[PATCH] libata: init ap->cbl to ATA_CBL_SATA early
[deliverable/linux.git] / drivers / scsi / libata-core.c
1 /*
2 * libata-core.c - helper library for ATA
3 *
4 * Maintained by: Jeff Garzik <jgarzik@pobox.com>
5 * Please ALWAYS copy linux-ide@vger.kernel.org
6 * on emails.
7 *
8 * Copyright 2003-2004 Red Hat, Inc. All rights reserved.
9 * Copyright 2003-2004 Jeff Garzik
10 *
11 *
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2, or (at your option)
15 * any later version.
16 *
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
21 *
22 * You should have received a copy of the GNU General Public License
23 * along with this program; see the file COPYING. If not, write to
24 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
25 *
26 *
27 * libata documentation is available via 'make {ps|pdf}docs',
28 * as Documentation/DocBook/libata.*
29 *
30 * Hardware documentation available from http://www.t13.org/ and
31 * http://www.sata-io.org/
32 *
33 */
34
35 #include <linux/config.h>
36 #include <linux/kernel.h>
37 #include <linux/module.h>
38 #include <linux/pci.h>
39 #include <linux/init.h>
40 #include <linux/list.h>
41 #include <linux/mm.h>
42 #include <linux/highmem.h>
43 #include <linux/spinlock.h>
44 #include <linux/blkdev.h>
45 #include <linux/delay.h>
46 #include <linux/timer.h>
47 #include <linux/interrupt.h>
48 #include <linux/completion.h>
49 #include <linux/suspend.h>
50 #include <linux/workqueue.h>
51 #include <linux/jiffies.h>
52 #include <linux/scatterlist.h>
53 #include <scsi/scsi.h>
54 #include "scsi_priv.h"
55 #include <scsi/scsi_cmnd.h>
56 #include <scsi/scsi_host.h>
57 #include <linux/libata.h>
58 #include <asm/io.h>
59 #include <asm/semaphore.h>
60 #include <asm/byteorder.h>
61
62 #include "libata.h"
63
64 static unsigned int ata_dev_init_params(struct ata_port *ap,
65 struct ata_device *dev,
66 u16 heads,
67 u16 sectors);
68 static unsigned int ata_dev_set_xfermode(struct ata_port *ap,
69 struct ata_device *dev);
70 static void ata_dev_xfermask(struct ata_port *ap, struct ata_device *dev);
71
72 static unsigned int ata_unique_id = 1;
73 static struct workqueue_struct *ata_wq;
74
75 int atapi_enabled = 1;
76 module_param(atapi_enabled, int, 0444);
77 MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on)");
78
79 int atapi_dmadir = 0;
80 module_param(atapi_dmadir, int, 0444);
81 MODULE_PARM_DESC(atapi_dmadir, "Enable ATAPI DMADIR bridge support (0=off, 1=on)");
82
83 int libata_fua = 0;
84 module_param_named(fua, libata_fua, int, 0444);
85 MODULE_PARM_DESC(fua, "FUA support (0=off, 1=on)");
86
87 MODULE_AUTHOR("Jeff Garzik");
88 MODULE_DESCRIPTION("Library module for ATA devices");
89 MODULE_LICENSE("GPL");
90 MODULE_VERSION(DRV_VERSION);
91
92
93 /**
94 * ata_tf_to_fis - Convert ATA taskfile to SATA FIS structure
95 * @tf: Taskfile to convert
96 * @fis: Buffer into which data will output
97 * @pmp: Port multiplier port
98 *
99 * Converts a standard ATA taskfile to a Serial ATA
100 * FIS structure (Register - Host to Device).
101 *
102 * LOCKING:
103 * Inherited from caller.
104 */
105
106 void ata_tf_to_fis(const struct ata_taskfile *tf, u8 *fis, u8 pmp)
107 {
108 fis[0] = 0x27; /* Register - Host to Device FIS */
109 fis[1] = (pmp & 0xf) | (1 << 7); /* Port multiplier number,
110 bit 7 indicates Command FIS */
111 fis[2] = tf->command;
112 fis[3] = tf->feature;
113
114 fis[4] = tf->lbal;
115 fis[5] = tf->lbam;
116 fis[6] = tf->lbah;
117 fis[7] = tf->device;
118
119 fis[8] = tf->hob_lbal;
120 fis[9] = tf->hob_lbam;
121 fis[10] = tf->hob_lbah;
122 fis[11] = tf->hob_feature;
123
124 fis[12] = tf->nsect;
125 fis[13] = tf->hob_nsect;
126 fis[14] = 0;
127 fis[15] = tf->ctl;
128
129 fis[16] = 0;
130 fis[17] = 0;
131 fis[18] = 0;
132 fis[19] = 0;
133 }
134
135 /**
136 * ata_tf_from_fis - Convert SATA FIS to ATA taskfile
137 * @fis: Buffer from which data will be input
138 * @tf: Taskfile to output
139 *
140 * Converts a serial ATA FIS structure to a standard ATA taskfile.
141 *
142 * LOCKING:
143 * Inherited from caller.
144 */
145
146 void ata_tf_from_fis(const u8 *fis, struct ata_taskfile *tf)
147 {
148 tf->command = fis[2]; /* status */
149 tf->feature = fis[3]; /* error */
150
151 tf->lbal = fis[4];
152 tf->lbam = fis[5];
153 tf->lbah = fis[6];
154 tf->device = fis[7];
155
156 tf->hob_lbal = fis[8];
157 tf->hob_lbam = fis[9];
158 tf->hob_lbah = fis[10];
159
160 tf->nsect = fis[12];
161 tf->hob_nsect = fis[13];
162 }
163
164 static const u8 ata_rw_cmds[] = {
165 /* pio multi */
166 ATA_CMD_READ_MULTI,
167 ATA_CMD_WRITE_MULTI,
168 ATA_CMD_READ_MULTI_EXT,
169 ATA_CMD_WRITE_MULTI_EXT,
170 0,
171 0,
172 0,
173 ATA_CMD_WRITE_MULTI_FUA_EXT,
174 /* pio */
175 ATA_CMD_PIO_READ,
176 ATA_CMD_PIO_WRITE,
177 ATA_CMD_PIO_READ_EXT,
178 ATA_CMD_PIO_WRITE_EXT,
179 0,
180 0,
181 0,
182 0,
183 /* dma */
184 ATA_CMD_READ,
185 ATA_CMD_WRITE,
186 ATA_CMD_READ_EXT,
187 ATA_CMD_WRITE_EXT,
188 0,
189 0,
190 0,
191 ATA_CMD_WRITE_FUA_EXT
192 };
193
194 /**
195 * ata_rwcmd_protocol - set taskfile r/w commands and protocol
196 * @qc: command to examine and configure
197 *
198 * Examine the device configuration and tf->flags to calculate
199 * the proper read/write commands and protocol to use.
200 *
201 * LOCKING:
202 * caller.
203 */
204 int ata_rwcmd_protocol(struct ata_queued_cmd *qc)
205 {
206 struct ata_taskfile *tf = &qc->tf;
207 struct ata_device *dev = qc->dev;
208 u8 cmd;
209
210 int index, fua, lba48, write;
211
212 fua = (tf->flags & ATA_TFLAG_FUA) ? 4 : 0;
213 lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0;
214 write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0;
215
216 if (dev->flags & ATA_DFLAG_PIO) {
217 tf->protocol = ATA_PROT_PIO;
218 index = dev->multi_count ? 0 : 8;
219 } else if (lba48 && (qc->ap->flags & ATA_FLAG_PIO_LBA48)) {
220 /* Unable to use DMA due to host limitation */
221 tf->protocol = ATA_PROT_PIO;
222 index = dev->multi_count ? 0 : 8;
223 } else {
224 tf->protocol = ATA_PROT_DMA;
225 index = 16;
226 }
227
228 cmd = ata_rw_cmds[index + fua + lba48 + write];
229 if (cmd) {
230 tf->command = cmd;
231 return 0;
232 }
233 return -1;
234 }
235
236 /**
237 * ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask
238 * @pio_mask: pio_mask
239 * @mwdma_mask: mwdma_mask
240 * @udma_mask: udma_mask
241 *
242 * Pack @pio_mask, @mwdma_mask and @udma_mask into a single
243 * unsigned int xfer_mask.
244 *
245 * LOCKING:
246 * None.
247 *
248 * RETURNS:
249 * Packed xfer_mask.
250 */
251 static unsigned int ata_pack_xfermask(unsigned int pio_mask,
252 unsigned int mwdma_mask,
253 unsigned int udma_mask)
254 {
255 return ((pio_mask << ATA_SHIFT_PIO) & ATA_MASK_PIO) |
256 ((mwdma_mask << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA) |
257 ((udma_mask << ATA_SHIFT_UDMA) & ATA_MASK_UDMA);
258 }
259
260 /**
261 * ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks
262 * @xfer_mask: xfer_mask to unpack
263 * @pio_mask: resulting pio_mask
264 * @mwdma_mask: resulting mwdma_mask
265 * @udma_mask: resulting udma_mask
266 *
267 * Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask.
268 * Any NULL distination masks will be ignored.
269 */
270 static void ata_unpack_xfermask(unsigned int xfer_mask,
271 unsigned int *pio_mask,
272 unsigned int *mwdma_mask,
273 unsigned int *udma_mask)
274 {
275 if (pio_mask)
276 *pio_mask = (xfer_mask & ATA_MASK_PIO) >> ATA_SHIFT_PIO;
277 if (mwdma_mask)
278 *mwdma_mask = (xfer_mask & ATA_MASK_MWDMA) >> ATA_SHIFT_MWDMA;
279 if (udma_mask)
280 *udma_mask = (xfer_mask & ATA_MASK_UDMA) >> ATA_SHIFT_UDMA;
281 }
282
283 static const struct ata_xfer_ent {
284 int shift, bits;
285 u8 base;
286 } ata_xfer_tbl[] = {
287 { ATA_SHIFT_PIO, ATA_BITS_PIO, XFER_PIO_0 },
288 { ATA_SHIFT_MWDMA, ATA_BITS_MWDMA, XFER_MW_DMA_0 },
289 { ATA_SHIFT_UDMA, ATA_BITS_UDMA, XFER_UDMA_0 },
290 { -1, },
291 };
292
293 /**
294 * ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask
295 * @xfer_mask: xfer_mask of interest
296 *
297 * Return matching XFER_* value for @xfer_mask. Only the highest
298 * bit of @xfer_mask is considered.
299 *
300 * LOCKING:
301 * None.
302 *
303 * RETURNS:
304 * Matching XFER_* value, 0 if no match found.
305 */
306 static u8 ata_xfer_mask2mode(unsigned int xfer_mask)
307 {
308 int highbit = fls(xfer_mask) - 1;
309 const struct ata_xfer_ent *ent;
310
311 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
312 if (highbit >= ent->shift && highbit < ent->shift + ent->bits)
313 return ent->base + highbit - ent->shift;
314 return 0;
315 }
316
317 /**
318 * ata_xfer_mode2mask - Find matching xfer_mask for XFER_*
319 * @xfer_mode: XFER_* of interest
320 *
321 * Return matching xfer_mask for @xfer_mode.
322 *
323 * LOCKING:
324 * None.
325 *
326 * RETURNS:
327 * Matching xfer_mask, 0 if no match found.
328 */
329 static unsigned int ata_xfer_mode2mask(u8 xfer_mode)
330 {
331 const struct ata_xfer_ent *ent;
332
333 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
334 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
335 return 1 << (ent->shift + xfer_mode - ent->base);
336 return 0;
337 }
338
339 /**
340 * ata_xfer_mode2shift - Find matching xfer_shift for XFER_*
341 * @xfer_mode: XFER_* of interest
342 *
343 * Return matching xfer_shift for @xfer_mode.
344 *
345 * LOCKING:
346 * None.
347 *
348 * RETURNS:
349 * Matching xfer_shift, -1 if no match found.
350 */
351 static int ata_xfer_mode2shift(unsigned int xfer_mode)
352 {
353 const struct ata_xfer_ent *ent;
354
355 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
356 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
357 return ent->shift;
358 return -1;
359 }
360
361 /**
362 * ata_mode_string - convert xfer_mask to string
363 * @xfer_mask: mask of bits supported; only highest bit counts.
364 *
365 * Determine string which represents the highest speed
366 * (highest bit in @modemask).
367 *
368 * LOCKING:
369 * None.
370 *
371 * RETURNS:
372 * Constant C string representing highest speed listed in
373 * @mode_mask, or the constant C string "<n/a>".
374 */
375 static const char *ata_mode_string(unsigned int xfer_mask)
376 {
377 static const char * const xfer_mode_str[] = {
378 "PIO0",
379 "PIO1",
380 "PIO2",
381 "PIO3",
382 "PIO4",
383 "MWDMA0",
384 "MWDMA1",
385 "MWDMA2",
386 "UDMA/16",
387 "UDMA/25",
388 "UDMA/33",
389 "UDMA/44",
390 "UDMA/66",
391 "UDMA/100",
392 "UDMA/133",
393 "UDMA7",
394 };
395 int highbit;
396
397 highbit = fls(xfer_mask) - 1;
398 if (highbit >= 0 && highbit < ARRAY_SIZE(xfer_mode_str))
399 return xfer_mode_str[highbit];
400 return "<n/a>";
401 }
402
403 static const char *sata_spd_string(unsigned int spd)
404 {
405 static const char * const spd_str[] = {
406 "1.5 Gbps",
407 "3.0 Gbps",
408 };
409
410 if (spd == 0 || (spd - 1) >= ARRAY_SIZE(spd_str))
411 return "<unknown>";
412 return spd_str[spd - 1];
413 }
414
415 void ata_dev_disable(struct ata_port *ap, struct ata_device *dev)
416 {
417 if (ata_dev_enabled(dev)) {
418 printk(KERN_WARNING "ata%u: dev %u disabled\n",
419 ap->id, dev->devno);
420 dev->class++;
421 }
422 }
423
424 /**
425 * ata_pio_devchk - PATA device presence detection
426 * @ap: ATA channel to examine
427 * @device: Device to examine (starting at zero)
428 *
429 * This technique was originally described in
430 * Hale Landis's ATADRVR (www.ata-atapi.com), and
431 * later found its way into the ATA/ATAPI spec.
432 *
433 * Write a pattern to the ATA shadow registers,
434 * and if a device is present, it will respond by
435 * correctly storing and echoing back the
436 * ATA shadow register contents.
437 *
438 * LOCKING:
439 * caller.
440 */
441
442 static unsigned int ata_pio_devchk(struct ata_port *ap,
443 unsigned int device)
444 {
445 struct ata_ioports *ioaddr = &ap->ioaddr;
446 u8 nsect, lbal;
447
448 ap->ops->dev_select(ap, device);
449
450 outb(0x55, ioaddr->nsect_addr);
451 outb(0xaa, ioaddr->lbal_addr);
452
453 outb(0xaa, ioaddr->nsect_addr);
454 outb(0x55, ioaddr->lbal_addr);
455
456 outb(0x55, ioaddr->nsect_addr);
457 outb(0xaa, ioaddr->lbal_addr);
458
459 nsect = inb(ioaddr->nsect_addr);
460 lbal = inb(ioaddr->lbal_addr);
461
462 if ((nsect == 0x55) && (lbal == 0xaa))
463 return 1; /* we found a device */
464
465 return 0; /* nothing found */
466 }
467
468 /**
469 * ata_mmio_devchk - PATA device presence detection
470 * @ap: ATA channel to examine
471 * @device: Device to examine (starting at zero)
472 *
473 * This technique was originally described in
474 * Hale Landis's ATADRVR (www.ata-atapi.com), and
475 * later found its way into the ATA/ATAPI spec.
476 *
477 * Write a pattern to the ATA shadow registers,
478 * and if a device is present, it will respond by
479 * correctly storing and echoing back the
480 * ATA shadow register contents.
481 *
482 * LOCKING:
483 * caller.
484 */
485
486 static unsigned int ata_mmio_devchk(struct ata_port *ap,
487 unsigned int device)
488 {
489 struct ata_ioports *ioaddr = &ap->ioaddr;
490 u8 nsect, lbal;
491
492 ap->ops->dev_select(ap, device);
493
494 writeb(0x55, (void __iomem *) ioaddr->nsect_addr);
495 writeb(0xaa, (void __iomem *) ioaddr->lbal_addr);
496
497 writeb(0xaa, (void __iomem *) ioaddr->nsect_addr);
498 writeb(0x55, (void __iomem *) ioaddr->lbal_addr);
499
500 writeb(0x55, (void __iomem *) ioaddr->nsect_addr);
501 writeb(0xaa, (void __iomem *) ioaddr->lbal_addr);
502
503 nsect = readb((void __iomem *) ioaddr->nsect_addr);
504 lbal = readb((void __iomem *) ioaddr->lbal_addr);
505
506 if ((nsect == 0x55) && (lbal == 0xaa))
507 return 1; /* we found a device */
508
509 return 0; /* nothing found */
510 }
511
512 /**
513 * ata_devchk - PATA device presence detection
514 * @ap: ATA channel to examine
515 * @device: Device to examine (starting at zero)
516 *
517 * Dispatch ATA device presence detection, depending
518 * on whether we are using PIO or MMIO to talk to the
519 * ATA shadow registers.
520 *
521 * LOCKING:
522 * caller.
523 */
524
525 static unsigned int ata_devchk(struct ata_port *ap,
526 unsigned int device)
527 {
528 if (ap->flags & ATA_FLAG_MMIO)
529 return ata_mmio_devchk(ap, device);
530 return ata_pio_devchk(ap, device);
531 }
532
533 /**
534 * ata_dev_classify - determine device type based on ATA-spec signature
535 * @tf: ATA taskfile register set for device to be identified
536 *
537 * Determine from taskfile register contents whether a device is
538 * ATA or ATAPI, as per "Signature and persistence" section
539 * of ATA/PI spec (volume 1, sect 5.14).
540 *
541 * LOCKING:
542 * None.
543 *
544 * RETURNS:
545 * Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, or %ATA_DEV_UNKNOWN
546 * the event of failure.
547 */
548
549 unsigned int ata_dev_classify(const struct ata_taskfile *tf)
550 {
551 /* Apple's open source Darwin code hints that some devices only
552 * put a proper signature into the LBA mid/high registers,
553 * So, we only check those. It's sufficient for uniqueness.
554 */
555
556 if (((tf->lbam == 0) && (tf->lbah == 0)) ||
557 ((tf->lbam == 0x3c) && (tf->lbah == 0xc3))) {
558 DPRINTK("found ATA device by sig\n");
559 return ATA_DEV_ATA;
560 }
561
562 if (((tf->lbam == 0x14) && (tf->lbah == 0xeb)) ||
563 ((tf->lbam == 0x69) && (tf->lbah == 0x96))) {
564 DPRINTK("found ATAPI device by sig\n");
565 return ATA_DEV_ATAPI;
566 }
567
568 DPRINTK("unknown device\n");
569 return ATA_DEV_UNKNOWN;
570 }
571
572 /**
573 * ata_dev_try_classify - Parse returned ATA device signature
574 * @ap: ATA channel to examine
575 * @device: Device to examine (starting at zero)
576 * @r_err: Value of error register on completion
577 *
578 * After an event -- SRST, E.D.D., or SATA COMRESET -- occurs,
579 * an ATA/ATAPI-defined set of values is placed in the ATA
580 * shadow registers, indicating the results of device detection
581 * and diagnostics.
582 *
583 * Select the ATA device, and read the values from the ATA shadow
584 * registers. Then parse according to the Error register value,
585 * and the spec-defined values examined by ata_dev_classify().
586 *
587 * LOCKING:
588 * caller.
589 *
590 * RETURNS:
591 * Device type - %ATA_DEV_ATA, %ATA_DEV_ATAPI or %ATA_DEV_NONE.
592 */
593
594 static unsigned int
595 ata_dev_try_classify(struct ata_port *ap, unsigned int device, u8 *r_err)
596 {
597 struct ata_taskfile tf;
598 unsigned int class;
599 u8 err;
600
601 ap->ops->dev_select(ap, device);
602
603 memset(&tf, 0, sizeof(tf));
604
605 ap->ops->tf_read(ap, &tf);
606 err = tf.feature;
607 if (r_err)
608 *r_err = err;
609
610 /* see if device passed diags */
611 if (err == 1)
612 /* do nothing */ ;
613 else if ((device == 0) && (err == 0x81))
614 /* do nothing */ ;
615 else
616 return ATA_DEV_NONE;
617
618 /* determine if device is ATA or ATAPI */
619 class = ata_dev_classify(&tf);
620
621 if (class == ATA_DEV_UNKNOWN)
622 return ATA_DEV_NONE;
623 if ((class == ATA_DEV_ATA) && (ata_chk_status(ap) == 0))
624 return ATA_DEV_NONE;
625 return class;
626 }
627
628 /**
629 * ata_id_string - Convert IDENTIFY DEVICE page into string
630 * @id: IDENTIFY DEVICE results we will examine
631 * @s: string into which data is output
632 * @ofs: offset into identify device page
633 * @len: length of string to return. must be an even number.
634 *
635 * The strings in the IDENTIFY DEVICE page are broken up into
636 * 16-bit chunks. Run through the string, and output each
637 * 8-bit chunk linearly, regardless of platform.
638 *
639 * LOCKING:
640 * caller.
641 */
642
643 void ata_id_string(const u16 *id, unsigned char *s,
644 unsigned int ofs, unsigned int len)
645 {
646 unsigned int c;
647
648 while (len > 0) {
649 c = id[ofs] >> 8;
650 *s = c;
651 s++;
652
653 c = id[ofs] & 0xff;
654 *s = c;
655 s++;
656
657 ofs++;
658 len -= 2;
659 }
660 }
661
662 /**
663 * ata_id_c_string - Convert IDENTIFY DEVICE page into C string
664 * @id: IDENTIFY DEVICE results we will examine
665 * @s: string into which data is output
666 * @ofs: offset into identify device page
667 * @len: length of string to return. must be an odd number.
668 *
669 * This function is identical to ata_id_string except that it
670 * trims trailing spaces and terminates the resulting string with
671 * null. @len must be actual maximum length (even number) + 1.
672 *
673 * LOCKING:
674 * caller.
675 */
676 void ata_id_c_string(const u16 *id, unsigned char *s,
677 unsigned int ofs, unsigned int len)
678 {
679 unsigned char *p;
680
681 WARN_ON(!(len & 1));
682
683 ata_id_string(id, s, ofs, len - 1);
684
685 p = s + strnlen(s, len - 1);
686 while (p > s && p[-1] == ' ')
687 p--;
688 *p = '\0';
689 }
690
691 static u64 ata_id_n_sectors(const u16 *id)
692 {
693 if (ata_id_has_lba(id)) {
694 if (ata_id_has_lba48(id))
695 return ata_id_u64(id, 100);
696 else
697 return ata_id_u32(id, 60);
698 } else {
699 if (ata_id_current_chs_valid(id))
700 return ata_id_u32(id, 57);
701 else
702 return id[1] * id[3] * id[6];
703 }
704 }
705
706 /**
707 * ata_noop_dev_select - Select device 0/1 on ATA bus
708 * @ap: ATA channel to manipulate
709 * @device: ATA device (numbered from zero) to select
710 *
711 * This function performs no actual function.
712 *
713 * May be used as the dev_select() entry in ata_port_operations.
714 *
715 * LOCKING:
716 * caller.
717 */
718 void ata_noop_dev_select (struct ata_port *ap, unsigned int device)
719 {
720 }
721
722
723 /**
724 * ata_std_dev_select - Select device 0/1 on ATA bus
725 * @ap: ATA channel to manipulate
726 * @device: ATA device (numbered from zero) to select
727 *
728 * Use the method defined in the ATA specification to
729 * make either device 0, or device 1, active on the
730 * ATA channel. Works with both PIO and MMIO.
731 *
732 * May be used as the dev_select() entry in ata_port_operations.
733 *
734 * LOCKING:
735 * caller.
736 */
737
738 void ata_std_dev_select (struct ata_port *ap, unsigned int device)
739 {
740 u8 tmp;
741
742 if (device == 0)
743 tmp = ATA_DEVICE_OBS;
744 else
745 tmp = ATA_DEVICE_OBS | ATA_DEV1;
746
747 if (ap->flags & ATA_FLAG_MMIO) {
748 writeb(tmp, (void __iomem *) ap->ioaddr.device_addr);
749 } else {
750 outb(tmp, ap->ioaddr.device_addr);
751 }
752 ata_pause(ap); /* needed; also flushes, for mmio */
753 }
754
755 /**
756 * ata_dev_select - Select device 0/1 on ATA bus
757 * @ap: ATA channel to manipulate
758 * @device: ATA device (numbered from zero) to select
759 * @wait: non-zero to wait for Status register BSY bit to clear
760 * @can_sleep: non-zero if context allows sleeping
761 *
762 * Use the method defined in the ATA specification to
763 * make either device 0, or device 1, active on the
764 * ATA channel.
765 *
766 * This is a high-level version of ata_std_dev_select(),
767 * which additionally provides the services of inserting
768 * the proper pauses and status polling, where needed.
769 *
770 * LOCKING:
771 * caller.
772 */
773
774 void ata_dev_select(struct ata_port *ap, unsigned int device,
775 unsigned int wait, unsigned int can_sleep)
776 {
777 VPRINTK("ENTER, ata%u: device %u, wait %u\n",
778 ap->id, device, wait);
779
780 if (wait)
781 ata_wait_idle(ap);
782
783 ap->ops->dev_select(ap, device);
784
785 if (wait) {
786 if (can_sleep && ap->device[device].class == ATA_DEV_ATAPI)
787 msleep(150);
788 ata_wait_idle(ap);
789 }
790 }
791
792 /**
793 * ata_dump_id - IDENTIFY DEVICE info debugging output
794 * @id: IDENTIFY DEVICE page to dump
795 *
796 * Dump selected 16-bit words from the given IDENTIFY DEVICE
797 * page.
798 *
799 * LOCKING:
800 * caller.
801 */
802
803 static inline void ata_dump_id(const u16 *id)
804 {
805 DPRINTK("49==0x%04x "
806 "53==0x%04x "
807 "63==0x%04x "
808 "64==0x%04x "
809 "75==0x%04x \n",
810 id[49],
811 id[53],
812 id[63],
813 id[64],
814 id[75]);
815 DPRINTK("80==0x%04x "
816 "81==0x%04x "
817 "82==0x%04x "
818 "83==0x%04x "
819 "84==0x%04x \n",
820 id[80],
821 id[81],
822 id[82],
823 id[83],
824 id[84]);
825 DPRINTK("88==0x%04x "
826 "93==0x%04x\n",
827 id[88],
828 id[93]);
829 }
830
831 /**
832 * ata_id_xfermask - Compute xfermask from the given IDENTIFY data
833 * @id: IDENTIFY data to compute xfer mask from
834 *
835 * Compute the xfermask for this device. This is not as trivial
836 * as it seems if we must consider early devices correctly.
837 *
838 * FIXME: pre IDE drive timing (do we care ?).
839 *
840 * LOCKING:
841 * None.
842 *
843 * RETURNS:
844 * Computed xfermask
845 */
846 static unsigned int ata_id_xfermask(const u16 *id)
847 {
848 unsigned int pio_mask, mwdma_mask, udma_mask;
849
850 /* Usual case. Word 53 indicates word 64 is valid */
851 if (id[ATA_ID_FIELD_VALID] & (1 << 1)) {
852 pio_mask = id[ATA_ID_PIO_MODES] & 0x03;
853 pio_mask <<= 3;
854 pio_mask |= 0x7;
855 } else {
856 /* If word 64 isn't valid then Word 51 high byte holds
857 * the PIO timing number for the maximum. Turn it into
858 * a mask.
859 */
860 pio_mask = (2 << (id[ATA_ID_OLD_PIO_MODES] & 0xFF)) - 1 ;
861
862 /* But wait.. there's more. Design your standards by
863 * committee and you too can get a free iordy field to
864 * process. However its the speeds not the modes that
865 * are supported... Note drivers using the timing API
866 * will get this right anyway
867 */
868 }
869
870 mwdma_mask = id[ATA_ID_MWDMA_MODES] & 0x07;
871
872 udma_mask = 0;
873 if (id[ATA_ID_FIELD_VALID] & (1 << 2))
874 udma_mask = id[ATA_ID_UDMA_MODES] & 0xff;
875
876 return ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
877 }
878
879 /**
880 * ata_port_queue_task - Queue port_task
881 * @ap: The ata_port to queue port_task for
882 *
883 * Schedule @fn(@data) for execution after @delay jiffies using
884 * port_task. There is one port_task per port and it's the
885 * user(low level driver)'s responsibility to make sure that only
886 * one task is active at any given time.
887 *
888 * libata core layer takes care of synchronization between
889 * port_task and EH. ata_port_queue_task() may be ignored for EH
890 * synchronization.
891 *
892 * LOCKING:
893 * Inherited from caller.
894 */
895 void ata_port_queue_task(struct ata_port *ap, void (*fn)(void *), void *data,
896 unsigned long delay)
897 {
898 int rc;
899
900 if (ap->flags & ATA_FLAG_FLUSH_PORT_TASK)
901 return;
902
903 PREPARE_WORK(&ap->port_task, fn, data);
904
905 if (!delay)
906 rc = queue_work(ata_wq, &ap->port_task);
907 else
908 rc = queue_delayed_work(ata_wq, &ap->port_task, delay);
909
910 /* rc == 0 means that another user is using port task */
911 WARN_ON(rc == 0);
912 }
913
914 /**
915 * ata_port_flush_task - Flush port_task
916 * @ap: The ata_port to flush port_task for
917 *
918 * After this function completes, port_task is guranteed not to
919 * be running or scheduled.
920 *
921 * LOCKING:
922 * Kernel thread context (may sleep)
923 */
924 void ata_port_flush_task(struct ata_port *ap)
925 {
926 unsigned long flags;
927
928 DPRINTK("ENTER\n");
929
930 spin_lock_irqsave(&ap->host_set->lock, flags);
931 ap->flags |= ATA_FLAG_FLUSH_PORT_TASK;
932 spin_unlock_irqrestore(&ap->host_set->lock, flags);
933
934 DPRINTK("flush #1\n");
935 flush_workqueue(ata_wq);
936
937 /*
938 * At this point, if a task is running, it's guaranteed to see
939 * the FLUSH flag; thus, it will never queue pio tasks again.
940 * Cancel and flush.
941 */
942 if (!cancel_delayed_work(&ap->port_task)) {
943 DPRINTK("flush #2\n");
944 flush_workqueue(ata_wq);
945 }
946
947 spin_lock_irqsave(&ap->host_set->lock, flags);
948 ap->flags &= ~ATA_FLAG_FLUSH_PORT_TASK;
949 spin_unlock_irqrestore(&ap->host_set->lock, flags);
950
951 DPRINTK("EXIT\n");
952 }
953
954 void ata_qc_complete_internal(struct ata_queued_cmd *qc)
955 {
956 struct completion *waiting = qc->private_data;
957
958 complete(waiting);
959 }
960
961 /**
962 * ata_exec_internal - execute libata internal command
963 * @ap: Port to which the command is sent
964 * @dev: Device to which the command is sent
965 * @tf: Taskfile registers for the command and the result
966 * @cdb: CDB for packet command
967 * @dma_dir: Data tranfer direction of the command
968 * @buf: Data buffer of the command
969 * @buflen: Length of data buffer
970 *
971 * Executes libata internal command with timeout. @tf contains
972 * command on entry and result on return. Timeout and error
973 * conditions are reported via return value. No recovery action
974 * is taken after a command times out. It's caller's duty to
975 * clean up after timeout.
976 *
977 * LOCKING:
978 * None. Should be called with kernel context, might sleep.
979 */
980
981 unsigned ata_exec_internal(struct ata_port *ap, struct ata_device *dev,
982 struct ata_taskfile *tf, const u8 *cdb,
983 int dma_dir, void *buf, unsigned int buflen)
984 {
985 u8 command = tf->command;
986 struct ata_queued_cmd *qc;
987 DECLARE_COMPLETION(wait);
988 unsigned long flags;
989 unsigned int err_mask;
990
991 spin_lock_irqsave(&ap->host_set->lock, flags);
992
993 qc = ata_qc_new_init(ap, dev);
994 BUG_ON(qc == NULL);
995
996 qc->tf = *tf;
997 if (cdb)
998 memcpy(qc->cdb, cdb, ATAPI_CDB_LEN);
999 qc->flags |= ATA_QCFLAG_RESULT_TF;
1000 qc->dma_dir = dma_dir;
1001 if (dma_dir != DMA_NONE) {
1002 ata_sg_init_one(qc, buf, buflen);
1003 qc->nsect = buflen / ATA_SECT_SIZE;
1004 }
1005
1006 qc->private_data = &wait;
1007 qc->complete_fn = ata_qc_complete_internal;
1008
1009 ata_qc_issue(qc);
1010
1011 spin_unlock_irqrestore(&ap->host_set->lock, flags);
1012
1013 if (!wait_for_completion_timeout(&wait, ATA_TMOUT_INTERNAL)) {
1014 ata_port_flush_task(ap);
1015
1016 spin_lock_irqsave(&ap->host_set->lock, flags);
1017
1018 /* We're racing with irq here. If we lose, the
1019 * following test prevents us from completing the qc
1020 * again. If completion irq occurs after here but
1021 * before the caller cleans up, it will result in a
1022 * spurious interrupt. We can live with that.
1023 */
1024 if (qc->flags & ATA_QCFLAG_ACTIVE) {
1025 qc->err_mask = AC_ERR_TIMEOUT;
1026 ata_qc_complete(qc);
1027 printk(KERN_WARNING "ata%u: qc timeout (cmd 0x%x)\n",
1028 ap->id, command);
1029 }
1030
1031 spin_unlock_irqrestore(&ap->host_set->lock, flags);
1032 }
1033
1034 /* finish up */
1035 spin_lock_irqsave(&ap->host_set->lock, flags);
1036
1037 *tf = qc->result_tf;
1038 err_mask = qc->err_mask;
1039
1040 ata_qc_free(qc);
1041
1042 /* XXX - Some LLDDs (sata_mv) disable port on command failure.
1043 * Until those drivers are fixed, we detect the condition
1044 * here, fail the command with AC_ERR_SYSTEM and reenable the
1045 * port.
1046 *
1047 * Note that this doesn't change any behavior as internal
1048 * command failure results in disabling the device in the
1049 * higher layer for LLDDs without new reset/EH callbacks.
1050 *
1051 * Kill the following code as soon as those drivers are fixed.
1052 */
1053 if (ap->flags & ATA_FLAG_DISABLED) {
1054 err_mask |= AC_ERR_SYSTEM;
1055 ata_port_probe(ap);
1056 }
1057
1058 spin_unlock_irqrestore(&ap->host_set->lock, flags);
1059
1060 return err_mask;
1061 }
1062
1063 /**
1064 * ata_pio_need_iordy - check if iordy needed
1065 * @adev: ATA device
1066 *
1067 * Check if the current speed of the device requires IORDY. Used
1068 * by various controllers for chip configuration.
1069 */
1070
1071 unsigned int ata_pio_need_iordy(const struct ata_device *adev)
1072 {
1073 int pio;
1074 int speed = adev->pio_mode - XFER_PIO_0;
1075
1076 if (speed < 2)
1077 return 0;
1078 if (speed > 2)
1079 return 1;
1080
1081 /* If we have no drive specific rule, then PIO 2 is non IORDY */
1082
1083 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE */
1084 pio = adev->id[ATA_ID_EIDE_PIO];
1085 /* Is the speed faster than the drive allows non IORDY ? */
1086 if (pio) {
1087 /* This is cycle times not frequency - watch the logic! */
1088 if (pio > 240) /* PIO2 is 240nS per cycle */
1089 return 1;
1090 return 0;
1091 }
1092 }
1093 return 0;
1094 }
1095
1096 /**
1097 * ata_dev_read_id - Read ID data from the specified device
1098 * @ap: port on which target device resides
1099 * @dev: target device
1100 * @p_class: pointer to class of the target device (may be changed)
1101 * @post_reset: is this read ID post-reset?
1102 * @id: buffer to read IDENTIFY data into
1103 *
1104 * Read ID data from the specified device. ATA_CMD_ID_ATA is
1105 * performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI
1106 * devices. This function also issues ATA_CMD_INIT_DEV_PARAMS
1107 * for pre-ATA4 drives.
1108 *
1109 * LOCKING:
1110 * Kernel thread context (may sleep)
1111 *
1112 * RETURNS:
1113 * 0 on success, -errno otherwise.
1114 */
1115 static int ata_dev_read_id(struct ata_port *ap, struct ata_device *dev,
1116 unsigned int *p_class, int post_reset, u16 *id)
1117 {
1118 unsigned int class = *p_class;
1119 struct ata_taskfile tf;
1120 unsigned int err_mask = 0;
1121 const char *reason;
1122 int rc;
1123
1124 DPRINTK("ENTER, host %u, dev %u\n", ap->id, dev->devno);
1125
1126 ata_dev_select(ap, dev->devno, 1, 1); /* select device 0/1 */
1127
1128 retry:
1129 ata_tf_init(ap, &tf, dev->devno);
1130
1131 switch (class) {
1132 case ATA_DEV_ATA:
1133 tf.command = ATA_CMD_ID_ATA;
1134 break;
1135 case ATA_DEV_ATAPI:
1136 tf.command = ATA_CMD_ID_ATAPI;
1137 break;
1138 default:
1139 rc = -ENODEV;
1140 reason = "unsupported class";
1141 goto err_out;
1142 }
1143
1144 tf.protocol = ATA_PROT_PIO;
1145
1146 err_mask = ata_exec_internal(ap, dev, &tf, NULL, DMA_FROM_DEVICE,
1147 id, sizeof(id[0]) * ATA_ID_WORDS);
1148 if (err_mask) {
1149 rc = -EIO;
1150 reason = "I/O error";
1151 goto err_out;
1152 }
1153
1154 swap_buf_le16(id, ATA_ID_WORDS);
1155
1156 /* sanity check */
1157 if ((class == ATA_DEV_ATA) != (ata_id_is_ata(id) | ata_id_is_cfa(id))) {
1158 rc = -EINVAL;
1159 reason = "device reports illegal type";
1160 goto err_out;
1161 }
1162
1163 if (post_reset && class == ATA_DEV_ATA) {
1164 /*
1165 * The exact sequence expected by certain pre-ATA4 drives is:
1166 * SRST RESET
1167 * IDENTIFY
1168 * INITIALIZE DEVICE PARAMETERS
1169 * anything else..
1170 * Some drives were very specific about that exact sequence.
1171 */
1172 if (ata_id_major_version(id) < 4 || !ata_id_has_lba(id)) {
1173 err_mask = ata_dev_init_params(ap, dev, id[3], id[6]);
1174 if (err_mask) {
1175 rc = -EIO;
1176 reason = "INIT_DEV_PARAMS failed";
1177 goto err_out;
1178 }
1179
1180 /* current CHS translation info (id[53-58]) might be
1181 * changed. reread the identify device info.
1182 */
1183 post_reset = 0;
1184 goto retry;
1185 }
1186 }
1187
1188 *p_class = class;
1189
1190 return 0;
1191
1192 err_out:
1193 printk(KERN_WARNING "ata%u: dev %u failed to IDENTIFY (%s)\n",
1194 ap->id, dev->devno, reason);
1195 return rc;
1196 }
1197
1198 static inline u8 ata_dev_knobble(const struct ata_port *ap,
1199 struct ata_device *dev)
1200 {
1201 return ((ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(dev->id)));
1202 }
1203
1204 /**
1205 * ata_dev_configure - Configure the specified ATA/ATAPI device
1206 * @ap: Port on which target device resides
1207 * @dev: Target device to configure
1208 * @print_info: Enable device info printout
1209 *
1210 * Configure @dev according to @dev->id. Generic and low-level
1211 * driver specific fixups are also applied.
1212 *
1213 * LOCKING:
1214 * Kernel thread context (may sleep)
1215 *
1216 * RETURNS:
1217 * 0 on success, -errno otherwise
1218 */
1219 static int ata_dev_configure(struct ata_port *ap, struct ata_device *dev,
1220 int print_info)
1221 {
1222 const u16 *id = dev->id;
1223 unsigned int xfer_mask;
1224 int i, rc;
1225
1226 if (!ata_dev_enabled(dev)) {
1227 DPRINTK("ENTER/EXIT (host %u, dev %u) -- nodev\n",
1228 ap->id, dev->devno);
1229 return 0;
1230 }
1231
1232 DPRINTK("ENTER, host %u, dev %u\n", ap->id, dev->devno);
1233
1234 /* print device capabilities */
1235 if (print_info)
1236 printk(KERN_DEBUG "ata%u: dev %u cfg 49:%04x 82:%04x 83:%04x "
1237 "84:%04x 85:%04x 86:%04x 87:%04x 88:%04x\n",
1238 ap->id, dev->devno, id[49], id[82], id[83],
1239 id[84], id[85], id[86], id[87], id[88]);
1240
1241 /* initialize to-be-configured parameters */
1242 dev->flags &= ~ATA_DFLAG_CFG_MASK;
1243 dev->max_sectors = 0;
1244 dev->cdb_len = 0;
1245 dev->n_sectors = 0;
1246 dev->cylinders = 0;
1247 dev->heads = 0;
1248 dev->sectors = 0;
1249
1250 /*
1251 * common ATA, ATAPI feature tests
1252 */
1253
1254 /* find max transfer mode; for printk only */
1255 xfer_mask = ata_id_xfermask(id);
1256
1257 ata_dump_id(id);
1258
1259 /* ATA-specific feature tests */
1260 if (dev->class == ATA_DEV_ATA) {
1261 dev->n_sectors = ata_id_n_sectors(id);
1262
1263 if (ata_id_has_lba(id)) {
1264 const char *lba_desc;
1265
1266 lba_desc = "LBA";
1267 dev->flags |= ATA_DFLAG_LBA;
1268 if (ata_id_has_lba48(id)) {
1269 dev->flags |= ATA_DFLAG_LBA48;
1270 lba_desc = "LBA48";
1271 }
1272
1273 /* print device info to dmesg */
1274 if (print_info)
1275 printk(KERN_INFO "ata%u: dev %u ATA-%d, "
1276 "max %s, %Lu sectors: %s\n",
1277 ap->id, dev->devno,
1278 ata_id_major_version(id),
1279 ata_mode_string(xfer_mask),
1280 (unsigned long long)dev->n_sectors,
1281 lba_desc);
1282 } else {
1283 /* CHS */
1284
1285 /* Default translation */
1286 dev->cylinders = id[1];
1287 dev->heads = id[3];
1288 dev->sectors = id[6];
1289
1290 if (ata_id_current_chs_valid(id)) {
1291 /* Current CHS translation is valid. */
1292 dev->cylinders = id[54];
1293 dev->heads = id[55];
1294 dev->sectors = id[56];
1295 }
1296
1297 /* print device info to dmesg */
1298 if (print_info)
1299 printk(KERN_INFO "ata%u: dev %u ATA-%d, "
1300 "max %s, %Lu sectors: CHS %u/%u/%u\n",
1301 ap->id, dev->devno,
1302 ata_id_major_version(id),
1303 ata_mode_string(xfer_mask),
1304 (unsigned long long)dev->n_sectors,
1305 dev->cylinders, dev->heads, dev->sectors);
1306 }
1307
1308 dev->cdb_len = 16;
1309 }
1310
1311 /* ATAPI-specific feature tests */
1312 else if (dev->class == ATA_DEV_ATAPI) {
1313 rc = atapi_cdb_len(id);
1314 if ((rc < 12) || (rc > ATAPI_CDB_LEN)) {
1315 printk(KERN_WARNING "ata%u: unsupported CDB len\n", ap->id);
1316 rc = -EINVAL;
1317 goto err_out_nosup;
1318 }
1319 dev->cdb_len = (unsigned int) rc;
1320
1321 /* print device info to dmesg */
1322 if (print_info)
1323 printk(KERN_INFO "ata%u: dev %u ATAPI, max %s\n",
1324 ap->id, dev->devno, ata_mode_string(xfer_mask));
1325 }
1326
1327 ap->host->max_cmd_len = 0;
1328 for (i = 0; i < ATA_MAX_DEVICES; i++)
1329 ap->host->max_cmd_len = max_t(unsigned int,
1330 ap->host->max_cmd_len,
1331 ap->device[i].cdb_len);
1332
1333 /* limit bridge transfers to udma5, 200 sectors */
1334 if (ata_dev_knobble(ap, dev)) {
1335 if (print_info)
1336 printk(KERN_INFO "ata%u(%u): applying bridge limits\n",
1337 ap->id, dev->devno);
1338 dev->udma_mask &= ATA_UDMA5;
1339 dev->max_sectors = ATA_MAX_SECTORS;
1340 }
1341
1342 if (ap->ops->dev_config)
1343 ap->ops->dev_config(ap, dev);
1344
1345 DPRINTK("EXIT, drv_stat = 0x%x\n", ata_chk_status(ap));
1346 return 0;
1347
1348 err_out_nosup:
1349 DPRINTK("EXIT, err\n");
1350 return rc;
1351 }
1352
1353 /**
1354 * ata_bus_probe - Reset and probe ATA bus
1355 * @ap: Bus to probe
1356 *
1357 * Master ATA bus probing function. Initiates a hardware-dependent
1358 * bus reset, then attempts to identify any devices found on
1359 * the bus.
1360 *
1361 * LOCKING:
1362 * PCI/etc. bus probe sem.
1363 *
1364 * RETURNS:
1365 * Zero on success, negative errno otherwise.
1366 */
1367
1368 static int ata_bus_probe(struct ata_port *ap)
1369 {
1370 unsigned int classes[ATA_MAX_DEVICES];
1371 int tries[ATA_MAX_DEVICES];
1372 int i, rc, down_xfermask;
1373 struct ata_device *dev;
1374
1375 ata_port_probe(ap);
1376
1377 for (i = 0; i < ATA_MAX_DEVICES; i++)
1378 tries[i] = ATA_PROBE_MAX_TRIES;
1379
1380 retry:
1381 down_xfermask = 0;
1382
1383 /* reset and determine device classes */
1384 for (i = 0; i < ATA_MAX_DEVICES; i++)
1385 classes[i] = ATA_DEV_UNKNOWN;
1386
1387 if (ap->ops->probe_reset) {
1388 rc = ap->ops->probe_reset(ap, classes);
1389 if (rc) {
1390 printk("ata%u: reset failed (errno=%d)\n", ap->id, rc);
1391 return rc;
1392 }
1393 } else {
1394 ap->ops->phy_reset(ap);
1395
1396 for (i = 0; i < ATA_MAX_DEVICES; i++) {
1397 if (!(ap->flags & ATA_FLAG_DISABLED))
1398 classes[i] = ap->device[i].class;
1399 ap->device[i].class = ATA_DEV_UNKNOWN;
1400 }
1401
1402 ata_port_probe(ap);
1403 }
1404
1405 for (i = 0; i < ATA_MAX_DEVICES; i++)
1406 if (classes[i] == ATA_DEV_UNKNOWN)
1407 classes[i] = ATA_DEV_NONE;
1408
1409 /* read IDENTIFY page and configure devices */
1410 for (i = 0; i < ATA_MAX_DEVICES; i++) {
1411 dev = &ap->device[i];
1412
1413 if (tries[i])
1414 dev->class = classes[i];
1415
1416 if (!ata_dev_enabled(dev))
1417 continue;
1418
1419 rc = ata_dev_read_id(ap, dev, &dev->class, 1, dev->id);
1420 if (rc)
1421 goto fail;
1422
1423 rc = ata_dev_configure(ap, dev, 1);
1424 if (rc)
1425 goto fail;
1426 }
1427
1428 /* configure transfer mode */
1429 rc = ata_set_mode(ap, &dev);
1430 if (rc) {
1431 down_xfermask = 1;
1432 goto fail;
1433 }
1434
1435 for (i = 0; i < ATA_MAX_DEVICES; i++)
1436 if (ata_dev_enabled(&ap->device[i]))
1437 return 0;
1438
1439 /* no device present, disable port */
1440 ata_port_disable(ap);
1441 ap->ops->port_disable(ap);
1442 return -ENODEV;
1443
1444 fail:
1445 switch (rc) {
1446 case -EINVAL:
1447 case -ENODEV:
1448 tries[dev->devno] = 0;
1449 break;
1450 case -EIO:
1451 sata_down_spd_limit(ap);
1452 /* fall through */
1453 default:
1454 tries[dev->devno]--;
1455 if (down_xfermask &&
1456 ata_down_xfermask_limit(ap, dev, tries[dev->devno] == 1))
1457 tries[dev->devno] = 0;
1458 }
1459
1460 if (!tries[dev->devno]) {
1461 ata_down_xfermask_limit(ap, dev, 1);
1462 ata_dev_disable(ap, dev);
1463 }
1464
1465 goto retry;
1466 }
1467
1468 /**
1469 * ata_port_probe - Mark port as enabled
1470 * @ap: Port for which we indicate enablement
1471 *
1472 * Modify @ap data structure such that the system
1473 * thinks that the entire port is enabled.
1474 *
1475 * LOCKING: host_set lock, or some other form of
1476 * serialization.
1477 */
1478
1479 void ata_port_probe(struct ata_port *ap)
1480 {
1481 ap->flags &= ~ATA_FLAG_DISABLED;
1482 }
1483
1484 /**
1485 * sata_print_link_status - Print SATA link status
1486 * @ap: SATA port to printk link status about
1487 *
1488 * This function prints link speed and status of a SATA link.
1489 *
1490 * LOCKING:
1491 * None.
1492 */
1493 static void sata_print_link_status(struct ata_port *ap)
1494 {
1495 u32 sstatus, scontrol, tmp;
1496
1497 if (!ap->ops->scr_read)
1498 return;
1499
1500 sstatus = scr_read(ap, SCR_STATUS);
1501 scontrol = scr_read(ap, SCR_CONTROL);
1502
1503 if (sata_dev_present(ap)) {
1504 tmp = (sstatus >> 4) & 0xf;
1505 printk(KERN_INFO
1506 "ata%u: SATA link up %s (SStatus %X SControl %X)\n",
1507 ap->id, sata_spd_string(tmp), sstatus, scontrol);
1508 } else {
1509 printk(KERN_INFO
1510 "ata%u: SATA link down (SStatus %X SControl %X)\n",
1511 ap->id, sstatus, scontrol);
1512 }
1513 }
1514
1515 /**
1516 * __sata_phy_reset - Wake/reset a low-level SATA PHY
1517 * @ap: SATA port associated with target SATA PHY.
1518 *
1519 * This function issues commands to standard SATA Sxxx
1520 * PHY registers, to wake up the phy (and device), and
1521 * clear any reset condition.
1522 *
1523 * LOCKING:
1524 * PCI/etc. bus probe sem.
1525 *
1526 */
1527 void __sata_phy_reset(struct ata_port *ap)
1528 {
1529 u32 sstatus;
1530 unsigned long timeout = jiffies + (HZ * 5);
1531
1532 if (ap->flags & ATA_FLAG_SATA_RESET) {
1533 /* issue phy wake/reset */
1534 scr_write_flush(ap, SCR_CONTROL, 0x301);
1535 /* Couldn't find anything in SATA I/II specs, but
1536 * AHCI-1.1 10.4.2 says at least 1 ms. */
1537 mdelay(1);
1538 }
1539 scr_write_flush(ap, SCR_CONTROL, 0x300); /* phy wake/clear reset */
1540
1541 /* wait for phy to become ready, if necessary */
1542 do {
1543 msleep(200);
1544 sstatus = scr_read(ap, SCR_STATUS);
1545 if ((sstatus & 0xf) != 1)
1546 break;
1547 } while (time_before(jiffies, timeout));
1548
1549 /* print link status */
1550 sata_print_link_status(ap);
1551
1552 /* TODO: phy layer with polling, timeouts, etc. */
1553 if (sata_dev_present(ap))
1554 ata_port_probe(ap);
1555 else
1556 ata_port_disable(ap);
1557
1558 if (ap->flags & ATA_FLAG_DISABLED)
1559 return;
1560
1561 if (ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT)) {
1562 ata_port_disable(ap);
1563 return;
1564 }
1565
1566 ap->cbl = ATA_CBL_SATA;
1567 }
1568
1569 /**
1570 * sata_phy_reset - Reset SATA bus.
1571 * @ap: SATA port associated with target SATA PHY.
1572 *
1573 * This function resets the SATA bus, and then probes
1574 * the bus for devices.
1575 *
1576 * LOCKING:
1577 * PCI/etc. bus probe sem.
1578 *
1579 */
1580 void sata_phy_reset(struct ata_port *ap)
1581 {
1582 __sata_phy_reset(ap);
1583 if (ap->flags & ATA_FLAG_DISABLED)
1584 return;
1585 ata_bus_reset(ap);
1586 }
1587
1588 /**
1589 * ata_dev_pair - return other device on cable
1590 * @ap: port
1591 * @adev: device
1592 *
1593 * Obtain the other device on the same cable, or if none is
1594 * present NULL is returned
1595 */
1596
1597 struct ata_device *ata_dev_pair(struct ata_port *ap, struct ata_device *adev)
1598 {
1599 struct ata_device *pair = &ap->device[1 - adev->devno];
1600 if (!ata_dev_enabled(pair))
1601 return NULL;
1602 return pair;
1603 }
1604
1605 /**
1606 * ata_port_disable - Disable port.
1607 * @ap: Port to be disabled.
1608 *
1609 * Modify @ap data structure such that the system
1610 * thinks that the entire port is disabled, and should
1611 * never attempt to probe or communicate with devices
1612 * on this port.
1613 *
1614 * LOCKING: host_set lock, or some other form of
1615 * serialization.
1616 */
1617
1618 void ata_port_disable(struct ata_port *ap)
1619 {
1620 ap->device[0].class = ATA_DEV_NONE;
1621 ap->device[1].class = ATA_DEV_NONE;
1622 ap->flags |= ATA_FLAG_DISABLED;
1623 }
1624
1625 /**
1626 * sata_down_spd_limit - adjust SATA spd limit downward
1627 * @ap: Port to adjust SATA spd limit for
1628 *
1629 * Adjust SATA spd limit of @ap downward. Note that this
1630 * function only adjusts the limit. The change must be applied
1631 * using sata_set_spd().
1632 *
1633 * LOCKING:
1634 * Inherited from caller.
1635 *
1636 * RETURNS:
1637 * 0 on success, negative errno on failure
1638 */
1639 int sata_down_spd_limit(struct ata_port *ap)
1640 {
1641 u32 spd, mask;
1642 int highbit;
1643
1644 if (ap->cbl != ATA_CBL_SATA || !ap->ops->scr_read)
1645 return -EOPNOTSUPP;
1646
1647 mask = ap->sata_spd_limit;
1648 if (mask <= 1)
1649 return -EINVAL;
1650 highbit = fls(mask) - 1;
1651 mask &= ~(1 << highbit);
1652
1653 spd = (scr_read(ap, SCR_STATUS) >> 4) & 0xf;
1654 if (spd <= 1)
1655 return -EINVAL;
1656 spd--;
1657 mask &= (1 << spd) - 1;
1658 if (!mask)
1659 return -EINVAL;
1660
1661 ap->sata_spd_limit = mask;
1662
1663 printk(KERN_WARNING "ata%u: limiting SATA link speed to %s\n",
1664 ap->id, sata_spd_string(fls(mask)));
1665
1666 return 0;
1667 }
1668
1669 static int __sata_set_spd_needed(struct ata_port *ap, u32 *scontrol)
1670 {
1671 u32 spd, limit;
1672
1673 if (ap->sata_spd_limit == UINT_MAX)
1674 limit = 0;
1675 else
1676 limit = fls(ap->sata_spd_limit);
1677
1678 spd = (*scontrol >> 4) & 0xf;
1679 *scontrol = (*scontrol & ~0xf0) | ((limit & 0xf) << 4);
1680
1681 return spd != limit;
1682 }
1683
1684 /**
1685 * sata_set_spd_needed - is SATA spd configuration needed
1686 * @ap: Port in question
1687 *
1688 * Test whether the spd limit in SControl matches
1689 * @ap->sata_spd_limit. This function is used to determine
1690 * whether hardreset is necessary to apply SATA spd
1691 * configuration.
1692 *
1693 * LOCKING:
1694 * Inherited from caller.
1695 *
1696 * RETURNS:
1697 * 1 if SATA spd configuration is needed, 0 otherwise.
1698 */
1699 int sata_set_spd_needed(struct ata_port *ap)
1700 {
1701 u32 scontrol;
1702
1703 if (ap->cbl != ATA_CBL_SATA || !ap->ops->scr_read)
1704 return 0;
1705
1706 scontrol = scr_read(ap, SCR_CONTROL);
1707
1708 return __sata_set_spd_needed(ap, &scontrol);
1709 }
1710
1711 /**
1712 * sata_set_spd - set SATA spd according to spd limit
1713 * @ap: Port to set SATA spd for
1714 *
1715 * Set SATA spd of @ap according to sata_spd_limit.
1716 *
1717 * LOCKING:
1718 * Inherited from caller.
1719 *
1720 * RETURNS:
1721 * 0 if spd doesn't need to be changed, 1 if spd has been
1722 * changed. -EOPNOTSUPP if SCR registers are inaccessible.
1723 */
1724 int sata_set_spd(struct ata_port *ap)
1725 {
1726 u32 scontrol;
1727
1728 if (ap->cbl != ATA_CBL_SATA || !ap->ops->scr_read)
1729 return -EOPNOTSUPP;
1730
1731 scontrol = scr_read(ap, SCR_CONTROL);
1732 if (!__sata_set_spd_needed(ap, &scontrol))
1733 return 0;
1734
1735 scr_write(ap, SCR_CONTROL, scontrol);
1736 return 1;
1737 }
1738
1739 /*
1740 * This mode timing computation functionality is ported over from
1741 * drivers/ide/ide-timing.h and was originally written by Vojtech Pavlik
1742 */
1743 /*
1744 * PIO 0-5, MWDMA 0-2 and UDMA 0-6 timings (in nanoseconds).
1745 * These were taken from ATA/ATAPI-6 standard, rev 0a, except
1746 * for PIO 5, which is a nonstandard extension and UDMA6, which
1747 * is currently supported only by Maxtor drives.
1748 */
1749
1750 static const struct ata_timing ata_timing[] = {
1751
1752 { XFER_UDMA_6, 0, 0, 0, 0, 0, 0, 0, 15 },
1753 { XFER_UDMA_5, 0, 0, 0, 0, 0, 0, 0, 20 },
1754 { XFER_UDMA_4, 0, 0, 0, 0, 0, 0, 0, 30 },
1755 { XFER_UDMA_3, 0, 0, 0, 0, 0, 0, 0, 45 },
1756
1757 { XFER_UDMA_2, 0, 0, 0, 0, 0, 0, 0, 60 },
1758 { XFER_UDMA_1, 0, 0, 0, 0, 0, 0, 0, 80 },
1759 { XFER_UDMA_0, 0, 0, 0, 0, 0, 0, 0, 120 },
1760
1761 /* { XFER_UDMA_SLOW, 0, 0, 0, 0, 0, 0, 0, 150 }, */
1762
1763 { XFER_MW_DMA_2, 25, 0, 0, 0, 70, 25, 120, 0 },
1764 { XFER_MW_DMA_1, 45, 0, 0, 0, 80, 50, 150, 0 },
1765 { XFER_MW_DMA_0, 60, 0, 0, 0, 215, 215, 480, 0 },
1766
1767 { XFER_SW_DMA_2, 60, 0, 0, 0, 120, 120, 240, 0 },
1768 { XFER_SW_DMA_1, 90, 0, 0, 0, 240, 240, 480, 0 },
1769 { XFER_SW_DMA_0, 120, 0, 0, 0, 480, 480, 960, 0 },
1770
1771 /* { XFER_PIO_5, 20, 50, 30, 100, 50, 30, 100, 0 }, */
1772 { XFER_PIO_4, 25, 70, 25, 120, 70, 25, 120, 0 },
1773 { XFER_PIO_3, 30, 80, 70, 180, 80, 70, 180, 0 },
1774
1775 { XFER_PIO_2, 30, 290, 40, 330, 100, 90, 240, 0 },
1776 { XFER_PIO_1, 50, 290, 93, 383, 125, 100, 383, 0 },
1777 { XFER_PIO_0, 70, 290, 240, 600, 165, 150, 600, 0 },
1778
1779 /* { XFER_PIO_SLOW, 120, 290, 240, 960, 290, 240, 960, 0 }, */
1780
1781 { 0xFF }
1782 };
1783
1784 #define ENOUGH(v,unit) (((v)-1)/(unit)+1)
1785 #define EZ(v,unit) ((v)?ENOUGH(v,unit):0)
1786
1787 static void ata_timing_quantize(const struct ata_timing *t, struct ata_timing *q, int T, int UT)
1788 {
1789 q->setup = EZ(t->setup * 1000, T);
1790 q->act8b = EZ(t->act8b * 1000, T);
1791 q->rec8b = EZ(t->rec8b * 1000, T);
1792 q->cyc8b = EZ(t->cyc8b * 1000, T);
1793 q->active = EZ(t->active * 1000, T);
1794 q->recover = EZ(t->recover * 1000, T);
1795 q->cycle = EZ(t->cycle * 1000, T);
1796 q->udma = EZ(t->udma * 1000, UT);
1797 }
1798
1799 void ata_timing_merge(const struct ata_timing *a, const struct ata_timing *b,
1800 struct ata_timing *m, unsigned int what)
1801 {
1802 if (what & ATA_TIMING_SETUP ) m->setup = max(a->setup, b->setup);
1803 if (what & ATA_TIMING_ACT8B ) m->act8b = max(a->act8b, b->act8b);
1804 if (what & ATA_TIMING_REC8B ) m->rec8b = max(a->rec8b, b->rec8b);
1805 if (what & ATA_TIMING_CYC8B ) m->cyc8b = max(a->cyc8b, b->cyc8b);
1806 if (what & ATA_TIMING_ACTIVE ) m->active = max(a->active, b->active);
1807 if (what & ATA_TIMING_RECOVER) m->recover = max(a->recover, b->recover);
1808 if (what & ATA_TIMING_CYCLE ) m->cycle = max(a->cycle, b->cycle);
1809 if (what & ATA_TIMING_UDMA ) m->udma = max(a->udma, b->udma);
1810 }
1811
1812 static const struct ata_timing* ata_timing_find_mode(unsigned short speed)
1813 {
1814 const struct ata_timing *t;
1815
1816 for (t = ata_timing; t->mode != speed; t++)
1817 if (t->mode == 0xFF)
1818 return NULL;
1819 return t;
1820 }
1821
1822 int ata_timing_compute(struct ata_device *adev, unsigned short speed,
1823 struct ata_timing *t, int T, int UT)
1824 {
1825 const struct ata_timing *s;
1826 struct ata_timing p;
1827
1828 /*
1829 * Find the mode.
1830 */
1831
1832 if (!(s = ata_timing_find_mode(speed)))
1833 return -EINVAL;
1834
1835 memcpy(t, s, sizeof(*s));
1836
1837 /*
1838 * If the drive is an EIDE drive, it can tell us it needs extended
1839 * PIO/MW_DMA cycle timing.
1840 */
1841
1842 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE drive */
1843 memset(&p, 0, sizeof(p));
1844 if(speed >= XFER_PIO_0 && speed <= XFER_SW_DMA_0) {
1845 if (speed <= XFER_PIO_2) p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO];
1846 else p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO_IORDY];
1847 } else if(speed >= XFER_MW_DMA_0 && speed <= XFER_MW_DMA_2) {
1848 p.cycle = adev->id[ATA_ID_EIDE_DMA_MIN];
1849 }
1850 ata_timing_merge(&p, t, t, ATA_TIMING_CYCLE | ATA_TIMING_CYC8B);
1851 }
1852
1853 /*
1854 * Convert the timing to bus clock counts.
1855 */
1856
1857 ata_timing_quantize(t, t, T, UT);
1858
1859 /*
1860 * Even in DMA/UDMA modes we still use PIO access for IDENTIFY,
1861 * S.M.A.R.T * and some other commands. We have to ensure that the
1862 * DMA cycle timing is slower/equal than the fastest PIO timing.
1863 */
1864
1865 if (speed > XFER_PIO_4) {
1866 ata_timing_compute(adev, adev->pio_mode, &p, T, UT);
1867 ata_timing_merge(&p, t, t, ATA_TIMING_ALL);
1868 }
1869
1870 /*
1871 * Lengthen active & recovery time so that cycle time is correct.
1872 */
1873
1874 if (t->act8b + t->rec8b < t->cyc8b) {
1875 t->act8b += (t->cyc8b - (t->act8b + t->rec8b)) / 2;
1876 t->rec8b = t->cyc8b - t->act8b;
1877 }
1878
1879 if (t->active + t->recover < t->cycle) {
1880 t->active += (t->cycle - (t->active + t->recover)) / 2;
1881 t->recover = t->cycle - t->active;
1882 }
1883
1884 return 0;
1885 }
1886
1887 /**
1888 * ata_down_xfermask_limit - adjust dev xfer masks downward
1889 * @ap: Port associated with device @dev
1890 * @dev: Device to adjust xfer masks
1891 * @force_pio0: Force PIO0
1892 *
1893 * Adjust xfer masks of @dev downward. Note that this function
1894 * does not apply the change. Invoking ata_set_mode() afterwards
1895 * will apply the limit.
1896 *
1897 * LOCKING:
1898 * Inherited from caller.
1899 *
1900 * RETURNS:
1901 * 0 on success, negative errno on failure
1902 */
1903 int ata_down_xfermask_limit(struct ata_port *ap, struct ata_device *dev,
1904 int force_pio0)
1905 {
1906 unsigned long xfer_mask;
1907 int highbit;
1908
1909 xfer_mask = ata_pack_xfermask(dev->pio_mask, dev->mwdma_mask,
1910 dev->udma_mask);
1911
1912 if (!xfer_mask)
1913 goto fail;
1914 /* don't gear down to MWDMA from UDMA, go directly to PIO */
1915 if (xfer_mask & ATA_MASK_UDMA)
1916 xfer_mask &= ~ATA_MASK_MWDMA;
1917
1918 highbit = fls(xfer_mask) - 1;
1919 xfer_mask &= ~(1 << highbit);
1920 if (force_pio0)
1921 xfer_mask &= 1 << ATA_SHIFT_PIO;
1922 if (!xfer_mask)
1923 goto fail;
1924
1925 ata_unpack_xfermask(xfer_mask, &dev->pio_mask, &dev->mwdma_mask,
1926 &dev->udma_mask);
1927
1928 printk(KERN_WARNING "ata%u: dev %u limiting speed to %s\n",
1929 ap->id, dev->devno, ata_mode_string(xfer_mask));
1930
1931 return 0;
1932
1933 fail:
1934 return -EINVAL;
1935 }
1936
1937 static int ata_dev_set_mode(struct ata_port *ap, struct ata_device *dev)
1938 {
1939 unsigned int err_mask;
1940 int rc;
1941
1942 dev->flags &= ~ATA_DFLAG_PIO;
1943 if (dev->xfer_shift == ATA_SHIFT_PIO)
1944 dev->flags |= ATA_DFLAG_PIO;
1945
1946 err_mask = ata_dev_set_xfermode(ap, dev);
1947 if (err_mask) {
1948 printk(KERN_ERR
1949 "ata%u: failed to set xfermode (err_mask=0x%x)\n",
1950 ap->id, err_mask);
1951 return -EIO;
1952 }
1953
1954 rc = ata_dev_revalidate(ap, dev, 0);
1955 if (rc)
1956 return rc;
1957
1958 DPRINTK("xfer_shift=%u, xfer_mode=0x%x\n",
1959 dev->xfer_shift, (int)dev->xfer_mode);
1960
1961 printk(KERN_INFO "ata%u: dev %u configured for %s\n",
1962 ap->id, dev->devno,
1963 ata_mode_string(ata_xfer_mode2mask(dev->xfer_mode)));
1964 return 0;
1965 }
1966
1967 /**
1968 * ata_set_mode - Program timings and issue SET FEATURES - XFER
1969 * @ap: port on which timings will be programmed
1970 * @r_failed_dev: out paramter for failed device
1971 *
1972 * Set ATA device disk transfer mode (PIO3, UDMA6, etc.). If
1973 * ata_set_mode() fails, pointer to the failing device is
1974 * returned in @r_failed_dev.
1975 *
1976 * LOCKING:
1977 * PCI/etc. bus probe sem.
1978 *
1979 * RETURNS:
1980 * 0 on success, negative errno otherwise
1981 */
1982 int ata_set_mode(struct ata_port *ap, struct ata_device **r_failed_dev)
1983 {
1984 struct ata_device *dev;
1985 int i, rc = 0, used_dma = 0, found = 0;
1986
1987 /* has private set_mode? */
1988 if (ap->ops->set_mode) {
1989 /* FIXME: make ->set_mode handle no device case and
1990 * return error code and failing device on failure.
1991 */
1992 for (i = 0; i < ATA_MAX_DEVICES; i++) {
1993 if (ata_dev_enabled(&ap->device[i])) {
1994 ap->ops->set_mode(ap);
1995 break;
1996 }
1997 }
1998 return 0;
1999 }
2000
2001 /* step 1: calculate xfer_mask */
2002 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2003 unsigned int pio_mask, dma_mask;
2004
2005 dev = &ap->device[i];
2006
2007 if (!ata_dev_enabled(dev))
2008 continue;
2009
2010 ata_dev_xfermask(ap, dev);
2011
2012 pio_mask = ata_pack_xfermask(dev->pio_mask, 0, 0);
2013 dma_mask = ata_pack_xfermask(0, dev->mwdma_mask, dev->udma_mask);
2014 dev->pio_mode = ata_xfer_mask2mode(pio_mask);
2015 dev->dma_mode = ata_xfer_mask2mode(dma_mask);
2016
2017 found = 1;
2018 if (dev->dma_mode)
2019 used_dma = 1;
2020 }
2021 if (!found)
2022 goto out;
2023
2024 /* step 2: always set host PIO timings */
2025 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2026 dev = &ap->device[i];
2027 if (!ata_dev_enabled(dev))
2028 continue;
2029
2030 if (!dev->pio_mode) {
2031 printk(KERN_WARNING "ata%u: dev %u no PIO support\n",
2032 ap->id, dev->devno);
2033 rc = -EINVAL;
2034 goto out;
2035 }
2036
2037 dev->xfer_mode = dev->pio_mode;
2038 dev->xfer_shift = ATA_SHIFT_PIO;
2039 if (ap->ops->set_piomode)
2040 ap->ops->set_piomode(ap, dev);
2041 }
2042
2043 /* step 3: set host DMA timings */
2044 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2045 dev = &ap->device[i];
2046
2047 if (!ata_dev_enabled(dev) || !dev->dma_mode)
2048 continue;
2049
2050 dev->xfer_mode = dev->dma_mode;
2051 dev->xfer_shift = ata_xfer_mode2shift(dev->dma_mode);
2052 if (ap->ops->set_dmamode)
2053 ap->ops->set_dmamode(ap, dev);
2054 }
2055
2056 /* step 4: update devices' xfer mode */
2057 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2058 dev = &ap->device[i];
2059
2060 if (!ata_dev_enabled(dev))
2061 continue;
2062
2063 rc = ata_dev_set_mode(ap, dev);
2064 if (rc)
2065 goto out;
2066 }
2067
2068 /* Record simplex status. If we selected DMA then the other
2069 * host channels are not permitted to do so.
2070 */
2071 if (used_dma && (ap->host_set->flags & ATA_HOST_SIMPLEX))
2072 ap->host_set->simplex_claimed = 1;
2073
2074 /* step5: chip specific finalisation */
2075 if (ap->ops->post_set_mode)
2076 ap->ops->post_set_mode(ap);
2077
2078 out:
2079 if (rc)
2080 *r_failed_dev = dev;
2081 return rc;
2082 }
2083
2084 /**
2085 * ata_tf_to_host - issue ATA taskfile to host controller
2086 * @ap: port to which command is being issued
2087 * @tf: ATA taskfile register set
2088 *
2089 * Issues ATA taskfile register set to ATA host controller,
2090 * with proper synchronization with interrupt handler and
2091 * other threads.
2092 *
2093 * LOCKING:
2094 * spin_lock_irqsave(host_set lock)
2095 */
2096
2097 static inline void ata_tf_to_host(struct ata_port *ap,
2098 const struct ata_taskfile *tf)
2099 {
2100 ap->ops->tf_load(ap, tf);
2101 ap->ops->exec_command(ap, tf);
2102 }
2103
2104 /**
2105 * ata_busy_sleep - sleep until BSY clears, or timeout
2106 * @ap: port containing status register to be polled
2107 * @tmout_pat: impatience timeout
2108 * @tmout: overall timeout
2109 *
2110 * Sleep until ATA Status register bit BSY clears,
2111 * or a timeout occurs.
2112 *
2113 * LOCKING: None.
2114 */
2115
2116 unsigned int ata_busy_sleep (struct ata_port *ap,
2117 unsigned long tmout_pat, unsigned long tmout)
2118 {
2119 unsigned long timer_start, timeout;
2120 u8 status;
2121
2122 status = ata_busy_wait(ap, ATA_BUSY, 300);
2123 timer_start = jiffies;
2124 timeout = timer_start + tmout_pat;
2125 while ((status & ATA_BUSY) && (time_before(jiffies, timeout))) {
2126 msleep(50);
2127 status = ata_busy_wait(ap, ATA_BUSY, 3);
2128 }
2129
2130 if (status & ATA_BUSY)
2131 printk(KERN_WARNING "ata%u is slow to respond, "
2132 "please be patient\n", ap->id);
2133
2134 timeout = timer_start + tmout;
2135 while ((status & ATA_BUSY) && (time_before(jiffies, timeout))) {
2136 msleep(50);
2137 status = ata_chk_status(ap);
2138 }
2139
2140 if (status & ATA_BUSY) {
2141 printk(KERN_ERR "ata%u failed to respond (%lu secs)\n",
2142 ap->id, tmout / HZ);
2143 return 1;
2144 }
2145
2146 return 0;
2147 }
2148
2149 static void ata_bus_post_reset(struct ata_port *ap, unsigned int devmask)
2150 {
2151 struct ata_ioports *ioaddr = &ap->ioaddr;
2152 unsigned int dev0 = devmask & (1 << 0);
2153 unsigned int dev1 = devmask & (1 << 1);
2154 unsigned long timeout;
2155
2156 /* if device 0 was found in ata_devchk, wait for its
2157 * BSY bit to clear
2158 */
2159 if (dev0)
2160 ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT);
2161
2162 /* if device 1 was found in ata_devchk, wait for
2163 * register access, then wait for BSY to clear
2164 */
2165 timeout = jiffies + ATA_TMOUT_BOOT;
2166 while (dev1) {
2167 u8 nsect, lbal;
2168
2169 ap->ops->dev_select(ap, 1);
2170 if (ap->flags & ATA_FLAG_MMIO) {
2171 nsect = readb((void __iomem *) ioaddr->nsect_addr);
2172 lbal = readb((void __iomem *) ioaddr->lbal_addr);
2173 } else {
2174 nsect = inb(ioaddr->nsect_addr);
2175 lbal = inb(ioaddr->lbal_addr);
2176 }
2177 if ((nsect == 1) && (lbal == 1))
2178 break;
2179 if (time_after(jiffies, timeout)) {
2180 dev1 = 0;
2181 break;
2182 }
2183 msleep(50); /* give drive a breather */
2184 }
2185 if (dev1)
2186 ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT);
2187
2188 /* is all this really necessary? */
2189 ap->ops->dev_select(ap, 0);
2190 if (dev1)
2191 ap->ops->dev_select(ap, 1);
2192 if (dev0)
2193 ap->ops->dev_select(ap, 0);
2194 }
2195
2196 static unsigned int ata_bus_softreset(struct ata_port *ap,
2197 unsigned int devmask)
2198 {
2199 struct ata_ioports *ioaddr = &ap->ioaddr;
2200
2201 DPRINTK("ata%u: bus reset via SRST\n", ap->id);
2202
2203 /* software reset. causes dev0 to be selected */
2204 if (ap->flags & ATA_FLAG_MMIO) {
2205 writeb(ap->ctl, (void __iomem *) ioaddr->ctl_addr);
2206 udelay(20); /* FIXME: flush */
2207 writeb(ap->ctl | ATA_SRST, (void __iomem *) ioaddr->ctl_addr);
2208 udelay(20); /* FIXME: flush */
2209 writeb(ap->ctl, (void __iomem *) ioaddr->ctl_addr);
2210 } else {
2211 outb(ap->ctl, ioaddr->ctl_addr);
2212 udelay(10);
2213 outb(ap->ctl | ATA_SRST, ioaddr->ctl_addr);
2214 udelay(10);
2215 outb(ap->ctl, ioaddr->ctl_addr);
2216 }
2217
2218 /* spec mandates ">= 2ms" before checking status.
2219 * We wait 150ms, because that was the magic delay used for
2220 * ATAPI devices in Hale Landis's ATADRVR, for the period of time
2221 * between when the ATA command register is written, and then
2222 * status is checked. Because waiting for "a while" before
2223 * checking status is fine, post SRST, we perform this magic
2224 * delay here as well.
2225 *
2226 * Old drivers/ide uses the 2mS rule and then waits for ready
2227 */
2228 msleep(150);
2229
2230 /* Before we perform post reset processing we want to see if
2231 * the bus shows 0xFF because the odd clown forgets the D7
2232 * pulldown resistor.
2233 */
2234 if (ata_check_status(ap) == 0xFF) {
2235 printk(KERN_ERR "ata%u: SRST failed (status 0xFF)\n", ap->id);
2236 return AC_ERR_OTHER;
2237 }
2238
2239 ata_bus_post_reset(ap, devmask);
2240
2241 return 0;
2242 }
2243
2244 /**
2245 * ata_bus_reset - reset host port and associated ATA channel
2246 * @ap: port to reset
2247 *
2248 * This is typically the first time we actually start issuing
2249 * commands to the ATA channel. We wait for BSY to clear, then
2250 * issue EXECUTE DEVICE DIAGNOSTIC command, polling for its
2251 * result. Determine what devices, if any, are on the channel
2252 * by looking at the device 0/1 error register. Look at the signature
2253 * stored in each device's taskfile registers, to determine if
2254 * the device is ATA or ATAPI.
2255 *
2256 * LOCKING:
2257 * PCI/etc. bus probe sem.
2258 * Obtains host_set lock.
2259 *
2260 * SIDE EFFECTS:
2261 * Sets ATA_FLAG_DISABLED if bus reset fails.
2262 */
2263
2264 void ata_bus_reset(struct ata_port *ap)
2265 {
2266 struct ata_ioports *ioaddr = &ap->ioaddr;
2267 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
2268 u8 err;
2269 unsigned int dev0, dev1 = 0, devmask = 0;
2270
2271 DPRINTK("ENTER, host %u, port %u\n", ap->id, ap->port_no);
2272
2273 /* determine if device 0/1 are present */
2274 if (ap->flags & ATA_FLAG_SATA_RESET)
2275 dev0 = 1;
2276 else {
2277 dev0 = ata_devchk(ap, 0);
2278 if (slave_possible)
2279 dev1 = ata_devchk(ap, 1);
2280 }
2281
2282 if (dev0)
2283 devmask |= (1 << 0);
2284 if (dev1)
2285 devmask |= (1 << 1);
2286
2287 /* select device 0 again */
2288 ap->ops->dev_select(ap, 0);
2289
2290 /* issue bus reset */
2291 if (ap->flags & ATA_FLAG_SRST)
2292 if (ata_bus_softreset(ap, devmask))
2293 goto err_out;
2294
2295 /*
2296 * determine by signature whether we have ATA or ATAPI devices
2297 */
2298 ap->device[0].class = ata_dev_try_classify(ap, 0, &err);
2299 if ((slave_possible) && (err != 0x81))
2300 ap->device[1].class = ata_dev_try_classify(ap, 1, &err);
2301
2302 /* re-enable interrupts */
2303 if (ap->ioaddr.ctl_addr) /* FIXME: hack. create a hook instead */
2304 ata_irq_on(ap);
2305
2306 /* is double-select really necessary? */
2307 if (ap->device[1].class != ATA_DEV_NONE)
2308 ap->ops->dev_select(ap, 1);
2309 if (ap->device[0].class != ATA_DEV_NONE)
2310 ap->ops->dev_select(ap, 0);
2311
2312 /* if no devices were detected, disable this port */
2313 if ((ap->device[0].class == ATA_DEV_NONE) &&
2314 (ap->device[1].class == ATA_DEV_NONE))
2315 goto err_out;
2316
2317 if (ap->flags & (ATA_FLAG_SATA_RESET | ATA_FLAG_SRST)) {
2318 /* set up device control for ATA_FLAG_SATA_RESET */
2319 if (ap->flags & ATA_FLAG_MMIO)
2320 writeb(ap->ctl, (void __iomem *) ioaddr->ctl_addr);
2321 else
2322 outb(ap->ctl, ioaddr->ctl_addr);
2323 }
2324
2325 DPRINTK("EXIT\n");
2326 return;
2327
2328 err_out:
2329 printk(KERN_ERR "ata%u: disabling port\n", ap->id);
2330 ap->ops->port_disable(ap);
2331
2332 DPRINTK("EXIT\n");
2333 }
2334
2335 static int sata_phy_resume(struct ata_port *ap)
2336 {
2337 unsigned long timeout = jiffies + (HZ * 5);
2338 u32 scontrol, sstatus;
2339
2340 scontrol = scr_read(ap, SCR_CONTROL);
2341 scontrol = (scontrol & 0x0f0) | 0x300;
2342 scr_write_flush(ap, SCR_CONTROL, scontrol);
2343
2344 /* Wait for phy to become ready, if necessary. */
2345 do {
2346 msleep(200);
2347 sstatus = scr_read(ap, SCR_STATUS);
2348 if ((sstatus & 0xf) != 1)
2349 return 0;
2350 } while (time_before(jiffies, timeout));
2351
2352 return -1;
2353 }
2354
2355 /**
2356 * ata_std_probeinit - initialize probing
2357 * @ap: port to be probed
2358 *
2359 * @ap is about to be probed. Initialize it. This function is
2360 * to be used as standard callback for ata_drive_probe_reset().
2361 *
2362 * NOTE!!! Do not use this function as probeinit if a low level
2363 * driver implements only hardreset. Just pass NULL as probeinit
2364 * in that case. Using this function is probably okay but doing
2365 * so makes reset sequence different from the original
2366 * ->phy_reset implementation and Jeff nervous. :-P
2367 */
2368 void ata_std_probeinit(struct ata_port *ap)
2369 {
2370 if ((ap->flags & ATA_FLAG_SATA) && ap->ops->scr_read) {
2371 u32 spd;
2372
2373 /* resume link */
2374 sata_phy_resume(ap);
2375
2376 /* init sata_spd_limit to the current value */
2377 spd = (scr_read(ap, SCR_CONTROL) & 0xf0) >> 4;
2378 if (spd)
2379 ap->sata_spd_limit &= (1 << spd) - 1;
2380
2381 /* wait for device */
2382 if (sata_dev_present(ap))
2383 ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT);
2384 }
2385 }
2386
2387 /**
2388 * ata_std_softreset - reset host port via ATA SRST
2389 * @ap: port to reset
2390 * @classes: resulting classes of attached devices
2391 *
2392 * Reset host port using ATA SRST. This function is to be used
2393 * as standard callback for ata_drive_*_reset() functions.
2394 *
2395 * LOCKING:
2396 * Kernel thread context (may sleep)
2397 *
2398 * RETURNS:
2399 * 0 on success, -errno otherwise.
2400 */
2401 int ata_std_softreset(struct ata_port *ap, unsigned int *classes)
2402 {
2403 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
2404 unsigned int devmask = 0, err_mask;
2405 u8 err;
2406
2407 DPRINTK("ENTER\n");
2408
2409 if (ap->ops->scr_read && !sata_dev_present(ap)) {
2410 classes[0] = ATA_DEV_NONE;
2411 goto out;
2412 }
2413
2414 /* determine if device 0/1 are present */
2415 if (ata_devchk(ap, 0))
2416 devmask |= (1 << 0);
2417 if (slave_possible && ata_devchk(ap, 1))
2418 devmask |= (1 << 1);
2419
2420 /* select device 0 again */
2421 ap->ops->dev_select(ap, 0);
2422
2423 /* issue bus reset */
2424 DPRINTK("about to softreset, devmask=%x\n", devmask);
2425 err_mask = ata_bus_softreset(ap, devmask);
2426 if (err_mask) {
2427 printk(KERN_ERR "ata%u: SRST failed (err_mask=0x%x)\n",
2428 ap->id, err_mask);
2429 return -EIO;
2430 }
2431
2432 /* determine by signature whether we have ATA or ATAPI devices */
2433 classes[0] = ata_dev_try_classify(ap, 0, &err);
2434 if (slave_possible && err != 0x81)
2435 classes[1] = ata_dev_try_classify(ap, 1, &err);
2436
2437 out:
2438 DPRINTK("EXIT, classes[0]=%u [1]=%u\n", classes[0], classes[1]);
2439 return 0;
2440 }
2441
2442 /**
2443 * sata_std_hardreset - reset host port via SATA phy reset
2444 * @ap: port to reset
2445 * @class: resulting class of attached device
2446 *
2447 * SATA phy-reset host port using DET bits of SControl register.
2448 * This function is to be used as standard callback for
2449 * ata_drive_*_reset().
2450 *
2451 * LOCKING:
2452 * Kernel thread context (may sleep)
2453 *
2454 * RETURNS:
2455 * 0 on success, -errno otherwise.
2456 */
2457 int sata_std_hardreset(struct ata_port *ap, unsigned int *class)
2458 {
2459 u32 scontrol;
2460
2461 DPRINTK("ENTER\n");
2462
2463 if (sata_set_spd_needed(ap)) {
2464 /* SATA spec says nothing about how to reconfigure
2465 * spd. To be on the safe side, turn off phy during
2466 * reconfiguration. This works for at least ICH7 AHCI
2467 * and Sil3124.
2468 */
2469 scontrol = scr_read(ap, SCR_CONTROL);
2470 scontrol = (scontrol & 0x0f0) | 0x302;
2471 scr_write_flush(ap, SCR_CONTROL, scontrol);
2472
2473 sata_set_spd(ap);
2474 }
2475
2476 /* issue phy wake/reset */
2477 scontrol = scr_read(ap, SCR_CONTROL);
2478 scontrol = (scontrol & 0x0f0) | 0x301;
2479 scr_write_flush(ap, SCR_CONTROL, scontrol);
2480
2481 /* Couldn't find anything in SATA I/II specs, but AHCI-1.1
2482 * 10.4.2 says at least 1 ms.
2483 */
2484 msleep(1);
2485
2486 /* bring phy back */
2487 sata_phy_resume(ap);
2488
2489 /* TODO: phy layer with polling, timeouts, etc. */
2490 if (!sata_dev_present(ap)) {
2491 *class = ATA_DEV_NONE;
2492 DPRINTK("EXIT, link offline\n");
2493 return 0;
2494 }
2495
2496 if (ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT)) {
2497 printk(KERN_ERR
2498 "ata%u: COMRESET failed (device not ready)\n", ap->id);
2499 return -EIO;
2500 }
2501
2502 ap->ops->dev_select(ap, 0); /* probably unnecessary */
2503
2504 *class = ata_dev_try_classify(ap, 0, NULL);
2505
2506 DPRINTK("EXIT, class=%u\n", *class);
2507 return 0;
2508 }
2509
2510 /**
2511 * ata_std_postreset - standard postreset callback
2512 * @ap: the target ata_port
2513 * @classes: classes of attached devices
2514 *
2515 * This function is invoked after a successful reset. Note that
2516 * the device might have been reset more than once using
2517 * different reset methods before postreset is invoked.
2518 *
2519 * This function is to be used as standard callback for
2520 * ata_drive_*_reset().
2521 *
2522 * LOCKING:
2523 * Kernel thread context (may sleep)
2524 */
2525 void ata_std_postreset(struct ata_port *ap, unsigned int *classes)
2526 {
2527 DPRINTK("ENTER\n");
2528
2529 /* print link status */
2530 if (ap->cbl == ATA_CBL_SATA)
2531 sata_print_link_status(ap);
2532
2533 /* re-enable interrupts */
2534 if (ap->ioaddr.ctl_addr) /* FIXME: hack. create a hook instead */
2535 ata_irq_on(ap);
2536
2537 /* is double-select really necessary? */
2538 if (classes[0] != ATA_DEV_NONE)
2539 ap->ops->dev_select(ap, 1);
2540 if (classes[1] != ATA_DEV_NONE)
2541 ap->ops->dev_select(ap, 0);
2542
2543 /* bail out if no device is present */
2544 if (classes[0] == ATA_DEV_NONE && classes[1] == ATA_DEV_NONE) {
2545 DPRINTK("EXIT, no device\n");
2546 return;
2547 }
2548
2549 /* set up device control */
2550 if (ap->ioaddr.ctl_addr) {
2551 if (ap->flags & ATA_FLAG_MMIO)
2552 writeb(ap->ctl, (void __iomem *) ap->ioaddr.ctl_addr);
2553 else
2554 outb(ap->ctl, ap->ioaddr.ctl_addr);
2555 }
2556
2557 DPRINTK("EXIT\n");
2558 }
2559
2560 /**
2561 * ata_std_probe_reset - standard probe reset method
2562 * @ap: prot to perform probe-reset
2563 * @classes: resulting classes of attached devices
2564 *
2565 * The stock off-the-shelf ->probe_reset method.
2566 *
2567 * LOCKING:
2568 * Kernel thread context (may sleep)
2569 *
2570 * RETURNS:
2571 * 0 on success, -errno otherwise.
2572 */
2573 int ata_std_probe_reset(struct ata_port *ap, unsigned int *classes)
2574 {
2575 ata_reset_fn_t hardreset;
2576
2577 hardreset = NULL;
2578 if (ap->cbl == ATA_CBL_SATA && ap->ops->scr_read)
2579 hardreset = sata_std_hardreset;
2580
2581 return ata_drive_probe_reset(ap, ata_std_probeinit,
2582 ata_std_softreset, hardreset,
2583 ata_std_postreset, classes);
2584 }
2585
2586 int ata_do_reset(struct ata_port *ap, ata_reset_fn_t reset,
2587 unsigned int *classes)
2588 {
2589 int i, rc;
2590
2591 for (i = 0; i < ATA_MAX_DEVICES; i++)
2592 classes[i] = ATA_DEV_UNKNOWN;
2593
2594 rc = reset(ap, classes);
2595 if (rc)
2596 return rc;
2597
2598 /* If any class isn't ATA_DEV_UNKNOWN, consider classification
2599 * is complete and convert all ATA_DEV_UNKNOWN to
2600 * ATA_DEV_NONE.
2601 */
2602 for (i = 0; i < ATA_MAX_DEVICES; i++)
2603 if (classes[i] != ATA_DEV_UNKNOWN)
2604 break;
2605
2606 if (i < ATA_MAX_DEVICES)
2607 for (i = 0; i < ATA_MAX_DEVICES; i++)
2608 if (classes[i] == ATA_DEV_UNKNOWN)
2609 classes[i] = ATA_DEV_NONE;
2610
2611 return 0;
2612 }
2613
2614 /**
2615 * ata_drive_probe_reset - Perform probe reset with given methods
2616 * @ap: port to reset
2617 * @probeinit: probeinit method (can be NULL)
2618 * @softreset: softreset method (can be NULL)
2619 * @hardreset: hardreset method (can be NULL)
2620 * @postreset: postreset method (can be NULL)
2621 * @classes: resulting classes of attached devices
2622 *
2623 * Reset the specified port and classify attached devices using
2624 * given methods. This function prefers softreset but tries all
2625 * possible reset sequences to reset and classify devices. This
2626 * function is intended to be used for constructing ->probe_reset
2627 * callback by low level drivers.
2628 *
2629 * Reset methods should follow the following rules.
2630 *
2631 * - Return 0 on sucess, -errno on failure.
2632 * - If classification is supported, fill classes[] with
2633 * recognized class codes.
2634 * - If classification is not supported, leave classes[] alone.
2635 *
2636 * LOCKING:
2637 * Kernel thread context (may sleep)
2638 *
2639 * RETURNS:
2640 * 0 on success, -EINVAL if no reset method is avaliable, -ENODEV
2641 * if classification fails, and any error code from reset
2642 * methods.
2643 */
2644 int ata_drive_probe_reset(struct ata_port *ap, ata_probeinit_fn_t probeinit,
2645 ata_reset_fn_t softreset, ata_reset_fn_t hardreset,
2646 ata_postreset_fn_t postreset, unsigned int *classes)
2647 {
2648 int rc = -EINVAL;
2649
2650 if (probeinit)
2651 probeinit(ap);
2652
2653 if (softreset && !sata_set_spd_needed(ap)) {
2654 rc = ata_do_reset(ap, softreset, classes);
2655 if (rc == 0 && classes[0] != ATA_DEV_UNKNOWN)
2656 goto done;
2657 printk(KERN_INFO "ata%u: softreset failed, will try "
2658 "hardreset in 5 secs\n", ap->id);
2659 ssleep(5);
2660 }
2661
2662 if (!hardreset)
2663 goto done;
2664
2665 while (1) {
2666 rc = ata_do_reset(ap, hardreset, classes);
2667 if (rc == 0) {
2668 if (classes[0] != ATA_DEV_UNKNOWN)
2669 goto done;
2670 break;
2671 }
2672
2673 if (sata_down_spd_limit(ap))
2674 goto done;
2675
2676 printk(KERN_INFO "ata%u: hardreset failed, will retry "
2677 "in 5 secs\n", ap->id);
2678 ssleep(5);
2679 }
2680
2681 if (softreset) {
2682 printk(KERN_INFO "ata%u: hardreset succeeded without "
2683 "classification, will retry softreset in 5 secs\n",
2684 ap->id);
2685 ssleep(5);
2686
2687 rc = ata_do_reset(ap, softreset, classes);
2688 }
2689
2690 done:
2691 if (rc == 0) {
2692 if (postreset)
2693 postreset(ap, classes);
2694 if (classes[0] == ATA_DEV_UNKNOWN)
2695 rc = -ENODEV;
2696 }
2697 return rc;
2698 }
2699
2700 /**
2701 * ata_dev_same_device - Determine whether new ID matches configured device
2702 * @ap: port on which the device to compare against resides
2703 * @dev: device to compare against
2704 * @new_class: class of the new device
2705 * @new_id: IDENTIFY page of the new device
2706 *
2707 * Compare @new_class and @new_id against @dev and determine
2708 * whether @dev is the device indicated by @new_class and
2709 * @new_id.
2710 *
2711 * LOCKING:
2712 * None.
2713 *
2714 * RETURNS:
2715 * 1 if @dev matches @new_class and @new_id, 0 otherwise.
2716 */
2717 static int ata_dev_same_device(struct ata_port *ap, struct ata_device *dev,
2718 unsigned int new_class, const u16 *new_id)
2719 {
2720 const u16 *old_id = dev->id;
2721 unsigned char model[2][41], serial[2][21];
2722 u64 new_n_sectors;
2723
2724 if (dev->class != new_class) {
2725 printk(KERN_INFO
2726 "ata%u: dev %u class mismatch %d != %d\n",
2727 ap->id, dev->devno, dev->class, new_class);
2728 return 0;
2729 }
2730
2731 ata_id_c_string(old_id, model[0], ATA_ID_PROD_OFS, sizeof(model[0]));
2732 ata_id_c_string(new_id, model[1], ATA_ID_PROD_OFS, sizeof(model[1]));
2733 ata_id_c_string(old_id, serial[0], ATA_ID_SERNO_OFS, sizeof(serial[0]));
2734 ata_id_c_string(new_id, serial[1], ATA_ID_SERNO_OFS, sizeof(serial[1]));
2735 new_n_sectors = ata_id_n_sectors(new_id);
2736
2737 if (strcmp(model[0], model[1])) {
2738 printk(KERN_INFO
2739 "ata%u: dev %u model number mismatch '%s' != '%s'\n",
2740 ap->id, dev->devno, model[0], model[1]);
2741 return 0;
2742 }
2743
2744 if (strcmp(serial[0], serial[1])) {
2745 printk(KERN_INFO
2746 "ata%u: dev %u serial number mismatch '%s' != '%s'\n",
2747 ap->id, dev->devno, serial[0], serial[1]);
2748 return 0;
2749 }
2750
2751 if (dev->class == ATA_DEV_ATA && dev->n_sectors != new_n_sectors) {
2752 printk(KERN_INFO
2753 "ata%u: dev %u n_sectors mismatch %llu != %llu\n",
2754 ap->id, dev->devno, (unsigned long long)dev->n_sectors,
2755 (unsigned long long)new_n_sectors);
2756 return 0;
2757 }
2758
2759 return 1;
2760 }
2761
2762 /**
2763 * ata_dev_revalidate - Revalidate ATA device
2764 * @ap: port on which the device to revalidate resides
2765 * @dev: device to revalidate
2766 * @post_reset: is this revalidation after reset?
2767 *
2768 * Re-read IDENTIFY page and make sure @dev is still attached to
2769 * the port.
2770 *
2771 * LOCKING:
2772 * Kernel thread context (may sleep)
2773 *
2774 * RETURNS:
2775 * 0 on success, negative errno otherwise
2776 */
2777 int ata_dev_revalidate(struct ata_port *ap, struct ata_device *dev,
2778 int post_reset)
2779 {
2780 unsigned int class = dev->class;
2781 u16 *id = (void *)ap->sector_buf;
2782 int rc;
2783
2784 if (!ata_dev_enabled(dev)) {
2785 rc = -ENODEV;
2786 goto fail;
2787 }
2788
2789 /* read ID data */
2790 rc = ata_dev_read_id(ap, dev, &class, post_reset, id);
2791 if (rc)
2792 goto fail;
2793
2794 /* is the device still there? */
2795 if (!ata_dev_same_device(ap, dev, class, id)) {
2796 rc = -ENODEV;
2797 goto fail;
2798 }
2799
2800 memcpy(dev->id, id, sizeof(id[0]) * ATA_ID_WORDS);
2801
2802 /* configure device according to the new ID */
2803 rc = ata_dev_configure(ap, dev, 0);
2804 if (rc == 0)
2805 return 0;
2806
2807 fail:
2808 printk(KERN_ERR "ata%u: dev %u revalidation failed (errno=%d)\n",
2809 ap->id, dev->devno, rc);
2810 return rc;
2811 }
2812
2813 static const char * const ata_dma_blacklist [] = {
2814 "WDC AC11000H", NULL,
2815 "WDC AC22100H", NULL,
2816 "WDC AC32500H", NULL,
2817 "WDC AC33100H", NULL,
2818 "WDC AC31600H", NULL,
2819 "WDC AC32100H", "24.09P07",
2820 "WDC AC23200L", "21.10N21",
2821 "Compaq CRD-8241B", NULL,
2822 "CRD-8400B", NULL,
2823 "CRD-8480B", NULL,
2824 "CRD-8482B", NULL,
2825 "CRD-84", NULL,
2826 "SanDisk SDP3B", NULL,
2827 "SanDisk SDP3B-64", NULL,
2828 "SANYO CD-ROM CRD", NULL,
2829 "HITACHI CDR-8", NULL,
2830 "HITACHI CDR-8335", NULL,
2831 "HITACHI CDR-8435", NULL,
2832 "Toshiba CD-ROM XM-6202B", NULL,
2833 "TOSHIBA CD-ROM XM-1702BC", NULL,
2834 "CD-532E-A", NULL,
2835 "E-IDE CD-ROM CR-840", NULL,
2836 "CD-ROM Drive/F5A", NULL,
2837 "WPI CDD-820", NULL,
2838 "SAMSUNG CD-ROM SC-148C", NULL,
2839 "SAMSUNG CD-ROM SC", NULL,
2840 "SanDisk SDP3B-64", NULL,
2841 "ATAPI CD-ROM DRIVE 40X MAXIMUM",NULL,
2842 "_NEC DV5800A", NULL,
2843 "SAMSUNG CD-ROM SN-124", "N001"
2844 };
2845
2846 static int ata_strim(char *s, size_t len)
2847 {
2848 len = strnlen(s, len);
2849
2850 /* ATAPI specifies that empty space is blank-filled; remove blanks */
2851 while ((len > 0) && (s[len - 1] == ' ')) {
2852 len--;
2853 s[len] = 0;
2854 }
2855 return len;
2856 }
2857
2858 static int ata_dma_blacklisted(const struct ata_device *dev)
2859 {
2860 unsigned char model_num[40];
2861 unsigned char model_rev[16];
2862 unsigned int nlen, rlen;
2863 int i;
2864
2865 ata_id_string(dev->id, model_num, ATA_ID_PROD_OFS,
2866 sizeof(model_num));
2867 ata_id_string(dev->id, model_rev, ATA_ID_FW_REV_OFS,
2868 sizeof(model_rev));
2869 nlen = ata_strim(model_num, sizeof(model_num));
2870 rlen = ata_strim(model_rev, sizeof(model_rev));
2871
2872 for (i = 0; i < ARRAY_SIZE(ata_dma_blacklist); i += 2) {
2873 if (!strncmp(ata_dma_blacklist[i], model_num, nlen)) {
2874 if (ata_dma_blacklist[i+1] == NULL)
2875 return 1;
2876 if (!strncmp(ata_dma_blacklist[i], model_rev, rlen))
2877 return 1;
2878 }
2879 }
2880 return 0;
2881 }
2882
2883 /**
2884 * ata_dev_xfermask - Compute supported xfermask of the given device
2885 * @ap: Port on which the device to compute xfermask for resides
2886 * @dev: Device to compute xfermask for
2887 *
2888 * Compute supported xfermask of @dev and store it in
2889 * dev->*_mask. This function is responsible for applying all
2890 * known limits including host controller limits, device
2891 * blacklist, etc...
2892 *
2893 * FIXME: The current implementation limits all transfer modes to
2894 * the fastest of the lowested device on the port. This is not
2895 * required on most controllers.
2896 *
2897 * LOCKING:
2898 * None.
2899 */
2900 static void ata_dev_xfermask(struct ata_port *ap, struct ata_device *dev)
2901 {
2902 struct ata_host_set *hs = ap->host_set;
2903 unsigned long xfer_mask;
2904 int i;
2905
2906 xfer_mask = ata_pack_xfermask(ap->pio_mask,
2907 ap->mwdma_mask, ap->udma_mask);
2908
2909 /* Apply cable rule here. Don't apply it early because when
2910 * we handle hot plug the cable type can itself change.
2911 */
2912 if (ap->cbl == ATA_CBL_PATA40)
2913 xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA);
2914
2915 /* FIXME: Use port-wide xfermask for now */
2916 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2917 struct ata_device *d = &ap->device[i];
2918
2919 if (ata_dev_absent(d))
2920 continue;
2921
2922 if (ata_dev_disabled(d)) {
2923 /* to avoid violating device selection timing */
2924 xfer_mask &= ata_pack_xfermask(d->pio_mask,
2925 UINT_MAX, UINT_MAX);
2926 continue;
2927 }
2928
2929 xfer_mask &= ata_pack_xfermask(d->pio_mask,
2930 d->mwdma_mask, d->udma_mask);
2931 xfer_mask &= ata_id_xfermask(d->id);
2932 if (ata_dma_blacklisted(d))
2933 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
2934 }
2935
2936 if (ata_dma_blacklisted(dev))
2937 printk(KERN_WARNING "ata%u: dev %u is on DMA blacklist, "
2938 "disabling DMA\n", ap->id, dev->devno);
2939
2940 if (hs->flags & ATA_HOST_SIMPLEX) {
2941 if (hs->simplex_claimed)
2942 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
2943 }
2944
2945 if (ap->ops->mode_filter)
2946 xfer_mask = ap->ops->mode_filter(ap, dev, xfer_mask);
2947
2948 ata_unpack_xfermask(xfer_mask, &dev->pio_mask,
2949 &dev->mwdma_mask, &dev->udma_mask);
2950 }
2951
2952 /**
2953 * ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command
2954 * @ap: Port associated with device @dev
2955 * @dev: Device to which command will be sent
2956 *
2957 * Issue SET FEATURES - XFER MODE command to device @dev
2958 * on port @ap.
2959 *
2960 * LOCKING:
2961 * PCI/etc. bus probe sem.
2962 *
2963 * RETURNS:
2964 * 0 on success, AC_ERR_* mask otherwise.
2965 */
2966
2967 static unsigned int ata_dev_set_xfermode(struct ata_port *ap,
2968 struct ata_device *dev)
2969 {
2970 struct ata_taskfile tf;
2971 unsigned int err_mask;
2972
2973 /* set up set-features taskfile */
2974 DPRINTK("set features - xfer mode\n");
2975
2976 ata_tf_init(ap, &tf, dev->devno);
2977 tf.command = ATA_CMD_SET_FEATURES;
2978 tf.feature = SETFEATURES_XFER;
2979 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
2980 tf.protocol = ATA_PROT_NODATA;
2981 tf.nsect = dev->xfer_mode;
2982
2983 err_mask = ata_exec_internal(ap, dev, &tf, NULL, DMA_NONE, NULL, 0);
2984
2985 DPRINTK("EXIT, err_mask=%x\n", err_mask);
2986 return err_mask;
2987 }
2988
2989 /**
2990 * ata_dev_init_params - Issue INIT DEV PARAMS command
2991 * @ap: Port associated with device @dev
2992 * @dev: Device to which command will be sent
2993 *
2994 * LOCKING:
2995 * Kernel thread context (may sleep)
2996 *
2997 * RETURNS:
2998 * 0 on success, AC_ERR_* mask otherwise.
2999 */
3000
3001 static unsigned int ata_dev_init_params(struct ata_port *ap,
3002 struct ata_device *dev,
3003 u16 heads,
3004 u16 sectors)
3005 {
3006 struct ata_taskfile tf;
3007 unsigned int err_mask;
3008
3009 /* Number of sectors per track 1-255. Number of heads 1-16 */
3010 if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16)
3011 return AC_ERR_INVALID;
3012
3013 /* set up init dev params taskfile */
3014 DPRINTK("init dev params \n");
3015
3016 ata_tf_init(ap, &tf, dev->devno);
3017 tf.command = ATA_CMD_INIT_DEV_PARAMS;
3018 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
3019 tf.protocol = ATA_PROT_NODATA;
3020 tf.nsect = sectors;
3021 tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */
3022
3023 err_mask = ata_exec_internal(ap, dev, &tf, NULL, DMA_NONE, NULL, 0);
3024
3025 DPRINTK("EXIT, err_mask=%x\n", err_mask);
3026 return err_mask;
3027 }
3028
3029 /**
3030 * ata_sg_clean - Unmap DMA memory associated with command
3031 * @qc: Command containing DMA memory to be released
3032 *
3033 * Unmap all mapped DMA memory associated with this command.
3034 *
3035 * LOCKING:
3036 * spin_lock_irqsave(host_set lock)
3037 */
3038
3039 static void ata_sg_clean(struct ata_queued_cmd *qc)
3040 {
3041 struct ata_port *ap = qc->ap;
3042 struct scatterlist *sg = qc->__sg;
3043 int dir = qc->dma_dir;
3044 void *pad_buf = NULL;
3045
3046 WARN_ON(!(qc->flags & ATA_QCFLAG_DMAMAP));
3047 WARN_ON(sg == NULL);
3048
3049 if (qc->flags & ATA_QCFLAG_SINGLE)
3050 WARN_ON(qc->n_elem > 1);
3051
3052 VPRINTK("unmapping %u sg elements\n", qc->n_elem);
3053
3054 /* if we padded the buffer out to 32-bit bound, and data
3055 * xfer direction is from-device, we must copy from the
3056 * pad buffer back into the supplied buffer
3057 */
3058 if (qc->pad_len && !(qc->tf.flags & ATA_TFLAG_WRITE))
3059 pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
3060
3061 if (qc->flags & ATA_QCFLAG_SG) {
3062 if (qc->n_elem)
3063 dma_unmap_sg(ap->dev, sg, qc->n_elem, dir);
3064 /* restore last sg */
3065 sg[qc->orig_n_elem - 1].length += qc->pad_len;
3066 if (pad_buf) {
3067 struct scatterlist *psg = &qc->pad_sgent;
3068 void *addr = kmap_atomic(psg->page, KM_IRQ0);
3069 memcpy(addr + psg->offset, pad_buf, qc->pad_len);
3070 kunmap_atomic(addr, KM_IRQ0);
3071 }
3072 } else {
3073 if (qc->n_elem)
3074 dma_unmap_single(ap->dev,
3075 sg_dma_address(&sg[0]), sg_dma_len(&sg[0]),
3076 dir);
3077 /* restore sg */
3078 sg->length += qc->pad_len;
3079 if (pad_buf)
3080 memcpy(qc->buf_virt + sg->length - qc->pad_len,
3081 pad_buf, qc->pad_len);
3082 }
3083
3084 qc->flags &= ~ATA_QCFLAG_DMAMAP;
3085 qc->__sg = NULL;
3086 }
3087
3088 /**
3089 * ata_fill_sg - Fill PCI IDE PRD table
3090 * @qc: Metadata associated with taskfile to be transferred
3091 *
3092 * Fill PCI IDE PRD (scatter-gather) table with segments
3093 * associated with the current disk command.
3094 *
3095 * LOCKING:
3096 * spin_lock_irqsave(host_set lock)
3097 *
3098 */
3099 static void ata_fill_sg(struct ata_queued_cmd *qc)
3100 {
3101 struct ata_port *ap = qc->ap;
3102 struct scatterlist *sg;
3103 unsigned int idx;
3104
3105 WARN_ON(qc->__sg == NULL);
3106 WARN_ON(qc->n_elem == 0 && qc->pad_len == 0);
3107
3108 idx = 0;
3109 ata_for_each_sg(sg, qc) {
3110 u32 addr, offset;
3111 u32 sg_len, len;
3112
3113 /* determine if physical DMA addr spans 64K boundary.
3114 * Note h/w doesn't support 64-bit, so we unconditionally
3115 * truncate dma_addr_t to u32.
3116 */
3117 addr = (u32) sg_dma_address(sg);
3118 sg_len = sg_dma_len(sg);
3119
3120 while (sg_len) {
3121 offset = addr & 0xffff;
3122 len = sg_len;
3123 if ((offset + sg_len) > 0x10000)
3124 len = 0x10000 - offset;
3125
3126 ap->prd[idx].addr = cpu_to_le32(addr);
3127 ap->prd[idx].flags_len = cpu_to_le32(len & 0xffff);
3128 VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", idx, addr, len);
3129
3130 idx++;
3131 sg_len -= len;
3132 addr += len;
3133 }
3134 }
3135
3136 if (idx)
3137 ap->prd[idx - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT);
3138 }
3139 /**
3140 * ata_check_atapi_dma - Check whether ATAPI DMA can be supported
3141 * @qc: Metadata associated with taskfile to check
3142 *
3143 * Allow low-level driver to filter ATA PACKET commands, returning
3144 * a status indicating whether or not it is OK to use DMA for the
3145 * supplied PACKET command.
3146 *
3147 * LOCKING:
3148 * spin_lock_irqsave(host_set lock)
3149 *
3150 * RETURNS: 0 when ATAPI DMA can be used
3151 * nonzero otherwise
3152 */
3153 int ata_check_atapi_dma(struct ata_queued_cmd *qc)
3154 {
3155 struct ata_port *ap = qc->ap;
3156 int rc = 0; /* Assume ATAPI DMA is OK by default */
3157
3158 if (ap->ops->check_atapi_dma)
3159 rc = ap->ops->check_atapi_dma(qc);
3160
3161 return rc;
3162 }
3163 /**
3164 * ata_qc_prep - Prepare taskfile for submission
3165 * @qc: Metadata associated with taskfile to be prepared
3166 *
3167 * Prepare ATA taskfile for submission.
3168 *
3169 * LOCKING:
3170 * spin_lock_irqsave(host_set lock)
3171 */
3172 void ata_qc_prep(struct ata_queued_cmd *qc)
3173 {
3174 if (!(qc->flags & ATA_QCFLAG_DMAMAP))
3175 return;
3176
3177 ata_fill_sg(qc);
3178 }
3179
3180 void ata_noop_qc_prep(struct ata_queued_cmd *qc) { }
3181
3182 /**
3183 * ata_sg_init_one - Associate command with memory buffer
3184 * @qc: Command to be associated
3185 * @buf: Memory buffer
3186 * @buflen: Length of memory buffer, in bytes.
3187 *
3188 * Initialize the data-related elements of queued_cmd @qc
3189 * to point to a single memory buffer, @buf of byte length @buflen.
3190 *
3191 * LOCKING:
3192 * spin_lock_irqsave(host_set lock)
3193 */
3194
3195 void ata_sg_init_one(struct ata_queued_cmd *qc, void *buf, unsigned int buflen)
3196 {
3197 struct scatterlist *sg;
3198
3199 qc->flags |= ATA_QCFLAG_SINGLE;
3200
3201 memset(&qc->sgent, 0, sizeof(qc->sgent));
3202 qc->__sg = &qc->sgent;
3203 qc->n_elem = 1;
3204 qc->orig_n_elem = 1;
3205 qc->buf_virt = buf;
3206
3207 sg = qc->__sg;
3208 sg_init_one(sg, buf, buflen);
3209 }
3210
3211 /**
3212 * ata_sg_init - Associate command with scatter-gather table.
3213 * @qc: Command to be associated
3214 * @sg: Scatter-gather table.
3215 * @n_elem: Number of elements in s/g table.
3216 *
3217 * Initialize the data-related elements of queued_cmd @qc
3218 * to point to a scatter-gather table @sg, containing @n_elem
3219 * elements.
3220 *
3221 * LOCKING:
3222 * spin_lock_irqsave(host_set lock)
3223 */
3224
3225 void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg,
3226 unsigned int n_elem)
3227 {
3228 qc->flags |= ATA_QCFLAG_SG;
3229 qc->__sg = sg;
3230 qc->n_elem = n_elem;
3231 qc->orig_n_elem = n_elem;
3232 }
3233
3234 /**
3235 * ata_sg_setup_one - DMA-map the memory buffer associated with a command.
3236 * @qc: Command with memory buffer to be mapped.
3237 *
3238 * DMA-map the memory buffer associated with queued_cmd @qc.
3239 *
3240 * LOCKING:
3241 * spin_lock_irqsave(host_set lock)
3242 *
3243 * RETURNS:
3244 * Zero on success, negative on error.
3245 */
3246
3247 static int ata_sg_setup_one(struct ata_queued_cmd *qc)
3248 {
3249 struct ata_port *ap = qc->ap;
3250 int dir = qc->dma_dir;
3251 struct scatterlist *sg = qc->__sg;
3252 dma_addr_t dma_address;
3253 int trim_sg = 0;
3254
3255 /* we must lengthen transfers to end on a 32-bit boundary */
3256 qc->pad_len = sg->length & 3;
3257 if (qc->pad_len) {
3258 void *pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
3259 struct scatterlist *psg = &qc->pad_sgent;
3260
3261 WARN_ON(qc->dev->class != ATA_DEV_ATAPI);
3262
3263 memset(pad_buf, 0, ATA_DMA_PAD_SZ);
3264
3265 if (qc->tf.flags & ATA_TFLAG_WRITE)
3266 memcpy(pad_buf, qc->buf_virt + sg->length - qc->pad_len,
3267 qc->pad_len);
3268
3269 sg_dma_address(psg) = ap->pad_dma + (qc->tag * ATA_DMA_PAD_SZ);
3270 sg_dma_len(psg) = ATA_DMA_PAD_SZ;
3271 /* trim sg */
3272 sg->length -= qc->pad_len;
3273 if (sg->length == 0)
3274 trim_sg = 1;
3275
3276 DPRINTK("padding done, sg->length=%u pad_len=%u\n",
3277 sg->length, qc->pad_len);
3278 }
3279
3280 if (trim_sg) {
3281 qc->n_elem--;
3282 goto skip_map;
3283 }
3284
3285 dma_address = dma_map_single(ap->dev, qc->buf_virt,
3286 sg->length, dir);
3287 if (dma_mapping_error(dma_address)) {
3288 /* restore sg */
3289 sg->length += qc->pad_len;
3290 return -1;
3291 }
3292
3293 sg_dma_address(sg) = dma_address;
3294 sg_dma_len(sg) = sg->length;
3295
3296 skip_map:
3297 DPRINTK("mapped buffer of %d bytes for %s\n", sg_dma_len(sg),
3298 qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
3299
3300 return 0;
3301 }
3302
3303 /**
3304 * ata_sg_setup - DMA-map the scatter-gather table associated with a command.
3305 * @qc: Command with scatter-gather table to be mapped.
3306 *
3307 * DMA-map the scatter-gather table associated with queued_cmd @qc.
3308 *
3309 * LOCKING:
3310 * spin_lock_irqsave(host_set lock)
3311 *
3312 * RETURNS:
3313 * Zero on success, negative on error.
3314 *
3315 */
3316
3317 static int ata_sg_setup(struct ata_queued_cmd *qc)
3318 {
3319 struct ata_port *ap = qc->ap;
3320 struct scatterlist *sg = qc->__sg;
3321 struct scatterlist *lsg = &sg[qc->n_elem - 1];
3322 int n_elem, pre_n_elem, dir, trim_sg = 0;
3323
3324 VPRINTK("ENTER, ata%u\n", ap->id);
3325 WARN_ON(!(qc->flags & ATA_QCFLAG_SG));
3326
3327 /* we must lengthen transfers to end on a 32-bit boundary */
3328 qc->pad_len = lsg->length & 3;
3329 if (qc->pad_len) {
3330 void *pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
3331 struct scatterlist *psg = &qc->pad_sgent;
3332 unsigned int offset;
3333
3334 WARN_ON(qc->dev->class != ATA_DEV_ATAPI);
3335
3336 memset(pad_buf, 0, ATA_DMA_PAD_SZ);
3337
3338 /*
3339 * psg->page/offset are used to copy to-be-written
3340 * data in this function or read data in ata_sg_clean.
3341 */
3342 offset = lsg->offset + lsg->length - qc->pad_len;
3343 psg->page = nth_page(lsg->page, offset >> PAGE_SHIFT);
3344 psg->offset = offset_in_page(offset);
3345
3346 if (qc->tf.flags & ATA_TFLAG_WRITE) {
3347 void *addr = kmap_atomic(psg->page, KM_IRQ0);
3348 memcpy(pad_buf, addr + psg->offset, qc->pad_len);
3349 kunmap_atomic(addr, KM_IRQ0);
3350 }
3351
3352 sg_dma_address(psg) = ap->pad_dma + (qc->tag * ATA_DMA_PAD_SZ);
3353 sg_dma_len(psg) = ATA_DMA_PAD_SZ;
3354 /* trim last sg */
3355 lsg->length -= qc->pad_len;
3356 if (lsg->length == 0)
3357 trim_sg = 1;
3358
3359 DPRINTK("padding done, sg[%d].length=%u pad_len=%u\n",
3360 qc->n_elem - 1, lsg->length, qc->pad_len);
3361 }
3362
3363 pre_n_elem = qc->n_elem;
3364 if (trim_sg && pre_n_elem)
3365 pre_n_elem--;
3366
3367 if (!pre_n_elem) {
3368 n_elem = 0;
3369 goto skip_map;
3370 }
3371
3372 dir = qc->dma_dir;
3373 n_elem = dma_map_sg(ap->dev, sg, pre_n_elem, dir);
3374 if (n_elem < 1) {
3375 /* restore last sg */
3376 lsg->length += qc->pad_len;
3377 return -1;
3378 }
3379
3380 DPRINTK("%d sg elements mapped\n", n_elem);
3381
3382 skip_map:
3383 qc->n_elem = n_elem;
3384
3385 return 0;
3386 }
3387
3388 /**
3389 * ata_poll_qc_complete - turn irq back on and finish qc
3390 * @qc: Command to complete
3391 * @err_mask: ATA status register content
3392 *
3393 * LOCKING:
3394 * None. (grabs host lock)
3395 */
3396
3397 void ata_poll_qc_complete(struct ata_queued_cmd *qc)
3398 {
3399 struct ata_port *ap = qc->ap;
3400 unsigned long flags;
3401
3402 spin_lock_irqsave(&ap->host_set->lock, flags);
3403 ap->flags &= ~ATA_FLAG_NOINTR;
3404 ata_irq_on(ap);
3405 ata_qc_complete(qc);
3406 spin_unlock_irqrestore(&ap->host_set->lock, flags);
3407 }
3408
3409 /**
3410 * ata_pio_poll - poll using PIO, depending on current state
3411 * @qc: qc in progress
3412 *
3413 * LOCKING:
3414 * None. (executing in kernel thread context)
3415 *
3416 * RETURNS:
3417 * timeout value to use
3418 */
3419 static unsigned long ata_pio_poll(struct ata_queued_cmd *qc)
3420 {
3421 struct ata_port *ap = qc->ap;
3422 u8 status;
3423 unsigned int poll_state = HSM_ST_UNKNOWN;
3424 unsigned int reg_state = HSM_ST_UNKNOWN;
3425
3426 switch (ap->hsm_task_state) {
3427 case HSM_ST:
3428 case HSM_ST_POLL:
3429 poll_state = HSM_ST_POLL;
3430 reg_state = HSM_ST;
3431 break;
3432 case HSM_ST_LAST:
3433 case HSM_ST_LAST_POLL:
3434 poll_state = HSM_ST_LAST_POLL;
3435 reg_state = HSM_ST_LAST;
3436 break;
3437 default:
3438 BUG();
3439 break;
3440 }
3441
3442 status = ata_chk_status(ap);
3443 if (status & ATA_BUSY) {
3444 if (time_after(jiffies, ap->pio_task_timeout)) {
3445 qc->err_mask |= AC_ERR_TIMEOUT;
3446 ap->hsm_task_state = HSM_ST_TMOUT;
3447 return 0;
3448 }
3449 ap->hsm_task_state = poll_state;
3450 return ATA_SHORT_PAUSE;
3451 }
3452
3453 ap->hsm_task_state = reg_state;
3454 return 0;
3455 }
3456
3457 /**
3458 * ata_pio_complete - check if drive is busy or idle
3459 * @qc: qc to complete
3460 *
3461 * LOCKING:
3462 * None. (executing in kernel thread context)
3463 *
3464 * RETURNS:
3465 * Non-zero if qc completed, zero otherwise.
3466 */
3467 static int ata_pio_complete(struct ata_queued_cmd *qc)
3468 {
3469 struct ata_port *ap = qc->ap;
3470 u8 drv_stat;
3471
3472 /*
3473 * This is purely heuristic. This is a fast path. Sometimes when
3474 * we enter, BSY will be cleared in a chk-status or two. If not,
3475 * the drive is probably seeking or something. Snooze for a couple
3476 * msecs, then chk-status again. If still busy, fall back to
3477 * HSM_ST_POLL state.
3478 */
3479 drv_stat = ata_busy_wait(ap, ATA_BUSY, 10);
3480 if (drv_stat & ATA_BUSY) {
3481 msleep(2);
3482 drv_stat = ata_busy_wait(ap, ATA_BUSY, 10);
3483 if (drv_stat & ATA_BUSY) {
3484 ap->hsm_task_state = HSM_ST_LAST_POLL;
3485 ap->pio_task_timeout = jiffies + ATA_TMOUT_PIO;
3486 return 0;
3487 }
3488 }
3489
3490 drv_stat = ata_wait_idle(ap);
3491 if (!ata_ok(drv_stat)) {
3492 qc->err_mask |= __ac_err_mask(drv_stat);
3493 ap->hsm_task_state = HSM_ST_ERR;
3494 return 0;
3495 }
3496
3497 ap->hsm_task_state = HSM_ST_IDLE;
3498
3499 WARN_ON(qc->err_mask);
3500 ata_poll_qc_complete(qc);
3501
3502 /* another command may start at this point */
3503
3504 return 1;
3505 }
3506
3507
3508 /**
3509 * swap_buf_le16 - swap halves of 16-bit words in place
3510 * @buf: Buffer to swap
3511 * @buf_words: Number of 16-bit words in buffer.
3512 *
3513 * Swap halves of 16-bit words if needed to convert from
3514 * little-endian byte order to native cpu byte order, or
3515 * vice-versa.
3516 *
3517 * LOCKING:
3518 * Inherited from caller.
3519 */
3520 void swap_buf_le16(u16 *buf, unsigned int buf_words)
3521 {
3522 #ifdef __BIG_ENDIAN
3523 unsigned int i;
3524
3525 for (i = 0; i < buf_words; i++)
3526 buf[i] = le16_to_cpu(buf[i]);
3527 #endif /* __BIG_ENDIAN */
3528 }
3529
3530 /**
3531 * ata_mmio_data_xfer - Transfer data by MMIO
3532 * @ap: port to read/write
3533 * @buf: data buffer
3534 * @buflen: buffer length
3535 * @write_data: read/write
3536 *
3537 * Transfer data from/to the device data register by MMIO.
3538 *
3539 * LOCKING:
3540 * Inherited from caller.
3541 */
3542
3543 static void ata_mmio_data_xfer(struct ata_port *ap, unsigned char *buf,
3544 unsigned int buflen, int write_data)
3545 {
3546 unsigned int i;
3547 unsigned int words = buflen >> 1;
3548 u16 *buf16 = (u16 *) buf;
3549 void __iomem *mmio = (void __iomem *)ap->ioaddr.data_addr;
3550
3551 /* Transfer multiple of 2 bytes */
3552 if (write_data) {
3553 for (i = 0; i < words; i++)
3554 writew(le16_to_cpu(buf16[i]), mmio);
3555 } else {
3556 for (i = 0; i < words; i++)
3557 buf16[i] = cpu_to_le16(readw(mmio));
3558 }
3559
3560 /* Transfer trailing 1 byte, if any. */
3561 if (unlikely(buflen & 0x01)) {
3562 u16 align_buf[1] = { 0 };
3563 unsigned char *trailing_buf = buf + buflen - 1;
3564
3565 if (write_data) {
3566 memcpy(align_buf, trailing_buf, 1);
3567 writew(le16_to_cpu(align_buf[0]), mmio);
3568 } else {
3569 align_buf[0] = cpu_to_le16(readw(mmio));
3570 memcpy(trailing_buf, align_buf, 1);
3571 }
3572 }
3573 }
3574
3575 /**
3576 * ata_pio_data_xfer - Transfer data by PIO
3577 * @ap: port to read/write
3578 * @buf: data buffer
3579 * @buflen: buffer length
3580 * @write_data: read/write
3581 *
3582 * Transfer data from/to the device data register by PIO.
3583 *
3584 * LOCKING:
3585 * Inherited from caller.
3586 */
3587
3588 static void ata_pio_data_xfer(struct ata_port *ap, unsigned char *buf,
3589 unsigned int buflen, int write_data)
3590 {
3591 unsigned int words = buflen >> 1;
3592
3593 /* Transfer multiple of 2 bytes */
3594 if (write_data)
3595 outsw(ap->ioaddr.data_addr, buf, words);
3596 else
3597 insw(ap->ioaddr.data_addr, buf, words);
3598
3599 /* Transfer trailing 1 byte, if any. */
3600 if (unlikely(buflen & 0x01)) {
3601 u16 align_buf[1] = { 0 };
3602 unsigned char *trailing_buf = buf + buflen - 1;
3603
3604 if (write_data) {
3605 memcpy(align_buf, trailing_buf, 1);
3606 outw(le16_to_cpu(align_buf[0]), ap->ioaddr.data_addr);
3607 } else {
3608 align_buf[0] = cpu_to_le16(inw(ap->ioaddr.data_addr));
3609 memcpy(trailing_buf, align_buf, 1);
3610 }
3611 }
3612 }
3613
3614 /**
3615 * ata_data_xfer - Transfer data from/to the data register.
3616 * @ap: port to read/write
3617 * @buf: data buffer
3618 * @buflen: buffer length
3619 * @do_write: read/write
3620 *
3621 * Transfer data from/to the device data register.
3622 *
3623 * LOCKING:
3624 * Inherited from caller.
3625 */
3626
3627 static void ata_data_xfer(struct ata_port *ap, unsigned char *buf,
3628 unsigned int buflen, int do_write)
3629 {
3630 /* Make the crap hardware pay the costs not the good stuff */
3631 if (unlikely(ap->flags & ATA_FLAG_IRQ_MASK)) {
3632 unsigned long flags;
3633 local_irq_save(flags);
3634 if (ap->flags & ATA_FLAG_MMIO)
3635 ata_mmio_data_xfer(ap, buf, buflen, do_write);
3636 else
3637 ata_pio_data_xfer(ap, buf, buflen, do_write);
3638 local_irq_restore(flags);
3639 } else {
3640 if (ap->flags & ATA_FLAG_MMIO)
3641 ata_mmio_data_xfer(ap, buf, buflen, do_write);
3642 else
3643 ata_pio_data_xfer(ap, buf, buflen, do_write);
3644 }
3645 }
3646
3647 /**
3648 * ata_pio_sector - Transfer ATA_SECT_SIZE (512 bytes) of data.
3649 * @qc: Command on going
3650 *
3651 * Transfer ATA_SECT_SIZE of data from/to the ATA device.
3652 *
3653 * LOCKING:
3654 * Inherited from caller.
3655 */
3656
3657 static void ata_pio_sector(struct ata_queued_cmd *qc)
3658 {
3659 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
3660 struct scatterlist *sg = qc->__sg;
3661 struct ata_port *ap = qc->ap;
3662 struct page *page;
3663 unsigned int offset;
3664 unsigned char *buf;
3665
3666 if (qc->cursect == (qc->nsect - 1))
3667 ap->hsm_task_state = HSM_ST_LAST;
3668
3669 page = sg[qc->cursg].page;
3670 offset = sg[qc->cursg].offset + qc->cursg_ofs * ATA_SECT_SIZE;
3671
3672 /* get the current page and offset */
3673 page = nth_page(page, (offset >> PAGE_SHIFT));
3674 offset %= PAGE_SIZE;
3675
3676 buf = kmap(page) + offset;
3677
3678 qc->cursect++;
3679 qc->cursg_ofs++;
3680
3681 if ((qc->cursg_ofs * ATA_SECT_SIZE) == (&sg[qc->cursg])->length) {
3682 qc->cursg++;
3683 qc->cursg_ofs = 0;
3684 }
3685
3686 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
3687
3688 /* do the actual data transfer */
3689 do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
3690 ata_data_xfer(ap, buf, ATA_SECT_SIZE, do_write);
3691
3692 kunmap(page);
3693 }
3694
3695 /**
3696 * __atapi_pio_bytes - Transfer data from/to the ATAPI device.
3697 * @qc: Command on going
3698 * @bytes: number of bytes
3699 *
3700 * Transfer Transfer data from/to the ATAPI device.
3701 *
3702 * LOCKING:
3703 * Inherited from caller.
3704 *
3705 */
3706
3707 static void __atapi_pio_bytes(struct ata_queued_cmd *qc, unsigned int bytes)
3708 {
3709 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
3710 struct scatterlist *sg = qc->__sg;
3711 struct ata_port *ap = qc->ap;
3712 struct page *page;
3713 unsigned char *buf;
3714 unsigned int offset, count;
3715
3716 if (qc->curbytes + bytes >= qc->nbytes)
3717 ap->hsm_task_state = HSM_ST_LAST;
3718
3719 next_sg:
3720 if (unlikely(qc->cursg >= qc->n_elem)) {
3721 /*
3722 * The end of qc->sg is reached and the device expects
3723 * more data to transfer. In order not to overrun qc->sg
3724 * and fulfill length specified in the byte count register,
3725 * - for read case, discard trailing data from the device
3726 * - for write case, padding zero data to the device
3727 */
3728 u16 pad_buf[1] = { 0 };
3729 unsigned int words = bytes >> 1;
3730 unsigned int i;
3731
3732 if (words) /* warning if bytes > 1 */
3733 printk(KERN_WARNING "ata%u: %u bytes trailing data\n",
3734 ap->id, bytes);
3735
3736 for (i = 0; i < words; i++)
3737 ata_data_xfer(ap, (unsigned char*)pad_buf, 2, do_write);
3738
3739 ap->hsm_task_state = HSM_ST_LAST;
3740 return;
3741 }
3742
3743 sg = &qc->__sg[qc->cursg];
3744
3745 page = sg->page;
3746 offset = sg->offset + qc->cursg_ofs;
3747
3748 /* get the current page and offset */
3749 page = nth_page(page, (offset >> PAGE_SHIFT));
3750 offset %= PAGE_SIZE;
3751
3752 /* don't overrun current sg */
3753 count = min(sg->length - qc->cursg_ofs, bytes);
3754
3755 /* don't cross page boundaries */
3756 count = min(count, (unsigned int)PAGE_SIZE - offset);
3757
3758 buf = kmap(page) + offset;
3759
3760 bytes -= count;
3761 qc->curbytes += count;
3762 qc->cursg_ofs += count;
3763
3764 if (qc->cursg_ofs == sg->length) {
3765 qc->cursg++;
3766 qc->cursg_ofs = 0;
3767 }
3768
3769 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
3770
3771 /* do the actual data transfer */
3772 ata_data_xfer(ap, buf, count, do_write);
3773
3774 kunmap(page);
3775
3776 if (bytes)
3777 goto next_sg;
3778 }
3779
3780 /**
3781 * atapi_pio_bytes - Transfer data from/to the ATAPI device.
3782 * @qc: Command on going
3783 *
3784 * Transfer Transfer data from/to the ATAPI device.
3785 *
3786 * LOCKING:
3787 * Inherited from caller.
3788 */
3789
3790 static void atapi_pio_bytes(struct ata_queued_cmd *qc)
3791 {
3792 struct ata_port *ap = qc->ap;
3793 struct ata_device *dev = qc->dev;
3794 unsigned int ireason, bc_lo, bc_hi, bytes;
3795 int i_write, do_write = (qc->tf.flags & ATA_TFLAG_WRITE) ? 1 : 0;
3796
3797 ap->ops->tf_read(ap, &qc->tf);
3798 ireason = qc->tf.nsect;
3799 bc_lo = qc->tf.lbam;
3800 bc_hi = qc->tf.lbah;
3801 bytes = (bc_hi << 8) | bc_lo;
3802
3803 /* shall be cleared to zero, indicating xfer of data */
3804 if (ireason & (1 << 0))
3805 goto err_out;
3806
3807 /* make sure transfer direction matches expected */
3808 i_write = ((ireason & (1 << 1)) == 0) ? 1 : 0;
3809 if (do_write != i_write)
3810 goto err_out;
3811
3812 __atapi_pio_bytes(qc, bytes);
3813
3814 return;
3815
3816 err_out:
3817 printk(KERN_INFO "ata%u: dev %u: ATAPI check failed\n",
3818 ap->id, dev->devno);
3819 qc->err_mask |= AC_ERR_HSM;
3820 ap->hsm_task_state = HSM_ST_ERR;
3821 }
3822
3823 /**
3824 * ata_pio_block - start PIO on a block
3825 * @qc: qc to transfer block for
3826 *
3827 * LOCKING:
3828 * None. (executing in kernel thread context)
3829 */
3830 static void ata_pio_block(struct ata_queued_cmd *qc)
3831 {
3832 struct ata_port *ap = qc->ap;
3833 u8 status;
3834
3835 /*
3836 * This is purely heuristic. This is a fast path.
3837 * Sometimes when we enter, BSY will be cleared in
3838 * a chk-status or two. If not, the drive is probably seeking
3839 * or something. Snooze for a couple msecs, then
3840 * chk-status again. If still busy, fall back to
3841 * HSM_ST_POLL state.
3842 */
3843 status = ata_busy_wait(ap, ATA_BUSY, 5);
3844 if (status & ATA_BUSY) {
3845 msleep(2);
3846 status = ata_busy_wait(ap, ATA_BUSY, 10);
3847 if (status & ATA_BUSY) {
3848 ap->hsm_task_state = HSM_ST_POLL;
3849 ap->pio_task_timeout = jiffies + ATA_TMOUT_PIO;
3850 return;
3851 }
3852 }
3853
3854 /* check error */
3855 if (status & (ATA_ERR | ATA_DF)) {
3856 qc->err_mask |= AC_ERR_DEV;
3857 ap->hsm_task_state = HSM_ST_ERR;
3858 return;
3859 }
3860
3861 /* transfer data if any */
3862 if (is_atapi_taskfile(&qc->tf)) {
3863 /* DRQ=0 means no more data to transfer */
3864 if ((status & ATA_DRQ) == 0) {
3865 ap->hsm_task_state = HSM_ST_LAST;
3866 return;
3867 }
3868
3869 atapi_pio_bytes(qc);
3870 } else {
3871 /* handle BSY=0, DRQ=0 as error */
3872 if ((status & ATA_DRQ) == 0) {
3873 qc->err_mask |= AC_ERR_HSM;
3874 ap->hsm_task_state = HSM_ST_ERR;
3875 return;
3876 }
3877
3878 ata_pio_sector(qc);
3879 }
3880 }
3881
3882 static void ata_pio_error(struct ata_queued_cmd *qc)
3883 {
3884 struct ata_port *ap = qc->ap;
3885
3886 if (qc->tf.command != ATA_CMD_PACKET)
3887 printk(KERN_WARNING "ata%u: dev %u PIO error\n",
3888 ap->id, qc->dev->devno);
3889
3890 /* make sure qc->err_mask is available to
3891 * know what's wrong and recover
3892 */
3893 WARN_ON(qc->err_mask == 0);
3894
3895 ap->hsm_task_state = HSM_ST_IDLE;
3896
3897 ata_poll_qc_complete(qc);
3898 }
3899
3900 static void ata_pio_task(void *_data)
3901 {
3902 struct ata_queued_cmd *qc = _data;
3903 struct ata_port *ap = qc->ap;
3904 unsigned long timeout;
3905 int qc_completed;
3906
3907 fsm_start:
3908 timeout = 0;
3909 qc_completed = 0;
3910
3911 switch (ap->hsm_task_state) {
3912 case HSM_ST_IDLE:
3913 return;
3914
3915 case HSM_ST:
3916 ata_pio_block(qc);
3917 break;
3918
3919 case HSM_ST_LAST:
3920 qc_completed = ata_pio_complete(qc);
3921 break;
3922
3923 case HSM_ST_POLL:
3924 case HSM_ST_LAST_POLL:
3925 timeout = ata_pio_poll(qc);
3926 break;
3927
3928 case HSM_ST_TMOUT:
3929 case HSM_ST_ERR:
3930 ata_pio_error(qc);
3931 return;
3932 }
3933
3934 if (timeout)
3935 ata_port_queue_task(ap, ata_pio_task, qc, timeout);
3936 else if (!qc_completed)
3937 goto fsm_start;
3938 }
3939
3940 /**
3941 * atapi_packet_task - Write CDB bytes to hardware
3942 * @_data: qc in progress
3943 *
3944 * When device has indicated its readiness to accept
3945 * a CDB, this function is called. Send the CDB.
3946 * If DMA is to be performed, exit immediately.
3947 * Otherwise, we are in polling mode, so poll
3948 * status under operation succeeds or fails.
3949 *
3950 * LOCKING:
3951 * Kernel thread context (may sleep)
3952 */
3953 static void atapi_packet_task(void *_data)
3954 {
3955 struct ata_queued_cmd *qc = _data;
3956 struct ata_port *ap = qc->ap;
3957 u8 status;
3958
3959 /* sleep-wait for BSY to clear */
3960 DPRINTK("busy wait\n");
3961 if (ata_busy_sleep(ap, ATA_TMOUT_CDB_QUICK, ATA_TMOUT_CDB)) {
3962 qc->err_mask |= AC_ERR_TIMEOUT;
3963 goto err_out;
3964 }
3965
3966 /* make sure DRQ is set */
3967 status = ata_chk_status(ap);
3968 if ((status & (ATA_BUSY | ATA_DRQ)) != ATA_DRQ) {
3969 qc->err_mask |= AC_ERR_HSM;
3970 goto err_out;
3971 }
3972
3973 /* send SCSI cdb */
3974 DPRINTK("send cdb\n");
3975 WARN_ON(qc->dev->cdb_len < 12);
3976
3977 if (qc->tf.protocol == ATA_PROT_ATAPI_DMA ||
3978 qc->tf.protocol == ATA_PROT_ATAPI_NODATA) {
3979 unsigned long flags;
3980
3981 /* Once we're done issuing command and kicking bmdma,
3982 * irq handler takes over. To not lose irq, we need
3983 * to clear NOINTR flag before sending cdb, but
3984 * interrupt handler shouldn't be invoked before we're
3985 * finished. Hence, the following locking.
3986 */
3987 spin_lock_irqsave(&ap->host_set->lock, flags);
3988 ap->flags &= ~ATA_FLAG_NOINTR;
3989 ata_data_xfer(ap, qc->cdb, qc->dev->cdb_len, 1);
3990 if (qc->tf.protocol == ATA_PROT_ATAPI_DMA)
3991 ap->ops->bmdma_start(qc); /* initiate bmdma */
3992 spin_unlock_irqrestore(&ap->host_set->lock, flags);
3993 } else {
3994 ata_data_xfer(ap, qc->cdb, qc->dev->cdb_len, 1);
3995
3996 /* PIO commands are handled by polling */
3997 ap->hsm_task_state = HSM_ST;
3998 ata_port_queue_task(ap, ata_pio_task, qc, 0);
3999 }
4000
4001 return;
4002
4003 err_out:
4004 ata_poll_qc_complete(qc);
4005 }
4006
4007 /**
4008 * ata_qc_new - Request an available ATA command, for queueing
4009 * @ap: Port associated with device @dev
4010 * @dev: Device from whom we request an available command structure
4011 *
4012 * LOCKING:
4013 * None.
4014 */
4015
4016 static struct ata_queued_cmd *ata_qc_new(struct ata_port *ap)
4017 {
4018 struct ata_queued_cmd *qc = NULL;
4019 unsigned int i;
4020
4021 for (i = 0; i < ATA_MAX_QUEUE; i++)
4022 if (!test_and_set_bit(i, &ap->qactive)) {
4023 qc = ata_qc_from_tag(ap, i);
4024 break;
4025 }
4026
4027 if (qc)
4028 qc->tag = i;
4029
4030 return qc;
4031 }
4032
4033 /**
4034 * ata_qc_new_init - Request an available ATA command, and initialize it
4035 * @ap: Port associated with device @dev
4036 * @dev: Device from whom we request an available command structure
4037 *
4038 * LOCKING:
4039 * None.
4040 */
4041
4042 struct ata_queued_cmd *ata_qc_new_init(struct ata_port *ap,
4043 struct ata_device *dev)
4044 {
4045 struct ata_queued_cmd *qc;
4046
4047 qc = ata_qc_new(ap);
4048 if (qc) {
4049 qc->scsicmd = NULL;
4050 qc->ap = ap;
4051 qc->dev = dev;
4052
4053 ata_qc_reinit(qc);
4054 }
4055
4056 return qc;
4057 }
4058
4059 /**
4060 * ata_qc_free - free unused ata_queued_cmd
4061 * @qc: Command to complete
4062 *
4063 * Designed to free unused ata_queued_cmd object
4064 * in case something prevents using it.
4065 *
4066 * LOCKING:
4067 * spin_lock_irqsave(host_set lock)
4068 */
4069 void ata_qc_free(struct ata_queued_cmd *qc)
4070 {
4071 struct ata_port *ap = qc->ap;
4072 unsigned int tag;
4073
4074 WARN_ON(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
4075
4076 qc->flags = 0;
4077 tag = qc->tag;
4078 if (likely(ata_tag_valid(tag))) {
4079 qc->tag = ATA_TAG_POISON;
4080 clear_bit(tag, &ap->qactive);
4081 }
4082 }
4083
4084 void __ata_qc_complete(struct ata_queued_cmd *qc)
4085 {
4086 WARN_ON(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
4087 WARN_ON(!(qc->flags & ATA_QCFLAG_ACTIVE));
4088
4089 if (likely(qc->flags & ATA_QCFLAG_DMAMAP))
4090 ata_sg_clean(qc);
4091
4092 /* command should be marked inactive atomically with qc completion */
4093 qc->ap->active_tag = ATA_TAG_POISON;
4094
4095 /* atapi: mark qc as inactive to prevent the interrupt handler
4096 * from completing the command twice later, before the error handler
4097 * is called. (when rc != 0 and atapi request sense is needed)
4098 */
4099 qc->flags &= ~ATA_QCFLAG_ACTIVE;
4100
4101 /* call completion callback */
4102 qc->complete_fn(qc);
4103 }
4104
4105 static inline int ata_should_dma_map(struct ata_queued_cmd *qc)
4106 {
4107 struct ata_port *ap = qc->ap;
4108
4109 switch (qc->tf.protocol) {
4110 case ATA_PROT_DMA:
4111 case ATA_PROT_ATAPI_DMA:
4112 return 1;
4113
4114 case ATA_PROT_ATAPI:
4115 case ATA_PROT_PIO:
4116 if (ap->flags & ATA_FLAG_PIO_DMA)
4117 return 1;
4118
4119 /* fall through */
4120
4121 default:
4122 return 0;
4123 }
4124
4125 /* never reached */
4126 }
4127
4128 /**
4129 * ata_qc_issue - issue taskfile to device
4130 * @qc: command to issue to device
4131 *
4132 * Prepare an ATA command to submission to device.
4133 * This includes mapping the data into a DMA-able
4134 * area, filling in the S/G table, and finally
4135 * writing the taskfile to hardware, starting the command.
4136 *
4137 * LOCKING:
4138 * spin_lock_irqsave(host_set lock)
4139 */
4140 void ata_qc_issue(struct ata_queued_cmd *qc)
4141 {
4142 struct ata_port *ap = qc->ap;
4143
4144 qc->ap->active_tag = qc->tag;
4145 qc->flags |= ATA_QCFLAG_ACTIVE;
4146
4147 if (ata_should_dma_map(qc)) {
4148 if (qc->flags & ATA_QCFLAG_SG) {
4149 if (ata_sg_setup(qc))
4150 goto sg_err;
4151 } else if (qc->flags & ATA_QCFLAG_SINGLE) {
4152 if (ata_sg_setup_one(qc))
4153 goto sg_err;
4154 }
4155 } else {
4156 qc->flags &= ~ATA_QCFLAG_DMAMAP;
4157 }
4158
4159 ap->ops->qc_prep(qc);
4160
4161 qc->err_mask |= ap->ops->qc_issue(qc);
4162 if (unlikely(qc->err_mask))
4163 goto err;
4164 return;
4165
4166 sg_err:
4167 qc->flags &= ~ATA_QCFLAG_DMAMAP;
4168 qc->err_mask |= AC_ERR_SYSTEM;
4169 err:
4170 ata_qc_complete(qc);
4171 }
4172
4173 /**
4174 * ata_qc_issue_prot - issue taskfile to device in proto-dependent manner
4175 * @qc: command to issue to device
4176 *
4177 * Using various libata functions and hooks, this function
4178 * starts an ATA command. ATA commands are grouped into
4179 * classes called "protocols", and issuing each type of protocol
4180 * is slightly different.
4181 *
4182 * May be used as the qc_issue() entry in ata_port_operations.
4183 *
4184 * LOCKING:
4185 * spin_lock_irqsave(host_set lock)
4186 *
4187 * RETURNS:
4188 * Zero on success, AC_ERR_* mask on failure
4189 */
4190
4191 unsigned int ata_qc_issue_prot(struct ata_queued_cmd *qc)
4192 {
4193 struct ata_port *ap = qc->ap;
4194
4195 ata_dev_select(ap, qc->dev->devno, 1, 0);
4196
4197 switch (qc->tf.protocol) {
4198 case ATA_PROT_NODATA:
4199 ata_tf_to_host(ap, &qc->tf);
4200 break;
4201
4202 case ATA_PROT_DMA:
4203 ap->ops->tf_load(ap, &qc->tf); /* load tf registers */
4204 ap->ops->bmdma_setup(qc); /* set up bmdma */
4205 ap->ops->bmdma_start(qc); /* initiate bmdma */
4206 break;
4207
4208 case ATA_PROT_PIO: /* load tf registers, initiate polling pio */
4209 ata_qc_set_polling(qc);
4210 ata_tf_to_host(ap, &qc->tf);
4211 ap->hsm_task_state = HSM_ST;
4212 ata_port_queue_task(ap, ata_pio_task, qc, 0);
4213 break;
4214
4215 case ATA_PROT_ATAPI:
4216 ata_qc_set_polling(qc);
4217 ata_tf_to_host(ap, &qc->tf);
4218 ata_port_queue_task(ap, atapi_packet_task, qc, 0);
4219 break;
4220
4221 case ATA_PROT_ATAPI_NODATA:
4222 ap->flags |= ATA_FLAG_NOINTR;
4223 ata_tf_to_host(ap, &qc->tf);
4224 ata_port_queue_task(ap, atapi_packet_task, qc, 0);
4225 break;
4226
4227 case ATA_PROT_ATAPI_DMA:
4228 ap->flags |= ATA_FLAG_NOINTR;
4229 ap->ops->tf_load(ap, &qc->tf); /* load tf registers */
4230 ap->ops->bmdma_setup(qc); /* set up bmdma */
4231 ata_port_queue_task(ap, atapi_packet_task, qc, 0);
4232 break;
4233
4234 default:
4235 WARN_ON(1);
4236 return AC_ERR_SYSTEM;
4237 }
4238
4239 return 0;
4240 }
4241
4242 /**
4243 * ata_host_intr - Handle host interrupt for given (port, task)
4244 * @ap: Port on which interrupt arrived (possibly...)
4245 * @qc: Taskfile currently active in engine
4246 *
4247 * Handle host interrupt for given queued command. Currently,
4248 * only DMA interrupts are handled. All other commands are
4249 * handled via polling with interrupts disabled (nIEN bit).
4250 *
4251 * LOCKING:
4252 * spin_lock_irqsave(host_set lock)
4253 *
4254 * RETURNS:
4255 * One if interrupt was handled, zero if not (shared irq).
4256 */
4257
4258 inline unsigned int ata_host_intr (struct ata_port *ap,
4259 struct ata_queued_cmd *qc)
4260 {
4261 u8 status, host_stat;
4262
4263 switch (qc->tf.protocol) {
4264
4265 case ATA_PROT_DMA:
4266 case ATA_PROT_ATAPI_DMA:
4267 case ATA_PROT_ATAPI:
4268 /* check status of DMA engine */
4269 host_stat = ap->ops->bmdma_status(ap);
4270 VPRINTK("ata%u: host_stat 0x%X\n", ap->id, host_stat);
4271
4272 /* if it's not our irq... */
4273 if (!(host_stat & ATA_DMA_INTR))
4274 goto idle_irq;
4275
4276 /* before we do anything else, clear DMA-Start bit */
4277 ap->ops->bmdma_stop(qc);
4278
4279 /* fall through */
4280
4281 case ATA_PROT_ATAPI_NODATA:
4282 case ATA_PROT_NODATA:
4283 /* check altstatus */
4284 status = ata_altstatus(ap);
4285 if (status & ATA_BUSY)
4286 goto idle_irq;
4287
4288 /* check main status, clearing INTRQ */
4289 status = ata_chk_status(ap);
4290 if (unlikely(status & ATA_BUSY))
4291 goto idle_irq;
4292 DPRINTK("ata%u: protocol %d (dev_stat 0x%X)\n",
4293 ap->id, qc->tf.protocol, status);
4294
4295 /* ack bmdma irq events */
4296 ap->ops->irq_clear(ap);
4297
4298 /* complete taskfile transaction */
4299 qc->err_mask |= ac_err_mask(status);
4300 ata_qc_complete(qc);
4301 break;
4302
4303 default:
4304 goto idle_irq;
4305 }
4306
4307 return 1; /* irq handled */
4308
4309 idle_irq:
4310 ap->stats.idle_irq++;
4311
4312 #ifdef ATA_IRQ_TRAP
4313 if ((ap->stats.idle_irq % 1000) == 0) {
4314 ata_irq_ack(ap, 0); /* debug trap */
4315 printk(KERN_WARNING "ata%d: irq trap\n", ap->id);
4316 return 1;
4317 }
4318 #endif
4319 return 0; /* irq not handled */
4320 }
4321
4322 /**
4323 * ata_interrupt - Default ATA host interrupt handler
4324 * @irq: irq line (unused)
4325 * @dev_instance: pointer to our ata_host_set information structure
4326 * @regs: unused
4327 *
4328 * Default interrupt handler for PCI IDE devices. Calls
4329 * ata_host_intr() for each port that is not disabled.
4330 *
4331 * LOCKING:
4332 * Obtains host_set lock during operation.
4333 *
4334 * RETURNS:
4335 * IRQ_NONE or IRQ_HANDLED.
4336 */
4337
4338 irqreturn_t ata_interrupt (int irq, void *dev_instance, struct pt_regs *regs)
4339 {
4340 struct ata_host_set *host_set = dev_instance;
4341 unsigned int i;
4342 unsigned int handled = 0;
4343 unsigned long flags;
4344
4345 /* TODO: make _irqsave conditional on x86 PCI IDE legacy mode */
4346 spin_lock_irqsave(&host_set->lock, flags);
4347
4348 for (i = 0; i < host_set->n_ports; i++) {
4349 struct ata_port *ap;
4350
4351 ap = host_set->ports[i];
4352 if (ap &&
4353 !(ap->flags & (ATA_FLAG_DISABLED | ATA_FLAG_NOINTR))) {
4354 struct ata_queued_cmd *qc;
4355
4356 qc = ata_qc_from_tag(ap, ap->active_tag);
4357 if (qc && (!(qc->tf.ctl & ATA_NIEN)) &&
4358 (qc->flags & ATA_QCFLAG_ACTIVE))
4359 handled |= ata_host_intr(ap, qc);
4360 }
4361 }
4362
4363 spin_unlock_irqrestore(&host_set->lock, flags);
4364
4365 return IRQ_RETVAL(handled);
4366 }
4367
4368
4369 /*
4370 * Execute a 'simple' command, that only consists of the opcode 'cmd' itself,
4371 * without filling any other registers
4372 */
4373 static int ata_do_simple_cmd(struct ata_port *ap, struct ata_device *dev,
4374 u8 cmd)
4375 {
4376 struct ata_taskfile tf;
4377 int err;
4378
4379 ata_tf_init(ap, &tf, dev->devno);
4380
4381 tf.command = cmd;
4382 tf.flags |= ATA_TFLAG_DEVICE;
4383 tf.protocol = ATA_PROT_NODATA;
4384
4385 err = ata_exec_internal(ap, dev, &tf, NULL, DMA_NONE, NULL, 0);
4386 if (err)
4387 printk(KERN_ERR "%s: ata command failed: %d\n",
4388 __FUNCTION__, err);
4389
4390 return err;
4391 }
4392
4393 static int ata_flush_cache(struct ata_port *ap, struct ata_device *dev)
4394 {
4395 u8 cmd;
4396
4397 if (!ata_try_flush_cache(dev))
4398 return 0;
4399
4400 if (ata_id_has_flush_ext(dev->id))
4401 cmd = ATA_CMD_FLUSH_EXT;
4402 else
4403 cmd = ATA_CMD_FLUSH;
4404
4405 return ata_do_simple_cmd(ap, dev, cmd);
4406 }
4407
4408 static int ata_standby_drive(struct ata_port *ap, struct ata_device *dev)
4409 {
4410 return ata_do_simple_cmd(ap, dev, ATA_CMD_STANDBYNOW1);
4411 }
4412
4413 static int ata_start_drive(struct ata_port *ap, struct ata_device *dev)
4414 {
4415 return ata_do_simple_cmd(ap, dev, ATA_CMD_IDLEIMMEDIATE);
4416 }
4417
4418 /**
4419 * ata_device_resume - wakeup a previously suspended devices
4420 * @ap: port the device is connected to
4421 * @dev: the device to resume
4422 *
4423 * Kick the drive back into action, by sending it an idle immediate
4424 * command and making sure its transfer mode matches between drive
4425 * and host.
4426 *
4427 */
4428 int ata_device_resume(struct ata_port *ap, struct ata_device *dev)
4429 {
4430 if (ap->flags & ATA_FLAG_SUSPENDED) {
4431 struct ata_device *failed_dev;
4432 ap->flags &= ~ATA_FLAG_SUSPENDED;
4433 while (ata_set_mode(ap, &failed_dev))
4434 ata_dev_disable(ap, failed_dev);
4435 }
4436 if (!ata_dev_enabled(dev))
4437 return 0;
4438 if (dev->class == ATA_DEV_ATA)
4439 ata_start_drive(ap, dev);
4440
4441 return 0;
4442 }
4443
4444 /**
4445 * ata_device_suspend - prepare a device for suspend
4446 * @ap: port the device is connected to
4447 * @dev: the device to suspend
4448 *
4449 * Flush the cache on the drive, if appropriate, then issue a
4450 * standbynow command.
4451 */
4452 int ata_device_suspend(struct ata_port *ap, struct ata_device *dev, pm_message_t state)
4453 {
4454 if (!ata_dev_enabled(dev))
4455 return 0;
4456 if (dev->class == ATA_DEV_ATA)
4457 ata_flush_cache(ap, dev);
4458
4459 if (state.event != PM_EVENT_FREEZE)
4460 ata_standby_drive(ap, dev);
4461 ap->flags |= ATA_FLAG_SUSPENDED;
4462 return 0;
4463 }
4464
4465 /**
4466 * ata_port_start - Set port up for dma.
4467 * @ap: Port to initialize
4468 *
4469 * Called just after data structures for each port are
4470 * initialized. Allocates space for PRD table.
4471 *
4472 * May be used as the port_start() entry in ata_port_operations.
4473 *
4474 * LOCKING:
4475 * Inherited from caller.
4476 */
4477
4478 int ata_port_start (struct ata_port *ap)
4479 {
4480 struct device *dev = ap->dev;
4481 int rc;
4482
4483 ap->prd = dma_alloc_coherent(dev, ATA_PRD_TBL_SZ, &ap->prd_dma, GFP_KERNEL);
4484 if (!ap->prd)
4485 return -ENOMEM;
4486
4487 rc = ata_pad_alloc(ap, dev);
4488 if (rc) {
4489 dma_free_coherent(dev, ATA_PRD_TBL_SZ, ap->prd, ap->prd_dma);
4490 return rc;
4491 }
4492
4493 DPRINTK("prd alloc, virt %p, dma %llx\n", ap->prd, (unsigned long long) ap->prd_dma);
4494
4495 return 0;
4496 }
4497
4498
4499 /**
4500 * ata_port_stop - Undo ata_port_start()
4501 * @ap: Port to shut down
4502 *
4503 * Frees the PRD table.
4504 *
4505 * May be used as the port_stop() entry in ata_port_operations.
4506 *
4507 * LOCKING:
4508 * Inherited from caller.
4509 */
4510
4511 void ata_port_stop (struct ata_port *ap)
4512 {
4513 struct device *dev = ap->dev;
4514
4515 dma_free_coherent(dev, ATA_PRD_TBL_SZ, ap->prd, ap->prd_dma);
4516 ata_pad_free(ap, dev);
4517 }
4518
4519 void ata_host_stop (struct ata_host_set *host_set)
4520 {
4521 if (host_set->mmio_base)
4522 iounmap(host_set->mmio_base);
4523 }
4524
4525
4526 /**
4527 * ata_host_remove - Unregister SCSI host structure with upper layers
4528 * @ap: Port to unregister
4529 * @do_unregister: 1 if we fully unregister, 0 to just stop the port
4530 *
4531 * LOCKING:
4532 * Inherited from caller.
4533 */
4534
4535 static void ata_host_remove(struct ata_port *ap, unsigned int do_unregister)
4536 {
4537 struct Scsi_Host *sh = ap->host;
4538
4539 DPRINTK("ENTER\n");
4540
4541 if (do_unregister)
4542 scsi_remove_host(sh);
4543
4544 ap->ops->port_stop(ap);
4545 }
4546
4547 /**
4548 * ata_host_init - Initialize an ata_port structure
4549 * @ap: Structure to initialize
4550 * @host: associated SCSI mid-layer structure
4551 * @host_set: Collection of hosts to which @ap belongs
4552 * @ent: Probe information provided by low-level driver
4553 * @port_no: Port number associated with this ata_port
4554 *
4555 * Initialize a new ata_port structure, and its associated
4556 * scsi_host.
4557 *
4558 * LOCKING:
4559 * Inherited from caller.
4560 */
4561
4562 static void ata_host_init(struct ata_port *ap, struct Scsi_Host *host,
4563 struct ata_host_set *host_set,
4564 const struct ata_probe_ent *ent, unsigned int port_no)
4565 {
4566 unsigned int i;
4567
4568 host->max_id = 16;
4569 host->max_lun = 1;
4570 host->max_channel = 1;
4571 host->unique_id = ata_unique_id++;
4572 host->max_cmd_len = 12;
4573
4574 ap->flags = ATA_FLAG_DISABLED;
4575 ap->id = host->unique_id;
4576 ap->host = host;
4577 ap->ctl = ATA_DEVCTL_OBS;
4578 ap->host_set = host_set;
4579 ap->dev = ent->dev;
4580 ap->port_no = port_no;
4581 ap->hard_port_no =
4582 ent->legacy_mode ? ent->hard_port_no : port_no;
4583 ap->pio_mask = ent->pio_mask;
4584 ap->mwdma_mask = ent->mwdma_mask;
4585 ap->udma_mask = ent->udma_mask;
4586 ap->flags |= ent->host_flags;
4587 ap->ops = ent->port_ops;
4588 ap->sata_spd_limit = UINT_MAX;
4589 ap->active_tag = ATA_TAG_POISON;
4590 ap->last_ctl = 0xFF;
4591
4592 INIT_WORK(&ap->port_task, NULL, NULL);
4593 INIT_LIST_HEAD(&ap->eh_done_q);
4594
4595 /* set cable type */
4596 ap->cbl = ATA_CBL_NONE;
4597 if (ap->flags & ATA_FLAG_SATA)
4598 ap->cbl = ATA_CBL_SATA;
4599
4600 for (i = 0; i < ATA_MAX_DEVICES; i++) {
4601 struct ata_device *dev = &ap->device[i];
4602 dev->devno = i;
4603 dev->pio_mask = UINT_MAX;
4604 dev->mwdma_mask = UINT_MAX;
4605 dev->udma_mask = UINT_MAX;
4606 }
4607
4608 #ifdef ATA_IRQ_TRAP
4609 ap->stats.unhandled_irq = 1;
4610 ap->stats.idle_irq = 1;
4611 #endif
4612
4613 memcpy(&ap->ioaddr, &ent->port[port_no], sizeof(struct ata_ioports));
4614 }
4615
4616 /**
4617 * ata_host_add - Attach low-level ATA driver to system
4618 * @ent: Information provided by low-level driver
4619 * @host_set: Collections of ports to which we add
4620 * @port_no: Port number associated with this host
4621 *
4622 * Attach low-level ATA driver to system.
4623 *
4624 * LOCKING:
4625 * PCI/etc. bus probe sem.
4626 *
4627 * RETURNS:
4628 * New ata_port on success, for NULL on error.
4629 */
4630
4631 static struct ata_port * ata_host_add(const struct ata_probe_ent *ent,
4632 struct ata_host_set *host_set,
4633 unsigned int port_no)
4634 {
4635 struct Scsi_Host *host;
4636 struct ata_port *ap;
4637 int rc;
4638
4639 DPRINTK("ENTER\n");
4640
4641 if (!ent->port_ops->probe_reset &&
4642 !(ent->host_flags & (ATA_FLAG_SATA_RESET | ATA_FLAG_SRST))) {
4643 printk(KERN_ERR "ata%u: no reset mechanism available\n",
4644 port_no);
4645 return NULL;
4646 }
4647
4648 host = scsi_host_alloc(ent->sht, sizeof(struct ata_port));
4649 if (!host)
4650 return NULL;
4651
4652 host->transportt = &ata_scsi_transport_template;
4653
4654 ap = ata_shost_to_port(host);
4655
4656 ata_host_init(ap, host, host_set, ent, port_no);
4657
4658 rc = ap->ops->port_start(ap);
4659 if (rc)
4660 goto err_out;
4661
4662 return ap;
4663
4664 err_out:
4665 scsi_host_put(host);
4666 return NULL;
4667 }
4668
4669 /**
4670 * ata_device_add - Register hardware device with ATA and SCSI layers
4671 * @ent: Probe information describing hardware device to be registered
4672 *
4673 * This function processes the information provided in the probe
4674 * information struct @ent, allocates the necessary ATA and SCSI
4675 * host information structures, initializes them, and registers
4676 * everything with requisite kernel subsystems.
4677 *
4678 * This function requests irqs, probes the ATA bus, and probes
4679 * the SCSI bus.
4680 *
4681 * LOCKING:
4682 * PCI/etc. bus probe sem.
4683 *
4684 * RETURNS:
4685 * Number of ports registered. Zero on error (no ports registered).
4686 */
4687
4688 int ata_device_add(const struct ata_probe_ent *ent)
4689 {
4690 unsigned int count = 0, i;
4691 struct device *dev = ent->dev;
4692 struct ata_host_set *host_set;
4693
4694 DPRINTK("ENTER\n");
4695 /* alloc a container for our list of ATA ports (buses) */
4696 host_set = kzalloc(sizeof(struct ata_host_set) +
4697 (ent->n_ports * sizeof(void *)), GFP_KERNEL);
4698 if (!host_set)
4699 return 0;
4700 spin_lock_init(&host_set->lock);
4701
4702 host_set->dev = dev;
4703 host_set->n_ports = ent->n_ports;
4704 host_set->irq = ent->irq;
4705 host_set->mmio_base = ent->mmio_base;
4706 host_set->private_data = ent->private_data;
4707 host_set->ops = ent->port_ops;
4708 host_set->flags = ent->host_set_flags;
4709
4710 /* register each port bound to this device */
4711 for (i = 0; i < ent->n_ports; i++) {
4712 struct ata_port *ap;
4713 unsigned long xfer_mode_mask;
4714
4715 ap = ata_host_add(ent, host_set, i);
4716 if (!ap)
4717 goto err_out;
4718
4719 host_set->ports[i] = ap;
4720 xfer_mode_mask =(ap->udma_mask << ATA_SHIFT_UDMA) |
4721 (ap->mwdma_mask << ATA_SHIFT_MWDMA) |
4722 (ap->pio_mask << ATA_SHIFT_PIO);
4723
4724 /* print per-port info to dmesg */
4725 printk(KERN_INFO "ata%u: %cATA max %s cmd 0x%lX ctl 0x%lX "
4726 "bmdma 0x%lX irq %lu\n",
4727 ap->id,
4728 ap->flags & ATA_FLAG_SATA ? 'S' : 'P',
4729 ata_mode_string(xfer_mode_mask),
4730 ap->ioaddr.cmd_addr,
4731 ap->ioaddr.ctl_addr,
4732 ap->ioaddr.bmdma_addr,
4733 ent->irq);
4734
4735 ata_chk_status(ap);
4736 host_set->ops->irq_clear(ap);
4737 count++;
4738 }
4739
4740 if (!count)
4741 goto err_free_ret;
4742
4743 /* obtain irq, that is shared between channels */
4744 if (request_irq(ent->irq, ent->port_ops->irq_handler, ent->irq_flags,
4745 DRV_NAME, host_set))
4746 goto err_out;
4747
4748 /* perform each probe synchronously */
4749 DPRINTK("probe begin\n");
4750 for (i = 0; i < count; i++) {
4751 struct ata_port *ap;
4752 int rc;
4753
4754 ap = host_set->ports[i];
4755
4756 DPRINTK("ata%u: bus probe begin\n", ap->id);
4757 rc = ata_bus_probe(ap);
4758 DPRINTK("ata%u: bus probe end\n", ap->id);
4759
4760 if (rc) {
4761 /* FIXME: do something useful here?
4762 * Current libata behavior will
4763 * tear down everything when
4764 * the module is removed
4765 * or the h/w is unplugged.
4766 */
4767 }
4768
4769 rc = scsi_add_host(ap->host, dev);
4770 if (rc) {
4771 printk(KERN_ERR "ata%u: scsi_add_host failed\n",
4772 ap->id);
4773 /* FIXME: do something useful here */
4774 /* FIXME: handle unconditional calls to
4775 * scsi_scan_host and ata_host_remove, below,
4776 * at the very least
4777 */
4778 }
4779 }
4780
4781 /* probes are done, now scan each port's disk(s) */
4782 DPRINTK("host probe begin\n");
4783 for (i = 0; i < count; i++) {
4784 struct ata_port *ap = host_set->ports[i];
4785
4786 ata_scsi_scan_host(ap);
4787 }
4788
4789 dev_set_drvdata(dev, host_set);
4790
4791 VPRINTK("EXIT, returning %u\n", ent->n_ports);
4792 return ent->n_ports; /* success */
4793
4794 err_out:
4795 for (i = 0; i < count; i++) {
4796 ata_host_remove(host_set->ports[i], 1);
4797 scsi_host_put(host_set->ports[i]->host);
4798 }
4799 err_free_ret:
4800 kfree(host_set);
4801 VPRINTK("EXIT, returning 0\n");
4802 return 0;
4803 }
4804
4805 /**
4806 * ata_host_set_remove - PCI layer callback for device removal
4807 * @host_set: ATA host set that was removed
4808 *
4809 * Unregister all objects associated with this host set. Free those
4810 * objects.
4811 *
4812 * LOCKING:
4813 * Inherited from calling layer (may sleep).
4814 */
4815
4816 void ata_host_set_remove(struct ata_host_set *host_set)
4817 {
4818 struct ata_port *ap;
4819 unsigned int i;
4820
4821 for (i = 0; i < host_set->n_ports; i++) {
4822 ap = host_set->ports[i];
4823 scsi_remove_host(ap->host);
4824 }
4825
4826 free_irq(host_set->irq, host_set);
4827
4828 for (i = 0; i < host_set->n_ports; i++) {
4829 ap = host_set->ports[i];
4830
4831 ata_scsi_release(ap->host);
4832
4833 if ((ap->flags & ATA_FLAG_NO_LEGACY) == 0) {
4834 struct ata_ioports *ioaddr = &ap->ioaddr;
4835
4836 if (ioaddr->cmd_addr == 0x1f0)
4837 release_region(0x1f0, 8);
4838 else if (ioaddr->cmd_addr == 0x170)
4839 release_region(0x170, 8);
4840 }
4841
4842 scsi_host_put(ap->host);
4843 }
4844
4845 if (host_set->ops->host_stop)
4846 host_set->ops->host_stop(host_set);
4847
4848 kfree(host_set);
4849 }
4850
4851 /**
4852 * ata_scsi_release - SCSI layer callback hook for host unload
4853 * @host: libata host to be unloaded
4854 *
4855 * Performs all duties necessary to shut down a libata port...
4856 * Kill port kthread, disable port, and release resources.
4857 *
4858 * LOCKING:
4859 * Inherited from SCSI layer.
4860 *
4861 * RETURNS:
4862 * One.
4863 */
4864
4865 int ata_scsi_release(struct Scsi_Host *host)
4866 {
4867 struct ata_port *ap = ata_shost_to_port(host);
4868
4869 DPRINTK("ENTER\n");
4870
4871 ap->ops->port_disable(ap);
4872 ata_host_remove(ap, 0);
4873
4874 DPRINTK("EXIT\n");
4875 return 1;
4876 }
4877
4878 /**
4879 * ata_std_ports - initialize ioaddr with standard port offsets.
4880 * @ioaddr: IO address structure to be initialized
4881 *
4882 * Utility function which initializes data_addr, error_addr,
4883 * feature_addr, nsect_addr, lbal_addr, lbam_addr, lbah_addr,
4884 * device_addr, status_addr, and command_addr to standard offsets
4885 * relative to cmd_addr.
4886 *
4887 * Does not set ctl_addr, altstatus_addr, bmdma_addr, or scr_addr.
4888 */
4889
4890 void ata_std_ports(struct ata_ioports *ioaddr)
4891 {
4892 ioaddr->data_addr = ioaddr->cmd_addr + ATA_REG_DATA;
4893 ioaddr->error_addr = ioaddr->cmd_addr + ATA_REG_ERR;
4894 ioaddr->feature_addr = ioaddr->cmd_addr + ATA_REG_FEATURE;
4895 ioaddr->nsect_addr = ioaddr->cmd_addr + ATA_REG_NSECT;
4896 ioaddr->lbal_addr = ioaddr->cmd_addr + ATA_REG_LBAL;
4897 ioaddr->lbam_addr = ioaddr->cmd_addr + ATA_REG_LBAM;
4898 ioaddr->lbah_addr = ioaddr->cmd_addr + ATA_REG_LBAH;
4899 ioaddr->device_addr = ioaddr->cmd_addr + ATA_REG_DEVICE;
4900 ioaddr->status_addr = ioaddr->cmd_addr + ATA_REG_STATUS;
4901 ioaddr->command_addr = ioaddr->cmd_addr + ATA_REG_CMD;
4902 }
4903
4904
4905 #ifdef CONFIG_PCI
4906
4907 void ata_pci_host_stop (struct ata_host_set *host_set)
4908 {
4909 struct pci_dev *pdev = to_pci_dev(host_set->dev);
4910
4911 pci_iounmap(pdev, host_set->mmio_base);
4912 }
4913
4914 /**
4915 * ata_pci_remove_one - PCI layer callback for device removal
4916 * @pdev: PCI device that was removed
4917 *
4918 * PCI layer indicates to libata via this hook that
4919 * hot-unplug or module unload event has occurred.
4920 * Handle this by unregistering all objects associated
4921 * with this PCI device. Free those objects. Then finally
4922 * release PCI resources and disable device.
4923 *
4924 * LOCKING:
4925 * Inherited from PCI layer (may sleep).
4926 */
4927
4928 void ata_pci_remove_one (struct pci_dev *pdev)
4929 {
4930 struct device *dev = pci_dev_to_dev(pdev);
4931 struct ata_host_set *host_set = dev_get_drvdata(dev);
4932
4933 ata_host_set_remove(host_set);
4934 pci_release_regions(pdev);
4935 pci_disable_device(pdev);
4936 dev_set_drvdata(dev, NULL);
4937 }
4938
4939 /* move to PCI subsystem */
4940 int pci_test_config_bits(struct pci_dev *pdev, const struct pci_bits *bits)
4941 {
4942 unsigned long tmp = 0;
4943
4944 switch (bits->width) {
4945 case 1: {
4946 u8 tmp8 = 0;
4947 pci_read_config_byte(pdev, bits->reg, &tmp8);
4948 tmp = tmp8;
4949 break;
4950 }
4951 case 2: {
4952 u16 tmp16 = 0;
4953 pci_read_config_word(pdev, bits->reg, &tmp16);
4954 tmp = tmp16;
4955 break;
4956 }
4957 case 4: {
4958 u32 tmp32 = 0;
4959 pci_read_config_dword(pdev, bits->reg, &tmp32);
4960 tmp = tmp32;
4961 break;
4962 }
4963
4964 default:
4965 return -EINVAL;
4966 }
4967
4968 tmp &= bits->mask;
4969
4970 return (tmp == bits->val) ? 1 : 0;
4971 }
4972
4973 int ata_pci_device_suspend(struct pci_dev *pdev, pm_message_t state)
4974 {
4975 pci_save_state(pdev);
4976 pci_disable_device(pdev);
4977 pci_set_power_state(pdev, PCI_D3hot);
4978 return 0;
4979 }
4980
4981 int ata_pci_device_resume(struct pci_dev *pdev)
4982 {
4983 pci_set_power_state(pdev, PCI_D0);
4984 pci_restore_state(pdev);
4985 pci_enable_device(pdev);
4986 pci_set_master(pdev);
4987 return 0;
4988 }
4989 #endif /* CONFIG_PCI */
4990
4991
4992 static int __init ata_init(void)
4993 {
4994 ata_wq = create_workqueue("ata");
4995 if (!ata_wq)
4996 return -ENOMEM;
4997
4998 printk(KERN_DEBUG "libata version " DRV_VERSION " loaded.\n");
4999 return 0;
5000 }
5001
5002 static void __exit ata_exit(void)
5003 {
5004 destroy_workqueue(ata_wq);
5005 }
5006
5007 module_init(ata_init);
5008 module_exit(ata_exit);
5009
5010 static unsigned long ratelimit_time;
5011 static spinlock_t ata_ratelimit_lock = SPIN_LOCK_UNLOCKED;
5012
5013 int ata_ratelimit(void)
5014 {
5015 int rc;
5016 unsigned long flags;
5017
5018 spin_lock_irqsave(&ata_ratelimit_lock, flags);
5019
5020 if (time_after(jiffies, ratelimit_time)) {
5021 rc = 1;
5022 ratelimit_time = jiffies + (HZ/5);
5023 } else
5024 rc = 0;
5025
5026 spin_unlock_irqrestore(&ata_ratelimit_lock, flags);
5027
5028 return rc;
5029 }
5030
5031 /**
5032 * ata_wait_register - wait until register value changes
5033 * @reg: IO-mapped register
5034 * @mask: Mask to apply to read register value
5035 * @val: Wait condition
5036 * @interval_msec: polling interval in milliseconds
5037 * @timeout_msec: timeout in milliseconds
5038 *
5039 * Waiting for some bits of register to change is a common
5040 * operation for ATA controllers. This function reads 32bit LE
5041 * IO-mapped register @reg and tests for the following condition.
5042 *
5043 * (*@reg & mask) != val
5044 *
5045 * If the condition is met, it returns; otherwise, the process is
5046 * repeated after @interval_msec until timeout.
5047 *
5048 * LOCKING:
5049 * Kernel thread context (may sleep)
5050 *
5051 * RETURNS:
5052 * The final register value.
5053 */
5054 u32 ata_wait_register(void __iomem *reg, u32 mask, u32 val,
5055 unsigned long interval_msec,
5056 unsigned long timeout_msec)
5057 {
5058 unsigned long timeout;
5059 u32 tmp;
5060
5061 tmp = ioread32(reg);
5062
5063 /* Calculate timeout _after_ the first read to make sure
5064 * preceding writes reach the controller before starting to
5065 * eat away the timeout.
5066 */
5067 timeout = jiffies + (timeout_msec * HZ) / 1000;
5068
5069 while ((tmp & mask) == val && time_before(jiffies, timeout)) {
5070 msleep(interval_msec);
5071 tmp = ioread32(reg);
5072 }
5073
5074 return tmp;
5075 }
5076
5077 /*
5078 * libata is essentially a library of internal helper functions for
5079 * low-level ATA host controller drivers. As such, the API/ABI is
5080 * likely to change as new drivers are added and updated.
5081 * Do not depend on ABI/API stability.
5082 */
5083
5084 EXPORT_SYMBOL_GPL(ata_std_bios_param);
5085 EXPORT_SYMBOL_GPL(ata_std_ports);
5086 EXPORT_SYMBOL_GPL(ata_device_add);
5087 EXPORT_SYMBOL_GPL(ata_host_set_remove);
5088 EXPORT_SYMBOL_GPL(ata_sg_init);
5089 EXPORT_SYMBOL_GPL(ata_sg_init_one);
5090 EXPORT_SYMBOL_GPL(__ata_qc_complete);
5091 EXPORT_SYMBOL_GPL(ata_qc_issue_prot);
5092 EXPORT_SYMBOL_GPL(ata_tf_load);
5093 EXPORT_SYMBOL_GPL(ata_tf_read);
5094 EXPORT_SYMBOL_GPL(ata_noop_dev_select);
5095 EXPORT_SYMBOL_GPL(ata_std_dev_select);
5096 EXPORT_SYMBOL_GPL(ata_tf_to_fis);
5097 EXPORT_SYMBOL_GPL(ata_tf_from_fis);
5098 EXPORT_SYMBOL_GPL(ata_check_status);
5099 EXPORT_SYMBOL_GPL(ata_altstatus);
5100 EXPORT_SYMBOL_GPL(ata_exec_command);
5101 EXPORT_SYMBOL_GPL(ata_port_start);
5102 EXPORT_SYMBOL_GPL(ata_port_stop);
5103 EXPORT_SYMBOL_GPL(ata_host_stop);
5104 EXPORT_SYMBOL_GPL(ata_interrupt);
5105 EXPORT_SYMBOL_GPL(ata_qc_prep);
5106 EXPORT_SYMBOL_GPL(ata_noop_qc_prep);
5107 EXPORT_SYMBOL_GPL(ata_bmdma_setup);
5108 EXPORT_SYMBOL_GPL(ata_bmdma_start);
5109 EXPORT_SYMBOL_GPL(ata_bmdma_irq_clear);
5110 EXPORT_SYMBOL_GPL(ata_bmdma_status);
5111 EXPORT_SYMBOL_GPL(ata_bmdma_stop);
5112 EXPORT_SYMBOL_GPL(ata_port_probe);
5113 EXPORT_SYMBOL_GPL(sata_set_spd);
5114 EXPORT_SYMBOL_GPL(sata_phy_reset);
5115 EXPORT_SYMBOL_GPL(__sata_phy_reset);
5116 EXPORT_SYMBOL_GPL(ata_bus_reset);
5117 EXPORT_SYMBOL_GPL(ata_std_probeinit);
5118 EXPORT_SYMBOL_GPL(ata_std_softreset);
5119 EXPORT_SYMBOL_GPL(sata_std_hardreset);
5120 EXPORT_SYMBOL_GPL(ata_std_postreset);
5121 EXPORT_SYMBOL_GPL(ata_std_probe_reset);
5122 EXPORT_SYMBOL_GPL(ata_drive_probe_reset);
5123 EXPORT_SYMBOL_GPL(ata_dev_revalidate);
5124 EXPORT_SYMBOL_GPL(ata_dev_classify);
5125 EXPORT_SYMBOL_GPL(ata_dev_pair);
5126 EXPORT_SYMBOL_GPL(ata_port_disable);
5127 EXPORT_SYMBOL_GPL(ata_ratelimit);
5128 EXPORT_SYMBOL_GPL(ata_wait_register);
5129 EXPORT_SYMBOL_GPL(ata_busy_sleep);
5130 EXPORT_SYMBOL_GPL(ata_port_queue_task);
5131 EXPORT_SYMBOL_GPL(ata_scsi_ioctl);
5132 EXPORT_SYMBOL_GPL(ata_scsi_queuecmd);
5133 EXPORT_SYMBOL_GPL(ata_scsi_slave_config);
5134 EXPORT_SYMBOL_GPL(ata_scsi_release);
5135 EXPORT_SYMBOL_GPL(ata_host_intr);
5136 EXPORT_SYMBOL_GPL(ata_id_string);
5137 EXPORT_SYMBOL_GPL(ata_id_c_string);
5138 EXPORT_SYMBOL_GPL(ata_scsi_simulate);
5139
5140 EXPORT_SYMBOL_GPL(ata_pio_need_iordy);
5141 EXPORT_SYMBOL_GPL(ata_timing_compute);
5142 EXPORT_SYMBOL_GPL(ata_timing_merge);
5143
5144 #ifdef CONFIG_PCI
5145 EXPORT_SYMBOL_GPL(pci_test_config_bits);
5146 EXPORT_SYMBOL_GPL(ata_pci_host_stop);
5147 EXPORT_SYMBOL_GPL(ata_pci_init_native_mode);
5148 EXPORT_SYMBOL_GPL(ata_pci_init_one);
5149 EXPORT_SYMBOL_GPL(ata_pci_remove_one);
5150 EXPORT_SYMBOL_GPL(ata_pci_device_suspend);
5151 EXPORT_SYMBOL_GPL(ata_pci_device_resume);
5152 EXPORT_SYMBOL_GPL(ata_pci_default_filter);
5153 EXPORT_SYMBOL_GPL(ata_pci_clear_simplex);
5154 #endif /* CONFIG_PCI */
5155
5156 EXPORT_SYMBOL_GPL(ata_device_suspend);
5157 EXPORT_SYMBOL_GPL(ata_device_resume);
5158 EXPORT_SYMBOL_GPL(ata_scsi_device_suspend);
5159 EXPORT_SYMBOL_GPL(ata_scsi_device_resume);
5160
5161 EXPORT_SYMBOL_GPL(ata_eng_timeout);
5162 EXPORT_SYMBOL_GPL(ata_eh_qc_complete);
5163 EXPORT_SYMBOL_GPL(ata_eh_qc_retry);
This page took 0.12994 seconds and 6 git commands to generate.