by low-level driver
4723 * @host_set: Collections of ports to which we add
4724 * @port_no: Port number associated with this host
4725 *
4726 * Attach low-level ATA driver to system.
4727 *
4728 * LOCKING:
4729 * PCI/etc. bus probe sem.
4730 *
4731 * RETURNS:
4732 * New ata_port on success, for NULL on error.
4733 */
4734
4735 static struct ata_port * ata_host_add(const struct ata_probe_ent *ent,
4736 struct ata_host_set *host_set,
4737 unsigned int port_no)
4738 {
4739 struct Scsi_Host *host;
4740 struct ata_port *ap;
4741 int rc;
4742
4743 DPRINTK("ENTER\n");
4744
4745 if (!ent->port_ops->probe_reset &&
4746 !(ent->host_flags & (ATA_FLAG_SATA_RESET | ATA_FLAG_SRST))) {
4747 printk(KERN_ERR "ata%u: no reset mechanism available\n",
4748 port_no);
4749 return NULL;
4750 }
4751
4752 host = scsi_host_alloc(ent->sht, sizeof(struct ata_port));
4753 if (!host)
4754 return NULL;
4755
4756 host->transportt = &ata_scsi_transport_template;
4757
4758 ap = (struct ata_port *) &host->hostdata[0];
4759
4760 ata_host_init(ap, host, host_set, ent, port_no);
4761
4762 rc = ap->ops->port_start(ap);
4763 if (rc)
4764 goto err_out;
4765
4766 return ap;
4767
4768 err_out:
4769 scsi_host_put(host);
4770 return NULL;
4771 }
4772
4773 /**
4774 * ata_device_add - Register hardware device with ATA and SCSI layers
4775 * @ent: Probe information describing hardware device to be registered
4776 *
4777 * This function processes the information provided in the probe
4778 * information struct @ent, allocates the necessary ATA and SCSI
4779 * host information structures, initializes them, and registers
4780 * everything with requisite kernel subsystems.
4781 *
4782 * This function requests irqs, probes the ATA bus, and probes
4783 * the SCSI bus.
4784 *
4785 * LOCKING:
4786 * PCI/etc. bus probe sem.
4787 *
4788 * RETURNS:
4789 * Number of ports registered. Zero on error (no ports registered).
4790 */
4791
4792 int ata_device_add(const struct ata_probe_ent *ent)
4793 {
4794 unsigned int count = 0, i;
4795 struct device *dev = ent->dev;
4796 struct ata_host_set *host_set;
4797
4798 DPRINTK("ENTER\n");
4799 /* alloc a container for our list of ATA ports (buses) */
4800 host_set = kzalloc(sizeof(struct ata_host_set) +
4801 (ent->n_ports * sizeof(void *)), GFP_KERNEL);
4802 if (!host_set)
4803 return 0;
4804 spin_lock_init(&host_set->lock);
4805
4806 host_set->dev = dev;
4807 host_set->n_ports = ent->n_ports;
4808 host_set->irq = ent->irq;
4809 host_set->mmio_base = ent->mmio_base;
4810 host_set->private_data = ent->private_data;
4811 host_set->ops = ent->port_ops;
4812 host_set->flags = ent->host_set_flags;
4813
4814 /* register each port bound to this device */
4815 for (i = 0; i < ent->n_ports; i++) {
4816 struct ata_port *ap;
4817 unsigned long xfer_mode_mask;
4818
4819 ap = ata_host_add(ent, host_set, i);
4820 if (!ap)
4821 goto err_out;
4822
4823 host_set->ports[i] = ap;
4824 xfer_mode_mask =(ap->udma_mask << ATA_SHIFT_UDMA) |
4825 (ap->mwdma_mask << ATA_SHIFT_MWDMA) |
4826 (ap->pio_mask << ATA_SHIFT_PIO);
4827
4828 /* print per-port info to dmesg */
4829 printk(KERN_INFO "ata%u: %cATA max %s cmd 0x%lX ctl 0x%lX "
4830 "bmdma 0x%lX irq %lu\n",
4831 ap->id,
4832 ap->flags & ATA_FLAG_SATA ? 'S' : 'P',
4833 ata_mode_string(xfer_mode_mask),
4834 ap->ioaddr.cmd_addr,
4835 ap->ioaddr.ctl_addr,
4836 ap->ioaddr.bmdma_addr,
4837 ent->irq);
4838
4839 ata_chk_status(ap);
4840 host_set->ops->irq_clear(ap);
4841 count++;
4842 }
4843
4844 if (!count)
4845 goto err_free_ret;
4846
4847 /* obtain irq, that is shared between channels */
4848 if (request_irq(ent->irq, ent->port_ops->irq_handler, ent->irq_flags,
4849 DRV_NAME, host_set))
4850 goto err_out;
4851
4852 /* perform each probe synchronously */
4853 DPRINTK("probe begin\n");
4854 for (i = 0; i < count; i++) {
4855 struct ata_port *ap;
4856 int rc;
4857
4858 ap = host_set->ports[i];
4859
4860 DPRINTK("ata%u: bus probe begin\n", ap->id);
4861 rc = ata_bus_probe(ap);
4862 DPRINTK("ata%u: bus probe end\n", ap->id);
4863
4864 if (rc) {
4865 /* FIXME: do something useful here?
4866 * Current libata behavior will
4867 * tear down everything when
4868 * the module is removed
4869 * or the h/w is unplugged.
4870 */
4871 }
4872
4873 rc = scsi_add_host(ap->host, dev);
4874 if (rc) {
4875 printk(KERN_ERR "ata%u: scsi_add_host failed\n",
4876 ap->id);
4877 /* FIXME: do something useful here */
4878 /* FIXME: handle unconditional calls to
4879 * scsi_scan_host and ata_host_remove, below,
4880 * at the very least
4881 */
4882 }
4883 }
4884
4885 /* probes are done, now scan each port's disk(s) */
4886 DPRINTK("host probe begin\n");
4887 for (i = 0; i < count; i++) {
4888 struct ata_port *ap = host_set->ports[i];
4889
4890 ata_scsi_scan_host(ap);
4891 }
4892
4893 dev_set_drvdata(dev, host_set);
4894
4895 VPRINTK("EXIT, returning %u\n", ent->n_ports);
4896 return ent->n_ports; /* success */
4897
4898 err_out:
4899 for (i = 0; i < count; i++) {
4900 ata_host_remove(host_set->ports[i], 1);
4901 scsi_host_put(host_set->ports[i]->host);
4902 }
4903 err_free_ret:
4904 kfree(host_set);
4905 VPRINTK("EXIT, returning 0\n");
4906 return 0;
4907 }
4908
4909 /**
4910 * ata_host_set_remove - PCI layer callback for device removal
4911 * @host_set: ATA host set that was removed
4912 *
4913 * Unregister all objects associated with this host set. Free those
4914 * objects.
4915 *
4916 * LOCKING:
4917 * Inherited from calling layer (may sleep).
4918 */
4919
4920 void ata_host_set_remove(struct ata_host_set *host_set)
4921 {
4922 struct ata_port *ap;
4923 unsigned int i;
4924
4925 for (i = 0; i < host_set->n_ports; i++) {
4926 ap = host_set->ports[i];
4927 scsi_remove_host(ap->host);
4928 }
4929
4930 free_irq(host_set->irq, host_set);
4931
4932 for (i = 0; i < host_set->n_ports; i++) {
4933 ap = host_set->ports[i];
4934
4935 ata_scsi_release(ap->host);
4936
4937 if ((ap->flags & ATA_FLAG_NO_LEGACY) == 0) {
4938 struct ata_ioports *ioaddr = &ap->ioaddr;
4939
4940 if (ioaddr->cmd_addr == 0x1f0)
4941 release_region(0x1f0, 8);
4942 else if (ioaddr->cmd_addr == 0x170)
4943 release_region(0x170, 8);
4944 }
4945
4946 scsi_host_put(ap->host);
4947 }
4948
4949 if (host_set->ops->host_stop)
4950 host_set->ops->host_stop(host_set);
4951
4952 kfree(host_set);
4953 }
4954
4955 /**
4956 * ata_scsi_release - SCSI layer callback hook for host unload
4957 * @host: libata host to be unloaded
4958 *
4959 * Performs all duties necessary to shut down a libata port...
4960 * Kill port kthread, disable port, and release resources.
4961 *
4962 * LOCKING:
4963 * Inherited from SCSI layer.
4964 *
4965 * RETURNS:
4966 * One.
4967 */
4968
4969 int ata_scsi_release(struct Scsi_Host *host)
4970 {
4971 struct ata_port *ap = (struct ata_port *) &host->hostdata[0];
4972 int i;
4973
4974 DPRINTK("ENTER\n");
4975
4976 ap->ops->port_disable(ap);
4977 ata_host_remove(ap, 0);
4978 for (i = 0; i < ATA_MAX_DEVICES; i++)
4979 kfree(ap->device[i].id);
4980
4981 DPRINTK("EXIT\n");
4982 return 1;
4983 }
4984
4985 /**
4986 * ata_std_ports - initialize ioaddr with standard port offsets.
4987 * @ioaddr: IO address structure to be initialized
4988 *
4989 * Utility function which initializes data_addr, error_addr,
4990 * feature_addr, nsect_addr, lbal_addr, lbam_addr, lbah_addr,
4991 * device_addr, status_addr, and command_addr to standard offsets
4992 * relative to cmd_addr.
4993 *
4994 * Does not set ctl_addr, altstatus_addr, bmdma_addr, or scr_addr.
4995 */
4996
4997 void ata_std_ports(struct ata_ioports *ioaddr)
4998 {
4999 ioaddr->data_addr = ioaddr->cmd_addr + ATA_REG_DATA;
5000 ioaddr->error_addr = ioaddr->cmd_addr + ATA_REG_ERR;
5001 ioaddr->feature_addr = ioaddr->cmd_addr + ATA_REG_FEATURE;
5002 ioaddr->nsect_addr = ioaddr->cmd_addr + ATA_REG_NSECT;
5003 ioaddr->lbal_addr = ioaddr->cmd_addr + ATA_REG_LBAL;
5004 ioaddr->lbam_addr = ioaddr->cmd_addr + ATA_REG_LBAM;
5005 ioaddr->lbah_addr = ioaddr->cmd_addr + ATA_REG_LBAH;
5006 ioaddr->device_addr = ioaddr->cmd_addr + ATA_REG_DEVICE;
5007 ioaddr->status_addr = ioaddr->cmd_addr + ATA_REG_STATUS;
5008 ioaddr->command_addr = ioaddr->cmd_addr + ATA_REG_CMD;
5009 }
5010
5011
5012 #ifdef CONFIG_PCI
5013
5014 void ata_pci_host_stop (struct ata_host_set *host_set)
5015 {
5016 struct pci_dev *pdev = to_pci_dev(host_set->dev);
5017
5018 pci_iounmap(pdev, host_set->mmio_base);
5019 }
5020
5021 /**
5022 * ata_pci_remove_one - PCI layer callback for device removal
5023 * @pdev: PCI device that was removed
5024 *
5025 * PCI layer indicates to libata via this hook that
5026 * hot-unplug or module unload event has occurred.
5027 * Handle this by unregistering all objects associated
5028 * with this PCI device. Free those objects. Then finally
5029 * release PCI resources and disable device.
5030 *
5031 * LOCKING:
5032 * Inherited from PCI layer (may sleep).
5033 */
5034
5035 void ata_pci_remove_one (struct pci_dev *pdev)
5036 {
5037 struct device *dev = pci_dev_to_dev(pdev);
5038 struct ata_host_set *host_set = dev_get_drvdata(dev);
5039
5040 ata_host_set_remove(host_set);
5041 pci_release_regions(pdev);
5042 pci_disable_device(pdev);
5043 dev_set_drvdata(dev, NULL);
5044 }
5045
5046 /* move to PCI subsystem */
5047 int pci_test_config_bits(struct pci_dev *pdev, const struct pci_bits *bits)
5048 {
5049 unsigned long tmp = 0;
5050
5051 switch (bits->width) {
5052 case 1: {
5053 u8 tmp8 = 0;
5054 pci_read_config_byte(pdev, bits->reg, &tmp8);
5055 tmp = tmp8;
5056 break;
5057 }
5058 case 2: {
5059 u16 tmp16 = 0;
5060 pci_read_config_word(pdev, bits->reg, &tmp16);
5061 tmp = tmp16;
5062 break;
5063 }
5064 case 4: {
5065 u32 tmp32 = 0;
5066 pci_read_config_dword(pdev, bits->reg, &tmp32);
5067 tmp = tmp32;
5068 break;
5069 }
5070
5071 default:
5072 return -EINVAL;
5073 }
5074
5075 tmp &= bits->mask;
5076
5077 return (tmp == bits->val) ? 1 : 0;
5078 }
5079
5080 int ata_pci_device_suspend(struct pci_dev *pdev, pm_message_t state)
5081 {
5082 pci_save_state(pdev);
5083 pci_disable_device(pdev);
5084 pci_set_power_state(pdev, PCI_D3hot);
5085 return 0;
5086 }
5087
5088 int ata_pci_device_resume(struct pci_dev *pdev)
5089 {
5090 pci_set_power_state(pdev, PCI_D0);
5091 pci_restore_state(pdev);
5092 pci_enable_device(pdev);
5093 pci_set_master(pdev);
5094 return 0;
5095 }
5096 #endif /* CONFIG_PCI */
5097
5098
5099 static int __init ata_init(void)
5100 {
5101 ata_wq = create_workqueue("ata");
5102 if (!ata_wq)
5103 return -ENOMEM;
5104
5105 printk(KERN_DEBUG "libata version " DRV_VERSION " loaded.\n");
5106 return 0;
5107 }
5108
5109 static void __exit ata_exit(void)
5110 {
5111 destroy_workqueue(ata_wq);
5112 }
5113
5114 module_init(ata_init);
5115 module_exit(ata_exit);
5116
5117 static unsigned long ratelimit_time;
5118 static spinlock_t ata_ratelimit_lock = SPIN_LOCK_UNLOCKED;
5119
5120 int ata_ratelimit(void)
5121 {
5122 int rc;
5123 unsigned long flags;
5124
5125 spin_lock_irqsave(&ata_ratelimit_lock, flags);
5126
5127 if (time_after(jiffies, ratelimit_time)) {
5128 rc = 1;
5129 ratelimit_time = jiffies + (HZ/5);
5130 } else
5131 rc = 0;
5132
5133 spin_unlock_irqrestore(&ata_ratelimit_lock, flags);
5134
5135 return rc;
5136 }
5137
5138 /*
5139 * libata is essentially a library of internal helper functions for
5140 * low-level ATA host controller drivers. As such, the API/ABI is
5141 * likely to change as new drivers are added and updated.
5142 * Do not depend on ABI/API stability.
5143 */
5144
5145 EXPORT_SYMBOL_GPL(ata_std_bios_param);
5146 EXPORT_SYMBOL_GPL(ata_std_ports);
5147 EXPORT_SYMBOL_GPL(ata_device_add);
5148 EXPORT_SYMBOL_GPL(ata_host_set_remove);
5149 EXPORT_SYMBOL_GPL(ata_sg_init);
5150 EXPORT_SYMBOL_GPL(ata_sg_init_one);
5151 EXPORT_SYMBOL_GPL(__ata_qc_complete);
5152 EXPORT_SYMBOL_GPL(ata_qc_issue_prot);
5153 EXPORT_SYMBOL_GPL(ata_eng_timeout);
5154 EXPORT_SYMBOL_GPL(ata_tf_load);
5155 EXPORT_SYMBOL_GPL(ata_tf_read);
5156 EXPORT_SYMBOL_GPL(ata_noop_dev_select);
5157 EXPORT_SYMBOL_GPL(ata_std_dev_select);
5158 EXPORT_SYMBOL_GPL(ata_tf_to_fis);
5159 EXPORT_SYMBOL_GPL(ata_tf_from_fis);
5160 EXPORT_SYMBOL_GPL(ata_check_status);
5161 EXPORT_SYMBOL_GPL(ata_altstatus);
5162 EXPORT_SYMBOL_GPL(ata_exec_command);
5163 EXPORT_SYMBOL_GPL(ata_port_start);
5164 EXPORT_SYMBOL_GPL(ata_port_stop);
5165 EXPORT_SYMBOL_GPL(ata_host_stop);
5166 EXPORT_SYMBOL_GPL(ata_interrupt);
5167 EXPORT_SYMBOL_GPL(ata_qc_prep);
5168 EXPORT_SYMBOL_GPL(ata_noop_qc_prep);
5169 EXPORT_SYMBOL_GPL(ata_bmdma_setup);
5170 EXPORT_SYMBOL_GPL(ata_bmdma_start);
5171 EXPORT_SYMBOL_GPL(ata_bmdma_irq_clear);
5172 EXPORT_SYMBOL_GPL(ata_bmdma_status);
5173 EXPORT_SYMBOL_GPL(ata_bmdma_stop);
5174 EXPORT_SYMBOL_GPL(ata_port_probe);
5175 EXPORT_SYMBOL_GPL(sata_phy_reset);
5176 EXPORT_SYMBOL_GPL(__sata_phy_reset);
5177 EXPORT_SYMBOL_GPL(ata_bus_reset);
5178 EXPORT_SYMBOL_GPL(ata_std_probeinit);
5179 EXPORT_SYMBOL_GPL(ata_std_softreset);
5180 EXPORT_SYMBOL_GPL(sata_std_hardreset);
5181 EXPORT_SYMBOL_GPL(ata_std_postreset);
5182 EXPORT_SYMBOL_GPL(ata_std_probe_reset);
5183 EXPORT_SYMBOL_GPL(ata_drive_probe_reset);
5184 EXPORT_SYMBOL_GPL(ata_dev_revalidate);
5185 EXPORT_SYMBOL_GPL(ata_dev_classify);
5186 EXPORT_SYMBOL_GPL(ata_dev_pair);
5187 EXPORT_SYMBOL_GPL(ata_port_disable);
5188 EXPORT_SYMBOL_GPL(ata_ratelimit);
5189 EXPORT_SYMBOL_GPL(ata_busy_sleep);
5190 EXPORT_SYMBOL_GPL(ata_port_queue_task);
5191 EXPORT_SYMBOL_GPL(ata_scsi_ioctl);
5192 EXPORT_SYMBOL_GPL(ata_scsi_queuecmd);
5193 EXPORT_SYMBOL_GPL(ata_scsi_error);
5194 EXPORT_SYMBOL_GPL(ata_scsi_slave_config);
5195 EXPORT_SYMBOL_GPL(ata_scsi_release);
5196 EXPORT_SYMBOL_GPL(ata_host_intr);
5197 EXPORT_SYMBOL_GPL(ata_id_string);
5198 EXPORT_SYMBOL_GPL(ata_id_c_string);
5199 EXPORT_SYMBOL_GPL(ata_scsi_simulate);
5200 EXPORT_SYMBOL_GPL(ata_eh_qc_complete);
5201 EXPORT_SYMBOL_GPL(ata_eh_qc_retry);
5202
5203 EXPORT_SYMBOL_GPL(ata_pio_need_iordy);
5204 EXPORT_SYMBOL_GPL(ata_timing_compute);
5205 EXPORT_SYMBOL_GPL(ata_timing_merge);
5206
5207 #ifdef CONFIG_PCI
5208 EXPORT_SYMBOL_GPL(pci_test_config_bits);
5209 EXPORT_SYMBOL_GPL(ata_pci_host_stop);
5210 EXPORT_SYMBOL_GPL(ata_pci_init_native_mode);
5211 EXPORT_SYMBOL_GPL(ata_pci_init_one);
5212 EXPORT_SYMBOL_GPL(ata_pci_remove_one);
5213 EXPORT_SYMBOL_GPL(ata_pci_device_suspend);
5214 EXPORT_SYMBOL_GPL(ata_pci_device_resume);
5215 EXPORT_SYMBOL_GPL(ata_pci_default_filter);
5216 EXPORT_SYMBOL_GPL(ata_pci_clear_simplex);
5217 #endif /* CONFIG_PCI */
5218
5219 EXPORT_SYMBOL_GPL(ata_device_suspend);
5220 EXPORT_SYMBOL_GPL(ata_device_resume);
5221 EXPORT_SYMBOL_GPL(ata_scsi_device_suspend);
5222 EXPORT_SYMBOL_GPL(ata_scsi_device_resume);
This page took 0.133618 seconds and 6 git commands to generate.