[PATCH] fs/buffer.c: cleanups
[deliverable/linux.git] / drivers / scsi / libata-core.c
1 /*
2 * libata-core.c - helper library for ATA
3 *
4 * Maintained by: Jeff Garzik <jgarzik@pobox.com>
5 * Please ALWAYS copy linux-ide@vger.kernel.org
6 * on emails.
7 *
8 * Copyright 2003-2004 Red Hat, Inc. All rights reserved.
9 * Copyright 2003-2004 Jeff Garzik
10 *
11 *
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2, or (at your option)
15 * any later version.
16 *
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
21 *
22 * You should have received a copy of the GNU General Public License
23 * along with this program; see the file COPYING. If not, write to
24 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
25 *
26 *
27 * libata documentation is available via 'make {ps|pdf}docs',
28 * as Documentation/DocBook/libata.*
29 *
30 * Hardware documentation available from http://www.t13.org/ and
31 * http://www.sata-io.org/
32 *
33 */
34
35 #include <linux/config.h>
36 #include <linux/kernel.h>
37 #include <linux/module.h>
38 #include <linux/pci.h>
39 #include <linux/init.h>
40 #include <linux/list.h>
41 #include <linux/mm.h>
42 #include <linux/highmem.h>
43 #include <linux/spinlock.h>
44 #include <linux/blkdev.h>
45 #include <linux/delay.h>
46 #include <linux/timer.h>
47 #include <linux/interrupt.h>
48 #include <linux/completion.h>
49 #include <linux/suspend.h>
50 #include <linux/workqueue.h>
51 #include <linux/jiffies.h>
52 #include <linux/scatterlist.h>
53 #include <scsi/scsi.h>
54 #include "scsi_priv.h"
55 #include <scsi/scsi_cmnd.h>
56 #include <scsi/scsi_host.h>
57 #include <linux/libata.h>
58 #include <asm/io.h>
59 #include <asm/semaphore.h>
60 #include <asm/byteorder.h>
61
62 #include "libata.h"
63
64 /* debounce timing parameters in msecs { interval, duration, timeout } */
65 const unsigned long sata_deb_timing_boot[] = { 5, 100, 2000 };
66 const unsigned long sata_deb_timing_eh[] = { 25, 500, 2000 };
67 const unsigned long sata_deb_timing_before_fsrst[] = { 100, 2000, 5000 };
68
69 static unsigned int ata_dev_init_params(struct ata_device *dev,
70 u16 heads, u16 sectors);
71 static unsigned int ata_dev_set_xfermode(struct ata_device *dev);
72 static void ata_dev_xfermask(struct ata_device *dev);
73
74 static unsigned int ata_unique_id = 1;
75 static struct workqueue_struct *ata_wq;
76
77 struct workqueue_struct *ata_aux_wq;
78
79 int atapi_enabled = 1;
80 module_param(atapi_enabled, int, 0444);
81 MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on)");
82
83 int atapi_dmadir = 0;
84 module_param(atapi_dmadir, int, 0444);
85 MODULE_PARM_DESC(atapi_dmadir, "Enable ATAPI DMADIR bridge support (0=off, 1=on)");
86
87 int libata_fua = 0;
88 module_param_named(fua, libata_fua, int, 0444);
89 MODULE_PARM_DESC(fua, "FUA support (0=off, 1=on)");
90
91 MODULE_AUTHOR("Jeff Garzik");
92 MODULE_DESCRIPTION("Library module for ATA devices");
93 MODULE_LICENSE("GPL");
94 MODULE_VERSION(DRV_VERSION);
95
96
97 /**
98 * ata_tf_to_fis - Convert ATA taskfile to SATA FIS structure
99 * @tf: Taskfile to convert
100 * @fis: Buffer into which data will output
101 * @pmp: Port multiplier port
102 *
103 * Converts a standard ATA taskfile to a Serial ATA
104 * FIS structure (Register - Host to Device).
105 *
106 * LOCKING:
107 * Inherited from caller.
108 */
109
110 void ata_tf_to_fis(const struct ata_taskfile *tf, u8 *fis, u8 pmp)
111 {
112 fis[0] = 0x27; /* Register - Host to Device FIS */
113 fis[1] = (pmp & 0xf) | (1 << 7); /* Port multiplier number,
114 bit 7 indicates Command FIS */
115 fis[2] = tf->command;
116 fis[3] = tf->feature;
117
118 fis[4] = tf->lbal;
119 fis[5] = tf->lbam;
120 fis[6] = tf->lbah;
121 fis[7] = tf->device;
122
123 fis[8] = tf->hob_lbal;
124 fis[9] = tf->hob_lbam;
125 fis[10] = tf->hob_lbah;
126 fis[11] = tf->hob_feature;
127
128 fis[12] = tf->nsect;
129 fis[13] = tf->hob_nsect;
130 fis[14] = 0;
131 fis[15] = tf->ctl;
132
133 fis[16] = 0;
134 fis[17] = 0;
135 fis[18] = 0;
136 fis[19] = 0;
137 }
138
139 /**
140 * ata_tf_from_fis - Convert SATA FIS to ATA taskfile
141 * @fis: Buffer from which data will be input
142 * @tf: Taskfile to output
143 *
144 * Converts a serial ATA FIS structure to a standard ATA taskfile.
145 *
146 * LOCKING:
147 * Inherited from caller.
148 */
149
150 void ata_tf_from_fis(const u8 *fis, struct ata_taskfile *tf)
151 {
152 tf->command = fis[2]; /* status */
153 tf->feature = fis[3]; /* error */
154
155 tf->lbal = fis[4];
156 tf->lbam = fis[5];
157 tf->lbah = fis[6];
158 tf->device = fis[7];
159
160 tf->hob_lbal = fis[8];
161 tf->hob_lbam = fis[9];
162 tf->hob_lbah = fis[10];
163
164 tf->nsect = fis[12];
165 tf->hob_nsect = fis[13];
166 }
167
168 static const u8 ata_rw_cmds[] = {
169 /* pio multi */
170 ATA_CMD_READ_MULTI,
171 ATA_CMD_WRITE_MULTI,
172 ATA_CMD_READ_MULTI_EXT,
173 ATA_CMD_WRITE_MULTI_EXT,
174 0,
175 0,
176 0,
177 ATA_CMD_WRITE_MULTI_FUA_EXT,
178 /* pio */
179 ATA_CMD_PIO_READ,
180 ATA_CMD_PIO_WRITE,
181 ATA_CMD_PIO_READ_EXT,
182 ATA_CMD_PIO_WRITE_EXT,
183 0,
184 0,
185 0,
186 0,
187 /* dma */
188 ATA_CMD_READ,
189 ATA_CMD_WRITE,
190 ATA_CMD_READ_EXT,
191 ATA_CMD_WRITE_EXT,
192 0,
193 0,
194 0,
195 ATA_CMD_WRITE_FUA_EXT
196 };
197
198 /**
199 * ata_rwcmd_protocol - set taskfile r/w commands and protocol
200 * @qc: command to examine and configure
201 *
202 * Examine the device configuration and tf->flags to calculate
203 * the proper read/write commands and protocol to use.
204 *
205 * LOCKING:
206 * caller.
207 */
208 int ata_rwcmd_protocol(struct ata_queued_cmd *qc)
209 {
210 struct ata_taskfile *tf = &qc->tf;
211 struct ata_device *dev = qc->dev;
212 u8 cmd;
213
214 int index, fua, lba48, write;
215
216 fua = (tf->flags & ATA_TFLAG_FUA) ? 4 : 0;
217 lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0;
218 write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0;
219
220 if (dev->flags & ATA_DFLAG_PIO) {
221 tf->protocol = ATA_PROT_PIO;
222 index = dev->multi_count ? 0 : 8;
223 } else if (lba48 && (qc->ap->flags & ATA_FLAG_PIO_LBA48)) {
224 /* Unable to use DMA due to host limitation */
225 tf->protocol = ATA_PROT_PIO;
226 index = dev->multi_count ? 0 : 8;
227 } else {
228 tf->protocol = ATA_PROT_DMA;
229 index = 16;
230 }
231
232 cmd = ata_rw_cmds[index + fua + lba48 + write];
233 if (cmd) {
234 tf->command = cmd;
235 return 0;
236 }
237 return -1;
238 }
239
240 /**
241 * ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask
242 * @pio_mask: pio_mask
243 * @mwdma_mask: mwdma_mask
244 * @udma_mask: udma_mask
245 *
246 * Pack @pio_mask, @mwdma_mask and @udma_mask into a single
247 * unsigned int xfer_mask.
248 *
249 * LOCKING:
250 * None.
251 *
252 * RETURNS:
253 * Packed xfer_mask.
254 */
255 static unsigned int ata_pack_xfermask(unsigned int pio_mask,
256 unsigned int mwdma_mask,
257 unsigned int udma_mask)
258 {
259 return ((pio_mask << ATA_SHIFT_PIO) & ATA_MASK_PIO) |
260 ((mwdma_mask << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA) |
261 ((udma_mask << ATA_SHIFT_UDMA) & ATA_MASK_UDMA);
262 }
263
264 /**
265 * ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks
266 * @xfer_mask: xfer_mask to unpack
267 * @pio_mask: resulting pio_mask
268 * @mwdma_mask: resulting mwdma_mask
269 * @udma_mask: resulting udma_mask
270 *
271 * Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask.
272 * Any NULL distination masks will be ignored.
273 */
274 static void ata_unpack_xfermask(unsigned int xfer_mask,
275 unsigned int *pio_mask,
276 unsigned int *mwdma_mask,
277 unsigned int *udma_mask)
278 {
279 if (pio_mask)
280 *pio_mask = (xfer_mask & ATA_MASK_PIO) >> ATA_SHIFT_PIO;
281 if (mwdma_mask)
282 *mwdma_mask = (xfer_mask & ATA_MASK_MWDMA) >> ATA_SHIFT_MWDMA;
283 if (udma_mask)
284 *udma_mask = (xfer_mask & ATA_MASK_UDMA) >> ATA_SHIFT_UDMA;
285 }
286
287 static const struct ata_xfer_ent {
288 int shift, bits;
289 u8 base;
290 } ata_xfer_tbl[] = {
291 { ATA_SHIFT_PIO, ATA_BITS_PIO, XFER_PIO_0 },
292 { ATA_SHIFT_MWDMA, ATA_BITS_MWDMA, XFER_MW_DMA_0 },
293 { ATA_SHIFT_UDMA, ATA_BITS_UDMA, XFER_UDMA_0 },
294 { -1, },
295 };
296
297 /**
298 * ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask
299 * @xfer_mask: xfer_mask of interest
300 *
301 * Return matching XFER_* value for @xfer_mask. Only the highest
302 * bit of @xfer_mask is considered.
303 *
304 * LOCKING:
305 * None.
306 *
307 * RETURNS:
308 * Matching XFER_* value, 0 if no match found.
309 */
310 static u8 ata_xfer_mask2mode(unsigned int xfer_mask)
311 {
312 int highbit = fls(xfer_mask) - 1;
313 const struct ata_xfer_ent *ent;
314
315 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
316 if (highbit >= ent->shift && highbit < ent->shift + ent->bits)
317 return ent->base + highbit - ent->shift;
318 return 0;
319 }
320
321 /**
322 * ata_xfer_mode2mask - Find matching xfer_mask for XFER_*
323 * @xfer_mode: XFER_* of interest
324 *
325 * Return matching xfer_mask for @xfer_mode.
326 *
327 * LOCKING:
328 * None.
329 *
330 * RETURNS:
331 * Matching xfer_mask, 0 if no match found.
332 */
333 static unsigned int ata_xfer_mode2mask(u8 xfer_mode)
334 {
335 const struct ata_xfer_ent *ent;
336
337 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
338 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
339 return 1 << (ent->shift + xfer_mode - ent->base);
340 return 0;
341 }
342
343 /**
344 * ata_xfer_mode2shift - Find matching xfer_shift for XFER_*
345 * @xfer_mode: XFER_* of interest
346 *
347 * Return matching xfer_shift for @xfer_mode.
348 *
349 * LOCKING:
350 * None.
351 *
352 * RETURNS:
353 * Matching xfer_shift, -1 if no match found.
354 */
355 static int ata_xfer_mode2shift(unsigned int xfer_mode)
356 {
357 const struct ata_xfer_ent *ent;
358
359 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
360 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
361 return ent->shift;
362 return -1;
363 }
364
365 /**
366 * ata_mode_string - convert xfer_mask to string
367 * @xfer_mask: mask of bits supported; only highest bit counts.
368 *
369 * Determine string which represents the highest speed
370 * (highest bit in @modemask).
371 *
372 * LOCKING:
373 * None.
374 *
375 * RETURNS:
376 * Constant C string representing highest speed listed in
377 * @mode_mask, or the constant C string "<n/a>".
378 */
379 static const char *ata_mode_string(unsigned int xfer_mask)
380 {
381 static const char * const xfer_mode_str[] = {
382 "PIO0",
383 "PIO1",
384 "PIO2",
385 "PIO3",
386 "PIO4",
387 "MWDMA0",
388 "MWDMA1",
389 "MWDMA2",
390 "UDMA/16",
391 "UDMA/25",
392 "UDMA/33",
393 "UDMA/44",
394 "UDMA/66",
395 "UDMA/100",
396 "UDMA/133",
397 "UDMA7",
398 };
399 int highbit;
400
401 highbit = fls(xfer_mask) - 1;
402 if (highbit >= 0 && highbit < ARRAY_SIZE(xfer_mode_str))
403 return xfer_mode_str[highbit];
404 return "<n/a>";
405 }
406
407 static const char *sata_spd_string(unsigned int spd)
408 {
409 static const char * const spd_str[] = {
410 "1.5 Gbps",
411 "3.0 Gbps",
412 };
413
414 if (spd == 0 || (spd - 1) >= ARRAY_SIZE(spd_str))
415 return "<unknown>";
416 return spd_str[spd - 1];
417 }
418
419 void ata_dev_disable(struct ata_device *dev)
420 {
421 if (ata_dev_enabled(dev) && ata_msg_drv(dev->ap)) {
422 ata_dev_printk(dev, KERN_WARNING, "disabled\n");
423 dev->class++;
424 }
425 }
426
427 /**
428 * ata_pio_devchk - PATA device presence detection
429 * @ap: ATA channel to examine
430 * @device: Device to examine (starting at zero)
431 *
432 * This technique was originally described in
433 * Hale Landis's ATADRVR (www.ata-atapi.com), and
434 * later found its way into the ATA/ATAPI spec.
435 *
436 * Write a pattern to the ATA shadow registers,
437 * and if a device is present, it will respond by
438 * correctly storing and echoing back the
439 * ATA shadow register contents.
440 *
441 * LOCKING:
442 * caller.
443 */
444
445 static unsigned int ata_pio_devchk(struct ata_port *ap,
446 unsigned int device)
447 {
448 struct ata_ioports *ioaddr = &ap->ioaddr;
449 u8 nsect, lbal;
450
451 ap->ops->dev_select(ap, device);
452
453 outb(0x55, ioaddr->nsect_addr);
454 outb(0xaa, ioaddr->lbal_addr);
455
456 outb(0xaa, ioaddr->nsect_addr);
457 outb(0x55, ioaddr->lbal_addr);
458
459 outb(0x55, ioaddr->nsect_addr);
460 outb(0xaa, ioaddr->lbal_addr);
461
462 nsect = inb(ioaddr->nsect_addr);
463 lbal = inb(ioaddr->lbal_addr);
464
465 if ((nsect == 0x55) && (lbal == 0xaa))
466 return 1; /* we found a device */
467
468 return 0; /* nothing found */
469 }
470
471 /**
472 * ata_mmio_devchk - PATA device presence detection
473 * @ap: ATA channel to examine
474 * @device: Device to examine (starting at zero)
475 *
476 * This technique was originally described in
477 * Hale Landis's ATADRVR (www.ata-atapi.com), and
478 * later found its way into the ATA/ATAPI spec.
479 *
480 * Write a pattern to the ATA shadow registers,
481 * and if a device is present, it will respond by
482 * correctly storing and echoing back the
483 * ATA shadow register contents.
484 *
485 * LOCKING:
486 * caller.
487 */
488
489 static unsigned int ata_mmio_devchk(struct ata_port *ap,
490 unsigned int device)
491 {
492 struct ata_ioports *ioaddr = &ap->ioaddr;
493 u8 nsect, lbal;
494
495 ap->ops->dev_select(ap, device);
496
497 writeb(0x55, (void __iomem *) ioaddr->nsect_addr);
498 writeb(0xaa, (void __iomem *) ioaddr->lbal_addr);
499
500 writeb(0xaa, (void __iomem *) ioaddr->nsect_addr);
501 writeb(0x55, (void __iomem *) ioaddr->lbal_addr);
502
503 writeb(0x55, (void __iomem *) ioaddr->nsect_addr);
504 writeb(0xaa, (void __iomem *) ioaddr->lbal_addr);
505
506 nsect = readb((void __iomem *) ioaddr->nsect_addr);
507 lbal = readb((void __iomem *) ioaddr->lbal_addr);
508
509 if ((nsect == 0x55) && (lbal == 0xaa))
510 return 1; /* we found a device */
511
512 return 0; /* nothing found */
513 }
514
515 /**
516 * ata_devchk - PATA device presence detection
517 * @ap: ATA channel to examine
518 * @device: Device to examine (starting at zero)
519 *
520 * Dispatch ATA device presence detection, depending
521 * on whether we are using PIO or MMIO to talk to the
522 * ATA shadow registers.
523 *
524 * LOCKING:
525 * caller.
526 */
527
528 static unsigned int ata_devchk(struct ata_port *ap,
529 unsigned int device)
530 {
531 if (ap->flags & ATA_FLAG_MMIO)
532 return ata_mmio_devchk(ap, device);
533 return ata_pio_devchk(ap, device);
534 }
535
536 /**
537 * ata_dev_classify - determine device type based on ATA-spec signature
538 * @tf: ATA taskfile register set for device to be identified
539 *
540 * Determine from taskfile register contents whether a device is
541 * ATA or ATAPI, as per "Signature and persistence" section
542 * of ATA/PI spec (volume 1, sect 5.14).
543 *
544 * LOCKING:
545 * None.
546 *
547 * RETURNS:
548 * Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, or %ATA_DEV_UNKNOWN
549 * the event of failure.
550 */
551
552 unsigned int ata_dev_classify(const struct ata_taskfile *tf)
553 {
554 /* Apple's open source Darwin code hints that some devices only
555 * put a proper signature into the LBA mid/high registers,
556 * So, we only check those. It's sufficient for uniqueness.
557 */
558
559 if (((tf->lbam == 0) && (tf->lbah == 0)) ||
560 ((tf->lbam == 0x3c) && (tf->lbah == 0xc3))) {
561 DPRINTK("found ATA device by sig\n");
562 return ATA_DEV_ATA;
563 }
564
565 if (((tf->lbam == 0x14) && (tf->lbah == 0xeb)) ||
566 ((tf->lbam == 0x69) && (tf->lbah == 0x96))) {
567 DPRINTK("found ATAPI device by sig\n");
568 return ATA_DEV_ATAPI;
569 }
570
571 DPRINTK("unknown device\n");
572 return ATA_DEV_UNKNOWN;
573 }
574
575 /**
576 * ata_dev_try_classify - Parse returned ATA device signature
577 * @ap: ATA channel to examine
578 * @device: Device to examine (starting at zero)
579 * @r_err: Value of error register on completion
580 *
581 * After an event -- SRST, E.D.D., or SATA COMRESET -- occurs,
582 * an ATA/ATAPI-defined set of values is placed in the ATA
583 * shadow registers, indicating the results of device detection
584 * and diagnostics.
585 *
586 * Select the ATA device, and read the values from the ATA shadow
587 * registers. Then parse according to the Error register value,
588 * and the spec-defined values examined by ata_dev_classify().
589 *
590 * LOCKING:
591 * caller.
592 *
593 * RETURNS:
594 * Device type - %ATA_DEV_ATA, %ATA_DEV_ATAPI or %ATA_DEV_NONE.
595 */
596
597 static unsigned int
598 ata_dev_try_classify(struct ata_port *ap, unsigned int device, u8 *r_err)
599 {
600 struct ata_taskfile tf;
601 unsigned int class;
602 u8 err;
603
604 ap->ops->dev_select(ap, device);
605
606 memset(&tf, 0, sizeof(tf));
607
608 ap->ops->tf_read(ap, &tf);
609 err = tf.feature;
610 if (r_err)
611 *r_err = err;
612
613 /* see if device passed diags */
614 if (err == 1)
615 /* do nothing */ ;
616 else if ((device == 0) && (err == 0x81))
617 /* do nothing */ ;
618 else
619 return ATA_DEV_NONE;
620
621 /* determine if device is ATA or ATAPI */
622 class = ata_dev_classify(&tf);
623
624 if (class == ATA_DEV_UNKNOWN)
625 return ATA_DEV_NONE;
626 if ((class == ATA_DEV_ATA) && (ata_chk_status(ap) == 0))
627 return ATA_DEV_NONE;
628 return class;
629 }
630
631 /**
632 * ata_id_string - Convert IDENTIFY DEVICE page into string
633 * @id: IDENTIFY DEVICE results we will examine
634 * @s: string into which data is output
635 * @ofs: offset into identify device page
636 * @len: length of string to return. must be an even number.
637 *
638 * The strings in the IDENTIFY DEVICE page are broken up into
639 * 16-bit chunks. Run through the string, and output each
640 * 8-bit chunk linearly, regardless of platform.
641 *
642 * LOCKING:
643 * caller.
644 */
645
646 void ata_id_string(const u16 *id, unsigned char *s,
647 unsigned int ofs, unsigned int len)
648 {
649 unsigned int c;
650
651 while (len > 0) {
652 c = id[ofs] >> 8;
653 *s = c;
654 s++;
655
656 c = id[ofs] & 0xff;
657 *s = c;
658 s++;
659
660 ofs++;
661 len -= 2;
662 }
663 }
664
665 /**
666 * ata_id_c_string - Convert IDENTIFY DEVICE page into C string
667 * @id: IDENTIFY DEVICE results we will examine
668 * @s: string into which data is output
669 * @ofs: offset into identify device page
670 * @len: length of string to return. must be an odd number.
671 *
672 * This function is identical to ata_id_string except that it
673 * trims trailing spaces and terminates the resulting string with
674 * null. @len must be actual maximum length (even number) + 1.
675 *
676 * LOCKING:
677 * caller.
678 */
679 void ata_id_c_string(const u16 *id, unsigned char *s,
680 unsigned int ofs, unsigned int len)
681 {
682 unsigned char *p;
683
684 WARN_ON(!(len & 1));
685
686 ata_id_string(id, s, ofs, len - 1);
687
688 p = s + strnlen(s, len - 1);
689 while (p > s && p[-1] == ' ')
690 p--;
691 *p = '\0';
692 }
693
694 static u64 ata_id_n_sectors(const u16 *id)
695 {
696 if (ata_id_has_lba(id)) {
697 if (ata_id_has_lba48(id))
698 return ata_id_u64(id, 100);
699 else
700 return ata_id_u32(id, 60);
701 } else {
702 if (ata_id_current_chs_valid(id))
703 return ata_id_u32(id, 57);
704 else
705 return id[1] * id[3] * id[6];
706 }
707 }
708
709 /**
710 * ata_noop_dev_select - Select device 0/1 on ATA bus
711 * @ap: ATA channel to manipulate
712 * @device: ATA device (numbered from zero) to select
713 *
714 * This function performs no actual function.
715 *
716 * May be used as the dev_select() entry in ata_port_operations.
717 *
718 * LOCKING:
719 * caller.
720 */
721 void ata_noop_dev_select (struct ata_port *ap, unsigned int device)
722 {
723 }
724
725
726 /**
727 * ata_std_dev_select - Select device 0/1 on ATA bus
728 * @ap: ATA channel to manipulate
729 * @device: ATA device (numbered from zero) to select
730 *
731 * Use the method defined in the ATA specification to
732 * make either device 0, or device 1, active on the
733 * ATA channel. Works with both PIO and MMIO.
734 *
735 * May be used as the dev_select() entry in ata_port_operations.
736 *
737 * LOCKING:
738 * caller.
739 */
740
741 void ata_std_dev_select (struct ata_port *ap, unsigned int device)
742 {
743 u8 tmp;
744
745 if (device == 0)
746 tmp = ATA_DEVICE_OBS;
747 else
748 tmp = ATA_DEVICE_OBS | ATA_DEV1;
749
750 if (ap->flags & ATA_FLAG_MMIO) {
751 writeb(tmp, (void __iomem *) ap->ioaddr.device_addr);
752 } else {
753 outb(tmp, ap->ioaddr.device_addr);
754 }
755 ata_pause(ap); /* needed; also flushes, for mmio */
756 }
757
758 /**
759 * ata_dev_select - Select device 0/1 on ATA bus
760 * @ap: ATA channel to manipulate
761 * @device: ATA device (numbered from zero) to select
762 * @wait: non-zero to wait for Status register BSY bit to clear
763 * @can_sleep: non-zero if context allows sleeping
764 *
765 * Use the method defined in the ATA specification to
766 * make either device 0, or device 1, active on the
767 * ATA channel.
768 *
769 * This is a high-level version of ata_std_dev_select(),
770 * which additionally provides the services of inserting
771 * the proper pauses and status polling, where needed.
772 *
773 * LOCKING:
774 * caller.
775 */
776
777 void ata_dev_select(struct ata_port *ap, unsigned int device,
778 unsigned int wait, unsigned int can_sleep)
779 {
780 if (ata_msg_probe(ap)) {
781 ata_port_printk(ap, KERN_INFO, "ata_dev_select: ENTER, ata%u: "
782 "device %u, wait %u\n",
783 ap->id, device, wait);
784 }
785
786 if (wait)
787 ata_wait_idle(ap);
788
789 ap->ops->dev_select(ap, device);
790
791 if (wait) {
792 if (can_sleep && ap->device[device].class == ATA_DEV_ATAPI)
793 msleep(150);
794 ata_wait_idle(ap);
795 }
796 }
797
798 /**
799 * ata_dump_id - IDENTIFY DEVICE info debugging output
800 * @id: IDENTIFY DEVICE page to dump
801 *
802 * Dump selected 16-bit words from the given IDENTIFY DEVICE
803 * page.
804 *
805 * LOCKING:
806 * caller.
807 */
808
809 static inline void ata_dump_id(const u16 *id)
810 {
811 DPRINTK("49==0x%04x "
812 "53==0x%04x "
813 "63==0x%04x "
814 "64==0x%04x "
815 "75==0x%04x \n",
816 id[49],
817 id[53],
818 id[63],
819 id[64],
820 id[75]);
821 DPRINTK("80==0x%04x "
822 "81==0x%04x "
823 "82==0x%04x "
824 "83==0x%04x "
825 "84==0x%04x \n",
826 id[80],
827 id[81],
828 id[82],
829 id[83],
830 id[84]);
831 DPRINTK("88==0x%04x "
832 "93==0x%04x\n",
833 id[88],
834 id[93]);
835 }
836
837 /**
838 * ata_id_xfermask - Compute xfermask from the given IDENTIFY data
839 * @id: IDENTIFY data to compute xfer mask from
840 *
841 * Compute the xfermask for this device. This is not as trivial
842 * as it seems if we must consider early devices correctly.
843 *
844 * FIXME: pre IDE drive timing (do we care ?).
845 *
846 * LOCKING:
847 * None.
848 *
849 * RETURNS:
850 * Computed xfermask
851 */
852 static unsigned int ata_id_xfermask(const u16 *id)
853 {
854 unsigned int pio_mask, mwdma_mask, udma_mask;
855
856 /* Usual case. Word 53 indicates word 64 is valid */
857 if (id[ATA_ID_FIELD_VALID] & (1 << 1)) {
858 pio_mask = id[ATA_ID_PIO_MODES] & 0x03;
859 pio_mask <<= 3;
860 pio_mask |= 0x7;
861 } else {
862 /* If word 64 isn't valid then Word 51 high byte holds
863 * the PIO timing number for the maximum. Turn it into
864 * a mask.
865 */
866 pio_mask = (2 << (id[ATA_ID_OLD_PIO_MODES] & 0xFF)) - 1 ;
867
868 /* But wait.. there's more. Design your standards by
869 * committee and you too can get a free iordy field to
870 * process. However its the speeds not the modes that
871 * are supported... Note drivers using the timing API
872 * will get this right anyway
873 */
874 }
875
876 mwdma_mask = id[ATA_ID_MWDMA_MODES] & 0x07;
877
878 udma_mask = 0;
879 if (id[ATA_ID_FIELD_VALID] & (1 << 2))
880 udma_mask = id[ATA_ID_UDMA_MODES] & 0xff;
881
882 return ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
883 }
884
885 /**
886 * ata_port_queue_task - Queue port_task
887 * @ap: The ata_port to queue port_task for
888 * @fn: workqueue function to be scheduled
889 * @data: data value to pass to workqueue function
890 * @delay: delay time for workqueue function
891 *
892 * Schedule @fn(@data) for execution after @delay jiffies using
893 * port_task. There is one port_task per port and it's the
894 * user(low level driver)'s responsibility to make sure that only
895 * one task is active at any given time.
896 *
897 * libata core layer takes care of synchronization between
898 * port_task and EH. ata_port_queue_task() may be ignored for EH
899 * synchronization.
900 *
901 * LOCKING:
902 * Inherited from caller.
903 */
904 void ata_port_queue_task(struct ata_port *ap, void (*fn)(void *), void *data,
905 unsigned long delay)
906 {
907 int rc;
908
909 if (ap->flags & ATA_FLAG_FLUSH_PORT_TASK)
910 return;
911
912 PREPARE_WORK(&ap->port_task, fn, data);
913
914 if (!delay)
915 rc = queue_work(ata_wq, &ap->port_task);
916 else
917 rc = queue_delayed_work(ata_wq, &ap->port_task, delay);
918
919 /* rc == 0 means that another user is using port task */
920 WARN_ON(rc == 0);
921 }
922
923 /**
924 * ata_port_flush_task - Flush port_task
925 * @ap: The ata_port to flush port_task for
926 *
927 * After this function completes, port_task is guranteed not to
928 * be running or scheduled.
929 *
930 * LOCKING:
931 * Kernel thread context (may sleep)
932 */
933 void ata_port_flush_task(struct ata_port *ap)
934 {
935 unsigned long flags;
936
937 DPRINTK("ENTER\n");
938
939 spin_lock_irqsave(ap->lock, flags);
940 ap->flags |= ATA_FLAG_FLUSH_PORT_TASK;
941 spin_unlock_irqrestore(ap->lock, flags);
942
943 DPRINTK("flush #1\n");
944 flush_workqueue(ata_wq);
945
946 /*
947 * At this point, if a task is running, it's guaranteed to see
948 * the FLUSH flag; thus, it will never queue pio tasks again.
949 * Cancel and flush.
950 */
951 if (!cancel_delayed_work(&ap->port_task)) {
952 if (ata_msg_ctl(ap))
953 ata_port_printk(ap, KERN_DEBUG, "%s: flush #2\n", __FUNCTION__);
954 flush_workqueue(ata_wq);
955 }
956
957 spin_lock_irqsave(ap->lock, flags);
958 ap->flags &= ~ATA_FLAG_FLUSH_PORT_TASK;
959 spin_unlock_irqrestore(ap->lock, flags);
960
961 if (ata_msg_ctl(ap))
962 ata_port_printk(ap, KERN_DEBUG, "%s: EXIT\n", __FUNCTION__);
963 }
964
965 void ata_qc_complete_internal(struct ata_queued_cmd *qc)
966 {
967 struct completion *waiting = qc->private_data;
968
969 complete(waiting);
970 }
971
972 /**
973 * ata_exec_internal - execute libata internal command
974 * @dev: Device to which the command is sent
975 * @tf: Taskfile registers for the command and the result
976 * @cdb: CDB for packet command
977 * @dma_dir: Data tranfer direction of the command
978 * @buf: Data buffer of the command
979 * @buflen: Length of data buffer
980 *
981 * Executes libata internal command with timeout. @tf contains
982 * command on entry and result on return. Timeout and error
983 * conditions are reported via return value. No recovery action
984 * is taken after a command times out. It's caller's duty to
985 * clean up after timeout.
986 *
987 * LOCKING:
988 * None. Should be called with kernel context, might sleep.
989 *
990 * RETURNS:
991 * Zero on success, AC_ERR_* mask on failure
992 */
993 unsigned ata_exec_internal(struct ata_device *dev,
994 struct ata_taskfile *tf, const u8 *cdb,
995 int dma_dir, void *buf, unsigned int buflen)
996 {
997 struct ata_port *ap = dev->ap;
998 u8 command = tf->command;
999 struct ata_queued_cmd *qc;
1000 unsigned int tag, preempted_tag;
1001 u32 preempted_sactive, preempted_qc_active;
1002 DECLARE_COMPLETION(wait);
1003 unsigned long flags;
1004 unsigned int err_mask;
1005 int rc;
1006
1007 spin_lock_irqsave(ap->lock, flags);
1008
1009 /* no internal command while frozen */
1010 if (ap->flags & ATA_FLAG_FROZEN) {
1011 spin_unlock_irqrestore(ap->lock, flags);
1012 return AC_ERR_SYSTEM;
1013 }
1014
1015 /* initialize internal qc */
1016
1017 /* XXX: Tag 0 is used for drivers with legacy EH as some
1018 * drivers choke if any other tag is given. This breaks
1019 * ata_tag_internal() test for those drivers. Don't use new
1020 * EH stuff without converting to it.
1021 */
1022 if (ap->ops->error_handler)
1023 tag = ATA_TAG_INTERNAL;
1024 else
1025 tag = 0;
1026
1027 if (test_and_set_bit(tag, &ap->qc_allocated))
1028 BUG();
1029 qc = __ata_qc_from_tag(ap, tag);
1030
1031 qc->tag = tag;
1032 qc->scsicmd = NULL;
1033 qc->ap = ap;
1034 qc->dev = dev;
1035 ata_qc_reinit(qc);
1036
1037 preempted_tag = ap->active_tag;
1038 preempted_sactive = ap->sactive;
1039 preempted_qc_active = ap->qc_active;
1040 ap->active_tag = ATA_TAG_POISON;
1041 ap->sactive = 0;
1042 ap->qc_active = 0;
1043
1044 /* prepare & issue qc */
1045 qc->tf = *tf;
1046 if (cdb)
1047 memcpy(qc->cdb, cdb, ATAPI_CDB_LEN);
1048 qc->flags |= ATA_QCFLAG_RESULT_TF;
1049 qc->dma_dir = dma_dir;
1050 if (dma_dir != DMA_NONE) {
1051 ata_sg_init_one(qc, buf, buflen);
1052 qc->nsect = buflen / ATA_SECT_SIZE;
1053 }
1054
1055 qc->private_data = &wait;
1056 qc->complete_fn = ata_qc_complete_internal;
1057
1058 ata_qc_issue(qc);
1059
1060 spin_unlock_irqrestore(ap->lock, flags);
1061
1062 rc = wait_for_completion_timeout(&wait, ATA_TMOUT_INTERNAL);
1063
1064 ata_port_flush_task(ap);
1065
1066 if (!rc) {
1067 spin_lock_irqsave(ap->lock, flags);
1068
1069 /* We're racing with irq here. If we lose, the
1070 * following test prevents us from completing the qc
1071 * twice. If we win, the port is frozen and will be
1072 * cleaned up by ->post_internal_cmd().
1073 */
1074 if (qc->flags & ATA_QCFLAG_ACTIVE) {
1075 qc->err_mask |= AC_ERR_TIMEOUT;
1076
1077 if (ap->ops->error_handler)
1078 ata_port_freeze(ap);
1079 else
1080 ata_qc_complete(qc);
1081
1082 if (ata_msg_warn(ap))
1083 ata_dev_printk(dev, KERN_WARNING,
1084 "qc timeout (cmd 0x%x)\n", command);
1085 }
1086
1087 spin_unlock_irqrestore(ap->lock, flags);
1088 }
1089
1090 /* do post_internal_cmd */
1091 if (ap->ops->post_internal_cmd)
1092 ap->ops->post_internal_cmd(qc);
1093
1094 if (qc->flags & ATA_QCFLAG_FAILED && !qc->err_mask) {
1095 if (ata_msg_warn(ap))
1096 ata_dev_printk(dev, KERN_WARNING,
1097 "zero err_mask for failed "
1098 "internal command, assuming AC_ERR_OTHER\n");
1099 qc->err_mask |= AC_ERR_OTHER;
1100 }
1101
1102 /* finish up */
1103 spin_lock_irqsave(ap->lock, flags);
1104
1105 *tf = qc->result_tf;
1106 err_mask = qc->err_mask;
1107
1108 ata_qc_free(qc);
1109 ap->active_tag = preempted_tag;
1110 ap->sactive = preempted_sactive;
1111 ap->qc_active = preempted_qc_active;
1112
1113 /* XXX - Some LLDDs (sata_mv) disable port on command failure.
1114 * Until those drivers are fixed, we detect the condition
1115 * here, fail the command with AC_ERR_SYSTEM and reenable the
1116 * port.
1117 *
1118 * Note that this doesn't change any behavior as internal
1119 * command failure results in disabling the device in the
1120 * higher layer for LLDDs without new reset/EH callbacks.
1121 *
1122 * Kill the following code as soon as those drivers are fixed.
1123 */
1124 if (ap->flags & ATA_FLAG_DISABLED) {
1125 err_mask |= AC_ERR_SYSTEM;
1126 ata_port_probe(ap);
1127 }
1128
1129 spin_unlock_irqrestore(ap->lock, flags);
1130
1131 return err_mask;
1132 }
1133
1134 /**
1135 * ata_pio_need_iordy - check if iordy needed
1136 * @adev: ATA device
1137 *
1138 * Check if the current speed of the device requires IORDY. Used
1139 * by various controllers for chip configuration.
1140 */
1141
1142 unsigned int ata_pio_need_iordy(const struct ata_device *adev)
1143 {
1144 int pio;
1145 int speed = adev->pio_mode - XFER_PIO_0;
1146
1147 if (speed < 2)
1148 return 0;
1149 if (speed > 2)
1150 return 1;
1151
1152 /* If we have no drive specific rule, then PIO 2 is non IORDY */
1153
1154 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE */
1155 pio = adev->id[ATA_ID_EIDE_PIO];
1156 /* Is the speed faster than the drive allows non IORDY ? */
1157 if (pio) {
1158 /* This is cycle times not frequency - watch the logic! */
1159 if (pio > 240) /* PIO2 is 240nS per cycle */
1160 return 1;
1161 return 0;
1162 }
1163 }
1164 return 0;
1165 }
1166
1167 /**
1168 * ata_dev_read_id - Read ID data from the specified device
1169 * @dev: target device
1170 * @p_class: pointer to class of the target device (may be changed)
1171 * @post_reset: is this read ID post-reset?
1172 * @id: buffer to read IDENTIFY data into
1173 *
1174 * Read ID data from the specified device. ATA_CMD_ID_ATA is
1175 * performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI
1176 * devices. This function also issues ATA_CMD_INIT_DEV_PARAMS
1177 * for pre-ATA4 drives.
1178 *
1179 * LOCKING:
1180 * Kernel thread context (may sleep)
1181 *
1182 * RETURNS:
1183 * 0 on success, -errno otherwise.
1184 */
1185 int ata_dev_read_id(struct ata_device *dev, unsigned int *p_class,
1186 int post_reset, u16 *id)
1187 {
1188 struct ata_port *ap = dev->ap;
1189 unsigned int class = *p_class;
1190 struct ata_taskfile tf;
1191 unsigned int err_mask = 0;
1192 const char *reason;
1193 int rc;
1194
1195 if (ata_msg_ctl(ap))
1196 ata_dev_printk(dev, KERN_DEBUG, "%s: ENTER, host %u, dev %u\n",
1197 __FUNCTION__, ap->id, dev->devno);
1198
1199 ata_dev_select(ap, dev->devno, 1, 1); /* select device 0/1 */
1200
1201 retry:
1202 ata_tf_init(dev, &tf);
1203
1204 switch (class) {
1205 case ATA_DEV_ATA:
1206 tf.command = ATA_CMD_ID_ATA;
1207 break;
1208 case ATA_DEV_ATAPI:
1209 tf.command = ATA_CMD_ID_ATAPI;
1210 break;
1211 default:
1212 rc = -ENODEV;
1213 reason = "unsupported class";
1214 goto err_out;
1215 }
1216
1217 tf.protocol = ATA_PROT_PIO;
1218
1219 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_FROM_DEVICE,
1220 id, sizeof(id[0]) * ATA_ID_WORDS);
1221 if (err_mask) {
1222 rc = -EIO;
1223 reason = "I/O error";
1224 goto err_out;
1225 }
1226
1227 swap_buf_le16(id, ATA_ID_WORDS);
1228
1229 /* sanity check */
1230 if ((class == ATA_DEV_ATA) != (ata_id_is_ata(id) | ata_id_is_cfa(id))) {
1231 rc = -EINVAL;
1232 reason = "device reports illegal type";
1233 goto err_out;
1234 }
1235
1236 if (post_reset && class == ATA_DEV_ATA) {
1237 /*
1238 * The exact sequence expected by certain pre-ATA4 drives is:
1239 * SRST RESET
1240 * IDENTIFY
1241 * INITIALIZE DEVICE PARAMETERS
1242 * anything else..
1243 * Some drives were very specific about that exact sequence.
1244 */
1245 if (ata_id_major_version(id) < 4 || !ata_id_has_lba(id)) {
1246 err_mask = ata_dev_init_params(dev, id[3], id[6]);
1247 if (err_mask) {
1248 rc = -EIO;
1249 reason = "INIT_DEV_PARAMS failed";
1250 goto err_out;
1251 }
1252
1253 /* current CHS translation info (id[53-58]) might be
1254 * changed. reread the identify device info.
1255 */
1256 post_reset = 0;
1257 goto retry;
1258 }
1259 }
1260
1261 *p_class = class;
1262
1263 return 0;
1264
1265 err_out:
1266 if (ata_msg_warn(ap))
1267 ata_dev_printk(dev, KERN_WARNING, "failed to IDENTIFY "
1268 "(%s, err_mask=0x%x)\n", reason, err_mask);
1269 return rc;
1270 }
1271
1272 static inline u8 ata_dev_knobble(struct ata_device *dev)
1273 {
1274 return ((dev->ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(dev->id)));
1275 }
1276
1277 static void ata_dev_config_ncq(struct ata_device *dev,
1278 char *desc, size_t desc_sz)
1279 {
1280 struct ata_port *ap = dev->ap;
1281 int hdepth = 0, ddepth = ata_id_queue_depth(dev->id);
1282
1283 if (!ata_id_has_ncq(dev->id)) {
1284 desc[0] = '\0';
1285 return;
1286 }
1287
1288 if (ap->flags & ATA_FLAG_NCQ) {
1289 hdepth = min(ap->host->can_queue, ATA_MAX_QUEUE - 1);
1290 dev->flags |= ATA_DFLAG_NCQ;
1291 }
1292
1293 if (hdepth >= ddepth)
1294 snprintf(desc, desc_sz, "NCQ (depth %d)", ddepth);
1295 else
1296 snprintf(desc, desc_sz, "NCQ (depth %d/%d)", hdepth, ddepth);
1297 }
1298
1299 /**
1300 * ata_dev_configure - Configure the specified ATA/ATAPI device
1301 * @dev: Target device to configure
1302 * @print_info: Enable device info printout
1303 *
1304 * Configure @dev according to @dev->id. Generic and low-level
1305 * driver specific fixups are also applied.
1306 *
1307 * LOCKING:
1308 * Kernel thread context (may sleep)
1309 *
1310 * RETURNS:
1311 * 0 on success, -errno otherwise
1312 */
1313 int ata_dev_configure(struct ata_device *dev, int print_info)
1314 {
1315 struct ata_port *ap = dev->ap;
1316 const u16 *id = dev->id;
1317 unsigned int xfer_mask;
1318 int i, rc;
1319
1320 if (!ata_dev_enabled(dev) && ata_msg_info(ap)) {
1321 ata_dev_printk(dev, KERN_INFO, "%s: ENTER/EXIT (host %u, dev %u) -- nodev\n",
1322 __FUNCTION__, ap->id, dev->devno);
1323 return 0;
1324 }
1325
1326 if (ata_msg_probe(ap))
1327 ata_dev_printk(dev, KERN_DEBUG, "%s: ENTER, host %u, dev %u\n",
1328 __FUNCTION__, ap->id, dev->devno);
1329
1330 /* print device capabilities */
1331 if (ata_msg_probe(ap))
1332 ata_dev_printk(dev, KERN_DEBUG, "%s: cfg 49:%04x 82:%04x 83:%04x "
1333 "84:%04x 85:%04x 86:%04x 87:%04x 88:%04x\n",
1334 __FUNCTION__,
1335 id[49], id[82], id[83], id[84],
1336 id[85], id[86], id[87], id[88]);
1337
1338 /* initialize to-be-configured parameters */
1339 dev->flags &= ~ATA_DFLAG_CFG_MASK;
1340 dev->max_sectors = 0;
1341 dev->cdb_len = 0;
1342 dev->n_sectors = 0;
1343 dev->cylinders = 0;
1344 dev->heads = 0;
1345 dev->sectors = 0;
1346
1347 /*
1348 * common ATA, ATAPI feature tests
1349 */
1350
1351 /* find max transfer mode; for printk only */
1352 xfer_mask = ata_id_xfermask(id);
1353
1354 if (ata_msg_probe(ap))
1355 ata_dump_id(id);
1356
1357 /* ATA-specific feature tests */
1358 if (dev->class == ATA_DEV_ATA) {
1359 dev->n_sectors = ata_id_n_sectors(id);
1360
1361 if (ata_id_has_lba(id)) {
1362 const char *lba_desc;
1363 char ncq_desc[20];
1364
1365 lba_desc = "LBA";
1366 dev->flags |= ATA_DFLAG_LBA;
1367 if (ata_id_has_lba48(id)) {
1368 dev->flags |= ATA_DFLAG_LBA48;
1369 lba_desc = "LBA48";
1370 }
1371
1372 /* config NCQ */
1373 ata_dev_config_ncq(dev, ncq_desc, sizeof(ncq_desc));
1374
1375 /* print device info to dmesg */
1376 if (ata_msg_info(ap))
1377 ata_dev_printk(dev, KERN_INFO, "ATA-%d, "
1378 "max %s, %Lu sectors: %s %s\n",
1379 ata_id_major_version(id),
1380 ata_mode_string(xfer_mask),
1381 (unsigned long long)dev->n_sectors,
1382 lba_desc, ncq_desc);
1383 } else {
1384 /* CHS */
1385
1386 /* Default translation */
1387 dev->cylinders = id[1];
1388 dev->heads = id[3];
1389 dev->sectors = id[6];
1390
1391 if (ata_id_current_chs_valid(id)) {
1392 /* Current CHS translation is valid. */
1393 dev->cylinders = id[54];
1394 dev->heads = id[55];
1395 dev->sectors = id[56];
1396 }
1397
1398 /* print device info to dmesg */
1399 if (ata_msg_info(ap))
1400 ata_dev_printk(dev, KERN_INFO, "ATA-%d, "
1401 "max %s, %Lu sectors: CHS %u/%u/%u\n",
1402 ata_id_major_version(id),
1403 ata_mode_string(xfer_mask),
1404 (unsigned long long)dev->n_sectors,
1405 dev->cylinders, dev->heads, dev->sectors);
1406 }
1407
1408 if (dev->id[59] & 0x100) {
1409 dev->multi_count = dev->id[59] & 0xff;
1410 if (ata_msg_info(ap))
1411 ata_dev_printk(dev, KERN_INFO, "ata%u: dev %u multi count %u\n",
1412 ap->id, dev->devno, dev->multi_count);
1413 }
1414
1415 dev->cdb_len = 16;
1416 }
1417
1418 /* ATAPI-specific feature tests */
1419 else if (dev->class == ATA_DEV_ATAPI) {
1420 char *cdb_intr_string = "";
1421
1422 rc = atapi_cdb_len(id);
1423 if ((rc < 12) || (rc > ATAPI_CDB_LEN)) {
1424 if (ata_msg_warn(ap))
1425 ata_dev_printk(dev, KERN_WARNING,
1426 "unsupported CDB len\n");
1427 rc = -EINVAL;
1428 goto err_out_nosup;
1429 }
1430 dev->cdb_len = (unsigned int) rc;
1431
1432 if (ata_id_cdb_intr(dev->id)) {
1433 dev->flags |= ATA_DFLAG_CDB_INTR;
1434 cdb_intr_string = ", CDB intr";
1435 }
1436
1437 /* print device info to dmesg */
1438 if (ata_msg_info(ap))
1439 ata_dev_printk(dev, KERN_INFO, "ATAPI, max %s%s\n",
1440 ata_mode_string(xfer_mask),
1441 cdb_intr_string);
1442 }
1443
1444 ap->host->max_cmd_len = 0;
1445 for (i = 0; i < ATA_MAX_DEVICES; i++)
1446 ap->host->max_cmd_len = max_t(unsigned int,
1447 ap->host->max_cmd_len,
1448 ap->device[i].cdb_len);
1449
1450 /* limit bridge transfers to udma5, 200 sectors */
1451 if (ata_dev_knobble(dev)) {
1452 if (ata_msg_info(ap))
1453 ata_dev_printk(dev, KERN_INFO,
1454 "applying bridge limits\n");
1455 dev->udma_mask &= ATA_UDMA5;
1456 dev->max_sectors = ATA_MAX_SECTORS;
1457 }
1458
1459 if (ap->ops->dev_config)
1460 ap->ops->dev_config(ap, dev);
1461
1462 if (ata_msg_probe(ap))
1463 ata_dev_printk(dev, KERN_DEBUG, "%s: EXIT, drv_stat = 0x%x\n",
1464 __FUNCTION__, ata_chk_status(ap));
1465 return 0;
1466
1467 err_out_nosup:
1468 if (ata_msg_probe(ap))
1469 ata_dev_printk(dev, KERN_DEBUG,
1470 "%s: EXIT, err\n", __FUNCTION__);
1471 return rc;
1472 }
1473
1474 /**
1475 * ata_bus_probe - Reset and probe ATA bus
1476 * @ap: Bus to probe
1477 *
1478 * Master ATA bus probing function. Initiates a hardware-dependent
1479 * bus reset, then attempts to identify any devices found on
1480 * the bus.
1481 *
1482 * LOCKING:
1483 * PCI/etc. bus probe sem.
1484 *
1485 * RETURNS:
1486 * Zero on success, negative errno otherwise.
1487 */
1488
1489 static int ata_bus_probe(struct ata_port *ap)
1490 {
1491 unsigned int classes[ATA_MAX_DEVICES];
1492 int tries[ATA_MAX_DEVICES];
1493 int i, rc, down_xfermask;
1494 struct ata_device *dev;
1495
1496 ata_port_probe(ap);
1497
1498 for (i = 0; i < ATA_MAX_DEVICES; i++)
1499 tries[i] = ATA_PROBE_MAX_TRIES;
1500
1501 retry:
1502 down_xfermask = 0;
1503
1504 /* reset and determine device classes */
1505 ap->ops->phy_reset(ap);
1506
1507 for (i = 0; i < ATA_MAX_DEVICES; i++) {
1508 dev = &ap->device[i];
1509
1510 if (!(ap->flags & ATA_FLAG_DISABLED) &&
1511 dev->class != ATA_DEV_UNKNOWN)
1512 classes[dev->devno] = dev->class;
1513 else
1514 classes[dev->devno] = ATA_DEV_NONE;
1515
1516 dev->class = ATA_DEV_UNKNOWN;
1517 }
1518
1519 ata_port_probe(ap);
1520
1521 /* after the reset the device state is PIO 0 and the controller
1522 state is undefined. Record the mode */
1523
1524 for (i = 0; i < ATA_MAX_DEVICES; i++)
1525 ap->device[i].pio_mode = XFER_PIO_0;
1526
1527 /* read IDENTIFY page and configure devices */
1528 for (i = 0; i < ATA_MAX_DEVICES; i++) {
1529 dev = &ap->device[i];
1530
1531 if (tries[i])
1532 dev->class = classes[i];
1533
1534 if (!ata_dev_enabled(dev))
1535 continue;
1536
1537 rc = ata_dev_read_id(dev, &dev->class, 1, dev->id);
1538 if (rc)
1539 goto fail;
1540
1541 rc = ata_dev_configure(dev, 1);
1542 if (rc)
1543 goto fail;
1544 }
1545
1546 /* configure transfer mode */
1547 rc = ata_set_mode(ap, &dev);
1548 if (rc) {
1549 down_xfermask = 1;
1550 goto fail;
1551 }
1552
1553 for (i = 0; i < ATA_MAX_DEVICES; i++)
1554 if (ata_dev_enabled(&ap->device[i]))
1555 return 0;
1556
1557 /* no device present, disable port */
1558 ata_port_disable(ap);
1559 ap->ops->port_disable(ap);
1560 return -ENODEV;
1561
1562 fail:
1563 switch (rc) {
1564 case -EINVAL:
1565 case -ENODEV:
1566 tries[dev->devno] = 0;
1567 break;
1568 case -EIO:
1569 sata_down_spd_limit(ap);
1570 /* fall through */
1571 default:
1572 tries[dev->devno]--;
1573 if (down_xfermask &&
1574 ata_down_xfermask_limit(dev, tries[dev->devno] == 1))
1575 tries[dev->devno] = 0;
1576 }
1577
1578 if (!tries[dev->devno]) {
1579 ata_down_xfermask_limit(dev, 1);
1580 ata_dev_disable(dev);
1581 }
1582
1583 goto retry;
1584 }
1585
1586 /**
1587 * ata_port_probe - Mark port as enabled
1588 * @ap: Port for which we indicate enablement
1589 *
1590 * Modify @ap data structure such that the system
1591 * thinks that the entire port is enabled.
1592 *
1593 * LOCKING: host_set lock, or some other form of
1594 * serialization.
1595 */
1596
1597 void ata_port_probe(struct ata_port *ap)
1598 {
1599 ap->flags &= ~ATA_FLAG_DISABLED;
1600 }
1601
1602 /**
1603 * sata_print_link_status - Print SATA link status
1604 * @ap: SATA port to printk link status about
1605 *
1606 * This function prints link speed and status of a SATA link.
1607 *
1608 * LOCKING:
1609 * None.
1610 */
1611 static void sata_print_link_status(struct ata_port *ap)
1612 {
1613 u32 sstatus, scontrol, tmp;
1614
1615 if (sata_scr_read(ap, SCR_STATUS, &sstatus))
1616 return;
1617 sata_scr_read(ap, SCR_CONTROL, &scontrol);
1618
1619 if (ata_port_online(ap)) {
1620 tmp = (sstatus >> 4) & 0xf;
1621 ata_port_printk(ap, KERN_INFO,
1622 "SATA link up %s (SStatus %X SControl %X)\n",
1623 sata_spd_string(tmp), sstatus, scontrol);
1624 } else {
1625 ata_port_printk(ap, KERN_INFO,
1626 "SATA link down (SStatus %X SControl %X)\n",
1627 sstatus, scontrol);
1628 }
1629 }
1630
1631 /**
1632 * __sata_phy_reset - Wake/reset a low-level SATA PHY
1633 * @ap: SATA port associated with target SATA PHY.
1634 *
1635 * This function issues commands to standard SATA Sxxx
1636 * PHY registers, to wake up the phy (and device), and
1637 * clear any reset condition.
1638 *
1639 * LOCKING:
1640 * PCI/etc. bus probe sem.
1641 *
1642 */
1643 void __sata_phy_reset(struct ata_port *ap)
1644 {
1645 u32 sstatus;
1646 unsigned long timeout = jiffies + (HZ * 5);
1647
1648 if (ap->flags & ATA_FLAG_SATA_RESET) {
1649 /* issue phy wake/reset */
1650 sata_scr_write_flush(ap, SCR_CONTROL, 0x301);
1651 /* Couldn't find anything in SATA I/II specs, but
1652 * AHCI-1.1 10.4.2 says at least 1 ms. */
1653 mdelay(1);
1654 }
1655 /* phy wake/clear reset */
1656 sata_scr_write_flush(ap, SCR_CONTROL, 0x300);
1657
1658 /* wait for phy to become ready, if necessary */
1659 do {
1660 msleep(200);
1661 sata_scr_read(ap, SCR_STATUS, &sstatus);
1662 if ((sstatus & 0xf) != 1)
1663 break;
1664 } while (time_before(jiffies, timeout));
1665
1666 /* print link status */
1667 sata_print_link_status(ap);
1668
1669 /* TODO: phy layer with polling, timeouts, etc. */
1670 if (!ata_port_offline(ap))
1671 ata_port_probe(ap);
1672 else
1673 ata_port_disable(ap);
1674
1675 if (ap->flags & ATA_FLAG_DISABLED)
1676 return;
1677
1678 if (ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT)) {
1679 ata_port_disable(ap);
1680 return;
1681 }
1682
1683 ap->cbl = ATA_CBL_SATA;
1684 }
1685
1686 /**
1687 * sata_phy_reset - Reset SATA bus.
1688 * @ap: SATA port associated with target SATA PHY.
1689 *
1690 * This function resets the SATA bus, and then probes
1691 * the bus for devices.
1692 *
1693 * LOCKING:
1694 * PCI/etc. bus probe sem.
1695 *
1696 */
1697 void sata_phy_reset(struct ata_port *ap)
1698 {
1699 __sata_phy_reset(ap);
1700 if (ap->flags & ATA_FLAG_DISABLED)
1701 return;
1702 ata_bus_reset(ap);
1703 }
1704
1705 /**
1706 * ata_dev_pair - return other device on cable
1707 * @adev: device
1708 *
1709 * Obtain the other device on the same cable, or if none is
1710 * present NULL is returned
1711 */
1712
1713 struct ata_device *ata_dev_pair(struct ata_device *adev)
1714 {
1715 struct ata_port *ap = adev->ap;
1716 struct ata_device *pair = &ap->device[1 - adev->devno];
1717 if (!ata_dev_enabled(pair))
1718 return NULL;
1719 return pair;
1720 }
1721
1722 /**
1723 * ata_port_disable - Disable port.
1724 * @ap: Port to be disabled.
1725 *
1726 * Modify @ap data structure such that the system
1727 * thinks that the entire port is disabled, and should
1728 * never attempt to probe or communicate with devices
1729 * on this port.
1730 *
1731 * LOCKING: host_set lock, or some other form of
1732 * serialization.
1733 */
1734
1735 void ata_port_disable(struct ata_port *ap)
1736 {
1737 ap->device[0].class = ATA_DEV_NONE;
1738 ap->device[1].class = ATA_DEV_NONE;
1739 ap->flags |= ATA_FLAG_DISABLED;
1740 }
1741
1742 /**
1743 * sata_down_spd_limit - adjust SATA spd limit downward
1744 * @ap: Port to adjust SATA spd limit for
1745 *
1746 * Adjust SATA spd limit of @ap downward. Note that this
1747 * function only adjusts the limit. The change must be applied
1748 * using sata_set_spd().
1749 *
1750 * LOCKING:
1751 * Inherited from caller.
1752 *
1753 * RETURNS:
1754 * 0 on success, negative errno on failure
1755 */
1756 int sata_down_spd_limit(struct ata_port *ap)
1757 {
1758 u32 sstatus, spd, mask;
1759 int rc, highbit;
1760
1761 rc = sata_scr_read(ap, SCR_STATUS, &sstatus);
1762 if (rc)
1763 return rc;
1764
1765 mask = ap->sata_spd_limit;
1766 if (mask <= 1)
1767 return -EINVAL;
1768 highbit = fls(mask) - 1;
1769 mask &= ~(1 << highbit);
1770
1771 spd = (sstatus >> 4) & 0xf;
1772 if (spd <= 1)
1773 return -EINVAL;
1774 spd--;
1775 mask &= (1 << spd) - 1;
1776 if (!mask)
1777 return -EINVAL;
1778
1779 ap->sata_spd_limit = mask;
1780
1781 ata_port_printk(ap, KERN_WARNING, "limiting SATA link speed to %s\n",
1782 sata_spd_string(fls(mask)));
1783
1784 return 0;
1785 }
1786
1787 static int __sata_set_spd_needed(struct ata_port *ap, u32 *scontrol)
1788 {
1789 u32 spd, limit;
1790
1791 if (ap->sata_spd_limit == UINT_MAX)
1792 limit = 0;
1793 else
1794 limit = fls(ap->sata_spd_limit);
1795
1796 spd = (*scontrol >> 4) & 0xf;
1797 *scontrol = (*scontrol & ~0xf0) | ((limit & 0xf) << 4);
1798
1799 return spd != limit;
1800 }
1801
1802 /**
1803 * sata_set_spd_needed - is SATA spd configuration needed
1804 * @ap: Port in question
1805 *
1806 * Test whether the spd limit in SControl matches
1807 * @ap->sata_spd_limit. This function is used to determine
1808 * whether hardreset is necessary to apply SATA spd
1809 * configuration.
1810 *
1811 * LOCKING:
1812 * Inherited from caller.
1813 *
1814 * RETURNS:
1815 * 1 if SATA spd configuration is needed, 0 otherwise.
1816 */
1817 int sata_set_spd_needed(struct ata_port *ap)
1818 {
1819 u32 scontrol;
1820
1821 if (sata_scr_read(ap, SCR_CONTROL, &scontrol))
1822 return 0;
1823
1824 return __sata_set_spd_needed(ap, &scontrol);
1825 }
1826
1827 /**
1828 * sata_set_spd - set SATA spd according to spd limit
1829 * @ap: Port to set SATA spd for
1830 *
1831 * Set SATA spd of @ap according to sata_spd_limit.
1832 *
1833 * LOCKING:
1834 * Inherited from caller.
1835 *
1836 * RETURNS:
1837 * 0 if spd doesn't need to be changed, 1 if spd has been
1838 * changed. Negative errno if SCR registers are inaccessible.
1839 */
1840 int sata_set_spd(struct ata_port *ap)
1841 {
1842 u32 scontrol;
1843 int rc;
1844
1845 if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
1846 return rc;
1847
1848 if (!__sata_set_spd_needed(ap, &scontrol))
1849 return 0;
1850
1851 if ((rc = sata_scr_write(ap, SCR_CONTROL, scontrol)))
1852 return rc;
1853
1854 return 1;
1855 }
1856
1857 /*
1858 * This mode timing computation functionality is ported over from
1859 * drivers/ide/ide-timing.h and was originally written by Vojtech Pavlik
1860 */
1861 /*
1862 * PIO 0-5, MWDMA 0-2 and UDMA 0-6 timings (in nanoseconds).
1863 * These were taken from ATA/ATAPI-6 standard, rev 0a, except
1864 * for PIO 5, which is a nonstandard extension and UDMA6, which
1865 * is currently supported only by Maxtor drives.
1866 */
1867
1868 static const struct ata_timing ata_timing[] = {
1869
1870 { XFER_UDMA_6, 0, 0, 0, 0, 0, 0, 0, 15 },
1871 { XFER_UDMA_5, 0, 0, 0, 0, 0, 0, 0, 20 },
1872 { XFER_UDMA_4, 0, 0, 0, 0, 0, 0, 0, 30 },
1873 { XFER_UDMA_3, 0, 0, 0, 0, 0, 0, 0, 45 },
1874
1875 { XFER_UDMA_2, 0, 0, 0, 0, 0, 0, 0, 60 },
1876 { XFER_UDMA_1, 0, 0, 0, 0, 0, 0, 0, 80 },
1877 { XFER_UDMA_0, 0, 0, 0, 0, 0, 0, 0, 120 },
1878
1879 /* { XFER_UDMA_SLOW, 0, 0, 0, 0, 0, 0, 0, 150 }, */
1880
1881 { XFER_MW_DMA_2, 25, 0, 0, 0, 70, 25, 120, 0 },
1882 { XFER_MW_DMA_1, 45, 0, 0, 0, 80, 50, 150, 0 },
1883 { XFER_MW_DMA_0, 60, 0, 0, 0, 215, 215, 480, 0 },
1884
1885 { XFER_SW_DMA_2, 60, 0, 0, 0, 120, 120, 240, 0 },
1886 { XFER_SW_DMA_1, 90, 0, 0, 0, 240, 240, 480, 0 },
1887 { XFER_SW_DMA_0, 120, 0, 0, 0, 480, 480, 960, 0 },
1888
1889 /* { XFER_PIO_5, 20, 50, 30, 100, 50, 30, 100, 0 }, */
1890 { XFER_PIO_4, 25, 70, 25, 120, 70, 25, 120, 0 },
1891 { XFER_PIO_3, 30, 80, 70, 180, 80, 70, 180, 0 },
1892
1893 { XFER_PIO_2, 30, 290, 40, 330, 100, 90, 240, 0 },
1894 { XFER_PIO_1, 50, 290, 93, 383, 125, 100, 383, 0 },
1895 { XFER_PIO_0, 70, 290, 240, 600, 165, 150, 600, 0 },
1896
1897 /* { XFER_PIO_SLOW, 120, 290, 240, 960, 290, 240, 960, 0 }, */
1898
1899 { 0xFF }
1900 };
1901
1902 #define ENOUGH(v,unit) (((v)-1)/(unit)+1)
1903 #define EZ(v,unit) ((v)?ENOUGH(v,unit):0)
1904
1905 static void ata_timing_quantize(const struct ata_timing *t, struct ata_timing *q, int T, int UT)
1906 {
1907 q->setup = EZ(t->setup * 1000, T);
1908 q->act8b = EZ(t->act8b * 1000, T);
1909 q->rec8b = EZ(t->rec8b * 1000, T);
1910 q->cyc8b = EZ(t->cyc8b * 1000, T);
1911 q->active = EZ(t->active * 1000, T);
1912 q->recover = EZ(t->recover * 1000, T);
1913 q->cycle = EZ(t->cycle * 1000, T);
1914 q->udma = EZ(t->udma * 1000, UT);
1915 }
1916
1917 void ata_timing_merge(const struct ata_timing *a, const struct ata_timing *b,
1918 struct ata_timing *m, unsigned int what)
1919 {
1920 if (what & ATA_TIMING_SETUP ) m->setup = max(a->setup, b->setup);
1921 if (what & ATA_TIMING_ACT8B ) m->act8b = max(a->act8b, b->act8b);
1922 if (what & ATA_TIMING_REC8B ) m->rec8b = max(a->rec8b, b->rec8b);
1923 if (what & ATA_TIMING_CYC8B ) m->cyc8b = max(a->cyc8b, b->cyc8b);
1924 if (what & ATA_TIMING_ACTIVE ) m->active = max(a->active, b->active);
1925 if (what & ATA_TIMING_RECOVER) m->recover = max(a->recover, b->recover);
1926 if (what & ATA_TIMING_CYCLE ) m->cycle = max(a->cycle, b->cycle);
1927 if (what & ATA_TIMING_UDMA ) m->udma = max(a->udma, b->udma);
1928 }
1929
1930 static const struct ata_timing* ata_timing_find_mode(unsigned short speed)
1931 {
1932 const struct ata_timing *t;
1933
1934 for (t = ata_timing; t->mode != speed; t++)
1935 if (t->mode == 0xFF)
1936 return NULL;
1937 return t;
1938 }
1939
1940 int ata_timing_compute(struct ata_device *adev, unsigned short speed,
1941 struct ata_timing *t, int T, int UT)
1942 {
1943 const struct ata_timing *s;
1944 struct ata_timing p;
1945
1946 /*
1947 * Find the mode.
1948 */
1949
1950 if (!(s = ata_timing_find_mode(speed)))
1951 return -EINVAL;
1952
1953 memcpy(t, s, sizeof(*s));
1954
1955 /*
1956 * If the drive is an EIDE drive, it can tell us it needs extended
1957 * PIO/MW_DMA cycle timing.
1958 */
1959
1960 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE drive */
1961 memset(&p, 0, sizeof(p));
1962 if(speed >= XFER_PIO_0 && speed <= XFER_SW_DMA_0) {
1963 if (speed <= XFER_PIO_2) p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO];
1964 else p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO_IORDY];
1965 } else if(speed >= XFER_MW_DMA_0 && speed <= XFER_MW_DMA_2) {
1966 p.cycle = adev->id[ATA_ID_EIDE_DMA_MIN];
1967 }
1968 ata_timing_merge(&p, t, t, ATA_TIMING_CYCLE | ATA_TIMING_CYC8B);
1969 }
1970
1971 /*
1972 * Convert the timing to bus clock counts.
1973 */
1974
1975 ata_timing_quantize(t, t, T, UT);
1976
1977 /*
1978 * Even in DMA/UDMA modes we still use PIO access for IDENTIFY,
1979 * S.M.A.R.T * and some other commands. We have to ensure that the
1980 * DMA cycle timing is slower/equal than the fastest PIO timing.
1981 */
1982
1983 if (speed > XFER_PIO_4) {
1984 ata_timing_compute(adev, adev->pio_mode, &p, T, UT);
1985 ata_timing_merge(&p, t, t, ATA_TIMING_ALL);
1986 }
1987
1988 /*
1989 * Lengthen active & recovery time so that cycle time is correct.
1990 */
1991
1992 if (t->act8b + t->rec8b < t->cyc8b) {
1993 t->act8b += (t->cyc8b - (t->act8b + t->rec8b)) / 2;
1994 t->rec8b = t->cyc8b - t->act8b;
1995 }
1996
1997 if (t->active + t->recover < t->cycle) {
1998 t->active += (t->cycle - (t->active + t->recover)) / 2;
1999 t->recover = t->cycle - t->active;
2000 }
2001
2002 return 0;
2003 }
2004
2005 /**
2006 * ata_down_xfermask_limit - adjust dev xfer masks downward
2007 * @dev: Device to adjust xfer masks
2008 * @force_pio0: Force PIO0
2009 *
2010 * Adjust xfer masks of @dev downward. Note that this function
2011 * does not apply the change. Invoking ata_set_mode() afterwards
2012 * will apply the limit.
2013 *
2014 * LOCKING:
2015 * Inherited from caller.
2016 *
2017 * RETURNS:
2018 * 0 on success, negative errno on failure
2019 */
2020 int ata_down_xfermask_limit(struct ata_device *dev, int force_pio0)
2021 {
2022 unsigned long xfer_mask;
2023 int highbit;
2024
2025 xfer_mask = ata_pack_xfermask(dev->pio_mask, dev->mwdma_mask,
2026 dev->udma_mask);
2027
2028 if (!xfer_mask)
2029 goto fail;
2030 /* don't gear down to MWDMA from UDMA, go directly to PIO */
2031 if (xfer_mask & ATA_MASK_UDMA)
2032 xfer_mask &= ~ATA_MASK_MWDMA;
2033
2034 highbit = fls(xfer_mask) - 1;
2035 xfer_mask &= ~(1 << highbit);
2036 if (force_pio0)
2037 xfer_mask &= 1 << ATA_SHIFT_PIO;
2038 if (!xfer_mask)
2039 goto fail;
2040
2041 ata_unpack_xfermask(xfer_mask, &dev->pio_mask, &dev->mwdma_mask,
2042 &dev->udma_mask);
2043
2044 ata_dev_printk(dev, KERN_WARNING, "limiting speed to %s\n",
2045 ata_mode_string(xfer_mask));
2046
2047 return 0;
2048
2049 fail:
2050 return -EINVAL;
2051 }
2052
2053 static int ata_dev_set_mode(struct ata_device *dev)
2054 {
2055 unsigned int err_mask;
2056 int rc;
2057
2058 dev->flags &= ~ATA_DFLAG_PIO;
2059 if (dev->xfer_shift == ATA_SHIFT_PIO)
2060 dev->flags |= ATA_DFLAG_PIO;
2061
2062 err_mask = ata_dev_set_xfermode(dev);
2063 if (err_mask) {
2064 ata_dev_printk(dev, KERN_ERR, "failed to set xfermode "
2065 "(err_mask=0x%x)\n", err_mask);
2066 return -EIO;
2067 }
2068
2069 rc = ata_dev_revalidate(dev, 0);
2070 if (rc)
2071 return rc;
2072
2073 DPRINTK("xfer_shift=%u, xfer_mode=0x%x\n",
2074 dev->xfer_shift, (int)dev->xfer_mode);
2075
2076 ata_dev_printk(dev, KERN_INFO, "configured for %s\n",
2077 ata_mode_string(ata_xfer_mode2mask(dev->xfer_mode)));
2078 return 0;
2079 }
2080
2081 /**
2082 * ata_set_mode - Program timings and issue SET FEATURES - XFER
2083 * @ap: port on which timings will be programmed
2084 * @r_failed_dev: out paramter for failed device
2085 *
2086 * Set ATA device disk transfer mode (PIO3, UDMA6, etc.). If
2087 * ata_set_mode() fails, pointer to the failing device is
2088 * returned in @r_failed_dev.
2089 *
2090 * LOCKING:
2091 * PCI/etc. bus probe sem.
2092 *
2093 * RETURNS:
2094 * 0 on success, negative errno otherwise
2095 */
2096 int ata_set_mode(struct ata_port *ap, struct ata_device **r_failed_dev)
2097 {
2098 struct ata_device *dev;
2099 int i, rc = 0, used_dma = 0, found = 0;
2100
2101 /* has private set_mode? */
2102 if (ap->ops->set_mode) {
2103 /* FIXME: make ->set_mode handle no device case and
2104 * return error code and failing device on failure.
2105 */
2106 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2107 if (ata_dev_enabled(&ap->device[i])) {
2108 ap->ops->set_mode(ap);
2109 break;
2110 }
2111 }
2112 return 0;
2113 }
2114
2115 /* step 1: calculate xfer_mask */
2116 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2117 unsigned int pio_mask, dma_mask;
2118
2119 dev = &ap->device[i];
2120
2121 if (!ata_dev_enabled(dev))
2122 continue;
2123
2124 ata_dev_xfermask(dev);
2125
2126 pio_mask = ata_pack_xfermask(dev->pio_mask, 0, 0);
2127 dma_mask = ata_pack_xfermask(0, dev->mwdma_mask, dev->udma_mask);
2128 dev->pio_mode = ata_xfer_mask2mode(pio_mask);
2129 dev->dma_mode = ata_xfer_mask2mode(dma_mask);
2130
2131 found = 1;
2132 if (dev->dma_mode)
2133 used_dma = 1;
2134 }
2135 if (!found)
2136 goto out;
2137
2138 /* step 2: always set host PIO timings */
2139 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2140 dev = &ap->device[i];
2141 if (!ata_dev_enabled(dev))
2142 continue;
2143
2144 if (!dev->pio_mode) {
2145 ata_dev_printk(dev, KERN_WARNING, "no PIO support\n");
2146 rc = -EINVAL;
2147 goto out;
2148 }
2149
2150 dev->xfer_mode = dev->pio_mode;
2151 dev->xfer_shift = ATA_SHIFT_PIO;
2152 if (ap->ops->set_piomode)
2153 ap->ops->set_piomode(ap, dev);
2154 }
2155
2156 /* step 3: set host DMA timings */
2157 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2158 dev = &ap->device[i];
2159
2160 if (!ata_dev_enabled(dev) || !dev->dma_mode)
2161 continue;
2162
2163 dev->xfer_mode = dev->dma_mode;
2164 dev->xfer_shift = ata_xfer_mode2shift(dev->dma_mode);
2165 if (ap->ops->set_dmamode)
2166 ap->ops->set_dmamode(ap, dev);
2167 }
2168
2169 /* step 4: update devices' xfer mode */
2170 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2171 dev = &ap->device[i];
2172
2173 if (!ata_dev_enabled(dev))
2174 continue;
2175
2176 rc = ata_dev_set_mode(dev);
2177 if (rc)
2178 goto out;
2179 }
2180
2181 /* Record simplex status. If we selected DMA then the other
2182 * host channels are not permitted to do so.
2183 */
2184 if (used_dma && (ap->host_set->flags & ATA_HOST_SIMPLEX))
2185 ap->host_set->simplex_claimed = 1;
2186
2187 /* step5: chip specific finalisation */
2188 if (ap->ops->post_set_mode)
2189 ap->ops->post_set_mode(ap);
2190
2191 out:
2192 if (rc)
2193 *r_failed_dev = dev;
2194 return rc;
2195 }
2196
2197 /**
2198 * ata_tf_to_host - issue ATA taskfile to host controller
2199 * @ap: port to which command is being issued
2200 * @tf: ATA taskfile register set
2201 *
2202 * Issues ATA taskfile register set to ATA host controller,
2203 * with proper synchronization with interrupt handler and
2204 * other threads.
2205 *
2206 * LOCKING:
2207 * spin_lock_irqsave(host_set lock)
2208 */
2209
2210 static inline void ata_tf_to_host(struct ata_port *ap,
2211 const struct ata_taskfile *tf)
2212 {
2213 ap->ops->tf_load(ap, tf);
2214 ap->ops->exec_command(ap, tf);
2215 }
2216
2217 /**
2218 * ata_busy_sleep - sleep until BSY clears, or timeout
2219 * @ap: port containing status register to be polled
2220 * @tmout_pat: impatience timeout
2221 * @tmout: overall timeout
2222 *
2223 * Sleep until ATA Status register bit BSY clears,
2224 * or a timeout occurs.
2225 *
2226 * LOCKING: None.
2227 */
2228
2229 unsigned int ata_busy_sleep (struct ata_port *ap,
2230 unsigned long tmout_pat, unsigned long tmout)
2231 {
2232 unsigned long timer_start, timeout;
2233 u8 status;
2234
2235 status = ata_busy_wait(ap, ATA_BUSY, 300);
2236 timer_start = jiffies;
2237 timeout = timer_start + tmout_pat;
2238 while ((status & ATA_BUSY) && (time_before(jiffies, timeout))) {
2239 msleep(50);
2240 status = ata_busy_wait(ap, ATA_BUSY, 3);
2241 }
2242
2243 if (status & ATA_BUSY)
2244 ata_port_printk(ap, KERN_WARNING,
2245 "port is slow to respond, please be patient\n");
2246
2247 timeout = timer_start + tmout;
2248 while ((status & ATA_BUSY) && (time_before(jiffies, timeout))) {
2249 msleep(50);
2250 status = ata_chk_status(ap);
2251 }
2252
2253 if (status & ATA_BUSY) {
2254 ata_port_printk(ap, KERN_ERR, "port failed to respond "
2255 "(%lu secs)\n", tmout / HZ);
2256 return 1;
2257 }
2258
2259 return 0;
2260 }
2261
2262 static void ata_bus_post_reset(struct ata_port *ap, unsigned int devmask)
2263 {
2264 struct ata_ioports *ioaddr = &ap->ioaddr;
2265 unsigned int dev0 = devmask & (1 << 0);
2266 unsigned int dev1 = devmask & (1 << 1);
2267 unsigned long timeout;
2268
2269 /* if device 0 was found in ata_devchk, wait for its
2270 * BSY bit to clear
2271 */
2272 if (dev0)
2273 ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT);
2274
2275 /* if device 1 was found in ata_devchk, wait for
2276 * register access, then wait for BSY to clear
2277 */
2278 timeout = jiffies + ATA_TMOUT_BOOT;
2279 while (dev1) {
2280 u8 nsect, lbal;
2281
2282 ap->ops->dev_select(ap, 1);
2283 if (ap->flags & ATA_FLAG_MMIO) {
2284 nsect = readb((void __iomem *) ioaddr->nsect_addr);
2285 lbal = readb((void __iomem *) ioaddr->lbal_addr);
2286 } else {
2287 nsect = inb(ioaddr->nsect_addr);
2288 lbal = inb(ioaddr->lbal_addr);
2289 }
2290 if ((nsect == 1) && (lbal == 1))
2291 break;
2292 if (time_after(jiffies, timeout)) {
2293 dev1 = 0;
2294 break;
2295 }
2296 msleep(50); /* give drive a breather */
2297 }
2298 if (dev1)
2299 ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT);
2300
2301 /* is all this really necessary? */
2302 ap->ops->dev_select(ap, 0);
2303 if (dev1)
2304 ap->ops->dev_select(ap, 1);
2305 if (dev0)
2306 ap->ops->dev_select(ap, 0);
2307 }
2308
2309 static unsigned int ata_bus_softreset(struct ata_port *ap,
2310 unsigned int devmask)
2311 {
2312 struct ata_ioports *ioaddr = &ap->ioaddr;
2313
2314 DPRINTK("ata%u: bus reset via SRST\n", ap->id);
2315
2316 /* software reset. causes dev0 to be selected */
2317 if (ap->flags & ATA_FLAG_MMIO) {
2318 writeb(ap->ctl, (void __iomem *) ioaddr->ctl_addr);
2319 udelay(20); /* FIXME: flush */
2320 writeb(ap->ctl | ATA_SRST, (void __iomem *) ioaddr->ctl_addr);
2321 udelay(20); /* FIXME: flush */
2322 writeb(ap->ctl, (void __iomem *) ioaddr->ctl_addr);
2323 } else {
2324 outb(ap->ctl, ioaddr->ctl_addr);
2325 udelay(10);
2326 outb(ap->ctl | ATA_SRST, ioaddr->ctl_addr);
2327 udelay(10);
2328 outb(ap->ctl, ioaddr->ctl_addr);
2329 }
2330
2331 /* spec mandates ">= 2ms" before checking status.
2332 * We wait 150ms, because that was the magic delay used for
2333 * ATAPI devices in Hale Landis's ATADRVR, for the period of time
2334 * between when the ATA command register is written, and then
2335 * status is checked. Because waiting for "a while" before
2336 * checking status is fine, post SRST, we perform this magic
2337 * delay here as well.
2338 *
2339 * Old drivers/ide uses the 2mS rule and then waits for ready
2340 */
2341 msleep(150);
2342
2343 /* Before we perform post reset processing we want to see if
2344 * the bus shows 0xFF because the odd clown forgets the D7
2345 * pulldown resistor.
2346 */
2347 if (ata_check_status(ap) == 0xFF) {
2348 ata_port_printk(ap, KERN_ERR, "SRST failed (status 0xFF)\n");
2349 return AC_ERR_OTHER;
2350 }
2351
2352 ata_bus_post_reset(ap, devmask);
2353
2354 return 0;
2355 }
2356
2357 /**
2358 * ata_bus_reset - reset host port and associated ATA channel
2359 * @ap: port to reset
2360 *
2361 * This is typically the first time we actually start issuing
2362 * commands to the ATA channel. We wait for BSY to clear, then
2363 * issue EXECUTE DEVICE DIAGNOSTIC command, polling for its
2364 * result. Determine what devices, if any, are on the channel
2365 * by looking at the device 0/1 error register. Look at the signature
2366 * stored in each device's taskfile registers, to determine if
2367 * the device is ATA or ATAPI.
2368 *
2369 * LOCKING:
2370 * PCI/etc. bus probe sem.
2371 * Obtains host_set lock.
2372 *
2373 * SIDE EFFECTS:
2374 * Sets ATA_FLAG_DISABLED if bus reset fails.
2375 */
2376
2377 void ata_bus_reset(struct ata_port *ap)
2378 {
2379 struct ata_ioports *ioaddr = &ap->ioaddr;
2380 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
2381 u8 err;
2382 unsigned int dev0, dev1 = 0, devmask = 0;
2383
2384 DPRINTK("ENTER, host %u, port %u\n", ap->id, ap->port_no);
2385
2386 /* determine if device 0/1 are present */
2387 if (ap->flags & ATA_FLAG_SATA_RESET)
2388 dev0 = 1;
2389 else {
2390 dev0 = ata_devchk(ap, 0);
2391 if (slave_possible)
2392 dev1 = ata_devchk(ap, 1);
2393 }
2394
2395 if (dev0)
2396 devmask |= (1 << 0);
2397 if (dev1)
2398 devmask |= (1 << 1);
2399
2400 /* select device 0 again */
2401 ap->ops->dev_select(ap, 0);
2402
2403 /* issue bus reset */
2404 if (ap->flags & ATA_FLAG_SRST)
2405 if (ata_bus_softreset(ap, devmask))
2406 goto err_out;
2407
2408 /*
2409 * determine by signature whether we have ATA or ATAPI devices
2410 */
2411 ap->device[0].class = ata_dev_try_classify(ap, 0, &err);
2412 if ((slave_possible) && (err != 0x81))
2413 ap->device[1].class = ata_dev_try_classify(ap, 1, &err);
2414
2415 /* re-enable interrupts */
2416 if (ap->ioaddr.ctl_addr) /* FIXME: hack. create a hook instead */
2417 ata_irq_on(ap);
2418
2419 /* is double-select really necessary? */
2420 if (ap->device[1].class != ATA_DEV_NONE)
2421 ap->ops->dev_select(ap, 1);
2422 if (ap->device[0].class != ATA_DEV_NONE)
2423 ap->ops->dev_select(ap, 0);
2424
2425 /* if no devices were detected, disable this port */
2426 if ((ap->device[0].class == ATA_DEV_NONE) &&
2427 (ap->device[1].class == ATA_DEV_NONE))
2428 goto err_out;
2429
2430 if (ap->flags & (ATA_FLAG_SATA_RESET | ATA_FLAG_SRST)) {
2431 /* set up device control for ATA_FLAG_SATA_RESET */
2432 if (ap->flags & ATA_FLAG_MMIO)
2433 writeb(ap->ctl, (void __iomem *) ioaddr->ctl_addr);
2434 else
2435 outb(ap->ctl, ioaddr->ctl_addr);
2436 }
2437
2438 DPRINTK("EXIT\n");
2439 return;
2440
2441 err_out:
2442 ata_port_printk(ap, KERN_ERR, "disabling port\n");
2443 ap->ops->port_disable(ap);
2444
2445 DPRINTK("EXIT\n");
2446 }
2447
2448 /**
2449 * sata_phy_debounce - debounce SATA phy status
2450 * @ap: ATA port to debounce SATA phy status for
2451 * @params: timing parameters { interval, duratinon, timeout } in msec
2452 *
2453 * Make sure SStatus of @ap reaches stable state, determined by
2454 * holding the same value where DET is not 1 for @duration polled
2455 * every @interval, before @timeout. Timeout constraints the
2456 * beginning of the stable state. Because, after hot unplugging,
2457 * DET gets stuck at 1 on some controllers, this functions waits
2458 * until timeout then returns 0 if DET is stable at 1.
2459 *
2460 * LOCKING:
2461 * Kernel thread context (may sleep)
2462 *
2463 * RETURNS:
2464 * 0 on success, -errno on failure.
2465 */
2466 int sata_phy_debounce(struct ata_port *ap, const unsigned long *params)
2467 {
2468 unsigned long interval_msec = params[0];
2469 unsigned long duration = params[1] * HZ / 1000;
2470 unsigned long timeout = jiffies + params[2] * HZ / 1000;
2471 unsigned long last_jiffies;
2472 u32 last, cur;
2473 int rc;
2474
2475 if ((rc = sata_scr_read(ap, SCR_STATUS, &cur)))
2476 return rc;
2477 cur &= 0xf;
2478
2479 last = cur;
2480 last_jiffies = jiffies;
2481
2482 while (1) {
2483 msleep(interval_msec);
2484 if ((rc = sata_scr_read(ap, SCR_STATUS, &cur)))
2485 return rc;
2486 cur &= 0xf;
2487
2488 /* DET stable? */
2489 if (cur == last) {
2490 if (cur == 1 && time_before(jiffies, timeout))
2491 continue;
2492 if (time_after(jiffies, last_jiffies + duration))
2493 return 0;
2494 continue;
2495 }
2496
2497 /* unstable, start over */
2498 last = cur;
2499 last_jiffies = jiffies;
2500
2501 /* check timeout */
2502 if (time_after(jiffies, timeout))
2503 return -EBUSY;
2504 }
2505 }
2506
2507 /**
2508 * sata_phy_resume - resume SATA phy
2509 * @ap: ATA port to resume SATA phy for
2510 * @params: timing parameters { interval, duratinon, timeout } in msec
2511 *
2512 * Resume SATA phy of @ap and debounce it.
2513 *
2514 * LOCKING:
2515 * Kernel thread context (may sleep)
2516 *
2517 * RETURNS:
2518 * 0 on success, -errno on failure.
2519 */
2520 int sata_phy_resume(struct ata_port *ap, const unsigned long *params)
2521 {
2522 u32 scontrol;
2523 int rc;
2524
2525 if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
2526 return rc;
2527
2528 scontrol = (scontrol & 0x0f0) | 0x300;
2529
2530 if ((rc = sata_scr_write(ap, SCR_CONTROL, scontrol)))
2531 return rc;
2532
2533 /* Some PHYs react badly if SStatus is pounded immediately
2534 * after resuming. Delay 200ms before debouncing.
2535 */
2536 msleep(200);
2537
2538 return sata_phy_debounce(ap, params);
2539 }
2540
2541 static void ata_wait_spinup(struct ata_port *ap)
2542 {
2543 struct ata_eh_context *ehc = &ap->eh_context;
2544 unsigned long end, secs;
2545 int rc;
2546
2547 /* first, debounce phy if SATA */
2548 if (ap->cbl == ATA_CBL_SATA) {
2549 rc = sata_phy_debounce(ap, sata_deb_timing_eh);
2550
2551 /* if debounced successfully and offline, no need to wait */
2552 if ((rc == 0 || rc == -EOPNOTSUPP) && ata_port_offline(ap))
2553 return;
2554 }
2555
2556 /* okay, let's give the drive time to spin up */
2557 end = ehc->i.hotplug_timestamp + ATA_SPINUP_WAIT * HZ / 1000;
2558 secs = ((end - jiffies) + HZ - 1) / HZ;
2559
2560 if (time_after(jiffies, end))
2561 return;
2562
2563 if (secs > 5)
2564 ata_port_printk(ap, KERN_INFO, "waiting for device to spin up "
2565 "(%lu secs)\n", secs);
2566
2567 schedule_timeout_uninterruptible(end - jiffies);
2568 }
2569
2570 /**
2571 * ata_std_prereset - prepare for reset
2572 * @ap: ATA port to be reset
2573 *
2574 * @ap is about to be reset. Initialize it.
2575 *
2576 * LOCKING:
2577 * Kernel thread context (may sleep)
2578 *
2579 * RETURNS:
2580 * 0 on success, -errno otherwise.
2581 */
2582 int ata_std_prereset(struct ata_port *ap)
2583 {
2584 struct ata_eh_context *ehc = &ap->eh_context;
2585 const unsigned long *timing;
2586 int rc;
2587
2588 /* hotplug? */
2589 if (ehc->i.flags & ATA_EHI_HOTPLUGGED) {
2590 if (ap->flags & ATA_FLAG_HRST_TO_RESUME)
2591 ehc->i.action |= ATA_EH_HARDRESET;
2592 if (ap->flags & ATA_FLAG_SKIP_D2H_BSY)
2593 ata_wait_spinup(ap);
2594 }
2595
2596 /* if we're about to do hardreset, nothing more to do */
2597 if (ehc->i.action & ATA_EH_HARDRESET)
2598 return 0;
2599
2600 /* if SATA, resume phy */
2601 if (ap->cbl == ATA_CBL_SATA) {
2602 if (ap->flags & ATA_FLAG_LOADING)
2603 timing = sata_deb_timing_boot;
2604 else
2605 timing = sata_deb_timing_eh;
2606
2607 rc = sata_phy_resume(ap, timing);
2608 if (rc && rc != -EOPNOTSUPP) {
2609 /* phy resume failed */
2610 ata_port_printk(ap, KERN_WARNING, "failed to resume "
2611 "link for reset (errno=%d)\n", rc);
2612 return rc;
2613 }
2614 }
2615
2616 /* Wait for !BSY if the controller can wait for the first D2H
2617 * Reg FIS and we don't know that no device is attached.
2618 */
2619 if (!(ap->flags & ATA_FLAG_SKIP_D2H_BSY) && !ata_port_offline(ap))
2620 ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT);
2621
2622 return 0;
2623 }
2624
2625 /**
2626 * ata_std_softreset - reset host port via ATA SRST
2627 * @ap: port to reset
2628 * @classes: resulting classes of attached devices
2629 *
2630 * Reset host port using ATA SRST.
2631 *
2632 * LOCKING:
2633 * Kernel thread context (may sleep)
2634 *
2635 * RETURNS:
2636 * 0 on success, -errno otherwise.
2637 */
2638 int ata_std_softreset(struct ata_port *ap, unsigned int *classes)
2639 {
2640 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
2641 unsigned int devmask = 0, err_mask;
2642 u8 err;
2643
2644 DPRINTK("ENTER\n");
2645
2646 if (ata_port_offline(ap)) {
2647 classes[0] = ATA_DEV_NONE;
2648 goto out;
2649 }
2650
2651 /* determine if device 0/1 are present */
2652 if (ata_devchk(ap, 0))
2653 devmask |= (1 << 0);
2654 if (slave_possible && ata_devchk(ap, 1))
2655 devmask |= (1 << 1);
2656
2657 /* select device 0 again */
2658 ap->ops->dev_select(ap, 0);
2659
2660 /* issue bus reset */
2661 DPRINTK("about to softreset, devmask=%x\n", devmask);
2662 err_mask = ata_bus_softreset(ap, devmask);
2663 if (err_mask) {
2664 ata_port_printk(ap, KERN_ERR, "SRST failed (err_mask=0x%x)\n",
2665 err_mask);
2666 return -EIO;
2667 }
2668
2669 /* determine by signature whether we have ATA or ATAPI devices */
2670 classes[0] = ata_dev_try_classify(ap, 0, &err);
2671 if (slave_possible && err != 0x81)
2672 classes[1] = ata_dev_try_classify(ap, 1, &err);
2673
2674 out:
2675 DPRINTK("EXIT, classes[0]=%u [1]=%u\n", classes[0], classes[1]);
2676 return 0;
2677 }
2678
2679 /**
2680 * sata_std_hardreset - reset host port via SATA phy reset
2681 * @ap: port to reset
2682 * @class: resulting class of attached device
2683 *
2684 * SATA phy-reset host port using DET bits of SControl register.
2685 *
2686 * LOCKING:
2687 * Kernel thread context (may sleep)
2688 *
2689 * RETURNS:
2690 * 0 on success, -errno otherwise.
2691 */
2692 int sata_std_hardreset(struct ata_port *ap, unsigned int *class)
2693 {
2694 u32 scontrol;
2695 int rc;
2696
2697 DPRINTK("ENTER\n");
2698
2699 if (sata_set_spd_needed(ap)) {
2700 /* SATA spec says nothing about how to reconfigure
2701 * spd. To be on the safe side, turn off phy during
2702 * reconfiguration. This works for at least ICH7 AHCI
2703 * and Sil3124.
2704 */
2705 if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
2706 return rc;
2707
2708 scontrol = (scontrol & 0x0f0) | 0x302;
2709
2710 if ((rc = sata_scr_write(ap, SCR_CONTROL, scontrol)))
2711 return rc;
2712
2713 sata_set_spd(ap);
2714 }
2715
2716 /* issue phy wake/reset */
2717 if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
2718 return rc;
2719
2720 scontrol = (scontrol & 0x0f0) | 0x301;
2721
2722 if ((rc = sata_scr_write_flush(ap, SCR_CONTROL, scontrol)))
2723 return rc;
2724
2725 /* Couldn't find anything in SATA I/II specs, but AHCI-1.1
2726 * 10.4.2 says at least 1 ms.
2727 */
2728 msleep(1);
2729
2730 /* bring phy back */
2731 sata_phy_resume(ap, sata_deb_timing_eh);
2732
2733 /* TODO: phy layer with polling, timeouts, etc. */
2734 if (ata_port_offline(ap)) {
2735 *class = ATA_DEV_NONE;
2736 DPRINTK("EXIT, link offline\n");
2737 return 0;
2738 }
2739
2740 if (ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT)) {
2741 ata_port_printk(ap, KERN_ERR,
2742 "COMRESET failed (device not ready)\n");
2743 return -EIO;
2744 }
2745
2746 ap->ops->dev_select(ap, 0); /* probably unnecessary */
2747
2748 *class = ata_dev_try_classify(ap, 0, NULL);
2749
2750 DPRINTK("EXIT, class=%u\n", *class);
2751 return 0;
2752 }
2753
2754 /**
2755 * ata_std_postreset - standard postreset callback
2756 * @ap: the target ata_port
2757 * @classes: classes of attached devices
2758 *
2759 * This function is invoked after a successful reset. Note that
2760 * the device might have been reset more than once using
2761 * different reset methods before postreset is invoked.
2762 *
2763 * LOCKING:
2764 * Kernel thread context (may sleep)
2765 */
2766 void ata_std_postreset(struct ata_port *ap, unsigned int *classes)
2767 {
2768 u32 serror;
2769
2770 DPRINTK("ENTER\n");
2771
2772 /* print link status */
2773 sata_print_link_status(ap);
2774
2775 /* clear SError */
2776 if (sata_scr_read(ap, SCR_ERROR, &serror) == 0)
2777 sata_scr_write(ap, SCR_ERROR, serror);
2778
2779 /* re-enable interrupts */
2780 if (!ap->ops->error_handler) {
2781 /* FIXME: hack. create a hook instead */
2782 if (ap->ioaddr.ctl_addr)
2783 ata_irq_on(ap);
2784 }
2785
2786 /* is double-select really necessary? */
2787 if (classes[0] != ATA_DEV_NONE)
2788 ap->ops->dev_select(ap, 1);
2789 if (classes[1] != ATA_DEV_NONE)
2790 ap->ops->dev_select(ap, 0);
2791
2792 /* bail out if no device is present */
2793 if (classes[0] == ATA_DEV_NONE && classes[1] == ATA_DEV_NONE) {
2794 DPRINTK("EXIT, no device\n");
2795 return;
2796 }
2797
2798 /* set up device control */
2799 if (ap->ioaddr.ctl_addr) {
2800 if (ap->flags & ATA_FLAG_MMIO)
2801 writeb(ap->ctl, (void __iomem *) ap->ioaddr.ctl_addr);
2802 else
2803 outb(ap->ctl, ap->ioaddr.ctl_addr);
2804 }
2805
2806 DPRINTK("EXIT\n");
2807 }
2808
2809 /**
2810 * ata_dev_same_device - Determine whether new ID matches configured device
2811 * @dev: device to compare against
2812 * @new_class: class of the new device
2813 * @new_id: IDENTIFY page of the new device
2814 *
2815 * Compare @new_class and @new_id against @dev and determine
2816 * whether @dev is the device indicated by @new_class and
2817 * @new_id.
2818 *
2819 * LOCKING:
2820 * None.
2821 *
2822 * RETURNS:
2823 * 1 if @dev matches @new_class and @new_id, 0 otherwise.
2824 */
2825 static int ata_dev_same_device(struct ata_device *dev, unsigned int new_class,
2826 const u16 *new_id)
2827 {
2828 const u16 *old_id = dev->id;
2829 unsigned char model[2][41], serial[2][21];
2830 u64 new_n_sectors;
2831
2832 if (dev->class != new_class) {
2833 ata_dev_printk(dev, KERN_INFO, "class mismatch %d != %d\n",
2834 dev->class, new_class);
2835 return 0;
2836 }
2837
2838 ata_id_c_string(old_id, model[0], ATA_ID_PROD_OFS, sizeof(model[0]));
2839 ata_id_c_string(new_id, model[1], ATA_ID_PROD_OFS, sizeof(model[1]));
2840 ata_id_c_string(old_id, serial[0], ATA_ID_SERNO_OFS, sizeof(serial[0]));
2841 ata_id_c_string(new_id, serial[1], ATA_ID_SERNO_OFS, sizeof(serial[1]));
2842 new_n_sectors = ata_id_n_sectors(new_id);
2843
2844 if (strcmp(model[0], model[1])) {
2845 ata_dev_printk(dev, KERN_INFO, "model number mismatch "
2846 "'%s' != '%s'\n", model[0], model[1]);
2847 return 0;
2848 }
2849
2850 if (strcmp(serial[0], serial[1])) {
2851 ata_dev_printk(dev, KERN_INFO, "serial number mismatch "
2852 "'%s' != '%s'\n", serial[0], serial[1]);
2853 return 0;
2854 }
2855
2856 if (dev->class == ATA_DEV_ATA && dev->n_sectors != new_n_sectors) {
2857 ata_dev_printk(dev, KERN_INFO, "n_sectors mismatch "
2858 "%llu != %llu\n",
2859 (unsigned long long)dev->n_sectors,
2860 (unsigned long long)new_n_sectors);
2861 return 0;
2862 }
2863
2864 return 1;
2865 }
2866
2867 /**
2868 * ata_dev_revalidate - Revalidate ATA device
2869 * @dev: device to revalidate
2870 * @post_reset: is this revalidation after reset?
2871 *
2872 * Re-read IDENTIFY page and make sure @dev is still attached to
2873 * the port.
2874 *
2875 * LOCKING:
2876 * Kernel thread context (may sleep)
2877 *
2878 * RETURNS:
2879 * 0 on success, negative errno otherwise
2880 */
2881 int ata_dev_revalidate(struct ata_device *dev, int post_reset)
2882 {
2883 unsigned int class = dev->class;
2884 u16 *id = (void *)dev->ap->sector_buf;
2885 int rc;
2886
2887 if (!ata_dev_enabled(dev)) {
2888 rc = -ENODEV;
2889 goto fail;
2890 }
2891
2892 /* read ID data */
2893 rc = ata_dev_read_id(dev, &class, post_reset, id);
2894 if (rc)
2895 goto fail;
2896
2897 /* is the device still there? */
2898 if (!ata_dev_same_device(dev, class, id)) {
2899 rc = -ENODEV;
2900 goto fail;
2901 }
2902
2903 memcpy(dev->id, id, sizeof(id[0]) * ATA_ID_WORDS);
2904
2905 /* configure device according to the new ID */
2906 rc = ata_dev_configure(dev, 0);
2907 if (rc == 0)
2908 return 0;
2909
2910 fail:
2911 ata_dev_printk(dev, KERN_ERR, "revalidation failed (errno=%d)\n", rc);
2912 return rc;
2913 }
2914
2915 static const char * const ata_dma_blacklist [] = {
2916 "WDC AC11000H", NULL,
2917 "WDC AC22100H", NULL,
2918 "WDC AC32500H", NULL,
2919 "WDC AC33100H", NULL,
2920 "WDC AC31600H", NULL,
2921 "WDC AC32100H", "24.09P07",
2922 "WDC AC23200L", "21.10N21",
2923 "Compaq CRD-8241B", NULL,
2924 "CRD-8400B", NULL,
2925 "CRD-8480B", NULL,
2926 "CRD-8482B", NULL,
2927 "CRD-84", NULL,
2928 "SanDisk SDP3B", NULL,
2929 "SanDisk SDP3B-64", NULL,
2930 "SANYO CD-ROM CRD", NULL,
2931 "HITACHI CDR-8", NULL,
2932 "HITACHI CDR-8335", NULL,
2933 "HITACHI CDR-8435", NULL,
2934 "Toshiba CD-ROM XM-6202B", NULL,
2935 "TOSHIBA CD-ROM XM-1702BC", NULL,
2936 "CD-532E-A", NULL,
2937 "E-IDE CD-ROM CR-840", NULL,
2938 "CD-ROM Drive/F5A", NULL,
2939 "WPI CDD-820", NULL,
2940 "SAMSUNG CD-ROM SC-148C", NULL,
2941 "SAMSUNG CD-ROM SC", NULL,
2942 "SanDisk SDP3B-64", NULL,
2943 "ATAPI CD-ROM DRIVE 40X MAXIMUM",NULL,
2944 "_NEC DV5800A", NULL,
2945 "SAMSUNG CD-ROM SN-124", "N001"
2946 };
2947
2948 static int ata_strim(char *s, size_t len)
2949 {
2950 len = strnlen(s, len);
2951
2952 /* ATAPI specifies that empty space is blank-filled; remove blanks */
2953 while ((len > 0) && (s[len - 1] == ' ')) {
2954 len--;
2955 s[len] = 0;
2956 }
2957 return len;
2958 }
2959
2960 static int ata_dma_blacklisted(const struct ata_device *dev)
2961 {
2962 unsigned char model_num[40];
2963 unsigned char model_rev[16];
2964 unsigned int nlen, rlen;
2965 int i;
2966
2967 /* We don't support polling DMA.
2968 * DMA blacklist those ATAPI devices with CDB-intr (and use PIO)
2969 * if the LLDD handles only interrupts in the HSM_ST_LAST state.
2970 */
2971 if ((dev->ap->flags & ATA_FLAG_PIO_POLLING) &&
2972 (dev->flags & ATA_DFLAG_CDB_INTR))
2973 return 1;
2974
2975 ata_id_string(dev->id, model_num, ATA_ID_PROD_OFS,
2976 sizeof(model_num));
2977 ata_id_string(dev->id, model_rev, ATA_ID_FW_REV_OFS,
2978 sizeof(model_rev));
2979 nlen = ata_strim(model_num, sizeof(model_num));
2980 rlen = ata_strim(model_rev, sizeof(model_rev));
2981
2982 for (i = 0; i < ARRAY_SIZE(ata_dma_blacklist); i += 2) {
2983 if (!strncmp(ata_dma_blacklist[i], model_num, nlen)) {
2984 if (ata_dma_blacklist[i+1] == NULL)
2985 return 1;
2986 if (!strncmp(ata_dma_blacklist[i], model_rev, rlen))
2987 return 1;
2988 }
2989 }
2990 return 0;
2991 }
2992
2993 /**
2994 * ata_dev_xfermask - Compute supported xfermask of the given device
2995 * @dev: Device to compute xfermask for
2996 *
2997 * Compute supported xfermask of @dev and store it in
2998 * dev->*_mask. This function is responsible for applying all
2999 * known limits including host controller limits, device
3000 * blacklist, etc...
3001 *
3002 * FIXME: The current implementation limits all transfer modes to
3003 * the fastest of the lowested device on the port. This is not
3004 * required on most controllers.
3005 *
3006 * LOCKING:
3007 * None.
3008 */
3009 static void ata_dev_xfermask(struct ata_device *dev)
3010 {
3011 struct ata_port *ap = dev->ap;
3012 struct ata_host_set *hs = ap->host_set;
3013 unsigned long xfer_mask;
3014 int i;
3015
3016 xfer_mask = ata_pack_xfermask(ap->pio_mask,
3017 ap->mwdma_mask, ap->udma_mask);
3018
3019 /* Apply cable rule here. Don't apply it early because when
3020 * we handle hot plug the cable type can itself change.
3021 */
3022 if (ap->cbl == ATA_CBL_PATA40)
3023 xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA);
3024
3025 /* FIXME: Use port-wide xfermask for now */
3026 for (i = 0; i < ATA_MAX_DEVICES; i++) {
3027 struct ata_device *d = &ap->device[i];
3028
3029 if (ata_dev_absent(d))
3030 continue;
3031
3032 if (ata_dev_disabled(d)) {
3033 /* to avoid violating device selection timing */
3034 xfer_mask &= ata_pack_xfermask(d->pio_mask,
3035 UINT_MAX, UINT_MAX);
3036 continue;
3037 }
3038
3039 xfer_mask &= ata_pack_xfermask(d->pio_mask,
3040 d->mwdma_mask, d->udma_mask);
3041 xfer_mask &= ata_id_xfermask(d->id);
3042 if (ata_dma_blacklisted(d))
3043 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
3044 }
3045
3046 if (ata_dma_blacklisted(dev))
3047 ata_dev_printk(dev, KERN_WARNING,
3048 "device is on DMA blacklist, disabling DMA\n");
3049
3050 if (hs->flags & ATA_HOST_SIMPLEX) {
3051 if (hs->simplex_claimed)
3052 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
3053 }
3054
3055 if (ap->ops->mode_filter)
3056 xfer_mask = ap->ops->mode_filter(ap, dev, xfer_mask);
3057
3058 ata_unpack_xfermask(xfer_mask, &dev->pio_mask,
3059 &dev->mwdma_mask, &dev->udma_mask);
3060 }
3061
3062 /**
3063 * ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command
3064 * @dev: Device to which command will be sent
3065 *
3066 * Issue SET FEATURES - XFER MODE command to device @dev
3067 * on port @ap.
3068 *
3069 * LOCKING:
3070 * PCI/etc. bus probe sem.
3071 *
3072 * RETURNS:
3073 * 0 on success, AC_ERR_* mask otherwise.
3074 */
3075
3076 static unsigned int ata_dev_set_xfermode(struct ata_device *dev)
3077 {
3078 struct ata_taskfile tf;
3079 unsigned int err_mask;
3080
3081 /* set up set-features taskfile */
3082 DPRINTK("set features - xfer mode\n");
3083
3084 ata_tf_init(dev, &tf);
3085 tf.command = ATA_CMD_SET_FEATURES;
3086 tf.feature = SETFEATURES_XFER;
3087 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
3088 tf.protocol = ATA_PROT_NODATA;
3089 tf.nsect = dev->xfer_mode;
3090
3091 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
3092
3093 DPRINTK("EXIT, err_mask=%x\n", err_mask);
3094 return err_mask;
3095 }
3096
3097 /**
3098 * ata_dev_init_params - Issue INIT DEV PARAMS command
3099 * @dev: Device to which command will be sent
3100 * @heads: Number of heads (taskfile parameter)
3101 * @sectors: Number of sectors (taskfile parameter)
3102 *
3103 * LOCKING:
3104 * Kernel thread context (may sleep)
3105 *
3106 * RETURNS:
3107 * 0 on success, AC_ERR_* mask otherwise.
3108 */
3109 static unsigned int ata_dev_init_params(struct ata_device *dev,
3110 u16 heads, u16 sectors)
3111 {
3112 struct ata_taskfile tf;
3113 unsigned int err_mask;
3114
3115 /* Number of sectors per track 1-255. Number of heads 1-16 */
3116 if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16)
3117 return AC_ERR_INVALID;
3118
3119 /* set up init dev params taskfile */
3120 DPRINTK("init dev params \n");
3121
3122 ata_tf_init(dev, &tf);
3123 tf.command = ATA_CMD_INIT_DEV_PARAMS;
3124 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
3125 tf.protocol = ATA_PROT_NODATA;
3126 tf.nsect = sectors;
3127 tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */
3128
3129 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
3130
3131 DPRINTK("EXIT, err_mask=%x\n", err_mask);
3132 return err_mask;
3133 }
3134
3135 /**
3136 * ata_sg_clean - Unmap DMA memory associated with command
3137 * @qc: Command containing DMA memory to be released
3138 *
3139 * Unmap all mapped DMA memory associated with this command.
3140 *
3141 * LOCKING:
3142 * spin_lock_irqsave(host_set lock)
3143 */
3144
3145 static void ata_sg_clean(struct ata_queued_cmd *qc)
3146 {
3147 struct ata_port *ap = qc->ap;
3148 struct scatterlist *sg = qc->__sg;
3149 int dir = qc->dma_dir;
3150 void *pad_buf = NULL;
3151
3152 WARN_ON(!(qc->flags & ATA_QCFLAG_DMAMAP));
3153 WARN_ON(sg == NULL);
3154
3155 if (qc->flags & ATA_QCFLAG_SINGLE)
3156 WARN_ON(qc->n_elem > 1);
3157
3158 VPRINTK("unmapping %u sg elements\n", qc->n_elem);
3159
3160 /* if we padded the buffer out to 32-bit bound, and data
3161 * xfer direction is from-device, we must copy from the
3162 * pad buffer back into the supplied buffer
3163 */
3164 if (qc->pad_len && !(qc->tf.flags & ATA_TFLAG_WRITE))
3165 pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
3166
3167 if (qc->flags & ATA_QCFLAG_SG) {
3168 if (qc->n_elem)
3169 dma_unmap_sg(ap->dev, sg, qc->n_elem, dir);
3170 /* restore last sg */
3171 sg[qc->orig_n_elem - 1].length += qc->pad_len;
3172 if (pad_buf) {
3173 struct scatterlist *psg = &qc->pad_sgent;
3174 void *addr = kmap_atomic(psg->page, KM_IRQ0);
3175 memcpy(addr + psg->offset, pad_buf, qc->pad_len);
3176 kunmap_atomic(addr, KM_IRQ0);
3177 }
3178 } else {
3179 if (qc->n_elem)
3180 dma_unmap_single(ap->dev,
3181 sg_dma_address(&sg[0]), sg_dma_len(&sg[0]),
3182 dir);
3183 /* restore sg */
3184 sg->length += qc->pad_len;
3185 if (pad_buf)
3186 memcpy(qc->buf_virt + sg->length - qc->pad_len,
3187 pad_buf, qc->pad_len);
3188 }
3189
3190 qc->flags &= ~ATA_QCFLAG_DMAMAP;
3191 qc->__sg = NULL;
3192 }
3193
3194 /**
3195 * ata_fill_sg - Fill PCI IDE PRD table
3196 * @qc: Metadata associated with taskfile to be transferred
3197 *
3198 * Fill PCI IDE PRD (scatter-gather) table with segments
3199 * associated with the current disk command.
3200 *
3201 * LOCKING:
3202 * spin_lock_irqsave(host_set lock)
3203 *
3204 */
3205 static void ata_fill_sg(struct ata_queued_cmd *qc)
3206 {
3207 struct ata_port *ap = qc->ap;
3208 struct scatterlist *sg;
3209 unsigned int idx;
3210
3211 WARN_ON(qc->__sg == NULL);
3212 WARN_ON(qc->n_elem == 0 && qc->pad_len == 0);
3213
3214 idx = 0;
3215 ata_for_each_sg(sg, qc) {
3216 u32 addr, offset;
3217 u32 sg_len, len;
3218
3219 /* determine if physical DMA addr spans 64K boundary.
3220 * Note h/w doesn't support 64-bit, so we unconditionally
3221 * truncate dma_addr_t to u32.
3222 */
3223 addr = (u32) sg_dma_address(sg);
3224 sg_len = sg_dma_len(sg);
3225
3226 while (sg_len) {
3227 offset = addr & 0xffff;
3228 len = sg_len;
3229 if ((offset + sg_len) > 0x10000)
3230 len = 0x10000 - offset;
3231
3232 ap->prd[idx].addr = cpu_to_le32(addr);
3233 ap->prd[idx].flags_len = cpu_to_le32(len & 0xffff);
3234 VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", idx, addr, len);
3235
3236 idx++;
3237 sg_len -= len;
3238 addr += len;
3239 }
3240 }
3241
3242 if (idx)
3243 ap->prd[idx - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT);
3244 }
3245 /**
3246 * ata_check_atapi_dma - Check whether ATAPI DMA can be supported
3247 * @qc: Metadata associated with taskfile to check
3248 *
3249 * Allow low-level driver to filter ATA PACKET commands, returning
3250 * a status indicating whether or not it is OK to use DMA for the
3251 * supplied PACKET command.
3252 *
3253 * LOCKING:
3254 * spin_lock_irqsave(host_set lock)
3255 *
3256 * RETURNS: 0 when ATAPI DMA can be used
3257 * nonzero otherwise
3258 */
3259 int ata_check_atapi_dma(struct ata_queued_cmd *qc)
3260 {
3261 struct ata_port *ap = qc->ap;
3262 int rc = 0; /* Assume ATAPI DMA is OK by default */
3263
3264 if (ap->ops->check_atapi_dma)
3265 rc = ap->ops->check_atapi_dma(qc);
3266
3267 return rc;
3268 }
3269 /**
3270 * ata_qc_prep - Prepare taskfile for submission
3271 * @qc: Metadata associated with taskfile to be prepared
3272 *
3273 * Prepare ATA taskfile for submission.
3274 *
3275 * LOCKING:
3276 * spin_lock_irqsave(host_set lock)
3277 */
3278 void ata_qc_prep(struct ata_queued_cmd *qc)
3279 {
3280 if (!(qc->flags & ATA_QCFLAG_DMAMAP))
3281 return;
3282
3283 ata_fill_sg(qc);
3284 }
3285
3286 void ata_noop_qc_prep(struct ata_queued_cmd *qc) { }
3287
3288 /**
3289 * ata_sg_init_one - Associate command with memory buffer
3290 * @qc: Command to be associated
3291 * @buf: Memory buffer
3292 * @buflen: Length of memory buffer, in bytes.
3293 *
3294 * Initialize the data-related elements of queued_cmd @qc
3295 * to point to a single memory buffer, @buf of byte length @buflen.
3296 *
3297 * LOCKING:
3298 * spin_lock_irqsave(host_set lock)
3299 */
3300
3301 void ata_sg_init_one(struct ata_queued_cmd *qc, void *buf, unsigned int buflen)
3302 {
3303 struct scatterlist *sg;
3304
3305 qc->flags |= ATA_QCFLAG_SINGLE;
3306
3307 memset(&qc->sgent, 0, sizeof(qc->sgent));
3308 qc->__sg = &qc->sgent;
3309 qc->n_elem = 1;
3310 qc->orig_n_elem = 1;
3311 qc->buf_virt = buf;
3312 qc->nbytes = buflen;
3313
3314 sg = qc->__sg;
3315 sg_init_one(sg, buf, buflen);
3316 }
3317
3318 /**
3319 * ata_sg_init - Associate command with scatter-gather table.
3320 * @qc: Command to be associated
3321 * @sg: Scatter-gather table.
3322 * @n_elem: Number of elements in s/g table.
3323 *
3324 * Initialize the data-related elements of queued_cmd @qc
3325 * to point to a scatter-gather table @sg, containing @n_elem
3326 * elements.
3327 *
3328 * LOCKING:
3329 * spin_lock_irqsave(host_set lock)
3330 */
3331
3332 void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg,
3333 unsigned int n_elem)
3334 {
3335 qc->flags |= ATA_QCFLAG_SG;
3336 qc->__sg = sg;
3337 qc->n_elem = n_elem;
3338 qc->orig_n_elem = n_elem;
3339 }
3340
3341 /**
3342 * ata_sg_setup_one - DMA-map the memory buffer associated with a command.
3343 * @qc: Command with memory buffer to be mapped.
3344 *
3345 * DMA-map the memory buffer associated with queued_cmd @qc.
3346 *
3347 * LOCKING:
3348 * spin_lock_irqsave(host_set lock)
3349 *
3350 * RETURNS:
3351 * Zero on success, negative on error.
3352 */
3353
3354 static int ata_sg_setup_one(struct ata_queued_cmd *qc)
3355 {
3356 struct ata_port *ap = qc->ap;
3357 int dir = qc->dma_dir;
3358 struct scatterlist *sg = qc->__sg;
3359 dma_addr_t dma_address;
3360 int trim_sg = 0;
3361
3362 /* we must lengthen transfers to end on a 32-bit boundary */
3363 qc->pad_len = sg->length & 3;
3364 if (qc->pad_len) {
3365 void *pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
3366 struct scatterlist *psg = &qc->pad_sgent;
3367
3368 WARN_ON(qc->dev->class != ATA_DEV_ATAPI);
3369
3370 memset(pad_buf, 0, ATA_DMA_PAD_SZ);
3371
3372 if (qc->tf.flags & ATA_TFLAG_WRITE)
3373 memcpy(pad_buf, qc->buf_virt + sg->length - qc->pad_len,
3374 qc->pad_len);
3375
3376 sg_dma_address(psg) = ap->pad_dma + (qc->tag * ATA_DMA_PAD_SZ);
3377 sg_dma_len(psg) = ATA_DMA_PAD_SZ;
3378 /* trim sg */
3379 sg->length -= qc->pad_len;
3380 if (sg->length == 0)
3381 trim_sg = 1;
3382
3383 DPRINTK("padding done, sg->length=%u pad_len=%u\n",
3384 sg->length, qc->pad_len);
3385 }
3386
3387 if (trim_sg) {
3388 qc->n_elem--;
3389 goto skip_map;
3390 }
3391
3392 dma_address = dma_map_single(ap->dev, qc->buf_virt,
3393 sg->length, dir);
3394 if (dma_mapping_error(dma_address)) {
3395 /* restore sg */
3396 sg->length += qc->pad_len;
3397 return -1;
3398 }
3399
3400 sg_dma_address(sg) = dma_address;
3401 sg_dma_len(sg) = sg->length;
3402
3403 skip_map:
3404 DPRINTK("mapped buffer of %d bytes for %s\n", sg_dma_len(sg),
3405 qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
3406
3407 return 0;
3408 }
3409
3410 /**
3411 * ata_sg_setup - DMA-map the scatter-gather table associated with a command.
3412 * @qc: Command with scatter-gather table to be mapped.
3413 *
3414 * DMA-map the scatter-gather table associated with queued_cmd @qc.
3415 *
3416 * LOCKING:
3417 * spin_lock_irqsave(host_set lock)
3418 *
3419 * RETURNS:
3420 * Zero on success, negative on error.
3421 *
3422 */
3423
3424 static int ata_sg_setup(struct ata_queued_cmd *qc)
3425 {
3426 struct ata_port *ap = qc->ap;
3427 struct scatterlist *sg = qc->__sg;
3428 struct scatterlist *lsg = &sg[qc->n_elem - 1];
3429 int n_elem, pre_n_elem, dir, trim_sg = 0;
3430
3431 VPRINTK("ENTER, ata%u\n", ap->id);
3432 WARN_ON(!(qc->flags & ATA_QCFLAG_SG));
3433
3434 /* we must lengthen transfers to end on a 32-bit boundary */
3435 qc->pad_len = lsg->length & 3;
3436 if (qc->pad_len) {
3437 void *pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
3438 struct scatterlist *psg = &qc->pad_sgent;
3439 unsigned int offset;
3440
3441 WARN_ON(qc->dev->class != ATA_DEV_ATAPI);
3442
3443 memset(pad_buf, 0, ATA_DMA_PAD_SZ);
3444
3445 /*
3446 * psg->page/offset are used to copy to-be-written
3447 * data in this function or read data in ata_sg_clean.
3448 */
3449 offset = lsg->offset + lsg->length - qc->pad_len;
3450 psg->page = nth_page(lsg->page, offset >> PAGE_SHIFT);
3451 psg->offset = offset_in_page(offset);
3452
3453 if (qc->tf.flags & ATA_TFLAG_WRITE) {
3454 void *addr = kmap_atomic(psg->page, KM_IRQ0);
3455 memcpy(pad_buf, addr + psg->offset, qc->pad_len);
3456 kunmap_atomic(addr, KM_IRQ0);
3457 }
3458
3459 sg_dma_address(psg) = ap->pad_dma + (qc->tag * ATA_DMA_PAD_SZ);
3460 sg_dma_len(psg) = ATA_DMA_PAD_SZ;
3461 /* trim last sg */
3462 lsg->length -= qc->pad_len;
3463 if (lsg->length == 0)
3464 trim_sg = 1;
3465
3466 DPRINTK("padding done, sg[%d].length=%u pad_len=%u\n",
3467 qc->n_elem - 1, lsg->length, qc->pad_len);
3468 }
3469
3470 pre_n_elem = qc->n_elem;
3471 if (trim_sg && pre_n_elem)
3472 pre_n_elem--;
3473
3474 if (!pre_n_elem) {
3475 n_elem = 0;
3476 goto skip_map;
3477 }
3478
3479 dir = qc->dma_dir;
3480 n_elem = dma_map_sg(ap->dev, sg, pre_n_elem, dir);
3481 if (n_elem < 1) {
3482 /* restore last sg */
3483 lsg->length += qc->pad_len;
3484 return -1;
3485 }
3486
3487 DPRINTK("%d sg elements mapped\n", n_elem);
3488
3489 skip_map:
3490 qc->n_elem = n_elem;
3491
3492 return 0;
3493 }
3494
3495 /**
3496 * swap_buf_le16 - swap halves of 16-bit words in place
3497 * @buf: Buffer to swap
3498 * @buf_words: Number of 16-bit words in buffer.
3499 *
3500 * Swap halves of 16-bit words if needed to convert from
3501 * little-endian byte order to native cpu byte order, or
3502 * vice-versa.
3503 *
3504 * LOCKING:
3505 * Inherited from caller.
3506 */
3507 void swap_buf_le16(u16 *buf, unsigned int buf_words)
3508 {
3509 #ifdef __BIG_ENDIAN
3510 unsigned int i;
3511
3512 for (i = 0; i < buf_words; i++)
3513 buf[i] = le16_to_cpu(buf[i]);
3514 #endif /* __BIG_ENDIAN */
3515 }
3516
3517 /**
3518 * ata_mmio_data_xfer - Transfer data by MMIO
3519 * @adev: device for this I/O
3520 * @buf: data buffer
3521 * @buflen: buffer length
3522 * @write_data: read/write
3523 *
3524 * Transfer data from/to the device data register by MMIO.
3525 *
3526 * LOCKING:
3527 * Inherited from caller.
3528 */
3529
3530 void ata_mmio_data_xfer(struct ata_device *adev, unsigned char *buf,
3531 unsigned int buflen, int write_data)
3532 {
3533 struct ata_port *ap = adev->ap;
3534 unsigned int i;
3535 unsigned int words = buflen >> 1;
3536 u16 *buf16 = (u16 *) buf;
3537 void __iomem *mmio = (void __iomem *)ap->ioaddr.data_addr;
3538
3539 /* Transfer multiple of 2 bytes */
3540 if (write_data) {
3541 for (i = 0; i < words; i++)
3542 writew(le16_to_cpu(buf16[i]), mmio);
3543 } else {
3544 for (i = 0; i < words; i++)
3545 buf16[i] = cpu_to_le16(readw(mmio));
3546 }
3547
3548 /* Transfer trailing 1 byte, if any. */
3549 if (unlikely(buflen & 0x01)) {
3550 u16 align_buf[1] = { 0 };
3551 unsigned char *trailing_buf = buf + buflen - 1;
3552
3553 if (write_data) {
3554 memcpy(align_buf, trailing_buf, 1);
3555 writew(le16_to_cpu(align_buf[0]), mmio);
3556 } else {
3557 align_buf[0] = cpu_to_le16(readw(mmio));
3558 memcpy(trailing_buf, align_buf, 1);
3559 }
3560 }
3561 }
3562
3563 /**
3564 * ata_pio_data_xfer - Transfer data by PIO
3565 * @adev: device to target
3566 * @buf: data buffer
3567 * @buflen: buffer length
3568 * @write_data: read/write
3569 *
3570 * Transfer data from/to the device data register by PIO.
3571 *
3572 * LOCKING:
3573 * Inherited from caller.
3574 */
3575
3576 void ata_pio_data_xfer(struct ata_device *adev, unsigned char *buf,
3577 unsigned int buflen, int write_data)
3578 {
3579 struct ata_port *ap = adev->ap;
3580 unsigned int words = buflen >> 1;
3581
3582 /* Transfer multiple of 2 bytes */
3583 if (write_data)
3584 outsw(ap->ioaddr.data_addr, buf, words);
3585 else
3586 insw(ap->ioaddr.data_addr, buf, words);
3587
3588 /* Transfer trailing 1 byte, if any. */
3589 if (unlikely(buflen & 0x01)) {
3590 u16 align_buf[1] = { 0 };
3591 unsigned char *trailing_buf = buf + buflen - 1;
3592
3593 if (write_data) {
3594 memcpy(align_buf, trailing_buf, 1);
3595 outw(le16_to_cpu(align_buf[0]), ap->ioaddr.data_addr);
3596 } else {
3597 align_buf[0] = cpu_to_le16(inw(ap->ioaddr.data_addr));
3598 memcpy(trailing_buf, align_buf, 1);
3599 }
3600 }
3601 }
3602
3603 /**
3604 * ata_pio_data_xfer_noirq - Transfer data by PIO
3605 * @adev: device to target
3606 * @buf: data buffer
3607 * @buflen: buffer length
3608 * @write_data: read/write
3609 *
3610 * Transfer data from/to the device data register by PIO. Do the
3611 * transfer with interrupts disabled.
3612 *
3613 * LOCKING:
3614 * Inherited from caller.
3615 */
3616
3617 void ata_pio_data_xfer_noirq(struct ata_device *adev, unsigned char *buf,
3618 unsigned int buflen, int write_data)
3619 {
3620 unsigned long flags;
3621 local_irq_save(flags);
3622 ata_pio_data_xfer(adev, buf, buflen, write_data);
3623 local_irq_restore(flags);
3624 }
3625
3626
3627 /**
3628 * ata_pio_sector - Transfer ATA_SECT_SIZE (512 bytes) of data.
3629 * @qc: Command on going
3630 *
3631 * Transfer ATA_SECT_SIZE of data from/to the ATA device.
3632 *
3633 * LOCKING:
3634 * Inherited from caller.
3635 */
3636
3637 static void ata_pio_sector(struct ata_queued_cmd *qc)
3638 {
3639 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
3640 struct scatterlist *sg = qc->__sg;
3641 struct ata_port *ap = qc->ap;
3642 struct page *page;
3643 unsigned int offset;
3644 unsigned char *buf;
3645
3646 if (qc->cursect == (qc->nsect - 1))
3647 ap->hsm_task_state = HSM_ST_LAST;
3648
3649 page = sg[qc->cursg].page;
3650 offset = sg[qc->cursg].offset + qc->cursg_ofs * ATA_SECT_SIZE;
3651
3652 /* get the current page and offset */
3653 page = nth_page(page, (offset >> PAGE_SHIFT));
3654 offset %= PAGE_SIZE;
3655
3656 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
3657
3658 if (PageHighMem(page)) {
3659 unsigned long flags;
3660
3661 /* FIXME: use a bounce buffer */
3662 local_irq_save(flags);
3663 buf = kmap_atomic(page, KM_IRQ0);
3664
3665 /* do the actual data transfer */
3666 ap->ops->data_xfer(qc->dev, buf + offset, ATA_SECT_SIZE, do_write);
3667
3668 kunmap_atomic(buf, KM_IRQ0);
3669 local_irq_restore(flags);
3670 } else {
3671 buf = page_address(page);
3672 ap->ops->data_xfer(qc->dev, buf + offset, ATA_SECT_SIZE, do_write);
3673 }
3674
3675 qc->cursect++;
3676 qc->cursg_ofs++;
3677
3678 if ((qc->cursg_ofs * ATA_SECT_SIZE) == (&sg[qc->cursg])->length) {
3679 qc->cursg++;
3680 qc->cursg_ofs = 0;
3681 }
3682 }
3683
3684 /**
3685 * ata_pio_sectors - Transfer one or many 512-byte sectors.
3686 * @qc: Command on going
3687 *
3688 * Transfer one or many ATA_SECT_SIZE of data from/to the
3689 * ATA device for the DRQ request.
3690 *
3691 * LOCKING:
3692 * Inherited from caller.
3693 */
3694
3695 static void ata_pio_sectors(struct ata_queued_cmd *qc)
3696 {
3697 if (is_multi_taskfile(&qc->tf)) {
3698 /* READ/WRITE MULTIPLE */
3699 unsigned int nsect;
3700
3701 WARN_ON(qc->dev->multi_count == 0);
3702
3703 nsect = min(qc->nsect - qc->cursect, qc->dev->multi_count);
3704 while (nsect--)
3705 ata_pio_sector(qc);
3706 } else
3707 ata_pio_sector(qc);
3708 }
3709
3710 /**
3711 * atapi_send_cdb - Write CDB bytes to hardware
3712 * @ap: Port to which ATAPI device is attached.
3713 * @qc: Taskfile currently active
3714 *
3715 * When device has indicated its readiness to accept
3716 * a CDB, this function is called. Send the CDB.
3717 *
3718 * LOCKING:
3719 * caller.
3720 */
3721
3722 static void atapi_send_cdb(struct ata_port *ap, struct ata_queued_cmd *qc)
3723 {
3724 /* send SCSI cdb */
3725 DPRINTK("send cdb\n");
3726 WARN_ON(qc->dev->cdb_len < 12);
3727
3728 ap->ops->data_xfer(qc->dev, qc->cdb, qc->dev->cdb_len, 1);
3729 ata_altstatus(ap); /* flush */
3730
3731 switch (qc->tf.protocol) {
3732 case ATA_PROT_ATAPI:
3733 ap->hsm_task_state = HSM_ST;
3734 break;
3735 case ATA_PROT_ATAPI_NODATA:
3736 ap->hsm_task_state = HSM_ST_LAST;
3737 break;
3738 case ATA_PROT_ATAPI_DMA:
3739 ap->hsm_task_state = HSM_ST_LAST;
3740 /* initiate bmdma */
3741 ap->ops->bmdma_start(qc);
3742 break;
3743 }
3744 }
3745
3746 /**
3747 * __atapi_pio_bytes - Transfer data from/to the ATAPI device.
3748 * @qc: Command on going
3749 * @bytes: number of bytes
3750 *
3751 * Transfer Transfer data from/to the ATAPI device.
3752 *
3753 * LOCKING:
3754 * Inherited from caller.
3755 *
3756 */
3757
3758 static void __atapi_pio_bytes(struct ata_queued_cmd *qc, unsigned int bytes)
3759 {
3760 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
3761 struct scatterlist *sg = qc->__sg;
3762 struct ata_port *ap = qc->ap;
3763 struct page *page;
3764 unsigned char *buf;
3765 unsigned int offset, count;
3766
3767 if (qc->curbytes + bytes >= qc->nbytes)
3768 ap->hsm_task_state = HSM_ST_LAST;
3769
3770 next_sg:
3771 if (unlikely(qc->cursg >= qc->n_elem)) {
3772 /*
3773 * The end of qc->sg is reached and the device expects
3774 * more data to transfer. In order not to overrun qc->sg
3775 * and fulfill length specified in the byte count register,
3776 * - for read case, discard trailing data from the device
3777 * - for write case, padding zero data to the device
3778 */
3779 u16 pad_buf[1] = { 0 };
3780 unsigned int words = bytes >> 1;
3781 unsigned int i;
3782
3783 if (words) /* warning if bytes > 1 */
3784 ata_dev_printk(qc->dev, KERN_WARNING,
3785 "%u bytes trailing data\n", bytes);
3786
3787 for (i = 0; i < words; i++)
3788 ap->ops->data_xfer(qc->dev, (unsigned char*)pad_buf, 2, do_write);
3789
3790 ap->hsm_task_state = HSM_ST_LAST;
3791 return;
3792 }
3793
3794 sg = &qc->__sg[qc->cursg];
3795
3796 page = sg->page;
3797 offset = sg->offset + qc->cursg_ofs;
3798
3799 /* get the current page and offset */
3800 page = nth_page(page, (offset >> PAGE_SHIFT));
3801 offset %= PAGE_SIZE;
3802
3803 /* don't overrun current sg */
3804 count = min(sg->length - qc->cursg_ofs, bytes);
3805
3806 /* don't cross page boundaries */
3807 count = min(count, (unsigned int)PAGE_SIZE - offset);
3808
3809 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
3810
3811 if (PageHighMem(page)) {
3812 unsigned long flags;
3813
3814 /* FIXME: use bounce buffer */
3815 local_irq_save(flags);
3816 buf = kmap_atomic(page, KM_IRQ0);
3817
3818 /* do the actual data transfer */
3819 ap->ops->data_xfer(qc->dev, buf + offset, count, do_write);
3820
3821 kunmap_atomic(buf, KM_IRQ0);
3822 local_irq_restore(flags);
3823 } else {
3824 buf = page_address(page);
3825 ap->ops->data_xfer(qc->dev, buf + offset, count, do_write);
3826 }
3827
3828 bytes -= count;
3829 qc->curbytes += count;
3830 qc->cursg_ofs += count;
3831
3832 if (qc->cursg_ofs == sg->length) {
3833 qc->cursg++;
3834 qc->cursg_ofs = 0;
3835 }
3836
3837 if (bytes)
3838 goto next_sg;
3839 }
3840
3841 /**
3842 * atapi_pio_bytes - Transfer data from/to the ATAPI device.
3843 * @qc: Command on going
3844 *
3845 * Transfer Transfer data from/to the ATAPI device.
3846 *
3847 * LOCKING:
3848 * Inherited from caller.
3849 */
3850
3851 static void atapi_pio_bytes(struct ata_queued_cmd *qc)
3852 {
3853 struct ata_port *ap = qc->ap;
3854 struct ata_device *dev = qc->dev;
3855 unsigned int ireason, bc_lo, bc_hi, bytes;
3856 int i_write, do_write = (qc->tf.flags & ATA_TFLAG_WRITE) ? 1 : 0;
3857
3858 /* Abuse qc->result_tf for temp storage of intermediate TF
3859 * here to save some kernel stack usage.
3860 * For normal completion, qc->result_tf is not relevant. For
3861 * error, qc->result_tf is later overwritten by ata_qc_complete().
3862 * So, the correctness of qc->result_tf is not affected.
3863 */
3864 ap->ops->tf_read(ap, &qc->result_tf);
3865 ireason = qc->result_tf.nsect;
3866 bc_lo = qc->result_tf.lbam;
3867 bc_hi = qc->result_tf.lbah;
3868 bytes = (bc_hi << 8) | bc_lo;
3869
3870 /* shall be cleared to zero, indicating xfer of data */
3871 if (ireason & (1 << 0))
3872 goto err_out;
3873
3874 /* make sure transfer direction matches expected */
3875 i_write = ((ireason & (1 << 1)) == 0) ? 1 : 0;
3876 if (do_write != i_write)
3877 goto err_out;
3878
3879 VPRINTK("ata%u: xfering %d bytes\n", ap->id, bytes);
3880
3881 __atapi_pio_bytes(qc, bytes);
3882
3883 return;
3884
3885 err_out:
3886 ata_dev_printk(dev, KERN_INFO, "ATAPI check failed\n");
3887 qc->err_mask |= AC_ERR_HSM;
3888 ap->hsm_task_state = HSM_ST_ERR;
3889 }
3890
3891 /**
3892 * ata_hsm_ok_in_wq - Check if the qc can be handled in the workqueue.
3893 * @ap: the target ata_port
3894 * @qc: qc on going
3895 *
3896 * RETURNS:
3897 * 1 if ok in workqueue, 0 otherwise.
3898 */
3899
3900 static inline int ata_hsm_ok_in_wq(struct ata_port *ap, struct ata_queued_cmd *qc)
3901 {
3902 if (qc->tf.flags & ATA_TFLAG_POLLING)
3903 return 1;
3904
3905 if (ap->hsm_task_state == HSM_ST_FIRST) {
3906 if (qc->tf.protocol == ATA_PROT_PIO &&
3907 (qc->tf.flags & ATA_TFLAG_WRITE))
3908 return 1;
3909
3910 if (is_atapi_taskfile(&qc->tf) &&
3911 !(qc->dev->flags & ATA_DFLAG_CDB_INTR))
3912 return 1;
3913 }
3914
3915 return 0;
3916 }
3917
3918 /**
3919 * ata_hsm_qc_complete - finish a qc running on standard HSM
3920 * @qc: Command to complete
3921 * @in_wq: 1 if called from workqueue, 0 otherwise
3922 *
3923 * Finish @qc which is running on standard HSM.
3924 *
3925 * LOCKING:
3926 * If @in_wq is zero, spin_lock_irqsave(host_set lock).
3927 * Otherwise, none on entry and grabs host lock.
3928 */
3929 static void ata_hsm_qc_complete(struct ata_queued_cmd *qc, int in_wq)
3930 {
3931 struct ata_port *ap = qc->ap;
3932 unsigned long flags;
3933
3934 if (ap->ops->error_handler) {
3935 if (in_wq) {
3936 spin_lock_irqsave(ap->lock, flags);
3937
3938 /* EH might have kicked in while host_set lock
3939 * is released.
3940 */
3941 qc = ata_qc_from_tag(ap, qc->tag);
3942 if (qc) {
3943 if (likely(!(qc->err_mask & AC_ERR_HSM))) {
3944 ata_irq_on(ap);
3945 ata_qc_complete(qc);
3946 } else
3947 ata_port_freeze(ap);
3948 }
3949
3950 spin_unlock_irqrestore(ap->lock, flags);
3951 } else {
3952 if (likely(!(qc->err_mask & AC_ERR_HSM)))
3953 ata_qc_complete(qc);
3954 else
3955 ata_port_freeze(ap);
3956 }
3957 } else {
3958 if (in_wq) {
3959 spin_lock_irqsave(ap->lock, flags);
3960 ata_irq_on(ap);
3961 ata_qc_complete(qc);
3962 spin_unlock_irqrestore(ap->lock, flags);
3963 } else
3964 ata_qc_complete(qc);
3965 }
3966
3967 ata_altstatus(ap); /* flush */
3968 }
3969
3970 /**
3971 * ata_hsm_move - move the HSM to the next state.
3972 * @ap: the target ata_port
3973 * @qc: qc on going
3974 * @status: current device status
3975 * @in_wq: 1 if called from workqueue, 0 otherwise
3976 *
3977 * RETURNS:
3978 * 1 when poll next status needed, 0 otherwise.
3979 */
3980 int ata_hsm_move(struct ata_port *ap, struct ata_queued_cmd *qc,
3981 u8 status, int in_wq)
3982 {
3983 unsigned long flags = 0;
3984 int poll_next;
3985
3986 WARN_ON((qc->flags & ATA_QCFLAG_ACTIVE) == 0);
3987
3988 /* Make sure ata_qc_issue_prot() does not throw things
3989 * like DMA polling into the workqueue. Notice that
3990 * in_wq is not equivalent to (qc->tf.flags & ATA_TFLAG_POLLING).
3991 */
3992 WARN_ON(in_wq != ata_hsm_ok_in_wq(ap, qc));
3993
3994 fsm_start:
3995 DPRINTK("ata%u: protocol %d task_state %d (dev_stat 0x%X)\n",
3996 ap->id, qc->tf.protocol, ap->hsm_task_state, status);
3997
3998 switch (ap->hsm_task_state) {
3999 case HSM_ST_FIRST:
4000 /* Send first data block or PACKET CDB */
4001
4002 /* If polling, we will stay in the work queue after
4003 * sending the data. Otherwise, interrupt handler
4004 * takes over after sending the data.
4005 */
4006 poll_next = (qc->tf.flags & ATA_TFLAG_POLLING);
4007
4008 /* check device status */
4009 if (unlikely((status & ATA_DRQ) == 0)) {
4010 /* handle BSY=0, DRQ=0 as error */
4011 if (likely(status & (ATA_ERR | ATA_DF)))
4012 /* device stops HSM for abort/error */
4013 qc->err_mask |= AC_ERR_DEV;
4014 else
4015 /* HSM violation. Let EH handle this */
4016 qc->err_mask |= AC_ERR_HSM;
4017
4018 ap->hsm_task_state = HSM_ST_ERR;
4019 goto fsm_start;
4020 }
4021
4022 /* Device should not ask for data transfer (DRQ=1)
4023 * when it finds something wrong.
4024 * We ignore DRQ here and stop the HSM by
4025 * changing hsm_task_state to HSM_ST_ERR and
4026 * let the EH abort the command or reset the device.
4027 */
4028 if (unlikely(status & (ATA_ERR | ATA_DF))) {
4029 printk(KERN_WARNING "ata%d: DRQ=1 with device error, dev_stat 0x%X\n",
4030 ap->id, status);
4031 qc->err_mask |= AC_ERR_HSM;
4032 ap->hsm_task_state = HSM_ST_ERR;
4033 goto fsm_start;
4034 }
4035
4036 /* Send the CDB (atapi) or the first data block (ata pio out).
4037 * During the state transition, interrupt handler shouldn't
4038 * be invoked before the data transfer is complete and
4039 * hsm_task_state is changed. Hence, the following locking.
4040 */
4041 if (in_wq)
4042 spin_lock_irqsave(ap->lock, flags);
4043
4044 if (qc->tf.protocol == ATA_PROT_PIO) {
4045 /* PIO data out protocol.
4046 * send first data block.
4047 */
4048
4049 /* ata_pio_sectors() might change the state
4050 * to HSM_ST_LAST. so, the state is changed here
4051 * before ata_pio_sectors().
4052 */
4053 ap->hsm_task_state = HSM_ST;
4054 ata_pio_sectors(qc);
4055 ata_altstatus(ap); /* flush */
4056 } else
4057 /* send CDB */
4058 atapi_send_cdb(ap, qc);
4059
4060 if (in_wq)
4061 spin_unlock_irqrestore(ap->lock, flags);
4062
4063 /* if polling, ata_pio_task() handles the rest.
4064 * otherwise, interrupt handler takes over from here.
4065 */
4066 break;
4067
4068 case HSM_ST:
4069 /* complete command or read/write the data register */
4070 if (qc->tf.protocol == ATA_PROT_ATAPI) {
4071 /* ATAPI PIO protocol */
4072 if ((status & ATA_DRQ) == 0) {
4073 /* No more data to transfer or device error.
4074 * Device error will be tagged in HSM_ST_LAST.
4075 */
4076 ap->hsm_task_state = HSM_ST_LAST;
4077 goto fsm_start;
4078 }
4079
4080 /* Device should not ask for data transfer (DRQ=1)
4081 * when it finds something wrong.
4082 * We ignore DRQ here and stop the HSM by
4083 * changing hsm_task_state to HSM_ST_ERR and
4084 * let the EH abort the command or reset the device.
4085 */
4086 if (unlikely(status & (ATA_ERR | ATA_DF))) {
4087 printk(KERN_WARNING "ata%d: DRQ=1 with device error, dev_stat 0x%X\n",
4088 ap->id, status);
4089 qc->err_mask |= AC_ERR_HSM;
4090 ap->hsm_task_state = HSM_ST_ERR;
4091 goto fsm_start;
4092 }
4093
4094 atapi_pio_bytes(qc);
4095
4096 if (unlikely(ap->hsm_task_state == HSM_ST_ERR))
4097 /* bad ireason reported by device */
4098 goto fsm_start;
4099
4100 } else {
4101 /* ATA PIO protocol */
4102 if (unlikely((status & ATA_DRQ) == 0)) {
4103 /* handle BSY=0, DRQ=0 as error */
4104 if (likely(status & (ATA_ERR | ATA_DF)))
4105 /* device stops HSM for abort/error */
4106 qc->err_mask |= AC_ERR_DEV;
4107 else
4108 /* HSM violation. Let EH handle this */
4109 qc->err_mask |= AC_ERR_HSM;
4110
4111 ap->hsm_task_state = HSM_ST_ERR;
4112 goto fsm_start;
4113 }
4114
4115 /* For PIO reads, some devices may ask for
4116 * data transfer (DRQ=1) alone with ERR=1.
4117 * We respect DRQ here and transfer one
4118 * block of junk data before changing the
4119 * hsm_task_state to HSM_ST_ERR.
4120 *
4121 * For PIO writes, ERR=1 DRQ=1 doesn't make
4122 * sense since the data block has been
4123 * transferred to the device.
4124 */
4125 if (unlikely(status & (ATA_ERR | ATA_DF))) {
4126 /* data might be corrputed */
4127 qc->err_mask |= AC_ERR_DEV;
4128
4129 if (!(qc->tf.flags & ATA_TFLAG_WRITE)) {
4130 ata_pio_sectors(qc);
4131 ata_altstatus(ap);
4132 status = ata_wait_idle(ap);
4133 }
4134
4135 if (status & (ATA_BUSY | ATA_DRQ))
4136 qc->err_mask |= AC_ERR_HSM;
4137
4138 /* ata_pio_sectors() might change the
4139 * state to HSM_ST_LAST. so, the state
4140 * is changed after ata_pio_sectors().
4141 */
4142 ap->hsm_task_state = HSM_ST_ERR;
4143 goto fsm_start;
4144 }
4145
4146 ata_pio_sectors(qc);
4147
4148 if (ap->hsm_task_state == HSM_ST_LAST &&
4149 (!(qc->tf.flags & ATA_TFLAG_WRITE))) {
4150 /* all data read */
4151 ata_altstatus(ap);
4152 status = ata_wait_idle(ap);
4153 goto fsm_start;
4154 }
4155 }
4156
4157 ata_altstatus(ap); /* flush */
4158 poll_next = 1;
4159 break;
4160
4161 case HSM_ST_LAST:
4162 if (unlikely(!ata_ok(status))) {
4163 qc->err_mask |= __ac_err_mask(status);
4164 ap->hsm_task_state = HSM_ST_ERR;
4165 goto fsm_start;
4166 }
4167
4168 /* no more data to transfer */
4169 DPRINTK("ata%u: dev %u command complete, drv_stat 0x%x\n",
4170 ap->id, qc->dev->devno, status);
4171
4172 WARN_ON(qc->err_mask);
4173
4174 ap->hsm_task_state = HSM_ST_IDLE;
4175
4176 /* complete taskfile transaction */
4177 ata_hsm_qc_complete(qc, in_wq);
4178
4179 poll_next = 0;
4180 break;
4181
4182 case HSM_ST_ERR:
4183 /* make sure qc->err_mask is available to
4184 * know what's wrong and recover
4185 */
4186 WARN_ON(qc->err_mask == 0);
4187
4188 ap->hsm_task_state = HSM_ST_IDLE;
4189
4190 /* complete taskfile transaction */
4191 ata_hsm_qc_complete(qc, in_wq);
4192
4193 poll_next = 0;
4194 break;
4195 default:
4196 poll_next = 0;
4197 BUG();
4198 }
4199
4200 return poll_next;
4201 }
4202
4203 static void ata_pio_task(void *_data)
4204 {
4205 struct ata_queued_cmd *qc = _data;
4206 struct ata_port *ap = qc->ap;
4207 u8 status;
4208 int poll_next;
4209
4210 fsm_start:
4211 WARN_ON(ap->hsm_task_state == HSM_ST_IDLE);
4212
4213 /*
4214 * This is purely heuristic. This is a fast path.
4215 * Sometimes when we enter, BSY will be cleared in
4216 * a chk-status or two. If not, the drive is probably seeking
4217 * or something. Snooze for a couple msecs, then
4218 * chk-status again. If still busy, queue delayed work.
4219 */
4220 status = ata_busy_wait(ap, ATA_BUSY, 5);
4221 if (status & ATA_BUSY) {
4222 msleep(2);
4223 status = ata_busy_wait(ap, ATA_BUSY, 10);
4224 if (status & ATA_BUSY) {
4225 ata_port_queue_task(ap, ata_pio_task, qc, ATA_SHORT_PAUSE);
4226 return;
4227 }
4228 }
4229
4230 /* move the HSM */
4231 poll_next = ata_hsm_move(ap, qc, status, 1);
4232
4233 /* another command or interrupt handler
4234 * may be running at this point.
4235 */
4236 if (poll_next)
4237 goto fsm_start;
4238 }
4239
4240 /**
4241 * ata_qc_new - Request an available ATA command, for queueing
4242 * @ap: Port associated with device @dev
4243 * @dev: Device from whom we request an available command structure
4244 *
4245 * LOCKING:
4246 * None.
4247 */
4248
4249 static struct ata_queued_cmd *ata_qc_new(struct ata_port *ap)
4250 {
4251 struct ata_queued_cmd *qc = NULL;
4252 unsigned int i;
4253
4254 /* no command while frozen */
4255 if (unlikely(ap->flags & ATA_FLAG_FROZEN))
4256 return NULL;
4257
4258 /* the last tag is reserved for internal command. */
4259 for (i = 0; i < ATA_MAX_QUEUE - 1; i++)
4260 if (!test_and_set_bit(i, &ap->qc_allocated)) {
4261 qc = __ata_qc_from_tag(ap, i);
4262 break;
4263 }
4264
4265 if (qc)
4266 qc->tag = i;
4267
4268 return qc;
4269 }
4270
4271 /**
4272 * ata_qc_new_init - Request an available ATA command, and initialize it
4273 * @dev: Device from whom we request an available command structure
4274 *
4275 * LOCKING:
4276 * None.
4277 */
4278
4279 struct ata_queued_cmd *ata_qc_new_init(struct ata_device *dev)
4280 {
4281 struct ata_port *ap = dev->ap;
4282 struct ata_queued_cmd *qc;
4283
4284 qc = ata_qc_new(ap);
4285 if (qc) {
4286 qc->scsicmd = NULL;
4287 qc->ap = ap;
4288 qc->dev = dev;
4289
4290 ata_qc_reinit(qc);
4291 }
4292
4293 return qc;
4294 }
4295
4296 /**
4297 * ata_qc_free - free unused ata_queued_cmd
4298 * @qc: Command to complete
4299 *
4300 * Designed to free unused ata_queued_cmd object
4301 * in case something prevents using it.
4302 *
4303 * LOCKING:
4304 * spin_lock_irqsave(host_set lock)
4305 */
4306 void ata_qc_free(struct ata_queued_cmd *qc)
4307 {
4308 struct ata_port *ap = qc->ap;
4309 unsigned int tag;
4310
4311 WARN_ON(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
4312
4313 qc->flags = 0;
4314 tag = qc->tag;
4315 if (likely(ata_tag_valid(tag))) {
4316 qc->tag = ATA_TAG_POISON;
4317 clear_bit(tag, &ap->qc_allocated);
4318 }
4319 }
4320
4321 void __ata_qc_complete(struct ata_queued_cmd *qc)
4322 {
4323 struct ata_port *ap = qc->ap;
4324
4325 WARN_ON(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
4326 WARN_ON(!(qc->flags & ATA_QCFLAG_ACTIVE));
4327
4328 if (likely(qc->flags & ATA_QCFLAG_DMAMAP))
4329 ata_sg_clean(qc);
4330
4331 /* command should be marked inactive atomically with qc completion */
4332 if (qc->tf.protocol == ATA_PROT_NCQ)
4333 ap->sactive &= ~(1 << qc->tag);
4334 else
4335 ap->active_tag = ATA_TAG_POISON;
4336
4337 /* atapi: mark qc as inactive to prevent the interrupt handler
4338 * from completing the command twice later, before the error handler
4339 * is called. (when rc != 0 and atapi request sense is needed)
4340 */
4341 qc->flags &= ~ATA_QCFLAG_ACTIVE;
4342 ap->qc_active &= ~(1 << qc->tag);
4343
4344 /* call completion callback */
4345 qc->complete_fn(qc);
4346 }
4347
4348 /**
4349 * ata_qc_complete - Complete an active ATA command
4350 * @qc: Command to complete
4351 * @err_mask: ATA Status register contents
4352 *
4353 * Indicate to the mid and upper layers that an ATA
4354 * command has completed, with either an ok or not-ok status.
4355 *
4356 * LOCKING:
4357 * spin_lock_irqsave(host_set lock)
4358 */
4359 void ata_qc_complete(struct ata_queued_cmd *qc)
4360 {
4361 struct ata_port *ap = qc->ap;
4362
4363 /* XXX: New EH and old EH use different mechanisms to
4364 * synchronize EH with regular execution path.
4365 *
4366 * In new EH, a failed qc is marked with ATA_QCFLAG_FAILED.
4367 * Normal execution path is responsible for not accessing a
4368 * failed qc. libata core enforces the rule by returning NULL
4369 * from ata_qc_from_tag() for failed qcs.
4370 *
4371 * Old EH depends on ata_qc_complete() nullifying completion
4372 * requests if ATA_QCFLAG_EH_SCHEDULED is set. Old EH does
4373 * not synchronize with interrupt handler. Only PIO task is
4374 * taken care of.
4375 */
4376 if (ap->ops->error_handler) {
4377 WARN_ON(ap->flags & ATA_FLAG_FROZEN);
4378
4379 if (unlikely(qc->err_mask))
4380 qc->flags |= ATA_QCFLAG_FAILED;
4381
4382 if (unlikely(qc->flags & ATA_QCFLAG_FAILED)) {
4383 if (!ata_tag_internal(qc->tag)) {
4384 /* always fill result TF for failed qc */
4385 ap->ops->tf_read(ap, &qc->result_tf);
4386 ata_qc_schedule_eh(qc);
4387 return;
4388 }
4389 }
4390
4391 /* read result TF if requested */
4392 if (qc->flags & ATA_QCFLAG_RESULT_TF)
4393 ap->ops->tf_read(ap, &qc->result_tf);
4394
4395 __ata_qc_complete(qc);
4396 } else {
4397 if (qc->flags & ATA_QCFLAG_EH_SCHEDULED)
4398 return;
4399
4400 /* read result TF if failed or requested */
4401 if (qc->err_mask || qc->flags & ATA_QCFLAG_RESULT_TF)
4402 ap->ops->tf_read(ap, &qc->result_tf);
4403
4404 __ata_qc_complete(qc);
4405 }
4406 }
4407
4408 /**
4409 * ata_qc_complete_multiple - Complete multiple qcs successfully
4410 * @ap: port in question
4411 * @qc_active: new qc_active mask
4412 * @finish_qc: LLDD callback invoked before completing a qc
4413 *
4414 * Complete in-flight commands. This functions is meant to be
4415 * called from low-level driver's interrupt routine to complete
4416 * requests normally. ap->qc_active and @qc_active is compared
4417 * and commands are completed accordingly.
4418 *
4419 * LOCKING:
4420 * spin_lock_irqsave(host_set lock)
4421 *
4422 * RETURNS:
4423 * Number of completed commands on success, -errno otherwise.
4424 */
4425 int ata_qc_complete_multiple(struct ata_port *ap, u32 qc_active,
4426 void (*finish_qc)(struct ata_queued_cmd *))
4427 {
4428 int nr_done = 0;
4429 u32 done_mask;
4430 int i;
4431
4432 done_mask = ap->qc_active ^ qc_active;
4433
4434 if (unlikely(done_mask & qc_active)) {
4435 ata_port_printk(ap, KERN_ERR, "illegal qc_active transition "
4436 "(%08x->%08x)\n", ap->qc_active, qc_active);
4437 return -EINVAL;
4438 }
4439
4440 for (i = 0; i < ATA_MAX_QUEUE; i++) {
4441 struct ata_queued_cmd *qc;
4442
4443 if (!(done_mask & (1 << i)))
4444 continue;
4445
4446 if ((qc = ata_qc_from_tag(ap, i))) {
4447 if (finish_qc)
4448 finish_qc(qc);
4449 ata_qc_complete(qc);
4450 nr_done++;
4451 }
4452 }
4453
4454 return nr_done;
4455 }
4456
4457 static inline int ata_should_dma_map(struct ata_queued_cmd *qc)
4458 {
4459 struct ata_port *ap = qc->ap;
4460
4461 switch (qc->tf.protocol) {
4462 case ATA_PROT_NCQ:
4463 case ATA_PROT_DMA:
4464 case ATA_PROT_ATAPI_DMA:
4465 return 1;
4466
4467 case ATA_PROT_ATAPI:
4468 case ATA_PROT_PIO:
4469 if (ap->flags & ATA_FLAG_PIO_DMA)
4470 return 1;
4471
4472 /* fall through */
4473
4474 default:
4475 return 0;
4476 }
4477
4478 /* never reached */
4479 }
4480
4481 /**
4482 * ata_qc_issue - issue taskfile to device
4483 * @qc: command to issue to device
4484 *
4485 * Prepare an ATA command to submission to device.
4486 * This includes mapping the data into a DMA-able
4487 * area, filling in the S/G table, and finally
4488 * writing the taskfile to hardware, starting the command.
4489 *
4490 * LOCKING:
4491 * spin_lock_irqsave(host_set lock)
4492 */
4493 void ata_qc_issue(struct ata_queued_cmd *qc)
4494 {
4495 struct ata_port *ap = qc->ap;
4496
4497 /* Make sure only one non-NCQ command is outstanding. The
4498 * check is skipped for old EH because it reuses active qc to
4499 * request ATAPI sense.
4500 */
4501 WARN_ON(ap->ops->error_handler && ata_tag_valid(ap->active_tag));
4502
4503 if (qc->tf.protocol == ATA_PROT_NCQ) {
4504 WARN_ON(ap->sactive & (1 << qc->tag));
4505 ap->sactive |= 1 << qc->tag;
4506 } else {
4507 WARN_ON(ap->sactive);
4508 ap->active_tag = qc->tag;
4509 }
4510
4511 qc->flags |= ATA_QCFLAG_ACTIVE;
4512 ap->qc_active |= 1 << qc->tag;
4513
4514 if (ata_should_dma_map(qc)) {
4515 if (qc->flags & ATA_QCFLAG_SG) {
4516 if (ata_sg_setup(qc))
4517 goto sg_err;
4518 } else if (qc->flags & ATA_QCFLAG_SINGLE) {
4519 if (ata_sg_setup_one(qc))
4520 goto sg_err;
4521 }
4522 } else {
4523 qc->flags &= ~ATA_QCFLAG_DMAMAP;
4524 }
4525
4526 ap->ops->qc_prep(qc);
4527
4528 qc->err_mask |= ap->ops->qc_issue(qc);
4529 if (unlikely(qc->err_mask))
4530 goto err;
4531 return;
4532
4533 sg_err:
4534 qc->flags &= ~ATA_QCFLAG_DMAMAP;
4535 qc->err_mask |= AC_ERR_SYSTEM;
4536 err:
4537 ata_qc_complete(qc);
4538 }
4539
4540 /**
4541 * ata_qc_issue_prot - issue taskfile to device in proto-dependent manner
4542 * @qc: command to issue to device
4543 *
4544 * Using various libata functions and hooks, this function
4545 * starts an ATA command. ATA commands are grouped into
4546 * classes called "protocols", and issuing each type of protocol
4547 * is slightly different.
4548 *
4549 * May be used as the qc_issue() entry in ata_port_operations.
4550 *
4551 * LOCKING:
4552 * spin_lock_irqsave(host_set lock)
4553 *
4554 * RETURNS:
4555 * Zero on success, AC_ERR_* mask on failure
4556 */
4557
4558 unsigned int ata_qc_issue_prot(struct ata_queued_cmd *qc)
4559 {
4560 struct ata_port *ap = qc->ap;
4561
4562 /* Use polling pio if the LLD doesn't handle
4563 * interrupt driven pio and atapi CDB interrupt.
4564 */
4565 if (ap->flags & ATA_FLAG_PIO_POLLING) {
4566 switch (qc->tf.protocol) {
4567 case ATA_PROT_PIO:
4568 case ATA_PROT_ATAPI:
4569 case ATA_PROT_ATAPI_NODATA:
4570 qc->tf.flags |= ATA_TFLAG_POLLING;
4571 break;
4572 case ATA_PROT_ATAPI_DMA:
4573 if (qc->dev->flags & ATA_DFLAG_CDB_INTR)
4574 /* see ata_dma_blacklisted() */
4575 BUG();
4576 break;
4577 default:
4578 break;
4579 }
4580 }
4581
4582 /* select the device */
4583 ata_dev_select(ap, qc->dev->devno, 1, 0);
4584
4585 /* start the command */
4586 switch (qc->tf.protocol) {
4587 case ATA_PROT_NODATA:
4588 if (qc->tf.flags & ATA_TFLAG_POLLING)
4589 ata_qc_set_polling(qc);
4590
4591 ata_tf_to_host(ap, &qc->tf);
4592 ap->hsm_task_state = HSM_ST_LAST;
4593
4594 if (qc->tf.flags & ATA_TFLAG_POLLING)
4595 ata_port_queue_task(ap, ata_pio_task, qc, 0);
4596
4597 break;
4598
4599 case ATA_PROT_DMA:
4600 WARN_ON(qc->tf.flags & ATA_TFLAG_POLLING);
4601
4602 ap->ops->tf_load(ap, &qc->tf); /* load tf registers */
4603 ap->ops->bmdma_setup(qc); /* set up bmdma */
4604 ap->ops->bmdma_start(qc); /* initiate bmdma */
4605 ap->hsm_task_state = HSM_ST_LAST;
4606 break;
4607
4608 case ATA_PROT_PIO:
4609 if (qc->tf.flags & ATA_TFLAG_POLLING)
4610 ata_qc_set_polling(qc);
4611
4612 ata_tf_to_host(ap, &qc->tf);
4613
4614 if (qc->tf.flags & ATA_TFLAG_WRITE) {
4615 /* PIO data out protocol */
4616 ap->hsm_task_state = HSM_ST_FIRST;
4617 ata_port_queue_task(ap, ata_pio_task, qc, 0);
4618
4619 /* always send first data block using
4620 * the ata_pio_task() codepath.
4621 */
4622 } else {
4623 /* PIO data in protocol */
4624 ap->hsm_task_state = HSM_ST;
4625
4626 if (qc->tf.flags & ATA_TFLAG_POLLING)
4627 ata_port_queue_task(ap, ata_pio_task, qc, 0);
4628
4629 /* if polling, ata_pio_task() handles the rest.
4630 * otherwise, interrupt handler takes over from here.
4631 */
4632 }
4633
4634 break;
4635
4636 case ATA_PROT_ATAPI:
4637 case ATA_PROT_ATAPI_NODATA:
4638 if (qc->tf.flags & ATA_TFLAG_POLLING)
4639 ata_qc_set_polling(qc);
4640
4641 ata_tf_to_host(ap, &qc->tf);
4642
4643 ap->hsm_task_state = HSM_ST_FIRST;
4644
4645 /* send cdb by polling if no cdb interrupt */
4646 if ((!(qc->dev->flags & ATA_DFLAG_CDB_INTR)) ||
4647 (qc->tf.flags & ATA_TFLAG_POLLING))
4648 ata_port_queue_task(ap, ata_pio_task, qc, 0);
4649 break;
4650
4651 case ATA_PROT_ATAPI_DMA:
4652 WARN_ON(qc->tf.flags & ATA_TFLAG_POLLING);
4653
4654 ap->ops->tf_load(ap, &qc->tf); /* load tf registers */
4655 ap->ops->bmdma_setup(qc); /* set up bmdma */
4656 ap->hsm_task_state = HSM_ST_FIRST;
4657
4658 /* send cdb by polling if no cdb interrupt */
4659 if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
4660 ata_port_queue_task(ap, ata_pio_task, qc, 0);
4661 break;
4662
4663 default:
4664 WARN_ON(1);
4665 return AC_ERR_SYSTEM;
4666 }
4667
4668 return 0;
4669 }
4670
4671 /**
4672 * ata_host_intr - Handle host interrupt for given (port, task)
4673 * @ap: Port on which interrupt arrived (possibly...)
4674 * @qc: Taskfile currently active in engine
4675 *
4676 * Handle host interrupt for given queued command. Currently,
4677 * only DMA interrupts are handled. All other commands are
4678 * handled via polling with interrupts disabled (nIEN bit).
4679 *
4680 * LOCKING:
4681 * spin_lock_irqsave(host_set lock)
4682 *
4683 * RETURNS:
4684 * One if interrupt was handled, zero if not (shared irq).
4685 */
4686
4687 inline unsigned int ata_host_intr (struct ata_port *ap,
4688 struct ata_queued_cmd *qc)
4689 {
4690 u8 status, host_stat = 0;
4691
4692 VPRINTK("ata%u: protocol %d task_state %d\n",
4693 ap->id, qc->tf.protocol, ap->hsm_task_state);
4694
4695 /* Check whether we are expecting interrupt in this state */
4696 switch (ap->hsm_task_state) {
4697 case HSM_ST_FIRST:
4698 /* Some pre-ATAPI-4 devices assert INTRQ
4699 * at this state when ready to receive CDB.
4700 */
4701
4702 /* Check the ATA_DFLAG_CDB_INTR flag is enough here.
4703 * The flag was turned on only for atapi devices.
4704 * No need to check is_atapi_taskfile(&qc->tf) again.
4705 */
4706 if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
4707 goto idle_irq;
4708 break;
4709 case HSM_ST_LAST:
4710 if (qc->tf.protocol == ATA_PROT_DMA ||
4711 qc->tf.protocol == ATA_PROT_ATAPI_DMA) {
4712 /* check status of DMA engine */
4713 host_stat = ap->ops->bmdma_status(ap);
4714 VPRINTK("ata%u: host_stat 0x%X\n", ap->id, host_stat);
4715
4716 /* if it's not our irq... */
4717 if (!(host_stat & ATA_DMA_INTR))
4718 goto idle_irq;
4719
4720 /* before we do anything else, clear DMA-Start bit */
4721 ap->ops->bmdma_stop(qc);
4722
4723 if (unlikely(host_stat & ATA_DMA_ERR)) {
4724 /* error when transfering data to/from memory */
4725 qc->err_mask |= AC_ERR_HOST_BUS;
4726 ap->hsm_task_state = HSM_ST_ERR;
4727 }
4728 }
4729 break;
4730 case HSM_ST:
4731 break;
4732 default:
4733 goto idle_irq;
4734 }
4735
4736 /* check altstatus */
4737 status = ata_altstatus(ap);
4738 if (status & ATA_BUSY)
4739 goto idle_irq;
4740
4741 /* check main status, clearing INTRQ */
4742 status = ata_chk_status(ap);
4743 if (unlikely(status & ATA_BUSY))
4744 goto idle_irq;
4745
4746 /* ack bmdma irq events */
4747 ap->ops->irq_clear(ap);
4748
4749 ata_hsm_move(ap, qc, status, 0);
4750 return 1; /* irq handled */
4751
4752 idle_irq:
4753 ap->stats.idle_irq++;
4754
4755 #ifdef ATA_IRQ_TRAP
4756 if ((ap->stats.idle_irq % 1000) == 0) {
4757 ata_irq_ack(ap, 0); /* debug trap */
4758 ata_port_printk(ap, KERN_WARNING, "irq trap\n");
4759 return 1;
4760 }
4761 #endif
4762 return 0; /* irq not handled */
4763 }
4764
4765 /**
4766 * ata_interrupt - Default ATA host interrupt handler
4767 * @irq: irq line (unused)
4768 * @dev_instance: pointer to our ata_host_set information structure
4769 * @regs: unused
4770 *
4771 * Default interrupt handler for PCI IDE devices. Calls
4772 * ata_host_intr() for each port that is not disabled.
4773 *
4774 * LOCKING:
4775 * Obtains host_set lock during operation.
4776 *
4777 * RETURNS:
4778 * IRQ_NONE or IRQ_HANDLED.
4779 */
4780
4781 irqreturn_t ata_interrupt (int irq, void *dev_instance, struct pt_regs *regs)
4782 {
4783 struct ata_host_set *host_set = dev_instance;
4784 unsigned int i;
4785 unsigned int handled = 0;
4786 unsigned long flags;
4787
4788 /* TODO: make _irqsave conditional on x86 PCI IDE legacy mode */
4789 spin_lock_irqsave(&host_set->lock, flags);
4790
4791 for (i = 0; i < host_set->n_ports; i++) {
4792 struct ata_port *ap;
4793
4794 ap = host_set->ports[i];
4795 if (ap &&
4796 !(ap->flags & ATA_FLAG_DISABLED)) {
4797 struct ata_queued_cmd *qc;
4798
4799 qc = ata_qc_from_tag(ap, ap->active_tag);
4800 if (qc && (!(qc->tf.flags & ATA_TFLAG_POLLING)) &&
4801 (qc->flags & ATA_QCFLAG_ACTIVE))
4802 handled |= ata_host_intr(ap, qc);
4803 }
4804 }
4805
4806 spin_unlock_irqrestore(&host_set->lock, flags);
4807
4808 return IRQ_RETVAL(handled);
4809 }
4810
4811 /**
4812 * sata_scr_valid - test whether SCRs are accessible
4813 * @ap: ATA port to test SCR accessibility for
4814 *
4815 * Test whether SCRs are accessible for @ap.
4816 *
4817 * LOCKING:
4818 * None.
4819 *
4820 * RETURNS:
4821 * 1 if SCRs are accessible, 0 otherwise.
4822 */
4823 int sata_scr_valid(struct ata_port *ap)
4824 {
4825 return ap->cbl == ATA_CBL_SATA && ap->ops->scr_read;
4826 }
4827
4828 /**
4829 * sata_scr_read - read SCR register of the specified port
4830 * @ap: ATA port to read SCR for
4831 * @reg: SCR to read
4832 * @val: Place to store read value
4833 *
4834 * Read SCR register @reg of @ap into *@val. This function is
4835 * guaranteed to succeed if the cable type of the port is SATA
4836 * and the port implements ->scr_read.
4837 *
4838 * LOCKING:
4839 * None.
4840 *
4841 * RETURNS:
4842 * 0 on success, negative errno on failure.
4843 */
4844 int sata_scr_read(struct ata_port *ap, int reg, u32 *val)
4845 {
4846 if (sata_scr_valid(ap)) {
4847 *val = ap->ops->scr_read(ap, reg);
4848 return 0;
4849 }
4850 return -EOPNOTSUPP;
4851 }
4852
4853 /**
4854 * sata_scr_write - write SCR register of the specified port
4855 * @ap: ATA port to write SCR for
4856 * @reg: SCR to write
4857 * @val: value to write
4858 *
4859 * Write @val to SCR register @reg of @ap. This function is
4860 * guaranteed to succeed if the cable type of the port is SATA
4861 * and the port implements ->scr_read.
4862 *
4863 * LOCKING:
4864 * None.
4865 *
4866 * RETURNS:
4867 * 0 on success, negative errno on failure.
4868 */
4869 int sata_scr_write(struct ata_port *ap, int reg, u32 val)
4870 {
4871 if (sata_scr_valid(ap)) {
4872 ap->ops->scr_write(ap, reg, val);
4873 return 0;
4874 }
4875 return -EOPNOTSUPP;
4876 }
4877
4878 /**
4879 * sata_scr_write_flush - write SCR register of the specified port and flush
4880 * @ap: ATA port to write SCR for
4881 * @reg: SCR to write
4882 * @val: value to write
4883 *
4884 * This function is identical to sata_scr_write() except that this
4885 * function performs flush after writing to the register.
4886 *
4887 * LOCKING:
4888 * None.
4889 *
4890 * RETURNS:
4891 * 0 on success, negative errno on failure.
4892 */
4893 int sata_scr_write_flush(struct ata_port *ap, int reg, u32 val)
4894 {
4895 if (sata_scr_valid(ap)) {
4896 ap->ops->scr_write(ap, reg, val);
4897 ap->ops->scr_read(ap, reg);
4898 return 0;
4899 }
4900 return -EOPNOTSUPP;
4901 }
4902
4903 /**
4904 * ata_port_online - test whether the given port is online
4905 * @ap: ATA port to test
4906 *
4907 * Test whether @ap is online. Note that this function returns 0
4908 * if online status of @ap cannot be obtained, so
4909 * ata_port_online(ap) != !ata_port_offline(ap).
4910 *
4911 * LOCKING:
4912 * None.
4913 *
4914 * RETURNS:
4915 * 1 if the port online status is available and online.
4916 */
4917 int ata_port_online(struct ata_port *ap)
4918 {
4919 u32 sstatus;
4920
4921 if (!sata_scr_read(ap, SCR_STATUS, &sstatus) && (sstatus & 0xf) == 0x3)
4922 return 1;
4923 return 0;
4924 }
4925
4926 /**
4927 * ata_port_offline - test whether the given port is offline
4928 * @ap: ATA port to test
4929 *
4930 * Test whether @ap is offline. Note that this function returns
4931 * 0 if offline status of @ap cannot be obtained, so
4932 * ata_port_online(ap) != !ata_port_offline(ap).
4933 *
4934 * LOCKING:
4935 * None.
4936 *
4937 * RETURNS:
4938 * 1 if the port offline status is available and offline.
4939 */
4940 int ata_port_offline(struct ata_port *ap)
4941 {
4942 u32 sstatus;
4943
4944 if (!sata_scr_read(ap, SCR_STATUS, &sstatus) && (sstatus & 0xf) != 0x3)
4945 return 1;
4946 return 0;
4947 }
4948
4949 /*
4950 * Execute a 'simple' command, that only consists of the opcode 'cmd' itself,
4951 * without filling any other registers
4952 */
4953 static int ata_do_simple_cmd(struct ata_device *dev, u8 cmd)
4954 {
4955 struct ata_taskfile tf;
4956 int err;
4957
4958 ata_tf_init(dev, &tf);
4959
4960 tf.command = cmd;
4961 tf.flags |= ATA_TFLAG_DEVICE;
4962 tf.protocol = ATA_PROT_NODATA;
4963
4964 err = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
4965 if (err)
4966 ata_dev_printk(dev, KERN_ERR, "%s: ata command failed: %d\n",
4967 __FUNCTION__, err);
4968
4969 return err;
4970 }
4971
4972 static int ata_flush_cache(struct ata_device *dev)
4973 {
4974 u8 cmd;
4975
4976 if (!ata_try_flush_cache(dev))
4977 return 0;
4978
4979 if (ata_id_has_flush_ext(dev->id))
4980 cmd = ATA_CMD_FLUSH_EXT;
4981 else
4982 cmd = ATA_CMD_FLUSH;
4983
4984 return ata_do_simple_cmd(dev, cmd);
4985 }
4986
4987 static int ata_standby_drive(struct ata_device *dev)
4988 {
4989 return ata_do_simple_cmd(dev, ATA_CMD_STANDBYNOW1);
4990 }
4991
4992 static int ata_start_drive(struct ata_device *dev)
4993 {
4994 return ata_do_simple_cmd(dev, ATA_CMD_IDLEIMMEDIATE);
4995 }
4996
4997 /**
4998 * ata_device_resume - wakeup a previously suspended devices
4999 * @dev: the device to resume
5000 *
5001 * Kick the drive back into action, by sending it an idle immediate
5002 * command and making sure its transfer mode matches between drive
5003 * and host.
5004 *
5005 */
5006 int ata_device_resume(struct ata_device *dev)
5007 {
5008 struct ata_port *ap = dev->ap;
5009
5010 if (ap->flags & ATA_FLAG_SUSPENDED) {
5011 struct ata_device *failed_dev;
5012
5013 ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT);
5014 ata_busy_wait(ap, ATA_BUSY | ATA_DRQ, 200000);
5015
5016 ap->flags &= ~ATA_FLAG_SUSPENDED;
5017 while (ata_set_mode(ap, &failed_dev))
5018 ata_dev_disable(failed_dev);
5019 }
5020 if (!ata_dev_enabled(dev))
5021 return 0;
5022 if (dev->class == ATA_DEV_ATA)
5023 ata_start_drive(dev);
5024
5025 return 0;
5026 }
5027
5028 /**
5029 * ata_device_suspend - prepare a device for suspend
5030 * @dev: the device to suspend
5031 * @state: target power management state
5032 *
5033 * Flush the cache on the drive, if appropriate, then issue a
5034 * standbynow command.
5035 */
5036 int ata_device_suspend(struct ata_device *dev, pm_message_t state)
5037 {
5038 struct ata_port *ap = dev->ap;
5039
5040 if (!ata_dev_enabled(dev))
5041 return 0;
5042 if (dev->class == ATA_DEV_ATA)
5043 ata_flush_cache(dev);
5044
5045 if (state.event != PM_EVENT_FREEZE)
5046 ata_standby_drive(dev);
5047 ap->flags |= ATA_FLAG_SUSPENDED;
5048 return 0;
5049 }
5050
5051 /**
5052 * ata_port_start - Set port up for dma.
5053 * @ap: Port to initialize
5054 *
5055 * Called just after data structures for each port are
5056 * initialized. Allocates space for PRD table.
5057 *
5058 * May be used as the port_start() entry in ata_port_operations.
5059 *
5060 * LOCKING:
5061 * Inherited from caller.
5062 */
5063
5064 int ata_port_start (struct ata_port *ap)
5065 {
5066 struct device *dev = ap->dev;
5067 int rc;
5068
5069 ap->prd = dma_alloc_coherent(dev, ATA_PRD_TBL_SZ, &ap->prd_dma, GFP_KERNEL);
5070 if (!ap->prd)
5071 return -ENOMEM;
5072
5073 rc = ata_pad_alloc(ap, dev);
5074 if (rc) {
5075 dma_free_coherent(dev, ATA_PRD_TBL_SZ, ap->prd, ap->prd_dma);
5076 return rc;
5077 }
5078
5079 DPRINTK("prd alloc, virt %p, dma %llx\n", ap->prd, (unsigned long long) ap->prd_dma);
5080
5081 return 0;
5082 }
5083
5084
5085 /**
5086 * ata_port_stop - Undo ata_port_start()
5087 * @ap: Port to shut down
5088 *
5089 * Frees the PRD table.
5090 *
5091 * May be used as the port_stop() entry in ata_port_operations.
5092 *
5093 * LOCKING:
5094 * Inherited from caller.
5095 */
5096
5097 void ata_port_stop (struct ata_port *ap)
5098 {
5099 struct device *dev = ap->dev;
5100
5101 dma_free_coherent(dev, ATA_PRD_TBL_SZ, ap->prd, ap->prd_dma);
5102 ata_pad_free(ap, dev);
5103 }
5104
5105 void ata_host_stop (struct ata_host_set *host_set)
5106 {
5107 if (host_set->mmio_base)
5108 iounmap(host_set->mmio_base);
5109 }
5110
5111
5112 /**
5113 * ata_host_remove - Unregister SCSI host structure with upper layers
5114 * @ap: Port to unregister
5115 * @do_unregister: 1 if we fully unregister, 0 to just stop the port
5116 *
5117 * LOCKING:
5118 * Inherited from caller.
5119 */
5120
5121 static void ata_host_remove(struct ata_port *ap, unsigned int do_unregister)
5122 {
5123 struct Scsi_Host *sh = ap->host;
5124
5125 DPRINTK("ENTER\n");
5126
5127 if (do_unregister)
5128 scsi_remove_host(sh);
5129
5130 ap->ops->port_stop(ap);
5131 }
5132
5133 /**
5134 * ata_dev_init - Initialize an ata_device structure
5135 * @dev: Device structure to initialize
5136 *
5137 * Initialize @dev in preparation for probing.
5138 *
5139 * LOCKING:
5140 * Inherited from caller.
5141 */
5142 void ata_dev_init(struct ata_device *dev)
5143 {
5144 struct ata_port *ap = dev->ap;
5145 unsigned long flags;
5146
5147 /* SATA spd limit is bound to the first device */
5148 ap->sata_spd_limit = ap->hw_sata_spd_limit;
5149
5150 /* High bits of dev->flags are used to record warm plug
5151 * requests which occur asynchronously. Synchronize using
5152 * host_set lock.
5153 */
5154 spin_lock_irqsave(ap->lock, flags);
5155 dev->flags &= ~ATA_DFLAG_INIT_MASK;
5156 spin_unlock_irqrestore(ap->lock, flags);
5157
5158 memset((void *)dev + ATA_DEVICE_CLEAR_OFFSET, 0,
5159 sizeof(*dev) - ATA_DEVICE_CLEAR_OFFSET);
5160 dev->pio_mask = UINT_MAX;
5161 dev->mwdma_mask = UINT_MAX;
5162 dev->udma_mask = UINT_MAX;
5163 }
5164
5165 /**
5166 * ata_host_init - Initialize an ata_port structure
5167 * @ap: Structure to initialize
5168 * @host: associated SCSI mid-layer structure
5169 * @host_set: Collection of hosts to which @ap belongs
5170 * @ent: Probe information provided by low-level driver
5171 * @port_no: Port number associated with this ata_port
5172 *
5173 * Initialize a new ata_port structure, and its associated
5174 * scsi_host.
5175 *
5176 * LOCKING:
5177 * Inherited from caller.
5178 */
5179 static void ata_host_init(struct ata_port *ap, struct Scsi_Host *host,
5180 struct ata_host_set *host_set,
5181 const struct ata_probe_ent *ent, unsigned int port_no)
5182 {
5183 unsigned int i;
5184
5185 host->max_id = 16;
5186 host->max_lun = 1;
5187 host->max_channel = 1;
5188 host->unique_id = ata_unique_id++;
5189 host->max_cmd_len = 12;
5190
5191 ap->lock = &host_set->lock;
5192 ap->flags = ATA_FLAG_DISABLED;
5193 ap->id = host->unique_id;
5194 ap->host = host;
5195 ap->ctl = ATA_DEVCTL_OBS;
5196 ap->host_set = host_set;
5197 ap->dev = ent->dev;
5198 ap->port_no = port_no;
5199 ap->hard_port_no =
5200 ent->legacy_mode ? ent->hard_port_no : port_no;
5201 ap->pio_mask = ent->pio_mask;
5202 ap->mwdma_mask = ent->mwdma_mask;
5203 ap->udma_mask = ent->udma_mask;
5204 ap->flags |= ent->host_flags;
5205 ap->ops = ent->port_ops;
5206 ap->hw_sata_spd_limit = UINT_MAX;
5207 ap->active_tag = ATA_TAG_POISON;
5208 ap->last_ctl = 0xFF;
5209
5210 #if defined(ATA_VERBOSE_DEBUG)
5211 /* turn on all debugging levels */
5212 ap->msg_enable = 0x00FF;
5213 #elif defined(ATA_DEBUG)
5214 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_INFO | ATA_MSG_CTL | ATA_MSG_WARN | ATA_MSG_ERR;
5215 #else
5216 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_ERR | ATA_MSG_WARN;
5217 #endif
5218
5219 INIT_WORK(&ap->port_task, NULL, NULL);
5220 INIT_WORK(&ap->hotplug_task, ata_scsi_hotplug, ap);
5221 INIT_WORK(&ap->scsi_rescan_task, ata_scsi_dev_rescan, ap);
5222 INIT_LIST_HEAD(&ap->eh_done_q);
5223 init_waitqueue_head(&ap->eh_wait_q);
5224
5225 /* set cable type */
5226 ap->cbl = ATA_CBL_NONE;
5227 if (ap->flags & ATA_FLAG_SATA)
5228 ap->cbl = ATA_CBL_SATA;
5229
5230 for (i = 0; i < ATA_MAX_DEVICES; i++) {
5231 struct ata_device *dev = &ap->device[i];
5232 dev->ap = ap;
5233 dev->devno = i;
5234 ata_dev_init(dev);
5235 }
5236
5237 #ifdef ATA_IRQ_TRAP
5238 ap->stats.unhandled_irq = 1;
5239 ap->stats.idle_irq = 1;
5240 #endif
5241
5242 memcpy(&ap->ioaddr, &ent->port[port_no], sizeof(struct ata_ioports));
5243 }
5244
5245 /**
5246 * ata_host_add - Attach low-level ATA driver to system
5247 * @ent: Information provided by low-level driver
5248 * @host_set: Collections of ports to which we add
5249 * @port_no: Port number associated with this host
5250 *
5251 * Attach low-level ATA driver to system.
5252 *
5253 * LOCKING:
5254 * PCI/etc. bus probe sem.
5255 *
5256 * RETURNS:
5257 * New ata_port on success, for NULL on error.
5258 */
5259
5260 static struct ata_port * ata_host_add(const struct ata_probe_ent *ent,
5261 struct ata_host_set *host_set,
5262 unsigned int port_no)
5263 {
5264 struct Scsi_Host *host;
5265 struct ata_port *ap;
5266 int rc;
5267
5268 DPRINTK("ENTER\n");
5269
5270 if (!ent->port_ops->error_handler &&
5271 !(ent->host_flags & (ATA_FLAG_SATA_RESET | ATA_FLAG_SRST))) {
5272 printk(KERN_ERR "ata%u: no reset mechanism available\n",
5273 port_no);
5274 return NULL;
5275 }
5276
5277 host = scsi_host_alloc(ent->sht, sizeof(struct ata_port));
5278 if (!host)
5279 return NULL;
5280
5281 host->transportt = &ata_scsi_transport_template;
5282
5283 ap = ata_shost_to_port(host);
5284
5285 ata_host_init(ap, host, host_set, ent, port_no);
5286
5287 rc = ap->ops->port_start(ap);
5288 if (rc)
5289 goto err_out;
5290
5291 return ap;
5292
5293 err_out:
5294 scsi_host_put(host);
5295 return NULL;
5296 }
5297
5298 /**
5299 * ata_device_add - Register hardware device with ATA and SCSI layers
5300 * @ent: Probe information describing hardware device to be registered
5301 *
5302 * This function processes the information provided in the probe
5303 * information struct @ent, allocates the necessary ATA and SCSI
5304 * host information structures, initializes them, and registers
5305 * everything with requisite kernel subsystems.
5306 *
5307 * This function requests irqs, probes the ATA bus, and probes
5308 * the SCSI bus.
5309 *
5310 * LOCKING:
5311 * PCI/etc. bus probe sem.
5312 *
5313 * RETURNS:
5314 * Number of ports registered. Zero on error (no ports registered).
5315 */
5316 int ata_device_add(const struct ata_probe_ent *ent)
5317 {
5318 unsigned int count = 0, i;
5319 struct device *dev = ent->dev;
5320 struct ata_host_set *host_set;
5321 int rc;
5322
5323 DPRINTK("ENTER\n");
5324 /* alloc a container for our list of ATA ports (buses) */
5325 host_set = kzalloc(sizeof(struct ata_host_set) +
5326 (ent->n_ports * sizeof(void *)), GFP_KERNEL);
5327 if (!host_set)
5328 return 0;
5329 spin_lock_init(&host_set->lock);
5330
5331 host_set->dev = dev;
5332 host_set->n_ports = ent->n_ports;
5333 host_set->irq = ent->irq;
5334 host_set->mmio_base = ent->mmio_base;
5335 host_set->private_data = ent->private_data;
5336 host_set->ops = ent->port_ops;
5337 host_set->flags = ent->host_set_flags;
5338
5339 /* register each port bound to this device */
5340 for (i = 0; i < ent->n_ports; i++) {
5341 struct ata_port *ap;
5342 unsigned long xfer_mode_mask;
5343
5344 ap = ata_host_add(ent, host_set, i);
5345 if (!ap)
5346 goto err_out;
5347
5348 host_set->ports[i] = ap;
5349 xfer_mode_mask =(ap->udma_mask << ATA_SHIFT_UDMA) |
5350 (ap->mwdma_mask << ATA_SHIFT_MWDMA) |
5351 (ap->pio_mask << ATA_SHIFT_PIO);
5352
5353 /* print per-port info to dmesg */
5354 ata_port_printk(ap, KERN_INFO, "%cATA max %s cmd 0x%lX "
5355 "ctl 0x%lX bmdma 0x%lX irq %lu\n",
5356 ap->flags & ATA_FLAG_SATA ? 'S' : 'P',
5357 ata_mode_string(xfer_mode_mask),
5358 ap->ioaddr.cmd_addr,
5359 ap->ioaddr.ctl_addr,
5360 ap->ioaddr.bmdma_addr,
5361 ent->irq);
5362
5363 ata_chk_status(ap);
5364 host_set->ops->irq_clear(ap);
5365 ata_eh_freeze_port(ap); /* freeze port before requesting IRQ */
5366 count++;
5367 }
5368
5369 if (!count)
5370 goto err_free_ret;
5371
5372 /* obtain irq, that is shared between channels */
5373 rc = request_irq(ent->irq, ent->port_ops->irq_handler, ent->irq_flags,
5374 DRV_NAME, host_set);
5375 if (rc) {
5376 dev_printk(KERN_ERR, dev, "irq %lu request failed: %d\n",
5377 ent->irq, rc);
5378 goto err_out;
5379 }
5380
5381 /* perform each probe synchronously */
5382 DPRINTK("probe begin\n");
5383 for (i = 0; i < count; i++) {
5384 struct ata_port *ap;
5385 u32 scontrol;
5386 int rc;
5387
5388 ap = host_set->ports[i];
5389
5390 /* init sata_spd_limit to the current value */
5391 if (sata_scr_read(ap, SCR_CONTROL, &scontrol) == 0) {
5392 int spd = (scontrol >> 4) & 0xf;
5393 ap->hw_sata_spd_limit &= (1 << spd) - 1;
5394 }
5395 ap->sata_spd_limit = ap->hw_sata_spd_limit;
5396
5397 rc = scsi_add_host(ap->host, dev);
5398 if (rc) {
5399 ata_port_printk(ap, KERN_ERR, "scsi_add_host failed\n");
5400 /* FIXME: do something useful here */
5401 /* FIXME: handle unconditional calls to
5402 * scsi_scan_host and ata_host_remove, below,
5403 * at the very least
5404 */
5405 }
5406
5407 if (ap->ops->error_handler) {
5408 unsigned long flags;
5409
5410 ata_port_probe(ap);
5411
5412 /* kick EH for boot probing */
5413 spin_lock_irqsave(ap->lock, flags);
5414
5415 ap->eh_info.probe_mask = (1 << ATA_MAX_DEVICES) - 1;
5416 ap->eh_info.action |= ATA_EH_SOFTRESET;
5417
5418 ap->flags |= ATA_FLAG_LOADING;
5419 ata_port_schedule_eh(ap);
5420
5421 spin_unlock_irqrestore(ap->lock, flags);
5422
5423 /* wait for EH to finish */
5424 ata_port_wait_eh(ap);
5425 } else {
5426 DPRINTK("ata%u: bus probe begin\n", ap->id);
5427 rc = ata_bus_probe(ap);
5428 DPRINTK("ata%u: bus probe end\n", ap->id);
5429
5430 if (rc) {
5431 /* FIXME: do something useful here?
5432 * Current libata behavior will
5433 * tear down everything when
5434 * the module is removed
5435 * or the h/w is unplugged.
5436 */
5437 }
5438 }
5439 }
5440
5441 /* probes are done, now scan each port's disk(s) */
5442 DPRINTK("host probe begin\n");
5443 for (i = 0; i < count; i++) {
5444 struct ata_port *ap = host_set->ports[i];
5445
5446 ata_scsi_scan_host(ap);
5447 }
5448
5449 dev_set_drvdata(dev, host_set);
5450
5451 VPRINTK("EXIT, returning %u\n", ent->n_ports);
5452 return ent->n_ports; /* success */
5453
5454 err_out:
5455 for (i = 0; i < count; i++) {
5456 ata_host_remove(host_set->ports[i], 1);
5457 scsi_host_put(host_set->ports[i]->host);
5458 }
5459 err_free_ret:
5460 kfree(host_set);
5461 VPRINTK("EXIT, returning 0\n");
5462 return 0;
5463 }
5464
5465 /**
5466 * ata_port_detach - Detach ATA port in prepration of device removal
5467 * @ap: ATA port to be detached
5468 *
5469 * Detach all ATA devices and the associated SCSI devices of @ap;
5470 * then, remove the associated SCSI host. @ap is guaranteed to
5471 * be quiescent on return from this function.
5472 *
5473 * LOCKING:
5474 * Kernel thread context (may sleep).
5475 */
5476 void ata_port_detach(struct ata_port *ap)
5477 {
5478 unsigned long flags;
5479 int i;
5480
5481 if (!ap->ops->error_handler)
5482 return;
5483
5484 /* tell EH we're leaving & flush EH */
5485 spin_lock_irqsave(ap->lock, flags);
5486 ap->flags |= ATA_FLAG_UNLOADING;
5487 spin_unlock_irqrestore(ap->lock, flags);
5488
5489 ata_port_wait_eh(ap);
5490
5491 /* EH is now guaranteed to see UNLOADING, so no new device
5492 * will be attached. Disable all existing devices.
5493 */
5494 spin_lock_irqsave(ap->lock, flags);
5495
5496 for (i = 0; i < ATA_MAX_DEVICES; i++)
5497 ata_dev_disable(&ap->device[i]);
5498
5499 spin_unlock_irqrestore(ap->lock, flags);
5500
5501 /* Final freeze & EH. All in-flight commands are aborted. EH
5502 * will be skipped and retrials will be terminated with bad
5503 * target.
5504 */
5505 spin_lock_irqsave(ap->lock, flags);
5506 ata_port_freeze(ap); /* won't be thawed */
5507 spin_unlock_irqrestore(ap->lock, flags);
5508
5509 ata_port_wait_eh(ap);
5510
5511 /* Flush hotplug task. The sequence is similar to
5512 * ata_port_flush_task().
5513 */
5514 flush_workqueue(ata_aux_wq);
5515 cancel_delayed_work(&ap->hotplug_task);
5516 flush_workqueue(ata_aux_wq);
5517
5518 /* remove the associated SCSI host */
5519 scsi_remove_host(ap->host);
5520 }
5521
5522 /**
5523 * ata_host_set_remove - PCI layer callback for device removal
5524 * @host_set: ATA host set that was removed
5525 *
5526 * Unregister all objects associated with this host set. Free those
5527 * objects.
5528 *
5529 * LOCKING:
5530 * Inherited from calling layer (may sleep).
5531 */
5532
5533 void ata_host_set_remove(struct ata_host_set *host_set)
5534 {
5535 unsigned int i;
5536
5537 for (i = 0; i < host_set->n_ports; i++)
5538 ata_port_detach(host_set->ports[i]);
5539
5540 free_irq(host_set->irq, host_set);
5541
5542 for (i = 0; i < host_set->n_ports; i++) {
5543 struct ata_port *ap = host_set->ports[i];
5544
5545 ata_scsi_release(ap->host);
5546
5547 if ((ap->flags & ATA_FLAG_NO_LEGACY) == 0) {
5548 struct ata_ioports *ioaddr = &ap->ioaddr;
5549
5550 if (ioaddr->cmd_addr == 0x1f0)
5551 release_region(0x1f0, 8);
5552 else if (ioaddr->cmd_addr == 0x170)
5553 release_region(0x170, 8);
5554 }
5555
5556 scsi_host_put(ap->host);
5557 }
5558
5559 if (host_set->ops->host_stop)
5560 host_set->ops->host_stop(host_set);
5561
5562 kfree(host_set);
5563 }
5564
5565 /**
5566 * ata_scsi_release - SCSI layer callback hook for host unload
5567 * @host: libata host to be unloaded
5568 *
5569 * Performs all duties necessary to shut down a libata port...
5570 * Kill port kthread, disable port, and release resources.
5571 *
5572 * LOCKING:
5573 * Inherited from SCSI layer.
5574 *
5575 * RETURNS:
5576 * One.
5577 */
5578
5579 int ata_scsi_release(struct Scsi_Host *host)
5580 {
5581 struct ata_port *ap = ata_shost_to_port(host);
5582
5583 DPRINTK("ENTER\n");
5584
5585 ap->ops->port_disable(ap);
5586 ata_host_remove(ap, 0);
5587
5588 DPRINTK("EXIT\n");
5589 return 1;
5590 }
5591
5592 /**
5593 * ata_std_ports - initialize ioaddr with standard port offsets.
5594 * @ioaddr: IO address structure to be initialized
5595 *
5596 * Utility function which initializes data_addr, error_addr,
5597 * feature_addr, nsect_addr, lbal_addr, lbam_addr, lbah_addr,
5598 * device_addr, status_addr, and command_addr to standard offsets
5599 * relative to cmd_addr.
5600 *
5601 * Does not set ctl_addr, altstatus_addr, bmdma_addr, or scr_addr.
5602 */
5603
5604 void ata_std_ports(struct ata_ioports *ioaddr)
5605 {
5606 ioaddr->data_addr = ioaddr->cmd_addr + ATA_REG_DATA;
5607 ioaddr->error_addr = ioaddr->cmd_addr + ATA_REG_ERR;
5608 ioaddr->feature_addr = ioaddr->cmd_addr + ATA_REG_FEATURE;
5609 ioaddr->nsect_addr = ioaddr->cmd_addr + ATA_REG_NSECT;
5610 ioaddr->lbal_addr = ioaddr->cmd_addr + ATA_REG_LBAL;
5611 ioaddr->lbam_addr = ioaddr->cmd_addr + ATA_REG_LBAM;
5612 ioaddr->lbah_addr = ioaddr->cmd_addr + ATA_REG_LBAH;
5613 ioaddr->device_addr = ioaddr->cmd_addr + ATA_REG_DEVICE;
5614 ioaddr->status_addr = ioaddr->cmd_addr + ATA_REG_STATUS;
5615 ioaddr->command_addr = ioaddr->cmd_addr + ATA_REG_CMD;
5616 }
5617
5618
5619 #ifdef CONFIG_PCI
5620
5621 void ata_pci_host_stop (struct ata_host_set *host_set)
5622 {
5623 struct pci_dev *pdev = to_pci_dev(host_set->dev);
5624
5625 pci_iounmap(pdev, host_set->mmio_base);
5626 }
5627
5628 /**
5629 * ata_pci_remove_one - PCI layer callback for device removal
5630 * @pdev: PCI device that was removed
5631 *
5632 * PCI layer indicates to libata via this hook that
5633 * hot-unplug or module unload event has occurred.
5634 * Handle this by unregistering all objects associated
5635 * with this PCI device. Free those objects. Then finally
5636 * release PCI resources and disable device.
5637 *
5638 * LOCKING:
5639 * Inherited from PCI layer (may sleep).
5640 */
5641
5642 void ata_pci_remove_one (struct pci_dev *pdev)
5643 {
5644 struct device *dev = pci_dev_to_dev(pdev);
5645 struct ata_host_set *host_set = dev_get_drvdata(dev);
5646 struct ata_host_set *host_set2 = host_set->next;
5647
5648 ata_host_set_remove(host_set);
5649 if (host_set2)
5650 ata_host_set_remove(host_set2);
5651
5652 pci_release_regions(pdev);
5653 pci_disable_device(pdev);
5654 dev_set_drvdata(dev, NULL);
5655 }
5656
5657 /* move to PCI subsystem */
5658 int pci_test_config_bits(struct pci_dev *pdev, const struct pci_bits *bits)
5659 {
5660 unsigned long tmp = 0;
5661
5662 switch (bits->width) {
5663 case 1: {
5664 u8 tmp8 = 0;
5665 pci_read_config_byte(pdev, bits->reg, &tmp8);
5666 tmp = tmp8;
5667 break;
5668 }
5669 case 2: {
5670 u16 tmp16 = 0;
5671 pci_read_config_word(pdev, bits->reg, &tmp16);
5672 tmp = tmp16;
5673 break;
5674 }
5675 case 4: {
5676 u32 tmp32 = 0;
5677 pci_read_config_dword(pdev, bits->reg, &tmp32);
5678 tmp = tmp32;
5679 break;
5680 }
5681
5682 default:
5683 return -EINVAL;
5684 }
5685
5686 tmp &= bits->mask;
5687
5688 return (tmp == bits->val) ? 1 : 0;
5689 }
5690
5691 int ata_pci_device_suspend(struct pci_dev *pdev, pm_message_t state)
5692 {
5693 pci_save_state(pdev);
5694 pci_disable_device(pdev);
5695 pci_set_power_state(pdev, PCI_D3hot);
5696 return 0;
5697 }
5698
5699 int ata_pci_device_resume(struct pci_dev *pdev)
5700 {
5701 pci_set_power_state(pdev, PCI_D0);
5702 pci_restore_state(pdev);
5703 pci_enable_device(pdev);
5704 pci_set_master(pdev);
5705 return 0;
5706 }
5707 #endif /* CONFIG_PCI */
5708
5709
5710 static int __init ata_init(void)
5711 {
5712 ata_wq = create_workqueue("ata");
5713 if (!ata_wq)
5714 return -ENOMEM;
5715
5716 ata_aux_wq = create_singlethread_workqueue("ata_aux");
5717 if (!ata_aux_wq) {
5718 destroy_workqueue(ata_wq);
5719 return -ENOMEM;
5720 }
5721
5722 printk(KERN_DEBUG "libata version " DRV_VERSION " loaded.\n");
5723 return 0;
5724 }
5725
5726 static void __exit ata_exit(void)
5727 {
5728 destroy_workqueue(ata_wq);
5729 destroy_workqueue(ata_aux_wq);
5730 }
5731
5732 module_init(ata_init);
5733 module_exit(ata_exit);
5734
5735 static unsigned long ratelimit_time;
5736 static spinlock_t ata_ratelimit_lock = SPIN_LOCK_UNLOCKED;
5737
5738 int ata_ratelimit(void)
5739 {
5740 int rc;
5741 unsigned long flags;
5742
5743 spin_lock_irqsave(&ata_ratelimit_lock, flags);
5744
5745 if (time_after(jiffies, ratelimit_time)) {
5746 rc = 1;
5747 ratelimit_time = jiffies + (HZ/5);
5748 } else
5749 rc = 0;
5750
5751 spin_unlock_irqrestore(&ata_ratelimit_lock, flags);
5752
5753 return rc;
5754 }
5755
5756 /**
5757 * ata_wait_register - wait until register value changes
5758 * @reg: IO-mapped register
5759 * @mask: Mask to apply to read register value
5760 * @val: Wait condition
5761 * @interval_msec: polling interval in milliseconds
5762 * @timeout_msec: timeout in milliseconds
5763 *
5764 * Waiting for some bits of register to change is a common
5765 * operation for ATA controllers. This function reads 32bit LE
5766 * IO-mapped register @reg and tests for the following condition.
5767 *
5768 * (*@reg & mask) != val
5769 *
5770 * If the condition is met, it returns; otherwise, the process is
5771 * repeated after @interval_msec until timeout.
5772 *
5773 * LOCKING:
5774 * Kernel thread context (may sleep)
5775 *
5776 * RETURNS:
5777 * The final register value.
5778 */
5779 u32 ata_wait_register(void __iomem *reg, u32 mask, u32 val,
5780 unsigned long interval_msec,
5781 unsigned long timeout_msec)
5782 {
5783 unsigned long timeout;
5784 u32 tmp;
5785
5786 tmp = ioread32(reg);
5787
5788 /* Calculate timeout _after_ the first read to make sure
5789 * preceding writes reach the controller before starting to
5790 * eat away the timeout.
5791 */
5792 timeout = jiffies + (timeout_msec * HZ) / 1000;
5793
5794 while ((tmp & mask) == val && time_before(jiffies, timeout)) {
5795 msleep(interval_msec);
5796 tmp = ioread32(reg);
5797 }
5798
5799 return tmp;
5800 }
5801
5802 /*
5803 * libata is essentially a library of internal helper functions for
5804 * low-level ATA host controller drivers. As such, the API/ABI is
5805 * likely to change as new drivers are added and updated.
5806 * Do not depend on ABI/API stability.
5807 */
5808
5809 EXPORT_SYMBOL_GPL(sata_deb_timing_boot);
5810 EXPORT_SYMBOL_GPL(sata_deb_timing_eh);
5811 EXPORT_SYMBOL_GPL(sata_deb_timing_before_fsrst);
5812 EXPORT_SYMBOL_GPL(ata_std_bios_param);
5813 EXPORT_SYMBOL_GPL(ata_std_ports);
5814 EXPORT_SYMBOL_GPL(ata_device_add);
5815 EXPORT_SYMBOL_GPL(ata_port_detach);
5816 EXPORT_SYMBOL_GPL(ata_host_set_remove);
5817 EXPORT_SYMBOL_GPL(ata_sg_init);
5818 EXPORT_SYMBOL_GPL(ata_sg_init_one);
5819 EXPORT_SYMBOL_GPL(ata_hsm_move);
5820 EXPORT_SYMBOL_GPL(ata_qc_complete);
5821 EXPORT_SYMBOL_GPL(ata_qc_complete_multiple);
5822 EXPORT_SYMBOL_GPL(ata_qc_issue_prot);
5823 EXPORT_SYMBOL_GPL(ata_tf_load);
5824 EXPORT_SYMBOL_GPL(ata_tf_read);
5825 EXPORT_SYMBOL_GPL(ata_noop_dev_select);
5826 EXPORT_SYMBOL_GPL(ata_std_dev_select);
5827 EXPORT_SYMBOL_GPL(ata_tf_to_fis);
5828 EXPORT_SYMBOL_GPL(ata_tf_from_fis);
5829 EXPORT_SYMBOL_GPL(ata_check_status);
5830 EXPORT_SYMBOL_GPL(ata_altstatus);
5831 EXPORT_SYMBOL_GPL(ata_exec_command);
5832 EXPORT_SYMBOL_GPL(ata_port_start);
5833 EXPORT_SYMBOL_GPL(ata_port_stop);
5834 EXPORT_SYMBOL_GPL(ata_host_stop);
5835 EXPORT_SYMBOL_GPL(ata_interrupt);
5836 EXPORT_SYMBOL_GPL(ata_mmio_data_xfer);
5837 EXPORT_SYMBOL_GPL(ata_pio_data_xfer);
5838 EXPORT_SYMBOL_GPL(ata_pio_data_xfer_noirq);
5839 EXPORT_SYMBOL_GPL(ata_qc_prep);
5840 EXPORT_SYMBOL_GPL(ata_noop_qc_prep);
5841 EXPORT_SYMBOL_GPL(ata_bmdma_setup);
5842 EXPORT_SYMBOL_GPL(ata_bmdma_start);
5843 EXPORT_SYMBOL_GPL(ata_bmdma_irq_clear);
5844 EXPORT_SYMBOL_GPL(ata_bmdma_status);
5845 EXPORT_SYMBOL_GPL(ata_bmdma_stop);
5846 EXPORT_SYMBOL_GPL(ata_bmdma_freeze);
5847 EXPORT_SYMBOL_GPL(ata_bmdma_thaw);
5848 EXPORT_SYMBOL_GPL(ata_bmdma_drive_eh);
5849 EXPORT_SYMBOL_GPL(ata_bmdma_error_handler);
5850 EXPORT_SYMBOL_GPL(ata_bmdma_post_internal_cmd);
5851 EXPORT_SYMBOL_GPL(ata_port_probe);
5852 EXPORT_SYMBOL_GPL(sata_set_spd);
5853 EXPORT_SYMBOL_GPL(sata_phy_debounce);
5854 EXPORT_SYMBOL_GPL(sata_phy_resume);
5855 EXPORT_SYMBOL_GPL(sata_phy_reset);
5856 EXPORT_SYMBOL_GPL(__sata_phy_reset);
5857 EXPORT_SYMBOL_GPL(ata_bus_reset);
5858 EXPORT_SYMBOL_GPL(ata_std_prereset);
5859 EXPORT_SYMBOL_GPL(ata_std_softreset);
5860 EXPORT_SYMBOL_GPL(sata_std_hardreset);
5861 EXPORT_SYMBOL_GPL(ata_std_postreset);
5862 EXPORT_SYMBOL_GPL(ata_dev_revalidate);
5863 EXPORT_SYMBOL_GPL(ata_dev_classify);
5864 EXPORT_SYMBOL_GPL(ata_dev_pair);
5865 EXPORT_SYMBOL_GPL(ata_port_disable);
5866 EXPORT_SYMBOL_GPL(ata_ratelimit);
5867 EXPORT_SYMBOL_GPL(ata_wait_register);
5868 EXPORT_SYMBOL_GPL(ata_busy_sleep);
5869 EXPORT_SYMBOL_GPL(ata_port_queue_task);
5870 EXPORT_SYMBOL_GPL(ata_scsi_ioctl);
5871 EXPORT_SYMBOL_GPL(ata_scsi_queuecmd);
5872 EXPORT_SYMBOL_GPL(ata_scsi_slave_config);
5873 EXPORT_SYMBOL_GPL(ata_scsi_slave_destroy);
5874 EXPORT_SYMBOL_GPL(ata_scsi_change_queue_depth);
5875 EXPORT_SYMBOL_GPL(ata_scsi_release);
5876 EXPORT_SYMBOL_GPL(ata_host_intr);
5877 EXPORT_SYMBOL_GPL(sata_scr_valid);
5878 EXPORT_SYMBOL_GPL(sata_scr_read);
5879 EXPORT_SYMBOL_GPL(sata_scr_write);
5880 EXPORT_SYMBOL_GPL(sata_scr_write_flush);
5881 EXPORT_SYMBOL_GPL(ata_port_online);
5882 EXPORT_SYMBOL_GPL(ata_port_offline);
5883 EXPORT_SYMBOL_GPL(ata_id_string);
5884 EXPORT_SYMBOL_GPL(ata_id_c_string);
5885 EXPORT_SYMBOL_GPL(ata_scsi_simulate);
5886
5887 EXPORT_SYMBOL_GPL(ata_pio_need_iordy);
5888 EXPORT_SYMBOL_GPL(ata_timing_compute);
5889 EXPORT_SYMBOL_GPL(ata_timing_merge);
5890
5891 #ifdef CONFIG_PCI
5892 EXPORT_SYMBOL_GPL(pci_test_config_bits);
5893 EXPORT_SYMBOL_GPL(ata_pci_host_stop);
5894 EXPORT_SYMBOL_GPL(ata_pci_init_native_mode);
5895 EXPORT_SYMBOL_GPL(ata_pci_init_one);
5896 EXPORT_SYMBOL_GPL(ata_pci_remove_one);
5897 EXPORT_SYMBOL_GPL(ata_pci_device_suspend);
5898 EXPORT_SYMBOL_GPL(ata_pci_device_resume);
5899 EXPORT_SYMBOL_GPL(ata_pci_default_filter);
5900 EXPORT_SYMBOL_GPL(ata_pci_clear_simplex);
5901 #endif /* CONFIG_PCI */
5902
5903 EXPORT_SYMBOL_GPL(ata_device_suspend);
5904 EXPORT_SYMBOL_GPL(ata_device_resume);
5905 EXPORT_SYMBOL_GPL(ata_scsi_device_suspend);
5906 EXPORT_SYMBOL_GPL(ata_scsi_device_resume);
5907
5908 EXPORT_SYMBOL_GPL(ata_eng_timeout);
5909 EXPORT_SYMBOL_GPL(ata_port_schedule_eh);
5910 EXPORT_SYMBOL_GPL(ata_port_abort);
5911 EXPORT_SYMBOL_GPL(ata_port_freeze);
5912 EXPORT_SYMBOL_GPL(ata_eh_freeze_port);
5913 EXPORT_SYMBOL_GPL(ata_eh_thaw_port);
5914 EXPORT_SYMBOL_GPL(ata_eh_qc_complete);
5915 EXPORT_SYMBOL_GPL(ata_eh_qc_retry);
5916 EXPORT_SYMBOL_GPL(ata_do_eh);
This page took 0.275738 seconds and 6 git commands to generate.