[PATCH] libata: use dev->ap
[deliverable/linux.git] / drivers / scsi / libata-core.c
1 /*
2 * libata-core.c - helper library for ATA
3 *
4 * Maintained by: Jeff Garzik <jgarzik@pobox.com>
5 * Please ALWAYS copy linux-ide@vger.kernel.org
6 * on emails.
7 *
8 * Copyright 2003-2004 Red Hat, Inc. All rights reserved.
9 * Copyright 2003-2004 Jeff Garzik
10 *
11 *
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2, or (at your option)
15 * any later version.
16 *
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
21 *
22 * You should have received a copy of the GNU General Public License
23 * along with this program; see the file COPYING. If not, write to
24 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
25 *
26 *
27 * libata documentation is available via 'make {ps|pdf}docs',
28 * as Documentation/DocBook/libata.*
29 *
30 * Hardware documentation available from http://www.t13.org/ and
31 * http://www.sata-io.org/
32 *
33 */
34
35 #include <linux/config.h>
36 #include <linux/kernel.h>
37 #include <linux/module.h>
38 #include <linux/pci.h>
39 #include <linux/init.h>
40 #include <linux/list.h>
41 #include <linux/mm.h>
42 #include <linux/highmem.h>
43 #include <linux/spinlock.h>
44 #include <linux/blkdev.h>
45 #include <linux/delay.h>
46 #include <linux/timer.h>
47 #include <linux/interrupt.h>
48 #include <linux/completion.h>
49 #include <linux/suspend.h>
50 #include <linux/workqueue.h>
51 #include <linux/jiffies.h>
52 #include <linux/scatterlist.h>
53 #include <scsi/scsi.h>
54 #include "scsi_priv.h"
55 #include <scsi/scsi_cmnd.h>
56 #include <scsi/scsi_host.h>
57 #include <linux/libata.h>
58 #include <asm/io.h>
59 #include <asm/semaphore.h>
60 #include <asm/byteorder.h>
61
62 #include "libata.h"
63
64 static unsigned int ata_dev_init_params(struct ata_device *dev,
65 u16 heads, u16 sectors);
66 static unsigned int ata_dev_set_xfermode(struct ata_device *dev);
67 static void ata_dev_xfermask(struct ata_device *dev);
68
69 static unsigned int ata_unique_id = 1;
70 static struct workqueue_struct *ata_wq;
71
72 int atapi_enabled = 1;
73 module_param(atapi_enabled, int, 0444);
74 MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on)");
75
76 int atapi_dmadir = 0;
77 module_param(atapi_dmadir, int, 0444);
78 MODULE_PARM_DESC(atapi_dmadir, "Enable ATAPI DMADIR bridge support (0=off, 1=on)");
79
80 int libata_fua = 0;
81 module_param_named(fua, libata_fua, int, 0444);
82 MODULE_PARM_DESC(fua, "FUA support (0=off, 1=on)");
83
84 MODULE_AUTHOR("Jeff Garzik");
85 MODULE_DESCRIPTION("Library module for ATA devices");
86 MODULE_LICENSE("GPL");
87 MODULE_VERSION(DRV_VERSION);
88
89
90 /**
91 * ata_tf_to_fis - Convert ATA taskfile to SATA FIS structure
92 * @tf: Taskfile to convert
93 * @fis: Buffer into which data will output
94 * @pmp: Port multiplier port
95 *
96 * Converts a standard ATA taskfile to a Serial ATA
97 * FIS structure (Register - Host to Device).
98 *
99 * LOCKING:
100 * Inherited from caller.
101 */
102
103 void ata_tf_to_fis(const struct ata_taskfile *tf, u8 *fis, u8 pmp)
104 {
105 fis[0] = 0x27; /* Register - Host to Device FIS */
106 fis[1] = (pmp & 0xf) | (1 << 7); /* Port multiplier number,
107 bit 7 indicates Command FIS */
108 fis[2] = tf->command;
109 fis[3] = tf->feature;
110
111 fis[4] = tf->lbal;
112 fis[5] = tf->lbam;
113 fis[6] = tf->lbah;
114 fis[7] = tf->device;
115
116 fis[8] = tf->hob_lbal;
117 fis[9] = tf->hob_lbam;
118 fis[10] = tf->hob_lbah;
119 fis[11] = tf->hob_feature;
120
121 fis[12] = tf->nsect;
122 fis[13] = tf->hob_nsect;
123 fis[14] = 0;
124 fis[15] = tf->ctl;
125
126 fis[16] = 0;
127 fis[17] = 0;
128 fis[18] = 0;
129 fis[19] = 0;
130 }
131
132 /**
133 * ata_tf_from_fis - Convert SATA FIS to ATA taskfile
134 * @fis: Buffer from which data will be input
135 * @tf: Taskfile to output
136 *
137 * Converts a serial ATA FIS structure to a standard ATA taskfile.
138 *
139 * LOCKING:
140 * Inherited from caller.
141 */
142
143 void ata_tf_from_fis(const u8 *fis, struct ata_taskfile *tf)
144 {
145 tf->command = fis[2]; /* status */
146 tf->feature = fis[3]; /* error */
147
148 tf->lbal = fis[4];
149 tf->lbam = fis[5];
150 tf->lbah = fis[6];
151 tf->device = fis[7];
152
153 tf->hob_lbal = fis[8];
154 tf->hob_lbam = fis[9];
155 tf->hob_lbah = fis[10];
156
157 tf->nsect = fis[12];
158 tf->hob_nsect = fis[13];
159 }
160
161 static const u8 ata_rw_cmds[] = {
162 /* pio multi */
163 ATA_CMD_READ_MULTI,
164 ATA_CMD_WRITE_MULTI,
165 ATA_CMD_READ_MULTI_EXT,
166 ATA_CMD_WRITE_MULTI_EXT,
167 0,
168 0,
169 0,
170 ATA_CMD_WRITE_MULTI_FUA_EXT,
171 /* pio */
172 ATA_CMD_PIO_READ,
173 ATA_CMD_PIO_WRITE,
174 ATA_CMD_PIO_READ_EXT,
175 ATA_CMD_PIO_WRITE_EXT,
176 0,
177 0,
178 0,
179 0,
180 /* dma */
181 ATA_CMD_READ,
182 ATA_CMD_WRITE,
183 ATA_CMD_READ_EXT,
184 ATA_CMD_WRITE_EXT,
185 0,
186 0,
187 0,
188 ATA_CMD_WRITE_FUA_EXT
189 };
190
191 /**
192 * ata_rwcmd_protocol - set taskfile r/w commands and protocol
193 * @qc: command to examine and configure
194 *
195 * Examine the device configuration and tf->flags to calculate
196 * the proper read/write commands and protocol to use.
197 *
198 * LOCKING:
199 * caller.
200 */
201 int ata_rwcmd_protocol(struct ata_queued_cmd *qc)
202 {
203 struct ata_taskfile *tf = &qc->tf;
204 struct ata_device *dev = qc->dev;
205 u8 cmd;
206
207 int index, fua, lba48, write;
208
209 fua = (tf->flags & ATA_TFLAG_FUA) ? 4 : 0;
210 lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0;
211 write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0;
212
213 if (dev->flags & ATA_DFLAG_PIO) {
214 tf->protocol = ATA_PROT_PIO;
215 index = dev->multi_count ? 0 : 8;
216 } else if (lba48 && (qc->ap->flags & ATA_FLAG_PIO_LBA48)) {
217 /* Unable to use DMA due to host limitation */
218 tf->protocol = ATA_PROT_PIO;
219 index = dev->multi_count ? 0 : 8;
220 } else {
221 tf->protocol = ATA_PROT_DMA;
222 index = 16;
223 }
224
225 cmd = ata_rw_cmds[index + fua + lba48 + write];
226 if (cmd) {
227 tf->command = cmd;
228 return 0;
229 }
230 return -1;
231 }
232
233 /**
234 * ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask
235 * @pio_mask: pio_mask
236 * @mwdma_mask: mwdma_mask
237 * @udma_mask: udma_mask
238 *
239 * Pack @pio_mask, @mwdma_mask and @udma_mask into a single
240 * unsigned int xfer_mask.
241 *
242 * LOCKING:
243 * None.
244 *
245 * RETURNS:
246 * Packed xfer_mask.
247 */
248 static unsigned int ata_pack_xfermask(unsigned int pio_mask,
249 unsigned int mwdma_mask,
250 unsigned int udma_mask)
251 {
252 return ((pio_mask << ATA_SHIFT_PIO) & ATA_MASK_PIO) |
253 ((mwdma_mask << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA) |
254 ((udma_mask << ATA_SHIFT_UDMA) & ATA_MASK_UDMA);
255 }
256
257 /**
258 * ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks
259 * @xfer_mask: xfer_mask to unpack
260 * @pio_mask: resulting pio_mask
261 * @mwdma_mask: resulting mwdma_mask
262 * @udma_mask: resulting udma_mask
263 *
264 * Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask.
265 * Any NULL distination masks will be ignored.
266 */
267 static void ata_unpack_xfermask(unsigned int xfer_mask,
268 unsigned int *pio_mask,
269 unsigned int *mwdma_mask,
270 unsigned int *udma_mask)
271 {
272 if (pio_mask)
273 *pio_mask = (xfer_mask & ATA_MASK_PIO) >> ATA_SHIFT_PIO;
274 if (mwdma_mask)
275 *mwdma_mask = (xfer_mask & ATA_MASK_MWDMA) >> ATA_SHIFT_MWDMA;
276 if (udma_mask)
277 *udma_mask = (xfer_mask & ATA_MASK_UDMA) >> ATA_SHIFT_UDMA;
278 }
279
280 static const struct ata_xfer_ent {
281 int shift, bits;
282 u8 base;
283 } ata_xfer_tbl[] = {
284 { ATA_SHIFT_PIO, ATA_BITS_PIO, XFER_PIO_0 },
285 { ATA_SHIFT_MWDMA, ATA_BITS_MWDMA, XFER_MW_DMA_0 },
286 { ATA_SHIFT_UDMA, ATA_BITS_UDMA, XFER_UDMA_0 },
287 { -1, },
288 };
289
290 /**
291 * ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask
292 * @xfer_mask: xfer_mask of interest
293 *
294 * Return matching XFER_* value for @xfer_mask. Only the highest
295 * bit of @xfer_mask is considered.
296 *
297 * LOCKING:
298 * None.
299 *
300 * RETURNS:
301 * Matching XFER_* value, 0 if no match found.
302 */
303 static u8 ata_xfer_mask2mode(unsigned int xfer_mask)
304 {
305 int highbit = fls(xfer_mask) - 1;
306 const struct ata_xfer_ent *ent;
307
308 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
309 if (highbit >= ent->shift && highbit < ent->shift + ent->bits)
310 return ent->base + highbit - ent->shift;
311 return 0;
312 }
313
314 /**
315 * ata_xfer_mode2mask - Find matching xfer_mask for XFER_*
316 * @xfer_mode: XFER_* of interest
317 *
318 * Return matching xfer_mask for @xfer_mode.
319 *
320 * LOCKING:
321 * None.
322 *
323 * RETURNS:
324 * Matching xfer_mask, 0 if no match found.
325 */
326 static unsigned int ata_xfer_mode2mask(u8 xfer_mode)
327 {
328 const struct ata_xfer_ent *ent;
329
330 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
331 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
332 return 1 << (ent->shift + xfer_mode - ent->base);
333 return 0;
334 }
335
336 /**
337 * ata_xfer_mode2shift - Find matching xfer_shift for XFER_*
338 * @xfer_mode: XFER_* of interest
339 *
340 * Return matching xfer_shift for @xfer_mode.
341 *
342 * LOCKING:
343 * None.
344 *
345 * RETURNS:
346 * Matching xfer_shift, -1 if no match found.
347 */
348 static int ata_xfer_mode2shift(unsigned int xfer_mode)
349 {
350 const struct ata_xfer_ent *ent;
351
352 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
353 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
354 return ent->shift;
355 return -1;
356 }
357
358 /**
359 * ata_mode_string - convert xfer_mask to string
360 * @xfer_mask: mask of bits supported; only highest bit counts.
361 *
362 * Determine string which represents the highest speed
363 * (highest bit in @modemask).
364 *
365 * LOCKING:
366 * None.
367 *
368 * RETURNS:
369 * Constant C string representing highest speed listed in
370 * @mode_mask, or the constant C string "<n/a>".
371 */
372 static const char *ata_mode_string(unsigned int xfer_mask)
373 {
374 static const char * const xfer_mode_str[] = {
375 "PIO0",
376 "PIO1",
377 "PIO2",
378 "PIO3",
379 "PIO4",
380 "MWDMA0",
381 "MWDMA1",
382 "MWDMA2",
383 "UDMA/16",
384 "UDMA/25",
385 "UDMA/33",
386 "UDMA/44",
387 "UDMA/66",
388 "UDMA/100",
389 "UDMA/133",
390 "UDMA7",
391 };
392 int highbit;
393
394 highbit = fls(xfer_mask) - 1;
395 if (highbit >= 0 && highbit < ARRAY_SIZE(xfer_mode_str))
396 return xfer_mode_str[highbit];
397 return "<n/a>";
398 }
399
400 static const char *sata_spd_string(unsigned int spd)
401 {
402 static const char * const spd_str[] = {
403 "1.5 Gbps",
404 "3.0 Gbps",
405 };
406
407 if (spd == 0 || (spd - 1) >= ARRAY_SIZE(spd_str))
408 return "<unknown>";
409 return spd_str[spd - 1];
410 }
411
412 void ata_dev_disable(struct ata_device *dev)
413 {
414 if (ata_dev_enabled(dev)) {
415 printk(KERN_WARNING "ata%u: dev %u disabled\n",
416 dev->ap->id, dev->devno);
417 dev->class++;
418 }
419 }
420
421 /**
422 * ata_pio_devchk - PATA device presence detection
423 * @ap: ATA channel to examine
424 * @device: Device to examine (starting at zero)
425 *
426 * This technique was originally described in
427 * Hale Landis's ATADRVR (www.ata-atapi.com), and
428 * later found its way into the ATA/ATAPI spec.
429 *
430 * Write a pattern to the ATA shadow registers,
431 * and if a device is present, it will respond by
432 * correctly storing and echoing back the
433 * ATA shadow register contents.
434 *
435 * LOCKING:
436 * caller.
437 */
438
439 static unsigned int ata_pio_devchk(struct ata_port *ap,
440 unsigned int device)
441 {
442 struct ata_ioports *ioaddr = &ap->ioaddr;
443 u8 nsect, lbal;
444
445 ap->ops->dev_select(ap, device);
446
447 outb(0x55, ioaddr->nsect_addr);
448 outb(0xaa, ioaddr->lbal_addr);
449
450 outb(0xaa, ioaddr->nsect_addr);
451 outb(0x55, ioaddr->lbal_addr);
452
453 outb(0x55, ioaddr->nsect_addr);
454 outb(0xaa, ioaddr->lbal_addr);
455
456 nsect = inb(ioaddr->nsect_addr);
457 lbal = inb(ioaddr->lbal_addr);
458
459 if ((nsect == 0x55) && (lbal == 0xaa))
460 return 1; /* we found a device */
461
462 return 0; /* nothing found */
463 }
464
465 /**
466 * ata_mmio_devchk - PATA device presence detection
467 * @ap: ATA channel to examine
468 * @device: Device to examine (starting at zero)
469 *
470 * This technique was originally described in
471 * Hale Landis's ATADRVR (www.ata-atapi.com), and
472 * later found its way into the ATA/ATAPI spec.
473 *
474 * Write a pattern to the ATA shadow registers,
475 * and if a device is present, it will respond by
476 * correctly storing and echoing back the
477 * ATA shadow register contents.
478 *
479 * LOCKING:
480 * caller.
481 */
482
483 static unsigned int ata_mmio_devchk(struct ata_port *ap,
484 unsigned int device)
485 {
486 struct ata_ioports *ioaddr = &ap->ioaddr;
487 u8 nsect, lbal;
488
489 ap->ops->dev_select(ap, device);
490
491 writeb(0x55, (void __iomem *) ioaddr->nsect_addr);
492 writeb(0xaa, (void __iomem *) ioaddr->lbal_addr);
493
494 writeb(0xaa, (void __iomem *) ioaddr->nsect_addr);
495 writeb(0x55, (void __iomem *) ioaddr->lbal_addr);
496
497 writeb(0x55, (void __iomem *) ioaddr->nsect_addr);
498 writeb(0xaa, (void __iomem *) ioaddr->lbal_addr);
499
500 nsect = readb((void __iomem *) ioaddr->nsect_addr);
501 lbal = readb((void __iomem *) ioaddr->lbal_addr);
502
503 if ((nsect == 0x55) && (lbal == 0xaa))
504 return 1; /* we found a device */
505
506 return 0; /* nothing found */
507 }
508
509 /**
510 * ata_devchk - PATA device presence detection
511 * @ap: ATA channel to examine
512 * @device: Device to examine (starting at zero)
513 *
514 * Dispatch ATA device presence detection, depending
515 * on whether we are using PIO or MMIO to talk to the
516 * ATA shadow registers.
517 *
518 * LOCKING:
519 * caller.
520 */
521
522 static unsigned int ata_devchk(struct ata_port *ap,
523 unsigned int device)
524 {
525 if (ap->flags & ATA_FLAG_MMIO)
526 return ata_mmio_devchk(ap, device);
527 return ata_pio_devchk(ap, device);
528 }
529
530 /**
531 * ata_dev_classify - determine device type based on ATA-spec signature
532 * @tf: ATA taskfile register set for device to be identified
533 *
534 * Determine from taskfile register contents whether a device is
535 * ATA or ATAPI, as per "Signature and persistence" section
536 * of ATA/PI spec (volume 1, sect 5.14).
537 *
538 * LOCKING:
539 * None.
540 *
541 * RETURNS:
542 * Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, or %ATA_DEV_UNKNOWN
543 * the event of failure.
544 */
545
546 unsigned int ata_dev_classify(const struct ata_taskfile *tf)
547 {
548 /* Apple's open source Darwin code hints that some devices only
549 * put a proper signature into the LBA mid/high registers,
550 * So, we only check those. It's sufficient for uniqueness.
551 */
552
553 if (((tf->lbam == 0) && (tf->lbah == 0)) ||
554 ((tf->lbam == 0x3c) && (tf->lbah == 0xc3))) {
555 DPRINTK("found ATA device by sig\n");
556 return ATA_DEV_ATA;
557 }
558
559 if (((tf->lbam == 0x14) && (tf->lbah == 0xeb)) ||
560 ((tf->lbam == 0x69) && (tf->lbah == 0x96))) {
561 DPRINTK("found ATAPI device by sig\n");
562 return ATA_DEV_ATAPI;
563 }
564
565 DPRINTK("unknown device\n");
566 return ATA_DEV_UNKNOWN;
567 }
568
569 /**
570 * ata_dev_try_classify - Parse returned ATA device signature
571 * @ap: ATA channel to examine
572 * @device: Device to examine (starting at zero)
573 * @r_err: Value of error register on completion
574 *
575 * After an event -- SRST, E.D.D., or SATA COMRESET -- occurs,
576 * an ATA/ATAPI-defined set of values is placed in the ATA
577 * shadow registers, indicating the results of device detection
578 * and diagnostics.
579 *
580 * Select the ATA device, and read the values from the ATA shadow
581 * registers. Then parse according to the Error register value,
582 * and the spec-defined values examined by ata_dev_classify().
583 *
584 * LOCKING:
585 * caller.
586 *
587 * RETURNS:
588 * Device type - %ATA_DEV_ATA, %ATA_DEV_ATAPI or %ATA_DEV_NONE.
589 */
590
591 static unsigned int
592 ata_dev_try_classify(struct ata_port *ap, unsigned int device, u8 *r_err)
593 {
594 struct ata_taskfile tf;
595 unsigned int class;
596 u8 err;
597
598 ap->ops->dev_select(ap, device);
599
600 memset(&tf, 0, sizeof(tf));
601
602 ap->ops->tf_read(ap, &tf);
603 err = tf.feature;
604 if (r_err)
605 *r_err = err;
606
607 /* see if device passed diags */
608 if (err == 1)
609 /* do nothing */ ;
610 else if ((device == 0) && (err == 0x81))
611 /* do nothing */ ;
612 else
613 return ATA_DEV_NONE;
614
615 /* determine if device is ATA or ATAPI */
616 class = ata_dev_classify(&tf);
617
618 if (class == ATA_DEV_UNKNOWN)
619 return ATA_DEV_NONE;
620 if ((class == ATA_DEV_ATA) && (ata_chk_status(ap) == 0))
621 return ATA_DEV_NONE;
622 return class;
623 }
624
625 /**
626 * ata_id_string - Convert IDENTIFY DEVICE page into string
627 * @id: IDENTIFY DEVICE results we will examine
628 * @s: string into which data is output
629 * @ofs: offset into identify device page
630 * @len: length of string to return. must be an even number.
631 *
632 * The strings in the IDENTIFY DEVICE page are broken up into
633 * 16-bit chunks. Run through the string, and output each
634 * 8-bit chunk linearly, regardless of platform.
635 *
636 * LOCKING:
637 * caller.
638 */
639
640 void ata_id_string(const u16 *id, unsigned char *s,
641 unsigned int ofs, unsigned int len)
642 {
643 unsigned int c;
644
645 while (len > 0) {
646 c = id[ofs] >> 8;
647 *s = c;
648 s++;
649
650 c = id[ofs] & 0xff;
651 *s = c;
652 s++;
653
654 ofs++;
655 len -= 2;
656 }
657 }
658
659 /**
660 * ata_id_c_string - Convert IDENTIFY DEVICE page into C string
661 * @id: IDENTIFY DEVICE results we will examine
662 * @s: string into which data is output
663 * @ofs: offset into identify device page
664 * @len: length of string to return. must be an odd number.
665 *
666 * This function is identical to ata_id_string except that it
667 * trims trailing spaces and terminates the resulting string with
668 * null. @len must be actual maximum length (even number) + 1.
669 *
670 * LOCKING:
671 * caller.
672 */
673 void ata_id_c_string(const u16 *id, unsigned char *s,
674 unsigned int ofs, unsigned int len)
675 {
676 unsigned char *p;
677
678 WARN_ON(!(len & 1));
679
680 ata_id_string(id, s, ofs, len - 1);
681
682 p = s + strnlen(s, len - 1);
683 while (p > s && p[-1] == ' ')
684 p--;
685 *p = '\0';
686 }
687
688 static u64 ata_id_n_sectors(const u16 *id)
689 {
690 if (ata_id_has_lba(id)) {
691 if (ata_id_has_lba48(id))
692 return ata_id_u64(id, 100);
693 else
694 return ata_id_u32(id, 60);
695 } else {
696 if (ata_id_current_chs_valid(id))
697 return ata_id_u32(id, 57);
698 else
699 return id[1] * id[3] * id[6];
700 }
701 }
702
703 /**
704 * ata_noop_dev_select - Select device 0/1 on ATA bus
705 * @ap: ATA channel to manipulate
706 * @device: ATA device (numbered from zero) to select
707 *
708 * This function performs no actual function.
709 *
710 * May be used as the dev_select() entry in ata_port_operations.
711 *
712 * LOCKING:
713 * caller.
714 */
715 void ata_noop_dev_select (struct ata_port *ap, unsigned int device)
716 {
717 }
718
719
720 /**
721 * ata_std_dev_select - Select device 0/1 on ATA bus
722 * @ap: ATA channel to manipulate
723 * @device: ATA device (numbered from zero) to select
724 *
725 * Use the method defined in the ATA specification to
726 * make either device 0, or device 1, active on the
727 * ATA channel. Works with both PIO and MMIO.
728 *
729 * May be used as the dev_select() entry in ata_port_operations.
730 *
731 * LOCKING:
732 * caller.
733 */
734
735 void ata_std_dev_select (struct ata_port *ap, unsigned int device)
736 {
737 u8 tmp;
738
739 if (device == 0)
740 tmp = ATA_DEVICE_OBS;
741 else
742 tmp = ATA_DEVICE_OBS | ATA_DEV1;
743
744 if (ap->flags & ATA_FLAG_MMIO) {
745 writeb(tmp, (void __iomem *) ap->ioaddr.device_addr);
746 } else {
747 outb(tmp, ap->ioaddr.device_addr);
748 }
749 ata_pause(ap); /* needed; also flushes, for mmio */
750 }
751
752 /**
753 * ata_dev_select - Select device 0/1 on ATA bus
754 * @ap: ATA channel to manipulate
755 * @device: ATA device (numbered from zero) to select
756 * @wait: non-zero to wait for Status register BSY bit to clear
757 * @can_sleep: non-zero if context allows sleeping
758 *
759 * Use the method defined in the ATA specification to
760 * make either device 0, or device 1, active on the
761 * ATA channel.
762 *
763 * This is a high-level version of ata_std_dev_select(),
764 * which additionally provides the services of inserting
765 * the proper pauses and status polling, where needed.
766 *
767 * LOCKING:
768 * caller.
769 */
770
771 void ata_dev_select(struct ata_port *ap, unsigned int device,
772 unsigned int wait, unsigned int can_sleep)
773 {
774 VPRINTK("ENTER, ata%u: device %u, wait %u\n",
775 ap->id, device, wait);
776
777 if (wait)
778 ata_wait_idle(ap);
779
780 ap->ops->dev_select(ap, device);
781
782 if (wait) {
783 if (can_sleep && ap->device[device].class == ATA_DEV_ATAPI)
784 msleep(150);
785 ata_wait_idle(ap);
786 }
787 }
788
789 /**
790 * ata_dump_id - IDENTIFY DEVICE info debugging output
791 * @id: IDENTIFY DEVICE page to dump
792 *
793 * Dump selected 16-bit words from the given IDENTIFY DEVICE
794 * page.
795 *
796 * LOCKING:
797 * caller.
798 */
799
800 static inline void ata_dump_id(const u16 *id)
801 {
802 DPRINTK("49==0x%04x "
803 "53==0x%04x "
804 "63==0x%04x "
805 "64==0x%04x "
806 "75==0x%04x \n",
807 id[49],
808 id[53],
809 id[63],
810 id[64],
811 id[75]);
812 DPRINTK("80==0x%04x "
813 "81==0x%04x "
814 "82==0x%04x "
815 "83==0x%04x "
816 "84==0x%04x \n",
817 id[80],
818 id[81],
819 id[82],
820 id[83],
821 id[84]);
822 DPRINTK("88==0x%04x "
823 "93==0x%04x\n",
824 id[88],
825 id[93]);
826 }
827
828 /**
829 * ata_id_xfermask - Compute xfermask from the given IDENTIFY data
830 * @id: IDENTIFY data to compute xfer mask from
831 *
832 * Compute the xfermask for this device. This is not as trivial
833 * as it seems if we must consider early devices correctly.
834 *
835 * FIXME: pre IDE drive timing (do we care ?).
836 *
837 * LOCKING:
838 * None.
839 *
840 * RETURNS:
841 * Computed xfermask
842 */
843 static unsigned int ata_id_xfermask(const u16 *id)
844 {
845 unsigned int pio_mask, mwdma_mask, udma_mask;
846
847 /* Usual case. Word 53 indicates word 64 is valid */
848 if (id[ATA_ID_FIELD_VALID] & (1 << 1)) {
849 pio_mask = id[ATA_ID_PIO_MODES] & 0x03;
850 pio_mask <<= 3;
851 pio_mask |= 0x7;
852 } else {
853 /* If word 64 isn't valid then Word 51 high byte holds
854 * the PIO timing number for the maximum. Turn it into
855 * a mask.
856 */
857 pio_mask = (2 << (id[ATA_ID_OLD_PIO_MODES] & 0xFF)) - 1 ;
858
859 /* But wait.. there's more. Design your standards by
860 * committee and you too can get a free iordy field to
861 * process. However its the speeds not the modes that
862 * are supported... Note drivers using the timing API
863 * will get this right anyway
864 */
865 }
866
867 mwdma_mask = id[ATA_ID_MWDMA_MODES] & 0x07;
868
869 udma_mask = 0;
870 if (id[ATA_ID_FIELD_VALID] & (1 << 2))
871 udma_mask = id[ATA_ID_UDMA_MODES] & 0xff;
872
873 return ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
874 }
875
876 /**
877 * ata_port_queue_task - Queue port_task
878 * @ap: The ata_port to queue port_task for
879 *
880 * Schedule @fn(@data) for execution after @delay jiffies using
881 * port_task. There is one port_task per port and it's the
882 * user(low level driver)'s responsibility to make sure that only
883 * one task is active at any given time.
884 *
885 * libata core layer takes care of synchronization between
886 * port_task and EH. ata_port_queue_task() may be ignored for EH
887 * synchronization.
888 *
889 * LOCKING:
890 * Inherited from caller.
891 */
892 void ata_port_queue_task(struct ata_port *ap, void (*fn)(void *), void *data,
893 unsigned long delay)
894 {
895 int rc;
896
897 if (ap->flags & ATA_FLAG_FLUSH_PORT_TASK)
898 return;
899
900 PREPARE_WORK(&ap->port_task, fn, data);
901
902 if (!delay)
903 rc = queue_work(ata_wq, &ap->port_task);
904 else
905 rc = queue_delayed_work(ata_wq, &ap->port_task, delay);
906
907 /* rc == 0 means that another user is using port task */
908 WARN_ON(rc == 0);
909 }
910
911 /**
912 * ata_port_flush_task - Flush port_task
913 * @ap: The ata_port to flush port_task for
914 *
915 * After this function completes, port_task is guranteed not to
916 * be running or scheduled.
917 *
918 * LOCKING:
919 * Kernel thread context (may sleep)
920 */
921 void ata_port_flush_task(struct ata_port *ap)
922 {
923 unsigned long flags;
924
925 DPRINTK("ENTER\n");
926
927 spin_lock_irqsave(&ap->host_set->lock, flags);
928 ap->flags |= ATA_FLAG_FLUSH_PORT_TASK;
929 spin_unlock_irqrestore(&ap->host_set->lock, flags);
930
931 DPRINTK("flush #1\n");
932 flush_workqueue(ata_wq);
933
934 /*
935 * At this point, if a task is running, it's guaranteed to see
936 * the FLUSH flag; thus, it will never queue pio tasks again.
937 * Cancel and flush.
938 */
939 if (!cancel_delayed_work(&ap->port_task)) {
940 DPRINTK("flush #2\n");
941 flush_workqueue(ata_wq);
942 }
943
944 spin_lock_irqsave(&ap->host_set->lock, flags);
945 ap->flags &= ~ATA_FLAG_FLUSH_PORT_TASK;
946 spin_unlock_irqrestore(&ap->host_set->lock, flags);
947
948 DPRINTK("EXIT\n");
949 }
950
951 void ata_qc_complete_internal(struct ata_queued_cmd *qc)
952 {
953 struct completion *waiting = qc->private_data;
954
955 complete(waiting);
956 }
957
958 /**
959 * ata_exec_internal - execute libata internal command
960 * @dev: Device to which the command is sent
961 * @tf: Taskfile registers for the command and the result
962 * @cdb: CDB for packet command
963 * @dma_dir: Data tranfer direction of the command
964 * @buf: Data buffer of the command
965 * @buflen: Length of data buffer
966 *
967 * Executes libata internal command with timeout. @tf contains
968 * command on entry and result on return. Timeout and error
969 * conditions are reported via return value. No recovery action
970 * is taken after a command times out. It's caller's duty to
971 * clean up after timeout.
972 *
973 * LOCKING:
974 * None. Should be called with kernel context, might sleep.
975 */
976
977 unsigned ata_exec_internal(struct ata_device *dev,
978 struct ata_taskfile *tf, const u8 *cdb,
979 int dma_dir, void *buf, unsigned int buflen)
980 {
981 struct ata_port *ap = dev->ap;
982 u8 command = tf->command;
983 struct ata_queued_cmd *qc;
984 DECLARE_COMPLETION(wait);
985 unsigned long flags;
986 unsigned int err_mask;
987
988 spin_lock_irqsave(&ap->host_set->lock, flags);
989
990 qc = ata_qc_new_init(dev);
991 BUG_ON(qc == NULL);
992
993 qc->tf = *tf;
994 if (cdb)
995 memcpy(qc->cdb, cdb, ATAPI_CDB_LEN);
996 qc->flags |= ATA_QCFLAG_RESULT_TF;
997 qc->dma_dir = dma_dir;
998 if (dma_dir != DMA_NONE) {
999 ata_sg_init_one(qc, buf, buflen);
1000 qc->nsect = buflen / ATA_SECT_SIZE;
1001 }
1002
1003 qc->private_data = &wait;
1004 qc->complete_fn = ata_qc_complete_internal;
1005
1006 ata_qc_issue(qc);
1007
1008 spin_unlock_irqrestore(&ap->host_set->lock, flags);
1009
1010 if (!wait_for_completion_timeout(&wait, ATA_TMOUT_INTERNAL)) {
1011 ata_port_flush_task(ap);
1012
1013 spin_lock_irqsave(&ap->host_set->lock, flags);
1014
1015 /* We're racing with irq here. If we lose, the
1016 * following test prevents us from completing the qc
1017 * again. If completion irq occurs after here but
1018 * before the caller cleans up, it will result in a
1019 * spurious interrupt. We can live with that.
1020 */
1021 if (qc->flags & ATA_QCFLAG_ACTIVE) {
1022 qc->err_mask = AC_ERR_TIMEOUT;
1023 ata_qc_complete(qc);
1024 printk(KERN_WARNING "ata%u: qc timeout (cmd 0x%x)\n",
1025 ap->id, command);
1026 }
1027
1028 spin_unlock_irqrestore(&ap->host_set->lock, flags);
1029 }
1030
1031 /* finish up */
1032 spin_lock_irqsave(&ap->host_set->lock, flags);
1033
1034 *tf = qc->result_tf;
1035 err_mask = qc->err_mask;
1036
1037 ata_qc_free(qc);
1038
1039 /* XXX - Some LLDDs (sata_mv) disable port on command failure.
1040 * Until those drivers are fixed, we detect the condition
1041 * here, fail the command with AC_ERR_SYSTEM and reenable the
1042 * port.
1043 *
1044 * Note that this doesn't change any behavior as internal
1045 * command failure results in disabling the device in the
1046 * higher layer for LLDDs without new reset/EH callbacks.
1047 *
1048 * Kill the following code as soon as those drivers are fixed.
1049 */
1050 if (ap->flags & ATA_FLAG_DISABLED) {
1051 err_mask |= AC_ERR_SYSTEM;
1052 ata_port_probe(ap);
1053 }
1054
1055 spin_unlock_irqrestore(&ap->host_set->lock, flags);
1056
1057 return err_mask;
1058 }
1059
1060 /**
1061 * ata_pio_need_iordy - check if iordy needed
1062 * @adev: ATA device
1063 *
1064 * Check if the current speed of the device requires IORDY. Used
1065 * by various controllers for chip configuration.
1066 */
1067
1068 unsigned int ata_pio_need_iordy(const struct ata_device *adev)
1069 {
1070 int pio;
1071 int speed = adev->pio_mode - XFER_PIO_0;
1072
1073 if (speed < 2)
1074 return 0;
1075 if (speed > 2)
1076 return 1;
1077
1078 /* If we have no drive specific rule, then PIO 2 is non IORDY */
1079
1080 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE */
1081 pio = adev->id[ATA_ID_EIDE_PIO];
1082 /* Is the speed faster than the drive allows non IORDY ? */
1083 if (pio) {
1084 /* This is cycle times not frequency - watch the logic! */
1085 if (pio > 240) /* PIO2 is 240nS per cycle */
1086 return 1;
1087 return 0;
1088 }
1089 }
1090 return 0;
1091 }
1092
1093 /**
1094 * ata_dev_read_id - Read ID data from the specified device
1095 * @dev: target device
1096 * @p_class: pointer to class of the target device (may be changed)
1097 * @post_reset: is this read ID post-reset?
1098 * @id: buffer to read IDENTIFY data into
1099 *
1100 * Read ID data from the specified device. ATA_CMD_ID_ATA is
1101 * performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI
1102 * devices. This function also issues ATA_CMD_INIT_DEV_PARAMS
1103 * for pre-ATA4 drives.
1104 *
1105 * LOCKING:
1106 * Kernel thread context (may sleep)
1107 *
1108 * RETURNS:
1109 * 0 on success, -errno otherwise.
1110 */
1111 static int ata_dev_read_id(struct ata_device *dev, unsigned int *p_class,
1112 int post_reset, u16 *id)
1113 {
1114 struct ata_port *ap = dev->ap;
1115 unsigned int class = *p_class;
1116 struct ata_taskfile tf;
1117 unsigned int err_mask = 0;
1118 const char *reason;
1119 int rc;
1120
1121 DPRINTK("ENTER, host %u, dev %u\n", ap->id, dev->devno);
1122
1123 ata_dev_select(ap, dev->devno, 1, 1); /* select device 0/1 */
1124
1125 retry:
1126 ata_tf_init(dev, &tf);
1127
1128 switch (class) {
1129 case ATA_DEV_ATA:
1130 tf.command = ATA_CMD_ID_ATA;
1131 break;
1132 case ATA_DEV_ATAPI:
1133 tf.command = ATA_CMD_ID_ATAPI;
1134 break;
1135 default:
1136 rc = -ENODEV;
1137 reason = "unsupported class";
1138 goto err_out;
1139 }
1140
1141 tf.protocol = ATA_PROT_PIO;
1142
1143 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_FROM_DEVICE,
1144 id, sizeof(id[0]) * ATA_ID_WORDS);
1145 if (err_mask) {
1146 rc = -EIO;
1147 reason = "I/O error";
1148 goto err_out;
1149 }
1150
1151 swap_buf_le16(id, ATA_ID_WORDS);
1152
1153 /* sanity check */
1154 if ((class == ATA_DEV_ATA) != (ata_id_is_ata(id) | ata_id_is_cfa(id))) {
1155 rc = -EINVAL;
1156 reason = "device reports illegal type";
1157 goto err_out;
1158 }
1159
1160 if (post_reset && class == ATA_DEV_ATA) {
1161 /*
1162 * The exact sequence expected by certain pre-ATA4 drives is:
1163 * SRST RESET
1164 * IDENTIFY
1165 * INITIALIZE DEVICE PARAMETERS
1166 * anything else..
1167 * Some drives were very specific about that exact sequence.
1168 */
1169 if (ata_id_major_version(id) < 4 || !ata_id_has_lba(id)) {
1170 err_mask = ata_dev_init_params(dev, id[3], id[6]);
1171 if (err_mask) {
1172 rc = -EIO;
1173 reason = "INIT_DEV_PARAMS failed";
1174 goto err_out;
1175 }
1176
1177 /* current CHS translation info (id[53-58]) might be
1178 * changed. reread the identify device info.
1179 */
1180 post_reset = 0;
1181 goto retry;
1182 }
1183 }
1184
1185 *p_class = class;
1186
1187 return 0;
1188
1189 err_out:
1190 printk(KERN_WARNING "ata%u: dev %u failed to IDENTIFY (%s)\n",
1191 ap->id, dev->devno, reason);
1192 return rc;
1193 }
1194
1195 static inline u8 ata_dev_knobble(struct ata_device *dev)
1196 {
1197 return ((dev->ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(dev->id)));
1198 }
1199
1200 /**
1201 * ata_dev_configure - Configure the specified ATA/ATAPI device
1202 * @dev: Target device to configure
1203 * @print_info: Enable device info printout
1204 *
1205 * Configure @dev according to @dev->id. Generic and low-level
1206 * driver specific fixups are also applied.
1207 *
1208 * LOCKING:
1209 * Kernel thread context (may sleep)
1210 *
1211 * RETURNS:
1212 * 0 on success, -errno otherwise
1213 */
1214 static int ata_dev_configure(struct ata_device *dev, int print_info)
1215 {
1216 struct ata_port *ap = dev->ap;
1217 const u16 *id = dev->id;
1218 unsigned int xfer_mask;
1219 int i, rc;
1220
1221 if (!ata_dev_enabled(dev)) {
1222 DPRINTK("ENTER/EXIT (host %u, dev %u) -- nodev\n",
1223 ap->id, dev->devno);
1224 return 0;
1225 }
1226
1227 DPRINTK("ENTER, host %u, dev %u\n", ap->id, dev->devno);
1228
1229 /* print device capabilities */
1230 if (print_info)
1231 printk(KERN_DEBUG "ata%u: dev %u cfg 49:%04x 82:%04x 83:%04x "
1232 "84:%04x 85:%04x 86:%04x 87:%04x 88:%04x\n",
1233 ap->id, dev->devno, id[49], id[82], id[83],
1234 id[84], id[85], id[86], id[87], id[88]);
1235
1236 /* initialize to-be-configured parameters */
1237 dev->flags &= ~ATA_DFLAG_CFG_MASK;
1238 dev->max_sectors = 0;
1239 dev->cdb_len = 0;
1240 dev->n_sectors = 0;
1241 dev->cylinders = 0;
1242 dev->heads = 0;
1243 dev->sectors = 0;
1244
1245 /*
1246 * common ATA, ATAPI feature tests
1247 */
1248
1249 /* find max transfer mode; for printk only */
1250 xfer_mask = ata_id_xfermask(id);
1251
1252 ata_dump_id(id);
1253
1254 /* ATA-specific feature tests */
1255 if (dev->class == ATA_DEV_ATA) {
1256 dev->n_sectors = ata_id_n_sectors(id);
1257
1258 if (ata_id_has_lba(id)) {
1259 const char *lba_desc;
1260
1261 lba_desc = "LBA";
1262 dev->flags |= ATA_DFLAG_LBA;
1263 if (ata_id_has_lba48(id)) {
1264 dev->flags |= ATA_DFLAG_LBA48;
1265 lba_desc = "LBA48";
1266 }
1267
1268 /* print device info to dmesg */
1269 if (print_info)
1270 printk(KERN_INFO "ata%u: dev %u ATA-%d, "
1271 "max %s, %Lu sectors: %s\n",
1272 ap->id, dev->devno,
1273 ata_id_major_version(id),
1274 ata_mode_string(xfer_mask),
1275 (unsigned long long)dev->n_sectors,
1276 lba_desc);
1277 } else {
1278 /* CHS */
1279
1280 /* Default translation */
1281 dev->cylinders = id[1];
1282 dev->heads = id[3];
1283 dev->sectors = id[6];
1284
1285 if (ata_id_current_chs_valid(id)) {
1286 /* Current CHS translation is valid. */
1287 dev->cylinders = id[54];
1288 dev->heads = id[55];
1289 dev->sectors = id[56];
1290 }
1291
1292 /* print device info to dmesg */
1293 if (print_info)
1294 printk(KERN_INFO "ata%u: dev %u ATA-%d, "
1295 "max %s, %Lu sectors: CHS %u/%u/%u\n",
1296 ap->id, dev->devno,
1297 ata_id_major_version(id),
1298 ata_mode_string(xfer_mask),
1299 (unsigned long long)dev->n_sectors,
1300 dev->cylinders, dev->heads, dev->sectors);
1301 }
1302
1303 dev->cdb_len = 16;
1304 }
1305
1306 /* ATAPI-specific feature tests */
1307 else if (dev->class == ATA_DEV_ATAPI) {
1308 rc = atapi_cdb_len(id);
1309 if ((rc < 12) || (rc > ATAPI_CDB_LEN)) {
1310 printk(KERN_WARNING "ata%u: unsupported CDB len\n", ap->id);
1311 rc = -EINVAL;
1312 goto err_out_nosup;
1313 }
1314 dev->cdb_len = (unsigned int) rc;
1315
1316 /* print device info to dmesg */
1317 if (print_info)
1318 printk(KERN_INFO "ata%u: dev %u ATAPI, max %s\n",
1319 ap->id, dev->devno, ata_mode_string(xfer_mask));
1320 }
1321
1322 ap->host->max_cmd_len = 0;
1323 for (i = 0; i < ATA_MAX_DEVICES; i++)
1324 ap->host->max_cmd_len = max_t(unsigned int,
1325 ap->host->max_cmd_len,
1326 ap->device[i].cdb_len);
1327
1328 /* limit bridge transfers to udma5, 200 sectors */
1329 if (ata_dev_knobble(dev)) {
1330 if (print_info)
1331 printk(KERN_INFO "ata%u(%u): applying bridge limits\n",
1332 ap->id, dev->devno);
1333 dev->udma_mask &= ATA_UDMA5;
1334 dev->max_sectors = ATA_MAX_SECTORS;
1335 }
1336
1337 if (ap->ops->dev_config)
1338 ap->ops->dev_config(ap, dev);
1339
1340 DPRINTK("EXIT, drv_stat = 0x%x\n", ata_chk_status(ap));
1341 return 0;
1342
1343 err_out_nosup:
1344 DPRINTK("EXIT, err\n");
1345 return rc;
1346 }
1347
1348 /**
1349 * ata_bus_probe - Reset and probe ATA bus
1350 * @ap: Bus to probe
1351 *
1352 * Master ATA bus probing function. Initiates a hardware-dependent
1353 * bus reset, then attempts to identify any devices found on
1354 * the bus.
1355 *
1356 * LOCKING:
1357 * PCI/etc. bus probe sem.
1358 *
1359 * RETURNS:
1360 * Zero on success, negative errno otherwise.
1361 */
1362
1363 static int ata_bus_probe(struct ata_port *ap)
1364 {
1365 unsigned int classes[ATA_MAX_DEVICES];
1366 int tries[ATA_MAX_DEVICES];
1367 int i, rc, down_xfermask;
1368 struct ata_device *dev;
1369
1370 ata_port_probe(ap);
1371
1372 for (i = 0; i < ATA_MAX_DEVICES; i++)
1373 tries[i] = ATA_PROBE_MAX_TRIES;
1374
1375 retry:
1376 down_xfermask = 0;
1377
1378 /* reset and determine device classes */
1379 for (i = 0; i < ATA_MAX_DEVICES; i++)
1380 classes[i] = ATA_DEV_UNKNOWN;
1381
1382 if (ap->ops->probe_reset) {
1383 rc = ap->ops->probe_reset(ap, classes);
1384 if (rc) {
1385 printk("ata%u: reset failed (errno=%d)\n", ap->id, rc);
1386 return rc;
1387 }
1388 } else {
1389 ap->ops->phy_reset(ap);
1390
1391 for (i = 0; i < ATA_MAX_DEVICES; i++) {
1392 if (!(ap->flags & ATA_FLAG_DISABLED))
1393 classes[i] = ap->device[i].class;
1394 ap->device[i].class = ATA_DEV_UNKNOWN;
1395 }
1396
1397 ata_port_probe(ap);
1398 }
1399
1400 for (i = 0; i < ATA_MAX_DEVICES; i++)
1401 if (classes[i] == ATA_DEV_UNKNOWN)
1402 classes[i] = ATA_DEV_NONE;
1403
1404 /* read IDENTIFY page and configure devices */
1405 for (i = 0; i < ATA_MAX_DEVICES; i++) {
1406 dev = &ap->device[i];
1407
1408 if (tries[i])
1409 dev->class = classes[i];
1410
1411 if (!ata_dev_enabled(dev))
1412 continue;
1413
1414 rc = ata_dev_read_id(dev, &dev->class, 1, dev->id);
1415 if (rc)
1416 goto fail;
1417
1418 rc = ata_dev_configure(dev, 1);
1419 if (rc)
1420 goto fail;
1421 }
1422
1423 /* configure transfer mode */
1424 rc = ata_set_mode(ap, &dev);
1425 if (rc) {
1426 down_xfermask = 1;
1427 goto fail;
1428 }
1429
1430 for (i = 0; i < ATA_MAX_DEVICES; i++)
1431 if (ata_dev_enabled(&ap->device[i]))
1432 return 0;
1433
1434 /* no device present, disable port */
1435 ata_port_disable(ap);
1436 ap->ops->port_disable(ap);
1437 return -ENODEV;
1438
1439 fail:
1440 switch (rc) {
1441 case -EINVAL:
1442 case -ENODEV:
1443 tries[dev->devno] = 0;
1444 break;
1445 case -EIO:
1446 sata_down_spd_limit(ap);
1447 /* fall through */
1448 default:
1449 tries[dev->devno]--;
1450 if (down_xfermask &&
1451 ata_down_xfermask_limit(dev, tries[dev->devno] == 1))
1452 tries[dev->devno] = 0;
1453 }
1454
1455 if (!tries[dev->devno]) {
1456 ata_down_xfermask_limit(dev, 1);
1457 ata_dev_disable(dev);
1458 }
1459
1460 goto retry;
1461 }
1462
1463 /**
1464 * ata_port_probe - Mark port as enabled
1465 * @ap: Port for which we indicate enablement
1466 *
1467 * Modify @ap data structure such that the system
1468 * thinks that the entire port is enabled.
1469 *
1470 * LOCKING: host_set lock, or some other form of
1471 * serialization.
1472 */
1473
1474 void ata_port_probe(struct ata_port *ap)
1475 {
1476 ap->flags &= ~ATA_FLAG_DISABLED;
1477 }
1478
1479 /**
1480 * sata_print_link_status - Print SATA link status
1481 * @ap: SATA port to printk link status about
1482 *
1483 * This function prints link speed and status of a SATA link.
1484 *
1485 * LOCKING:
1486 * None.
1487 */
1488 static void sata_print_link_status(struct ata_port *ap)
1489 {
1490 u32 sstatus, scontrol, tmp;
1491
1492 if (sata_scr_read(ap, SCR_STATUS, &sstatus))
1493 return;
1494 sata_scr_read(ap, SCR_CONTROL, &scontrol);
1495
1496 if (ata_port_online(ap)) {
1497 tmp = (sstatus >> 4) & 0xf;
1498 printk(KERN_INFO
1499 "ata%u: SATA link up %s (SStatus %X SControl %X)\n",
1500 ap->id, sata_spd_string(tmp), sstatus, scontrol);
1501 } else {
1502 printk(KERN_INFO
1503 "ata%u: SATA link down (SStatus %X SControl %X)\n",
1504 ap->id, sstatus, scontrol);
1505 }
1506 }
1507
1508 /**
1509 * __sata_phy_reset - Wake/reset a low-level SATA PHY
1510 * @ap: SATA port associated with target SATA PHY.
1511 *
1512 * This function issues commands to standard SATA Sxxx
1513 * PHY registers, to wake up the phy (and device), and
1514 * clear any reset condition.
1515 *
1516 * LOCKING:
1517 * PCI/etc. bus probe sem.
1518 *
1519 */
1520 void __sata_phy_reset(struct ata_port *ap)
1521 {
1522 u32 sstatus;
1523 unsigned long timeout = jiffies + (HZ * 5);
1524
1525 if (ap->flags & ATA_FLAG_SATA_RESET) {
1526 /* issue phy wake/reset */
1527 sata_scr_write_flush(ap, SCR_CONTROL, 0x301);
1528 /* Couldn't find anything in SATA I/II specs, but
1529 * AHCI-1.1 10.4.2 says at least 1 ms. */
1530 mdelay(1);
1531 }
1532 /* phy wake/clear reset */
1533 sata_scr_write_flush(ap, SCR_CONTROL, 0x300);
1534
1535 /* wait for phy to become ready, if necessary */
1536 do {
1537 msleep(200);
1538 sata_scr_read(ap, SCR_STATUS, &sstatus);
1539 if ((sstatus & 0xf) != 1)
1540 break;
1541 } while (time_before(jiffies, timeout));
1542
1543 /* print link status */
1544 sata_print_link_status(ap);
1545
1546 /* TODO: phy layer with polling, timeouts, etc. */
1547 if (!ata_port_offline(ap))
1548 ata_port_probe(ap);
1549 else
1550 ata_port_disable(ap);
1551
1552 if (ap->flags & ATA_FLAG_DISABLED)
1553 return;
1554
1555 if (ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT)) {
1556 ata_port_disable(ap);
1557 return;
1558 }
1559
1560 ap->cbl = ATA_CBL_SATA;
1561 }
1562
1563 /**
1564 * sata_phy_reset - Reset SATA bus.
1565 * @ap: SATA port associated with target SATA PHY.
1566 *
1567 * This function resets the SATA bus, and then probes
1568 * the bus for devices.
1569 *
1570 * LOCKING:
1571 * PCI/etc. bus probe sem.
1572 *
1573 */
1574 void sata_phy_reset(struct ata_port *ap)
1575 {
1576 __sata_phy_reset(ap);
1577 if (ap->flags & ATA_FLAG_DISABLED)
1578 return;
1579 ata_bus_reset(ap);
1580 }
1581
1582 /**
1583 * ata_dev_pair - return other device on cable
1584 * @adev: device
1585 *
1586 * Obtain the other device on the same cable, or if none is
1587 * present NULL is returned
1588 */
1589
1590 struct ata_device *ata_dev_pair(struct ata_device *adev)
1591 {
1592 struct ata_port *ap = adev->ap;
1593 struct ata_device *pair = &ap->device[1 - adev->devno];
1594 if (!ata_dev_enabled(pair))
1595 return NULL;
1596 return pair;
1597 }
1598
1599 /**
1600 * ata_port_disable - Disable port.
1601 * @ap: Port to be disabled.
1602 *
1603 * Modify @ap data structure such that the system
1604 * thinks that the entire port is disabled, and should
1605 * never attempt to probe or communicate with devices
1606 * on this port.
1607 *
1608 * LOCKING: host_set lock, or some other form of
1609 * serialization.
1610 */
1611
1612 void ata_port_disable(struct ata_port *ap)
1613 {
1614 ap->device[0].class = ATA_DEV_NONE;
1615 ap->device[1].class = ATA_DEV_NONE;
1616 ap->flags |= ATA_FLAG_DISABLED;
1617 }
1618
1619 /**
1620 * sata_down_spd_limit - adjust SATA spd limit downward
1621 * @ap: Port to adjust SATA spd limit for
1622 *
1623 * Adjust SATA spd limit of @ap downward. Note that this
1624 * function only adjusts the limit. The change must be applied
1625 * using sata_set_spd().
1626 *
1627 * LOCKING:
1628 * Inherited from caller.
1629 *
1630 * RETURNS:
1631 * 0 on success, negative errno on failure
1632 */
1633 int sata_down_spd_limit(struct ata_port *ap)
1634 {
1635 u32 sstatus, spd, mask;
1636 int rc, highbit;
1637
1638 rc = sata_scr_read(ap, SCR_STATUS, &sstatus);
1639 if (rc)
1640 return rc;
1641
1642 mask = ap->sata_spd_limit;
1643 if (mask <= 1)
1644 return -EINVAL;
1645 highbit = fls(mask) - 1;
1646 mask &= ~(1 << highbit);
1647
1648 spd = (sstatus >> 4) & 0xf;
1649 if (spd <= 1)
1650 return -EINVAL;
1651 spd--;
1652 mask &= (1 << spd) - 1;
1653 if (!mask)
1654 return -EINVAL;
1655
1656 ap->sata_spd_limit = mask;
1657
1658 printk(KERN_WARNING "ata%u: limiting SATA link speed to %s\n",
1659 ap->id, sata_spd_string(fls(mask)));
1660
1661 return 0;
1662 }
1663
1664 static int __sata_set_spd_needed(struct ata_port *ap, u32 *scontrol)
1665 {
1666 u32 spd, limit;
1667
1668 if (ap->sata_spd_limit == UINT_MAX)
1669 limit = 0;
1670 else
1671 limit = fls(ap->sata_spd_limit);
1672
1673 spd = (*scontrol >> 4) & 0xf;
1674 *scontrol = (*scontrol & ~0xf0) | ((limit & 0xf) << 4);
1675
1676 return spd != limit;
1677 }
1678
1679 /**
1680 * sata_set_spd_needed - is SATA spd configuration needed
1681 * @ap: Port in question
1682 *
1683 * Test whether the spd limit in SControl matches
1684 * @ap->sata_spd_limit. This function is used to determine
1685 * whether hardreset is necessary to apply SATA spd
1686 * configuration.
1687 *
1688 * LOCKING:
1689 * Inherited from caller.
1690 *
1691 * RETURNS:
1692 * 1 if SATA spd configuration is needed, 0 otherwise.
1693 */
1694 int sata_set_spd_needed(struct ata_port *ap)
1695 {
1696 u32 scontrol;
1697
1698 if (sata_scr_read(ap, SCR_CONTROL, &scontrol))
1699 return 0;
1700
1701 return __sata_set_spd_needed(ap, &scontrol);
1702 }
1703
1704 /**
1705 * sata_set_spd - set SATA spd according to spd limit
1706 * @ap: Port to set SATA spd for
1707 *
1708 * Set SATA spd of @ap according to sata_spd_limit.
1709 *
1710 * LOCKING:
1711 * Inherited from caller.
1712 *
1713 * RETURNS:
1714 * 0 if spd doesn't need to be changed, 1 if spd has been
1715 * changed. Negative errno if SCR registers are inaccessible.
1716 */
1717 int sata_set_spd(struct ata_port *ap)
1718 {
1719 u32 scontrol;
1720 int rc;
1721
1722 if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
1723 return rc;
1724
1725 if (!__sata_set_spd_needed(ap, &scontrol))
1726 return 0;
1727
1728 if ((rc = sata_scr_write(ap, SCR_CONTROL, scontrol)))
1729 return rc;
1730
1731 return 1;
1732 }
1733
1734 /*
1735 * This mode timing computation functionality is ported over from
1736 * drivers/ide/ide-timing.h and was originally written by Vojtech Pavlik
1737 */
1738 /*
1739 * PIO 0-5, MWDMA 0-2 and UDMA 0-6 timings (in nanoseconds).
1740 * These were taken from ATA/ATAPI-6 standard, rev 0a, except
1741 * for PIO 5, which is a nonstandard extension and UDMA6, which
1742 * is currently supported only by Maxtor drives.
1743 */
1744
1745 static const struct ata_timing ata_timing[] = {
1746
1747 { XFER_UDMA_6, 0, 0, 0, 0, 0, 0, 0, 15 },
1748 { XFER_UDMA_5, 0, 0, 0, 0, 0, 0, 0, 20 },
1749 { XFER_UDMA_4, 0, 0, 0, 0, 0, 0, 0, 30 },
1750 { XFER_UDMA_3, 0, 0, 0, 0, 0, 0, 0, 45 },
1751
1752 { XFER_UDMA_2, 0, 0, 0, 0, 0, 0, 0, 60 },
1753 { XFER_UDMA_1, 0, 0, 0, 0, 0, 0, 0, 80 },
1754 { XFER_UDMA_0, 0, 0, 0, 0, 0, 0, 0, 120 },
1755
1756 /* { XFER_UDMA_SLOW, 0, 0, 0, 0, 0, 0, 0, 150 }, */
1757
1758 { XFER_MW_DMA_2, 25, 0, 0, 0, 70, 25, 120, 0 },
1759 { XFER_MW_DMA_1, 45, 0, 0, 0, 80, 50, 150, 0 },
1760 { XFER_MW_DMA_0, 60, 0, 0, 0, 215, 215, 480, 0 },
1761
1762 { XFER_SW_DMA_2, 60, 0, 0, 0, 120, 120, 240, 0 },
1763 { XFER_SW_DMA_1, 90, 0, 0, 0, 240, 240, 480, 0 },
1764 { XFER_SW_DMA_0, 120, 0, 0, 0, 480, 480, 960, 0 },
1765
1766 /* { XFER_PIO_5, 20, 50, 30, 100, 50, 30, 100, 0 }, */
1767 { XFER_PIO_4, 25, 70, 25, 120, 70, 25, 120, 0 },
1768 { XFER_PIO_3, 30, 80, 70, 180, 80, 70, 180, 0 },
1769
1770 { XFER_PIO_2, 30, 290, 40, 330, 100, 90, 240, 0 },
1771 { XFER_PIO_1, 50, 290, 93, 383, 125, 100, 383, 0 },
1772 { XFER_PIO_0, 70, 290, 240, 600, 165, 150, 600, 0 },
1773
1774 /* { XFER_PIO_SLOW, 120, 290, 240, 960, 290, 240, 960, 0 }, */
1775
1776 { 0xFF }
1777 };
1778
1779 #define ENOUGH(v,unit) (((v)-1)/(unit)+1)
1780 #define EZ(v,unit) ((v)?ENOUGH(v,unit):0)
1781
1782 static void ata_timing_quantize(const struct ata_timing *t, struct ata_timing *q, int T, int UT)
1783 {
1784 q->setup = EZ(t->setup * 1000, T);
1785 q->act8b = EZ(t->act8b * 1000, T);
1786 q->rec8b = EZ(t->rec8b * 1000, T);
1787 q->cyc8b = EZ(t->cyc8b * 1000, T);
1788 q->active = EZ(t->active * 1000, T);
1789 q->recover = EZ(t->recover * 1000, T);
1790 q->cycle = EZ(t->cycle * 1000, T);
1791 q->udma = EZ(t->udma * 1000, UT);
1792 }
1793
1794 void ata_timing_merge(const struct ata_timing *a, const struct ata_timing *b,
1795 struct ata_timing *m, unsigned int what)
1796 {
1797 if (what & ATA_TIMING_SETUP ) m->setup = max(a->setup, b->setup);
1798 if (what & ATA_TIMING_ACT8B ) m->act8b = max(a->act8b, b->act8b);
1799 if (what & ATA_TIMING_REC8B ) m->rec8b = max(a->rec8b, b->rec8b);
1800 if (what & ATA_TIMING_CYC8B ) m->cyc8b = max(a->cyc8b, b->cyc8b);
1801 if (what & ATA_TIMING_ACTIVE ) m->active = max(a->active, b->active);
1802 if (what & ATA_TIMING_RECOVER) m->recover = max(a->recover, b->recover);
1803 if (what & ATA_TIMING_CYCLE ) m->cycle = max(a->cycle, b->cycle);
1804 if (what & ATA_TIMING_UDMA ) m->udma = max(a->udma, b->udma);
1805 }
1806
1807 static const struct ata_timing* ata_timing_find_mode(unsigned short speed)
1808 {
1809 const struct ata_timing *t;
1810
1811 for (t = ata_timing; t->mode != speed; t++)
1812 if (t->mode == 0xFF)
1813 return NULL;
1814 return t;
1815 }
1816
1817 int ata_timing_compute(struct ata_device *adev, unsigned short speed,
1818 struct ata_timing *t, int T, int UT)
1819 {
1820 const struct ata_timing *s;
1821 struct ata_timing p;
1822
1823 /*
1824 * Find the mode.
1825 */
1826
1827 if (!(s = ata_timing_find_mode(speed)))
1828 return -EINVAL;
1829
1830 memcpy(t, s, sizeof(*s));
1831
1832 /*
1833 * If the drive is an EIDE drive, it can tell us it needs extended
1834 * PIO/MW_DMA cycle timing.
1835 */
1836
1837 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE drive */
1838 memset(&p, 0, sizeof(p));
1839 if(speed >= XFER_PIO_0 && speed <= XFER_SW_DMA_0) {
1840 if (speed <= XFER_PIO_2) p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO];
1841 else p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO_IORDY];
1842 } else if(speed >= XFER_MW_DMA_0 && speed <= XFER_MW_DMA_2) {
1843 p.cycle = adev->id[ATA_ID_EIDE_DMA_MIN];
1844 }
1845 ata_timing_merge(&p, t, t, ATA_TIMING_CYCLE | ATA_TIMING_CYC8B);
1846 }
1847
1848 /*
1849 * Convert the timing to bus clock counts.
1850 */
1851
1852 ata_timing_quantize(t, t, T, UT);
1853
1854 /*
1855 * Even in DMA/UDMA modes we still use PIO access for IDENTIFY,
1856 * S.M.A.R.T * and some other commands. We have to ensure that the
1857 * DMA cycle timing is slower/equal than the fastest PIO timing.
1858 */
1859
1860 if (speed > XFER_PIO_4) {
1861 ata_timing_compute(adev, adev->pio_mode, &p, T, UT);
1862 ata_timing_merge(&p, t, t, ATA_TIMING_ALL);
1863 }
1864
1865 /*
1866 * Lengthen active & recovery time so that cycle time is correct.
1867 */
1868
1869 if (t->act8b + t->rec8b < t->cyc8b) {
1870 t->act8b += (t->cyc8b - (t->act8b + t->rec8b)) / 2;
1871 t->rec8b = t->cyc8b - t->act8b;
1872 }
1873
1874 if (t->active + t->recover < t->cycle) {
1875 t->active += (t->cycle - (t->active + t->recover)) / 2;
1876 t->recover = t->cycle - t->active;
1877 }
1878
1879 return 0;
1880 }
1881
1882 /**
1883 * ata_down_xfermask_limit - adjust dev xfer masks downward
1884 * @dev: Device to adjust xfer masks
1885 * @force_pio0: Force PIO0
1886 *
1887 * Adjust xfer masks of @dev downward. Note that this function
1888 * does not apply the change. Invoking ata_set_mode() afterwards
1889 * will apply the limit.
1890 *
1891 * LOCKING:
1892 * Inherited from caller.
1893 *
1894 * RETURNS:
1895 * 0 on success, negative errno on failure
1896 */
1897 int ata_down_xfermask_limit(struct ata_device *dev, int force_pio0)
1898 {
1899 struct ata_port *ap = dev->ap;
1900 unsigned long xfer_mask;
1901 int highbit;
1902
1903 xfer_mask = ata_pack_xfermask(dev->pio_mask, dev->mwdma_mask,
1904 dev->udma_mask);
1905
1906 if (!xfer_mask)
1907 goto fail;
1908 /* don't gear down to MWDMA from UDMA, go directly to PIO */
1909 if (xfer_mask & ATA_MASK_UDMA)
1910 xfer_mask &= ~ATA_MASK_MWDMA;
1911
1912 highbit = fls(xfer_mask) - 1;
1913 xfer_mask &= ~(1 << highbit);
1914 if (force_pio0)
1915 xfer_mask &= 1 << ATA_SHIFT_PIO;
1916 if (!xfer_mask)
1917 goto fail;
1918
1919 ata_unpack_xfermask(xfer_mask, &dev->pio_mask, &dev->mwdma_mask,
1920 &dev->udma_mask);
1921
1922 printk(KERN_WARNING "ata%u: dev %u limiting speed to %s\n",
1923 ap->id, dev->devno, ata_mode_string(xfer_mask));
1924
1925 return 0;
1926
1927 fail:
1928 return -EINVAL;
1929 }
1930
1931 static int ata_dev_set_mode(struct ata_device *dev)
1932 {
1933 struct ata_port *ap = dev->ap;
1934 unsigned int err_mask;
1935 int rc;
1936
1937 dev->flags &= ~ATA_DFLAG_PIO;
1938 if (dev->xfer_shift == ATA_SHIFT_PIO)
1939 dev->flags |= ATA_DFLAG_PIO;
1940
1941 err_mask = ata_dev_set_xfermode(dev);
1942 if (err_mask) {
1943 printk(KERN_ERR
1944 "ata%u: failed to set xfermode (err_mask=0x%x)\n",
1945 ap->id, err_mask);
1946 return -EIO;
1947 }
1948
1949 rc = ata_dev_revalidate(dev, 0);
1950 if (rc)
1951 return rc;
1952
1953 DPRINTK("xfer_shift=%u, xfer_mode=0x%x\n",
1954 dev->xfer_shift, (int)dev->xfer_mode);
1955
1956 printk(KERN_INFO "ata%u: dev %u configured for %s\n",
1957 ap->id, dev->devno,
1958 ata_mode_string(ata_xfer_mode2mask(dev->xfer_mode)));
1959 return 0;
1960 }
1961
1962 /**
1963 * ata_set_mode - Program timings and issue SET FEATURES - XFER
1964 * @ap: port on which timings will be programmed
1965 * @r_failed_dev: out paramter for failed device
1966 *
1967 * Set ATA device disk transfer mode (PIO3, UDMA6, etc.). If
1968 * ata_set_mode() fails, pointer to the failing device is
1969 * returned in @r_failed_dev.
1970 *
1971 * LOCKING:
1972 * PCI/etc. bus probe sem.
1973 *
1974 * RETURNS:
1975 * 0 on success, negative errno otherwise
1976 */
1977 int ata_set_mode(struct ata_port *ap, struct ata_device **r_failed_dev)
1978 {
1979 struct ata_device *dev;
1980 int i, rc = 0, used_dma = 0, found = 0;
1981
1982 /* has private set_mode? */
1983 if (ap->ops->set_mode) {
1984 /* FIXME: make ->set_mode handle no device case and
1985 * return error code and failing device on failure.
1986 */
1987 for (i = 0; i < ATA_MAX_DEVICES; i++) {
1988 if (ata_dev_enabled(&ap->device[i])) {
1989 ap->ops->set_mode(ap);
1990 break;
1991 }
1992 }
1993 return 0;
1994 }
1995
1996 /* step 1: calculate xfer_mask */
1997 for (i = 0; i < ATA_MAX_DEVICES; i++) {
1998 unsigned int pio_mask, dma_mask;
1999
2000 dev = &ap->device[i];
2001
2002 if (!ata_dev_enabled(dev))
2003 continue;
2004
2005 ata_dev_xfermask(dev);
2006
2007 pio_mask = ata_pack_xfermask(dev->pio_mask, 0, 0);
2008 dma_mask = ata_pack_xfermask(0, dev->mwdma_mask, dev->udma_mask);
2009 dev->pio_mode = ata_xfer_mask2mode(pio_mask);
2010 dev->dma_mode = ata_xfer_mask2mode(dma_mask);
2011
2012 found = 1;
2013 if (dev->dma_mode)
2014 used_dma = 1;
2015 }
2016 if (!found)
2017 goto out;
2018
2019 /* step 2: always set host PIO timings */
2020 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2021 dev = &ap->device[i];
2022 if (!ata_dev_enabled(dev))
2023 continue;
2024
2025 if (!dev->pio_mode) {
2026 printk(KERN_WARNING "ata%u: dev %u no PIO support\n",
2027 ap->id, dev->devno);
2028 rc = -EINVAL;
2029 goto out;
2030 }
2031
2032 dev->xfer_mode = dev->pio_mode;
2033 dev->xfer_shift = ATA_SHIFT_PIO;
2034 if (ap->ops->set_piomode)
2035 ap->ops->set_piomode(ap, dev);
2036 }
2037
2038 /* step 3: set host DMA timings */
2039 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2040 dev = &ap->device[i];
2041
2042 if (!ata_dev_enabled(dev) || !dev->dma_mode)
2043 continue;
2044
2045 dev->xfer_mode = dev->dma_mode;
2046 dev->xfer_shift = ata_xfer_mode2shift(dev->dma_mode);
2047 if (ap->ops->set_dmamode)
2048 ap->ops->set_dmamode(ap, dev);
2049 }
2050
2051 /* step 4: update devices' xfer mode */
2052 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2053 dev = &ap->device[i];
2054
2055 if (!ata_dev_enabled(dev))
2056 continue;
2057
2058 rc = ata_dev_set_mode(dev);
2059 if (rc)
2060 goto out;
2061 }
2062
2063 /* Record simplex status. If we selected DMA then the other
2064 * host channels are not permitted to do so.
2065 */
2066 if (used_dma && (ap->host_set->flags & ATA_HOST_SIMPLEX))
2067 ap->host_set->simplex_claimed = 1;
2068
2069 /* step5: chip specific finalisation */
2070 if (ap->ops->post_set_mode)
2071 ap->ops->post_set_mode(ap);
2072
2073 out:
2074 if (rc)
2075 *r_failed_dev = dev;
2076 return rc;
2077 }
2078
2079 /**
2080 * ata_tf_to_host - issue ATA taskfile to host controller
2081 * @ap: port to which command is being issued
2082 * @tf: ATA taskfile register set
2083 *
2084 * Issues ATA taskfile register set to ATA host controller,
2085 * with proper synchronization with interrupt handler and
2086 * other threads.
2087 *
2088 * LOCKING:
2089 * spin_lock_irqsave(host_set lock)
2090 */
2091
2092 static inline void ata_tf_to_host(struct ata_port *ap,
2093 const struct ata_taskfile *tf)
2094 {
2095 ap->ops->tf_load(ap, tf);
2096 ap->ops->exec_command(ap, tf);
2097 }
2098
2099 /**
2100 * ata_busy_sleep - sleep until BSY clears, or timeout
2101 * @ap: port containing status register to be polled
2102 * @tmout_pat: impatience timeout
2103 * @tmout: overall timeout
2104 *
2105 * Sleep until ATA Status register bit BSY clears,
2106 * or a timeout occurs.
2107 *
2108 * LOCKING: None.
2109 */
2110
2111 unsigned int ata_busy_sleep (struct ata_port *ap,
2112 unsigned long tmout_pat, unsigned long tmout)
2113 {
2114 unsigned long timer_start, timeout;
2115 u8 status;
2116
2117 status = ata_busy_wait(ap, ATA_BUSY, 300);
2118 timer_start = jiffies;
2119 timeout = timer_start + tmout_pat;
2120 while ((status & ATA_BUSY) && (time_before(jiffies, timeout))) {
2121 msleep(50);
2122 status = ata_busy_wait(ap, ATA_BUSY, 3);
2123 }
2124
2125 if (status & ATA_BUSY)
2126 printk(KERN_WARNING "ata%u is slow to respond, "
2127 "please be patient\n", ap->id);
2128
2129 timeout = timer_start + tmout;
2130 while ((status & ATA_BUSY) && (time_before(jiffies, timeout))) {
2131 msleep(50);
2132 status = ata_chk_status(ap);
2133 }
2134
2135 if (status & ATA_BUSY) {
2136 printk(KERN_ERR "ata%u failed to respond (%lu secs)\n",
2137 ap->id, tmout / HZ);
2138 return 1;
2139 }
2140
2141 return 0;
2142 }
2143
2144 static void ata_bus_post_reset(struct ata_port *ap, unsigned int devmask)
2145 {
2146 struct ata_ioports *ioaddr = &ap->ioaddr;
2147 unsigned int dev0 = devmask & (1 << 0);
2148 unsigned int dev1 = devmask & (1 << 1);
2149 unsigned long timeout;
2150
2151 /* if device 0 was found in ata_devchk, wait for its
2152 * BSY bit to clear
2153 */
2154 if (dev0)
2155 ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT);
2156
2157 /* if device 1 was found in ata_devchk, wait for
2158 * register access, then wait for BSY to clear
2159 */
2160 timeout = jiffies + ATA_TMOUT_BOOT;
2161 while (dev1) {
2162 u8 nsect, lbal;
2163
2164 ap->ops->dev_select(ap, 1);
2165 if (ap->flags & ATA_FLAG_MMIO) {
2166 nsect = readb((void __iomem *) ioaddr->nsect_addr);
2167 lbal = readb((void __iomem *) ioaddr->lbal_addr);
2168 } else {
2169 nsect = inb(ioaddr->nsect_addr);
2170 lbal = inb(ioaddr->lbal_addr);
2171 }
2172 if ((nsect == 1) && (lbal == 1))
2173 break;
2174 if (time_after(jiffies, timeout)) {
2175 dev1 = 0;
2176 break;
2177 }
2178 msleep(50); /* give drive a breather */
2179 }
2180 if (dev1)
2181 ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT);
2182
2183 /* is all this really necessary? */
2184 ap->ops->dev_select(ap, 0);
2185 if (dev1)
2186 ap->ops->dev_select(ap, 1);
2187 if (dev0)
2188 ap->ops->dev_select(ap, 0);
2189 }
2190
2191 static unsigned int ata_bus_softreset(struct ata_port *ap,
2192 unsigned int devmask)
2193 {
2194 struct ata_ioports *ioaddr = &ap->ioaddr;
2195
2196 DPRINTK("ata%u: bus reset via SRST\n", ap->id);
2197
2198 /* software reset. causes dev0 to be selected */
2199 if (ap->flags & ATA_FLAG_MMIO) {
2200 writeb(ap->ctl, (void __iomem *) ioaddr->ctl_addr);
2201 udelay(20); /* FIXME: flush */
2202 writeb(ap->ctl | ATA_SRST, (void __iomem *) ioaddr->ctl_addr);
2203 udelay(20); /* FIXME: flush */
2204 writeb(ap->ctl, (void __iomem *) ioaddr->ctl_addr);
2205 } else {
2206 outb(ap->ctl, ioaddr->ctl_addr);
2207 udelay(10);
2208 outb(ap->ctl | ATA_SRST, ioaddr->ctl_addr);
2209 udelay(10);
2210 outb(ap->ctl, ioaddr->ctl_addr);
2211 }
2212
2213 /* spec mandates ">= 2ms" before checking status.
2214 * We wait 150ms, because that was the magic delay used for
2215 * ATAPI devices in Hale Landis's ATADRVR, for the period of time
2216 * between when the ATA command register is written, and then
2217 * status is checked. Because waiting for "a while" before
2218 * checking status is fine, post SRST, we perform this magic
2219 * delay here as well.
2220 *
2221 * Old drivers/ide uses the 2mS rule and then waits for ready
2222 */
2223 msleep(150);
2224
2225 /* Before we perform post reset processing we want to see if
2226 * the bus shows 0xFF because the odd clown forgets the D7
2227 * pulldown resistor.
2228 */
2229 if (ata_check_status(ap) == 0xFF) {
2230 printk(KERN_ERR "ata%u: SRST failed (status 0xFF)\n", ap->id);
2231 return AC_ERR_OTHER;
2232 }
2233
2234 ata_bus_post_reset(ap, devmask);
2235
2236 return 0;
2237 }
2238
2239 /**
2240 * ata_bus_reset - reset host port and associated ATA channel
2241 * @ap: port to reset
2242 *
2243 * This is typically the first time we actually start issuing
2244 * commands to the ATA channel. We wait for BSY to clear, then
2245 * issue EXECUTE DEVICE DIAGNOSTIC command, polling for its
2246 * result. Determine what devices, if any, are on the channel
2247 * by looking at the device 0/1 error register. Look at the signature
2248 * stored in each device's taskfile registers, to determine if
2249 * the device is ATA or ATAPI.
2250 *
2251 * LOCKING:
2252 * PCI/etc. bus probe sem.
2253 * Obtains host_set lock.
2254 *
2255 * SIDE EFFECTS:
2256 * Sets ATA_FLAG_DISABLED if bus reset fails.
2257 */
2258
2259 void ata_bus_reset(struct ata_port *ap)
2260 {
2261 struct ata_ioports *ioaddr = &ap->ioaddr;
2262 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
2263 u8 err;
2264 unsigned int dev0, dev1 = 0, devmask = 0;
2265
2266 DPRINTK("ENTER, host %u, port %u\n", ap->id, ap->port_no);
2267
2268 /* determine if device 0/1 are present */
2269 if (ap->flags & ATA_FLAG_SATA_RESET)
2270 dev0 = 1;
2271 else {
2272 dev0 = ata_devchk(ap, 0);
2273 if (slave_possible)
2274 dev1 = ata_devchk(ap, 1);
2275 }
2276
2277 if (dev0)
2278 devmask |= (1 << 0);
2279 if (dev1)
2280 devmask |= (1 << 1);
2281
2282 /* select device 0 again */
2283 ap->ops->dev_select(ap, 0);
2284
2285 /* issue bus reset */
2286 if (ap->flags & ATA_FLAG_SRST)
2287 if (ata_bus_softreset(ap, devmask))
2288 goto err_out;
2289
2290 /*
2291 * determine by signature whether we have ATA or ATAPI devices
2292 */
2293 ap->device[0].class = ata_dev_try_classify(ap, 0, &err);
2294 if ((slave_possible) && (err != 0x81))
2295 ap->device[1].class = ata_dev_try_classify(ap, 1, &err);
2296
2297 /* re-enable interrupts */
2298 if (ap->ioaddr.ctl_addr) /* FIXME: hack. create a hook instead */
2299 ata_irq_on(ap);
2300
2301 /* is double-select really necessary? */
2302 if (ap->device[1].class != ATA_DEV_NONE)
2303 ap->ops->dev_select(ap, 1);
2304 if (ap->device[0].class != ATA_DEV_NONE)
2305 ap->ops->dev_select(ap, 0);
2306
2307 /* if no devices were detected, disable this port */
2308 if ((ap->device[0].class == ATA_DEV_NONE) &&
2309 (ap->device[1].class == ATA_DEV_NONE))
2310 goto err_out;
2311
2312 if (ap->flags & (ATA_FLAG_SATA_RESET | ATA_FLAG_SRST)) {
2313 /* set up device control for ATA_FLAG_SATA_RESET */
2314 if (ap->flags & ATA_FLAG_MMIO)
2315 writeb(ap->ctl, (void __iomem *) ioaddr->ctl_addr);
2316 else
2317 outb(ap->ctl, ioaddr->ctl_addr);
2318 }
2319
2320 DPRINTK("EXIT\n");
2321 return;
2322
2323 err_out:
2324 printk(KERN_ERR "ata%u: disabling port\n", ap->id);
2325 ap->ops->port_disable(ap);
2326
2327 DPRINTK("EXIT\n");
2328 }
2329
2330 static int sata_phy_resume(struct ata_port *ap)
2331 {
2332 unsigned long timeout = jiffies + (HZ * 5);
2333 u32 scontrol, sstatus;
2334 int rc;
2335
2336 if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
2337 return rc;
2338
2339 scontrol = (scontrol & 0x0f0) | 0x300;
2340
2341 if ((rc = sata_scr_write(ap, SCR_CONTROL, scontrol)))
2342 return rc;
2343
2344 /* Wait for phy to become ready, if necessary. */
2345 do {
2346 msleep(200);
2347 if ((rc = sata_scr_read(ap, SCR_STATUS, &sstatus)))
2348 return rc;
2349 if ((sstatus & 0xf) != 1)
2350 return 0;
2351 } while (time_before(jiffies, timeout));
2352
2353 return -EBUSY;
2354 }
2355
2356 /**
2357 * ata_std_probeinit - initialize probing
2358 * @ap: port to be probed
2359 *
2360 * @ap is about to be probed. Initialize it. This function is
2361 * to be used as standard callback for ata_drive_probe_reset().
2362 *
2363 * NOTE!!! Do not use this function as probeinit if a low level
2364 * driver implements only hardreset. Just pass NULL as probeinit
2365 * in that case. Using this function is probably okay but doing
2366 * so makes reset sequence different from the original
2367 * ->phy_reset implementation and Jeff nervous. :-P
2368 */
2369 void ata_std_probeinit(struct ata_port *ap)
2370 {
2371 u32 scontrol;
2372
2373 /* resume link */
2374 sata_phy_resume(ap);
2375
2376 /* init sata_spd_limit to the current value */
2377 if (sata_scr_read(ap, SCR_CONTROL, &scontrol) == 0) {
2378 int spd = (scontrol >> 4) & 0xf;
2379 ap->sata_spd_limit &= (1 << spd) - 1;
2380 }
2381
2382 /* wait for device */
2383 if (ata_port_online(ap))
2384 ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT);
2385 }
2386
2387 /**
2388 * ata_std_softreset - reset host port via ATA SRST
2389 * @ap: port to reset
2390 * @classes: resulting classes of attached devices
2391 *
2392 * Reset host port using ATA SRST. This function is to be used
2393 * as standard callback for ata_drive_*_reset() functions.
2394 *
2395 * LOCKING:
2396 * Kernel thread context (may sleep)
2397 *
2398 * RETURNS:
2399 * 0 on success, -errno otherwise.
2400 */
2401 int ata_std_softreset(struct ata_port *ap, unsigned int *classes)
2402 {
2403 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
2404 unsigned int devmask = 0, err_mask;
2405 u8 err;
2406
2407 DPRINTK("ENTER\n");
2408
2409 if (ata_port_offline(ap)) {
2410 classes[0] = ATA_DEV_NONE;
2411 goto out;
2412 }
2413
2414 /* determine if device 0/1 are present */
2415 if (ata_devchk(ap, 0))
2416 devmask |= (1 << 0);
2417 if (slave_possible && ata_devchk(ap, 1))
2418 devmask |= (1 << 1);
2419
2420 /* select device 0 again */
2421 ap->ops->dev_select(ap, 0);
2422
2423 /* issue bus reset */
2424 DPRINTK("about to softreset, devmask=%x\n", devmask);
2425 err_mask = ata_bus_softreset(ap, devmask);
2426 if (err_mask) {
2427 printk(KERN_ERR "ata%u: SRST failed (err_mask=0x%x)\n",
2428 ap->id, err_mask);
2429 return -EIO;
2430 }
2431
2432 /* determine by signature whether we have ATA or ATAPI devices */
2433 classes[0] = ata_dev_try_classify(ap, 0, &err);
2434 if (slave_possible && err != 0x81)
2435 classes[1] = ata_dev_try_classify(ap, 1, &err);
2436
2437 out:
2438 DPRINTK("EXIT, classes[0]=%u [1]=%u\n", classes[0], classes[1]);
2439 return 0;
2440 }
2441
2442 /**
2443 * sata_std_hardreset - reset host port via SATA phy reset
2444 * @ap: port to reset
2445 * @class: resulting class of attached device
2446 *
2447 * SATA phy-reset host port using DET bits of SControl register.
2448 * This function is to be used as standard callback for
2449 * ata_drive_*_reset().
2450 *
2451 * LOCKING:
2452 * Kernel thread context (may sleep)
2453 *
2454 * RETURNS:
2455 * 0 on success, -errno otherwise.
2456 */
2457 int sata_std_hardreset(struct ata_port *ap, unsigned int *class)
2458 {
2459 u32 scontrol;
2460 int rc;
2461
2462 DPRINTK("ENTER\n");
2463
2464 if (sata_set_spd_needed(ap)) {
2465 /* SATA spec says nothing about how to reconfigure
2466 * spd. To be on the safe side, turn off phy during
2467 * reconfiguration. This works for at least ICH7 AHCI
2468 * and Sil3124.
2469 */
2470 if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
2471 return rc;
2472
2473 scontrol = (scontrol & 0x0f0) | 0x302;
2474
2475 if ((rc = sata_scr_write(ap, SCR_CONTROL, scontrol)))
2476 return rc;
2477
2478 sata_set_spd(ap);
2479 }
2480
2481 /* issue phy wake/reset */
2482 if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
2483 return rc;
2484
2485 scontrol = (scontrol & 0x0f0) | 0x301;
2486
2487 if ((rc = sata_scr_write_flush(ap, SCR_CONTROL, scontrol)))
2488 return rc;
2489
2490 /* Couldn't find anything in SATA I/II specs, but AHCI-1.1
2491 * 10.4.2 says at least 1 ms.
2492 */
2493 msleep(1);
2494
2495 /* bring phy back */
2496 sata_phy_resume(ap);
2497
2498 /* TODO: phy layer with polling, timeouts, etc. */
2499 if (ata_port_offline(ap)) {
2500 *class = ATA_DEV_NONE;
2501 DPRINTK("EXIT, link offline\n");
2502 return 0;
2503 }
2504
2505 if (ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT)) {
2506 printk(KERN_ERR
2507 "ata%u: COMRESET failed (device not ready)\n", ap->id);
2508 return -EIO;
2509 }
2510
2511 ap->ops->dev_select(ap, 0); /* probably unnecessary */
2512
2513 *class = ata_dev_try_classify(ap, 0, NULL);
2514
2515 DPRINTK("EXIT, class=%u\n", *class);
2516 return 0;
2517 }
2518
2519 /**
2520 * ata_std_postreset - standard postreset callback
2521 * @ap: the target ata_port
2522 * @classes: classes of attached devices
2523 *
2524 * This function is invoked after a successful reset. Note that
2525 * the device might have been reset more than once using
2526 * different reset methods before postreset is invoked.
2527 *
2528 * This function is to be used as standard callback for
2529 * ata_drive_*_reset().
2530 *
2531 * LOCKING:
2532 * Kernel thread context (may sleep)
2533 */
2534 void ata_std_postreset(struct ata_port *ap, unsigned int *classes)
2535 {
2536 DPRINTK("ENTER\n");
2537
2538 /* print link status */
2539 sata_print_link_status(ap);
2540
2541 /* re-enable interrupts */
2542 if (ap->ioaddr.ctl_addr) /* FIXME: hack. create a hook instead */
2543 ata_irq_on(ap);
2544
2545 /* is double-select really necessary? */
2546 if (classes[0] != ATA_DEV_NONE)
2547 ap->ops->dev_select(ap, 1);
2548 if (classes[1] != ATA_DEV_NONE)
2549 ap->ops->dev_select(ap, 0);
2550
2551 /* bail out if no device is present */
2552 if (classes[0] == ATA_DEV_NONE && classes[1] == ATA_DEV_NONE) {
2553 DPRINTK("EXIT, no device\n");
2554 return;
2555 }
2556
2557 /* set up device control */
2558 if (ap->ioaddr.ctl_addr) {
2559 if (ap->flags & ATA_FLAG_MMIO)
2560 writeb(ap->ctl, (void __iomem *) ap->ioaddr.ctl_addr);
2561 else
2562 outb(ap->ctl, ap->ioaddr.ctl_addr);
2563 }
2564
2565 DPRINTK("EXIT\n");
2566 }
2567
2568 /**
2569 * ata_std_probe_reset - standard probe reset method
2570 * @ap: prot to perform probe-reset
2571 * @classes: resulting classes of attached devices
2572 *
2573 * The stock off-the-shelf ->probe_reset method.
2574 *
2575 * LOCKING:
2576 * Kernel thread context (may sleep)
2577 *
2578 * RETURNS:
2579 * 0 on success, -errno otherwise.
2580 */
2581 int ata_std_probe_reset(struct ata_port *ap, unsigned int *classes)
2582 {
2583 ata_reset_fn_t hardreset;
2584
2585 hardreset = NULL;
2586 if (sata_scr_valid(ap))
2587 hardreset = sata_std_hardreset;
2588
2589 return ata_drive_probe_reset(ap, ata_std_probeinit,
2590 ata_std_softreset, hardreset,
2591 ata_std_postreset, classes);
2592 }
2593
2594 int ata_do_reset(struct ata_port *ap, ata_reset_fn_t reset,
2595 unsigned int *classes)
2596 {
2597 int i, rc;
2598
2599 for (i = 0; i < ATA_MAX_DEVICES; i++)
2600 classes[i] = ATA_DEV_UNKNOWN;
2601
2602 rc = reset(ap, classes);
2603 if (rc)
2604 return rc;
2605
2606 /* If any class isn't ATA_DEV_UNKNOWN, consider classification
2607 * is complete and convert all ATA_DEV_UNKNOWN to
2608 * ATA_DEV_NONE.
2609 */
2610 for (i = 0; i < ATA_MAX_DEVICES; i++)
2611 if (classes[i] != ATA_DEV_UNKNOWN)
2612 break;
2613
2614 if (i < ATA_MAX_DEVICES)
2615 for (i = 0; i < ATA_MAX_DEVICES; i++)
2616 if (classes[i] == ATA_DEV_UNKNOWN)
2617 classes[i] = ATA_DEV_NONE;
2618
2619 return 0;
2620 }
2621
2622 /**
2623 * ata_drive_probe_reset - Perform probe reset with given methods
2624 * @ap: port to reset
2625 * @probeinit: probeinit method (can be NULL)
2626 * @softreset: softreset method (can be NULL)
2627 * @hardreset: hardreset method (can be NULL)
2628 * @postreset: postreset method (can be NULL)
2629 * @classes: resulting classes of attached devices
2630 *
2631 * Reset the specified port and classify attached devices using
2632 * given methods. This function prefers softreset but tries all
2633 * possible reset sequences to reset and classify devices. This
2634 * function is intended to be used for constructing ->probe_reset
2635 * callback by low level drivers.
2636 *
2637 * Reset methods should follow the following rules.
2638 *
2639 * - Return 0 on sucess, -errno on failure.
2640 * - If classification is supported, fill classes[] with
2641 * recognized class codes.
2642 * - If classification is not supported, leave classes[] alone.
2643 *
2644 * LOCKING:
2645 * Kernel thread context (may sleep)
2646 *
2647 * RETURNS:
2648 * 0 on success, -EINVAL if no reset method is avaliable, -ENODEV
2649 * if classification fails, and any error code from reset
2650 * methods.
2651 */
2652 int ata_drive_probe_reset(struct ata_port *ap, ata_probeinit_fn_t probeinit,
2653 ata_reset_fn_t softreset, ata_reset_fn_t hardreset,
2654 ata_postreset_fn_t postreset, unsigned int *classes)
2655 {
2656 int rc = -EINVAL;
2657
2658 if (probeinit)
2659 probeinit(ap);
2660
2661 if (softreset && !sata_set_spd_needed(ap)) {
2662 rc = ata_do_reset(ap, softreset, classes);
2663 if (rc == 0 && classes[0] != ATA_DEV_UNKNOWN)
2664 goto done;
2665 printk(KERN_INFO "ata%u: softreset failed, will try "
2666 "hardreset in 5 secs\n", ap->id);
2667 ssleep(5);
2668 }
2669
2670 if (!hardreset)
2671 goto done;
2672
2673 while (1) {
2674 rc = ata_do_reset(ap, hardreset, classes);
2675 if (rc == 0) {
2676 if (classes[0] != ATA_DEV_UNKNOWN)
2677 goto done;
2678 break;
2679 }
2680
2681 if (sata_down_spd_limit(ap))
2682 goto done;
2683
2684 printk(KERN_INFO "ata%u: hardreset failed, will retry "
2685 "in 5 secs\n", ap->id);
2686 ssleep(5);
2687 }
2688
2689 if (softreset) {
2690 printk(KERN_INFO "ata%u: hardreset succeeded without "
2691 "classification, will retry softreset in 5 secs\n",
2692 ap->id);
2693 ssleep(5);
2694
2695 rc = ata_do_reset(ap, softreset, classes);
2696 }
2697
2698 done:
2699 if (rc == 0) {
2700 if (postreset)
2701 postreset(ap, classes);
2702 if (classes[0] == ATA_DEV_UNKNOWN)
2703 rc = -ENODEV;
2704 }
2705 return rc;
2706 }
2707
2708 /**
2709 * ata_dev_same_device - Determine whether new ID matches configured device
2710 * @dev: device to compare against
2711 * @new_class: class of the new device
2712 * @new_id: IDENTIFY page of the new device
2713 *
2714 * Compare @new_class and @new_id against @dev and determine
2715 * whether @dev is the device indicated by @new_class and
2716 * @new_id.
2717 *
2718 * LOCKING:
2719 * None.
2720 *
2721 * RETURNS:
2722 * 1 if @dev matches @new_class and @new_id, 0 otherwise.
2723 */
2724 static int ata_dev_same_device(struct ata_device *dev, unsigned int new_class,
2725 const u16 *new_id)
2726 {
2727 struct ata_port *ap = dev->ap;
2728 const u16 *old_id = dev->id;
2729 unsigned char model[2][41], serial[2][21];
2730 u64 new_n_sectors;
2731
2732 if (dev->class != new_class) {
2733 printk(KERN_INFO
2734 "ata%u: dev %u class mismatch %d != %d\n",
2735 ap->id, dev->devno, dev->class, new_class);
2736 return 0;
2737 }
2738
2739 ata_id_c_string(old_id, model[0], ATA_ID_PROD_OFS, sizeof(model[0]));
2740 ata_id_c_string(new_id, model[1], ATA_ID_PROD_OFS, sizeof(model[1]));
2741 ata_id_c_string(old_id, serial[0], ATA_ID_SERNO_OFS, sizeof(serial[0]));
2742 ata_id_c_string(new_id, serial[1], ATA_ID_SERNO_OFS, sizeof(serial[1]));
2743 new_n_sectors = ata_id_n_sectors(new_id);
2744
2745 if (strcmp(model[0], model[1])) {
2746 printk(KERN_INFO
2747 "ata%u: dev %u model number mismatch '%s' != '%s'\n",
2748 ap->id, dev->devno, model[0], model[1]);
2749 return 0;
2750 }
2751
2752 if (strcmp(serial[0], serial[1])) {
2753 printk(KERN_INFO
2754 "ata%u: dev %u serial number mismatch '%s' != '%s'\n",
2755 ap->id, dev->devno, serial[0], serial[1]);
2756 return 0;
2757 }
2758
2759 if (dev->class == ATA_DEV_ATA && dev->n_sectors != new_n_sectors) {
2760 printk(KERN_INFO
2761 "ata%u: dev %u n_sectors mismatch %llu != %llu\n",
2762 ap->id, dev->devno, (unsigned long long)dev->n_sectors,
2763 (unsigned long long)new_n_sectors);
2764 return 0;
2765 }
2766
2767 return 1;
2768 }
2769
2770 /**
2771 * ata_dev_revalidate - Revalidate ATA device
2772 * @dev: device to revalidate
2773 * @post_reset: is this revalidation after reset?
2774 *
2775 * Re-read IDENTIFY page and make sure @dev is still attached to
2776 * the port.
2777 *
2778 * LOCKING:
2779 * Kernel thread context (may sleep)
2780 *
2781 * RETURNS:
2782 * 0 on success, negative errno otherwise
2783 */
2784 int ata_dev_revalidate(struct ata_device *dev, int post_reset)
2785 {
2786 struct ata_port *ap = dev->ap;
2787 unsigned int class = dev->class;
2788 u16 *id = (void *)ap->sector_buf;
2789 int rc;
2790
2791 if (!ata_dev_enabled(dev)) {
2792 rc = -ENODEV;
2793 goto fail;
2794 }
2795
2796 /* read ID data */
2797 rc = ata_dev_read_id(dev, &class, post_reset, id);
2798 if (rc)
2799 goto fail;
2800
2801 /* is the device still there? */
2802 if (!ata_dev_same_device(dev, class, id)) {
2803 rc = -ENODEV;
2804 goto fail;
2805 }
2806
2807 memcpy(dev->id, id, sizeof(id[0]) * ATA_ID_WORDS);
2808
2809 /* configure device according to the new ID */
2810 rc = ata_dev_configure(dev, 0);
2811 if (rc == 0)
2812 return 0;
2813
2814 fail:
2815 printk(KERN_ERR "ata%u: dev %u revalidation failed (errno=%d)\n",
2816 ap->id, dev->devno, rc);
2817 return rc;
2818 }
2819
2820 static const char * const ata_dma_blacklist [] = {
2821 "WDC AC11000H", NULL,
2822 "WDC AC22100H", NULL,
2823 "WDC AC32500H", NULL,
2824 "WDC AC33100H", NULL,
2825 "WDC AC31600H", NULL,
2826 "WDC AC32100H", "24.09P07",
2827 "WDC AC23200L", "21.10N21",
2828 "Compaq CRD-8241B", NULL,
2829 "CRD-8400B", NULL,
2830 "CRD-8480B", NULL,
2831 "CRD-8482B", NULL,
2832 "CRD-84", NULL,
2833 "SanDisk SDP3B", NULL,
2834 "SanDisk SDP3B-64", NULL,
2835 "SANYO CD-ROM CRD", NULL,
2836 "HITACHI CDR-8", NULL,
2837 "HITACHI CDR-8335", NULL,
2838 "HITACHI CDR-8435", NULL,
2839 "Toshiba CD-ROM XM-6202B", NULL,
2840 "TOSHIBA CD-ROM XM-1702BC", NULL,
2841 "CD-532E-A", NULL,
2842 "E-IDE CD-ROM CR-840", NULL,
2843 "CD-ROM Drive/F5A", NULL,
2844 "WPI CDD-820", NULL,
2845 "SAMSUNG CD-ROM SC-148C", NULL,
2846 "SAMSUNG CD-ROM SC", NULL,
2847 "SanDisk SDP3B-64", NULL,
2848 "ATAPI CD-ROM DRIVE 40X MAXIMUM",NULL,
2849 "_NEC DV5800A", NULL,
2850 "SAMSUNG CD-ROM SN-124", "N001"
2851 };
2852
2853 static int ata_strim(char *s, size_t len)
2854 {
2855 len = strnlen(s, len);
2856
2857 /* ATAPI specifies that empty space is blank-filled; remove blanks */
2858 while ((len > 0) && (s[len - 1] == ' ')) {
2859 len--;
2860 s[len] = 0;
2861 }
2862 return len;
2863 }
2864
2865 static int ata_dma_blacklisted(const struct ata_device *dev)
2866 {
2867 unsigned char model_num[40];
2868 unsigned char model_rev[16];
2869 unsigned int nlen, rlen;
2870 int i;
2871
2872 ata_id_string(dev->id, model_num, ATA_ID_PROD_OFS,
2873 sizeof(model_num));
2874 ata_id_string(dev->id, model_rev, ATA_ID_FW_REV_OFS,
2875 sizeof(model_rev));
2876 nlen = ata_strim(model_num, sizeof(model_num));
2877 rlen = ata_strim(model_rev, sizeof(model_rev));
2878
2879 for (i = 0; i < ARRAY_SIZE(ata_dma_blacklist); i += 2) {
2880 if (!strncmp(ata_dma_blacklist[i], model_num, nlen)) {
2881 if (ata_dma_blacklist[i+1] == NULL)
2882 return 1;
2883 if (!strncmp(ata_dma_blacklist[i], model_rev, rlen))
2884 return 1;
2885 }
2886 }
2887 return 0;
2888 }
2889
2890 /**
2891 * ata_dev_xfermask - Compute supported xfermask of the given device
2892 * @dev: Device to compute xfermask for
2893 *
2894 * Compute supported xfermask of @dev and store it in
2895 * dev->*_mask. This function is responsible for applying all
2896 * known limits including host controller limits, device
2897 * blacklist, etc...
2898 *
2899 * FIXME: The current implementation limits all transfer modes to
2900 * the fastest of the lowested device on the port. This is not
2901 * required on most controllers.
2902 *
2903 * LOCKING:
2904 * None.
2905 */
2906 static void ata_dev_xfermask(struct ata_device *dev)
2907 {
2908 struct ata_port *ap = dev->ap;
2909 struct ata_host_set *hs = ap->host_set;
2910 unsigned long xfer_mask;
2911 int i;
2912
2913 xfer_mask = ata_pack_xfermask(ap->pio_mask,
2914 ap->mwdma_mask, ap->udma_mask);
2915
2916 /* Apply cable rule here. Don't apply it early because when
2917 * we handle hot plug the cable type can itself change.
2918 */
2919 if (ap->cbl == ATA_CBL_PATA40)
2920 xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA);
2921
2922 /* FIXME: Use port-wide xfermask for now */
2923 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2924 struct ata_device *d = &ap->device[i];
2925
2926 if (ata_dev_absent(d))
2927 continue;
2928
2929 if (ata_dev_disabled(d)) {
2930 /* to avoid violating device selection timing */
2931 xfer_mask &= ata_pack_xfermask(d->pio_mask,
2932 UINT_MAX, UINT_MAX);
2933 continue;
2934 }
2935
2936 xfer_mask &= ata_pack_xfermask(d->pio_mask,
2937 d->mwdma_mask, d->udma_mask);
2938 xfer_mask &= ata_id_xfermask(d->id);
2939 if (ata_dma_blacklisted(d))
2940 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
2941 }
2942
2943 if (ata_dma_blacklisted(dev))
2944 printk(KERN_WARNING "ata%u: dev %u is on DMA blacklist, "
2945 "disabling DMA\n", ap->id, dev->devno);
2946
2947 if (hs->flags & ATA_HOST_SIMPLEX) {
2948 if (hs->simplex_claimed)
2949 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
2950 }
2951
2952 if (ap->ops->mode_filter)
2953 xfer_mask = ap->ops->mode_filter(ap, dev, xfer_mask);
2954
2955 ata_unpack_xfermask(xfer_mask, &dev->pio_mask,
2956 &dev->mwdma_mask, &dev->udma_mask);
2957 }
2958
2959 /**
2960 * ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command
2961 * @dev: Device to which command will be sent
2962 *
2963 * Issue SET FEATURES - XFER MODE command to device @dev
2964 * on port @ap.
2965 *
2966 * LOCKING:
2967 * PCI/etc. bus probe sem.
2968 *
2969 * RETURNS:
2970 * 0 on success, AC_ERR_* mask otherwise.
2971 */
2972
2973 static unsigned int ata_dev_set_xfermode(struct ata_device *dev)
2974 {
2975 struct ata_taskfile tf;
2976 unsigned int err_mask;
2977
2978 /* set up set-features taskfile */
2979 DPRINTK("set features - xfer mode\n");
2980
2981 ata_tf_init(dev, &tf);
2982 tf.command = ATA_CMD_SET_FEATURES;
2983 tf.feature = SETFEATURES_XFER;
2984 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
2985 tf.protocol = ATA_PROT_NODATA;
2986 tf.nsect = dev->xfer_mode;
2987
2988 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
2989
2990 DPRINTK("EXIT, err_mask=%x\n", err_mask);
2991 return err_mask;
2992 }
2993
2994 /**
2995 * ata_dev_init_params - Issue INIT DEV PARAMS command
2996 * @dev: Device to which command will be sent
2997 * @heads: Number of heads
2998 * @sectors: Number of sectors
2999 *
3000 * LOCKING:
3001 * Kernel thread context (may sleep)
3002 *
3003 * RETURNS:
3004 * 0 on success, AC_ERR_* mask otherwise.
3005 */
3006 static unsigned int ata_dev_init_params(struct ata_device *dev,
3007 u16 heads, u16 sectors)
3008 {
3009 struct ata_taskfile tf;
3010 unsigned int err_mask;
3011
3012 /* Number of sectors per track 1-255. Number of heads 1-16 */
3013 if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16)
3014 return AC_ERR_INVALID;
3015
3016 /* set up init dev params taskfile */
3017 DPRINTK("init dev params \n");
3018
3019 ata_tf_init(dev, &tf);
3020 tf.command = ATA_CMD_INIT_DEV_PARAMS;
3021 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
3022 tf.protocol = ATA_PROT_NODATA;
3023 tf.nsect = sectors;
3024 tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */
3025
3026 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
3027
3028 DPRINTK("EXIT, err_mask=%x\n", err_mask);
3029 return err_mask;
3030 }
3031
3032 /**
3033 * ata_sg_clean - Unmap DMA memory associated with command
3034 * @qc: Command containing DMA memory to be released
3035 *
3036 * Unmap all mapped DMA memory associated with this command.
3037 *
3038 * LOCKING:
3039 * spin_lock_irqsave(host_set lock)
3040 */
3041
3042 static void ata_sg_clean(struct ata_queued_cmd *qc)
3043 {
3044 struct ata_port *ap = qc->ap;
3045 struct scatterlist *sg = qc->__sg;
3046 int dir = qc->dma_dir;
3047 void *pad_buf = NULL;
3048
3049 WARN_ON(!(qc->flags & ATA_QCFLAG_DMAMAP));
3050 WARN_ON(sg == NULL);
3051
3052 if (qc->flags & ATA_QCFLAG_SINGLE)
3053 WARN_ON(qc->n_elem > 1);
3054
3055 VPRINTK("unmapping %u sg elements\n", qc->n_elem);
3056
3057 /* if we padded the buffer out to 32-bit bound, and data
3058 * xfer direction is from-device, we must copy from the
3059 * pad buffer back into the supplied buffer
3060 */
3061 if (qc->pad_len && !(qc->tf.flags & ATA_TFLAG_WRITE))
3062 pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
3063
3064 if (qc->flags & ATA_QCFLAG_SG) {
3065 if (qc->n_elem)
3066 dma_unmap_sg(ap->dev, sg, qc->n_elem, dir);
3067 /* restore last sg */
3068 sg[qc->orig_n_elem - 1].length += qc->pad_len;
3069 if (pad_buf) {
3070 struct scatterlist *psg = &qc->pad_sgent;
3071 void *addr = kmap_atomic(psg->page, KM_IRQ0);
3072 memcpy(addr + psg->offset, pad_buf, qc->pad_len);
3073 kunmap_atomic(addr, KM_IRQ0);
3074 }
3075 } else {
3076 if (qc->n_elem)
3077 dma_unmap_single(ap->dev,
3078 sg_dma_address(&sg[0]), sg_dma_len(&sg[0]),
3079 dir);
3080 /* restore sg */
3081 sg->length += qc->pad_len;
3082 if (pad_buf)
3083 memcpy(qc->buf_virt + sg->length - qc->pad_len,
3084 pad_buf, qc->pad_len);
3085 }
3086
3087 qc->flags &= ~ATA_QCFLAG_DMAMAP;
3088 qc->__sg = NULL;
3089 }
3090
3091 /**
3092 * ata_fill_sg - Fill PCI IDE PRD table
3093 * @qc: Metadata associated with taskfile to be transferred
3094 *
3095 * Fill PCI IDE PRD (scatter-gather) table with segments
3096 * associated with the current disk command.
3097 *
3098 * LOCKING:
3099 * spin_lock_irqsave(host_set lock)
3100 *
3101 */
3102 static void ata_fill_sg(struct ata_queued_cmd *qc)
3103 {
3104 struct ata_port *ap = qc->ap;
3105 struct scatterlist *sg;
3106 unsigned int idx;
3107
3108 WARN_ON(qc->__sg == NULL);
3109 WARN_ON(qc->n_elem == 0 && qc->pad_len == 0);
3110
3111 idx = 0;
3112 ata_for_each_sg(sg, qc) {
3113 u32 addr, offset;
3114 u32 sg_len, len;
3115
3116 /* determine if physical DMA addr spans 64K boundary.
3117 * Note h/w doesn't support 64-bit, so we unconditionally
3118 * truncate dma_addr_t to u32.
3119 */
3120 addr = (u32) sg_dma_address(sg);
3121 sg_len = sg_dma_len(sg);
3122
3123 while (sg_len) {
3124 offset = addr & 0xffff;
3125 len = sg_len;
3126 if ((offset + sg_len) > 0x10000)
3127 len = 0x10000 - offset;
3128
3129 ap->prd[idx].addr = cpu_to_le32(addr);
3130 ap->prd[idx].flags_len = cpu_to_le32(len & 0xffff);
3131 VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", idx, addr, len);
3132
3133 idx++;
3134 sg_len -= len;
3135 addr += len;
3136 }
3137 }
3138
3139 if (idx)
3140 ap->prd[idx - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT);
3141 }
3142 /**
3143 * ata_check_atapi_dma - Check whether ATAPI DMA can be supported
3144 * @qc: Metadata associated with taskfile to check
3145 *
3146 * Allow low-level driver to filter ATA PACKET commands, returning
3147 * a status indicating whether or not it is OK to use DMA for the
3148 * supplied PACKET command.
3149 *
3150 * LOCKING:
3151 * spin_lock_irqsave(host_set lock)
3152 *
3153 * RETURNS: 0 when ATAPI DMA can be used
3154 * nonzero otherwise
3155 */
3156 int ata_check_atapi_dma(struct ata_queued_cmd *qc)
3157 {
3158 struct ata_port *ap = qc->ap;
3159 int rc = 0; /* Assume ATAPI DMA is OK by default */
3160
3161 if (ap->ops->check_atapi_dma)
3162 rc = ap->ops->check_atapi_dma(qc);
3163
3164 return rc;
3165 }
3166 /**
3167 * ata_qc_prep - Prepare taskfile for submission
3168 * @qc: Metadata associated with taskfile to be prepared
3169 *
3170 * Prepare ATA taskfile for submission.
3171 *
3172 * LOCKING:
3173 * spin_lock_irqsave(host_set lock)
3174 */
3175 void ata_qc_prep(struct ata_queued_cmd *qc)
3176 {
3177 if (!(qc->flags & ATA_QCFLAG_DMAMAP))
3178 return;
3179
3180 ata_fill_sg(qc);
3181 }
3182
3183 void ata_noop_qc_prep(struct ata_queued_cmd *qc) { }
3184
3185 /**
3186 * ata_sg_init_one - Associate command with memory buffer
3187 * @qc: Command to be associated
3188 * @buf: Memory buffer
3189 * @buflen: Length of memory buffer, in bytes.
3190 *
3191 * Initialize the data-related elements of queued_cmd @qc
3192 * to point to a single memory buffer, @buf of byte length @buflen.
3193 *
3194 * LOCKING:
3195 * spin_lock_irqsave(host_set lock)
3196 */
3197
3198 void ata_sg_init_one(struct ata_queued_cmd *qc, void *buf, unsigned int buflen)
3199 {
3200 struct scatterlist *sg;
3201
3202 qc->flags |= ATA_QCFLAG_SINGLE;
3203
3204 memset(&qc->sgent, 0, sizeof(qc->sgent));
3205 qc->__sg = &qc->sgent;
3206 qc->n_elem = 1;
3207 qc->orig_n_elem = 1;
3208 qc->buf_virt = buf;
3209
3210 sg = qc->__sg;
3211 sg_init_one(sg, buf, buflen);
3212 }
3213
3214 /**
3215 * ata_sg_init - Associate command with scatter-gather table.
3216 * @qc: Command to be associated
3217 * @sg: Scatter-gather table.
3218 * @n_elem: Number of elements in s/g table.
3219 *
3220 * Initialize the data-related elements of queued_cmd @qc
3221 * to point to a scatter-gather table @sg, containing @n_elem
3222 * elements.
3223 *
3224 * LOCKING:
3225 * spin_lock_irqsave(host_set lock)
3226 */
3227
3228 void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg,
3229 unsigned int n_elem)
3230 {
3231 qc->flags |= ATA_QCFLAG_SG;
3232 qc->__sg = sg;
3233 qc->n_elem = n_elem;
3234 qc->orig_n_elem = n_elem;
3235 }
3236
3237 /**
3238 * ata_sg_setup_one - DMA-map the memory buffer associated with a command.
3239 * @qc: Command with memory buffer to be mapped.
3240 *
3241 * DMA-map the memory buffer associated with queued_cmd @qc.
3242 *
3243 * LOCKING:
3244 * spin_lock_irqsave(host_set lock)
3245 *
3246 * RETURNS:
3247 * Zero on success, negative on error.
3248 */
3249
3250 static int ata_sg_setup_one(struct ata_queued_cmd *qc)
3251 {
3252 struct ata_port *ap = qc->ap;
3253 int dir = qc->dma_dir;
3254 struct scatterlist *sg = qc->__sg;
3255 dma_addr_t dma_address;
3256 int trim_sg = 0;
3257
3258 /* we must lengthen transfers to end on a 32-bit boundary */
3259 qc->pad_len = sg->length & 3;
3260 if (qc->pad_len) {
3261 void *pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
3262 struct scatterlist *psg = &qc->pad_sgent;
3263
3264 WARN_ON(qc->dev->class != ATA_DEV_ATAPI);
3265
3266 memset(pad_buf, 0, ATA_DMA_PAD_SZ);
3267
3268 if (qc->tf.flags & ATA_TFLAG_WRITE)
3269 memcpy(pad_buf, qc->buf_virt + sg->length - qc->pad_len,
3270 qc->pad_len);
3271
3272 sg_dma_address(psg) = ap->pad_dma + (qc->tag * ATA_DMA_PAD_SZ);
3273 sg_dma_len(psg) = ATA_DMA_PAD_SZ;
3274 /* trim sg */
3275 sg->length -= qc->pad_len;
3276 if (sg->length == 0)
3277 trim_sg = 1;
3278
3279 DPRINTK("padding done, sg->length=%u pad_len=%u\n",
3280 sg->length, qc->pad_len);
3281 }
3282
3283 if (trim_sg) {
3284 qc->n_elem--;
3285 goto skip_map;
3286 }
3287
3288 dma_address = dma_map_single(ap->dev, qc->buf_virt,
3289 sg->length, dir);
3290 if (dma_mapping_error(dma_address)) {
3291 /* restore sg */
3292 sg->length += qc->pad_len;
3293 return -1;
3294 }
3295
3296 sg_dma_address(sg) = dma_address;
3297 sg_dma_len(sg) = sg->length;
3298
3299 skip_map:
3300 DPRINTK("mapped buffer of %d bytes for %s\n", sg_dma_len(sg),
3301 qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
3302
3303 return 0;
3304 }
3305
3306 /**
3307 * ata_sg_setup - DMA-map the scatter-gather table associated with a command.
3308 * @qc: Command with scatter-gather table to be mapped.
3309 *
3310 * DMA-map the scatter-gather table associated with queued_cmd @qc.
3311 *
3312 * LOCKING:
3313 * spin_lock_irqsave(host_set lock)
3314 *
3315 * RETURNS:
3316 * Zero on success, negative on error.
3317 *
3318 */
3319
3320 static int ata_sg_setup(struct ata_queued_cmd *qc)
3321 {
3322 struct ata_port *ap = qc->ap;
3323 struct scatterlist *sg = qc->__sg;
3324 struct scatterlist *lsg = &sg[qc->n_elem - 1];
3325 int n_elem, pre_n_elem, dir, trim_sg = 0;
3326
3327 VPRINTK("ENTER, ata%u\n", ap->id);
3328 WARN_ON(!(qc->flags & ATA_QCFLAG_SG));
3329
3330 /* we must lengthen transfers to end on a 32-bit boundary */
3331 qc->pad_len = lsg->length & 3;
3332 if (qc->pad_len) {
3333 void *pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
3334 struct scatterlist *psg = &qc->pad_sgent;
3335 unsigned int offset;
3336
3337 WARN_ON(qc->dev->class != ATA_DEV_ATAPI);
3338
3339 memset(pad_buf, 0, ATA_DMA_PAD_SZ);
3340
3341 /*
3342 * psg->page/offset are used to copy to-be-written
3343 * data in this function or read data in ata_sg_clean.
3344 */
3345 offset = lsg->offset + lsg->length - qc->pad_len;
3346 psg->page = nth_page(lsg->page, offset >> PAGE_SHIFT);
3347 psg->offset = offset_in_page(offset);
3348
3349 if (qc->tf.flags & ATA_TFLAG_WRITE) {
3350 void *addr = kmap_atomic(psg->page, KM_IRQ0);
3351 memcpy(pad_buf, addr + psg->offset, qc->pad_len);
3352 kunmap_atomic(addr, KM_IRQ0);
3353 }
3354
3355 sg_dma_address(psg) = ap->pad_dma + (qc->tag * ATA_DMA_PAD_SZ);
3356 sg_dma_len(psg) = ATA_DMA_PAD_SZ;
3357 /* trim last sg */
3358 lsg->length -= qc->pad_len;
3359 if (lsg->length == 0)
3360 trim_sg = 1;
3361
3362 DPRINTK("padding done, sg[%d].length=%u pad_len=%u\n",
3363 qc->n_elem - 1, lsg->length, qc->pad_len);
3364 }
3365
3366 pre_n_elem = qc->n_elem;
3367 if (trim_sg && pre_n_elem)
3368 pre_n_elem--;
3369
3370 if (!pre_n_elem) {
3371 n_elem = 0;
3372 goto skip_map;
3373 }
3374
3375 dir = qc->dma_dir;
3376 n_elem = dma_map_sg(ap->dev, sg, pre_n_elem, dir);
3377 if (n_elem < 1) {
3378 /* restore last sg */
3379 lsg->length += qc->pad_len;
3380 return -1;
3381 }
3382
3383 DPRINTK("%d sg elements mapped\n", n_elem);
3384
3385 skip_map:
3386 qc->n_elem = n_elem;
3387
3388 return 0;
3389 }
3390
3391 /**
3392 * ata_poll_qc_complete - turn irq back on and finish qc
3393 * @qc: Command to complete
3394 * @err_mask: ATA status register content
3395 *
3396 * LOCKING:
3397 * None. (grabs host lock)
3398 */
3399
3400 void ata_poll_qc_complete(struct ata_queued_cmd *qc)
3401 {
3402 struct ata_port *ap = qc->ap;
3403 unsigned long flags;
3404
3405 spin_lock_irqsave(&ap->host_set->lock, flags);
3406 ap->flags &= ~ATA_FLAG_NOINTR;
3407 ata_irq_on(ap);
3408 ata_qc_complete(qc);
3409 spin_unlock_irqrestore(&ap->host_set->lock, flags);
3410 }
3411
3412 /**
3413 * ata_pio_poll - poll using PIO, depending on current state
3414 * @qc: qc in progress
3415 *
3416 * LOCKING:
3417 * None. (executing in kernel thread context)
3418 *
3419 * RETURNS:
3420 * timeout value to use
3421 */
3422 static unsigned long ata_pio_poll(struct ata_queued_cmd *qc)
3423 {
3424 struct ata_port *ap = qc->ap;
3425 u8 status;
3426 unsigned int poll_state = HSM_ST_UNKNOWN;
3427 unsigned int reg_state = HSM_ST_UNKNOWN;
3428
3429 switch (ap->hsm_task_state) {
3430 case HSM_ST:
3431 case HSM_ST_POLL:
3432 poll_state = HSM_ST_POLL;
3433 reg_state = HSM_ST;
3434 break;
3435 case HSM_ST_LAST:
3436 case HSM_ST_LAST_POLL:
3437 poll_state = HSM_ST_LAST_POLL;
3438 reg_state = HSM_ST_LAST;
3439 break;
3440 default:
3441 BUG();
3442 break;
3443 }
3444
3445 status = ata_chk_status(ap);
3446 if (status & ATA_BUSY) {
3447 if (time_after(jiffies, ap->pio_task_timeout)) {
3448 qc->err_mask |= AC_ERR_TIMEOUT;
3449 ap->hsm_task_state = HSM_ST_TMOUT;
3450 return 0;
3451 }
3452 ap->hsm_task_state = poll_state;
3453 return ATA_SHORT_PAUSE;
3454 }
3455
3456 ap->hsm_task_state = reg_state;
3457 return 0;
3458 }
3459
3460 /**
3461 * ata_pio_complete - check if drive is busy or idle
3462 * @qc: qc to complete
3463 *
3464 * LOCKING:
3465 * None. (executing in kernel thread context)
3466 *
3467 * RETURNS:
3468 * Non-zero if qc completed, zero otherwise.
3469 */
3470 static int ata_pio_complete(struct ata_queued_cmd *qc)
3471 {
3472 struct ata_port *ap = qc->ap;
3473 u8 drv_stat;
3474
3475 /*
3476 * This is purely heuristic. This is a fast path. Sometimes when
3477 * we enter, BSY will be cleared in a chk-status or two. If not,
3478 * the drive is probably seeking or something. Snooze for a couple
3479 * msecs, then chk-status again. If still busy, fall back to
3480 * HSM_ST_POLL state.
3481 */
3482 drv_stat = ata_busy_wait(ap, ATA_BUSY, 10);
3483 if (drv_stat & ATA_BUSY) {
3484 msleep(2);
3485 drv_stat = ata_busy_wait(ap, ATA_BUSY, 10);
3486 if (drv_stat & ATA_BUSY) {
3487 ap->hsm_task_state = HSM_ST_LAST_POLL;
3488 ap->pio_task_timeout = jiffies + ATA_TMOUT_PIO;
3489 return 0;
3490 }
3491 }
3492
3493 drv_stat = ata_wait_idle(ap);
3494 if (!ata_ok(drv_stat)) {
3495 qc->err_mask |= __ac_err_mask(drv_stat);
3496 ap->hsm_task_state = HSM_ST_ERR;
3497 return 0;
3498 }
3499
3500 ap->hsm_task_state = HSM_ST_IDLE;
3501
3502 WARN_ON(qc->err_mask);
3503 ata_poll_qc_complete(qc);
3504
3505 /* another command may start at this point */
3506
3507 return 1;
3508 }
3509
3510
3511 /**
3512 * swap_buf_le16 - swap halves of 16-bit words in place
3513 * @buf: Buffer to swap
3514 * @buf_words: Number of 16-bit words in buffer.
3515 *
3516 * Swap halves of 16-bit words if needed to convert from
3517 * little-endian byte order to native cpu byte order, or
3518 * vice-versa.
3519 *
3520 * LOCKING:
3521 * Inherited from caller.
3522 */
3523 void swap_buf_le16(u16 *buf, unsigned int buf_words)
3524 {
3525 #ifdef __BIG_ENDIAN
3526 unsigned int i;
3527
3528 for (i = 0; i < buf_words; i++)
3529 buf[i] = le16_to_cpu(buf[i]);
3530 #endif /* __BIG_ENDIAN */
3531 }
3532
3533 /**
3534 * ata_mmio_data_xfer - Transfer data by MMIO
3535 * @ap: port to read/write
3536 * @buf: data buffer
3537 * @buflen: buffer length
3538 * @write_data: read/write
3539 *
3540 * Transfer data from/to the device data register by MMIO.
3541 *
3542 * LOCKING:
3543 * Inherited from caller.
3544 */
3545
3546 static void ata_mmio_data_xfer(struct ata_port *ap, unsigned char *buf,
3547 unsigned int buflen, int write_data)
3548 {
3549 unsigned int i;
3550 unsigned int words = buflen >> 1;
3551 u16 *buf16 = (u16 *) buf;
3552 void __iomem *mmio = (void __iomem *)ap->ioaddr.data_addr;
3553
3554 /* Transfer multiple of 2 bytes */
3555 if (write_data) {
3556 for (i = 0; i < words; i++)
3557 writew(le16_to_cpu(buf16[i]), mmio);
3558 } else {
3559 for (i = 0; i < words; i++)
3560 buf16[i] = cpu_to_le16(readw(mmio));
3561 }
3562
3563 /* Transfer trailing 1 byte, if any. */
3564 if (unlikely(buflen & 0x01)) {
3565 u16 align_buf[1] = { 0 };
3566 unsigned char *trailing_buf = buf + buflen - 1;
3567
3568 if (write_data) {
3569 memcpy(align_buf, trailing_buf, 1);
3570 writew(le16_to_cpu(align_buf[0]), mmio);
3571 } else {
3572 align_buf[0] = cpu_to_le16(readw(mmio));
3573 memcpy(trailing_buf, align_buf, 1);
3574 }
3575 }
3576 }
3577
3578 /**
3579 * ata_pio_data_xfer - Transfer data by PIO
3580 * @ap: port to read/write
3581 * @buf: data buffer
3582 * @buflen: buffer length
3583 * @write_data: read/write
3584 *
3585 * Transfer data from/to the device data register by PIO.
3586 *
3587 * LOCKING:
3588 * Inherited from caller.
3589 */
3590
3591 static void ata_pio_data_xfer(struct ata_port *ap, unsigned char *buf,
3592 unsigned int buflen, int write_data)
3593 {
3594 unsigned int words = buflen >> 1;
3595
3596 /* Transfer multiple of 2 bytes */
3597 if (write_data)
3598 outsw(ap->ioaddr.data_addr, buf, words);
3599 else
3600 insw(ap->ioaddr.data_addr, buf, words);
3601
3602 /* Transfer trailing 1 byte, if any. */
3603 if (unlikely(buflen & 0x01)) {
3604 u16 align_buf[1] = { 0 };
3605 unsigned char *trailing_buf = buf + buflen - 1;
3606
3607 if (write_data) {
3608 memcpy(align_buf, trailing_buf, 1);
3609 outw(le16_to_cpu(align_buf[0]), ap->ioaddr.data_addr);
3610 } else {
3611 align_buf[0] = cpu_to_le16(inw(ap->ioaddr.data_addr));
3612 memcpy(trailing_buf, align_buf, 1);
3613 }
3614 }
3615 }
3616
3617 /**
3618 * ata_data_xfer - Transfer data from/to the data register.
3619 * @ap: port to read/write
3620 * @buf: data buffer
3621 * @buflen: buffer length
3622 * @do_write: read/write
3623 *
3624 * Transfer data from/to the device data register.
3625 *
3626 * LOCKING:
3627 * Inherited from caller.
3628 */
3629
3630 static void ata_data_xfer(struct ata_port *ap, unsigned char *buf,
3631 unsigned int buflen, int do_write)
3632 {
3633 /* Make the crap hardware pay the costs not the good stuff */
3634 if (unlikely(ap->flags & ATA_FLAG_IRQ_MASK)) {
3635 unsigned long flags;
3636 local_irq_save(flags);
3637 if (ap->flags & ATA_FLAG_MMIO)
3638 ata_mmio_data_xfer(ap, buf, buflen, do_write);
3639 else
3640 ata_pio_data_xfer(ap, buf, buflen, do_write);
3641 local_irq_restore(flags);
3642 } else {
3643 if (ap->flags & ATA_FLAG_MMIO)
3644 ata_mmio_data_xfer(ap, buf, buflen, do_write);
3645 else
3646 ata_pio_data_xfer(ap, buf, buflen, do_write);
3647 }
3648 }
3649
3650 /**
3651 * ata_pio_sector - Transfer ATA_SECT_SIZE (512 bytes) of data.
3652 * @qc: Command on going
3653 *
3654 * Transfer ATA_SECT_SIZE of data from/to the ATA device.
3655 *
3656 * LOCKING:
3657 * Inherited from caller.
3658 */
3659
3660 static void ata_pio_sector(struct ata_queued_cmd *qc)
3661 {
3662 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
3663 struct scatterlist *sg = qc->__sg;
3664 struct ata_port *ap = qc->ap;
3665 struct page *page;
3666 unsigned int offset;
3667 unsigned char *buf;
3668
3669 if (qc->cursect == (qc->nsect - 1))
3670 ap->hsm_task_state = HSM_ST_LAST;
3671
3672 page = sg[qc->cursg].page;
3673 offset = sg[qc->cursg].offset + qc->cursg_ofs * ATA_SECT_SIZE;
3674
3675 /* get the current page and offset */
3676 page = nth_page(page, (offset >> PAGE_SHIFT));
3677 offset %= PAGE_SIZE;
3678
3679 buf = kmap(page) + offset;
3680
3681 qc->cursect++;
3682 qc->cursg_ofs++;
3683
3684 if ((qc->cursg_ofs * ATA_SECT_SIZE) == (&sg[qc->cursg])->length) {
3685 qc->cursg++;
3686 qc->cursg_ofs = 0;
3687 }
3688
3689 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
3690
3691 /* do the actual data transfer */
3692 do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
3693 ata_data_xfer(ap, buf, ATA_SECT_SIZE, do_write);
3694
3695 kunmap(page);
3696 }
3697
3698 /**
3699 * __atapi_pio_bytes - Transfer data from/to the ATAPI device.
3700 * @qc: Command on going
3701 * @bytes: number of bytes
3702 *
3703 * Transfer Transfer data from/to the ATAPI device.
3704 *
3705 * LOCKING:
3706 * Inherited from caller.
3707 *
3708 */
3709
3710 static void __atapi_pio_bytes(struct ata_queued_cmd *qc, unsigned int bytes)
3711 {
3712 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
3713 struct scatterlist *sg = qc->__sg;
3714 struct ata_port *ap = qc->ap;
3715 struct page *page;
3716 unsigned char *buf;
3717 unsigned int offset, count;
3718
3719 if (qc->curbytes + bytes >= qc->nbytes)
3720 ap->hsm_task_state = HSM_ST_LAST;
3721
3722 next_sg:
3723 if (unlikely(qc->cursg >= qc->n_elem)) {
3724 /*
3725 * The end of qc->sg is reached and the device expects
3726 * more data to transfer. In order not to overrun qc->sg
3727 * and fulfill length specified in the byte count register,
3728 * - for read case, discard trailing data from the device
3729 * - for write case, padding zero data to the device
3730 */
3731 u16 pad_buf[1] = { 0 };
3732 unsigned int words = bytes >> 1;
3733 unsigned int i;
3734
3735 if (words) /* warning if bytes > 1 */
3736 printk(KERN_WARNING "ata%u: %u bytes trailing data\n",
3737 ap->id, bytes);
3738
3739 for (i = 0; i < words; i++)
3740 ata_data_xfer(ap, (unsigned char*)pad_buf, 2, do_write);
3741
3742 ap->hsm_task_state = HSM_ST_LAST;
3743 return;
3744 }
3745
3746 sg = &qc->__sg[qc->cursg];
3747
3748 page = sg->page;
3749 offset = sg->offset + qc->cursg_ofs;
3750
3751 /* get the current page and offset */
3752 page = nth_page(page, (offset >> PAGE_SHIFT));
3753 offset %= PAGE_SIZE;
3754
3755 /* don't overrun current sg */
3756 count = min(sg->length - qc->cursg_ofs, bytes);
3757
3758 /* don't cross page boundaries */
3759 count = min(count, (unsigned int)PAGE_SIZE - offset);
3760
3761 buf = kmap(page) + offset;
3762
3763 bytes -= count;
3764 qc->curbytes += count;
3765 qc->cursg_ofs += count;
3766
3767 if (qc->cursg_ofs == sg->length) {
3768 qc->cursg++;
3769 qc->cursg_ofs = 0;
3770 }
3771
3772 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
3773
3774 /* do the actual data transfer */
3775 ata_data_xfer(ap, buf, count, do_write);
3776
3777 kunmap(page);
3778
3779 if (bytes)
3780 goto next_sg;
3781 }
3782
3783 /**
3784 * atapi_pio_bytes - Transfer data from/to the ATAPI device.
3785 * @qc: Command on going
3786 *
3787 * Transfer Transfer data from/to the ATAPI device.
3788 *
3789 * LOCKING:
3790 * Inherited from caller.
3791 */
3792
3793 static void atapi_pio_bytes(struct ata_queued_cmd *qc)
3794 {
3795 struct ata_port *ap = qc->ap;
3796 struct ata_device *dev = qc->dev;
3797 unsigned int ireason, bc_lo, bc_hi, bytes;
3798 int i_write, do_write = (qc->tf.flags & ATA_TFLAG_WRITE) ? 1 : 0;
3799
3800 ap->ops->tf_read(ap, &qc->tf);
3801 ireason = qc->tf.nsect;
3802 bc_lo = qc->tf.lbam;
3803 bc_hi = qc->tf.lbah;
3804 bytes = (bc_hi << 8) | bc_lo;
3805
3806 /* shall be cleared to zero, indicating xfer of data */
3807 if (ireason & (1 << 0))
3808 goto err_out;
3809
3810 /* make sure transfer direction matches expected */
3811 i_write = ((ireason & (1 << 1)) == 0) ? 1 : 0;
3812 if (do_write != i_write)
3813 goto err_out;
3814
3815 __atapi_pio_bytes(qc, bytes);
3816
3817 return;
3818
3819 err_out:
3820 printk(KERN_INFO "ata%u: dev %u: ATAPI check failed\n",
3821 ap->id, dev->devno);
3822 qc->err_mask |= AC_ERR_HSM;
3823 ap->hsm_task_state = HSM_ST_ERR;
3824 }
3825
3826 /**
3827 * ata_pio_block - start PIO on a block
3828 * @qc: qc to transfer block for
3829 *
3830 * LOCKING:
3831 * None. (executing in kernel thread context)
3832 */
3833 static void ata_pio_block(struct ata_queued_cmd *qc)
3834 {
3835 struct ata_port *ap = qc->ap;
3836 u8 status;
3837
3838 /*
3839 * This is purely heuristic. This is a fast path.
3840 * Sometimes when we enter, BSY will be cleared in
3841 * a chk-status or two. If not, the drive is probably seeking
3842 * or something. Snooze for a couple msecs, then
3843 * chk-status again. If still busy, fall back to
3844 * HSM_ST_POLL state.
3845 */
3846 status = ata_busy_wait(ap, ATA_BUSY, 5);
3847 if (status & ATA_BUSY) {
3848 msleep(2);
3849 status = ata_busy_wait(ap, ATA_BUSY, 10);
3850 if (status & ATA_BUSY) {
3851 ap->hsm_task_state = HSM_ST_POLL;
3852 ap->pio_task_timeout = jiffies + ATA_TMOUT_PIO;
3853 return;
3854 }
3855 }
3856
3857 /* check error */
3858 if (status & (ATA_ERR | ATA_DF)) {
3859 qc->err_mask |= AC_ERR_DEV;
3860 ap->hsm_task_state = HSM_ST_ERR;
3861 return;
3862 }
3863
3864 /* transfer data if any */
3865 if (is_atapi_taskfile(&qc->tf)) {
3866 /* DRQ=0 means no more data to transfer */
3867 if ((status & ATA_DRQ) == 0) {
3868 ap->hsm_task_state = HSM_ST_LAST;
3869 return;
3870 }
3871
3872 atapi_pio_bytes(qc);
3873 } else {
3874 /* handle BSY=0, DRQ=0 as error */
3875 if ((status & ATA_DRQ) == 0) {
3876 qc->err_mask |= AC_ERR_HSM;
3877 ap->hsm_task_state = HSM_ST_ERR;
3878 return;
3879 }
3880
3881 ata_pio_sector(qc);
3882 }
3883 }
3884
3885 static void ata_pio_error(struct ata_queued_cmd *qc)
3886 {
3887 struct ata_port *ap = qc->ap;
3888
3889 if (qc->tf.command != ATA_CMD_PACKET)
3890 printk(KERN_WARNING "ata%u: dev %u PIO error\n",
3891 ap->id, qc->dev->devno);
3892
3893 /* make sure qc->err_mask is available to
3894 * know what's wrong and recover
3895 */
3896 WARN_ON(qc->err_mask == 0);
3897
3898 ap->hsm_task_state = HSM_ST_IDLE;
3899
3900 ata_poll_qc_complete(qc);
3901 }
3902
3903 static void ata_pio_task(void *_data)
3904 {
3905 struct ata_queued_cmd *qc = _data;
3906 struct ata_port *ap = qc->ap;
3907 unsigned long timeout;
3908 int qc_completed;
3909
3910 fsm_start:
3911 timeout = 0;
3912 qc_completed = 0;
3913
3914 switch (ap->hsm_task_state) {
3915 case HSM_ST_IDLE:
3916 return;
3917
3918 case HSM_ST:
3919 ata_pio_block(qc);
3920 break;
3921
3922 case HSM_ST_LAST:
3923 qc_completed = ata_pio_complete(qc);
3924 break;
3925
3926 case HSM_ST_POLL:
3927 case HSM_ST_LAST_POLL:
3928 timeout = ata_pio_poll(qc);
3929 break;
3930
3931 case HSM_ST_TMOUT:
3932 case HSM_ST_ERR:
3933 ata_pio_error(qc);
3934 return;
3935 }
3936
3937 if (timeout)
3938 ata_port_queue_task(ap, ata_pio_task, qc, timeout);
3939 else if (!qc_completed)
3940 goto fsm_start;
3941 }
3942
3943 /**
3944 * atapi_packet_task - Write CDB bytes to hardware
3945 * @_data: qc in progress
3946 *
3947 * When device has indicated its readiness to accept
3948 * a CDB, this function is called. Send the CDB.
3949 * If DMA is to be performed, exit immediately.
3950 * Otherwise, we are in polling mode, so poll
3951 * status under operation succeeds or fails.
3952 *
3953 * LOCKING:
3954 * Kernel thread context (may sleep)
3955 */
3956 static void atapi_packet_task(void *_data)
3957 {
3958 struct ata_queued_cmd *qc = _data;
3959 struct ata_port *ap = qc->ap;
3960 u8 status;
3961
3962 /* sleep-wait for BSY to clear */
3963 DPRINTK("busy wait\n");
3964 if (ata_busy_sleep(ap, ATA_TMOUT_CDB_QUICK, ATA_TMOUT_CDB)) {
3965 qc->err_mask |= AC_ERR_TIMEOUT;
3966 goto err_out;
3967 }
3968
3969 /* make sure DRQ is set */
3970 status = ata_chk_status(ap);
3971 if ((status & (ATA_BUSY | ATA_DRQ)) != ATA_DRQ) {
3972 qc->err_mask |= AC_ERR_HSM;
3973 goto err_out;
3974 }
3975
3976 /* send SCSI cdb */
3977 DPRINTK("send cdb\n");
3978 WARN_ON(qc->dev->cdb_len < 12);
3979
3980 if (qc->tf.protocol == ATA_PROT_ATAPI_DMA ||
3981 qc->tf.protocol == ATA_PROT_ATAPI_NODATA) {
3982 unsigned long flags;
3983
3984 /* Once we're done issuing command and kicking bmdma,
3985 * irq handler takes over. To not lose irq, we need
3986 * to clear NOINTR flag before sending cdb, but
3987 * interrupt handler shouldn't be invoked before we're
3988 * finished. Hence, the following locking.
3989 */
3990 spin_lock_irqsave(&ap->host_set->lock, flags);
3991 ap->flags &= ~ATA_FLAG_NOINTR;
3992 ata_data_xfer(ap, qc->cdb, qc->dev->cdb_len, 1);
3993 if (qc->tf.protocol == ATA_PROT_ATAPI_DMA)
3994 ap->ops->bmdma_start(qc); /* initiate bmdma */
3995 spin_unlock_irqrestore(&ap->host_set->lock, flags);
3996 } else {
3997 ata_data_xfer(ap, qc->cdb, qc->dev->cdb_len, 1);
3998
3999 /* PIO commands are handled by polling */
4000 ap->hsm_task_state = HSM_ST;
4001 ata_port_queue_task(ap, ata_pio_task, qc, 0);
4002 }
4003
4004 return;
4005
4006 err_out:
4007 ata_poll_qc_complete(qc);
4008 }
4009
4010 /**
4011 * ata_qc_new - Request an available ATA command, for queueing
4012 * @ap: Port associated with device @dev
4013 * @dev: Device from whom we request an available command structure
4014 *
4015 * LOCKING:
4016 * None.
4017 */
4018
4019 static struct ata_queued_cmd *ata_qc_new(struct ata_port *ap)
4020 {
4021 struct ata_queued_cmd *qc = NULL;
4022 unsigned int i;
4023
4024 for (i = 0; i < ATA_MAX_QUEUE; i++)
4025 if (!test_and_set_bit(i, &ap->qactive)) {
4026 qc = ata_qc_from_tag(ap, i);
4027 break;
4028 }
4029
4030 if (qc)
4031 qc->tag = i;
4032
4033 return qc;
4034 }
4035
4036 /**
4037 * ata_qc_new_init - Request an available ATA command, and initialize it
4038 * @dev: Device from whom we request an available command structure
4039 *
4040 * LOCKING:
4041 * None.
4042 */
4043
4044 struct ata_queued_cmd *ata_qc_new_init(struct ata_device *dev)
4045 {
4046 struct ata_port *ap = dev->ap;
4047 struct ata_queued_cmd *qc;
4048
4049 qc = ata_qc_new(ap);
4050 if (qc) {
4051 qc->scsicmd = NULL;
4052 qc->ap = ap;
4053 qc->dev = dev;
4054
4055 ata_qc_reinit(qc);
4056 }
4057
4058 return qc;
4059 }
4060
4061 /**
4062 * ata_qc_free - free unused ata_queued_cmd
4063 * @qc: Command to complete
4064 *
4065 * Designed to free unused ata_queued_cmd object
4066 * in case something prevents using it.
4067 *
4068 * LOCKING:
4069 * spin_lock_irqsave(host_set lock)
4070 */
4071 void ata_qc_free(struct ata_queued_cmd *qc)
4072 {
4073 struct ata_port *ap = qc->ap;
4074 unsigned int tag;
4075
4076 WARN_ON(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
4077
4078 qc->flags = 0;
4079 tag = qc->tag;
4080 if (likely(ata_tag_valid(tag))) {
4081 qc->tag = ATA_TAG_POISON;
4082 clear_bit(tag, &ap->qactive);
4083 }
4084 }
4085
4086 void __ata_qc_complete(struct ata_queued_cmd *qc)
4087 {
4088 WARN_ON(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
4089 WARN_ON(!(qc->flags & ATA_QCFLAG_ACTIVE));
4090
4091 if (likely(qc->flags & ATA_QCFLAG_DMAMAP))
4092 ata_sg_clean(qc);
4093
4094 /* command should be marked inactive atomically with qc completion */
4095 qc->ap->active_tag = ATA_TAG_POISON;
4096
4097 /* atapi: mark qc as inactive to prevent the interrupt handler
4098 * from completing the command twice later, before the error handler
4099 * is called. (when rc != 0 and atapi request sense is needed)
4100 */
4101 qc->flags &= ~ATA_QCFLAG_ACTIVE;
4102
4103 /* call completion callback */
4104 qc->complete_fn(qc);
4105 }
4106
4107 static inline int ata_should_dma_map(struct ata_queued_cmd *qc)
4108 {
4109 struct ata_port *ap = qc->ap;
4110
4111 switch (qc->tf.protocol) {
4112 case ATA_PROT_DMA:
4113 case ATA_PROT_ATAPI_DMA:
4114 return 1;
4115
4116 case ATA_PROT_ATAPI:
4117 case ATA_PROT_PIO:
4118 if (ap->flags & ATA_FLAG_PIO_DMA)
4119 return 1;
4120
4121 /* fall through */
4122
4123 default:
4124 return 0;
4125 }
4126
4127 /* never reached */
4128 }
4129
4130 /**
4131 * ata_qc_issue - issue taskfile to device
4132 * @qc: command to issue to device
4133 *
4134 * Prepare an ATA command to submission to device.
4135 * This includes mapping the data into a DMA-able
4136 * area, filling in the S/G table, and finally
4137 * writing the taskfile to hardware, starting the command.
4138 *
4139 * LOCKING:
4140 * spin_lock_irqsave(host_set lock)
4141 */
4142 void ata_qc_issue(struct ata_queued_cmd *qc)
4143 {
4144 struct ata_port *ap = qc->ap;
4145
4146 qc->ap->active_tag = qc->tag;
4147 qc->flags |= ATA_QCFLAG_ACTIVE;
4148
4149 if (ata_should_dma_map(qc)) {
4150 if (qc->flags & ATA_QCFLAG_SG) {
4151 if (ata_sg_setup(qc))
4152 goto sg_err;
4153 } else if (qc->flags & ATA_QCFLAG_SINGLE) {
4154 if (ata_sg_setup_one(qc))
4155 goto sg_err;
4156 }
4157 } else {
4158 qc->flags &= ~ATA_QCFLAG_DMAMAP;
4159 }
4160
4161 ap->ops->qc_prep(qc);
4162
4163 qc->err_mask |= ap->ops->qc_issue(qc);
4164 if (unlikely(qc->err_mask))
4165 goto err;
4166 return;
4167
4168 sg_err:
4169 qc->flags &= ~ATA_QCFLAG_DMAMAP;
4170 qc->err_mask |= AC_ERR_SYSTEM;
4171 err:
4172 ata_qc_complete(qc);
4173 }
4174
4175 /**
4176 * ata_qc_issue_prot - issue taskfile to device in proto-dependent manner
4177 * @qc: command to issue to device
4178 *
4179 * Using various libata functions and hooks, this function
4180 * starts an ATA command. ATA commands are grouped into
4181 * classes called "protocols", and issuing each type of protocol
4182 * is slightly different.
4183 *
4184 * May be used as the qc_issue() entry in ata_port_operations.
4185 *
4186 * LOCKING:
4187 * spin_lock_irqsave(host_set lock)
4188 *
4189 * RETURNS:
4190 * Zero on success, AC_ERR_* mask on failure
4191 */
4192
4193 unsigned int ata_qc_issue_prot(struct ata_queued_cmd *qc)
4194 {
4195 struct ata_port *ap = qc->ap;
4196
4197 ata_dev_select(ap, qc->dev->devno, 1, 0);
4198
4199 switch (qc->tf.protocol) {
4200 case ATA_PROT_NODATA:
4201 ata_tf_to_host(ap, &qc->tf);
4202 break;
4203
4204 case ATA_PROT_DMA:
4205 ap->ops->tf_load(ap, &qc->tf); /* load tf registers */
4206 ap->ops->bmdma_setup(qc); /* set up bmdma */
4207 ap->ops->bmdma_start(qc); /* initiate bmdma */
4208 break;
4209
4210 case ATA_PROT_PIO: /* load tf registers, initiate polling pio */
4211 ata_qc_set_polling(qc);
4212 ata_tf_to_host(ap, &qc->tf);
4213 ap->hsm_task_state = HSM_ST;
4214 ata_port_queue_task(ap, ata_pio_task, qc, 0);
4215 break;
4216
4217 case ATA_PROT_ATAPI:
4218 ata_qc_set_polling(qc);
4219 ata_tf_to_host(ap, &qc->tf);
4220 ata_port_queue_task(ap, atapi_packet_task, qc, 0);
4221 break;
4222
4223 case ATA_PROT_ATAPI_NODATA:
4224 ap->flags |= ATA_FLAG_NOINTR;
4225 ata_tf_to_host(ap, &qc->tf);
4226 ata_port_queue_task(ap, atapi_packet_task, qc, 0);
4227 break;
4228
4229 case ATA_PROT_ATAPI_DMA:
4230 ap->flags |= ATA_FLAG_NOINTR;
4231 ap->ops->tf_load(ap, &qc->tf); /* load tf registers */
4232 ap->ops->bmdma_setup(qc); /* set up bmdma */
4233 ata_port_queue_task(ap, atapi_packet_task, qc, 0);
4234 break;
4235
4236 default:
4237 WARN_ON(1);
4238 return AC_ERR_SYSTEM;
4239 }
4240
4241 return 0;
4242 }
4243
4244 /**
4245 * ata_host_intr - Handle host interrupt for given (port, task)
4246 * @ap: Port on which interrupt arrived (possibly...)
4247 * @qc: Taskfile currently active in engine
4248 *
4249 * Handle host interrupt for given queued command. Currently,
4250 * only DMA interrupts are handled. All other commands are
4251 * handled via polling with interrupts disabled (nIEN bit).
4252 *
4253 * LOCKING:
4254 * spin_lock_irqsave(host_set lock)
4255 *
4256 * RETURNS:
4257 * One if interrupt was handled, zero if not (shared irq).
4258 */
4259
4260 inline unsigned int ata_host_intr (struct ata_port *ap,
4261 struct ata_queued_cmd *qc)
4262 {
4263 u8 status, host_stat;
4264
4265 switch (qc->tf.protocol) {
4266
4267 case ATA_PROT_DMA:
4268 case ATA_PROT_ATAPI_DMA:
4269 case ATA_PROT_ATAPI:
4270 /* check status of DMA engine */
4271 host_stat = ap->ops->bmdma_status(ap);
4272 VPRINTK("ata%u: host_stat 0x%X\n", ap->id, host_stat);
4273
4274 /* if it's not our irq... */
4275 if (!(host_stat & ATA_DMA_INTR))
4276 goto idle_irq;
4277
4278 /* before we do anything else, clear DMA-Start bit */
4279 ap->ops->bmdma_stop(qc);
4280
4281 /* fall through */
4282
4283 case ATA_PROT_ATAPI_NODATA:
4284 case ATA_PROT_NODATA:
4285 /* check altstatus */
4286 status = ata_altstatus(ap);
4287 if (status & ATA_BUSY)
4288 goto idle_irq;
4289
4290 /* check main status, clearing INTRQ */
4291 status = ata_chk_status(ap);
4292 if (unlikely(status & ATA_BUSY))
4293 goto idle_irq;
4294 DPRINTK("ata%u: protocol %d (dev_stat 0x%X)\n",
4295 ap->id, qc->tf.protocol, status);
4296
4297 /* ack bmdma irq events */
4298 ap->ops->irq_clear(ap);
4299
4300 /* complete taskfile transaction */
4301 qc->err_mask |= ac_err_mask(status);
4302 ata_qc_complete(qc);
4303 break;
4304
4305 default:
4306 goto idle_irq;
4307 }
4308
4309 return 1; /* irq handled */
4310
4311 idle_irq:
4312 ap->stats.idle_irq++;
4313
4314 #ifdef ATA_IRQ_TRAP
4315 if ((ap->stats.idle_irq % 1000) == 0) {
4316 ata_irq_ack(ap, 0); /* debug trap */
4317 printk(KERN_WARNING "ata%d: irq trap\n", ap->id);
4318 return 1;
4319 }
4320 #endif
4321 return 0; /* irq not handled */
4322 }
4323
4324 /**
4325 * ata_interrupt - Default ATA host interrupt handler
4326 * @irq: irq line (unused)
4327 * @dev_instance: pointer to our ata_host_set information structure
4328 * @regs: unused
4329 *
4330 * Default interrupt handler for PCI IDE devices. Calls
4331 * ata_host_intr() for each port that is not disabled.
4332 *
4333 * LOCKING:
4334 * Obtains host_set lock during operation.
4335 *
4336 * RETURNS:
4337 * IRQ_NONE or IRQ_HANDLED.
4338 */
4339
4340 irqreturn_t ata_interrupt (int irq, void *dev_instance, struct pt_regs *regs)
4341 {
4342 struct ata_host_set *host_set = dev_instance;
4343 unsigned int i;
4344 unsigned int handled = 0;
4345 unsigned long flags;
4346
4347 /* TODO: make _irqsave conditional on x86 PCI IDE legacy mode */
4348 spin_lock_irqsave(&host_set->lock, flags);
4349
4350 for (i = 0; i < host_set->n_ports; i++) {
4351 struct ata_port *ap;
4352
4353 ap = host_set->ports[i];
4354 if (ap &&
4355 !(ap->flags & (ATA_FLAG_DISABLED | ATA_FLAG_NOINTR))) {
4356 struct ata_queued_cmd *qc;
4357
4358 qc = ata_qc_from_tag(ap, ap->active_tag);
4359 if (qc && (!(qc->tf.ctl & ATA_NIEN)) &&
4360 (qc->flags & ATA_QCFLAG_ACTIVE))
4361 handled |= ata_host_intr(ap, qc);
4362 }
4363 }
4364
4365 spin_unlock_irqrestore(&host_set->lock, flags);
4366
4367 return IRQ_RETVAL(handled);
4368 }
4369
4370 /**
4371 * sata_scr_valid - test whether SCRs are accessible
4372 * @ap: ATA port to test SCR accessibility for
4373 *
4374 * Test whether SCRs are accessible for @ap.
4375 *
4376 * LOCKING:
4377 * None.
4378 *
4379 * RETURNS:
4380 * 1 if SCRs are accessible, 0 otherwise.
4381 */
4382 int sata_scr_valid(struct ata_port *ap)
4383 {
4384 return ap->cbl == ATA_CBL_SATA && ap->ops->scr_read;
4385 }
4386
4387 /**
4388 * sata_scr_read - read SCR register of the specified port
4389 * @ap: ATA port to read SCR for
4390 * @reg: SCR to read
4391 * @val: Place to store read value
4392 *
4393 * Read SCR register @reg of @ap into *@val. This function is
4394 * guaranteed to succeed if the cable type of the port is SATA
4395 * and the port implements ->scr_read.
4396 *
4397 * LOCKING:
4398 * None.
4399 *
4400 * RETURNS:
4401 * 0 on success, negative errno on failure.
4402 */
4403 int sata_scr_read(struct ata_port *ap, int reg, u32 *val)
4404 {
4405 if (sata_scr_valid(ap)) {
4406 *val = ap->ops->scr_read(ap, reg);
4407 return 0;
4408 }
4409 return -EOPNOTSUPP;
4410 }
4411
4412 /**
4413 * sata_scr_write - write SCR register of the specified port
4414 * @ap: ATA port to write SCR for
4415 * @reg: SCR to write
4416 * @val: value to write
4417 *
4418 * Write @val to SCR register @reg of @ap. This function is
4419 * guaranteed to succeed if the cable type of the port is SATA
4420 * and the port implements ->scr_read.
4421 *
4422 * LOCKING:
4423 * None.
4424 *
4425 * RETURNS:
4426 * 0 on success, negative errno on failure.
4427 */
4428 int sata_scr_write(struct ata_port *ap, int reg, u32 val)
4429 {
4430 if (sata_scr_valid(ap)) {
4431 ap->ops->scr_write(ap, reg, val);
4432 return 0;
4433 }
4434 return -EOPNOTSUPP;
4435 }
4436
4437 /**
4438 * sata_scr_write_flush - write SCR register of the specified port and flush
4439 * @ap: ATA port to write SCR for
4440 * @reg: SCR to write
4441 * @val: value to write
4442 *
4443 * This function is identical to sata_scr_write() except that this
4444 * function performs flush after writing to the register.
4445 *
4446 * LOCKING:
4447 * None.
4448 *
4449 * RETURNS:
4450 * 0 on success, negative errno on failure.
4451 */
4452 int sata_scr_write_flush(struct ata_port *ap, int reg, u32 val)
4453 {
4454 if (sata_scr_valid(ap)) {
4455 ap->ops->scr_write(ap, reg, val);
4456 ap->ops->scr_read(ap, reg);
4457 return 0;
4458 }
4459 return -EOPNOTSUPP;
4460 }
4461
4462 /**
4463 * ata_port_online - test whether the given port is online
4464 * @ap: ATA port to test
4465 *
4466 * Test whether @ap is online. Note that this function returns 0
4467 * if online status of @ap cannot be obtained, so
4468 * ata_port_online(ap) != !ata_port_offline(ap).
4469 *
4470 * LOCKING:
4471 * None.
4472 *
4473 * RETURNS:
4474 * 1 if the port online status is available and online.
4475 */
4476 int ata_port_online(struct ata_port *ap)
4477 {
4478 u32 sstatus;
4479
4480 if (!sata_scr_read(ap, SCR_STATUS, &sstatus) && (sstatus & 0xf) == 0x3)
4481 return 1;
4482 return 0;
4483 }
4484
4485 /**
4486 * ata_port_offline - test whether the given port is offline
4487 * @ap: ATA port to test
4488 *
4489 * Test whether @ap is offline. Note that this function returns
4490 * 0 if offline status of @ap cannot be obtained, so
4491 * ata_port_online(ap) != !ata_port_offline(ap).
4492 *
4493 * LOCKING:
4494 * None.
4495 *
4496 * RETURNS:
4497 * 1 if the port offline status is available and offline.
4498 */
4499 int ata_port_offline(struct ata_port *ap)
4500 {
4501 u32 sstatus;
4502
4503 if (!sata_scr_read(ap, SCR_STATUS, &sstatus) && (sstatus & 0xf) != 0x3)
4504 return 1;
4505 return 0;
4506 }
4507
4508 /*
4509 * Execute a 'simple' command, that only consists of the opcode 'cmd' itself,
4510 * without filling any other registers
4511 */
4512 static int ata_do_simple_cmd(struct ata_device *dev, u8 cmd)
4513 {
4514 struct ata_taskfile tf;
4515 int err;
4516
4517 ata_tf_init(dev, &tf);
4518
4519 tf.command = cmd;
4520 tf.flags |= ATA_TFLAG_DEVICE;
4521 tf.protocol = ATA_PROT_NODATA;
4522
4523 err = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
4524 if (err)
4525 printk(KERN_ERR "%s: ata command failed: %d\n",
4526 __FUNCTION__, err);
4527
4528 return err;
4529 }
4530
4531 static int ata_flush_cache(struct ata_device *dev)
4532 {
4533 u8 cmd;
4534
4535 if (!ata_try_flush_cache(dev))
4536 return 0;
4537
4538 if (ata_id_has_flush_ext(dev->id))
4539 cmd = ATA_CMD_FLUSH_EXT;
4540 else
4541 cmd = ATA_CMD_FLUSH;
4542
4543 return ata_do_simple_cmd(dev, cmd);
4544 }
4545
4546 static int ata_standby_drive(struct ata_device *dev)
4547 {
4548 return ata_do_simple_cmd(dev, ATA_CMD_STANDBYNOW1);
4549 }
4550
4551 static int ata_start_drive(struct ata_device *dev)
4552 {
4553 return ata_do_simple_cmd(dev, ATA_CMD_IDLEIMMEDIATE);
4554 }
4555
4556 /**
4557 * ata_device_resume - wakeup a previously suspended devices
4558 * @dev: the device to resume
4559 *
4560 * Kick the drive back into action, by sending it an idle immediate
4561 * command and making sure its transfer mode matches between drive
4562 * and host.
4563 *
4564 */
4565 int ata_device_resume(struct ata_device *dev)
4566 {
4567 struct ata_port *ap = dev->ap;
4568
4569 if (ap->flags & ATA_FLAG_SUSPENDED) {
4570 struct ata_device *failed_dev;
4571 ap->flags &= ~ATA_FLAG_SUSPENDED;
4572 while (ata_set_mode(ap, &failed_dev))
4573 ata_dev_disable(failed_dev);
4574 }
4575 if (!ata_dev_enabled(dev))
4576 return 0;
4577 if (dev->class == ATA_DEV_ATA)
4578 ata_start_drive(dev);
4579
4580 return 0;
4581 }
4582
4583 /**
4584 * ata_device_suspend - prepare a device for suspend
4585 * @dev: the device to suspend
4586 *
4587 * Flush the cache on the drive, if appropriate, then issue a
4588 * standbynow command.
4589 */
4590 int ata_device_suspend(struct ata_device *dev, pm_message_t state)
4591 {
4592 struct ata_port *ap = dev->ap;
4593
4594 if (!ata_dev_enabled(dev))
4595 return 0;
4596 if (dev->class == ATA_DEV_ATA)
4597 ata_flush_cache(dev);
4598
4599 if (state.event != PM_EVENT_FREEZE)
4600 ata_standby_drive(dev);
4601 ap->flags |= ATA_FLAG_SUSPENDED;
4602 return 0;
4603 }
4604
4605 /**
4606 * ata_port_start - Set port up for dma.
4607 * @ap: Port to initialize
4608 *
4609 * Called just after data structures for each port are
4610 * initialized. Allocates space for PRD table.
4611 *
4612 * May be used as the port_start() entry in ata_port_operations.
4613 *
4614 * LOCKING:
4615 * Inherited from caller.
4616 */
4617
4618 int ata_port_start (struct ata_port *ap)
4619 {
4620 struct device *dev = ap->dev;
4621 int rc;
4622
4623 ap->prd = dma_alloc_coherent(dev, ATA_PRD_TBL_SZ, &ap->prd_dma, GFP_KERNEL);
4624 if (!ap->prd)
4625 return -ENOMEM;
4626
4627 rc = ata_pad_alloc(ap, dev);
4628 if (rc) {
4629 dma_free_coherent(dev, ATA_PRD_TBL_SZ, ap->prd, ap->prd_dma);
4630 return rc;
4631 }
4632
4633 DPRINTK("prd alloc, virt %p, dma %llx\n", ap->prd, (unsigned long long) ap->prd_dma);
4634
4635 return 0;
4636 }
4637
4638
4639 /**
4640 * ata_port_stop - Undo ata_port_start()
4641 * @ap: Port to shut down
4642 *
4643 * Frees the PRD table.
4644 *
4645 * May be used as the port_stop() entry in ata_port_operations.
4646 *
4647 * LOCKING:
4648 * Inherited from caller.
4649 */
4650
4651 void ata_port_stop (struct ata_port *ap)
4652 {
4653 struct device *dev = ap->dev;
4654
4655 dma_free_coherent(dev, ATA_PRD_TBL_SZ, ap->prd, ap->prd_dma);
4656 ata_pad_free(ap, dev);
4657 }
4658
4659 void ata_host_stop (struct ata_host_set *host_set)
4660 {
4661 if (host_set->mmio_base)
4662 iounmap(host_set->mmio_base);
4663 }
4664
4665
4666 /**
4667 * ata_host_remove - Unregister SCSI host structure with upper layers
4668 * @ap: Port to unregister
4669 * @do_unregister: 1 if we fully unregister, 0 to just stop the port
4670 *
4671 * LOCKING:
4672 * Inherited from caller.
4673 */
4674
4675 static void ata_host_remove(struct ata_port *ap, unsigned int do_unregister)
4676 {
4677 struct Scsi_Host *sh = ap->host;
4678
4679 DPRINTK("ENTER\n");
4680
4681 if (do_unregister)
4682 scsi_remove_host(sh);
4683
4684 ap->ops->port_stop(ap);
4685 }
4686
4687 /**
4688 * ata_host_init - Initialize an ata_port structure
4689 * @ap: Structure to initialize
4690 * @host: associated SCSI mid-layer structure
4691 * @host_set: Collection of hosts to which @ap belongs
4692 * @ent: Probe information provided by low-level driver
4693 * @port_no: Port number associated with this ata_port
4694 *
4695 * Initialize a new ata_port structure, and its associated
4696 * scsi_host.
4697 *
4698 * LOCKING:
4699 * Inherited from caller.
4700 */
4701
4702 static void ata_host_init(struct ata_port *ap, struct Scsi_Host *host,
4703 struct ata_host_set *host_set,
4704 const struct ata_probe_ent *ent, unsigned int port_no)
4705 {
4706 unsigned int i;
4707
4708 host->max_id = 16;
4709 host->max_lun = 1;
4710 host->max_channel = 1;
4711 host->unique_id = ata_unique_id++;
4712 host->max_cmd_len = 12;
4713
4714 ap->flags = ATA_FLAG_DISABLED;
4715 ap->id = host->unique_id;
4716 ap->host = host;
4717 ap->ctl = ATA_DEVCTL_OBS;
4718 ap->host_set = host_set;
4719 ap->dev = ent->dev;
4720 ap->port_no = port_no;
4721 ap->hard_port_no =
4722 ent->legacy_mode ? ent->hard_port_no : port_no;
4723 ap->pio_mask = ent->pio_mask;
4724 ap->mwdma_mask = ent->mwdma_mask;
4725 ap->udma_mask = ent->udma_mask;
4726 ap->flags |= ent->host_flags;
4727 ap->ops = ent->port_ops;
4728 ap->sata_spd_limit = UINT_MAX;
4729 ap->active_tag = ATA_TAG_POISON;
4730 ap->last_ctl = 0xFF;
4731
4732 INIT_WORK(&ap->port_task, NULL, NULL);
4733 INIT_LIST_HEAD(&ap->eh_done_q);
4734
4735 /* set cable type */
4736 ap->cbl = ATA_CBL_NONE;
4737 if (ap->flags & ATA_FLAG_SATA)
4738 ap->cbl = ATA_CBL_SATA;
4739
4740 for (i = 0; i < ATA_MAX_DEVICES; i++) {
4741 struct ata_device *dev = &ap->device[i];
4742 dev->ap = ap;
4743 dev->devno = i;
4744 dev->pio_mask = UINT_MAX;
4745 dev->mwdma_mask = UINT_MAX;
4746 dev->udma_mask = UINT_MAX;
4747 }
4748
4749 #ifdef ATA_IRQ_TRAP
4750 ap->stats.unhandled_irq = 1;
4751 ap->stats.idle_irq = 1;
4752 #endif
4753
4754 memcpy(&ap->ioaddr, &ent->port[port_no], sizeof(struct ata_ioports));
4755 }
4756
4757 /**
4758 * ata_host_add - Attach low-level ATA driver to system
4759 * @ent: Information provided by low-level driver
4760 * @host_set: Collections of ports to which we add
4761 * @port_no: Port number associated with this host
4762 *
4763 * Attach low-level ATA driver to system.
4764 *
4765 * LOCKING:
4766 * PCI/etc. bus probe sem.
4767 *
4768 * RETURNS:
4769 * New ata_port on success, for NULL on error.
4770 */
4771
4772 static struct ata_port * ata_host_add(const struct ata_probe_ent *ent,
4773 struct ata_host_set *host_set,
4774 unsigned int port_no)
4775 {
4776 struct Scsi_Host *host;
4777 struct ata_port *ap;
4778 int rc;
4779
4780 DPRINTK("ENTER\n");
4781
4782 if (!ent->port_ops->probe_reset &&
4783 !(ent->host_flags & (ATA_FLAG_SATA_RESET | ATA_FLAG_SRST))) {
4784 printk(KERN_ERR "ata%u: no reset mechanism available\n",
4785 port_no);
4786 return NULL;
4787 }
4788
4789 host = scsi_host_alloc(ent->sht, sizeof(struct ata_port));
4790 if (!host)
4791 return NULL;
4792
4793 host->transportt = &ata_scsi_transport_template;
4794
4795 ap = ata_shost_to_port(host);
4796
4797 ata_host_init(ap, host, host_set, ent, port_no);
4798
4799 rc = ap->ops->port_start(ap);
4800 if (rc)
4801 goto err_out;
4802
4803 return ap;
4804
4805 err_out:
4806 scsi_host_put(host);
4807 return NULL;
4808 }
4809
4810 /**
4811 * ata_device_add - Register hardware device with ATA and SCSI layers
4812 * @ent: Probe information describing hardware device to be registered
4813 *
4814 * This function processes the information provided in the probe
4815 * information struct @ent, allocates the necessary ATA and SCSI
4816 * host information structures, initializes them, and registers
4817 * everything with requisite kernel subsystems.
4818 *
4819 * This function requests irqs, probes the ATA bus, and probes
4820 * the SCSI bus.
4821 *
4822 * LOCKING:
4823 * PCI/etc. bus probe sem.
4824 *
4825 * RETURNS:
4826 * Number of ports registered. Zero on error (no ports registered).
4827 */
4828
4829 int ata_device_add(const struct ata_probe_ent *ent)
4830 {
4831 unsigned int count = 0, i;
4832 struct device *dev = ent->dev;
4833 struct ata_host_set *host_set;
4834
4835 DPRINTK("ENTER\n");
4836 /* alloc a container for our list of ATA ports (buses) */
4837 host_set = kzalloc(sizeof(struct ata_host_set) +
4838 (ent->n_ports * sizeof(void *)), GFP_KERNEL);
4839 if (!host_set)
4840 return 0;
4841 spin_lock_init(&host_set->lock);
4842
4843 host_set->dev = dev;
4844 host_set->n_ports = ent->n_ports;
4845 host_set->irq = ent->irq;
4846 host_set->mmio_base = ent->mmio_base;
4847 host_set->private_data = ent->private_data;
4848 host_set->ops = ent->port_ops;
4849 host_set->flags = ent->host_set_flags;
4850
4851 /* register each port bound to this device */
4852 for (i = 0; i < ent->n_ports; i++) {
4853 struct ata_port *ap;
4854 unsigned long xfer_mode_mask;
4855
4856 ap = ata_host_add(ent, host_set, i);
4857 if (!ap)
4858 goto err_out;
4859
4860 host_set->ports[i] = ap;
4861 xfer_mode_mask =(ap->udma_mask << ATA_SHIFT_UDMA) |
4862 (ap->mwdma_mask << ATA_SHIFT_MWDMA) |
4863 (ap->pio_mask << ATA_SHIFT_PIO);
4864
4865 /* print per-port info to dmesg */
4866 printk(KERN_INFO "ata%u: %cATA max %s cmd 0x%lX ctl 0x%lX "
4867 "bmdma 0x%lX irq %lu\n",
4868 ap->id,
4869 ap->flags & ATA_FLAG_SATA ? 'S' : 'P',
4870 ata_mode_string(xfer_mode_mask),
4871 ap->ioaddr.cmd_addr,
4872 ap->ioaddr.ctl_addr,
4873 ap->ioaddr.bmdma_addr,
4874 ent->irq);
4875
4876 ata_chk_status(ap);
4877 host_set->ops->irq_clear(ap);
4878 count++;
4879 }
4880
4881 if (!count)
4882 goto err_free_ret;
4883
4884 /* obtain irq, that is shared between channels */
4885 if (request_irq(ent->irq, ent->port_ops->irq_handler, ent->irq_flags,
4886 DRV_NAME, host_set))
4887 goto err_out;
4888
4889 /* perform each probe synchronously */
4890 DPRINTK("probe begin\n");
4891 for (i = 0; i < count; i++) {
4892 struct ata_port *ap;
4893 int rc;
4894
4895 ap = host_set->ports[i];
4896
4897 DPRINTK("ata%u: bus probe begin\n", ap->id);
4898 rc = ata_bus_probe(ap);
4899 DPRINTK("ata%u: bus probe end\n", ap->id);
4900
4901 if (rc) {
4902 /* FIXME: do something useful here?
4903 * Current libata behavior will
4904 * tear down everything when
4905 * the module is removed
4906 * or the h/w is unplugged.
4907 */
4908 }
4909
4910 rc = scsi_add_host(ap->host, dev);
4911 if (rc) {
4912 printk(KERN_ERR "ata%u: scsi_add_host failed\n",
4913 ap->id);
4914 /* FIXME: do something useful here */
4915 /* FIXME: handle unconditional calls to
4916 * scsi_scan_host and ata_host_remove, below,
4917 * at the very least
4918 */
4919 }
4920 }
4921
4922 /* probes are done, now scan each port's disk(s) */
4923 DPRINTK("host probe begin\n");
4924 for (i = 0; i < count; i++) {
4925 struct ata_port *ap = host_set->ports[i];
4926
4927 ata_scsi_scan_host(ap);
4928 }
4929
4930 dev_set_drvdata(dev, host_set);
4931
4932 VPRINTK("EXIT, returning %u\n", ent->n_ports);
4933 return ent->n_ports; /* success */
4934
4935 err_out:
4936 for (i = 0; i < count; i++) {
4937 ata_host_remove(host_set->ports[i], 1);
4938 scsi_host_put(host_set->ports[i]->host);
4939 }
4940 err_free_ret:
4941 kfree(host_set);
4942 VPRINTK("EXIT, returning 0\n");
4943 return 0;
4944 }
4945
4946 /**
4947 * ata_host_set_remove - PCI layer callback for device removal
4948 * @host_set: ATA host set that was removed
4949 *
4950 * Unregister all objects associated with this host set. Free those
4951 * objects.
4952 *
4953 * LOCKING:
4954 * Inherited from calling layer (may sleep).
4955 */
4956
4957 void ata_host_set_remove(struct ata_host_set *host_set)
4958 {
4959 struct ata_port *ap;
4960 unsigned int i;
4961
4962 for (i = 0; i < host_set->n_ports; i++) {
4963 ap = host_set->ports[i];
4964 scsi_remove_host(ap->host);
4965 }
4966
4967 free_irq(host_set->irq, host_set);
4968
4969 for (i = 0; i < host_set->n_ports; i++) {
4970 ap = host_set->ports[i];
4971
4972 ata_scsi_release(ap->host);
4973
4974 if ((ap->flags & ATA_FLAG_NO_LEGACY) == 0) {
4975 struct ata_ioports *ioaddr = &ap->ioaddr;
4976
4977 if (ioaddr->cmd_addr == 0x1f0)
4978 release_region(0x1f0, 8);
4979 else if (ioaddr->cmd_addr == 0x170)
4980 release_region(0x170, 8);
4981 }
4982
4983 scsi_host_put(ap->host);
4984 }
4985
4986 if (host_set->ops->host_stop)
4987 host_set->ops->host_stop(host_set);
4988
4989 kfree(host_set);
4990 }
4991
4992 /**
4993 * ata_scsi_release - SCSI layer callback hook for host unload
4994 * @host: libata host to be unloaded
4995 *
4996 * Performs all duties necessary to shut down a libata port...
4997 * Kill port kthread, disable port, and release resources.
4998 *
4999 * LOCKING:
5000 * Inherited from SCSI layer.
5001 *
5002 * RETURNS:
5003 * One.
5004 */
5005
5006 int ata_scsi_release(struct Scsi_Host *host)
5007 {
5008 struct ata_port *ap = ata_shost_to_port(host);
5009
5010 DPRINTK("ENTER\n");
5011
5012 ap->ops->port_disable(ap);
5013 ata_host_remove(ap, 0);
5014
5015 DPRINTK("EXIT\n");
5016 return 1;
5017 }
5018
5019 /**
5020 * ata_std_ports - initialize ioaddr with standard port offsets.
5021 * @ioaddr: IO address structure to be initialized
5022 *
5023 * Utility function which initializes data_addr, error_addr,
5024 * feature_addr, nsect_addr, lbal_addr, lbam_addr, lbah_addr,
5025 * device_addr, status_addr, and command_addr to standard offsets
5026 * relative to cmd_addr.
5027 *
5028 * Does not set ctl_addr, altstatus_addr, bmdma_addr, or scr_addr.
5029 */
5030
5031 void ata_std_ports(struct ata_ioports *ioaddr)
5032 {
5033 ioaddr->data_addr = ioaddr->cmd_addr + ATA_REG_DATA;
5034 ioaddr->error_addr = ioaddr->cmd_addr + ATA_REG_ERR;
5035 ioaddr->feature_addr = ioaddr->cmd_addr + ATA_REG_FEATURE;
5036 ioaddr->nsect_addr = ioaddr->cmd_addr + ATA_REG_NSECT;
5037 ioaddr->lbal_addr = ioaddr->cmd_addr + ATA_REG_LBAL;
5038 ioaddr->lbam_addr = ioaddr->cmd_addr + ATA_REG_LBAM;
5039 ioaddr->lbah_addr = ioaddr->cmd_addr + ATA_REG_LBAH;
5040 ioaddr->device_addr = ioaddr->cmd_addr + ATA_REG_DEVICE;
5041 ioaddr->status_addr = ioaddr->cmd_addr + ATA_REG_STATUS;
5042 ioaddr->command_addr = ioaddr->cmd_addr + ATA_REG_CMD;
5043 }
5044
5045
5046 #ifdef CONFIG_PCI
5047
5048 void ata_pci_host_stop (struct ata_host_set *host_set)
5049 {
5050 struct pci_dev *pdev = to_pci_dev(host_set->dev);
5051
5052 pci_iounmap(pdev, host_set->mmio_base);
5053 }
5054
5055 /**
5056 * ata_pci_remove_one - PCI layer callback for device removal
5057 * @pdev: PCI device that was removed
5058 *
5059 * PCI layer indicates to libata via this hook that
5060 * hot-unplug or module unload event has occurred.
5061 * Handle this by unregistering all objects associated
5062 * with this PCI device. Free those objects. Then finally
5063 * release PCI resources and disable device.
5064 *
5065 * LOCKING:
5066 * Inherited from PCI layer (may sleep).
5067 */
5068
5069 void ata_pci_remove_one (struct pci_dev *pdev)
5070 {
5071 struct device *dev = pci_dev_to_dev(pdev);
5072 struct ata_host_set *host_set = dev_get_drvdata(dev);
5073
5074 ata_host_set_remove(host_set);
5075 pci_release_regions(pdev);
5076 pci_disable_device(pdev);
5077 dev_set_drvdata(dev, NULL);
5078 }
5079
5080 /* move to PCI subsystem */
5081 int pci_test_config_bits(struct pci_dev *pdev, const struct pci_bits *bits)
5082 {
5083 unsigned long tmp = 0;
5084
5085 switch (bits->width) {
5086 case 1: {
5087 u8 tmp8 = 0;
5088 pci_read_config_byte(pdev, bits->reg, &tmp8);
5089 tmp = tmp8;
5090 break;
5091 }
5092 case 2: {
5093 u16 tmp16 = 0;
5094 pci_read_config_word(pdev, bits->reg, &tmp16);
5095 tmp = tmp16;
5096 break;
5097 }
5098 case 4: {
5099 u32 tmp32 = 0;
5100 pci_read_config_dword(pdev, bits->reg, &tmp32);
5101 tmp = tmp32;
5102 break;
5103 }
5104
5105 default:
5106 return -EINVAL;
5107 }
5108
5109 tmp &= bits->mask;
5110
5111 return (tmp == bits->val) ? 1 : 0;
5112 }
5113
5114 int ata_pci_device_suspend(struct pci_dev *pdev, pm_message_t state)
5115 {
5116 pci_save_state(pdev);
5117 pci_disable_device(pdev);
5118 pci_set_power_state(pdev, PCI_D3hot);
5119 return 0;
5120 }
5121
5122 int ata_pci_device_resume(struct pci_dev *pdev)
5123 {
5124 pci_set_power_state(pdev, PCI_D0);
5125 pci_restore_state(pdev);
5126 pci_enable_device(pdev);
5127 pci_set_master(pdev);
5128 return 0;
5129 }
5130 #endif /* CONFIG_PCI */
5131
5132
5133 static int __init ata_init(void)
5134 {
5135 ata_wq = create_workqueue("ata");
5136 if (!ata_wq)
5137 return -ENOMEM;
5138
5139 printk(KERN_DEBUG "libata version " DRV_VERSION " loaded.\n");
5140 return 0;
5141 }
5142
5143 static void __exit ata_exit(void)
5144 {
5145 destroy_workqueue(ata_wq);
5146 }
5147
5148 module_init(ata_init);
5149 module_exit(ata_exit);
5150
5151 static unsigned long ratelimit_time;
5152 static spinlock_t ata_ratelimit_lock = SPIN_LOCK_UNLOCKED;
5153
5154 int ata_ratelimit(void)
5155 {
5156 int rc;
5157 unsigned long flags;
5158
5159 spin_lock_irqsave(&ata_ratelimit_lock, flags);
5160
5161 if (time_after(jiffies, ratelimit_time)) {
5162 rc = 1;
5163 ratelimit_time = jiffies + (HZ/5);
5164 } else
5165 rc = 0;
5166
5167 spin_unlock_irqrestore(&ata_ratelimit_lock, flags);
5168
5169 return rc;
5170 }
5171
5172 /**
5173 * ata_wait_register - wait until register value changes
5174 * @reg: IO-mapped register
5175 * @mask: Mask to apply to read register value
5176 * @val: Wait condition
5177 * @interval_msec: polling interval in milliseconds
5178 * @timeout_msec: timeout in milliseconds
5179 *
5180 * Waiting for some bits of register to change is a common
5181 * operation for ATA controllers. This function reads 32bit LE
5182 * IO-mapped register @reg and tests for the following condition.
5183 *
5184 * (*@reg & mask) != val
5185 *
5186 * If the condition is met, it returns; otherwise, the process is
5187 * repeated after @interval_msec until timeout.
5188 *
5189 * LOCKING:
5190 * Kernel thread context (may sleep)
5191 *
5192 * RETURNS:
5193 * The final register value.
5194 */
5195 u32 ata_wait_register(void __iomem *reg, u32 mask, u32 val,
5196 unsigned long interval_msec,
5197 unsigned long timeout_msec)
5198 {
5199 unsigned long timeout;
5200 u32 tmp;
5201
5202 tmp = ioread32(reg);
5203
5204 /* Calculate timeout _after_ the first read to make sure
5205 * preceding writes reach the controller before starting to
5206 * eat away the timeout.
5207 */
5208 timeout = jiffies + (timeout_msec * HZ) / 1000;
5209
5210 while ((tmp & mask) == val && time_before(jiffies, timeout)) {
5211 msleep(interval_msec);
5212 tmp = ioread32(reg);
5213 }
5214
5215 return tmp;
5216 }
5217
5218 /*
5219 * libata is essentially a library of internal helper functions for
5220 * low-level ATA host controller drivers. As such, the API/ABI is
5221 * likely to change as new drivers are added and updated.
5222 * Do not depend on ABI/API stability.
5223 */
5224
5225 EXPORT_SYMBOL_GPL(ata_std_bios_param);
5226 EXPORT_SYMBOL_GPL(ata_std_ports);
5227 EXPORT_SYMBOL_GPL(ata_device_add);
5228 EXPORT_SYMBOL_GPL(ata_host_set_remove);
5229 EXPORT_SYMBOL_GPL(ata_sg_init);
5230 EXPORT_SYMBOL_GPL(ata_sg_init_one);
5231 EXPORT_SYMBOL_GPL(__ata_qc_complete);
5232 EXPORT_SYMBOL_GPL(ata_qc_issue_prot);
5233 EXPORT_SYMBOL_GPL(ata_tf_load);
5234 EXPORT_SYMBOL_GPL(ata_tf_read);
5235 EXPORT_SYMBOL_GPL(ata_noop_dev_select);
5236 EXPORT_SYMBOL_GPL(ata_std_dev_select);
5237 EXPORT_SYMBOL_GPL(ata_tf_to_fis);
5238 EXPORT_SYMBOL_GPL(ata_tf_from_fis);
5239 EXPORT_SYMBOL_GPL(ata_check_status);
5240 EXPORT_SYMBOL_GPL(ata_altstatus);
5241 EXPORT_SYMBOL_GPL(ata_exec_command);
5242 EXPORT_SYMBOL_GPL(ata_port_start);
5243 EXPORT_SYMBOL_GPL(ata_port_stop);
5244 EXPORT_SYMBOL_GPL(ata_host_stop);
5245 EXPORT_SYMBOL_GPL(ata_interrupt);
5246 EXPORT_SYMBOL_GPL(ata_qc_prep);
5247 EXPORT_SYMBOL_GPL(ata_noop_qc_prep);
5248 EXPORT_SYMBOL_GPL(ata_bmdma_setup);
5249 EXPORT_SYMBOL_GPL(ata_bmdma_start);
5250 EXPORT_SYMBOL_GPL(ata_bmdma_irq_clear);
5251 EXPORT_SYMBOL_GPL(ata_bmdma_status);
5252 EXPORT_SYMBOL_GPL(ata_bmdma_stop);
5253 EXPORT_SYMBOL_GPL(ata_port_probe);
5254 EXPORT_SYMBOL_GPL(sata_set_spd);
5255 EXPORT_SYMBOL_GPL(sata_phy_reset);
5256 EXPORT_SYMBOL_GPL(__sata_phy_reset);
5257 EXPORT_SYMBOL_GPL(ata_bus_reset);
5258 EXPORT_SYMBOL_GPL(ata_std_probeinit);
5259 EXPORT_SYMBOL_GPL(ata_std_softreset);
5260 EXPORT_SYMBOL_GPL(sata_std_hardreset);
5261 EXPORT_SYMBOL_GPL(ata_std_postreset);
5262 EXPORT_SYMBOL_GPL(ata_std_probe_reset);
5263 EXPORT_SYMBOL_GPL(ata_drive_probe_reset);
5264 EXPORT_SYMBOL_GPL(ata_dev_revalidate);
5265 EXPORT_SYMBOL_GPL(ata_dev_classify);
5266 EXPORT_SYMBOL_GPL(ata_dev_pair);
5267 EXPORT_SYMBOL_GPL(ata_port_disable);
5268 EXPORT_SYMBOL_GPL(ata_ratelimit);
5269 EXPORT_SYMBOL_GPL(ata_wait_register);
5270 EXPORT_SYMBOL_GPL(ata_busy_sleep);
5271 EXPORT_SYMBOL_GPL(ata_port_queue_task);
5272 EXPORT_SYMBOL_GPL(ata_scsi_ioctl);
5273 EXPORT_SYMBOL_GPL(ata_scsi_queuecmd);
5274 EXPORT_SYMBOL_GPL(ata_scsi_slave_config);
5275 EXPORT_SYMBOL_GPL(ata_scsi_release);
5276 EXPORT_SYMBOL_GPL(ata_host_intr);
5277 EXPORT_SYMBOL_GPL(sata_scr_valid);
5278 EXPORT_SYMBOL_GPL(sata_scr_read);
5279 EXPORT_SYMBOL_GPL(sata_scr_write);
5280 EXPORT_SYMBOL_GPL(sata_scr_write_flush);
5281 EXPORT_SYMBOL_GPL(ata_port_online);
5282 EXPORT_SYMBOL_GPL(ata_port_offline);
5283 EXPORT_SYMBOL_GPL(ata_id_string);
5284 EXPORT_SYMBOL_GPL(ata_id_c_string);
5285 EXPORT_SYMBOL_GPL(ata_scsi_simulate);
5286
5287 EXPORT_SYMBOL_GPL(ata_pio_need_iordy);
5288 EXPORT_SYMBOL_GPL(ata_timing_compute);
5289 EXPORT_SYMBOL_GPL(ata_timing_merge);
5290
5291 #ifdef CONFIG_PCI
5292 EXPORT_SYMBOL_GPL(pci_test_config_bits);
5293 EXPORT_SYMBOL_GPL(ata_pci_host_stop);
5294 EXPORT_SYMBOL_GPL(ata_pci_init_native_mode);
5295 EXPORT_SYMBOL_GPL(ata_pci_init_one);
5296 EXPORT_SYMBOL_GPL(ata_pci_remove_one);
5297 EXPORT_SYMBOL_GPL(ata_pci_device_suspend);
5298 EXPORT_SYMBOL_GPL(ata_pci_device_resume);
5299 EXPORT_SYMBOL_GPL(ata_pci_default_filter);
5300 EXPORT_SYMBOL_GPL(ata_pci_clear_simplex);
5301 #endif /* CONFIG_PCI */
5302
5303 EXPORT_SYMBOL_GPL(ata_device_suspend);
5304 EXPORT_SYMBOL_GPL(ata_device_resume);
5305 EXPORT_SYMBOL_GPL(ata_scsi_device_suspend);
5306 EXPORT_SYMBOL_GPL(ata_scsi_device_resume);
5307
5308 EXPORT_SYMBOL_GPL(ata_eng_timeout);
5309 EXPORT_SYMBOL_GPL(ata_eh_qc_complete);
5310 EXPORT_SYMBOL_GPL(ata_eh_qc_retry);
This page took 0.235672 seconds and 6 git commands to generate.