[PATCH] libata-hp-prep: add flags and eh_info/context fields for hotplug
[deliverable/linux.git] / drivers / scsi / libata-core.c
1 /*
2 * libata-core.c - helper library for ATA
3 *
4 * Maintained by: Jeff Garzik <jgarzik@pobox.com>
5 * Please ALWAYS copy linux-ide@vger.kernel.org
6 * on emails.
7 *
8 * Copyright 2003-2004 Red Hat, Inc. All rights reserved.
9 * Copyright 2003-2004 Jeff Garzik
10 *
11 *
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2, or (at your option)
15 * any later version.
16 *
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
21 *
22 * You should have received a copy of the GNU General Public License
23 * along with this program; see the file COPYING. If not, write to
24 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
25 *
26 *
27 * libata documentation is available via 'make {ps|pdf}docs',
28 * as Documentation/DocBook/libata.*
29 *
30 * Hardware documentation available from http://www.t13.org/ and
31 * http://www.sata-io.org/
32 *
33 */
34
35 #include <linux/config.h>
36 #include <linux/kernel.h>
37 #include <linux/module.h>
38 #include <linux/pci.h>
39 #include <linux/init.h>
40 #include <linux/list.h>
41 #include <linux/mm.h>
42 #include <linux/highmem.h>
43 #include <linux/spinlock.h>
44 #include <linux/blkdev.h>
45 #include <linux/delay.h>
46 #include <linux/timer.h>
47 #include <linux/interrupt.h>
48 #include <linux/completion.h>
49 #include <linux/suspend.h>
50 #include <linux/workqueue.h>
51 #include <linux/jiffies.h>
52 #include <linux/scatterlist.h>
53 #include <scsi/scsi.h>
54 #include "scsi_priv.h"
55 #include <scsi/scsi_cmnd.h>
56 #include <scsi/scsi_host.h>
57 #include <linux/libata.h>
58 #include <asm/io.h>
59 #include <asm/semaphore.h>
60 #include <asm/byteorder.h>
61
62 #include "libata.h"
63
64 static unsigned int ata_dev_init_params(struct ata_device *dev,
65 u16 heads, u16 sectors);
66 static unsigned int ata_dev_set_xfermode(struct ata_device *dev);
67 static void ata_dev_xfermask(struct ata_device *dev);
68
69 static unsigned int ata_unique_id = 1;
70 static struct workqueue_struct *ata_wq;
71
72 int atapi_enabled = 1;
73 module_param(atapi_enabled, int, 0444);
74 MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on)");
75
76 int atapi_dmadir = 0;
77 module_param(atapi_dmadir, int, 0444);
78 MODULE_PARM_DESC(atapi_dmadir, "Enable ATAPI DMADIR bridge support (0=off, 1=on)");
79
80 int libata_fua = 0;
81 module_param_named(fua, libata_fua, int, 0444);
82 MODULE_PARM_DESC(fua, "FUA support (0=off, 1=on)");
83
84 MODULE_AUTHOR("Jeff Garzik");
85 MODULE_DESCRIPTION("Library module for ATA devices");
86 MODULE_LICENSE("GPL");
87 MODULE_VERSION(DRV_VERSION);
88
89
90 /**
91 * ata_tf_to_fis - Convert ATA taskfile to SATA FIS structure
92 * @tf: Taskfile to convert
93 * @fis: Buffer into which data will output
94 * @pmp: Port multiplier port
95 *
96 * Converts a standard ATA taskfile to a Serial ATA
97 * FIS structure (Register - Host to Device).
98 *
99 * LOCKING:
100 * Inherited from caller.
101 */
102
103 void ata_tf_to_fis(const struct ata_taskfile *tf, u8 *fis, u8 pmp)
104 {
105 fis[0] = 0x27; /* Register - Host to Device FIS */
106 fis[1] = (pmp & 0xf) | (1 << 7); /* Port multiplier number,
107 bit 7 indicates Command FIS */
108 fis[2] = tf->command;
109 fis[3] = tf->feature;
110
111 fis[4] = tf->lbal;
112 fis[5] = tf->lbam;
113 fis[6] = tf->lbah;
114 fis[7] = tf->device;
115
116 fis[8] = tf->hob_lbal;
117 fis[9] = tf->hob_lbam;
118 fis[10] = tf->hob_lbah;
119 fis[11] = tf->hob_feature;
120
121 fis[12] = tf->nsect;
122 fis[13] = tf->hob_nsect;
123 fis[14] = 0;
124 fis[15] = tf->ctl;
125
126 fis[16] = 0;
127 fis[17] = 0;
128 fis[18] = 0;
129 fis[19] = 0;
130 }
131
132 /**
133 * ata_tf_from_fis - Convert SATA FIS to ATA taskfile
134 * @fis: Buffer from which data will be input
135 * @tf: Taskfile to output
136 *
137 * Converts a serial ATA FIS structure to a standard ATA taskfile.
138 *
139 * LOCKING:
140 * Inherited from caller.
141 */
142
143 void ata_tf_from_fis(const u8 *fis, struct ata_taskfile *tf)
144 {
145 tf->command = fis[2]; /* status */
146 tf->feature = fis[3]; /* error */
147
148 tf->lbal = fis[4];
149 tf->lbam = fis[5];
150 tf->lbah = fis[6];
151 tf->device = fis[7];
152
153 tf->hob_lbal = fis[8];
154 tf->hob_lbam = fis[9];
155 tf->hob_lbah = fis[10];
156
157 tf->nsect = fis[12];
158 tf->hob_nsect = fis[13];
159 }
160
161 static const u8 ata_rw_cmds[] = {
162 /* pio multi */
163 ATA_CMD_READ_MULTI,
164 ATA_CMD_WRITE_MULTI,
165 ATA_CMD_READ_MULTI_EXT,
166 ATA_CMD_WRITE_MULTI_EXT,
167 0,
168 0,
169 0,
170 ATA_CMD_WRITE_MULTI_FUA_EXT,
171 /* pio */
172 ATA_CMD_PIO_READ,
173 ATA_CMD_PIO_WRITE,
174 ATA_CMD_PIO_READ_EXT,
175 ATA_CMD_PIO_WRITE_EXT,
176 0,
177 0,
178 0,
179 0,
180 /* dma */
181 ATA_CMD_READ,
182 ATA_CMD_WRITE,
183 ATA_CMD_READ_EXT,
184 ATA_CMD_WRITE_EXT,
185 0,
186 0,
187 0,
188 ATA_CMD_WRITE_FUA_EXT
189 };
190
191 /**
192 * ata_rwcmd_protocol - set taskfile r/w commands and protocol
193 * @qc: command to examine and configure
194 *
195 * Examine the device configuration and tf->flags to calculate
196 * the proper read/write commands and protocol to use.
197 *
198 * LOCKING:
199 * caller.
200 */
201 int ata_rwcmd_protocol(struct ata_queued_cmd *qc)
202 {
203 struct ata_taskfile *tf = &qc->tf;
204 struct ata_device *dev = qc->dev;
205 u8 cmd;
206
207 int index, fua, lba48, write;
208
209 fua = (tf->flags & ATA_TFLAG_FUA) ? 4 : 0;
210 lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0;
211 write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0;
212
213 if (dev->flags & ATA_DFLAG_PIO) {
214 tf->protocol = ATA_PROT_PIO;
215 index = dev->multi_count ? 0 : 8;
216 } else if (lba48 && (qc->ap->flags & ATA_FLAG_PIO_LBA48)) {
217 /* Unable to use DMA due to host limitation */
218 tf->protocol = ATA_PROT_PIO;
219 index = dev->multi_count ? 0 : 8;
220 } else {
221 tf->protocol = ATA_PROT_DMA;
222 index = 16;
223 }
224
225 cmd = ata_rw_cmds[index + fua + lba48 + write];
226 if (cmd) {
227 tf->command = cmd;
228 return 0;
229 }
230 return -1;
231 }
232
233 /**
234 * ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask
235 * @pio_mask: pio_mask
236 * @mwdma_mask: mwdma_mask
237 * @udma_mask: udma_mask
238 *
239 * Pack @pio_mask, @mwdma_mask and @udma_mask into a single
240 * unsigned int xfer_mask.
241 *
242 * LOCKING:
243 * None.
244 *
245 * RETURNS:
246 * Packed xfer_mask.
247 */
248 static unsigned int ata_pack_xfermask(unsigned int pio_mask,
249 unsigned int mwdma_mask,
250 unsigned int udma_mask)
251 {
252 return ((pio_mask << ATA_SHIFT_PIO) & ATA_MASK_PIO) |
253 ((mwdma_mask << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA) |
254 ((udma_mask << ATA_SHIFT_UDMA) & ATA_MASK_UDMA);
255 }
256
257 /**
258 * ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks
259 * @xfer_mask: xfer_mask to unpack
260 * @pio_mask: resulting pio_mask
261 * @mwdma_mask: resulting mwdma_mask
262 * @udma_mask: resulting udma_mask
263 *
264 * Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask.
265 * Any NULL distination masks will be ignored.
266 */
267 static void ata_unpack_xfermask(unsigned int xfer_mask,
268 unsigned int *pio_mask,
269 unsigned int *mwdma_mask,
270 unsigned int *udma_mask)
271 {
272 if (pio_mask)
273 *pio_mask = (xfer_mask & ATA_MASK_PIO) >> ATA_SHIFT_PIO;
274 if (mwdma_mask)
275 *mwdma_mask = (xfer_mask & ATA_MASK_MWDMA) >> ATA_SHIFT_MWDMA;
276 if (udma_mask)
277 *udma_mask = (xfer_mask & ATA_MASK_UDMA) >> ATA_SHIFT_UDMA;
278 }
279
280 static const struct ata_xfer_ent {
281 int shift, bits;
282 u8 base;
283 } ata_xfer_tbl[] = {
284 { ATA_SHIFT_PIO, ATA_BITS_PIO, XFER_PIO_0 },
285 { ATA_SHIFT_MWDMA, ATA_BITS_MWDMA, XFER_MW_DMA_0 },
286 { ATA_SHIFT_UDMA, ATA_BITS_UDMA, XFER_UDMA_0 },
287 { -1, },
288 };
289
290 /**
291 * ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask
292 * @xfer_mask: xfer_mask of interest
293 *
294 * Return matching XFER_* value for @xfer_mask. Only the highest
295 * bit of @xfer_mask is considered.
296 *
297 * LOCKING:
298 * None.
299 *
300 * RETURNS:
301 * Matching XFER_* value, 0 if no match found.
302 */
303 static u8 ata_xfer_mask2mode(unsigned int xfer_mask)
304 {
305 int highbit = fls(xfer_mask) - 1;
306 const struct ata_xfer_ent *ent;
307
308 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
309 if (highbit >= ent->shift && highbit < ent->shift + ent->bits)
310 return ent->base + highbit - ent->shift;
311 return 0;
312 }
313
314 /**
315 * ata_xfer_mode2mask - Find matching xfer_mask for XFER_*
316 * @xfer_mode: XFER_* of interest
317 *
318 * Return matching xfer_mask for @xfer_mode.
319 *
320 * LOCKING:
321 * None.
322 *
323 * RETURNS:
324 * Matching xfer_mask, 0 if no match found.
325 */
326 static unsigned int ata_xfer_mode2mask(u8 xfer_mode)
327 {
328 const struct ata_xfer_ent *ent;
329
330 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
331 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
332 return 1 << (ent->shift + xfer_mode - ent->base);
333 return 0;
334 }
335
336 /**
337 * ata_xfer_mode2shift - Find matching xfer_shift for XFER_*
338 * @xfer_mode: XFER_* of interest
339 *
340 * Return matching xfer_shift for @xfer_mode.
341 *
342 * LOCKING:
343 * None.
344 *
345 * RETURNS:
346 * Matching xfer_shift, -1 if no match found.
347 */
348 static int ata_xfer_mode2shift(unsigned int xfer_mode)
349 {
350 const struct ata_xfer_ent *ent;
351
352 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
353 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
354 return ent->shift;
355 return -1;
356 }
357
358 /**
359 * ata_mode_string - convert xfer_mask to string
360 * @xfer_mask: mask of bits supported; only highest bit counts.
361 *
362 * Determine string which represents the highest speed
363 * (highest bit in @modemask).
364 *
365 * LOCKING:
366 * None.
367 *
368 * RETURNS:
369 * Constant C string representing highest speed listed in
370 * @mode_mask, or the constant C string "<n/a>".
371 */
372 static const char *ata_mode_string(unsigned int xfer_mask)
373 {
374 static const char * const xfer_mode_str[] = {
375 "PIO0",
376 "PIO1",
377 "PIO2",
378 "PIO3",
379 "PIO4",
380 "MWDMA0",
381 "MWDMA1",
382 "MWDMA2",
383 "UDMA/16",
384 "UDMA/25",
385 "UDMA/33",
386 "UDMA/44",
387 "UDMA/66",
388 "UDMA/100",
389 "UDMA/133",
390 "UDMA7",
391 };
392 int highbit;
393
394 highbit = fls(xfer_mask) - 1;
395 if (highbit >= 0 && highbit < ARRAY_SIZE(xfer_mode_str))
396 return xfer_mode_str[highbit];
397 return "<n/a>";
398 }
399
400 static const char *sata_spd_string(unsigned int spd)
401 {
402 static const char * const spd_str[] = {
403 "1.5 Gbps",
404 "3.0 Gbps",
405 };
406
407 if (spd == 0 || (spd - 1) >= ARRAY_SIZE(spd_str))
408 return "<unknown>";
409 return spd_str[spd - 1];
410 }
411
412 void ata_dev_disable(struct ata_device *dev)
413 {
414 if (ata_dev_enabled(dev)) {
415 ata_dev_printk(dev, KERN_WARNING, "disabled\n");
416 dev->class++;
417 }
418 }
419
420 /**
421 * ata_pio_devchk - PATA device presence detection
422 * @ap: ATA channel to examine
423 * @device: Device to examine (starting at zero)
424 *
425 * This technique was originally described in
426 * Hale Landis's ATADRVR (www.ata-atapi.com), and
427 * later found its way into the ATA/ATAPI spec.
428 *
429 * Write a pattern to the ATA shadow registers,
430 * and if a device is present, it will respond by
431 * correctly storing and echoing back the
432 * ATA shadow register contents.
433 *
434 * LOCKING:
435 * caller.
436 */
437
438 static unsigned int ata_pio_devchk(struct ata_port *ap,
439 unsigned int device)
440 {
441 struct ata_ioports *ioaddr = &ap->ioaddr;
442 u8 nsect, lbal;
443
444 ap->ops->dev_select(ap, device);
445
446 outb(0x55, ioaddr->nsect_addr);
447 outb(0xaa, ioaddr->lbal_addr);
448
449 outb(0xaa, ioaddr->nsect_addr);
450 outb(0x55, ioaddr->lbal_addr);
451
452 outb(0x55, ioaddr->nsect_addr);
453 outb(0xaa, ioaddr->lbal_addr);
454
455 nsect = inb(ioaddr->nsect_addr);
456 lbal = inb(ioaddr->lbal_addr);
457
458 if ((nsect == 0x55) && (lbal == 0xaa))
459 return 1; /* we found a device */
460
461 return 0; /* nothing found */
462 }
463
464 /**
465 * ata_mmio_devchk - PATA device presence detection
466 * @ap: ATA channel to examine
467 * @device: Device to examine (starting at zero)
468 *
469 * This technique was originally described in
470 * Hale Landis's ATADRVR (www.ata-atapi.com), and
471 * later found its way into the ATA/ATAPI spec.
472 *
473 * Write a pattern to the ATA shadow registers,
474 * and if a device is present, it will respond by
475 * correctly storing and echoing back the
476 * ATA shadow register contents.
477 *
478 * LOCKING:
479 * caller.
480 */
481
482 static unsigned int ata_mmio_devchk(struct ata_port *ap,
483 unsigned int device)
484 {
485 struct ata_ioports *ioaddr = &ap->ioaddr;
486 u8 nsect, lbal;
487
488 ap->ops->dev_select(ap, device);
489
490 writeb(0x55, (void __iomem *) ioaddr->nsect_addr);
491 writeb(0xaa, (void __iomem *) ioaddr->lbal_addr);
492
493 writeb(0xaa, (void __iomem *) ioaddr->nsect_addr);
494 writeb(0x55, (void __iomem *) ioaddr->lbal_addr);
495
496 writeb(0x55, (void __iomem *) ioaddr->nsect_addr);
497 writeb(0xaa, (void __iomem *) ioaddr->lbal_addr);
498
499 nsect = readb((void __iomem *) ioaddr->nsect_addr);
500 lbal = readb((void __iomem *) ioaddr->lbal_addr);
501
502 if ((nsect == 0x55) && (lbal == 0xaa))
503 return 1; /* we found a device */
504
505 return 0; /* nothing found */
506 }
507
508 /**
509 * ata_devchk - PATA device presence detection
510 * @ap: ATA channel to examine
511 * @device: Device to examine (starting at zero)
512 *
513 * Dispatch ATA device presence detection, depending
514 * on whether we are using PIO or MMIO to talk to the
515 * ATA shadow registers.
516 *
517 * LOCKING:
518 * caller.
519 */
520
521 static unsigned int ata_devchk(struct ata_port *ap,
522 unsigned int device)
523 {
524 if (ap->flags & ATA_FLAG_MMIO)
525 return ata_mmio_devchk(ap, device);
526 return ata_pio_devchk(ap, device);
527 }
528
529 /**
530 * ata_dev_classify - determine device type based on ATA-spec signature
531 * @tf: ATA taskfile register set for device to be identified
532 *
533 * Determine from taskfile register contents whether a device is
534 * ATA or ATAPI, as per "Signature and persistence" section
535 * of ATA/PI spec (volume 1, sect 5.14).
536 *
537 * LOCKING:
538 * None.
539 *
540 * RETURNS:
541 * Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, or %ATA_DEV_UNKNOWN
542 * the event of failure.
543 */
544
545 unsigned int ata_dev_classify(const struct ata_taskfile *tf)
546 {
547 /* Apple's open source Darwin code hints that some devices only
548 * put a proper signature into the LBA mid/high registers,
549 * So, we only check those. It's sufficient for uniqueness.
550 */
551
552 if (((tf->lbam == 0) && (tf->lbah == 0)) ||
553 ((tf->lbam == 0x3c) && (tf->lbah == 0xc3))) {
554 DPRINTK("found ATA device by sig\n");
555 return ATA_DEV_ATA;
556 }
557
558 if (((tf->lbam == 0x14) && (tf->lbah == 0xeb)) ||
559 ((tf->lbam == 0x69) && (tf->lbah == 0x96))) {
560 DPRINTK("found ATAPI device by sig\n");
561 return ATA_DEV_ATAPI;
562 }
563
564 DPRINTK("unknown device\n");
565 return ATA_DEV_UNKNOWN;
566 }
567
568 /**
569 * ata_dev_try_classify - Parse returned ATA device signature
570 * @ap: ATA channel to examine
571 * @device: Device to examine (starting at zero)
572 * @r_err: Value of error register on completion
573 *
574 * After an event -- SRST, E.D.D., or SATA COMRESET -- occurs,
575 * an ATA/ATAPI-defined set of values is placed in the ATA
576 * shadow registers, indicating the results of device detection
577 * and diagnostics.
578 *
579 * Select the ATA device, and read the values from the ATA shadow
580 * registers. Then parse according to the Error register value,
581 * and the spec-defined values examined by ata_dev_classify().
582 *
583 * LOCKING:
584 * caller.
585 *
586 * RETURNS:
587 * Device type - %ATA_DEV_ATA, %ATA_DEV_ATAPI or %ATA_DEV_NONE.
588 */
589
590 static unsigned int
591 ata_dev_try_classify(struct ata_port *ap, unsigned int device, u8 *r_err)
592 {
593 struct ata_taskfile tf;
594 unsigned int class;
595 u8 err;
596
597 ap->ops->dev_select(ap, device);
598
599 memset(&tf, 0, sizeof(tf));
600
601 ap->ops->tf_read(ap, &tf);
602 err = tf.feature;
603 if (r_err)
604 *r_err = err;
605
606 /* see if device passed diags */
607 if (err == 1)
608 /* do nothing */ ;
609 else if ((device == 0) && (err == 0x81))
610 /* do nothing */ ;
611 else
612 return ATA_DEV_NONE;
613
614 /* determine if device is ATA or ATAPI */
615 class = ata_dev_classify(&tf);
616
617 if (class == ATA_DEV_UNKNOWN)
618 return ATA_DEV_NONE;
619 if ((class == ATA_DEV_ATA) && (ata_chk_status(ap) == 0))
620 return ATA_DEV_NONE;
621 return class;
622 }
623
624 /**
625 * ata_id_string - Convert IDENTIFY DEVICE page into string
626 * @id: IDENTIFY DEVICE results we will examine
627 * @s: string into which data is output
628 * @ofs: offset into identify device page
629 * @len: length of string to return. must be an even number.
630 *
631 * The strings in the IDENTIFY DEVICE page are broken up into
632 * 16-bit chunks. Run through the string, and output each
633 * 8-bit chunk linearly, regardless of platform.
634 *
635 * LOCKING:
636 * caller.
637 */
638
639 void ata_id_string(const u16 *id, unsigned char *s,
640 unsigned int ofs, unsigned int len)
641 {
642 unsigned int c;
643
644 while (len > 0) {
645 c = id[ofs] >> 8;
646 *s = c;
647 s++;
648
649 c = id[ofs] & 0xff;
650 *s = c;
651 s++;
652
653 ofs++;
654 len -= 2;
655 }
656 }
657
658 /**
659 * ata_id_c_string - Convert IDENTIFY DEVICE page into C string
660 * @id: IDENTIFY DEVICE results we will examine
661 * @s: string into which data is output
662 * @ofs: offset into identify device page
663 * @len: length of string to return. must be an odd number.
664 *
665 * This function is identical to ata_id_string except that it
666 * trims trailing spaces and terminates the resulting string with
667 * null. @len must be actual maximum length (even number) + 1.
668 *
669 * LOCKING:
670 * caller.
671 */
672 void ata_id_c_string(const u16 *id, unsigned char *s,
673 unsigned int ofs, unsigned int len)
674 {
675 unsigned char *p;
676
677 WARN_ON(!(len & 1));
678
679 ata_id_string(id, s, ofs, len - 1);
680
681 p = s + strnlen(s, len - 1);
682 while (p > s && p[-1] == ' ')
683 p--;
684 *p = '\0';
685 }
686
687 static u64 ata_id_n_sectors(const u16 *id)
688 {
689 if (ata_id_has_lba(id)) {
690 if (ata_id_has_lba48(id))
691 return ata_id_u64(id, 100);
692 else
693 return ata_id_u32(id, 60);
694 } else {
695 if (ata_id_current_chs_valid(id))
696 return ata_id_u32(id, 57);
697 else
698 return id[1] * id[3] * id[6];
699 }
700 }
701
702 /**
703 * ata_noop_dev_select - Select device 0/1 on ATA bus
704 * @ap: ATA channel to manipulate
705 * @device: ATA device (numbered from zero) to select
706 *
707 * This function performs no actual function.
708 *
709 * May be used as the dev_select() entry in ata_port_operations.
710 *
711 * LOCKING:
712 * caller.
713 */
714 void ata_noop_dev_select (struct ata_port *ap, unsigned int device)
715 {
716 }
717
718
719 /**
720 * ata_std_dev_select - Select device 0/1 on ATA bus
721 * @ap: ATA channel to manipulate
722 * @device: ATA device (numbered from zero) to select
723 *
724 * Use the method defined in the ATA specification to
725 * make either device 0, or device 1, active on the
726 * ATA channel. Works with both PIO and MMIO.
727 *
728 * May be used as the dev_select() entry in ata_port_operations.
729 *
730 * LOCKING:
731 * caller.
732 */
733
734 void ata_std_dev_select (struct ata_port *ap, unsigned int device)
735 {
736 u8 tmp;
737
738 if (device == 0)
739 tmp = ATA_DEVICE_OBS;
740 else
741 tmp = ATA_DEVICE_OBS | ATA_DEV1;
742
743 if (ap->flags & ATA_FLAG_MMIO) {
744 writeb(tmp, (void __iomem *) ap->ioaddr.device_addr);
745 } else {
746 outb(tmp, ap->ioaddr.device_addr);
747 }
748 ata_pause(ap); /* needed; also flushes, for mmio */
749 }
750
751 /**
752 * ata_dev_select - Select device 0/1 on ATA bus
753 * @ap: ATA channel to manipulate
754 * @device: ATA device (numbered from zero) to select
755 * @wait: non-zero to wait for Status register BSY bit to clear
756 * @can_sleep: non-zero if context allows sleeping
757 *
758 * Use the method defined in the ATA specification to
759 * make either device 0, or device 1, active on the
760 * ATA channel.
761 *
762 * This is a high-level version of ata_std_dev_select(),
763 * which additionally provides the services of inserting
764 * the proper pauses and status polling, where needed.
765 *
766 * LOCKING:
767 * caller.
768 */
769
770 void ata_dev_select(struct ata_port *ap, unsigned int device,
771 unsigned int wait, unsigned int can_sleep)
772 {
773 VPRINTK("ENTER, ata%u: device %u, wait %u\n",
774 ap->id, device, wait);
775
776 if (wait)
777 ata_wait_idle(ap);
778
779 ap->ops->dev_select(ap, device);
780
781 if (wait) {
782 if (can_sleep && ap->device[device].class == ATA_DEV_ATAPI)
783 msleep(150);
784 ata_wait_idle(ap);
785 }
786 }
787
788 /**
789 * ata_dump_id - IDENTIFY DEVICE info debugging output
790 * @id: IDENTIFY DEVICE page to dump
791 *
792 * Dump selected 16-bit words from the given IDENTIFY DEVICE
793 * page.
794 *
795 * LOCKING:
796 * caller.
797 */
798
799 static inline void ata_dump_id(const u16 *id)
800 {
801 DPRINTK("49==0x%04x "
802 "53==0x%04x "
803 "63==0x%04x "
804 "64==0x%04x "
805 "75==0x%04x \n",
806 id[49],
807 id[53],
808 id[63],
809 id[64],
810 id[75]);
811 DPRINTK("80==0x%04x "
812 "81==0x%04x "
813 "82==0x%04x "
814 "83==0x%04x "
815 "84==0x%04x \n",
816 id[80],
817 id[81],
818 id[82],
819 id[83],
820 id[84]);
821 DPRINTK("88==0x%04x "
822 "93==0x%04x\n",
823 id[88],
824 id[93]);
825 }
826
827 /**
828 * ata_id_xfermask - Compute xfermask from the given IDENTIFY data
829 * @id: IDENTIFY data to compute xfer mask from
830 *
831 * Compute the xfermask for this device. This is not as trivial
832 * as it seems if we must consider early devices correctly.
833 *
834 * FIXME: pre IDE drive timing (do we care ?).
835 *
836 * LOCKING:
837 * None.
838 *
839 * RETURNS:
840 * Computed xfermask
841 */
842 static unsigned int ata_id_xfermask(const u16 *id)
843 {
844 unsigned int pio_mask, mwdma_mask, udma_mask;
845
846 /* Usual case. Word 53 indicates word 64 is valid */
847 if (id[ATA_ID_FIELD_VALID] & (1 << 1)) {
848 pio_mask = id[ATA_ID_PIO_MODES] & 0x03;
849 pio_mask <<= 3;
850 pio_mask |= 0x7;
851 } else {
852 /* If word 64 isn't valid then Word 51 high byte holds
853 * the PIO timing number for the maximum. Turn it into
854 * a mask.
855 */
856 pio_mask = (2 << (id[ATA_ID_OLD_PIO_MODES] & 0xFF)) - 1 ;
857
858 /* But wait.. there's more. Design your standards by
859 * committee and you too can get a free iordy field to
860 * process. However its the speeds not the modes that
861 * are supported... Note drivers using the timing API
862 * will get this right anyway
863 */
864 }
865
866 mwdma_mask = id[ATA_ID_MWDMA_MODES] & 0x07;
867
868 udma_mask = 0;
869 if (id[ATA_ID_FIELD_VALID] & (1 << 2))
870 udma_mask = id[ATA_ID_UDMA_MODES] & 0xff;
871
872 return ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
873 }
874
875 /**
876 * ata_port_queue_task - Queue port_task
877 * @ap: The ata_port to queue port_task for
878 * @fn: workqueue function to be scheduled
879 * @data: data value to pass to workqueue function
880 * @delay: delay time for workqueue function
881 *
882 * Schedule @fn(@data) for execution after @delay jiffies using
883 * port_task. There is one port_task per port and it's the
884 * user(low level driver)'s responsibility to make sure that only
885 * one task is active at any given time.
886 *
887 * libata core layer takes care of synchronization between
888 * port_task and EH. ata_port_queue_task() may be ignored for EH
889 * synchronization.
890 *
891 * LOCKING:
892 * Inherited from caller.
893 */
894 void ata_port_queue_task(struct ata_port *ap, void (*fn)(void *), void *data,
895 unsigned long delay)
896 {
897 int rc;
898
899 if (ap->flags & ATA_FLAG_FLUSH_PORT_TASK)
900 return;
901
902 PREPARE_WORK(&ap->port_task, fn, data);
903
904 if (!delay)
905 rc = queue_work(ata_wq, &ap->port_task);
906 else
907 rc = queue_delayed_work(ata_wq, &ap->port_task, delay);
908
909 /* rc == 0 means that another user is using port task */
910 WARN_ON(rc == 0);
911 }
912
913 /**
914 * ata_port_flush_task - Flush port_task
915 * @ap: The ata_port to flush port_task for
916 *
917 * After this function completes, port_task is guranteed not to
918 * be running or scheduled.
919 *
920 * LOCKING:
921 * Kernel thread context (may sleep)
922 */
923 void ata_port_flush_task(struct ata_port *ap)
924 {
925 unsigned long flags;
926
927 DPRINTK("ENTER\n");
928
929 spin_lock_irqsave(&ap->host_set->lock, flags);
930 ap->flags |= ATA_FLAG_FLUSH_PORT_TASK;
931 spin_unlock_irqrestore(&ap->host_set->lock, flags);
932
933 DPRINTK("flush #1\n");
934 flush_workqueue(ata_wq);
935
936 /*
937 * At this point, if a task is running, it's guaranteed to see
938 * the FLUSH flag; thus, it will never queue pio tasks again.
939 * Cancel and flush.
940 */
941 if (!cancel_delayed_work(&ap->port_task)) {
942 DPRINTK("flush #2\n");
943 flush_workqueue(ata_wq);
944 }
945
946 spin_lock_irqsave(&ap->host_set->lock, flags);
947 ap->flags &= ~ATA_FLAG_FLUSH_PORT_TASK;
948 spin_unlock_irqrestore(&ap->host_set->lock, flags);
949
950 DPRINTK("EXIT\n");
951 }
952
953 void ata_qc_complete_internal(struct ata_queued_cmd *qc)
954 {
955 struct completion *waiting = qc->private_data;
956
957 complete(waiting);
958 }
959
960 /**
961 * ata_exec_internal - execute libata internal command
962 * @dev: Device to which the command is sent
963 * @tf: Taskfile registers for the command and the result
964 * @cdb: CDB for packet command
965 * @dma_dir: Data tranfer direction of the command
966 * @buf: Data buffer of the command
967 * @buflen: Length of data buffer
968 *
969 * Executes libata internal command with timeout. @tf contains
970 * command on entry and result on return. Timeout and error
971 * conditions are reported via return value. No recovery action
972 * is taken after a command times out. It's caller's duty to
973 * clean up after timeout.
974 *
975 * LOCKING:
976 * None. Should be called with kernel context, might sleep.
977 */
978
979 unsigned ata_exec_internal(struct ata_device *dev,
980 struct ata_taskfile *tf, const u8 *cdb,
981 int dma_dir, void *buf, unsigned int buflen)
982 {
983 struct ata_port *ap = dev->ap;
984 u8 command = tf->command;
985 struct ata_queued_cmd *qc;
986 unsigned int tag, preempted_tag;
987 u32 preempted_sactive, preempted_qc_active;
988 DECLARE_COMPLETION(wait);
989 unsigned long flags;
990 unsigned int err_mask;
991 int rc;
992
993 spin_lock_irqsave(&ap->host_set->lock, flags);
994
995 /* no internal command while frozen */
996 if (ap->flags & ATA_FLAG_FROZEN) {
997 spin_unlock_irqrestore(&ap->host_set->lock, flags);
998 return AC_ERR_SYSTEM;
999 }
1000
1001 /* initialize internal qc */
1002
1003 /* XXX: Tag 0 is used for drivers with legacy EH as some
1004 * drivers choke if any other tag is given. This breaks
1005 * ata_tag_internal() test for those drivers. Don't use new
1006 * EH stuff without converting to it.
1007 */
1008 if (ap->ops->error_handler)
1009 tag = ATA_TAG_INTERNAL;
1010 else
1011 tag = 0;
1012
1013 if (test_and_set_bit(tag, &ap->qc_allocated))
1014 BUG();
1015 qc = __ata_qc_from_tag(ap, tag);
1016
1017 qc->tag = tag;
1018 qc->scsicmd = NULL;
1019 qc->ap = ap;
1020 qc->dev = dev;
1021 ata_qc_reinit(qc);
1022
1023 preempted_tag = ap->active_tag;
1024 preempted_sactive = ap->sactive;
1025 preempted_qc_active = ap->qc_active;
1026 ap->active_tag = ATA_TAG_POISON;
1027 ap->sactive = 0;
1028 ap->qc_active = 0;
1029
1030 /* prepare & issue qc */
1031 qc->tf = *tf;
1032 if (cdb)
1033 memcpy(qc->cdb, cdb, ATAPI_CDB_LEN);
1034 qc->flags |= ATA_QCFLAG_RESULT_TF;
1035 qc->dma_dir = dma_dir;
1036 if (dma_dir != DMA_NONE) {
1037 ata_sg_init_one(qc, buf, buflen);
1038 qc->nsect = buflen / ATA_SECT_SIZE;
1039 }
1040
1041 qc->private_data = &wait;
1042 qc->complete_fn = ata_qc_complete_internal;
1043
1044 ata_qc_issue(qc);
1045
1046 spin_unlock_irqrestore(&ap->host_set->lock, flags);
1047
1048 rc = wait_for_completion_timeout(&wait, ATA_TMOUT_INTERNAL);
1049
1050 ata_port_flush_task(ap);
1051
1052 if (!rc) {
1053 spin_lock_irqsave(&ap->host_set->lock, flags);
1054
1055 /* We're racing with irq here. If we lose, the
1056 * following test prevents us from completing the qc
1057 * twice. If we win, the port is frozen and will be
1058 * cleaned up by ->post_internal_cmd().
1059 */
1060 if (qc->flags & ATA_QCFLAG_ACTIVE) {
1061 qc->err_mask |= AC_ERR_TIMEOUT;
1062
1063 if (ap->ops->error_handler)
1064 ata_port_freeze(ap);
1065 else
1066 ata_qc_complete(qc);
1067
1068 ata_dev_printk(dev, KERN_WARNING,
1069 "qc timeout (cmd 0x%x)\n", command);
1070 }
1071
1072 spin_unlock_irqrestore(&ap->host_set->lock, flags);
1073 }
1074
1075 /* do post_internal_cmd */
1076 if (ap->ops->post_internal_cmd)
1077 ap->ops->post_internal_cmd(qc);
1078
1079 if (qc->flags & ATA_QCFLAG_FAILED && !qc->err_mask) {
1080 ata_dev_printk(dev, KERN_WARNING, "zero err_mask for failed "
1081 "internal command, assuming AC_ERR_OTHER\n");
1082 qc->err_mask |= AC_ERR_OTHER;
1083 }
1084
1085 /* finish up */
1086 spin_lock_irqsave(&ap->host_set->lock, flags);
1087
1088 *tf = qc->result_tf;
1089 err_mask = qc->err_mask;
1090
1091 ata_qc_free(qc);
1092 ap->active_tag = preempted_tag;
1093 ap->sactive = preempted_sactive;
1094 ap->qc_active = preempted_qc_active;
1095
1096 /* XXX - Some LLDDs (sata_mv) disable port on command failure.
1097 * Until those drivers are fixed, we detect the condition
1098 * here, fail the command with AC_ERR_SYSTEM and reenable the
1099 * port.
1100 *
1101 * Note that this doesn't change any behavior as internal
1102 * command failure results in disabling the device in the
1103 * higher layer for LLDDs without new reset/EH callbacks.
1104 *
1105 * Kill the following code as soon as those drivers are fixed.
1106 */
1107 if (ap->flags & ATA_FLAG_DISABLED) {
1108 err_mask |= AC_ERR_SYSTEM;
1109 ata_port_probe(ap);
1110 }
1111
1112 spin_unlock_irqrestore(&ap->host_set->lock, flags);
1113
1114 return err_mask;
1115 }
1116
1117 /**
1118 * ata_pio_need_iordy - check if iordy needed
1119 * @adev: ATA device
1120 *
1121 * Check if the current speed of the device requires IORDY. Used
1122 * by various controllers for chip configuration.
1123 */
1124
1125 unsigned int ata_pio_need_iordy(const struct ata_device *adev)
1126 {
1127 int pio;
1128 int speed = adev->pio_mode - XFER_PIO_0;
1129
1130 if (speed < 2)
1131 return 0;
1132 if (speed > 2)
1133 return 1;
1134
1135 /* If we have no drive specific rule, then PIO 2 is non IORDY */
1136
1137 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE */
1138 pio = adev->id[ATA_ID_EIDE_PIO];
1139 /* Is the speed faster than the drive allows non IORDY ? */
1140 if (pio) {
1141 /* This is cycle times not frequency - watch the logic! */
1142 if (pio > 240) /* PIO2 is 240nS per cycle */
1143 return 1;
1144 return 0;
1145 }
1146 }
1147 return 0;
1148 }
1149
1150 /**
1151 * ata_dev_read_id - Read ID data from the specified device
1152 * @dev: target device
1153 * @p_class: pointer to class of the target device (may be changed)
1154 * @post_reset: is this read ID post-reset?
1155 * @id: buffer to read IDENTIFY data into
1156 *
1157 * Read ID data from the specified device. ATA_CMD_ID_ATA is
1158 * performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI
1159 * devices. This function also issues ATA_CMD_INIT_DEV_PARAMS
1160 * for pre-ATA4 drives.
1161 *
1162 * LOCKING:
1163 * Kernel thread context (may sleep)
1164 *
1165 * RETURNS:
1166 * 0 on success, -errno otherwise.
1167 */
1168 static int ata_dev_read_id(struct ata_device *dev, unsigned int *p_class,
1169 int post_reset, u16 *id)
1170 {
1171 struct ata_port *ap = dev->ap;
1172 unsigned int class = *p_class;
1173 struct ata_taskfile tf;
1174 unsigned int err_mask = 0;
1175 const char *reason;
1176 int rc;
1177
1178 DPRINTK("ENTER, host %u, dev %u\n", ap->id, dev->devno);
1179
1180 ata_dev_select(ap, dev->devno, 1, 1); /* select device 0/1 */
1181
1182 retry:
1183 ata_tf_init(dev, &tf);
1184
1185 switch (class) {
1186 case ATA_DEV_ATA:
1187 tf.command = ATA_CMD_ID_ATA;
1188 break;
1189 case ATA_DEV_ATAPI:
1190 tf.command = ATA_CMD_ID_ATAPI;
1191 break;
1192 default:
1193 rc = -ENODEV;
1194 reason = "unsupported class";
1195 goto err_out;
1196 }
1197
1198 tf.protocol = ATA_PROT_PIO;
1199
1200 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_FROM_DEVICE,
1201 id, sizeof(id[0]) * ATA_ID_WORDS);
1202 if (err_mask) {
1203 rc = -EIO;
1204 reason = "I/O error";
1205 goto err_out;
1206 }
1207
1208 swap_buf_le16(id, ATA_ID_WORDS);
1209
1210 /* sanity check */
1211 if ((class == ATA_DEV_ATA) != (ata_id_is_ata(id) | ata_id_is_cfa(id))) {
1212 rc = -EINVAL;
1213 reason = "device reports illegal type";
1214 goto err_out;
1215 }
1216
1217 if (post_reset && class == ATA_DEV_ATA) {
1218 /*
1219 * The exact sequence expected by certain pre-ATA4 drives is:
1220 * SRST RESET
1221 * IDENTIFY
1222 * INITIALIZE DEVICE PARAMETERS
1223 * anything else..
1224 * Some drives were very specific about that exact sequence.
1225 */
1226 if (ata_id_major_version(id) < 4 || !ata_id_has_lba(id)) {
1227 err_mask = ata_dev_init_params(dev, id[3], id[6]);
1228 if (err_mask) {
1229 rc = -EIO;
1230 reason = "INIT_DEV_PARAMS failed";
1231 goto err_out;
1232 }
1233
1234 /* current CHS translation info (id[53-58]) might be
1235 * changed. reread the identify device info.
1236 */
1237 post_reset = 0;
1238 goto retry;
1239 }
1240 }
1241
1242 *p_class = class;
1243
1244 return 0;
1245
1246 err_out:
1247 ata_dev_printk(dev, KERN_WARNING, "failed to IDENTIFY "
1248 "(%s, err_mask=0x%x)\n", reason, err_mask);
1249 return rc;
1250 }
1251
1252 static inline u8 ata_dev_knobble(struct ata_device *dev)
1253 {
1254 return ((dev->ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(dev->id)));
1255 }
1256
1257 static void ata_dev_config_ncq(struct ata_device *dev,
1258 char *desc, size_t desc_sz)
1259 {
1260 struct ata_port *ap = dev->ap;
1261 int hdepth = 0, ddepth = ata_id_queue_depth(dev->id);
1262
1263 if (!ata_id_has_ncq(dev->id)) {
1264 desc[0] = '\0';
1265 return;
1266 }
1267
1268 if (ap->flags & ATA_FLAG_NCQ) {
1269 hdepth = min(ap->host->can_queue, ATA_MAX_QUEUE - 1);
1270 dev->flags |= ATA_DFLAG_NCQ;
1271 }
1272
1273 if (hdepth >= ddepth)
1274 snprintf(desc, desc_sz, "NCQ (depth %d)", ddepth);
1275 else
1276 snprintf(desc, desc_sz, "NCQ (depth %d/%d)", hdepth, ddepth);
1277 }
1278
1279 /**
1280 * ata_dev_configure - Configure the specified ATA/ATAPI device
1281 * @dev: Target device to configure
1282 * @print_info: Enable device info printout
1283 *
1284 * Configure @dev according to @dev->id. Generic and low-level
1285 * driver specific fixups are also applied.
1286 *
1287 * LOCKING:
1288 * Kernel thread context (may sleep)
1289 *
1290 * RETURNS:
1291 * 0 on success, -errno otherwise
1292 */
1293 static int ata_dev_configure(struct ata_device *dev, int print_info)
1294 {
1295 struct ata_port *ap = dev->ap;
1296 const u16 *id = dev->id;
1297 unsigned int xfer_mask;
1298 int i, rc;
1299
1300 if (!ata_dev_enabled(dev)) {
1301 DPRINTK("ENTER/EXIT (host %u, dev %u) -- nodev\n",
1302 ap->id, dev->devno);
1303 return 0;
1304 }
1305
1306 DPRINTK("ENTER, host %u, dev %u\n", ap->id, dev->devno);
1307
1308 /* print device capabilities */
1309 if (print_info)
1310 ata_dev_printk(dev, KERN_DEBUG, "cfg 49:%04x 82:%04x 83:%04x "
1311 "84:%04x 85:%04x 86:%04x 87:%04x 88:%04x\n",
1312 id[49], id[82], id[83], id[84],
1313 id[85], id[86], id[87], id[88]);
1314
1315 /* initialize to-be-configured parameters */
1316 dev->flags &= ~ATA_DFLAG_CFG_MASK;
1317 dev->max_sectors = 0;
1318 dev->cdb_len = 0;
1319 dev->n_sectors = 0;
1320 dev->cylinders = 0;
1321 dev->heads = 0;
1322 dev->sectors = 0;
1323
1324 /*
1325 * common ATA, ATAPI feature tests
1326 */
1327
1328 /* find max transfer mode; for printk only */
1329 xfer_mask = ata_id_xfermask(id);
1330
1331 ata_dump_id(id);
1332
1333 /* ATA-specific feature tests */
1334 if (dev->class == ATA_DEV_ATA) {
1335 dev->n_sectors = ata_id_n_sectors(id);
1336
1337 if (ata_id_has_lba(id)) {
1338 const char *lba_desc;
1339 char ncq_desc[20];
1340
1341 lba_desc = "LBA";
1342 dev->flags |= ATA_DFLAG_LBA;
1343 if (ata_id_has_lba48(id)) {
1344 dev->flags |= ATA_DFLAG_LBA48;
1345 lba_desc = "LBA48";
1346 }
1347
1348 /* config NCQ */
1349 ata_dev_config_ncq(dev, ncq_desc, sizeof(ncq_desc));
1350
1351 /* print device info to dmesg */
1352 if (print_info)
1353 ata_dev_printk(dev, KERN_INFO, "ATA-%d, "
1354 "max %s, %Lu sectors: %s %s\n",
1355 ata_id_major_version(id),
1356 ata_mode_string(xfer_mask),
1357 (unsigned long long)dev->n_sectors,
1358 lba_desc, ncq_desc);
1359 } else {
1360 /* CHS */
1361
1362 /* Default translation */
1363 dev->cylinders = id[1];
1364 dev->heads = id[3];
1365 dev->sectors = id[6];
1366
1367 if (ata_id_current_chs_valid(id)) {
1368 /* Current CHS translation is valid. */
1369 dev->cylinders = id[54];
1370 dev->heads = id[55];
1371 dev->sectors = id[56];
1372 }
1373
1374 /* print device info to dmesg */
1375 if (print_info)
1376 ata_dev_printk(dev, KERN_INFO, "ATA-%d, "
1377 "max %s, %Lu sectors: CHS %u/%u/%u\n",
1378 ata_id_major_version(id),
1379 ata_mode_string(xfer_mask),
1380 (unsigned long long)dev->n_sectors,
1381 dev->cylinders, dev->heads, dev->sectors);
1382 }
1383
1384 if (dev->id[59] & 0x100) {
1385 dev->multi_count = dev->id[59] & 0xff;
1386 DPRINTK("ata%u: dev %u multi count %u\n",
1387 ap->id, dev->devno, dev->multi_count);
1388 }
1389
1390 dev->cdb_len = 16;
1391 }
1392
1393 /* ATAPI-specific feature tests */
1394 else if (dev->class == ATA_DEV_ATAPI) {
1395 char *cdb_intr_string = "";
1396
1397 rc = atapi_cdb_len(id);
1398 if ((rc < 12) || (rc > ATAPI_CDB_LEN)) {
1399 ata_dev_printk(dev, KERN_WARNING,
1400 "unsupported CDB len\n");
1401 rc = -EINVAL;
1402 goto err_out_nosup;
1403 }
1404 dev->cdb_len = (unsigned int) rc;
1405
1406 if (ata_id_cdb_intr(dev->id)) {
1407 dev->flags |= ATA_DFLAG_CDB_INTR;
1408 cdb_intr_string = ", CDB intr";
1409 }
1410
1411 /* print device info to dmesg */
1412 if (print_info)
1413 ata_dev_printk(dev, KERN_INFO, "ATAPI, max %s%s\n",
1414 ata_mode_string(xfer_mask),
1415 cdb_intr_string);
1416 }
1417
1418 ap->host->max_cmd_len = 0;
1419 for (i = 0; i < ATA_MAX_DEVICES; i++)
1420 ap->host->max_cmd_len = max_t(unsigned int,
1421 ap->host->max_cmd_len,
1422 ap->device[i].cdb_len);
1423
1424 /* limit bridge transfers to udma5, 200 sectors */
1425 if (ata_dev_knobble(dev)) {
1426 if (print_info)
1427 ata_dev_printk(dev, KERN_INFO,
1428 "applying bridge limits\n");
1429 dev->udma_mask &= ATA_UDMA5;
1430 dev->max_sectors = ATA_MAX_SECTORS;
1431 }
1432
1433 if (ap->ops->dev_config)
1434 ap->ops->dev_config(ap, dev);
1435
1436 DPRINTK("EXIT, drv_stat = 0x%x\n", ata_chk_status(ap));
1437 return 0;
1438
1439 err_out_nosup:
1440 DPRINTK("EXIT, err\n");
1441 return rc;
1442 }
1443
1444 /**
1445 * ata_bus_probe - Reset and probe ATA bus
1446 * @ap: Bus to probe
1447 *
1448 * Master ATA bus probing function. Initiates a hardware-dependent
1449 * bus reset, then attempts to identify any devices found on
1450 * the bus.
1451 *
1452 * LOCKING:
1453 * PCI/etc. bus probe sem.
1454 *
1455 * RETURNS:
1456 * Zero on success, negative errno otherwise.
1457 */
1458
1459 static int ata_bus_probe(struct ata_port *ap)
1460 {
1461 unsigned int classes[ATA_MAX_DEVICES];
1462 int tries[ATA_MAX_DEVICES];
1463 int i, rc, down_xfermask;
1464 struct ata_device *dev;
1465
1466 ata_port_probe(ap);
1467
1468 for (i = 0; i < ATA_MAX_DEVICES; i++)
1469 tries[i] = ATA_PROBE_MAX_TRIES;
1470
1471 retry:
1472 down_xfermask = 0;
1473
1474 /* reset and determine device classes */
1475 for (i = 0; i < ATA_MAX_DEVICES; i++)
1476 classes[i] = ATA_DEV_UNKNOWN;
1477
1478 if (ap->ops->probe_reset) {
1479 rc = ap->ops->probe_reset(ap, classes);
1480 if (rc) {
1481 ata_port_printk(ap, KERN_ERR,
1482 "reset failed (errno=%d)\n", rc);
1483 return rc;
1484 }
1485 } else {
1486 ap->ops->phy_reset(ap);
1487
1488 for (i = 0; i < ATA_MAX_DEVICES; i++) {
1489 if (!(ap->flags & ATA_FLAG_DISABLED))
1490 classes[i] = ap->device[i].class;
1491 ap->device[i].class = ATA_DEV_UNKNOWN;
1492 }
1493
1494 ata_port_probe(ap);
1495 }
1496
1497 for (i = 0; i < ATA_MAX_DEVICES; i++)
1498 if (classes[i] == ATA_DEV_UNKNOWN)
1499 classes[i] = ATA_DEV_NONE;
1500
1501 /* after the reset the device state is PIO 0 and the controller
1502 state is undefined. Record the mode */
1503
1504 for (i = 0; i < ATA_MAX_DEVICES; i++)
1505 ap->device[i].pio_mode = XFER_PIO_0;
1506
1507 /* read IDENTIFY page and configure devices */
1508 for (i = 0; i < ATA_MAX_DEVICES; i++) {
1509 dev = &ap->device[i];
1510
1511 if (tries[i])
1512 dev->class = classes[i];
1513
1514 if (!ata_dev_enabled(dev))
1515 continue;
1516
1517 rc = ata_dev_read_id(dev, &dev->class, 1, dev->id);
1518 if (rc)
1519 goto fail;
1520
1521 rc = ata_dev_configure(dev, 1);
1522 if (rc)
1523 goto fail;
1524 }
1525
1526 /* configure transfer mode */
1527 rc = ata_set_mode(ap, &dev);
1528 if (rc) {
1529 down_xfermask = 1;
1530 goto fail;
1531 }
1532
1533 for (i = 0; i < ATA_MAX_DEVICES; i++)
1534 if (ata_dev_enabled(&ap->device[i]))
1535 return 0;
1536
1537 /* no device present, disable port */
1538 ata_port_disable(ap);
1539 ap->ops->port_disable(ap);
1540 return -ENODEV;
1541
1542 fail:
1543 switch (rc) {
1544 case -EINVAL:
1545 case -ENODEV:
1546 tries[dev->devno] = 0;
1547 break;
1548 case -EIO:
1549 sata_down_spd_limit(ap);
1550 /* fall through */
1551 default:
1552 tries[dev->devno]--;
1553 if (down_xfermask &&
1554 ata_down_xfermask_limit(dev, tries[dev->devno] == 1))
1555 tries[dev->devno] = 0;
1556 }
1557
1558 if (!tries[dev->devno]) {
1559 ata_down_xfermask_limit(dev, 1);
1560 ata_dev_disable(dev);
1561 }
1562
1563 goto retry;
1564 }
1565
1566 /**
1567 * ata_port_probe - Mark port as enabled
1568 * @ap: Port for which we indicate enablement
1569 *
1570 * Modify @ap data structure such that the system
1571 * thinks that the entire port is enabled.
1572 *
1573 * LOCKING: host_set lock, or some other form of
1574 * serialization.
1575 */
1576
1577 void ata_port_probe(struct ata_port *ap)
1578 {
1579 ap->flags &= ~ATA_FLAG_DISABLED;
1580 }
1581
1582 /**
1583 * sata_print_link_status - Print SATA link status
1584 * @ap: SATA port to printk link status about
1585 *
1586 * This function prints link speed and status of a SATA link.
1587 *
1588 * LOCKING:
1589 * None.
1590 */
1591 static void sata_print_link_status(struct ata_port *ap)
1592 {
1593 u32 sstatus, scontrol, tmp;
1594
1595 if (sata_scr_read(ap, SCR_STATUS, &sstatus))
1596 return;
1597 sata_scr_read(ap, SCR_CONTROL, &scontrol);
1598
1599 if (ata_port_online(ap)) {
1600 tmp = (sstatus >> 4) & 0xf;
1601 ata_port_printk(ap, KERN_INFO,
1602 "SATA link up %s (SStatus %X SControl %X)\n",
1603 sata_spd_string(tmp), sstatus, scontrol);
1604 } else {
1605 ata_port_printk(ap, KERN_INFO,
1606 "SATA link down (SStatus %X SControl %X)\n",
1607 sstatus, scontrol);
1608 }
1609 }
1610
1611 /**
1612 * __sata_phy_reset - Wake/reset a low-level SATA PHY
1613 * @ap: SATA port associated with target SATA PHY.
1614 *
1615 * This function issues commands to standard SATA Sxxx
1616 * PHY registers, to wake up the phy (and device), and
1617 * clear any reset condition.
1618 *
1619 * LOCKING:
1620 * PCI/etc. bus probe sem.
1621 *
1622 */
1623 void __sata_phy_reset(struct ata_port *ap)
1624 {
1625 u32 sstatus;
1626 unsigned long timeout = jiffies + (HZ * 5);
1627
1628 if (ap->flags & ATA_FLAG_SATA_RESET) {
1629 /* issue phy wake/reset */
1630 sata_scr_write_flush(ap, SCR_CONTROL, 0x301);
1631 /* Couldn't find anything in SATA I/II specs, but
1632 * AHCI-1.1 10.4.2 says at least 1 ms. */
1633 mdelay(1);
1634 }
1635 /* phy wake/clear reset */
1636 sata_scr_write_flush(ap, SCR_CONTROL, 0x300);
1637
1638 /* wait for phy to become ready, if necessary */
1639 do {
1640 msleep(200);
1641 sata_scr_read(ap, SCR_STATUS, &sstatus);
1642 if ((sstatus & 0xf) != 1)
1643 break;
1644 } while (time_before(jiffies, timeout));
1645
1646 /* print link status */
1647 sata_print_link_status(ap);
1648
1649 /* TODO: phy layer with polling, timeouts, etc. */
1650 if (!ata_port_offline(ap))
1651 ata_port_probe(ap);
1652 else
1653 ata_port_disable(ap);
1654
1655 if (ap->flags & ATA_FLAG_DISABLED)
1656 return;
1657
1658 if (ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT)) {
1659 ata_port_disable(ap);
1660 return;
1661 }
1662
1663 ap->cbl = ATA_CBL_SATA;
1664 }
1665
1666 /**
1667 * sata_phy_reset - Reset SATA bus.
1668 * @ap: SATA port associated with target SATA PHY.
1669 *
1670 * This function resets the SATA bus, and then probes
1671 * the bus for devices.
1672 *
1673 * LOCKING:
1674 * PCI/etc. bus probe sem.
1675 *
1676 */
1677 void sata_phy_reset(struct ata_port *ap)
1678 {
1679 __sata_phy_reset(ap);
1680 if (ap->flags & ATA_FLAG_DISABLED)
1681 return;
1682 ata_bus_reset(ap);
1683 }
1684
1685 /**
1686 * ata_dev_pair - return other device on cable
1687 * @adev: device
1688 *
1689 * Obtain the other device on the same cable, or if none is
1690 * present NULL is returned
1691 */
1692
1693 struct ata_device *ata_dev_pair(struct ata_device *adev)
1694 {
1695 struct ata_port *ap = adev->ap;
1696 struct ata_device *pair = &ap->device[1 - adev->devno];
1697 if (!ata_dev_enabled(pair))
1698 return NULL;
1699 return pair;
1700 }
1701
1702 /**
1703 * ata_port_disable - Disable port.
1704 * @ap: Port to be disabled.
1705 *
1706 * Modify @ap data structure such that the system
1707 * thinks that the entire port is disabled, and should
1708 * never attempt to probe or communicate with devices
1709 * on this port.
1710 *
1711 * LOCKING: host_set lock, or some other form of
1712 * serialization.
1713 */
1714
1715 void ata_port_disable(struct ata_port *ap)
1716 {
1717 ap->device[0].class = ATA_DEV_NONE;
1718 ap->device[1].class = ATA_DEV_NONE;
1719 ap->flags |= ATA_FLAG_DISABLED;
1720 }
1721
1722 /**
1723 * sata_down_spd_limit - adjust SATA spd limit downward
1724 * @ap: Port to adjust SATA spd limit for
1725 *
1726 * Adjust SATA spd limit of @ap downward. Note that this
1727 * function only adjusts the limit. The change must be applied
1728 * using sata_set_spd().
1729 *
1730 * LOCKING:
1731 * Inherited from caller.
1732 *
1733 * RETURNS:
1734 * 0 on success, negative errno on failure
1735 */
1736 int sata_down_spd_limit(struct ata_port *ap)
1737 {
1738 u32 sstatus, spd, mask;
1739 int rc, highbit;
1740
1741 rc = sata_scr_read(ap, SCR_STATUS, &sstatus);
1742 if (rc)
1743 return rc;
1744
1745 mask = ap->sata_spd_limit;
1746 if (mask <= 1)
1747 return -EINVAL;
1748 highbit = fls(mask) - 1;
1749 mask &= ~(1 << highbit);
1750
1751 spd = (sstatus >> 4) & 0xf;
1752 if (spd <= 1)
1753 return -EINVAL;
1754 spd--;
1755 mask &= (1 << spd) - 1;
1756 if (!mask)
1757 return -EINVAL;
1758
1759 ap->sata_spd_limit = mask;
1760
1761 ata_port_printk(ap, KERN_WARNING, "limiting SATA link speed to %s\n",
1762 sata_spd_string(fls(mask)));
1763
1764 return 0;
1765 }
1766
1767 static int __sata_set_spd_needed(struct ata_port *ap, u32 *scontrol)
1768 {
1769 u32 spd, limit;
1770
1771 if (ap->sata_spd_limit == UINT_MAX)
1772 limit = 0;
1773 else
1774 limit = fls(ap->sata_spd_limit);
1775
1776 spd = (*scontrol >> 4) & 0xf;
1777 *scontrol = (*scontrol & ~0xf0) | ((limit & 0xf) << 4);
1778
1779 return spd != limit;
1780 }
1781
1782 /**
1783 * sata_set_spd_needed - is SATA spd configuration needed
1784 * @ap: Port in question
1785 *
1786 * Test whether the spd limit in SControl matches
1787 * @ap->sata_spd_limit. This function is used to determine
1788 * whether hardreset is necessary to apply SATA spd
1789 * configuration.
1790 *
1791 * LOCKING:
1792 * Inherited from caller.
1793 *
1794 * RETURNS:
1795 * 1 if SATA spd configuration is needed, 0 otherwise.
1796 */
1797 int sata_set_spd_needed(struct ata_port *ap)
1798 {
1799 u32 scontrol;
1800
1801 if (sata_scr_read(ap, SCR_CONTROL, &scontrol))
1802 return 0;
1803
1804 return __sata_set_spd_needed(ap, &scontrol);
1805 }
1806
1807 /**
1808 * sata_set_spd - set SATA spd according to spd limit
1809 * @ap: Port to set SATA spd for
1810 *
1811 * Set SATA spd of @ap according to sata_spd_limit.
1812 *
1813 * LOCKING:
1814 * Inherited from caller.
1815 *
1816 * RETURNS:
1817 * 0 if spd doesn't need to be changed, 1 if spd has been
1818 * changed. Negative errno if SCR registers are inaccessible.
1819 */
1820 int sata_set_spd(struct ata_port *ap)
1821 {
1822 u32 scontrol;
1823 int rc;
1824
1825 if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
1826 return rc;
1827
1828 if (!__sata_set_spd_needed(ap, &scontrol))
1829 return 0;
1830
1831 if ((rc = sata_scr_write(ap, SCR_CONTROL, scontrol)))
1832 return rc;
1833
1834 return 1;
1835 }
1836
1837 /*
1838 * This mode timing computation functionality is ported over from
1839 * drivers/ide/ide-timing.h and was originally written by Vojtech Pavlik
1840 */
1841 /*
1842 * PIO 0-5, MWDMA 0-2 and UDMA 0-6 timings (in nanoseconds).
1843 * These were taken from ATA/ATAPI-6 standard, rev 0a, except
1844 * for PIO 5, which is a nonstandard extension and UDMA6, which
1845 * is currently supported only by Maxtor drives.
1846 */
1847
1848 static const struct ata_timing ata_timing[] = {
1849
1850 { XFER_UDMA_6, 0, 0, 0, 0, 0, 0, 0, 15 },
1851 { XFER_UDMA_5, 0, 0, 0, 0, 0, 0, 0, 20 },
1852 { XFER_UDMA_4, 0, 0, 0, 0, 0, 0, 0, 30 },
1853 { XFER_UDMA_3, 0, 0, 0, 0, 0, 0, 0, 45 },
1854
1855 { XFER_UDMA_2, 0, 0, 0, 0, 0, 0, 0, 60 },
1856 { XFER_UDMA_1, 0, 0, 0, 0, 0, 0, 0, 80 },
1857 { XFER_UDMA_0, 0, 0, 0, 0, 0, 0, 0, 120 },
1858
1859 /* { XFER_UDMA_SLOW, 0, 0, 0, 0, 0, 0, 0, 150 }, */
1860
1861 { XFER_MW_DMA_2, 25, 0, 0, 0, 70, 25, 120, 0 },
1862 { XFER_MW_DMA_1, 45, 0, 0, 0, 80, 50, 150, 0 },
1863 { XFER_MW_DMA_0, 60, 0, 0, 0, 215, 215, 480, 0 },
1864
1865 { XFER_SW_DMA_2, 60, 0, 0, 0, 120, 120, 240, 0 },
1866 { XFER_SW_DMA_1, 90, 0, 0, 0, 240, 240, 480, 0 },
1867 { XFER_SW_DMA_0, 120, 0, 0, 0, 480, 480, 960, 0 },
1868
1869 /* { XFER_PIO_5, 20, 50, 30, 100, 50, 30, 100, 0 }, */
1870 { XFER_PIO_4, 25, 70, 25, 120, 70, 25, 120, 0 },
1871 { XFER_PIO_3, 30, 80, 70, 180, 80, 70, 180, 0 },
1872
1873 { XFER_PIO_2, 30, 290, 40, 330, 100, 90, 240, 0 },
1874 { XFER_PIO_1, 50, 290, 93, 383, 125, 100, 383, 0 },
1875 { XFER_PIO_0, 70, 290, 240, 600, 165, 150, 600, 0 },
1876
1877 /* { XFER_PIO_SLOW, 120, 290, 240, 960, 290, 240, 960, 0 }, */
1878
1879 { 0xFF }
1880 };
1881
1882 #define ENOUGH(v,unit) (((v)-1)/(unit)+1)
1883 #define EZ(v,unit) ((v)?ENOUGH(v,unit):0)
1884
1885 static void ata_timing_quantize(const struct ata_timing *t, struct ata_timing *q, int T, int UT)
1886 {
1887 q->setup = EZ(t->setup * 1000, T);
1888 q->act8b = EZ(t->act8b * 1000, T);
1889 q->rec8b = EZ(t->rec8b * 1000, T);
1890 q->cyc8b = EZ(t->cyc8b * 1000, T);
1891 q->active = EZ(t->active * 1000, T);
1892 q->recover = EZ(t->recover * 1000, T);
1893 q->cycle = EZ(t->cycle * 1000, T);
1894 q->udma = EZ(t->udma * 1000, UT);
1895 }
1896
1897 void ata_timing_merge(const struct ata_timing *a, const struct ata_timing *b,
1898 struct ata_timing *m, unsigned int what)
1899 {
1900 if (what & ATA_TIMING_SETUP ) m->setup = max(a->setup, b->setup);
1901 if (what & ATA_TIMING_ACT8B ) m->act8b = max(a->act8b, b->act8b);
1902 if (what & ATA_TIMING_REC8B ) m->rec8b = max(a->rec8b, b->rec8b);
1903 if (what & ATA_TIMING_CYC8B ) m->cyc8b = max(a->cyc8b, b->cyc8b);
1904 if (what & ATA_TIMING_ACTIVE ) m->active = max(a->active, b->active);
1905 if (what & ATA_TIMING_RECOVER) m->recover = max(a->recover, b->recover);
1906 if (what & ATA_TIMING_CYCLE ) m->cycle = max(a->cycle, b->cycle);
1907 if (what & ATA_TIMING_UDMA ) m->udma = max(a->udma, b->udma);
1908 }
1909
1910 static const struct ata_timing* ata_timing_find_mode(unsigned short speed)
1911 {
1912 const struct ata_timing *t;
1913
1914 for (t = ata_timing; t->mode != speed; t++)
1915 if (t->mode == 0xFF)
1916 return NULL;
1917 return t;
1918 }
1919
1920 int ata_timing_compute(struct ata_device *adev, unsigned short speed,
1921 struct ata_timing *t, int T, int UT)
1922 {
1923 const struct ata_timing *s;
1924 struct ata_timing p;
1925
1926 /*
1927 * Find the mode.
1928 */
1929
1930 if (!(s = ata_timing_find_mode(speed)))
1931 return -EINVAL;
1932
1933 memcpy(t, s, sizeof(*s));
1934
1935 /*
1936 * If the drive is an EIDE drive, it can tell us it needs extended
1937 * PIO/MW_DMA cycle timing.
1938 */
1939
1940 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE drive */
1941 memset(&p, 0, sizeof(p));
1942 if(speed >= XFER_PIO_0 && speed <= XFER_SW_DMA_0) {
1943 if (speed <= XFER_PIO_2) p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO];
1944 else p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO_IORDY];
1945 } else if(speed >= XFER_MW_DMA_0 && speed <= XFER_MW_DMA_2) {
1946 p.cycle = adev->id[ATA_ID_EIDE_DMA_MIN];
1947 }
1948 ata_timing_merge(&p, t, t, ATA_TIMING_CYCLE | ATA_TIMING_CYC8B);
1949 }
1950
1951 /*
1952 * Convert the timing to bus clock counts.
1953 */
1954
1955 ata_timing_quantize(t, t, T, UT);
1956
1957 /*
1958 * Even in DMA/UDMA modes we still use PIO access for IDENTIFY,
1959 * S.M.A.R.T * and some other commands. We have to ensure that the
1960 * DMA cycle timing is slower/equal than the fastest PIO timing.
1961 */
1962
1963 if (speed > XFER_PIO_4) {
1964 ata_timing_compute(adev, adev->pio_mode, &p, T, UT);
1965 ata_timing_merge(&p, t, t, ATA_TIMING_ALL);
1966 }
1967
1968 /*
1969 * Lengthen active & recovery time so that cycle time is correct.
1970 */
1971
1972 if (t->act8b + t->rec8b < t->cyc8b) {
1973 t->act8b += (t->cyc8b - (t->act8b + t->rec8b)) / 2;
1974 t->rec8b = t->cyc8b - t->act8b;
1975 }
1976
1977 if (t->active + t->recover < t->cycle) {
1978 t->active += (t->cycle - (t->active + t->recover)) / 2;
1979 t->recover = t->cycle - t->active;
1980 }
1981
1982 return 0;
1983 }
1984
1985 /**
1986 * ata_down_xfermask_limit - adjust dev xfer masks downward
1987 * @dev: Device to adjust xfer masks
1988 * @force_pio0: Force PIO0
1989 *
1990 * Adjust xfer masks of @dev downward. Note that this function
1991 * does not apply the change. Invoking ata_set_mode() afterwards
1992 * will apply the limit.
1993 *
1994 * LOCKING:
1995 * Inherited from caller.
1996 *
1997 * RETURNS:
1998 * 0 on success, negative errno on failure
1999 */
2000 int ata_down_xfermask_limit(struct ata_device *dev, int force_pio0)
2001 {
2002 unsigned long xfer_mask;
2003 int highbit;
2004
2005 xfer_mask = ata_pack_xfermask(dev->pio_mask, dev->mwdma_mask,
2006 dev->udma_mask);
2007
2008 if (!xfer_mask)
2009 goto fail;
2010 /* don't gear down to MWDMA from UDMA, go directly to PIO */
2011 if (xfer_mask & ATA_MASK_UDMA)
2012 xfer_mask &= ~ATA_MASK_MWDMA;
2013
2014 highbit = fls(xfer_mask) - 1;
2015 xfer_mask &= ~(1 << highbit);
2016 if (force_pio0)
2017 xfer_mask &= 1 << ATA_SHIFT_PIO;
2018 if (!xfer_mask)
2019 goto fail;
2020
2021 ata_unpack_xfermask(xfer_mask, &dev->pio_mask, &dev->mwdma_mask,
2022 &dev->udma_mask);
2023
2024 ata_dev_printk(dev, KERN_WARNING, "limiting speed to %s\n",
2025 ata_mode_string(xfer_mask));
2026
2027 return 0;
2028
2029 fail:
2030 return -EINVAL;
2031 }
2032
2033 static int ata_dev_set_mode(struct ata_device *dev)
2034 {
2035 unsigned int err_mask;
2036 int rc;
2037
2038 dev->flags &= ~ATA_DFLAG_PIO;
2039 if (dev->xfer_shift == ATA_SHIFT_PIO)
2040 dev->flags |= ATA_DFLAG_PIO;
2041
2042 err_mask = ata_dev_set_xfermode(dev);
2043 if (err_mask) {
2044 ata_dev_printk(dev, KERN_ERR, "failed to set xfermode "
2045 "(err_mask=0x%x)\n", err_mask);
2046 return -EIO;
2047 }
2048
2049 rc = ata_dev_revalidate(dev, 0);
2050 if (rc)
2051 return rc;
2052
2053 DPRINTK("xfer_shift=%u, xfer_mode=0x%x\n",
2054 dev->xfer_shift, (int)dev->xfer_mode);
2055
2056 ata_dev_printk(dev, KERN_INFO, "configured for %s\n",
2057 ata_mode_string(ata_xfer_mode2mask(dev->xfer_mode)));
2058 return 0;
2059 }
2060
2061 /**
2062 * ata_set_mode - Program timings and issue SET FEATURES - XFER
2063 * @ap: port on which timings will be programmed
2064 * @r_failed_dev: out paramter for failed device
2065 *
2066 * Set ATA device disk transfer mode (PIO3, UDMA6, etc.). If
2067 * ata_set_mode() fails, pointer to the failing device is
2068 * returned in @r_failed_dev.
2069 *
2070 * LOCKING:
2071 * PCI/etc. bus probe sem.
2072 *
2073 * RETURNS:
2074 * 0 on success, negative errno otherwise
2075 */
2076 int ata_set_mode(struct ata_port *ap, struct ata_device **r_failed_dev)
2077 {
2078 struct ata_device *dev;
2079 int i, rc = 0, used_dma = 0, found = 0;
2080
2081 /* has private set_mode? */
2082 if (ap->ops->set_mode) {
2083 /* FIXME: make ->set_mode handle no device case and
2084 * return error code and failing device on failure.
2085 */
2086 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2087 if (ata_dev_enabled(&ap->device[i])) {
2088 ap->ops->set_mode(ap);
2089 break;
2090 }
2091 }
2092 return 0;
2093 }
2094
2095 /* step 1: calculate xfer_mask */
2096 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2097 unsigned int pio_mask, dma_mask;
2098
2099 dev = &ap->device[i];
2100
2101 if (!ata_dev_enabled(dev))
2102 continue;
2103
2104 ata_dev_xfermask(dev);
2105
2106 pio_mask = ata_pack_xfermask(dev->pio_mask, 0, 0);
2107 dma_mask = ata_pack_xfermask(0, dev->mwdma_mask, dev->udma_mask);
2108 dev->pio_mode = ata_xfer_mask2mode(pio_mask);
2109 dev->dma_mode = ata_xfer_mask2mode(dma_mask);
2110
2111 found = 1;
2112 if (dev->dma_mode)
2113 used_dma = 1;
2114 }
2115 if (!found)
2116 goto out;
2117
2118 /* step 2: always set host PIO timings */
2119 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2120 dev = &ap->device[i];
2121 if (!ata_dev_enabled(dev))
2122 continue;
2123
2124 if (!dev->pio_mode) {
2125 ata_dev_printk(dev, KERN_WARNING, "no PIO support\n");
2126 rc = -EINVAL;
2127 goto out;
2128 }
2129
2130 dev->xfer_mode = dev->pio_mode;
2131 dev->xfer_shift = ATA_SHIFT_PIO;
2132 if (ap->ops->set_piomode)
2133 ap->ops->set_piomode(ap, dev);
2134 }
2135
2136 /* step 3: set host DMA timings */
2137 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2138 dev = &ap->device[i];
2139
2140 if (!ata_dev_enabled(dev) || !dev->dma_mode)
2141 continue;
2142
2143 dev->xfer_mode = dev->dma_mode;
2144 dev->xfer_shift = ata_xfer_mode2shift(dev->dma_mode);
2145 if (ap->ops->set_dmamode)
2146 ap->ops->set_dmamode(ap, dev);
2147 }
2148
2149 /* step 4: update devices' xfer mode */
2150 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2151 dev = &ap->device[i];
2152
2153 if (!ata_dev_enabled(dev))
2154 continue;
2155
2156 rc = ata_dev_set_mode(dev);
2157 if (rc)
2158 goto out;
2159 }
2160
2161 /* Record simplex status. If we selected DMA then the other
2162 * host channels are not permitted to do so.
2163 */
2164 if (used_dma && (ap->host_set->flags & ATA_HOST_SIMPLEX))
2165 ap->host_set->simplex_claimed = 1;
2166
2167 /* step5: chip specific finalisation */
2168 if (ap->ops->post_set_mode)
2169 ap->ops->post_set_mode(ap);
2170
2171 out:
2172 if (rc)
2173 *r_failed_dev = dev;
2174 return rc;
2175 }
2176
2177 /**
2178 * ata_tf_to_host - issue ATA taskfile to host controller
2179 * @ap: port to which command is being issued
2180 * @tf: ATA taskfile register set
2181 *
2182 * Issues ATA taskfile register set to ATA host controller,
2183 * with proper synchronization with interrupt handler and
2184 * other threads.
2185 *
2186 * LOCKING:
2187 * spin_lock_irqsave(host_set lock)
2188 */
2189
2190 static inline void ata_tf_to_host(struct ata_port *ap,
2191 const struct ata_taskfile *tf)
2192 {
2193 ap->ops->tf_load(ap, tf);
2194 ap->ops->exec_command(ap, tf);
2195 }
2196
2197 /**
2198 * ata_busy_sleep - sleep until BSY clears, or timeout
2199 * @ap: port containing status register to be polled
2200 * @tmout_pat: impatience timeout
2201 * @tmout: overall timeout
2202 *
2203 * Sleep until ATA Status register bit BSY clears,
2204 * or a timeout occurs.
2205 *
2206 * LOCKING: None.
2207 */
2208
2209 unsigned int ata_busy_sleep (struct ata_port *ap,
2210 unsigned long tmout_pat, unsigned long tmout)
2211 {
2212 unsigned long timer_start, timeout;
2213 u8 status;
2214
2215 status = ata_busy_wait(ap, ATA_BUSY, 300);
2216 timer_start = jiffies;
2217 timeout = timer_start + tmout_pat;
2218 while ((status & ATA_BUSY) && (time_before(jiffies, timeout))) {
2219 msleep(50);
2220 status = ata_busy_wait(ap, ATA_BUSY, 3);
2221 }
2222
2223 if (status & ATA_BUSY)
2224 ata_port_printk(ap, KERN_WARNING,
2225 "port is slow to respond, please be patient\n");
2226
2227 timeout = timer_start + tmout;
2228 while ((status & ATA_BUSY) && (time_before(jiffies, timeout))) {
2229 msleep(50);
2230 status = ata_chk_status(ap);
2231 }
2232
2233 if (status & ATA_BUSY) {
2234 ata_port_printk(ap, KERN_ERR, "port failed to respond "
2235 "(%lu secs)\n", tmout / HZ);
2236 return 1;
2237 }
2238
2239 return 0;
2240 }
2241
2242 static void ata_bus_post_reset(struct ata_port *ap, unsigned int devmask)
2243 {
2244 struct ata_ioports *ioaddr = &ap->ioaddr;
2245 unsigned int dev0 = devmask & (1 << 0);
2246 unsigned int dev1 = devmask & (1 << 1);
2247 unsigned long timeout;
2248
2249 /* if device 0 was found in ata_devchk, wait for its
2250 * BSY bit to clear
2251 */
2252 if (dev0)
2253 ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT);
2254
2255 /* if device 1 was found in ata_devchk, wait for
2256 * register access, then wait for BSY to clear
2257 */
2258 timeout = jiffies + ATA_TMOUT_BOOT;
2259 while (dev1) {
2260 u8 nsect, lbal;
2261
2262 ap->ops->dev_select(ap, 1);
2263 if (ap->flags & ATA_FLAG_MMIO) {
2264 nsect = readb((void __iomem *) ioaddr->nsect_addr);
2265 lbal = readb((void __iomem *) ioaddr->lbal_addr);
2266 } else {
2267 nsect = inb(ioaddr->nsect_addr);
2268 lbal = inb(ioaddr->lbal_addr);
2269 }
2270 if ((nsect == 1) && (lbal == 1))
2271 break;
2272 if (time_after(jiffies, timeout)) {
2273 dev1 = 0;
2274 break;
2275 }
2276 msleep(50); /* give drive a breather */
2277 }
2278 if (dev1)
2279 ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT);
2280
2281 /* is all this really necessary? */
2282 ap->ops->dev_select(ap, 0);
2283 if (dev1)
2284 ap->ops->dev_select(ap, 1);
2285 if (dev0)
2286 ap->ops->dev_select(ap, 0);
2287 }
2288
2289 static unsigned int ata_bus_softreset(struct ata_port *ap,
2290 unsigned int devmask)
2291 {
2292 struct ata_ioports *ioaddr = &ap->ioaddr;
2293
2294 DPRINTK("ata%u: bus reset via SRST\n", ap->id);
2295
2296 /* software reset. causes dev0 to be selected */
2297 if (ap->flags & ATA_FLAG_MMIO) {
2298 writeb(ap->ctl, (void __iomem *) ioaddr->ctl_addr);
2299 udelay(20); /* FIXME: flush */
2300 writeb(ap->ctl | ATA_SRST, (void __iomem *) ioaddr->ctl_addr);
2301 udelay(20); /* FIXME: flush */
2302 writeb(ap->ctl, (void __iomem *) ioaddr->ctl_addr);
2303 } else {
2304 outb(ap->ctl, ioaddr->ctl_addr);
2305 udelay(10);
2306 outb(ap->ctl | ATA_SRST, ioaddr->ctl_addr);
2307 udelay(10);
2308 outb(ap->ctl, ioaddr->ctl_addr);
2309 }
2310
2311 /* spec mandates ">= 2ms" before checking status.
2312 * We wait 150ms, because that was the magic delay used for
2313 * ATAPI devices in Hale Landis's ATADRVR, for the period of time
2314 * between when the ATA command register is written, and then
2315 * status is checked. Because waiting for "a while" before
2316 * checking status is fine, post SRST, we perform this magic
2317 * delay here as well.
2318 *
2319 * Old drivers/ide uses the 2mS rule and then waits for ready
2320 */
2321 msleep(150);
2322
2323 /* Before we perform post reset processing we want to see if
2324 * the bus shows 0xFF because the odd clown forgets the D7
2325 * pulldown resistor.
2326 */
2327 if (ata_check_status(ap) == 0xFF) {
2328 ata_port_printk(ap, KERN_ERR, "SRST failed (status 0xFF)\n");
2329 return AC_ERR_OTHER;
2330 }
2331
2332 ata_bus_post_reset(ap, devmask);
2333
2334 return 0;
2335 }
2336
2337 /**
2338 * ata_bus_reset - reset host port and associated ATA channel
2339 * @ap: port to reset
2340 *
2341 * This is typically the first time we actually start issuing
2342 * commands to the ATA channel. We wait for BSY to clear, then
2343 * issue EXECUTE DEVICE DIAGNOSTIC command, polling for its
2344 * result. Determine what devices, if any, are on the channel
2345 * by looking at the device 0/1 error register. Look at the signature
2346 * stored in each device's taskfile registers, to determine if
2347 * the device is ATA or ATAPI.
2348 *
2349 * LOCKING:
2350 * PCI/etc. bus probe sem.
2351 * Obtains host_set lock.
2352 *
2353 * SIDE EFFECTS:
2354 * Sets ATA_FLAG_DISABLED if bus reset fails.
2355 */
2356
2357 void ata_bus_reset(struct ata_port *ap)
2358 {
2359 struct ata_ioports *ioaddr = &ap->ioaddr;
2360 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
2361 u8 err;
2362 unsigned int dev0, dev1 = 0, devmask = 0;
2363
2364 DPRINTK("ENTER, host %u, port %u\n", ap->id, ap->port_no);
2365
2366 /* determine if device 0/1 are present */
2367 if (ap->flags & ATA_FLAG_SATA_RESET)
2368 dev0 = 1;
2369 else {
2370 dev0 = ata_devchk(ap, 0);
2371 if (slave_possible)
2372 dev1 = ata_devchk(ap, 1);
2373 }
2374
2375 if (dev0)
2376 devmask |= (1 << 0);
2377 if (dev1)
2378 devmask |= (1 << 1);
2379
2380 /* select device 0 again */
2381 ap->ops->dev_select(ap, 0);
2382
2383 /* issue bus reset */
2384 if (ap->flags & ATA_FLAG_SRST)
2385 if (ata_bus_softreset(ap, devmask))
2386 goto err_out;
2387
2388 /*
2389 * determine by signature whether we have ATA or ATAPI devices
2390 */
2391 ap->device[0].class = ata_dev_try_classify(ap, 0, &err);
2392 if ((slave_possible) && (err != 0x81))
2393 ap->device[1].class = ata_dev_try_classify(ap, 1, &err);
2394
2395 /* re-enable interrupts */
2396 if (ap->ioaddr.ctl_addr) /* FIXME: hack. create a hook instead */
2397 ata_irq_on(ap);
2398
2399 /* is double-select really necessary? */
2400 if (ap->device[1].class != ATA_DEV_NONE)
2401 ap->ops->dev_select(ap, 1);
2402 if (ap->device[0].class != ATA_DEV_NONE)
2403 ap->ops->dev_select(ap, 0);
2404
2405 /* if no devices were detected, disable this port */
2406 if ((ap->device[0].class == ATA_DEV_NONE) &&
2407 (ap->device[1].class == ATA_DEV_NONE))
2408 goto err_out;
2409
2410 if (ap->flags & (ATA_FLAG_SATA_RESET | ATA_FLAG_SRST)) {
2411 /* set up device control for ATA_FLAG_SATA_RESET */
2412 if (ap->flags & ATA_FLAG_MMIO)
2413 writeb(ap->ctl, (void __iomem *) ioaddr->ctl_addr);
2414 else
2415 outb(ap->ctl, ioaddr->ctl_addr);
2416 }
2417
2418 DPRINTK("EXIT\n");
2419 return;
2420
2421 err_out:
2422 ata_port_printk(ap, KERN_ERR, "disabling port\n");
2423 ap->ops->port_disable(ap);
2424
2425 DPRINTK("EXIT\n");
2426 }
2427
2428 static int sata_phy_resume(struct ata_port *ap)
2429 {
2430 unsigned long timeout = jiffies + (HZ * 5);
2431 u32 scontrol, sstatus;
2432 int rc;
2433
2434 if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
2435 return rc;
2436
2437 scontrol = (scontrol & 0x0f0) | 0x300;
2438
2439 if ((rc = sata_scr_write(ap, SCR_CONTROL, scontrol)))
2440 return rc;
2441
2442 /* Wait for phy to become ready, if necessary. */
2443 do {
2444 msleep(200);
2445 if ((rc = sata_scr_read(ap, SCR_STATUS, &sstatus)))
2446 return rc;
2447 if ((sstatus & 0xf) != 1)
2448 return 0;
2449 } while (time_before(jiffies, timeout));
2450
2451 return -EBUSY;
2452 }
2453
2454 /**
2455 * ata_std_probeinit - initialize probing
2456 * @ap: port to be probed
2457 *
2458 * @ap is about to be probed. Initialize it. This function is
2459 * to be used as standard callback for ata_drive_probe_reset().
2460 *
2461 * NOTE!!! Do not use this function as probeinit if a low level
2462 * driver implements only hardreset. Just pass NULL as probeinit
2463 * in that case. Using this function is probably okay but doing
2464 * so makes reset sequence different from the original
2465 * ->phy_reset implementation and Jeff nervous. :-P
2466 */
2467 void ata_std_probeinit(struct ata_port *ap)
2468 {
2469 u32 scontrol;
2470
2471 /* resume link */
2472 sata_phy_resume(ap);
2473
2474 /* init sata_spd_limit to the current value */
2475 if (sata_scr_read(ap, SCR_CONTROL, &scontrol) == 0) {
2476 int spd = (scontrol >> 4) & 0xf;
2477 ap->sata_spd_limit &= (1 << spd) - 1;
2478 }
2479
2480 /* wait for device */
2481 if (ata_port_online(ap))
2482 ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT);
2483 }
2484
2485 /**
2486 * ata_std_softreset - reset host port via ATA SRST
2487 * @ap: port to reset
2488 * @classes: resulting classes of attached devices
2489 *
2490 * Reset host port using ATA SRST. This function is to be used
2491 * as standard callback for ata_drive_*_reset() functions.
2492 *
2493 * LOCKING:
2494 * Kernel thread context (may sleep)
2495 *
2496 * RETURNS:
2497 * 0 on success, -errno otherwise.
2498 */
2499 int ata_std_softreset(struct ata_port *ap, unsigned int *classes)
2500 {
2501 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
2502 unsigned int devmask = 0, err_mask;
2503 u8 err;
2504
2505 DPRINTK("ENTER\n");
2506
2507 if (ata_port_offline(ap)) {
2508 classes[0] = ATA_DEV_NONE;
2509 goto out;
2510 }
2511
2512 /* determine if device 0/1 are present */
2513 if (ata_devchk(ap, 0))
2514 devmask |= (1 << 0);
2515 if (slave_possible && ata_devchk(ap, 1))
2516 devmask |= (1 << 1);
2517
2518 /* select device 0 again */
2519 ap->ops->dev_select(ap, 0);
2520
2521 /* issue bus reset */
2522 DPRINTK("about to softreset, devmask=%x\n", devmask);
2523 err_mask = ata_bus_softreset(ap, devmask);
2524 if (err_mask) {
2525 ata_port_printk(ap, KERN_ERR, "SRST failed (err_mask=0x%x)\n",
2526 err_mask);
2527 return -EIO;
2528 }
2529
2530 /* determine by signature whether we have ATA or ATAPI devices */
2531 classes[0] = ata_dev_try_classify(ap, 0, &err);
2532 if (slave_possible && err != 0x81)
2533 classes[1] = ata_dev_try_classify(ap, 1, &err);
2534
2535 out:
2536 DPRINTK("EXIT, classes[0]=%u [1]=%u\n", classes[0], classes[1]);
2537 return 0;
2538 }
2539
2540 /**
2541 * sata_std_hardreset - reset host port via SATA phy reset
2542 * @ap: port to reset
2543 * @class: resulting class of attached device
2544 *
2545 * SATA phy-reset host port using DET bits of SControl register.
2546 * This function is to be used as standard callback for
2547 * ata_drive_*_reset().
2548 *
2549 * LOCKING:
2550 * Kernel thread context (may sleep)
2551 *
2552 * RETURNS:
2553 * 0 on success, -errno otherwise.
2554 */
2555 int sata_std_hardreset(struct ata_port *ap, unsigned int *class)
2556 {
2557 u32 scontrol;
2558 int rc;
2559
2560 DPRINTK("ENTER\n");
2561
2562 if (sata_set_spd_needed(ap)) {
2563 /* SATA spec says nothing about how to reconfigure
2564 * spd. To be on the safe side, turn off phy during
2565 * reconfiguration. This works for at least ICH7 AHCI
2566 * and Sil3124.
2567 */
2568 if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
2569 return rc;
2570
2571 scontrol = (scontrol & 0x0f0) | 0x302;
2572
2573 if ((rc = sata_scr_write(ap, SCR_CONTROL, scontrol)))
2574 return rc;
2575
2576 sata_set_spd(ap);
2577 }
2578
2579 /* issue phy wake/reset */
2580 if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
2581 return rc;
2582
2583 scontrol = (scontrol & 0x0f0) | 0x301;
2584
2585 if ((rc = sata_scr_write_flush(ap, SCR_CONTROL, scontrol)))
2586 return rc;
2587
2588 /* Couldn't find anything in SATA I/II specs, but AHCI-1.1
2589 * 10.4.2 says at least 1 ms.
2590 */
2591 msleep(1);
2592
2593 /* bring phy back */
2594 sata_phy_resume(ap);
2595
2596 /* TODO: phy layer with polling, timeouts, etc. */
2597 if (ata_port_offline(ap)) {
2598 *class = ATA_DEV_NONE;
2599 DPRINTK("EXIT, link offline\n");
2600 return 0;
2601 }
2602
2603 if (ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT)) {
2604 ata_port_printk(ap, KERN_ERR,
2605 "COMRESET failed (device not ready)\n");
2606 return -EIO;
2607 }
2608
2609 ap->ops->dev_select(ap, 0); /* probably unnecessary */
2610
2611 *class = ata_dev_try_classify(ap, 0, NULL);
2612
2613 DPRINTK("EXIT, class=%u\n", *class);
2614 return 0;
2615 }
2616
2617 /**
2618 * ata_std_postreset - standard postreset callback
2619 * @ap: the target ata_port
2620 * @classes: classes of attached devices
2621 *
2622 * This function is invoked after a successful reset. Note that
2623 * the device might have been reset more than once using
2624 * different reset methods before postreset is invoked.
2625 *
2626 * This function is to be used as standard callback for
2627 * ata_drive_*_reset().
2628 *
2629 * LOCKING:
2630 * Kernel thread context (may sleep)
2631 */
2632 void ata_std_postreset(struct ata_port *ap, unsigned int *classes)
2633 {
2634 u32 serror;
2635
2636 DPRINTK("ENTER\n");
2637
2638 /* print link status */
2639 sata_print_link_status(ap);
2640
2641 /* clear SError */
2642 if (sata_scr_read(ap, SCR_ERROR, &serror) == 0)
2643 sata_scr_write(ap, SCR_ERROR, serror);
2644
2645 /* re-enable interrupts */
2646 if (!ap->ops->error_handler) {
2647 /* FIXME: hack. create a hook instead */
2648 if (ap->ioaddr.ctl_addr)
2649 ata_irq_on(ap);
2650 }
2651
2652 /* is double-select really necessary? */
2653 if (classes[0] != ATA_DEV_NONE)
2654 ap->ops->dev_select(ap, 1);
2655 if (classes[1] != ATA_DEV_NONE)
2656 ap->ops->dev_select(ap, 0);
2657
2658 /* bail out if no device is present */
2659 if (classes[0] == ATA_DEV_NONE && classes[1] == ATA_DEV_NONE) {
2660 DPRINTK("EXIT, no device\n");
2661 return;
2662 }
2663
2664 /* set up device control */
2665 if (ap->ioaddr.ctl_addr) {
2666 if (ap->flags & ATA_FLAG_MMIO)
2667 writeb(ap->ctl, (void __iomem *) ap->ioaddr.ctl_addr);
2668 else
2669 outb(ap->ctl, ap->ioaddr.ctl_addr);
2670 }
2671
2672 DPRINTK("EXIT\n");
2673 }
2674
2675 /**
2676 * ata_std_probe_reset - standard probe reset method
2677 * @ap: prot to perform probe-reset
2678 * @classes: resulting classes of attached devices
2679 *
2680 * The stock off-the-shelf ->probe_reset method.
2681 *
2682 * LOCKING:
2683 * Kernel thread context (may sleep)
2684 *
2685 * RETURNS:
2686 * 0 on success, -errno otherwise.
2687 */
2688 int ata_std_probe_reset(struct ata_port *ap, unsigned int *classes)
2689 {
2690 ata_reset_fn_t hardreset;
2691
2692 hardreset = NULL;
2693 if (sata_scr_valid(ap))
2694 hardreset = sata_std_hardreset;
2695
2696 return ata_drive_probe_reset(ap, ata_std_probeinit,
2697 ata_std_softreset, hardreset,
2698 ata_std_postreset, classes);
2699 }
2700
2701 int ata_do_reset(struct ata_port *ap, ata_reset_fn_t reset,
2702 unsigned int *classes)
2703 {
2704 int i, rc;
2705
2706 for (i = 0; i < ATA_MAX_DEVICES; i++)
2707 classes[i] = ATA_DEV_UNKNOWN;
2708
2709 rc = reset(ap, classes);
2710 if (rc)
2711 return rc;
2712
2713 /* If any class isn't ATA_DEV_UNKNOWN, consider classification
2714 * is complete and convert all ATA_DEV_UNKNOWN to
2715 * ATA_DEV_NONE.
2716 */
2717 for (i = 0; i < ATA_MAX_DEVICES; i++)
2718 if (classes[i] != ATA_DEV_UNKNOWN)
2719 break;
2720
2721 if (i < ATA_MAX_DEVICES)
2722 for (i = 0; i < ATA_MAX_DEVICES; i++)
2723 if (classes[i] == ATA_DEV_UNKNOWN)
2724 classes[i] = ATA_DEV_NONE;
2725
2726 return 0;
2727 }
2728
2729 /**
2730 * ata_drive_probe_reset - Perform probe reset with given methods
2731 * @ap: port to reset
2732 * @probeinit: probeinit method (can be NULL)
2733 * @softreset: softreset method (can be NULL)
2734 * @hardreset: hardreset method (can be NULL)
2735 * @postreset: postreset method (can be NULL)
2736 * @classes: resulting classes of attached devices
2737 *
2738 * Reset the specified port and classify attached devices using
2739 * given methods. This function prefers softreset but tries all
2740 * possible reset sequences to reset and classify devices. This
2741 * function is intended to be used for constructing ->probe_reset
2742 * callback by low level drivers.
2743 *
2744 * Reset methods should follow the following rules.
2745 *
2746 * - Return 0 on sucess, -errno on failure.
2747 * - If classification is supported, fill classes[] with
2748 * recognized class codes.
2749 * - If classification is not supported, leave classes[] alone.
2750 *
2751 * LOCKING:
2752 * Kernel thread context (may sleep)
2753 *
2754 * RETURNS:
2755 * 0 on success, -EINVAL if no reset method is avaliable, -ENODEV
2756 * if classification fails, and any error code from reset
2757 * methods.
2758 */
2759 int ata_drive_probe_reset(struct ata_port *ap, ata_probeinit_fn_t probeinit,
2760 ata_reset_fn_t softreset, ata_reset_fn_t hardreset,
2761 ata_postreset_fn_t postreset, unsigned int *classes)
2762 {
2763 int rc = -EINVAL;
2764
2765 ata_eh_freeze_port(ap);
2766
2767 if (probeinit)
2768 probeinit(ap);
2769
2770 if (softreset && !sata_set_spd_needed(ap)) {
2771 rc = ata_do_reset(ap, softreset, classes);
2772 if (rc == 0 && classes[0] != ATA_DEV_UNKNOWN)
2773 goto done;
2774 ata_port_printk(ap, KERN_INFO, "softreset failed, "
2775 "will try hardreset in 5 secs\n");
2776 ssleep(5);
2777 }
2778
2779 if (!hardreset)
2780 goto done;
2781
2782 while (1) {
2783 rc = ata_do_reset(ap, hardreset, classes);
2784 if (rc == 0) {
2785 if (classes[0] != ATA_DEV_UNKNOWN)
2786 goto done;
2787 break;
2788 }
2789
2790 if (sata_down_spd_limit(ap))
2791 goto done;
2792
2793 ata_port_printk(ap, KERN_INFO, "hardreset failed, "
2794 "will retry in 5 secs\n");
2795 ssleep(5);
2796 }
2797
2798 if (softreset) {
2799 ata_port_printk(ap, KERN_INFO,
2800 "hardreset succeeded without classification, "
2801 "will retry softreset in 5 secs\n");
2802 ssleep(5);
2803
2804 rc = ata_do_reset(ap, softreset, classes);
2805 }
2806
2807 done:
2808 if (rc == 0) {
2809 if (postreset)
2810 postreset(ap, classes);
2811
2812 ata_eh_thaw_port(ap);
2813
2814 if (classes[0] == ATA_DEV_UNKNOWN)
2815 rc = -ENODEV;
2816 }
2817 return rc;
2818 }
2819
2820 /**
2821 * ata_dev_same_device - Determine whether new ID matches configured device
2822 * @dev: device to compare against
2823 * @new_class: class of the new device
2824 * @new_id: IDENTIFY page of the new device
2825 *
2826 * Compare @new_class and @new_id against @dev and determine
2827 * whether @dev is the device indicated by @new_class and
2828 * @new_id.
2829 *
2830 * LOCKING:
2831 * None.
2832 *
2833 * RETURNS:
2834 * 1 if @dev matches @new_class and @new_id, 0 otherwise.
2835 */
2836 static int ata_dev_same_device(struct ata_device *dev, unsigned int new_class,
2837 const u16 *new_id)
2838 {
2839 const u16 *old_id = dev->id;
2840 unsigned char model[2][41], serial[2][21];
2841 u64 new_n_sectors;
2842
2843 if (dev->class != new_class) {
2844 ata_dev_printk(dev, KERN_INFO, "class mismatch %d != %d\n",
2845 dev->class, new_class);
2846 return 0;
2847 }
2848
2849 ata_id_c_string(old_id, model[0], ATA_ID_PROD_OFS, sizeof(model[0]));
2850 ata_id_c_string(new_id, model[1], ATA_ID_PROD_OFS, sizeof(model[1]));
2851 ata_id_c_string(old_id, serial[0], ATA_ID_SERNO_OFS, sizeof(serial[0]));
2852 ata_id_c_string(new_id, serial[1], ATA_ID_SERNO_OFS, sizeof(serial[1]));
2853 new_n_sectors = ata_id_n_sectors(new_id);
2854
2855 if (strcmp(model[0], model[1])) {
2856 ata_dev_printk(dev, KERN_INFO, "model number mismatch "
2857 "'%s' != '%s'\n", model[0], model[1]);
2858 return 0;
2859 }
2860
2861 if (strcmp(serial[0], serial[1])) {
2862 ata_dev_printk(dev, KERN_INFO, "serial number mismatch "
2863 "'%s' != '%s'\n", serial[0], serial[1]);
2864 return 0;
2865 }
2866
2867 if (dev->class == ATA_DEV_ATA && dev->n_sectors != new_n_sectors) {
2868 ata_dev_printk(dev, KERN_INFO, "n_sectors mismatch "
2869 "%llu != %llu\n",
2870 (unsigned long long)dev->n_sectors,
2871 (unsigned long long)new_n_sectors);
2872 return 0;
2873 }
2874
2875 return 1;
2876 }
2877
2878 /**
2879 * ata_dev_revalidate - Revalidate ATA device
2880 * @dev: device to revalidate
2881 * @post_reset: is this revalidation after reset?
2882 *
2883 * Re-read IDENTIFY page and make sure @dev is still attached to
2884 * the port.
2885 *
2886 * LOCKING:
2887 * Kernel thread context (may sleep)
2888 *
2889 * RETURNS:
2890 * 0 on success, negative errno otherwise
2891 */
2892 int ata_dev_revalidate(struct ata_device *dev, int post_reset)
2893 {
2894 unsigned int class = dev->class;
2895 u16 *id = (void *)dev->ap->sector_buf;
2896 int rc;
2897
2898 if (!ata_dev_enabled(dev)) {
2899 rc = -ENODEV;
2900 goto fail;
2901 }
2902
2903 /* read ID data */
2904 rc = ata_dev_read_id(dev, &class, post_reset, id);
2905 if (rc)
2906 goto fail;
2907
2908 /* is the device still there? */
2909 if (!ata_dev_same_device(dev, class, id)) {
2910 rc = -ENODEV;
2911 goto fail;
2912 }
2913
2914 memcpy(dev->id, id, sizeof(id[0]) * ATA_ID_WORDS);
2915
2916 /* configure device according to the new ID */
2917 rc = ata_dev_configure(dev, 0);
2918 if (rc == 0)
2919 return 0;
2920
2921 fail:
2922 ata_dev_printk(dev, KERN_ERR, "revalidation failed (errno=%d)\n", rc);
2923 return rc;
2924 }
2925
2926 static const char * const ata_dma_blacklist [] = {
2927 "WDC AC11000H", NULL,
2928 "WDC AC22100H", NULL,
2929 "WDC AC32500H", NULL,
2930 "WDC AC33100H", NULL,
2931 "WDC AC31600H", NULL,
2932 "WDC AC32100H", "24.09P07",
2933 "WDC AC23200L", "21.10N21",
2934 "Compaq CRD-8241B", NULL,
2935 "CRD-8400B", NULL,
2936 "CRD-8480B", NULL,
2937 "CRD-8482B", NULL,
2938 "CRD-84", NULL,
2939 "SanDisk SDP3B", NULL,
2940 "SanDisk SDP3B-64", NULL,
2941 "SANYO CD-ROM CRD", NULL,
2942 "HITACHI CDR-8", NULL,
2943 "HITACHI CDR-8335", NULL,
2944 "HITACHI CDR-8435", NULL,
2945 "Toshiba CD-ROM XM-6202B", NULL,
2946 "TOSHIBA CD-ROM XM-1702BC", NULL,
2947 "CD-532E-A", NULL,
2948 "E-IDE CD-ROM CR-840", NULL,
2949 "CD-ROM Drive/F5A", NULL,
2950 "WPI CDD-820", NULL,
2951 "SAMSUNG CD-ROM SC-148C", NULL,
2952 "SAMSUNG CD-ROM SC", NULL,
2953 "SanDisk SDP3B-64", NULL,
2954 "ATAPI CD-ROM DRIVE 40X MAXIMUM",NULL,
2955 "_NEC DV5800A", NULL,
2956 "SAMSUNG CD-ROM SN-124", "N001"
2957 };
2958
2959 static int ata_strim(char *s, size_t len)
2960 {
2961 len = strnlen(s, len);
2962
2963 /* ATAPI specifies that empty space is blank-filled; remove blanks */
2964 while ((len > 0) && (s[len - 1] == ' ')) {
2965 len--;
2966 s[len] = 0;
2967 }
2968 return len;
2969 }
2970
2971 static int ata_dma_blacklisted(const struct ata_device *dev)
2972 {
2973 unsigned char model_num[40];
2974 unsigned char model_rev[16];
2975 unsigned int nlen, rlen;
2976 int i;
2977
2978 ata_id_string(dev->id, model_num, ATA_ID_PROD_OFS,
2979 sizeof(model_num));
2980 ata_id_string(dev->id, model_rev, ATA_ID_FW_REV_OFS,
2981 sizeof(model_rev));
2982 nlen = ata_strim(model_num, sizeof(model_num));
2983 rlen = ata_strim(model_rev, sizeof(model_rev));
2984
2985 for (i = 0; i < ARRAY_SIZE(ata_dma_blacklist); i += 2) {
2986 if (!strncmp(ata_dma_blacklist[i], model_num, nlen)) {
2987 if (ata_dma_blacklist[i+1] == NULL)
2988 return 1;
2989 if (!strncmp(ata_dma_blacklist[i], model_rev, rlen))
2990 return 1;
2991 }
2992 }
2993 return 0;
2994 }
2995
2996 /**
2997 * ata_dev_xfermask - Compute supported xfermask of the given device
2998 * @dev: Device to compute xfermask for
2999 *
3000 * Compute supported xfermask of @dev and store it in
3001 * dev->*_mask. This function is responsible for applying all
3002 * known limits including host controller limits, device
3003 * blacklist, etc...
3004 *
3005 * FIXME: The current implementation limits all transfer modes to
3006 * the fastest of the lowested device on the port. This is not
3007 * required on most controllers.
3008 *
3009 * LOCKING:
3010 * None.
3011 */
3012 static void ata_dev_xfermask(struct ata_device *dev)
3013 {
3014 struct ata_port *ap = dev->ap;
3015 struct ata_host_set *hs = ap->host_set;
3016 unsigned long xfer_mask;
3017 int i;
3018
3019 xfer_mask = ata_pack_xfermask(ap->pio_mask,
3020 ap->mwdma_mask, ap->udma_mask);
3021
3022 /* Apply cable rule here. Don't apply it early because when
3023 * we handle hot plug the cable type can itself change.
3024 */
3025 if (ap->cbl == ATA_CBL_PATA40)
3026 xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA);
3027
3028 /* FIXME: Use port-wide xfermask for now */
3029 for (i = 0; i < ATA_MAX_DEVICES; i++) {
3030 struct ata_device *d = &ap->device[i];
3031
3032 if (ata_dev_absent(d))
3033 continue;
3034
3035 if (ata_dev_disabled(d)) {
3036 /* to avoid violating device selection timing */
3037 xfer_mask &= ata_pack_xfermask(d->pio_mask,
3038 UINT_MAX, UINT_MAX);
3039 continue;
3040 }
3041
3042 xfer_mask &= ata_pack_xfermask(d->pio_mask,
3043 d->mwdma_mask, d->udma_mask);
3044 xfer_mask &= ata_id_xfermask(d->id);
3045 if (ata_dma_blacklisted(d))
3046 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
3047 }
3048
3049 if (ata_dma_blacklisted(dev))
3050 ata_dev_printk(dev, KERN_WARNING,
3051 "device is on DMA blacklist, disabling DMA\n");
3052
3053 if (hs->flags & ATA_HOST_SIMPLEX) {
3054 if (hs->simplex_claimed)
3055 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
3056 }
3057
3058 if (ap->ops->mode_filter)
3059 xfer_mask = ap->ops->mode_filter(ap, dev, xfer_mask);
3060
3061 ata_unpack_xfermask(xfer_mask, &dev->pio_mask,
3062 &dev->mwdma_mask, &dev->udma_mask);
3063 }
3064
3065 /**
3066 * ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command
3067 * @dev: Device to which command will be sent
3068 *
3069 * Issue SET FEATURES - XFER MODE command to device @dev
3070 * on port @ap.
3071 *
3072 * LOCKING:
3073 * PCI/etc. bus probe sem.
3074 *
3075 * RETURNS:
3076 * 0 on success, AC_ERR_* mask otherwise.
3077 */
3078
3079 static unsigned int ata_dev_set_xfermode(struct ata_device *dev)
3080 {
3081 struct ata_taskfile tf;
3082 unsigned int err_mask;
3083
3084 /* set up set-features taskfile */
3085 DPRINTK("set features - xfer mode\n");
3086
3087 ata_tf_init(dev, &tf);
3088 tf.command = ATA_CMD_SET_FEATURES;
3089 tf.feature = SETFEATURES_XFER;
3090 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
3091 tf.protocol = ATA_PROT_NODATA;
3092 tf.nsect = dev->xfer_mode;
3093
3094 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
3095
3096 DPRINTK("EXIT, err_mask=%x\n", err_mask);
3097 return err_mask;
3098 }
3099
3100 /**
3101 * ata_dev_init_params - Issue INIT DEV PARAMS command
3102 * @dev: Device to which command will be sent
3103 * @heads: Number of heads (taskfile parameter)
3104 * @sectors: Number of sectors (taskfile parameter)
3105 *
3106 * LOCKING:
3107 * Kernel thread context (may sleep)
3108 *
3109 * RETURNS:
3110 * 0 on success, AC_ERR_* mask otherwise.
3111 */
3112 static unsigned int ata_dev_init_params(struct ata_device *dev,
3113 u16 heads, u16 sectors)
3114 {
3115 struct ata_taskfile tf;
3116 unsigned int err_mask;
3117
3118 /* Number of sectors per track 1-255. Number of heads 1-16 */
3119 if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16)
3120 return AC_ERR_INVALID;
3121
3122 /* set up init dev params taskfile */
3123 DPRINTK("init dev params \n");
3124
3125 ata_tf_init(dev, &tf);
3126 tf.command = ATA_CMD_INIT_DEV_PARAMS;
3127 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
3128 tf.protocol = ATA_PROT_NODATA;
3129 tf.nsect = sectors;
3130 tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */
3131
3132 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
3133
3134 DPRINTK("EXIT, err_mask=%x\n", err_mask);
3135 return err_mask;
3136 }
3137
3138 /**
3139 * ata_sg_clean - Unmap DMA memory associated with command
3140 * @qc: Command containing DMA memory to be released
3141 *
3142 * Unmap all mapped DMA memory associated with this command.
3143 *
3144 * LOCKING:
3145 * spin_lock_irqsave(host_set lock)
3146 */
3147
3148 static void ata_sg_clean(struct ata_queued_cmd *qc)
3149 {
3150 struct ata_port *ap = qc->ap;
3151 struct scatterlist *sg = qc->__sg;
3152 int dir = qc->dma_dir;
3153 void *pad_buf = NULL;
3154
3155 WARN_ON(!(qc->flags & ATA_QCFLAG_DMAMAP));
3156 WARN_ON(sg == NULL);
3157
3158 if (qc->flags & ATA_QCFLAG_SINGLE)
3159 WARN_ON(qc->n_elem > 1);
3160
3161 VPRINTK("unmapping %u sg elements\n", qc->n_elem);
3162
3163 /* if we padded the buffer out to 32-bit bound, and data
3164 * xfer direction is from-device, we must copy from the
3165 * pad buffer back into the supplied buffer
3166 */
3167 if (qc->pad_len && !(qc->tf.flags & ATA_TFLAG_WRITE))
3168 pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
3169
3170 if (qc->flags & ATA_QCFLAG_SG) {
3171 if (qc->n_elem)
3172 dma_unmap_sg(ap->dev, sg, qc->n_elem, dir);
3173 /* restore last sg */
3174 sg[qc->orig_n_elem - 1].length += qc->pad_len;
3175 if (pad_buf) {
3176 struct scatterlist *psg = &qc->pad_sgent;
3177 void *addr = kmap_atomic(psg->page, KM_IRQ0);
3178 memcpy(addr + psg->offset, pad_buf, qc->pad_len);
3179 kunmap_atomic(addr, KM_IRQ0);
3180 }
3181 } else {
3182 if (qc->n_elem)
3183 dma_unmap_single(ap->dev,
3184 sg_dma_address(&sg[0]), sg_dma_len(&sg[0]),
3185 dir);
3186 /* restore sg */
3187 sg->length += qc->pad_len;
3188 if (pad_buf)
3189 memcpy(qc->buf_virt + sg->length - qc->pad_len,
3190 pad_buf, qc->pad_len);
3191 }
3192
3193 qc->flags &= ~ATA_QCFLAG_DMAMAP;
3194 qc->__sg = NULL;
3195 }
3196
3197 /**
3198 * ata_fill_sg - Fill PCI IDE PRD table
3199 * @qc: Metadata associated with taskfile to be transferred
3200 *
3201 * Fill PCI IDE PRD (scatter-gather) table with segments
3202 * associated with the current disk command.
3203 *
3204 * LOCKING:
3205 * spin_lock_irqsave(host_set lock)
3206 *
3207 */
3208 static void ata_fill_sg(struct ata_queued_cmd *qc)
3209 {
3210 struct ata_port *ap = qc->ap;
3211 struct scatterlist *sg;
3212 unsigned int idx;
3213
3214 WARN_ON(qc->__sg == NULL);
3215 WARN_ON(qc->n_elem == 0 && qc->pad_len == 0);
3216
3217 idx = 0;
3218 ata_for_each_sg(sg, qc) {
3219 u32 addr, offset;
3220 u32 sg_len, len;
3221
3222 /* determine if physical DMA addr spans 64K boundary.
3223 * Note h/w doesn't support 64-bit, so we unconditionally
3224 * truncate dma_addr_t to u32.
3225 */
3226 addr = (u32) sg_dma_address(sg);
3227 sg_len = sg_dma_len(sg);
3228
3229 while (sg_len) {
3230 offset = addr & 0xffff;
3231 len = sg_len;
3232 if ((offset + sg_len) > 0x10000)
3233 len = 0x10000 - offset;
3234
3235 ap->prd[idx].addr = cpu_to_le32(addr);
3236 ap->prd[idx].flags_len = cpu_to_le32(len & 0xffff);
3237 VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", idx, addr, len);
3238
3239 idx++;
3240 sg_len -= len;
3241 addr += len;
3242 }
3243 }
3244
3245 if (idx)
3246 ap->prd[idx - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT);
3247 }
3248 /**
3249 * ata_check_atapi_dma - Check whether ATAPI DMA can be supported
3250 * @qc: Metadata associated with taskfile to check
3251 *
3252 * Allow low-level driver to filter ATA PACKET commands, returning
3253 * a status indicating whether or not it is OK to use DMA for the
3254 * supplied PACKET command.
3255 *
3256 * LOCKING:
3257 * spin_lock_irqsave(host_set lock)
3258 *
3259 * RETURNS: 0 when ATAPI DMA can be used
3260 * nonzero otherwise
3261 */
3262 int ata_check_atapi_dma(struct ata_queued_cmd *qc)
3263 {
3264 struct ata_port *ap = qc->ap;
3265 int rc = 0; /* Assume ATAPI DMA is OK by default */
3266
3267 if (ap->ops->check_atapi_dma)
3268 rc = ap->ops->check_atapi_dma(qc);
3269
3270 /* We don't support polling DMA.
3271 * Use PIO if the LLDD handles only interrupts in
3272 * the HSM_ST_LAST state and the ATAPI device
3273 * generates CDB interrupts.
3274 */
3275 if ((ap->flags & ATA_FLAG_PIO_POLLING) &&
3276 (qc->dev->flags & ATA_DFLAG_CDB_INTR))
3277 rc = 1;
3278
3279 return rc;
3280 }
3281 /**
3282 * ata_qc_prep - Prepare taskfile for submission
3283 * @qc: Metadata associated with taskfile to be prepared
3284 *
3285 * Prepare ATA taskfile for submission.
3286 *
3287 * LOCKING:
3288 * spin_lock_irqsave(host_set lock)
3289 */
3290 void ata_qc_prep(struct ata_queued_cmd *qc)
3291 {
3292 if (!(qc->flags & ATA_QCFLAG_DMAMAP))
3293 return;
3294
3295 ata_fill_sg(qc);
3296 }
3297
3298 void ata_noop_qc_prep(struct ata_queued_cmd *qc) { }
3299
3300 /**
3301 * ata_sg_init_one - Associate command with memory buffer
3302 * @qc: Command to be associated
3303 * @buf: Memory buffer
3304 * @buflen: Length of memory buffer, in bytes.
3305 *
3306 * Initialize the data-related elements of queued_cmd @qc
3307 * to point to a single memory buffer, @buf of byte length @buflen.
3308 *
3309 * LOCKING:
3310 * spin_lock_irqsave(host_set lock)
3311 */
3312
3313 void ata_sg_init_one(struct ata_queued_cmd *qc, void *buf, unsigned int buflen)
3314 {
3315 struct scatterlist *sg;
3316
3317 qc->flags |= ATA_QCFLAG_SINGLE;
3318
3319 memset(&qc->sgent, 0, sizeof(qc->sgent));
3320 qc->__sg = &qc->sgent;
3321 qc->n_elem = 1;
3322 qc->orig_n_elem = 1;
3323 qc->buf_virt = buf;
3324
3325 sg = qc->__sg;
3326 sg_init_one(sg, buf, buflen);
3327 }
3328
3329 /**
3330 * ata_sg_init - Associate command with scatter-gather table.
3331 * @qc: Command to be associated
3332 * @sg: Scatter-gather table.
3333 * @n_elem: Number of elements in s/g table.
3334 *
3335 * Initialize the data-related elements of queued_cmd @qc
3336 * to point to a scatter-gather table @sg, containing @n_elem
3337 * elements.
3338 *
3339 * LOCKING:
3340 * spin_lock_irqsave(host_set lock)
3341 */
3342
3343 void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg,
3344 unsigned int n_elem)
3345 {
3346 qc->flags |= ATA_QCFLAG_SG;
3347 qc->__sg = sg;
3348 qc->n_elem = n_elem;
3349 qc->orig_n_elem = n_elem;
3350 }
3351
3352 /**
3353 * ata_sg_setup_one - DMA-map the memory buffer associated with a command.
3354 * @qc: Command with memory buffer to be mapped.
3355 *
3356 * DMA-map the memory buffer associated with queued_cmd @qc.
3357 *
3358 * LOCKING:
3359 * spin_lock_irqsave(host_set lock)
3360 *
3361 * RETURNS:
3362 * Zero on success, negative on error.
3363 */
3364
3365 static int ata_sg_setup_one(struct ata_queued_cmd *qc)
3366 {
3367 struct ata_port *ap = qc->ap;
3368 int dir = qc->dma_dir;
3369 struct scatterlist *sg = qc->__sg;
3370 dma_addr_t dma_address;
3371 int trim_sg = 0;
3372
3373 /* we must lengthen transfers to end on a 32-bit boundary */
3374 qc->pad_len = sg->length & 3;
3375 if (qc->pad_len) {
3376 void *pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
3377 struct scatterlist *psg = &qc->pad_sgent;
3378
3379 WARN_ON(qc->dev->class != ATA_DEV_ATAPI);
3380
3381 memset(pad_buf, 0, ATA_DMA_PAD_SZ);
3382
3383 if (qc->tf.flags & ATA_TFLAG_WRITE)
3384 memcpy(pad_buf, qc->buf_virt + sg->length - qc->pad_len,
3385 qc->pad_len);
3386
3387 sg_dma_address(psg) = ap->pad_dma + (qc->tag * ATA_DMA_PAD_SZ);
3388 sg_dma_len(psg) = ATA_DMA_PAD_SZ;
3389 /* trim sg */
3390 sg->length -= qc->pad_len;
3391 if (sg->length == 0)
3392 trim_sg = 1;
3393
3394 DPRINTK("padding done, sg->length=%u pad_len=%u\n",
3395 sg->length, qc->pad_len);
3396 }
3397
3398 if (trim_sg) {
3399 qc->n_elem--;
3400 goto skip_map;
3401 }
3402
3403 dma_address = dma_map_single(ap->dev, qc->buf_virt,
3404 sg->length, dir);
3405 if (dma_mapping_error(dma_address)) {
3406 /* restore sg */
3407 sg->length += qc->pad_len;
3408 return -1;
3409 }
3410
3411 sg_dma_address(sg) = dma_address;
3412 sg_dma_len(sg) = sg->length;
3413
3414 skip_map:
3415 DPRINTK("mapped buffer of %d bytes for %s\n", sg_dma_len(sg),
3416 qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
3417
3418 return 0;
3419 }
3420
3421 /**
3422 * ata_sg_setup - DMA-map the scatter-gather table associated with a command.
3423 * @qc: Command with scatter-gather table to be mapped.
3424 *
3425 * DMA-map the scatter-gather table associated with queued_cmd @qc.
3426 *
3427 * LOCKING:
3428 * spin_lock_irqsave(host_set lock)
3429 *
3430 * RETURNS:
3431 * Zero on success, negative on error.
3432 *
3433 */
3434
3435 static int ata_sg_setup(struct ata_queued_cmd *qc)
3436 {
3437 struct ata_port *ap = qc->ap;
3438 struct scatterlist *sg = qc->__sg;
3439 struct scatterlist *lsg = &sg[qc->n_elem - 1];
3440 int n_elem, pre_n_elem, dir, trim_sg = 0;
3441
3442 VPRINTK("ENTER, ata%u\n", ap->id);
3443 WARN_ON(!(qc->flags & ATA_QCFLAG_SG));
3444
3445 /* we must lengthen transfers to end on a 32-bit boundary */
3446 qc->pad_len = lsg->length & 3;
3447 if (qc->pad_len) {
3448 void *pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
3449 struct scatterlist *psg = &qc->pad_sgent;
3450 unsigned int offset;
3451
3452 WARN_ON(qc->dev->class != ATA_DEV_ATAPI);
3453
3454 memset(pad_buf, 0, ATA_DMA_PAD_SZ);
3455
3456 /*
3457 * psg->page/offset are used to copy to-be-written
3458 * data in this function or read data in ata_sg_clean.
3459 */
3460 offset = lsg->offset + lsg->length - qc->pad_len;
3461 psg->page = nth_page(lsg->page, offset >> PAGE_SHIFT);
3462 psg->offset = offset_in_page(offset);
3463
3464 if (qc->tf.flags & ATA_TFLAG_WRITE) {
3465 void *addr = kmap_atomic(psg->page, KM_IRQ0);
3466 memcpy(pad_buf, addr + psg->offset, qc->pad_len);
3467 kunmap_atomic(addr, KM_IRQ0);
3468 }
3469
3470 sg_dma_address(psg) = ap->pad_dma + (qc->tag * ATA_DMA_PAD_SZ);
3471 sg_dma_len(psg) = ATA_DMA_PAD_SZ;
3472 /* trim last sg */
3473 lsg->length -= qc->pad_len;
3474 if (lsg->length == 0)
3475 trim_sg = 1;
3476
3477 DPRINTK("padding done, sg[%d].length=%u pad_len=%u\n",
3478 qc->n_elem - 1, lsg->length, qc->pad_len);
3479 }
3480
3481 pre_n_elem = qc->n_elem;
3482 if (trim_sg && pre_n_elem)
3483 pre_n_elem--;
3484
3485 if (!pre_n_elem) {
3486 n_elem = 0;
3487 goto skip_map;
3488 }
3489
3490 dir = qc->dma_dir;
3491 n_elem = dma_map_sg(ap->dev, sg, pre_n_elem, dir);
3492 if (n_elem < 1) {
3493 /* restore last sg */
3494 lsg->length += qc->pad_len;
3495 return -1;
3496 }
3497
3498 DPRINTK("%d sg elements mapped\n", n_elem);
3499
3500 skip_map:
3501 qc->n_elem = n_elem;
3502
3503 return 0;
3504 }
3505
3506 /**
3507 * swap_buf_le16 - swap halves of 16-bit words in place
3508 * @buf: Buffer to swap
3509 * @buf_words: Number of 16-bit words in buffer.
3510 *
3511 * Swap halves of 16-bit words if needed to convert from
3512 * little-endian byte order to native cpu byte order, or
3513 * vice-versa.
3514 *
3515 * LOCKING:
3516 * Inherited from caller.
3517 */
3518 void swap_buf_le16(u16 *buf, unsigned int buf_words)
3519 {
3520 #ifdef __BIG_ENDIAN
3521 unsigned int i;
3522
3523 for (i = 0; i < buf_words; i++)
3524 buf[i] = le16_to_cpu(buf[i]);
3525 #endif /* __BIG_ENDIAN */
3526 }
3527
3528 /**
3529 * ata_mmio_data_xfer - Transfer data by MMIO
3530 * @dev: device for this I/O
3531 * @buf: data buffer
3532 * @buflen: buffer length
3533 * @write_data: read/write
3534 *
3535 * Transfer data from/to the device data register by MMIO.
3536 *
3537 * LOCKING:
3538 * Inherited from caller.
3539 */
3540
3541 void ata_mmio_data_xfer(struct ata_device *adev, unsigned char *buf,
3542 unsigned int buflen, int write_data)
3543 {
3544 struct ata_port *ap = adev->ap;
3545 unsigned int i;
3546 unsigned int words = buflen >> 1;
3547 u16 *buf16 = (u16 *) buf;
3548 void __iomem *mmio = (void __iomem *)ap->ioaddr.data_addr;
3549
3550 /* Transfer multiple of 2 bytes */
3551 if (write_data) {
3552 for (i = 0; i < words; i++)
3553 writew(le16_to_cpu(buf16[i]), mmio);
3554 } else {
3555 for (i = 0; i < words; i++)
3556 buf16[i] = cpu_to_le16(readw(mmio));
3557 }
3558
3559 /* Transfer trailing 1 byte, if any. */
3560 if (unlikely(buflen & 0x01)) {
3561 u16 align_buf[1] = { 0 };
3562 unsigned char *trailing_buf = buf + buflen - 1;
3563
3564 if (write_data) {
3565 memcpy(align_buf, trailing_buf, 1);
3566 writew(le16_to_cpu(align_buf[0]), mmio);
3567 } else {
3568 align_buf[0] = cpu_to_le16(readw(mmio));
3569 memcpy(trailing_buf, align_buf, 1);
3570 }
3571 }
3572 }
3573
3574 /**
3575 * ata_pio_data_xfer - Transfer data by PIO
3576 * @adev: device to target
3577 * @buf: data buffer
3578 * @buflen: buffer length
3579 * @write_data: read/write
3580 *
3581 * Transfer data from/to the device data register by PIO.
3582 *
3583 * LOCKING:
3584 * Inherited from caller.
3585 */
3586
3587 void ata_pio_data_xfer(struct ata_device *adev, unsigned char *buf,
3588 unsigned int buflen, int write_data)
3589 {
3590 struct ata_port *ap = adev->ap;
3591 unsigned int words = buflen >> 1;
3592
3593 /* Transfer multiple of 2 bytes */
3594 if (write_data)
3595 outsw(ap->ioaddr.data_addr, buf, words);
3596 else
3597 insw(ap->ioaddr.data_addr, buf, words);
3598
3599 /* Transfer trailing 1 byte, if any. */
3600 if (unlikely(buflen & 0x01)) {
3601 u16 align_buf[1] = { 0 };
3602 unsigned char *trailing_buf = buf + buflen - 1;
3603
3604 if (write_data) {
3605 memcpy(align_buf, trailing_buf, 1);
3606 outw(le16_to_cpu(align_buf[0]), ap->ioaddr.data_addr);
3607 } else {
3608 align_buf[0] = cpu_to_le16(inw(ap->ioaddr.data_addr));
3609 memcpy(trailing_buf, align_buf, 1);
3610 }
3611 }
3612 }
3613
3614 /**
3615 * ata_pio_data_xfer_noirq - Transfer data by PIO
3616 * @adev: device to target
3617 * @buf: data buffer
3618 * @buflen: buffer length
3619 * @write_data: read/write
3620 *
3621 * Transfer data from/to the device data register by PIO. Do the
3622 * transfer with interrupts disabled.
3623 *
3624 * LOCKING:
3625 * Inherited from caller.
3626 */
3627
3628 void ata_pio_data_xfer_noirq(struct ata_device *adev, unsigned char *buf,
3629 unsigned int buflen, int write_data)
3630 {
3631 unsigned long flags;
3632 local_irq_save(flags);
3633 ata_pio_data_xfer(adev, buf, buflen, write_data);
3634 local_irq_restore(flags);
3635 }
3636
3637
3638 /**
3639 * ata_pio_sector - Transfer ATA_SECT_SIZE (512 bytes) of data.
3640 * @qc: Command on going
3641 *
3642 * Transfer ATA_SECT_SIZE of data from/to the ATA device.
3643 *
3644 * LOCKING:
3645 * Inherited from caller.
3646 */
3647
3648 static void ata_pio_sector(struct ata_queued_cmd *qc)
3649 {
3650 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
3651 struct scatterlist *sg = qc->__sg;
3652 struct ata_port *ap = qc->ap;
3653 struct page *page;
3654 unsigned int offset;
3655 unsigned char *buf;
3656
3657 if (qc->cursect == (qc->nsect - 1))
3658 ap->hsm_task_state = HSM_ST_LAST;
3659
3660 page = sg[qc->cursg].page;
3661 offset = sg[qc->cursg].offset + qc->cursg_ofs * ATA_SECT_SIZE;
3662
3663 /* get the current page and offset */
3664 page = nth_page(page, (offset >> PAGE_SHIFT));
3665 offset %= PAGE_SIZE;
3666
3667 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
3668
3669 if (PageHighMem(page)) {
3670 unsigned long flags;
3671
3672 /* FIXME: use a bounce buffer */
3673 local_irq_save(flags);
3674 buf = kmap_atomic(page, KM_IRQ0);
3675
3676 /* do the actual data transfer */
3677 ap->ops->data_xfer(qc->dev, buf + offset, ATA_SECT_SIZE, do_write);
3678
3679 kunmap_atomic(buf, KM_IRQ0);
3680 local_irq_restore(flags);
3681 } else {
3682 buf = page_address(page);
3683 ap->ops->data_xfer(qc->dev, buf + offset, ATA_SECT_SIZE, do_write);
3684 }
3685
3686 qc->cursect++;
3687 qc->cursg_ofs++;
3688
3689 if ((qc->cursg_ofs * ATA_SECT_SIZE) == (&sg[qc->cursg])->length) {
3690 qc->cursg++;
3691 qc->cursg_ofs = 0;
3692 }
3693 }
3694
3695 /**
3696 * ata_pio_sectors - Transfer one or many 512-byte sectors.
3697 * @qc: Command on going
3698 *
3699 * Transfer one or many ATA_SECT_SIZE of data from/to the
3700 * ATA device for the DRQ request.
3701 *
3702 * LOCKING:
3703 * Inherited from caller.
3704 */
3705
3706 static void ata_pio_sectors(struct ata_queued_cmd *qc)
3707 {
3708 if (is_multi_taskfile(&qc->tf)) {
3709 /* READ/WRITE MULTIPLE */
3710 unsigned int nsect;
3711
3712 WARN_ON(qc->dev->multi_count == 0);
3713
3714 nsect = min(qc->nsect - qc->cursect, qc->dev->multi_count);
3715 while (nsect--)
3716 ata_pio_sector(qc);
3717 } else
3718 ata_pio_sector(qc);
3719 }
3720
3721 /**
3722 * atapi_send_cdb - Write CDB bytes to hardware
3723 * @ap: Port to which ATAPI device is attached.
3724 * @qc: Taskfile currently active
3725 *
3726 * When device has indicated its readiness to accept
3727 * a CDB, this function is called. Send the CDB.
3728 *
3729 * LOCKING:
3730 * caller.
3731 */
3732
3733 static void atapi_send_cdb(struct ata_port *ap, struct ata_queued_cmd *qc)
3734 {
3735 /* send SCSI cdb */
3736 DPRINTK("send cdb\n");
3737 WARN_ON(qc->dev->cdb_len < 12);
3738
3739 ap->ops->data_xfer(qc->dev, qc->cdb, qc->dev->cdb_len, 1);
3740 ata_altstatus(ap); /* flush */
3741
3742 switch (qc->tf.protocol) {
3743 case ATA_PROT_ATAPI:
3744 ap->hsm_task_state = HSM_ST;
3745 break;
3746 case ATA_PROT_ATAPI_NODATA:
3747 ap->hsm_task_state = HSM_ST_LAST;
3748 break;
3749 case ATA_PROT_ATAPI_DMA:
3750 ap->hsm_task_state = HSM_ST_LAST;
3751 /* initiate bmdma */
3752 ap->ops->bmdma_start(qc);
3753 break;
3754 }
3755 }
3756
3757 /**
3758 * __atapi_pio_bytes - Transfer data from/to the ATAPI device.
3759 * @qc: Command on going
3760 * @bytes: number of bytes
3761 *
3762 * Transfer Transfer data from/to the ATAPI device.
3763 *
3764 * LOCKING:
3765 * Inherited from caller.
3766 *
3767 */
3768
3769 static void __atapi_pio_bytes(struct ata_queued_cmd *qc, unsigned int bytes)
3770 {
3771 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
3772 struct scatterlist *sg = qc->__sg;
3773 struct ata_port *ap = qc->ap;
3774 struct page *page;
3775 unsigned char *buf;
3776 unsigned int offset, count;
3777
3778 if (qc->curbytes + bytes >= qc->nbytes)
3779 ap->hsm_task_state = HSM_ST_LAST;
3780
3781 next_sg:
3782 if (unlikely(qc->cursg >= qc->n_elem)) {
3783 /*
3784 * The end of qc->sg is reached and the device expects
3785 * more data to transfer. In order not to overrun qc->sg
3786 * and fulfill length specified in the byte count register,
3787 * - for read case, discard trailing data from the device
3788 * - for write case, padding zero data to the device
3789 */
3790 u16 pad_buf[1] = { 0 };
3791 unsigned int words = bytes >> 1;
3792 unsigned int i;
3793
3794 if (words) /* warning if bytes > 1 */
3795 ata_dev_printk(qc->dev, KERN_WARNING,
3796 "%u bytes trailing data\n", bytes);
3797
3798 for (i = 0; i < words; i++)
3799 ap->ops->data_xfer(qc->dev, (unsigned char*)pad_buf, 2, do_write);
3800
3801 ap->hsm_task_state = HSM_ST_LAST;
3802 return;
3803 }
3804
3805 sg = &qc->__sg[qc->cursg];
3806
3807 page = sg->page;
3808 offset = sg->offset + qc->cursg_ofs;
3809
3810 /* get the current page and offset */
3811 page = nth_page(page, (offset >> PAGE_SHIFT));
3812 offset %= PAGE_SIZE;
3813
3814 /* don't overrun current sg */
3815 count = min(sg->length - qc->cursg_ofs, bytes);
3816
3817 /* don't cross page boundaries */
3818 count = min(count, (unsigned int)PAGE_SIZE - offset);
3819
3820 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
3821
3822 if (PageHighMem(page)) {
3823 unsigned long flags;
3824
3825 /* FIXME: use bounce buffer */
3826 local_irq_save(flags);
3827 buf = kmap_atomic(page, KM_IRQ0);
3828
3829 /* do the actual data transfer */
3830 ap->ops->data_xfer(qc->dev, buf + offset, count, do_write);
3831
3832 kunmap_atomic(buf, KM_IRQ0);
3833 local_irq_restore(flags);
3834 } else {
3835 buf = page_address(page);
3836 ap->ops->data_xfer(qc->dev, buf + offset, count, do_write);
3837 }
3838
3839 bytes -= count;
3840 qc->curbytes += count;
3841 qc->cursg_ofs += count;
3842
3843 if (qc->cursg_ofs == sg->length) {
3844 qc->cursg++;
3845 qc->cursg_ofs = 0;
3846 }
3847
3848 if (bytes)
3849 goto next_sg;
3850 }
3851
3852 /**
3853 * atapi_pio_bytes - Transfer data from/to the ATAPI device.
3854 * @qc: Command on going
3855 *
3856 * Transfer Transfer data from/to the ATAPI device.
3857 *
3858 * LOCKING:
3859 * Inherited from caller.
3860 */
3861
3862 static void atapi_pio_bytes(struct ata_queued_cmd *qc)
3863 {
3864 struct ata_port *ap = qc->ap;
3865 struct ata_device *dev = qc->dev;
3866 unsigned int ireason, bc_lo, bc_hi, bytes;
3867 int i_write, do_write = (qc->tf.flags & ATA_TFLAG_WRITE) ? 1 : 0;
3868
3869 /* Abuse qc->result_tf for temp storage of intermediate TF
3870 * here to save some kernel stack usage.
3871 * For normal completion, qc->result_tf is not relevant. For
3872 * error, qc->result_tf is later overwritten by ata_qc_complete().
3873 * So, the correctness of qc->result_tf is not affected.
3874 */
3875 ap->ops->tf_read(ap, &qc->result_tf);
3876 ireason = qc->result_tf.nsect;
3877 bc_lo = qc->result_tf.lbam;
3878 bc_hi = qc->result_tf.lbah;
3879 bytes = (bc_hi << 8) | bc_lo;
3880
3881 /* shall be cleared to zero, indicating xfer of data */
3882 if (ireason & (1 << 0))
3883 goto err_out;
3884
3885 /* make sure transfer direction matches expected */
3886 i_write = ((ireason & (1 << 1)) == 0) ? 1 : 0;
3887 if (do_write != i_write)
3888 goto err_out;
3889
3890 VPRINTK("ata%u: xfering %d bytes\n", ap->id, bytes);
3891
3892 __atapi_pio_bytes(qc, bytes);
3893
3894 return;
3895
3896 err_out:
3897 ata_dev_printk(dev, KERN_INFO, "ATAPI check failed\n");
3898 qc->err_mask |= AC_ERR_HSM;
3899 ap->hsm_task_state = HSM_ST_ERR;
3900 }
3901
3902 /**
3903 * ata_hsm_ok_in_wq - Check if the qc can be handled in the workqueue.
3904 * @ap: the target ata_port
3905 * @qc: qc on going
3906 *
3907 * RETURNS:
3908 * 1 if ok in workqueue, 0 otherwise.
3909 */
3910
3911 static inline int ata_hsm_ok_in_wq(struct ata_port *ap, struct ata_queued_cmd *qc)
3912 {
3913 if (qc->tf.flags & ATA_TFLAG_POLLING)
3914 return 1;
3915
3916 if (ap->hsm_task_state == HSM_ST_FIRST) {
3917 if (qc->tf.protocol == ATA_PROT_PIO &&
3918 (qc->tf.flags & ATA_TFLAG_WRITE))
3919 return 1;
3920
3921 if (is_atapi_taskfile(&qc->tf) &&
3922 !(qc->dev->flags & ATA_DFLAG_CDB_INTR))
3923 return 1;
3924 }
3925
3926 return 0;
3927 }
3928
3929 /**
3930 * ata_hsm_qc_complete - finish a qc running on standard HSM
3931 * @qc: Command to complete
3932 * @in_wq: 1 if called from workqueue, 0 otherwise
3933 *
3934 * Finish @qc which is running on standard HSM.
3935 *
3936 * LOCKING:
3937 * If @in_wq is zero, spin_lock_irqsave(host_set lock).
3938 * Otherwise, none on entry and grabs host lock.
3939 */
3940 static void ata_hsm_qc_complete(struct ata_queued_cmd *qc, int in_wq)
3941 {
3942 struct ata_port *ap = qc->ap;
3943 unsigned long flags;
3944
3945 if (ap->ops->error_handler) {
3946 if (in_wq) {
3947 spin_lock_irqsave(&ap->host_set->lock, flags);
3948
3949 /* EH might have kicked in while host_set lock
3950 * is released.
3951 */
3952 qc = ata_qc_from_tag(ap, qc->tag);
3953 if (qc) {
3954 if (likely(!(qc->err_mask & AC_ERR_HSM))) {
3955 ata_irq_on(ap);
3956 ata_qc_complete(qc);
3957 } else
3958 ata_port_freeze(ap);
3959 }
3960
3961 spin_unlock_irqrestore(&ap->host_set->lock, flags);
3962 } else {
3963 if (likely(!(qc->err_mask & AC_ERR_HSM)))
3964 ata_qc_complete(qc);
3965 else
3966 ata_port_freeze(ap);
3967 }
3968 } else {
3969 if (in_wq) {
3970 spin_lock_irqsave(&ap->host_set->lock, flags);
3971 ata_irq_on(ap);
3972 ata_qc_complete(qc);
3973 spin_unlock_irqrestore(&ap->host_set->lock, flags);
3974 } else
3975 ata_qc_complete(qc);
3976 }
3977
3978 ata_altstatus(ap); /* flush */
3979 }
3980
3981 /**
3982 * ata_hsm_move - move the HSM to the next state.
3983 * @ap: the target ata_port
3984 * @qc: qc on going
3985 * @status: current device status
3986 * @in_wq: 1 if called from workqueue, 0 otherwise
3987 *
3988 * RETURNS:
3989 * 1 when poll next status needed, 0 otherwise.
3990 */
3991
3992 static int ata_hsm_move(struct ata_port *ap, struct ata_queued_cmd *qc,
3993 u8 status, int in_wq)
3994 {
3995 unsigned long flags = 0;
3996 int poll_next;
3997
3998 WARN_ON((qc->flags & ATA_QCFLAG_ACTIVE) == 0);
3999
4000 /* Make sure ata_qc_issue_prot() does not throw things
4001 * like DMA polling into the workqueue. Notice that
4002 * in_wq is not equivalent to (qc->tf.flags & ATA_TFLAG_POLLING).
4003 */
4004 WARN_ON(in_wq != ata_hsm_ok_in_wq(ap, qc));
4005
4006 fsm_start:
4007 DPRINTK("ata%u: protocol %d task_state %d (dev_stat 0x%X)\n",
4008 ap->id, qc->tf.protocol, ap->hsm_task_state, status);
4009
4010 switch (ap->hsm_task_state) {
4011 case HSM_ST_FIRST:
4012 /* Send first data block or PACKET CDB */
4013
4014 /* If polling, we will stay in the work queue after
4015 * sending the data. Otherwise, interrupt handler
4016 * takes over after sending the data.
4017 */
4018 poll_next = (qc->tf.flags & ATA_TFLAG_POLLING);
4019
4020 /* check device status */
4021 if (unlikely((status & ATA_DRQ) == 0)) {
4022 /* handle BSY=0, DRQ=0 as error */
4023 if (likely(status & (ATA_ERR | ATA_DF)))
4024 /* device stops HSM for abort/error */
4025 qc->err_mask |= AC_ERR_DEV;
4026 else
4027 /* HSM violation. Let EH handle this */
4028 qc->err_mask |= AC_ERR_HSM;
4029
4030 ap->hsm_task_state = HSM_ST_ERR;
4031 goto fsm_start;
4032 }
4033
4034 /* Device should not ask for data transfer (DRQ=1)
4035 * when it finds something wrong.
4036 * We ignore DRQ here and stop the HSM by
4037 * changing hsm_task_state to HSM_ST_ERR and
4038 * let the EH abort the command or reset the device.
4039 */
4040 if (unlikely(status & (ATA_ERR | ATA_DF))) {
4041 printk(KERN_WARNING "ata%d: DRQ=1 with device error, dev_stat 0x%X\n",
4042 ap->id, status);
4043 qc->err_mask |= AC_ERR_HSM;
4044 ap->hsm_task_state = HSM_ST_ERR;
4045 goto fsm_start;
4046 }
4047
4048 /* Send the CDB (atapi) or the first data block (ata pio out).
4049 * During the state transition, interrupt handler shouldn't
4050 * be invoked before the data transfer is complete and
4051 * hsm_task_state is changed. Hence, the following locking.
4052 */
4053 if (in_wq)
4054 spin_lock_irqsave(&ap->host_set->lock, flags);
4055
4056 if (qc->tf.protocol == ATA_PROT_PIO) {
4057 /* PIO data out protocol.
4058 * send first data block.
4059 */
4060
4061 /* ata_pio_sectors() might change the state
4062 * to HSM_ST_LAST. so, the state is changed here
4063 * before ata_pio_sectors().
4064 */
4065 ap->hsm_task_state = HSM_ST;
4066 ata_pio_sectors(qc);
4067 ata_altstatus(ap); /* flush */
4068 } else
4069 /* send CDB */
4070 atapi_send_cdb(ap, qc);
4071
4072 if (in_wq)
4073 spin_unlock_irqrestore(&ap->host_set->lock, flags);
4074
4075 /* if polling, ata_pio_task() handles the rest.
4076 * otherwise, interrupt handler takes over from here.
4077 */
4078 break;
4079
4080 case HSM_ST:
4081 /* complete command or read/write the data register */
4082 if (qc->tf.protocol == ATA_PROT_ATAPI) {
4083 /* ATAPI PIO protocol */
4084 if ((status & ATA_DRQ) == 0) {
4085 /* No more data to transfer or device error.
4086 * Device error will be tagged in HSM_ST_LAST.
4087 */
4088 ap->hsm_task_state = HSM_ST_LAST;
4089 goto fsm_start;
4090 }
4091
4092 /* Device should not ask for data transfer (DRQ=1)
4093 * when it finds something wrong.
4094 * We ignore DRQ here and stop the HSM by
4095 * changing hsm_task_state to HSM_ST_ERR and
4096 * let the EH abort the command or reset the device.
4097 */
4098 if (unlikely(status & (ATA_ERR | ATA_DF))) {
4099 printk(KERN_WARNING "ata%d: DRQ=1 with device error, dev_stat 0x%X\n",
4100 ap->id, status);
4101 qc->err_mask |= AC_ERR_HSM;
4102 ap->hsm_task_state = HSM_ST_ERR;
4103 goto fsm_start;
4104 }
4105
4106 atapi_pio_bytes(qc);
4107
4108 if (unlikely(ap->hsm_task_state == HSM_ST_ERR))
4109 /* bad ireason reported by device */
4110 goto fsm_start;
4111
4112 } else {
4113 /* ATA PIO protocol */
4114 if (unlikely((status & ATA_DRQ) == 0)) {
4115 /* handle BSY=0, DRQ=0 as error */
4116 if (likely(status & (ATA_ERR | ATA_DF)))
4117 /* device stops HSM for abort/error */
4118 qc->err_mask |= AC_ERR_DEV;
4119 else
4120 /* HSM violation. Let EH handle this */
4121 qc->err_mask |= AC_ERR_HSM;
4122
4123 ap->hsm_task_state = HSM_ST_ERR;
4124 goto fsm_start;
4125 }
4126
4127 /* For PIO reads, some devices may ask for
4128 * data transfer (DRQ=1) alone with ERR=1.
4129 * We respect DRQ here and transfer one
4130 * block of junk data before changing the
4131 * hsm_task_state to HSM_ST_ERR.
4132 *
4133 * For PIO writes, ERR=1 DRQ=1 doesn't make
4134 * sense since the data block has been
4135 * transferred to the device.
4136 */
4137 if (unlikely(status & (ATA_ERR | ATA_DF))) {
4138 /* data might be corrputed */
4139 qc->err_mask |= AC_ERR_DEV;
4140
4141 if (!(qc->tf.flags & ATA_TFLAG_WRITE)) {
4142 ata_pio_sectors(qc);
4143 ata_altstatus(ap);
4144 status = ata_wait_idle(ap);
4145 }
4146
4147 if (status & (ATA_BUSY | ATA_DRQ))
4148 qc->err_mask |= AC_ERR_HSM;
4149
4150 /* ata_pio_sectors() might change the
4151 * state to HSM_ST_LAST. so, the state
4152 * is changed after ata_pio_sectors().
4153 */
4154 ap->hsm_task_state = HSM_ST_ERR;
4155 goto fsm_start;
4156 }
4157
4158 ata_pio_sectors(qc);
4159
4160 if (ap->hsm_task_state == HSM_ST_LAST &&
4161 (!(qc->tf.flags & ATA_TFLAG_WRITE))) {
4162 /* all data read */
4163 ata_altstatus(ap);
4164 status = ata_wait_idle(ap);
4165 goto fsm_start;
4166 }
4167 }
4168
4169 ata_altstatus(ap); /* flush */
4170 poll_next = 1;
4171 break;
4172
4173 case HSM_ST_LAST:
4174 if (unlikely(!ata_ok(status))) {
4175 qc->err_mask |= __ac_err_mask(status);
4176 ap->hsm_task_state = HSM_ST_ERR;
4177 goto fsm_start;
4178 }
4179
4180 /* no more data to transfer */
4181 DPRINTK("ata%u: dev %u command complete, drv_stat 0x%x\n",
4182 ap->id, qc->dev->devno, status);
4183
4184 WARN_ON(qc->err_mask);
4185
4186 ap->hsm_task_state = HSM_ST_IDLE;
4187
4188 /* complete taskfile transaction */
4189 ata_hsm_qc_complete(qc, in_wq);
4190
4191 poll_next = 0;
4192 break;
4193
4194 case HSM_ST_ERR:
4195 /* make sure qc->err_mask is available to
4196 * know what's wrong and recover
4197 */
4198 WARN_ON(qc->err_mask == 0);
4199
4200 ap->hsm_task_state = HSM_ST_IDLE;
4201
4202 /* complete taskfile transaction */
4203 ata_hsm_qc_complete(qc, in_wq);
4204
4205 poll_next = 0;
4206 break;
4207 default:
4208 poll_next = 0;
4209 BUG();
4210 }
4211
4212 return poll_next;
4213 }
4214
4215 static void ata_pio_task(void *_data)
4216 {
4217 struct ata_queued_cmd *qc = _data;
4218 struct ata_port *ap = qc->ap;
4219 u8 status;
4220 int poll_next;
4221
4222 fsm_start:
4223 WARN_ON(ap->hsm_task_state == HSM_ST_IDLE);
4224
4225 /*
4226 * This is purely heuristic. This is a fast path.
4227 * Sometimes when we enter, BSY will be cleared in
4228 * a chk-status or two. If not, the drive is probably seeking
4229 * or something. Snooze for a couple msecs, then
4230 * chk-status again. If still busy, queue delayed work.
4231 */
4232 status = ata_busy_wait(ap, ATA_BUSY, 5);
4233 if (status & ATA_BUSY) {
4234 msleep(2);
4235 status = ata_busy_wait(ap, ATA_BUSY, 10);
4236 if (status & ATA_BUSY) {
4237 ata_port_queue_task(ap, ata_pio_task, qc, ATA_SHORT_PAUSE);
4238 return;
4239 }
4240 }
4241
4242 /* move the HSM */
4243 poll_next = ata_hsm_move(ap, qc, status, 1);
4244
4245 /* another command or interrupt handler
4246 * may be running at this point.
4247 */
4248 if (poll_next)
4249 goto fsm_start;
4250 }
4251
4252 /**
4253 * ata_qc_new - Request an available ATA command, for queueing
4254 * @ap: Port associated with device @dev
4255 * @dev: Device from whom we request an available command structure
4256 *
4257 * LOCKING:
4258 * None.
4259 */
4260
4261 static struct ata_queued_cmd *ata_qc_new(struct ata_port *ap)
4262 {
4263 struct ata_queued_cmd *qc = NULL;
4264 unsigned int i;
4265
4266 /* no command while frozen */
4267 if (unlikely(ap->flags & ATA_FLAG_FROZEN))
4268 return NULL;
4269
4270 /* the last tag is reserved for internal command. */
4271 for (i = 0; i < ATA_MAX_QUEUE - 1; i++)
4272 if (!test_and_set_bit(i, &ap->qc_allocated)) {
4273 qc = __ata_qc_from_tag(ap, i);
4274 break;
4275 }
4276
4277 if (qc)
4278 qc->tag = i;
4279
4280 return qc;
4281 }
4282
4283 /**
4284 * ata_qc_new_init - Request an available ATA command, and initialize it
4285 * @dev: Device from whom we request an available command structure
4286 *
4287 * LOCKING:
4288 * None.
4289 */
4290
4291 struct ata_queued_cmd *ata_qc_new_init(struct ata_device *dev)
4292 {
4293 struct ata_port *ap = dev->ap;
4294 struct ata_queued_cmd *qc;
4295
4296 qc = ata_qc_new(ap);
4297 if (qc) {
4298 qc->scsicmd = NULL;
4299 qc->ap = ap;
4300 qc->dev = dev;
4301
4302 ata_qc_reinit(qc);
4303 }
4304
4305 return qc;
4306 }
4307
4308 /**
4309 * ata_qc_free - free unused ata_queued_cmd
4310 * @qc: Command to complete
4311 *
4312 * Designed to free unused ata_queued_cmd object
4313 * in case something prevents using it.
4314 *
4315 * LOCKING:
4316 * spin_lock_irqsave(host_set lock)
4317 */
4318 void ata_qc_free(struct ata_queued_cmd *qc)
4319 {
4320 struct ata_port *ap = qc->ap;
4321 unsigned int tag;
4322
4323 WARN_ON(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
4324
4325 qc->flags = 0;
4326 tag = qc->tag;
4327 if (likely(ata_tag_valid(tag))) {
4328 qc->tag = ATA_TAG_POISON;
4329 clear_bit(tag, &ap->qc_allocated);
4330 }
4331 }
4332
4333 void __ata_qc_complete(struct ata_queued_cmd *qc)
4334 {
4335 struct ata_port *ap = qc->ap;
4336
4337 WARN_ON(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
4338 WARN_ON(!(qc->flags & ATA_QCFLAG_ACTIVE));
4339
4340 if (likely(qc->flags & ATA_QCFLAG_DMAMAP))
4341 ata_sg_clean(qc);
4342
4343 /* command should be marked inactive atomically with qc completion */
4344 if (qc->tf.protocol == ATA_PROT_NCQ)
4345 ap->sactive &= ~(1 << qc->tag);
4346 else
4347 ap->active_tag = ATA_TAG_POISON;
4348
4349 /* atapi: mark qc as inactive to prevent the interrupt handler
4350 * from completing the command twice later, before the error handler
4351 * is called. (when rc != 0 and atapi request sense is needed)
4352 */
4353 qc->flags &= ~ATA_QCFLAG_ACTIVE;
4354 ap->qc_active &= ~(1 << qc->tag);
4355
4356 /* call completion callback */
4357 qc->complete_fn(qc);
4358 }
4359
4360 /**
4361 * ata_qc_complete - Complete an active ATA command
4362 * @qc: Command to complete
4363 * @err_mask: ATA Status register contents
4364 *
4365 * Indicate to the mid and upper layers that an ATA
4366 * command has completed, with either an ok or not-ok status.
4367 *
4368 * LOCKING:
4369 * spin_lock_irqsave(host_set lock)
4370 */
4371 void ata_qc_complete(struct ata_queued_cmd *qc)
4372 {
4373 struct ata_port *ap = qc->ap;
4374
4375 /* XXX: New EH and old EH use different mechanisms to
4376 * synchronize EH with regular execution path.
4377 *
4378 * In new EH, a failed qc is marked with ATA_QCFLAG_FAILED.
4379 * Normal execution path is responsible for not accessing a
4380 * failed qc. libata core enforces the rule by returning NULL
4381 * from ata_qc_from_tag() for failed qcs.
4382 *
4383 * Old EH depends on ata_qc_complete() nullifying completion
4384 * requests if ATA_QCFLAG_EH_SCHEDULED is set. Old EH does
4385 * not synchronize with interrupt handler. Only PIO task is
4386 * taken care of.
4387 */
4388 if (ap->ops->error_handler) {
4389 WARN_ON(ap->flags & ATA_FLAG_FROZEN);
4390
4391 if (unlikely(qc->err_mask))
4392 qc->flags |= ATA_QCFLAG_FAILED;
4393
4394 if (unlikely(qc->flags & ATA_QCFLAG_FAILED)) {
4395 if (!ata_tag_internal(qc->tag)) {
4396 /* always fill result TF for failed qc */
4397 ap->ops->tf_read(ap, &qc->result_tf);
4398 ata_qc_schedule_eh(qc);
4399 return;
4400 }
4401 }
4402
4403 /* read result TF if requested */
4404 if (qc->flags & ATA_QCFLAG_RESULT_TF)
4405 ap->ops->tf_read(ap, &qc->result_tf);
4406
4407 __ata_qc_complete(qc);
4408 } else {
4409 if (qc->flags & ATA_QCFLAG_EH_SCHEDULED)
4410 return;
4411
4412 /* read result TF if failed or requested */
4413 if (qc->err_mask || qc->flags & ATA_QCFLAG_RESULT_TF)
4414 ap->ops->tf_read(ap, &qc->result_tf);
4415
4416 __ata_qc_complete(qc);
4417 }
4418 }
4419
4420 /**
4421 * ata_qc_complete_multiple - Complete multiple qcs successfully
4422 * @ap: port in question
4423 * @qc_active: new qc_active mask
4424 * @finish_qc: LLDD callback invoked before completing a qc
4425 *
4426 * Complete in-flight commands. This functions is meant to be
4427 * called from low-level driver's interrupt routine to complete
4428 * requests normally. ap->qc_active and @qc_active is compared
4429 * and commands are completed accordingly.
4430 *
4431 * LOCKING:
4432 * spin_lock_irqsave(host_set lock)
4433 *
4434 * RETURNS:
4435 * Number of completed commands on success, -errno otherwise.
4436 */
4437 int ata_qc_complete_multiple(struct ata_port *ap, u32 qc_active,
4438 void (*finish_qc)(struct ata_queued_cmd *))
4439 {
4440 int nr_done = 0;
4441 u32 done_mask;
4442 int i;
4443
4444 done_mask = ap->qc_active ^ qc_active;
4445
4446 if (unlikely(done_mask & qc_active)) {
4447 ata_port_printk(ap, KERN_ERR, "illegal qc_active transition "
4448 "(%08x->%08x)\n", ap->qc_active, qc_active);
4449 return -EINVAL;
4450 }
4451
4452 for (i = 0; i < ATA_MAX_QUEUE; i++) {
4453 struct ata_queued_cmd *qc;
4454
4455 if (!(done_mask & (1 << i)))
4456 continue;
4457
4458 if ((qc = ata_qc_from_tag(ap, i))) {
4459 if (finish_qc)
4460 finish_qc(qc);
4461 ata_qc_complete(qc);
4462 nr_done++;
4463 }
4464 }
4465
4466 return nr_done;
4467 }
4468
4469 static inline int ata_should_dma_map(struct ata_queued_cmd *qc)
4470 {
4471 struct ata_port *ap = qc->ap;
4472
4473 switch (qc->tf.protocol) {
4474 case ATA_PROT_NCQ:
4475 case ATA_PROT_DMA:
4476 case ATA_PROT_ATAPI_DMA:
4477 return 1;
4478
4479 case ATA_PROT_ATAPI:
4480 case ATA_PROT_PIO:
4481 if (ap->flags & ATA_FLAG_PIO_DMA)
4482 return 1;
4483
4484 /* fall through */
4485
4486 default:
4487 return 0;
4488 }
4489
4490 /* never reached */
4491 }
4492
4493 /**
4494 * ata_qc_issue - issue taskfile to device
4495 * @qc: command to issue to device
4496 *
4497 * Prepare an ATA command to submission to device.
4498 * This includes mapping the data into a DMA-able
4499 * area, filling in the S/G table, and finally
4500 * writing the taskfile to hardware, starting the command.
4501 *
4502 * LOCKING:
4503 * spin_lock_irqsave(host_set lock)
4504 */
4505 void ata_qc_issue(struct ata_queued_cmd *qc)
4506 {
4507 struct ata_port *ap = qc->ap;
4508
4509 /* Make sure only one non-NCQ command is outstanding. The
4510 * check is skipped for old EH because it reuses active qc to
4511 * request ATAPI sense.
4512 */
4513 WARN_ON(ap->ops->error_handler && ata_tag_valid(ap->active_tag));
4514
4515 if (qc->tf.protocol == ATA_PROT_NCQ) {
4516 WARN_ON(ap->sactive & (1 << qc->tag));
4517 ap->sactive |= 1 << qc->tag;
4518 } else {
4519 WARN_ON(ap->sactive);
4520 ap->active_tag = qc->tag;
4521 }
4522
4523 qc->flags |= ATA_QCFLAG_ACTIVE;
4524 ap->qc_active |= 1 << qc->tag;
4525
4526 if (ata_should_dma_map(qc)) {
4527 if (qc->flags & ATA_QCFLAG_SG) {
4528 if (ata_sg_setup(qc))
4529 goto sg_err;
4530 } else if (qc->flags & ATA_QCFLAG_SINGLE) {
4531 if (ata_sg_setup_one(qc))
4532 goto sg_err;
4533 }
4534 } else {
4535 qc->flags &= ~ATA_QCFLAG_DMAMAP;
4536 }
4537
4538 ap->ops->qc_prep(qc);
4539
4540 qc->err_mask |= ap->ops->qc_issue(qc);
4541 if (unlikely(qc->err_mask))
4542 goto err;
4543 return;
4544
4545 sg_err:
4546 qc->flags &= ~ATA_QCFLAG_DMAMAP;
4547 qc->err_mask |= AC_ERR_SYSTEM;
4548 err:
4549 ata_qc_complete(qc);
4550 }
4551
4552 /**
4553 * ata_qc_issue_prot - issue taskfile to device in proto-dependent manner
4554 * @qc: command to issue to device
4555 *
4556 * Using various libata functions and hooks, this function
4557 * starts an ATA command. ATA commands are grouped into
4558 * classes called "protocols", and issuing each type of protocol
4559 * is slightly different.
4560 *
4561 * May be used as the qc_issue() entry in ata_port_operations.
4562 *
4563 * LOCKING:
4564 * spin_lock_irqsave(host_set lock)
4565 *
4566 * RETURNS:
4567 * Zero on success, AC_ERR_* mask on failure
4568 */
4569
4570 unsigned int ata_qc_issue_prot(struct ata_queued_cmd *qc)
4571 {
4572 struct ata_port *ap = qc->ap;
4573
4574 /* Use polling pio if the LLD doesn't handle
4575 * interrupt driven pio and atapi CDB interrupt.
4576 */
4577 if (ap->flags & ATA_FLAG_PIO_POLLING) {
4578 switch (qc->tf.protocol) {
4579 case ATA_PROT_PIO:
4580 case ATA_PROT_ATAPI:
4581 case ATA_PROT_ATAPI_NODATA:
4582 qc->tf.flags |= ATA_TFLAG_POLLING;
4583 break;
4584 case ATA_PROT_ATAPI_DMA:
4585 if (qc->dev->flags & ATA_DFLAG_CDB_INTR)
4586 /* see ata_check_atapi_dma() */
4587 BUG();
4588 break;
4589 default:
4590 break;
4591 }
4592 }
4593
4594 /* select the device */
4595 ata_dev_select(ap, qc->dev->devno, 1, 0);
4596
4597 /* start the command */
4598 switch (qc->tf.protocol) {
4599 case ATA_PROT_NODATA:
4600 if (qc->tf.flags & ATA_TFLAG_POLLING)
4601 ata_qc_set_polling(qc);
4602
4603 ata_tf_to_host(ap, &qc->tf);
4604 ap->hsm_task_state = HSM_ST_LAST;
4605
4606 if (qc->tf.flags & ATA_TFLAG_POLLING)
4607 ata_port_queue_task(ap, ata_pio_task, qc, 0);
4608
4609 break;
4610
4611 case ATA_PROT_DMA:
4612 WARN_ON(qc->tf.flags & ATA_TFLAG_POLLING);
4613
4614 ap->ops->tf_load(ap, &qc->tf); /* load tf registers */
4615 ap->ops->bmdma_setup(qc); /* set up bmdma */
4616 ap->ops->bmdma_start(qc); /* initiate bmdma */
4617 ap->hsm_task_state = HSM_ST_LAST;
4618 break;
4619
4620 case ATA_PROT_PIO:
4621 if (qc->tf.flags & ATA_TFLAG_POLLING)
4622 ata_qc_set_polling(qc);
4623
4624 ata_tf_to_host(ap, &qc->tf);
4625
4626 if (qc->tf.flags & ATA_TFLAG_WRITE) {
4627 /* PIO data out protocol */
4628 ap->hsm_task_state = HSM_ST_FIRST;
4629 ata_port_queue_task(ap, ata_pio_task, qc, 0);
4630
4631 /* always send first data block using
4632 * the ata_pio_task() codepath.
4633 */
4634 } else {
4635 /* PIO data in protocol */
4636 ap->hsm_task_state = HSM_ST;
4637
4638 if (qc->tf.flags & ATA_TFLAG_POLLING)
4639 ata_port_queue_task(ap, ata_pio_task, qc, 0);
4640
4641 /* if polling, ata_pio_task() handles the rest.
4642 * otherwise, interrupt handler takes over from here.
4643 */
4644 }
4645
4646 break;
4647
4648 case ATA_PROT_ATAPI:
4649 case ATA_PROT_ATAPI_NODATA:
4650 if (qc->tf.flags & ATA_TFLAG_POLLING)
4651 ata_qc_set_polling(qc);
4652
4653 ata_tf_to_host(ap, &qc->tf);
4654
4655 ap->hsm_task_state = HSM_ST_FIRST;
4656
4657 /* send cdb by polling if no cdb interrupt */
4658 if ((!(qc->dev->flags & ATA_DFLAG_CDB_INTR)) ||
4659 (qc->tf.flags & ATA_TFLAG_POLLING))
4660 ata_port_queue_task(ap, ata_pio_task, qc, 0);
4661 break;
4662
4663 case ATA_PROT_ATAPI_DMA:
4664 WARN_ON(qc->tf.flags & ATA_TFLAG_POLLING);
4665
4666 ap->ops->tf_load(ap, &qc->tf); /* load tf registers */
4667 ap->ops->bmdma_setup(qc); /* set up bmdma */
4668 ap->hsm_task_state = HSM_ST_FIRST;
4669
4670 /* send cdb by polling if no cdb interrupt */
4671 if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
4672 ata_port_queue_task(ap, ata_pio_task, qc, 0);
4673 break;
4674
4675 default:
4676 WARN_ON(1);
4677 return AC_ERR_SYSTEM;
4678 }
4679
4680 return 0;
4681 }
4682
4683 /**
4684 * ata_host_intr - Handle host interrupt for given (port, task)
4685 * @ap: Port on which interrupt arrived (possibly...)
4686 * @qc: Taskfile currently active in engine
4687 *
4688 * Handle host interrupt for given queued command. Currently,
4689 * only DMA interrupts are handled. All other commands are
4690 * handled via polling with interrupts disabled (nIEN bit).
4691 *
4692 * LOCKING:
4693 * spin_lock_irqsave(host_set lock)
4694 *
4695 * RETURNS:
4696 * One if interrupt was handled, zero if not (shared irq).
4697 */
4698
4699 inline unsigned int ata_host_intr (struct ata_port *ap,
4700 struct ata_queued_cmd *qc)
4701 {
4702 u8 status, host_stat = 0;
4703
4704 VPRINTK("ata%u: protocol %d task_state %d\n",
4705 ap->id, qc->tf.protocol, ap->hsm_task_state);
4706
4707 /* Check whether we are expecting interrupt in this state */
4708 switch (ap->hsm_task_state) {
4709 case HSM_ST_FIRST:
4710 /* Some pre-ATAPI-4 devices assert INTRQ
4711 * at this state when ready to receive CDB.
4712 */
4713
4714 /* Check the ATA_DFLAG_CDB_INTR flag is enough here.
4715 * The flag was turned on only for atapi devices.
4716 * No need to check is_atapi_taskfile(&qc->tf) again.
4717 */
4718 if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
4719 goto idle_irq;
4720 break;
4721 case HSM_ST_LAST:
4722 if (qc->tf.protocol == ATA_PROT_DMA ||
4723 qc->tf.protocol == ATA_PROT_ATAPI_DMA) {
4724 /* check status of DMA engine */
4725 host_stat = ap->ops->bmdma_status(ap);
4726 VPRINTK("ata%u: host_stat 0x%X\n", ap->id, host_stat);
4727
4728 /* if it's not our irq... */
4729 if (!(host_stat & ATA_DMA_INTR))
4730 goto idle_irq;
4731
4732 /* before we do anything else, clear DMA-Start bit */
4733 ap->ops->bmdma_stop(qc);
4734
4735 if (unlikely(host_stat & ATA_DMA_ERR)) {
4736 /* error when transfering data to/from memory */
4737 qc->err_mask |= AC_ERR_HOST_BUS;
4738 ap->hsm_task_state = HSM_ST_ERR;
4739 }
4740 }
4741 break;
4742 case HSM_ST:
4743 break;
4744 default:
4745 goto idle_irq;
4746 }
4747
4748 /* check altstatus */
4749 status = ata_altstatus(ap);
4750 if (status & ATA_BUSY)
4751 goto idle_irq;
4752
4753 /* check main status, clearing INTRQ */
4754 status = ata_chk_status(ap);
4755 if (unlikely(status & ATA_BUSY))
4756 goto idle_irq;
4757
4758 /* ack bmdma irq events */
4759 ap->ops->irq_clear(ap);
4760
4761 ata_hsm_move(ap, qc, status, 0);
4762 return 1; /* irq handled */
4763
4764 idle_irq:
4765 ap->stats.idle_irq++;
4766
4767 #ifdef ATA_IRQ_TRAP
4768 if ((ap->stats.idle_irq % 1000) == 0) {
4769 ata_irq_ack(ap, 0); /* debug trap */
4770 ata_port_printk(ap, KERN_WARNING, "irq trap\n");
4771 return 1;
4772 }
4773 #endif
4774 return 0; /* irq not handled */
4775 }
4776
4777 /**
4778 * ata_interrupt - Default ATA host interrupt handler
4779 * @irq: irq line (unused)
4780 * @dev_instance: pointer to our ata_host_set information structure
4781 * @regs: unused
4782 *
4783 * Default interrupt handler for PCI IDE devices. Calls
4784 * ata_host_intr() for each port that is not disabled.
4785 *
4786 * LOCKING:
4787 * Obtains host_set lock during operation.
4788 *
4789 * RETURNS:
4790 * IRQ_NONE or IRQ_HANDLED.
4791 */
4792
4793 irqreturn_t ata_interrupt (int irq, void *dev_instance, struct pt_regs *regs)
4794 {
4795 struct ata_host_set *host_set = dev_instance;
4796 unsigned int i;
4797 unsigned int handled = 0;
4798 unsigned long flags;
4799
4800 /* TODO: make _irqsave conditional on x86 PCI IDE legacy mode */
4801 spin_lock_irqsave(&host_set->lock, flags);
4802
4803 for (i = 0; i < host_set->n_ports; i++) {
4804 struct ata_port *ap;
4805
4806 ap = host_set->ports[i];
4807 if (ap &&
4808 !(ap->flags & ATA_FLAG_DISABLED)) {
4809 struct ata_queued_cmd *qc;
4810
4811 qc = ata_qc_from_tag(ap, ap->active_tag);
4812 if (qc && (!(qc->tf.flags & ATA_TFLAG_POLLING)) &&
4813 (qc->flags & ATA_QCFLAG_ACTIVE))
4814 handled |= ata_host_intr(ap, qc);
4815 }
4816 }
4817
4818 spin_unlock_irqrestore(&host_set->lock, flags);
4819
4820 return IRQ_RETVAL(handled);
4821 }
4822
4823 /**
4824 * sata_scr_valid - test whether SCRs are accessible
4825 * @ap: ATA port to test SCR accessibility for
4826 *
4827 * Test whether SCRs are accessible for @ap.
4828 *
4829 * LOCKING:
4830 * None.
4831 *
4832 * RETURNS:
4833 * 1 if SCRs are accessible, 0 otherwise.
4834 */
4835 int sata_scr_valid(struct ata_port *ap)
4836 {
4837 return ap->cbl == ATA_CBL_SATA && ap->ops->scr_read;
4838 }
4839
4840 /**
4841 * sata_scr_read - read SCR register of the specified port
4842 * @ap: ATA port to read SCR for
4843 * @reg: SCR to read
4844 * @val: Place to store read value
4845 *
4846 * Read SCR register @reg of @ap into *@val. This function is
4847 * guaranteed to succeed if the cable type of the port is SATA
4848 * and the port implements ->scr_read.
4849 *
4850 * LOCKING:
4851 * None.
4852 *
4853 * RETURNS:
4854 * 0 on success, negative errno on failure.
4855 */
4856 int sata_scr_read(struct ata_port *ap, int reg, u32 *val)
4857 {
4858 if (sata_scr_valid(ap)) {
4859 *val = ap->ops->scr_read(ap, reg);
4860 return 0;
4861 }
4862 return -EOPNOTSUPP;
4863 }
4864
4865 /**
4866 * sata_scr_write - write SCR register of the specified port
4867 * @ap: ATA port to write SCR for
4868 * @reg: SCR to write
4869 * @val: value to write
4870 *
4871 * Write @val to SCR register @reg of @ap. This function is
4872 * guaranteed to succeed if the cable type of the port is SATA
4873 * and the port implements ->scr_read.
4874 *
4875 * LOCKING:
4876 * None.
4877 *
4878 * RETURNS:
4879 * 0 on success, negative errno on failure.
4880 */
4881 int sata_scr_write(struct ata_port *ap, int reg, u32 val)
4882 {
4883 if (sata_scr_valid(ap)) {
4884 ap->ops->scr_write(ap, reg, val);
4885 return 0;
4886 }
4887 return -EOPNOTSUPP;
4888 }
4889
4890 /**
4891 * sata_scr_write_flush - write SCR register of the specified port and flush
4892 * @ap: ATA port to write SCR for
4893 * @reg: SCR to write
4894 * @val: value to write
4895 *
4896 * This function is identical to sata_scr_write() except that this
4897 * function performs flush after writing to the register.
4898 *
4899 * LOCKING:
4900 * None.
4901 *
4902 * RETURNS:
4903 * 0 on success, negative errno on failure.
4904 */
4905 int sata_scr_write_flush(struct ata_port *ap, int reg, u32 val)
4906 {
4907 if (sata_scr_valid(ap)) {
4908 ap->ops->scr_write(ap, reg, val);
4909 ap->ops->scr_read(ap, reg);
4910 return 0;
4911 }
4912 return -EOPNOTSUPP;
4913 }
4914
4915 /**
4916 * ata_port_online - test whether the given port is online
4917 * @ap: ATA port to test
4918 *
4919 * Test whether @ap is online. Note that this function returns 0
4920 * if online status of @ap cannot be obtained, so
4921 * ata_port_online(ap) != !ata_port_offline(ap).
4922 *
4923 * LOCKING:
4924 * None.
4925 *
4926 * RETURNS:
4927 * 1 if the port online status is available and online.
4928 */
4929 int ata_port_online(struct ata_port *ap)
4930 {
4931 u32 sstatus;
4932
4933 if (!sata_scr_read(ap, SCR_STATUS, &sstatus) && (sstatus & 0xf) == 0x3)
4934 return 1;
4935 return 0;
4936 }
4937
4938 /**
4939 * ata_port_offline - test whether the given port is offline
4940 * @ap: ATA port to test
4941 *
4942 * Test whether @ap is offline. Note that this function returns
4943 * 0 if offline status of @ap cannot be obtained, so
4944 * ata_port_online(ap) != !ata_port_offline(ap).
4945 *
4946 * LOCKING:
4947 * None.
4948 *
4949 * RETURNS:
4950 * 1 if the port offline status is available and offline.
4951 */
4952 int ata_port_offline(struct ata_port *ap)
4953 {
4954 u32 sstatus;
4955
4956 if (!sata_scr_read(ap, SCR_STATUS, &sstatus) && (sstatus & 0xf) != 0x3)
4957 return 1;
4958 return 0;
4959 }
4960
4961 /*
4962 * Execute a 'simple' command, that only consists of the opcode 'cmd' itself,
4963 * without filling any other registers
4964 */
4965 static int ata_do_simple_cmd(struct ata_device *dev, u8 cmd)
4966 {
4967 struct ata_taskfile tf;
4968 int err;
4969
4970 ata_tf_init(dev, &tf);
4971
4972 tf.command = cmd;
4973 tf.flags |= ATA_TFLAG_DEVICE;
4974 tf.protocol = ATA_PROT_NODATA;
4975
4976 err = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
4977 if (err)
4978 ata_dev_printk(dev, KERN_ERR, "%s: ata command failed: %d\n",
4979 __FUNCTION__, err);
4980
4981 return err;
4982 }
4983
4984 static int ata_flush_cache(struct ata_device *dev)
4985 {
4986 u8 cmd;
4987
4988 if (!ata_try_flush_cache(dev))
4989 return 0;
4990
4991 if (ata_id_has_flush_ext(dev->id))
4992 cmd = ATA_CMD_FLUSH_EXT;
4993 else
4994 cmd = ATA_CMD_FLUSH;
4995
4996 return ata_do_simple_cmd(dev, cmd);
4997 }
4998
4999 static int ata_standby_drive(struct ata_device *dev)
5000 {
5001 return ata_do_simple_cmd(dev, ATA_CMD_STANDBYNOW1);
5002 }
5003
5004 static int ata_start_drive(struct ata_device *dev)
5005 {
5006 return ata_do_simple_cmd(dev, ATA_CMD_IDLEIMMEDIATE);
5007 }
5008
5009 /**
5010 * ata_device_resume - wakeup a previously suspended devices
5011 * @dev: the device to resume
5012 *
5013 * Kick the drive back into action, by sending it an idle immediate
5014 * command and making sure its transfer mode matches between drive
5015 * and host.
5016 *
5017 */
5018 int ata_device_resume(struct ata_device *dev)
5019 {
5020 struct ata_port *ap = dev->ap;
5021
5022 if (ap->flags & ATA_FLAG_SUSPENDED) {
5023 struct ata_device *failed_dev;
5024
5025 ata_busy_wait(ap, ATA_BUSY | ATA_DRQ, 200000);
5026
5027 ap->flags &= ~ATA_FLAG_SUSPENDED;
5028 while (ata_set_mode(ap, &failed_dev))
5029 ata_dev_disable(failed_dev);
5030 }
5031 if (!ata_dev_enabled(dev))
5032 return 0;
5033 if (dev->class == ATA_DEV_ATA)
5034 ata_start_drive(dev);
5035
5036 return 0;
5037 }
5038
5039 /**
5040 * ata_device_suspend - prepare a device for suspend
5041 * @dev: the device to suspend
5042 * @state: target power management state
5043 *
5044 * Flush the cache on the drive, if appropriate, then issue a
5045 * standbynow command.
5046 */
5047 int ata_device_suspend(struct ata_device *dev, pm_message_t state)
5048 {
5049 struct ata_port *ap = dev->ap;
5050
5051 if (!ata_dev_enabled(dev))
5052 return 0;
5053 if (dev->class == ATA_DEV_ATA)
5054 ata_flush_cache(dev);
5055
5056 if (state.event != PM_EVENT_FREEZE)
5057 ata_standby_drive(dev);
5058 ap->flags |= ATA_FLAG_SUSPENDED;
5059 return 0;
5060 }
5061
5062 /**
5063 * ata_port_start - Set port up for dma.
5064 * @ap: Port to initialize
5065 *
5066 * Called just after data structures for each port are
5067 * initialized. Allocates space for PRD table.
5068 *
5069 * May be used as the port_start() entry in ata_port_operations.
5070 *
5071 * LOCKING:
5072 * Inherited from caller.
5073 */
5074
5075 int ata_port_start (struct ata_port *ap)
5076 {
5077 struct device *dev = ap->dev;
5078 int rc;
5079
5080 ap->prd = dma_alloc_coherent(dev, ATA_PRD_TBL_SZ, &ap->prd_dma, GFP_KERNEL);
5081 if (!ap->prd)
5082 return -ENOMEM;
5083
5084 rc = ata_pad_alloc(ap, dev);
5085 if (rc) {
5086 dma_free_coherent(dev, ATA_PRD_TBL_SZ, ap->prd, ap->prd_dma);
5087 return rc;
5088 }
5089
5090 DPRINTK("prd alloc, virt %p, dma %llx\n", ap->prd, (unsigned long long) ap->prd_dma);
5091
5092 return 0;
5093 }
5094
5095
5096 /**
5097 * ata_port_stop - Undo ata_port_start()
5098 * @ap: Port to shut down
5099 *
5100 * Frees the PRD table.
5101 *
5102 * May be used as the port_stop() entry in ata_port_operations.
5103 *
5104 * LOCKING:
5105 * Inherited from caller.
5106 */
5107
5108 void ata_port_stop (struct ata_port *ap)
5109 {
5110 struct device *dev = ap->dev;
5111
5112 dma_free_coherent(dev, ATA_PRD_TBL_SZ, ap->prd, ap->prd_dma);
5113 ata_pad_free(ap, dev);
5114 }
5115
5116 void ata_host_stop (struct ata_host_set *host_set)
5117 {
5118 if (host_set->mmio_base)
5119 iounmap(host_set->mmio_base);
5120 }
5121
5122
5123 /**
5124 * ata_host_remove - Unregister SCSI host structure with upper layers
5125 * @ap: Port to unregister
5126 * @do_unregister: 1 if we fully unregister, 0 to just stop the port
5127 *
5128 * LOCKING:
5129 * Inherited from caller.
5130 */
5131
5132 static void ata_host_remove(struct ata_port *ap, unsigned int do_unregister)
5133 {
5134 struct Scsi_Host *sh = ap->host;
5135
5136 DPRINTK("ENTER\n");
5137
5138 if (do_unregister)
5139 scsi_remove_host(sh);
5140
5141 ap->ops->port_stop(ap);
5142 }
5143
5144 /**
5145 * ata_host_init - Initialize an ata_port structure
5146 * @ap: Structure to initialize
5147 * @host: associated SCSI mid-layer structure
5148 * @host_set: Collection of hosts to which @ap belongs
5149 * @ent: Probe information provided by low-level driver
5150 * @port_no: Port number associated with this ata_port
5151 *
5152 * Initialize a new ata_port structure, and its associated
5153 * scsi_host.
5154 *
5155 * LOCKING:
5156 * Inherited from caller.
5157 */
5158
5159 static void ata_host_init(struct ata_port *ap, struct Scsi_Host *host,
5160 struct ata_host_set *host_set,
5161 const struct ata_probe_ent *ent, unsigned int port_no)
5162 {
5163 unsigned int i;
5164
5165 host->max_id = 16;
5166 host->max_lun = 1;
5167 host->max_channel = 1;
5168 host->unique_id = ata_unique_id++;
5169 host->max_cmd_len = 12;
5170
5171 ap->flags = ATA_FLAG_DISABLED;
5172 ap->id = host->unique_id;
5173 ap->host = host;
5174 ap->ctl = ATA_DEVCTL_OBS;
5175 ap->host_set = host_set;
5176 ap->dev = ent->dev;
5177 ap->port_no = port_no;
5178 ap->hard_port_no =
5179 ent->legacy_mode ? ent->hard_port_no : port_no;
5180 ap->pio_mask = ent->pio_mask;
5181 ap->mwdma_mask = ent->mwdma_mask;
5182 ap->udma_mask = ent->udma_mask;
5183 ap->flags |= ent->host_flags;
5184 ap->ops = ent->port_ops;
5185 ap->sata_spd_limit = UINT_MAX;
5186 ap->active_tag = ATA_TAG_POISON;
5187 ap->last_ctl = 0xFF;
5188 ap->msg_enable = ATA_MSG_DRV;
5189
5190 INIT_WORK(&ap->port_task, NULL, NULL);
5191 INIT_LIST_HEAD(&ap->eh_done_q);
5192 init_waitqueue_head(&ap->eh_wait_q);
5193
5194 /* set cable type */
5195 ap->cbl = ATA_CBL_NONE;
5196 if (ap->flags & ATA_FLAG_SATA)
5197 ap->cbl = ATA_CBL_SATA;
5198
5199 for (i = 0; i < ATA_MAX_DEVICES; i++) {
5200 struct ata_device *dev = &ap->device[i];
5201 dev->ap = ap;
5202 dev->devno = i;
5203 dev->pio_mask = UINT_MAX;
5204 dev->mwdma_mask = UINT_MAX;
5205 dev->udma_mask = UINT_MAX;
5206 }
5207
5208 #ifdef ATA_IRQ_TRAP
5209 ap->stats.unhandled_irq = 1;
5210 ap->stats.idle_irq = 1;
5211 #endif
5212
5213 memcpy(&ap->ioaddr, &ent->port[port_no], sizeof(struct ata_ioports));
5214 }
5215
5216 /**
5217 * ata_host_add - Attach low-level ATA driver to system
5218 * @ent: Information provided by low-level driver
5219 * @host_set: Collections of ports to which we add
5220 * @port_no: Port number associated with this host
5221 *
5222 * Attach low-level ATA driver to system.
5223 *
5224 * LOCKING:
5225 * PCI/etc. bus probe sem.
5226 *
5227 * RETURNS:
5228 * New ata_port on success, for NULL on error.
5229 */
5230
5231 static struct ata_port * ata_host_add(const struct ata_probe_ent *ent,
5232 struct ata_host_set *host_set,
5233 unsigned int port_no)
5234 {
5235 struct Scsi_Host *host;
5236 struct ata_port *ap;
5237 int rc;
5238
5239 DPRINTK("ENTER\n");
5240
5241 if (!ent->port_ops->probe_reset &&
5242 !(ent->host_flags & (ATA_FLAG_SATA_RESET | ATA_FLAG_SRST))) {
5243 printk(KERN_ERR "ata%u: no reset mechanism available\n",
5244 port_no);
5245 return NULL;
5246 }
5247
5248 host = scsi_host_alloc(ent->sht, sizeof(struct ata_port));
5249 if (!host)
5250 return NULL;
5251
5252 host->transportt = &ata_scsi_transport_template;
5253
5254 ap = ata_shost_to_port(host);
5255
5256 ata_host_init(ap, host, host_set, ent, port_no);
5257
5258 rc = ap->ops->port_start(ap);
5259 if (rc)
5260 goto err_out;
5261
5262 return ap;
5263
5264 err_out:
5265 scsi_host_put(host);
5266 return NULL;
5267 }
5268
5269 /**
5270 * ata_device_add - Register hardware device with ATA and SCSI layers
5271 * @ent: Probe information describing hardware device to be registered
5272 *
5273 * This function processes the information provided in the probe
5274 * information struct @ent, allocates the necessary ATA and SCSI
5275 * host information structures, initializes them, and registers
5276 * everything with requisite kernel subsystems.
5277 *
5278 * This function requests irqs, probes the ATA bus, and probes
5279 * the SCSI bus.
5280 *
5281 * LOCKING:
5282 * PCI/etc. bus probe sem.
5283 *
5284 * RETURNS:
5285 * Number of ports registered. Zero on error (no ports registered).
5286 */
5287
5288 int ata_device_add(const struct ata_probe_ent *ent)
5289 {
5290 unsigned int count = 0, i;
5291 struct device *dev = ent->dev;
5292 struct ata_host_set *host_set;
5293
5294 DPRINTK("ENTER\n");
5295 /* alloc a container for our list of ATA ports (buses) */
5296 host_set = kzalloc(sizeof(struct ata_host_set) +
5297 (ent->n_ports * sizeof(void *)), GFP_KERNEL);
5298 if (!host_set)
5299 return 0;
5300 spin_lock_init(&host_set->lock);
5301
5302 host_set->dev = dev;
5303 host_set->n_ports = ent->n_ports;
5304 host_set->irq = ent->irq;
5305 host_set->mmio_base = ent->mmio_base;
5306 host_set->private_data = ent->private_data;
5307 host_set->ops = ent->port_ops;
5308 host_set->flags = ent->host_set_flags;
5309
5310 /* register each port bound to this device */
5311 for (i = 0; i < ent->n_ports; i++) {
5312 struct ata_port *ap;
5313 unsigned long xfer_mode_mask;
5314
5315 ap = ata_host_add(ent, host_set, i);
5316 if (!ap)
5317 goto err_out;
5318
5319 host_set->ports[i] = ap;
5320 xfer_mode_mask =(ap->udma_mask << ATA_SHIFT_UDMA) |
5321 (ap->mwdma_mask << ATA_SHIFT_MWDMA) |
5322 (ap->pio_mask << ATA_SHIFT_PIO);
5323
5324 /* print per-port info to dmesg */
5325 ata_port_printk(ap, KERN_INFO, "%cATA max %s cmd 0x%lX "
5326 "ctl 0x%lX bmdma 0x%lX irq %lu\n",
5327 ap->flags & ATA_FLAG_SATA ? 'S' : 'P',
5328 ata_mode_string(xfer_mode_mask),
5329 ap->ioaddr.cmd_addr,
5330 ap->ioaddr.ctl_addr,
5331 ap->ioaddr.bmdma_addr,
5332 ent->irq);
5333
5334 ata_chk_status(ap);
5335 host_set->ops->irq_clear(ap);
5336 ata_eh_freeze_port(ap); /* freeze port before requesting IRQ */
5337 count++;
5338 }
5339
5340 if (!count)
5341 goto err_free_ret;
5342
5343 /* obtain irq, that is shared between channels */
5344 if (request_irq(ent->irq, ent->port_ops->irq_handler, ent->irq_flags,
5345 DRV_NAME, host_set))
5346 goto err_out;
5347
5348 /* perform each probe synchronously */
5349 DPRINTK("probe begin\n");
5350 for (i = 0; i < count; i++) {
5351 struct ata_port *ap;
5352 int rc;
5353
5354 ap = host_set->ports[i];
5355
5356 DPRINTK("ata%u: bus probe begin\n", ap->id);
5357 rc = ata_bus_probe(ap);
5358 DPRINTK("ata%u: bus probe end\n", ap->id);
5359
5360 if (rc) {
5361 /* FIXME: do something useful here?
5362 * Current libata behavior will
5363 * tear down everything when
5364 * the module is removed
5365 * or the h/w is unplugged.
5366 */
5367 }
5368
5369 rc = scsi_add_host(ap->host, dev);
5370 if (rc) {
5371 ata_port_printk(ap, KERN_ERR, "scsi_add_host failed\n");
5372 /* FIXME: do something useful here */
5373 /* FIXME: handle unconditional calls to
5374 * scsi_scan_host and ata_host_remove, below,
5375 * at the very least
5376 */
5377 }
5378 }
5379
5380 /* probes are done, now scan each port's disk(s) */
5381 DPRINTK("host probe begin\n");
5382 for (i = 0; i < count; i++) {
5383 struct ata_port *ap = host_set->ports[i];
5384
5385 ata_scsi_scan_host(ap);
5386 }
5387
5388 dev_set_drvdata(dev, host_set);
5389
5390 VPRINTK("EXIT, returning %u\n", ent->n_ports);
5391 return ent->n_ports; /* success */
5392
5393 err_out:
5394 for (i = 0; i < count; i++) {
5395 ata_host_remove(host_set->ports[i], 1);
5396 scsi_host_put(host_set->ports[i]->host);
5397 }
5398 err_free_ret:
5399 kfree(host_set);
5400 VPRINTK("EXIT, returning 0\n");
5401 return 0;
5402 }
5403
5404 /**
5405 * ata_host_set_remove - PCI layer callback for device removal
5406 * @host_set: ATA host set that was removed
5407 *
5408 * Unregister all objects associated with this host set. Free those
5409 * objects.
5410 *
5411 * LOCKING:
5412 * Inherited from calling layer (may sleep).
5413 */
5414
5415 void ata_host_set_remove(struct ata_host_set *host_set)
5416 {
5417 struct ata_port *ap;
5418 unsigned int i;
5419
5420 for (i = 0; i < host_set->n_ports; i++) {
5421 ap = host_set->ports[i];
5422 scsi_remove_host(ap->host);
5423 }
5424
5425 free_irq(host_set->irq, host_set);
5426
5427 for (i = 0; i < host_set->n_ports; i++) {
5428 ap = host_set->ports[i];
5429
5430 ata_scsi_release(ap->host);
5431
5432 if ((ap->flags & ATA_FLAG_NO_LEGACY) == 0) {
5433 struct ata_ioports *ioaddr = &ap->ioaddr;
5434
5435 if (ioaddr->cmd_addr == 0x1f0)
5436 release_region(0x1f0, 8);
5437 else if (ioaddr->cmd_addr == 0x170)
5438 release_region(0x170, 8);
5439 }
5440
5441 scsi_host_put(ap->host);
5442 }
5443
5444 if (host_set->ops->host_stop)
5445 host_set->ops->host_stop(host_set);
5446
5447 kfree(host_set);
5448 }
5449
5450 /**
5451 * ata_scsi_release - SCSI layer callback hook for host unload
5452 * @host: libata host to be unloaded
5453 *
5454 * Performs all duties necessary to shut down a libata port...
5455 * Kill port kthread, disable port, and release resources.
5456 *
5457 * LOCKING:
5458 * Inherited from SCSI layer.
5459 *
5460 * RETURNS:
5461 * One.
5462 */
5463
5464 int ata_scsi_release(struct Scsi_Host *host)
5465 {
5466 struct ata_port *ap = ata_shost_to_port(host);
5467
5468 DPRINTK("ENTER\n");
5469
5470 ap->ops->port_disable(ap);
5471 ata_host_remove(ap, 0);
5472
5473 DPRINTK("EXIT\n");
5474 return 1;
5475 }
5476
5477 /**
5478 * ata_std_ports - initialize ioaddr with standard port offsets.
5479 * @ioaddr: IO address structure to be initialized
5480 *
5481 * Utility function which initializes data_addr, error_addr,
5482 * feature_addr, nsect_addr, lbal_addr, lbam_addr, lbah_addr,
5483 * device_addr, status_addr, and command_addr to standard offsets
5484 * relative to cmd_addr.
5485 *
5486 * Does not set ctl_addr, altstatus_addr, bmdma_addr, or scr_addr.
5487 */
5488
5489 void ata_std_ports(struct ata_ioports *ioaddr)
5490 {
5491 ioaddr->data_addr = ioaddr->cmd_addr + ATA_REG_DATA;
5492 ioaddr->error_addr = ioaddr->cmd_addr + ATA_REG_ERR;
5493 ioaddr->feature_addr = ioaddr->cmd_addr + ATA_REG_FEATURE;
5494 ioaddr->nsect_addr = ioaddr->cmd_addr + ATA_REG_NSECT;
5495 ioaddr->lbal_addr = ioaddr->cmd_addr + ATA_REG_LBAL;
5496 ioaddr->lbam_addr = ioaddr->cmd_addr + ATA_REG_LBAM;
5497 ioaddr->lbah_addr = ioaddr->cmd_addr + ATA_REG_LBAH;
5498 ioaddr->device_addr = ioaddr->cmd_addr + ATA_REG_DEVICE;
5499 ioaddr->status_addr = ioaddr->cmd_addr + ATA_REG_STATUS;
5500 ioaddr->command_addr = ioaddr->cmd_addr + ATA_REG_CMD;
5501 }
5502
5503
5504 #ifdef CONFIG_PCI
5505
5506 void ata_pci_host_stop (struct ata_host_set *host_set)
5507 {
5508 struct pci_dev *pdev = to_pci_dev(host_set->dev);
5509
5510 pci_iounmap(pdev, host_set->mmio_base);
5511 }
5512
5513 /**
5514 * ata_pci_remove_one - PCI layer callback for device removal
5515 * @pdev: PCI device that was removed
5516 *
5517 * PCI layer indicates to libata via this hook that
5518 * hot-unplug or module unload event has occurred.
5519 * Handle this by unregistering all objects associated
5520 * with this PCI device. Free those objects. Then finally
5521 * release PCI resources and disable device.
5522 *
5523 * LOCKING:
5524 * Inherited from PCI layer (may sleep).
5525 */
5526
5527 void ata_pci_remove_one (struct pci_dev *pdev)
5528 {
5529 struct device *dev = pci_dev_to_dev(pdev);
5530 struct ata_host_set *host_set = dev_get_drvdata(dev);
5531
5532 ata_host_set_remove(host_set);
5533 pci_release_regions(pdev);
5534 pci_disable_device(pdev);
5535 dev_set_drvdata(dev, NULL);
5536 }
5537
5538 /* move to PCI subsystem */
5539 int pci_test_config_bits(struct pci_dev *pdev, const struct pci_bits *bits)
5540 {
5541 unsigned long tmp = 0;
5542
5543 switch (bits->width) {
5544 case 1: {
5545 u8 tmp8 = 0;
5546 pci_read_config_byte(pdev, bits->reg, &tmp8);
5547 tmp = tmp8;
5548 break;
5549 }
5550 case 2: {
5551 u16 tmp16 = 0;
5552 pci_read_config_word(pdev, bits->reg, &tmp16);
5553 tmp = tmp16;
5554 break;
5555 }
5556 case 4: {
5557 u32 tmp32 = 0;
5558 pci_read_config_dword(pdev, bits->reg, &tmp32);
5559 tmp = tmp32;
5560 break;
5561 }
5562
5563 default:
5564 return -EINVAL;
5565 }
5566
5567 tmp &= bits->mask;
5568
5569 return (tmp == bits->val) ? 1 : 0;
5570 }
5571
5572 int ata_pci_device_suspend(struct pci_dev *pdev, pm_message_t state)
5573 {
5574 pci_save_state(pdev);
5575 pci_disable_device(pdev);
5576 pci_set_power_state(pdev, PCI_D3hot);
5577 return 0;
5578 }
5579
5580 int ata_pci_device_resume(struct pci_dev *pdev)
5581 {
5582 pci_set_power_state(pdev, PCI_D0);
5583 pci_restore_state(pdev);
5584 pci_enable_device(pdev);
5585 pci_set_master(pdev);
5586 return 0;
5587 }
5588 #endif /* CONFIG_PCI */
5589
5590
5591 static int __init ata_init(void)
5592 {
5593 ata_wq = create_workqueue("ata");
5594 if (!ata_wq)
5595 return -ENOMEM;
5596
5597 printk(KERN_DEBUG "libata version " DRV_VERSION " loaded.\n");
5598 return 0;
5599 }
5600
5601 static void __exit ata_exit(void)
5602 {
5603 destroy_workqueue(ata_wq);
5604 }
5605
5606 module_init(ata_init);
5607 module_exit(ata_exit);
5608
5609 static unsigned long ratelimit_time;
5610 static spinlock_t ata_ratelimit_lock = SPIN_LOCK_UNLOCKED;
5611
5612 int ata_ratelimit(void)
5613 {
5614 int rc;
5615 unsigned long flags;
5616
5617 spin_lock_irqsave(&ata_ratelimit_lock, flags);
5618
5619 if (time_after(jiffies, ratelimit_time)) {
5620 rc = 1;
5621 ratelimit_time = jiffies + (HZ/5);
5622 } else
5623 rc = 0;
5624
5625 spin_unlock_irqrestore(&ata_ratelimit_lock, flags);
5626
5627 return rc;
5628 }
5629
5630 /**
5631 * ata_wait_register - wait until register value changes
5632 * @reg: IO-mapped register
5633 * @mask: Mask to apply to read register value
5634 * @val: Wait condition
5635 * @interval_msec: polling interval in milliseconds
5636 * @timeout_msec: timeout in milliseconds
5637 *
5638 * Waiting for some bits of register to change is a common
5639 * operation for ATA controllers. This function reads 32bit LE
5640 * IO-mapped register @reg and tests for the following condition.
5641 *
5642 * (*@reg & mask) != val
5643 *
5644 * If the condition is met, it returns; otherwise, the process is
5645 * repeated after @interval_msec until timeout.
5646 *
5647 * LOCKING:
5648 * Kernel thread context (may sleep)
5649 *
5650 * RETURNS:
5651 * The final register value.
5652 */
5653 u32 ata_wait_register(void __iomem *reg, u32 mask, u32 val,
5654 unsigned long interval_msec,
5655 unsigned long timeout_msec)
5656 {
5657 unsigned long timeout;
5658 u32 tmp;
5659
5660 tmp = ioread32(reg);
5661
5662 /* Calculate timeout _after_ the first read to make sure
5663 * preceding writes reach the controller before starting to
5664 * eat away the timeout.
5665 */
5666 timeout = jiffies + (timeout_msec * HZ) / 1000;
5667
5668 while ((tmp & mask) == val && time_before(jiffies, timeout)) {
5669 msleep(interval_msec);
5670 tmp = ioread32(reg);
5671 }
5672
5673 return tmp;
5674 }
5675
5676 /*
5677 * libata is essentially a library of internal helper functions for
5678 * low-level ATA host controller drivers. As such, the API/ABI is
5679 * likely to change as new drivers are added and updated.
5680 * Do not depend on ABI/API stability.
5681 */
5682
5683 EXPORT_SYMBOL_GPL(ata_std_bios_param);
5684 EXPORT_SYMBOL_GPL(ata_std_ports);
5685 EXPORT_SYMBOL_GPL(ata_device_add);
5686 EXPORT_SYMBOL_GPL(ata_host_set_remove);
5687 EXPORT_SYMBOL_GPL(ata_sg_init);
5688 EXPORT_SYMBOL_GPL(ata_sg_init_one);
5689 EXPORT_SYMBOL_GPL(ata_qc_complete);
5690 EXPORT_SYMBOL_GPL(ata_qc_complete_multiple);
5691 EXPORT_SYMBOL_GPL(ata_qc_issue_prot);
5692 EXPORT_SYMBOL_GPL(ata_tf_load);
5693 EXPORT_SYMBOL_GPL(ata_tf_read);
5694 EXPORT_SYMBOL_GPL(ata_noop_dev_select);
5695 EXPORT_SYMBOL_GPL(ata_std_dev_select);
5696 EXPORT_SYMBOL_GPL(ata_tf_to_fis);
5697 EXPORT_SYMBOL_GPL(ata_tf_from_fis);
5698 EXPORT_SYMBOL_GPL(ata_check_status);
5699 EXPORT_SYMBOL_GPL(ata_altstatus);
5700 EXPORT_SYMBOL_GPL(ata_exec_command);
5701 EXPORT_SYMBOL_GPL(ata_port_start);
5702 EXPORT_SYMBOL_GPL(ata_port_stop);
5703 EXPORT_SYMBOL_GPL(ata_host_stop);
5704 EXPORT_SYMBOL_GPL(ata_interrupt);
5705 EXPORT_SYMBOL_GPL(ata_mmio_data_xfer);
5706 EXPORT_SYMBOL_GPL(ata_pio_data_xfer);
5707 EXPORT_SYMBOL_GPL(ata_pio_data_xfer_noirq);
5708 EXPORT_SYMBOL_GPL(ata_qc_prep);
5709 EXPORT_SYMBOL_GPL(ata_noop_qc_prep);
5710 EXPORT_SYMBOL_GPL(ata_bmdma_setup);
5711 EXPORT_SYMBOL_GPL(ata_bmdma_start);
5712 EXPORT_SYMBOL_GPL(ata_bmdma_irq_clear);
5713 EXPORT_SYMBOL_GPL(ata_bmdma_status);
5714 EXPORT_SYMBOL_GPL(ata_bmdma_stop);
5715 EXPORT_SYMBOL_GPL(ata_bmdma_freeze);
5716 EXPORT_SYMBOL_GPL(ata_bmdma_thaw);
5717 EXPORT_SYMBOL_GPL(ata_bmdma_drive_eh);
5718 EXPORT_SYMBOL_GPL(ata_bmdma_error_handler);
5719 EXPORT_SYMBOL_GPL(ata_bmdma_post_internal_cmd);
5720 EXPORT_SYMBOL_GPL(ata_port_probe);
5721 EXPORT_SYMBOL_GPL(sata_set_spd);
5722 EXPORT_SYMBOL_GPL(sata_phy_reset);
5723 EXPORT_SYMBOL_GPL(__sata_phy_reset);
5724 EXPORT_SYMBOL_GPL(ata_bus_reset);
5725 EXPORT_SYMBOL_GPL(ata_std_probeinit);
5726 EXPORT_SYMBOL_GPL(ata_std_softreset);
5727 EXPORT_SYMBOL_GPL(sata_std_hardreset);
5728 EXPORT_SYMBOL_GPL(ata_std_postreset);
5729 EXPORT_SYMBOL_GPL(ata_std_probe_reset);
5730 EXPORT_SYMBOL_GPL(ata_drive_probe_reset);
5731 EXPORT_SYMBOL_GPL(ata_dev_revalidate);
5732 EXPORT_SYMBOL_GPL(ata_dev_classify);
5733 EXPORT_SYMBOL_GPL(ata_dev_pair);
5734 EXPORT_SYMBOL_GPL(ata_port_disable);
5735 EXPORT_SYMBOL_GPL(ata_ratelimit);
5736 EXPORT_SYMBOL_GPL(ata_wait_register);
5737 EXPORT_SYMBOL_GPL(ata_busy_sleep);
5738 EXPORT_SYMBOL_GPL(ata_port_queue_task);
5739 EXPORT_SYMBOL_GPL(ata_scsi_ioctl);
5740 EXPORT_SYMBOL_GPL(ata_scsi_queuecmd);
5741 EXPORT_SYMBOL_GPL(ata_scsi_slave_config);
5742 EXPORT_SYMBOL_GPL(ata_scsi_change_queue_depth);
5743 EXPORT_SYMBOL_GPL(ata_scsi_release);
5744 EXPORT_SYMBOL_GPL(ata_host_intr);
5745 EXPORT_SYMBOL_GPL(sata_scr_valid);
5746 EXPORT_SYMBOL_GPL(sata_scr_read);
5747 EXPORT_SYMBOL_GPL(sata_scr_write);
5748 EXPORT_SYMBOL_GPL(sata_scr_write_flush);
5749 EXPORT_SYMBOL_GPL(ata_port_online);
5750 EXPORT_SYMBOL_GPL(ata_port_offline);
5751 EXPORT_SYMBOL_GPL(ata_id_string);
5752 EXPORT_SYMBOL_GPL(ata_id_c_string);
5753 EXPORT_SYMBOL_GPL(ata_scsi_simulate);
5754
5755 EXPORT_SYMBOL_GPL(ata_pio_need_iordy);
5756 EXPORT_SYMBOL_GPL(ata_timing_compute);
5757 EXPORT_SYMBOL_GPL(ata_timing_merge);
5758
5759 #ifdef CONFIG_PCI
5760 EXPORT_SYMBOL_GPL(pci_test_config_bits);
5761 EXPORT_SYMBOL_GPL(ata_pci_host_stop);
5762 EXPORT_SYMBOL_GPL(ata_pci_init_native_mode);
5763 EXPORT_SYMBOL_GPL(ata_pci_init_one);
5764 EXPORT_SYMBOL_GPL(ata_pci_remove_one);
5765 EXPORT_SYMBOL_GPL(ata_pci_device_suspend);
5766 EXPORT_SYMBOL_GPL(ata_pci_device_resume);
5767 EXPORT_SYMBOL_GPL(ata_pci_default_filter);
5768 EXPORT_SYMBOL_GPL(ata_pci_clear_simplex);
5769 #endif /* CONFIG_PCI */
5770
5771 EXPORT_SYMBOL_GPL(ata_device_suspend);
5772 EXPORT_SYMBOL_GPL(ata_device_resume);
5773 EXPORT_SYMBOL_GPL(ata_scsi_device_suspend);
5774 EXPORT_SYMBOL_GPL(ata_scsi_device_resume);
5775
5776 EXPORT_SYMBOL_GPL(ata_eng_timeout);
5777 EXPORT_SYMBOL_GPL(ata_port_schedule_eh);
5778 EXPORT_SYMBOL_GPL(ata_port_abort);
5779 EXPORT_SYMBOL_GPL(ata_port_freeze);
5780 EXPORT_SYMBOL_GPL(ata_eh_freeze_port);
5781 EXPORT_SYMBOL_GPL(ata_eh_thaw_port);
5782 EXPORT_SYMBOL_GPL(ata_eh_qc_complete);
5783 EXPORT_SYMBOL_GPL(ata_eh_qc_retry);
5784 EXPORT_SYMBOL_GPL(ata_do_eh);
This page took 0.350621 seconds and 6 git commands to generate.