[PATCH] libata: don't disable devices from ata_set_mode()
[deliverable/linux.git] / drivers / scsi / libata-core.c
1 /*
2 * libata-core.c - helper library for ATA
3 *
4 * Maintained by: Jeff Garzik <jgarzik@pobox.com>
5 * Please ALWAYS copy linux-ide@vger.kernel.org
6 * on emails.
7 *
8 * Copyright 2003-2004 Red Hat, Inc. All rights reserved.
9 * Copyright 2003-2004 Jeff Garzik
10 *
11 *
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2, or (at your option)
15 * any later version.
16 *
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
21 *
22 * You should have received a copy of the GNU General Public License
23 * along with this program; see the file COPYING. If not, write to
24 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
25 *
26 *
27 * libata documentation is available via 'make {ps|pdf}docs',
28 * as Documentation/DocBook/libata.*
29 *
30 * Hardware documentation available from http://www.t13.org/ and
31 * http://www.sata-io.org/
32 *
33 */
34
35 #include <linux/config.h>
36 #include <linux/kernel.h>
37 #include <linux/module.h>
38 #include <linux/pci.h>
39 #include <linux/init.h>
40 #include <linux/list.h>
41 #include <linux/mm.h>
42 #include <linux/highmem.h>
43 #include <linux/spinlock.h>
44 #include <linux/blkdev.h>
45 #include <linux/delay.h>
46 #include <linux/timer.h>
47 #include <linux/interrupt.h>
48 #include <linux/completion.h>
49 #include <linux/suspend.h>
50 #include <linux/workqueue.h>
51 #include <linux/jiffies.h>
52 #include <linux/scatterlist.h>
53 #include <scsi/scsi.h>
54 #include "scsi_priv.h"
55 #include <scsi/scsi_cmnd.h>
56 #include <scsi/scsi_host.h>
57 #include <linux/libata.h>
58 #include <asm/io.h>
59 #include <asm/semaphore.h>
60 #include <asm/byteorder.h>
61
62 #include "libata.h"
63
64 static unsigned int ata_dev_init_params(struct ata_port *ap,
65 struct ata_device *dev,
66 u16 heads,
67 u16 sectors);
68 static int ata_set_mode(struct ata_port *ap, struct ata_device **r_failed_dev);
69 static unsigned int ata_dev_set_xfermode(struct ata_port *ap,
70 struct ata_device *dev);
71 static void ata_dev_xfermask(struct ata_port *ap, struct ata_device *dev);
72
73 static unsigned int ata_unique_id = 1;
74 static struct workqueue_struct *ata_wq;
75
76 int atapi_enabled = 1;
77 module_param(atapi_enabled, int, 0444);
78 MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on)");
79
80 int libata_fua = 0;
81 module_param_named(fua, libata_fua, int, 0444);
82 MODULE_PARM_DESC(fua, "FUA support (0=off, 1=on)");
83
84 MODULE_AUTHOR("Jeff Garzik");
85 MODULE_DESCRIPTION("Library module for ATA devices");
86 MODULE_LICENSE("GPL");
87 MODULE_VERSION(DRV_VERSION);
88
89
90 /**
91 * ata_tf_to_fis - Convert ATA taskfile to SATA FIS structure
92 * @tf: Taskfile to convert
93 * @fis: Buffer into which data will output
94 * @pmp: Port multiplier port
95 *
96 * Converts a standard ATA taskfile to a Serial ATA
97 * FIS structure (Register - Host to Device).
98 *
99 * LOCKING:
100 * Inherited from caller.
101 */
102
103 void ata_tf_to_fis(const struct ata_taskfile *tf, u8 *fis, u8 pmp)
104 {
105 fis[0] = 0x27; /* Register - Host to Device FIS */
106 fis[1] = (pmp & 0xf) | (1 << 7); /* Port multiplier number,
107 bit 7 indicates Command FIS */
108 fis[2] = tf->command;
109 fis[3] = tf->feature;
110
111 fis[4] = tf->lbal;
112 fis[5] = tf->lbam;
113 fis[6] = tf->lbah;
114 fis[7] = tf->device;
115
116 fis[8] = tf->hob_lbal;
117 fis[9] = tf->hob_lbam;
118 fis[10] = tf->hob_lbah;
119 fis[11] = tf->hob_feature;
120
121 fis[12] = tf->nsect;
122 fis[13] = tf->hob_nsect;
123 fis[14] = 0;
124 fis[15] = tf->ctl;
125
126 fis[16] = 0;
127 fis[17] = 0;
128 fis[18] = 0;
129 fis[19] = 0;
130 }
131
132 /**
133 * ata_tf_from_fis - Convert SATA FIS to ATA taskfile
134 * @fis: Buffer from which data will be input
135 * @tf: Taskfile to output
136 *
137 * Converts a serial ATA FIS structure to a standard ATA taskfile.
138 *
139 * LOCKING:
140 * Inherited from caller.
141 */
142
143 void ata_tf_from_fis(const u8 *fis, struct ata_taskfile *tf)
144 {
145 tf->command = fis[2]; /* status */
146 tf->feature = fis[3]; /* error */
147
148 tf->lbal = fis[4];
149 tf->lbam = fis[5];
150 tf->lbah = fis[6];
151 tf->device = fis[7];
152
153 tf->hob_lbal = fis[8];
154 tf->hob_lbam = fis[9];
155 tf->hob_lbah = fis[10];
156
157 tf->nsect = fis[12];
158 tf->hob_nsect = fis[13];
159 }
160
161 static const u8 ata_rw_cmds[] = {
162 /* pio multi */
163 ATA_CMD_READ_MULTI,
164 ATA_CMD_WRITE_MULTI,
165 ATA_CMD_READ_MULTI_EXT,
166 ATA_CMD_WRITE_MULTI_EXT,
167 0,
168 0,
169 0,
170 ATA_CMD_WRITE_MULTI_FUA_EXT,
171 /* pio */
172 ATA_CMD_PIO_READ,
173 ATA_CMD_PIO_WRITE,
174 ATA_CMD_PIO_READ_EXT,
175 ATA_CMD_PIO_WRITE_EXT,
176 0,
177 0,
178 0,
179 0,
180 /* dma */
181 ATA_CMD_READ,
182 ATA_CMD_WRITE,
183 ATA_CMD_READ_EXT,
184 ATA_CMD_WRITE_EXT,
185 0,
186 0,
187 0,
188 ATA_CMD_WRITE_FUA_EXT
189 };
190
191 /**
192 * ata_rwcmd_protocol - set taskfile r/w commands and protocol
193 * @qc: command to examine and configure
194 *
195 * Examine the device configuration and tf->flags to calculate
196 * the proper read/write commands and protocol to use.
197 *
198 * LOCKING:
199 * caller.
200 */
201 int ata_rwcmd_protocol(struct ata_queued_cmd *qc)
202 {
203 struct ata_taskfile *tf = &qc->tf;
204 struct ata_device *dev = qc->dev;
205 u8 cmd;
206
207 int index, fua, lba48, write;
208
209 fua = (tf->flags & ATA_TFLAG_FUA) ? 4 : 0;
210 lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0;
211 write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0;
212
213 if (dev->flags & ATA_DFLAG_PIO) {
214 tf->protocol = ATA_PROT_PIO;
215 index = dev->multi_count ? 0 : 8;
216 } else if (lba48 && (qc->ap->flags & ATA_FLAG_PIO_LBA48)) {
217 /* Unable to use DMA due to host limitation */
218 tf->protocol = ATA_PROT_PIO;
219 index = dev->multi_count ? 0 : 8;
220 } else {
221 tf->protocol = ATA_PROT_DMA;
222 index = 16;
223 }
224
225 cmd = ata_rw_cmds[index + fua + lba48 + write];
226 if (cmd) {
227 tf->command = cmd;
228 return 0;
229 }
230 return -1;
231 }
232
233 /**
234 * ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask
235 * @pio_mask: pio_mask
236 * @mwdma_mask: mwdma_mask
237 * @udma_mask: udma_mask
238 *
239 * Pack @pio_mask, @mwdma_mask and @udma_mask into a single
240 * unsigned int xfer_mask.
241 *
242 * LOCKING:
243 * None.
244 *
245 * RETURNS:
246 * Packed xfer_mask.
247 */
248 static unsigned int ata_pack_xfermask(unsigned int pio_mask,
249 unsigned int mwdma_mask,
250 unsigned int udma_mask)
251 {
252 return ((pio_mask << ATA_SHIFT_PIO) & ATA_MASK_PIO) |
253 ((mwdma_mask << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA) |
254 ((udma_mask << ATA_SHIFT_UDMA) & ATA_MASK_UDMA);
255 }
256
257 /**
258 * ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks
259 * @xfer_mask: xfer_mask to unpack
260 * @pio_mask: resulting pio_mask
261 * @mwdma_mask: resulting mwdma_mask
262 * @udma_mask: resulting udma_mask
263 *
264 * Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask.
265 * Any NULL distination masks will be ignored.
266 */
267 static void ata_unpack_xfermask(unsigned int xfer_mask,
268 unsigned int *pio_mask,
269 unsigned int *mwdma_mask,
270 unsigned int *udma_mask)
271 {
272 if (pio_mask)
273 *pio_mask = (xfer_mask & ATA_MASK_PIO) >> ATA_SHIFT_PIO;
274 if (mwdma_mask)
275 *mwdma_mask = (xfer_mask & ATA_MASK_MWDMA) >> ATA_SHIFT_MWDMA;
276 if (udma_mask)
277 *udma_mask = (xfer_mask & ATA_MASK_UDMA) >> ATA_SHIFT_UDMA;
278 }
279
280 static const struct ata_xfer_ent {
281 int shift, bits;
282 u8 base;
283 } ata_xfer_tbl[] = {
284 { ATA_SHIFT_PIO, ATA_BITS_PIO, XFER_PIO_0 },
285 { ATA_SHIFT_MWDMA, ATA_BITS_MWDMA, XFER_MW_DMA_0 },
286 { ATA_SHIFT_UDMA, ATA_BITS_UDMA, XFER_UDMA_0 },
287 { -1, },
288 };
289
290 /**
291 * ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask
292 * @xfer_mask: xfer_mask of interest
293 *
294 * Return matching XFER_* value for @xfer_mask. Only the highest
295 * bit of @xfer_mask is considered.
296 *
297 * LOCKING:
298 * None.
299 *
300 * RETURNS:
301 * Matching XFER_* value, 0 if no match found.
302 */
303 static u8 ata_xfer_mask2mode(unsigned int xfer_mask)
304 {
305 int highbit = fls(xfer_mask) - 1;
306 const struct ata_xfer_ent *ent;
307
308 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
309 if (highbit >= ent->shift && highbit < ent->shift + ent->bits)
310 return ent->base + highbit - ent->shift;
311 return 0;
312 }
313
314 /**
315 * ata_xfer_mode2mask - Find matching xfer_mask for XFER_*
316 * @xfer_mode: XFER_* of interest
317 *
318 * Return matching xfer_mask for @xfer_mode.
319 *
320 * LOCKING:
321 * None.
322 *
323 * RETURNS:
324 * Matching xfer_mask, 0 if no match found.
325 */
326 static unsigned int ata_xfer_mode2mask(u8 xfer_mode)
327 {
328 const struct ata_xfer_ent *ent;
329
330 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
331 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
332 return 1 << (ent->shift + xfer_mode - ent->base);
333 return 0;
334 }
335
336 /**
337 * ata_xfer_mode2shift - Find matching xfer_shift for XFER_*
338 * @xfer_mode: XFER_* of interest
339 *
340 * Return matching xfer_shift for @xfer_mode.
341 *
342 * LOCKING:
343 * None.
344 *
345 * RETURNS:
346 * Matching xfer_shift, -1 if no match found.
347 */
348 static int ata_xfer_mode2shift(unsigned int xfer_mode)
349 {
350 const struct ata_xfer_ent *ent;
351
352 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
353 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
354 return ent->shift;
355 return -1;
356 }
357
358 /**
359 * ata_mode_string - convert xfer_mask to string
360 * @xfer_mask: mask of bits supported; only highest bit counts.
361 *
362 * Determine string which represents the highest speed
363 * (highest bit in @modemask).
364 *
365 * LOCKING:
366 * None.
367 *
368 * RETURNS:
369 * Constant C string representing highest speed listed in
370 * @mode_mask, or the constant C string "<n/a>".
371 */
372 static const char *ata_mode_string(unsigned int xfer_mask)
373 {
374 static const char * const xfer_mode_str[] = {
375 "PIO0",
376 "PIO1",
377 "PIO2",
378 "PIO3",
379 "PIO4",
380 "MWDMA0",
381 "MWDMA1",
382 "MWDMA2",
383 "UDMA/16",
384 "UDMA/25",
385 "UDMA/33",
386 "UDMA/44",
387 "UDMA/66",
388 "UDMA/100",
389 "UDMA/133",
390 "UDMA7",
391 };
392 int highbit;
393
394 highbit = fls(xfer_mask) - 1;
395 if (highbit >= 0 && highbit < ARRAY_SIZE(xfer_mode_str))
396 return xfer_mode_str[highbit];
397 return "<n/a>";
398 }
399
400 static const char *sata_spd_string(unsigned int spd)
401 {
402 static const char * const spd_str[] = {
403 "1.5 Gbps",
404 "3.0 Gbps",
405 };
406
407 if (spd == 0 || (spd - 1) >= ARRAY_SIZE(spd_str))
408 return "<unknown>";
409 return spd_str[spd - 1];
410 }
411
412 static void ata_dev_disable(struct ata_port *ap, struct ata_device *dev)
413 {
414 if (ata_dev_enabled(dev)) {
415 printk(KERN_WARNING "ata%u: dev %u disabled\n",
416 ap->id, dev->devno);
417 dev->class++;
418 }
419 }
420
421 /**
422 * ata_pio_devchk - PATA device presence detection
423 * @ap: ATA channel to examine
424 * @device: Device to examine (starting at zero)
425 *
426 * This technique was originally described in
427 * Hale Landis's ATADRVR (www.ata-atapi.com), and
428 * later found its way into the ATA/ATAPI spec.
429 *
430 * Write a pattern to the ATA shadow registers,
431 * and if a device is present, it will respond by
432 * correctly storing and echoing back the
433 * ATA shadow register contents.
434 *
435 * LOCKING:
436 * caller.
437 */
438
439 static unsigned int ata_pio_devchk(struct ata_port *ap,
440 unsigned int device)
441 {
442 struct ata_ioports *ioaddr = &ap->ioaddr;
443 u8 nsect, lbal;
444
445 ap->ops->dev_select(ap, device);
446
447 outb(0x55, ioaddr->nsect_addr);
448 outb(0xaa, ioaddr->lbal_addr);
449
450 outb(0xaa, ioaddr->nsect_addr);
451 outb(0x55, ioaddr->lbal_addr);
452
453 outb(0x55, ioaddr->nsect_addr);
454 outb(0xaa, ioaddr->lbal_addr);
455
456 nsect = inb(ioaddr->nsect_addr);
457 lbal = inb(ioaddr->lbal_addr);
458
459 if ((nsect == 0x55) && (lbal == 0xaa))
460 return 1; /* we found a device */
461
462 return 0; /* nothing found */
463 }
464
465 /**
466 * ata_mmio_devchk - PATA device presence detection
467 * @ap: ATA channel to examine
468 * @device: Device to examine (starting at zero)
469 *
470 * This technique was originally described in
471 * Hale Landis's ATADRVR (www.ata-atapi.com), and
472 * later found its way into the ATA/ATAPI spec.
473 *
474 * Write a pattern to the ATA shadow registers,
475 * and if a device is present, it will respond by
476 * correctly storing and echoing back the
477 * ATA shadow register contents.
478 *
479 * LOCKING:
480 * caller.
481 */
482
483 static unsigned int ata_mmio_devchk(struct ata_port *ap,
484 unsigned int device)
485 {
486 struct ata_ioports *ioaddr = &ap->ioaddr;
487 u8 nsect, lbal;
488
489 ap->ops->dev_select(ap, device);
490
491 writeb(0x55, (void __iomem *) ioaddr->nsect_addr);
492 writeb(0xaa, (void __iomem *) ioaddr->lbal_addr);
493
494 writeb(0xaa, (void __iomem *) ioaddr->nsect_addr);
495 writeb(0x55, (void __iomem *) ioaddr->lbal_addr);
496
497 writeb(0x55, (void __iomem *) ioaddr->nsect_addr);
498 writeb(0xaa, (void __iomem *) ioaddr->lbal_addr);
499
500 nsect = readb((void __iomem *) ioaddr->nsect_addr);
501 lbal = readb((void __iomem *) ioaddr->lbal_addr);
502
503 if ((nsect == 0x55) && (lbal == 0xaa))
504 return 1; /* we found a device */
505
506 return 0; /* nothing found */
507 }
508
509 /**
510 * ata_devchk - PATA device presence detection
511 * @ap: ATA channel to examine
512 * @device: Device to examine (starting at zero)
513 *
514 * Dispatch ATA device presence detection, depending
515 * on whether we are using PIO or MMIO to talk to the
516 * ATA shadow registers.
517 *
518 * LOCKING:
519 * caller.
520 */
521
522 static unsigned int ata_devchk(struct ata_port *ap,
523 unsigned int device)
524 {
525 if (ap->flags & ATA_FLAG_MMIO)
526 return ata_mmio_devchk(ap, device);
527 return ata_pio_devchk(ap, device);
528 }
529
530 /**
531 * ata_dev_classify - determine device type based on ATA-spec signature
532 * @tf: ATA taskfile register set for device to be identified
533 *
534 * Determine from taskfile register contents whether a device is
535 * ATA or ATAPI, as per "Signature and persistence" section
536 * of ATA/PI spec (volume 1, sect 5.14).
537 *
538 * LOCKING:
539 * None.
540 *
541 * RETURNS:
542 * Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, or %ATA_DEV_UNKNOWN
543 * the event of failure.
544 */
545
546 unsigned int ata_dev_classify(const struct ata_taskfile *tf)
547 {
548 /* Apple's open source Darwin code hints that some devices only
549 * put a proper signature into the LBA mid/high registers,
550 * So, we only check those. It's sufficient for uniqueness.
551 */
552
553 if (((tf->lbam == 0) && (tf->lbah == 0)) ||
554 ((tf->lbam == 0x3c) && (tf->lbah == 0xc3))) {
555 DPRINTK("found ATA device by sig\n");
556 return ATA_DEV_ATA;
557 }
558
559 if (((tf->lbam == 0x14) && (tf->lbah == 0xeb)) ||
560 ((tf->lbam == 0x69) && (tf->lbah == 0x96))) {
561 DPRINTK("found ATAPI device by sig\n");
562 return ATA_DEV_ATAPI;
563 }
564
565 DPRINTK("unknown device\n");
566 return ATA_DEV_UNKNOWN;
567 }
568
569 /**
570 * ata_dev_try_classify - Parse returned ATA device signature
571 * @ap: ATA channel to examine
572 * @device: Device to examine (starting at zero)
573 * @r_err: Value of error register on completion
574 *
575 * After an event -- SRST, E.D.D., or SATA COMRESET -- occurs,
576 * an ATA/ATAPI-defined set of values is placed in the ATA
577 * shadow registers, indicating the results of device detection
578 * and diagnostics.
579 *
580 * Select the ATA device, and read the values from the ATA shadow
581 * registers. Then parse according to the Error register value,
582 * and the spec-defined values examined by ata_dev_classify().
583 *
584 * LOCKING:
585 * caller.
586 *
587 * RETURNS:
588 * Device type - %ATA_DEV_ATA, %ATA_DEV_ATAPI or %ATA_DEV_NONE.
589 */
590
591 static unsigned int
592 ata_dev_try_classify(struct ata_port *ap, unsigned int device, u8 *r_err)
593 {
594 struct ata_taskfile tf;
595 unsigned int class;
596 u8 err;
597
598 ap->ops->dev_select(ap, device);
599
600 memset(&tf, 0, sizeof(tf));
601
602 ap->ops->tf_read(ap, &tf);
603 err = tf.feature;
604 if (r_err)
605 *r_err = err;
606
607 /* see if device passed diags */
608 if (err == 1)
609 /* do nothing */ ;
610 else if ((device == 0) && (err == 0x81))
611 /* do nothing */ ;
612 else
613 return ATA_DEV_NONE;
614
615 /* determine if device is ATA or ATAPI */
616 class = ata_dev_classify(&tf);
617
618 if (class == ATA_DEV_UNKNOWN)
619 return ATA_DEV_NONE;
620 if ((class == ATA_DEV_ATA) && (ata_chk_status(ap) == 0))
621 return ATA_DEV_NONE;
622 return class;
623 }
624
625 /**
626 * ata_id_string - Convert IDENTIFY DEVICE page into string
627 * @id: IDENTIFY DEVICE results we will examine
628 * @s: string into which data is output
629 * @ofs: offset into identify device page
630 * @len: length of string to return. must be an even number.
631 *
632 * The strings in the IDENTIFY DEVICE page are broken up into
633 * 16-bit chunks. Run through the string, and output each
634 * 8-bit chunk linearly, regardless of platform.
635 *
636 * LOCKING:
637 * caller.
638 */
639
640 void ata_id_string(const u16 *id, unsigned char *s,
641 unsigned int ofs, unsigned int len)
642 {
643 unsigned int c;
644
645 while (len > 0) {
646 c = id[ofs] >> 8;
647 *s = c;
648 s++;
649
650 c = id[ofs] & 0xff;
651 *s = c;
652 s++;
653
654 ofs++;
655 len -= 2;
656 }
657 }
658
659 /**
660 * ata_id_c_string - Convert IDENTIFY DEVICE page into C string
661 * @id: IDENTIFY DEVICE results we will examine
662 * @s: string into which data is output
663 * @ofs: offset into identify device page
664 * @len: length of string to return. must be an odd number.
665 *
666 * This function is identical to ata_id_string except that it
667 * trims trailing spaces and terminates the resulting string with
668 * null. @len must be actual maximum length (even number) + 1.
669 *
670 * LOCKING:
671 * caller.
672 */
673 void ata_id_c_string(const u16 *id, unsigned char *s,
674 unsigned int ofs, unsigned int len)
675 {
676 unsigned char *p;
677
678 WARN_ON(!(len & 1));
679
680 ata_id_string(id, s, ofs, len - 1);
681
682 p = s + strnlen(s, len - 1);
683 while (p > s && p[-1] == ' ')
684 p--;
685 *p = '\0';
686 }
687
688 static u64 ata_id_n_sectors(const u16 *id)
689 {
690 if (ata_id_has_lba(id)) {
691 if (ata_id_has_lba48(id))
692 return ata_id_u64(id, 100);
693 else
694 return ata_id_u32(id, 60);
695 } else {
696 if (ata_id_current_chs_valid(id))
697 return ata_id_u32(id, 57);
698 else
699 return id[1] * id[3] * id[6];
700 }
701 }
702
703 /**
704 * ata_noop_dev_select - Select device 0/1 on ATA bus
705 * @ap: ATA channel to manipulate
706 * @device: ATA device (numbered from zero) to select
707 *
708 * This function performs no actual function.
709 *
710 * May be used as the dev_select() entry in ata_port_operations.
711 *
712 * LOCKING:
713 * caller.
714 */
715 void ata_noop_dev_select (struct ata_port *ap, unsigned int device)
716 {
717 }
718
719
720 /**
721 * ata_std_dev_select - Select device 0/1 on ATA bus
722 * @ap: ATA channel to manipulate
723 * @device: ATA device (numbered from zero) to select
724 *
725 * Use the method defined in the ATA specification to
726 * make either device 0, or device 1, active on the
727 * ATA channel. Works with both PIO and MMIO.
728 *
729 * May be used as the dev_select() entry in ata_port_operations.
730 *
731 * LOCKING:
732 * caller.
733 */
734
735 void ata_std_dev_select (struct ata_port *ap, unsigned int device)
736 {
737 u8 tmp;
738
739 if (device == 0)
740 tmp = ATA_DEVICE_OBS;
741 else
742 tmp = ATA_DEVICE_OBS | ATA_DEV1;
743
744 if (ap->flags & ATA_FLAG_MMIO) {
745 writeb(tmp, (void __iomem *) ap->ioaddr.device_addr);
746 } else {
747 outb(tmp, ap->ioaddr.device_addr);
748 }
749 ata_pause(ap); /* needed; also flushes, for mmio */
750 }
751
752 /**
753 * ata_dev_select - Select device 0/1 on ATA bus
754 * @ap: ATA channel to manipulate
755 * @device: ATA device (numbered from zero) to select
756 * @wait: non-zero to wait for Status register BSY bit to clear
757 * @can_sleep: non-zero if context allows sleeping
758 *
759 * Use the method defined in the ATA specification to
760 * make either device 0, or device 1, active on the
761 * ATA channel.
762 *
763 * This is a high-level version of ata_std_dev_select(),
764 * which additionally provides the services of inserting
765 * the proper pauses and status polling, where needed.
766 *
767 * LOCKING:
768 * caller.
769 */
770
771 void ata_dev_select(struct ata_port *ap, unsigned int device,
772 unsigned int wait, unsigned int can_sleep)
773 {
774 VPRINTK("ENTER, ata%u: device %u, wait %u\n",
775 ap->id, device, wait);
776
777 if (wait)
778 ata_wait_idle(ap);
779
780 ap->ops->dev_select(ap, device);
781
782 if (wait) {
783 if (can_sleep && ap->device[device].class == ATA_DEV_ATAPI)
784 msleep(150);
785 ata_wait_idle(ap);
786 }
787 }
788
789 /**
790 * ata_dump_id - IDENTIFY DEVICE info debugging output
791 * @id: IDENTIFY DEVICE page to dump
792 *
793 * Dump selected 16-bit words from the given IDENTIFY DEVICE
794 * page.
795 *
796 * LOCKING:
797 * caller.
798 */
799
800 static inline void ata_dump_id(const u16 *id)
801 {
802 DPRINTK("49==0x%04x "
803 "53==0x%04x "
804 "63==0x%04x "
805 "64==0x%04x "
806 "75==0x%04x \n",
807 id[49],
808 id[53],
809 id[63],
810 id[64],
811 id[75]);
812 DPRINTK("80==0x%04x "
813 "81==0x%04x "
814 "82==0x%04x "
815 "83==0x%04x "
816 "84==0x%04x \n",
817 id[80],
818 id[81],
819 id[82],
820 id[83],
821 id[84]);
822 DPRINTK("88==0x%04x "
823 "93==0x%04x\n",
824 id[88],
825 id[93]);
826 }
827
828 /**
829 * ata_id_xfermask - Compute xfermask from the given IDENTIFY data
830 * @id: IDENTIFY data to compute xfer mask from
831 *
832 * Compute the xfermask for this device. This is not as trivial
833 * as it seems if we must consider early devices correctly.
834 *
835 * FIXME: pre IDE drive timing (do we care ?).
836 *
837 * LOCKING:
838 * None.
839 *
840 * RETURNS:
841 * Computed xfermask
842 */
843 static unsigned int ata_id_xfermask(const u16 *id)
844 {
845 unsigned int pio_mask, mwdma_mask, udma_mask;
846
847 /* Usual case. Word 53 indicates word 64 is valid */
848 if (id[ATA_ID_FIELD_VALID] & (1 << 1)) {
849 pio_mask = id[ATA_ID_PIO_MODES] & 0x03;
850 pio_mask <<= 3;
851 pio_mask |= 0x7;
852 } else {
853 /* If word 64 isn't valid then Word 51 high byte holds
854 * the PIO timing number for the maximum. Turn it into
855 * a mask.
856 */
857 pio_mask = (2 << (id[ATA_ID_OLD_PIO_MODES] & 0xFF)) - 1 ;
858
859 /* But wait.. there's more. Design your standards by
860 * committee and you too can get a free iordy field to
861 * process. However its the speeds not the modes that
862 * are supported... Note drivers using the timing API
863 * will get this right anyway
864 */
865 }
866
867 mwdma_mask = id[ATA_ID_MWDMA_MODES] & 0x07;
868
869 udma_mask = 0;
870 if (id[ATA_ID_FIELD_VALID] & (1 << 2))
871 udma_mask = id[ATA_ID_UDMA_MODES] & 0xff;
872
873 return ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
874 }
875
876 /**
877 * ata_port_queue_task - Queue port_task
878 * @ap: The ata_port to queue port_task for
879 *
880 * Schedule @fn(@data) for execution after @delay jiffies using
881 * port_task. There is one port_task per port and it's the
882 * user(low level driver)'s responsibility to make sure that only
883 * one task is active at any given time.
884 *
885 * libata core layer takes care of synchronization between
886 * port_task and EH. ata_port_queue_task() may be ignored for EH
887 * synchronization.
888 *
889 * LOCKING:
890 * Inherited from caller.
891 */
892 void ata_port_queue_task(struct ata_port *ap, void (*fn)(void *), void *data,
893 unsigned long delay)
894 {
895 int rc;
896
897 if (ap->flags & ATA_FLAG_FLUSH_PORT_TASK)
898 return;
899
900 PREPARE_WORK(&ap->port_task, fn, data);
901
902 if (!delay)
903 rc = queue_work(ata_wq, &ap->port_task);
904 else
905 rc = queue_delayed_work(ata_wq, &ap->port_task, delay);
906
907 /* rc == 0 means that another user is using port task */
908 WARN_ON(rc == 0);
909 }
910
911 /**
912 * ata_port_flush_task - Flush port_task
913 * @ap: The ata_port to flush port_task for
914 *
915 * After this function completes, port_task is guranteed not to
916 * be running or scheduled.
917 *
918 * LOCKING:
919 * Kernel thread context (may sleep)
920 */
921 void ata_port_flush_task(struct ata_port *ap)
922 {
923 unsigned long flags;
924
925 DPRINTK("ENTER\n");
926
927 spin_lock_irqsave(&ap->host_set->lock, flags);
928 ap->flags |= ATA_FLAG_FLUSH_PORT_TASK;
929 spin_unlock_irqrestore(&ap->host_set->lock, flags);
930
931 DPRINTK("flush #1\n");
932 flush_workqueue(ata_wq);
933
934 /*
935 * At this point, if a task is running, it's guaranteed to see
936 * the FLUSH flag; thus, it will never queue pio tasks again.
937 * Cancel and flush.
938 */
939 if (!cancel_delayed_work(&ap->port_task)) {
940 DPRINTK("flush #2\n");
941 flush_workqueue(ata_wq);
942 }
943
944 spin_lock_irqsave(&ap->host_set->lock, flags);
945 ap->flags &= ~ATA_FLAG_FLUSH_PORT_TASK;
946 spin_unlock_irqrestore(&ap->host_set->lock, flags);
947
948 DPRINTK("EXIT\n");
949 }
950
951 void ata_qc_complete_internal(struct ata_queued_cmd *qc)
952 {
953 struct completion *waiting = qc->private_data;
954
955 qc->ap->ops->tf_read(qc->ap, &qc->tf);
956 complete(waiting);
957 }
958
959 /**
960 * ata_exec_internal - execute libata internal command
961 * @ap: Port to which the command is sent
962 * @dev: Device to which the command is sent
963 * @tf: Taskfile registers for the command and the result
964 * @dma_dir: Data tranfer direction of the command
965 * @buf: Data buffer of the command
966 * @buflen: Length of data buffer
967 *
968 * Executes libata internal command with timeout. @tf contains
969 * command on entry and result on return. Timeout and error
970 * conditions are reported via return value. No recovery action
971 * is taken after a command times out. It's caller's duty to
972 * clean up after timeout.
973 *
974 * LOCKING:
975 * None. Should be called with kernel context, might sleep.
976 */
977
978 static unsigned
979 ata_exec_internal(struct ata_port *ap, struct ata_device *dev,
980 struct ata_taskfile *tf,
981 int dma_dir, void *buf, unsigned int buflen)
982 {
983 u8 command = tf->command;
984 struct ata_queued_cmd *qc;
985 DECLARE_COMPLETION(wait);
986 unsigned long flags;
987 unsigned int err_mask;
988
989 spin_lock_irqsave(&ap->host_set->lock, flags);
990
991 qc = ata_qc_new_init(ap, dev);
992 BUG_ON(qc == NULL);
993
994 qc->tf = *tf;
995 qc->dma_dir = dma_dir;
996 if (dma_dir != DMA_NONE) {
997 ata_sg_init_one(qc, buf, buflen);
998 qc->nsect = buflen / ATA_SECT_SIZE;
999 }
1000
1001 qc->private_data = &wait;
1002 qc->complete_fn = ata_qc_complete_internal;
1003
1004 ata_qc_issue(qc);
1005
1006 spin_unlock_irqrestore(&ap->host_set->lock, flags);
1007
1008 if (!wait_for_completion_timeout(&wait, ATA_TMOUT_INTERNAL)) {
1009 ata_port_flush_task(ap);
1010
1011 spin_lock_irqsave(&ap->host_set->lock, flags);
1012
1013 /* We're racing with irq here. If we lose, the
1014 * following test prevents us from completing the qc
1015 * again. If completion irq occurs after here but
1016 * before the caller cleans up, it will result in a
1017 * spurious interrupt. We can live with that.
1018 */
1019 if (qc->flags & ATA_QCFLAG_ACTIVE) {
1020 qc->err_mask = AC_ERR_TIMEOUT;
1021 ata_qc_complete(qc);
1022 printk(KERN_WARNING "ata%u: qc timeout (cmd 0x%x)\n",
1023 ap->id, command);
1024 }
1025
1026 spin_unlock_irqrestore(&ap->host_set->lock, flags);
1027 }
1028
1029 *tf = qc->tf;
1030 err_mask = qc->err_mask;
1031
1032 ata_qc_free(qc);
1033
1034 /* XXX - Some LLDDs (sata_mv) disable port on command failure.
1035 * Until those drivers are fixed, we detect the condition
1036 * here, fail the command with AC_ERR_SYSTEM and reenable the
1037 * port.
1038 *
1039 * Note that this doesn't change any behavior as internal
1040 * command failure results in disabling the device in the
1041 * higher layer for LLDDs without new reset/EH callbacks.
1042 *
1043 * Kill the following code as soon as those drivers are fixed.
1044 */
1045 if (ap->flags & ATA_FLAG_PORT_DISABLED) {
1046 err_mask |= AC_ERR_SYSTEM;
1047 ata_port_probe(ap);
1048 }
1049
1050 return err_mask;
1051 }
1052
1053 /**
1054 * ata_pio_need_iordy - check if iordy needed
1055 * @adev: ATA device
1056 *
1057 * Check if the current speed of the device requires IORDY. Used
1058 * by various controllers for chip configuration.
1059 */
1060
1061 unsigned int ata_pio_need_iordy(const struct ata_device *adev)
1062 {
1063 int pio;
1064 int speed = adev->pio_mode - XFER_PIO_0;
1065
1066 if (speed < 2)
1067 return 0;
1068 if (speed > 2)
1069 return 1;
1070
1071 /* If we have no drive specific rule, then PIO 2 is non IORDY */
1072
1073 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE */
1074 pio = adev->id[ATA_ID_EIDE_PIO];
1075 /* Is the speed faster than the drive allows non IORDY ? */
1076 if (pio) {
1077 /* This is cycle times not frequency - watch the logic! */
1078 if (pio > 240) /* PIO2 is 240nS per cycle */
1079 return 1;
1080 return 0;
1081 }
1082 }
1083 return 0;
1084 }
1085
1086 /**
1087 * ata_dev_read_id - Read ID data from the specified device
1088 * @ap: port on which target device resides
1089 * @dev: target device
1090 * @p_class: pointer to class of the target device (may be changed)
1091 * @post_reset: is this read ID post-reset?
1092 * @p_id: read IDENTIFY page (newly allocated)
1093 *
1094 * Read ID data from the specified device. ATA_CMD_ID_ATA is
1095 * performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI
1096 * devices. This function also issues ATA_CMD_INIT_DEV_PARAMS
1097 * for pre-ATA4 drives.
1098 *
1099 * LOCKING:
1100 * Kernel thread context (may sleep)
1101 *
1102 * RETURNS:
1103 * 0 on success, -errno otherwise.
1104 */
1105 static int ata_dev_read_id(struct ata_port *ap, struct ata_device *dev,
1106 unsigned int *p_class, int post_reset, u16 **p_id)
1107 {
1108 unsigned int class = *p_class;
1109 struct ata_taskfile tf;
1110 unsigned int err_mask = 0;
1111 u16 *id;
1112 const char *reason;
1113 int rc;
1114
1115 DPRINTK("ENTER, host %u, dev %u\n", ap->id, dev->devno);
1116
1117 ata_dev_select(ap, dev->devno, 1, 1); /* select device 0/1 */
1118
1119 id = kmalloc(sizeof(id[0]) * ATA_ID_WORDS, GFP_KERNEL);
1120 if (id == NULL) {
1121 rc = -ENOMEM;
1122 reason = "out of memory";
1123 goto err_out;
1124 }
1125
1126 retry:
1127 ata_tf_init(ap, &tf, dev->devno);
1128
1129 switch (class) {
1130 case ATA_DEV_ATA:
1131 tf.command = ATA_CMD_ID_ATA;
1132 break;
1133 case ATA_DEV_ATAPI:
1134 tf.command = ATA_CMD_ID_ATAPI;
1135 break;
1136 default:
1137 rc = -ENODEV;
1138 reason = "unsupported class";
1139 goto err_out;
1140 }
1141
1142 tf.protocol = ATA_PROT_PIO;
1143
1144 err_mask = ata_exec_internal(ap, dev, &tf, DMA_FROM_DEVICE,
1145 id, sizeof(id[0]) * ATA_ID_WORDS);
1146 if (err_mask) {
1147 rc = -EIO;
1148 reason = "I/O error";
1149 goto err_out;
1150 }
1151
1152 swap_buf_le16(id, ATA_ID_WORDS);
1153
1154 /* sanity check */
1155 if ((class == ATA_DEV_ATA) != (ata_id_is_ata(id) | ata_id_is_cfa(id))) {
1156 rc = -EINVAL;
1157 reason = "device reports illegal type";
1158 goto err_out;
1159 }
1160
1161 if (post_reset && class == ATA_DEV_ATA) {
1162 /*
1163 * The exact sequence expected by certain pre-ATA4 drives is:
1164 * SRST RESET
1165 * IDENTIFY
1166 * INITIALIZE DEVICE PARAMETERS
1167 * anything else..
1168 * Some drives were very specific about that exact sequence.
1169 */
1170 if (ata_id_major_version(id) < 4 || !ata_id_has_lba(id)) {
1171 err_mask = ata_dev_init_params(ap, dev, id[3], id[6]);
1172 if (err_mask) {
1173 rc = -EIO;
1174 reason = "INIT_DEV_PARAMS failed";
1175 goto err_out;
1176 }
1177
1178 /* current CHS translation info (id[53-58]) might be
1179 * changed. reread the identify device info.
1180 */
1181 post_reset = 0;
1182 goto retry;
1183 }
1184 }
1185
1186 *p_class = class;
1187 *p_id = id;
1188 return 0;
1189
1190 err_out:
1191 printk(KERN_WARNING "ata%u: dev %u failed to IDENTIFY (%s)\n",
1192 ap->id, dev->devno, reason);
1193 kfree(id);
1194 return rc;
1195 }
1196
1197 static inline u8 ata_dev_knobble(const struct ata_port *ap,
1198 struct ata_device *dev)
1199 {
1200 return ((ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(dev->id)));
1201 }
1202
1203 /**
1204 * ata_dev_configure - Configure the specified ATA/ATAPI device
1205 * @ap: Port on which target device resides
1206 * @dev: Target device to configure
1207 * @print_info: Enable device info printout
1208 *
1209 * Configure @dev according to @dev->id. Generic and low-level
1210 * driver specific fixups are also applied.
1211 *
1212 * LOCKING:
1213 * Kernel thread context (may sleep)
1214 *
1215 * RETURNS:
1216 * 0 on success, -errno otherwise
1217 */
1218 static int ata_dev_configure(struct ata_port *ap, struct ata_device *dev,
1219 int print_info)
1220 {
1221 const u16 *id = dev->id;
1222 unsigned int xfer_mask;
1223 int i, rc;
1224
1225 if (!ata_dev_enabled(dev)) {
1226 DPRINTK("ENTER/EXIT (host %u, dev %u) -- nodev\n",
1227 ap->id, dev->devno);
1228 return 0;
1229 }
1230
1231 DPRINTK("ENTER, host %u, dev %u\n", ap->id, dev->devno);
1232
1233 /* print device capabilities */
1234 if (print_info)
1235 printk(KERN_DEBUG "ata%u: dev %u cfg 49:%04x 82:%04x 83:%04x "
1236 "84:%04x 85:%04x 86:%04x 87:%04x 88:%04x\n",
1237 ap->id, dev->devno, id[49], id[82], id[83],
1238 id[84], id[85], id[86], id[87], id[88]);
1239
1240 /* initialize to-be-configured parameters */
1241 dev->flags = 0;
1242 dev->max_sectors = 0;
1243 dev->cdb_len = 0;
1244 dev->n_sectors = 0;
1245 dev->cylinders = 0;
1246 dev->heads = 0;
1247 dev->sectors = 0;
1248
1249 /*
1250 * common ATA, ATAPI feature tests
1251 */
1252
1253 /* find max transfer mode; for printk only */
1254 xfer_mask = ata_id_xfermask(id);
1255
1256 ata_dump_id(id);
1257
1258 /* ATA-specific feature tests */
1259 if (dev->class == ATA_DEV_ATA) {
1260 dev->n_sectors = ata_id_n_sectors(id);
1261
1262 if (ata_id_has_lba(id)) {
1263 const char *lba_desc;
1264
1265 lba_desc = "LBA";
1266 dev->flags |= ATA_DFLAG_LBA;
1267 if (ata_id_has_lba48(id)) {
1268 dev->flags |= ATA_DFLAG_LBA48;
1269 lba_desc = "LBA48";
1270 }
1271
1272 /* print device info to dmesg */
1273 if (print_info)
1274 printk(KERN_INFO "ata%u: dev %u ATA-%d, "
1275 "max %s, %Lu sectors: %s\n",
1276 ap->id, dev->devno,
1277 ata_id_major_version(id),
1278 ata_mode_string(xfer_mask),
1279 (unsigned long long)dev->n_sectors,
1280 lba_desc);
1281 } else {
1282 /* CHS */
1283
1284 /* Default translation */
1285 dev->cylinders = id[1];
1286 dev->heads = id[3];
1287 dev->sectors = id[6];
1288
1289 if (ata_id_current_chs_valid(id)) {
1290 /* Current CHS translation is valid. */
1291 dev->cylinders = id[54];
1292 dev->heads = id[55];
1293 dev->sectors = id[56];
1294 }
1295
1296 /* print device info to dmesg */
1297 if (print_info)
1298 printk(KERN_INFO "ata%u: dev %u ATA-%d, "
1299 "max %s, %Lu sectors: CHS %u/%u/%u\n",
1300 ap->id, dev->devno,
1301 ata_id_major_version(id),
1302 ata_mode_string(xfer_mask),
1303 (unsigned long long)dev->n_sectors,
1304 dev->cylinders, dev->heads, dev->sectors);
1305 }
1306
1307 dev->cdb_len = 16;
1308 }
1309
1310 /* ATAPI-specific feature tests */
1311 else if (dev->class == ATA_DEV_ATAPI) {
1312 rc = atapi_cdb_len(id);
1313 if ((rc < 12) || (rc > ATAPI_CDB_LEN)) {
1314 printk(KERN_WARNING "ata%u: unsupported CDB len\n", ap->id);
1315 rc = -EINVAL;
1316 goto err_out_nosup;
1317 }
1318 dev->cdb_len = (unsigned int) rc;
1319
1320 /* print device info to dmesg */
1321 if (print_info)
1322 printk(KERN_INFO "ata%u: dev %u ATAPI, max %s\n",
1323 ap->id, dev->devno, ata_mode_string(xfer_mask));
1324 }
1325
1326 ap->host->max_cmd_len = 0;
1327 for (i = 0; i < ATA_MAX_DEVICES; i++)
1328 ap->host->max_cmd_len = max_t(unsigned int,
1329 ap->host->max_cmd_len,
1330 ap->device[i].cdb_len);
1331
1332 /* limit bridge transfers to udma5, 200 sectors */
1333 if (ata_dev_knobble(ap, dev)) {
1334 if (print_info)
1335 printk(KERN_INFO "ata%u(%u): applying bridge limits\n",
1336 ap->id, dev->devno);
1337 dev->udma_mask &= ATA_UDMA5;
1338 dev->max_sectors = ATA_MAX_SECTORS;
1339 }
1340
1341 if (ap->ops->dev_config)
1342 ap->ops->dev_config(ap, dev);
1343
1344 DPRINTK("EXIT, drv_stat = 0x%x\n", ata_chk_status(ap));
1345 return 0;
1346
1347 err_out_nosup:
1348 DPRINTK("EXIT, err\n");
1349 return rc;
1350 }
1351
1352 /**
1353 * ata_bus_probe - Reset and probe ATA bus
1354 * @ap: Bus to probe
1355 *
1356 * Master ATA bus probing function. Initiates a hardware-dependent
1357 * bus reset, then attempts to identify any devices found on
1358 * the bus.
1359 *
1360 * LOCKING:
1361 * PCI/etc. bus probe sem.
1362 *
1363 * RETURNS:
1364 * Zero on success, negative errno otherwise.
1365 */
1366
1367 static int ata_bus_probe(struct ata_port *ap)
1368 {
1369 unsigned int classes[ATA_MAX_DEVICES];
1370 int i, rc, found = 0;
1371 struct ata_device *dev;
1372
1373 ata_port_probe(ap);
1374
1375 /* reset and determine device classes */
1376 for (i = 0; i < ATA_MAX_DEVICES; i++)
1377 classes[i] = ATA_DEV_UNKNOWN;
1378
1379 if (ap->ops->probe_reset) {
1380 rc = ap->ops->probe_reset(ap, classes);
1381 if (rc) {
1382 printk("ata%u: reset failed (errno=%d)\n", ap->id, rc);
1383 return rc;
1384 }
1385 } else {
1386 ap->ops->phy_reset(ap);
1387
1388 if (!(ap->flags & ATA_FLAG_PORT_DISABLED))
1389 for (i = 0; i < ATA_MAX_DEVICES; i++)
1390 classes[i] = ap->device[i].class;
1391
1392 ata_port_probe(ap);
1393 }
1394
1395 for (i = 0; i < ATA_MAX_DEVICES; i++)
1396 if (classes[i] == ATA_DEV_UNKNOWN)
1397 classes[i] = ATA_DEV_NONE;
1398
1399 /* read IDENTIFY page and configure devices */
1400 for (i = 0; i < ATA_MAX_DEVICES; i++) {
1401 dev = &ap->device[i];
1402 dev->class = classes[i];
1403
1404 if (!ata_dev_enabled(dev))
1405 continue;
1406
1407 WARN_ON(dev->id != NULL);
1408 if (ata_dev_read_id(ap, dev, &dev->class, 1, &dev->id)) {
1409 dev->class = ATA_DEV_NONE;
1410 continue;
1411 }
1412
1413 if (ata_dev_configure(ap, dev, 1)) {
1414 ata_dev_disable(ap, dev);
1415 continue;
1416 }
1417
1418 found = 1;
1419 }
1420
1421 /* configure transfer mode */
1422 if (ap->ops->set_mode) {
1423 /* FIXME: make ->set_mode handle no device case and
1424 * return error code and failing device on failure as
1425 * ata_set_mode() does.
1426 */
1427 if (found)
1428 ap->ops->set_mode(ap);
1429 rc = 0;
1430 } else {
1431 while (ata_set_mode(ap, &dev))
1432 ata_dev_disable(ap, dev);
1433 }
1434
1435 for (i = 0; i < ATA_MAX_DEVICES; i++)
1436 if (ata_dev_enabled(&ap->device[i]))
1437 return 0;
1438
1439 /* no device present, disable port */
1440 ata_port_disable(ap);
1441 ap->ops->port_disable(ap);
1442 return -ENODEV;
1443 }
1444
1445 /**
1446 * ata_port_probe - Mark port as enabled
1447 * @ap: Port for which we indicate enablement
1448 *
1449 * Modify @ap data structure such that the system
1450 * thinks that the entire port is enabled.
1451 *
1452 * LOCKING: host_set lock, or some other form of
1453 * serialization.
1454 */
1455
1456 void ata_port_probe(struct ata_port *ap)
1457 {
1458 ap->flags &= ~ATA_FLAG_PORT_DISABLED;
1459 }
1460
1461 /**
1462 * sata_print_link_status - Print SATA link status
1463 * @ap: SATA port to printk link status about
1464 *
1465 * This function prints link speed and status of a SATA link.
1466 *
1467 * LOCKING:
1468 * None.
1469 */
1470 static void sata_print_link_status(struct ata_port *ap)
1471 {
1472 u32 sstatus, tmp;
1473
1474 if (!ap->ops->scr_read)
1475 return;
1476
1477 sstatus = scr_read(ap, SCR_STATUS);
1478
1479 if (sata_dev_present(ap)) {
1480 tmp = (sstatus >> 4) & 0xf;
1481 printk(KERN_INFO "ata%u: SATA link up %s (SStatus %X)\n",
1482 ap->id, sata_spd_string(tmp), sstatus);
1483 } else {
1484 printk(KERN_INFO "ata%u: SATA link down (SStatus %X)\n",
1485 ap->id, sstatus);
1486 }
1487 }
1488
1489 /**
1490 * __sata_phy_reset - Wake/reset a low-level SATA PHY
1491 * @ap: SATA port associated with target SATA PHY.
1492 *
1493 * This function issues commands to standard SATA Sxxx
1494 * PHY registers, to wake up the phy (and device), and
1495 * clear any reset condition.
1496 *
1497 * LOCKING:
1498 * PCI/etc. bus probe sem.
1499 *
1500 */
1501 void __sata_phy_reset(struct ata_port *ap)
1502 {
1503 u32 sstatus;
1504 unsigned long timeout = jiffies + (HZ * 5);
1505
1506 if (ap->flags & ATA_FLAG_SATA_RESET) {
1507 /* issue phy wake/reset */
1508 scr_write_flush(ap, SCR_CONTROL, 0x301);
1509 /* Couldn't find anything in SATA I/II specs, but
1510 * AHCI-1.1 10.4.2 says at least 1 ms. */
1511 mdelay(1);
1512 }
1513 scr_write_flush(ap, SCR_CONTROL, 0x300); /* phy wake/clear reset */
1514
1515 /* wait for phy to become ready, if necessary */
1516 do {
1517 msleep(200);
1518 sstatus = scr_read(ap, SCR_STATUS);
1519 if ((sstatus & 0xf) != 1)
1520 break;
1521 } while (time_before(jiffies, timeout));
1522
1523 /* print link status */
1524 sata_print_link_status(ap);
1525
1526 /* TODO: phy layer with polling, timeouts, etc. */
1527 if (sata_dev_present(ap))
1528 ata_port_probe(ap);
1529 else
1530 ata_port_disable(ap);
1531
1532 if (ap->flags & ATA_FLAG_PORT_DISABLED)
1533 return;
1534
1535 if (ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT)) {
1536 ata_port_disable(ap);
1537 return;
1538 }
1539
1540 ap->cbl = ATA_CBL_SATA;
1541 }
1542
1543 /**
1544 * sata_phy_reset - Reset SATA bus.
1545 * @ap: SATA port associated with target SATA PHY.
1546 *
1547 * This function resets the SATA bus, and then probes
1548 * the bus for devices.
1549 *
1550 * LOCKING:
1551 * PCI/etc. bus probe sem.
1552 *
1553 */
1554 void sata_phy_reset(struct ata_port *ap)
1555 {
1556 __sata_phy_reset(ap);
1557 if (ap->flags & ATA_FLAG_PORT_DISABLED)
1558 return;
1559 ata_bus_reset(ap);
1560 }
1561
1562 /**
1563 * ata_dev_pair - return other device on cable
1564 * @ap: port
1565 * @adev: device
1566 *
1567 * Obtain the other device on the same cable, or if none is
1568 * present NULL is returned
1569 */
1570
1571 struct ata_device *ata_dev_pair(struct ata_port *ap, struct ata_device *adev)
1572 {
1573 struct ata_device *pair = &ap->device[1 - adev->devno];
1574 if (!ata_dev_enabled(pair))
1575 return NULL;
1576 return pair;
1577 }
1578
1579 /**
1580 * ata_port_disable - Disable port.
1581 * @ap: Port to be disabled.
1582 *
1583 * Modify @ap data structure such that the system
1584 * thinks that the entire port is disabled, and should
1585 * never attempt to probe or communicate with devices
1586 * on this port.
1587 *
1588 * LOCKING: host_set lock, or some other form of
1589 * serialization.
1590 */
1591
1592 void ata_port_disable(struct ata_port *ap)
1593 {
1594 ap->device[0].class = ATA_DEV_NONE;
1595 ap->device[1].class = ATA_DEV_NONE;
1596 ap->flags |= ATA_FLAG_PORT_DISABLED;
1597 }
1598
1599 /*
1600 * This mode timing computation functionality is ported over from
1601 * drivers/ide/ide-timing.h and was originally written by Vojtech Pavlik
1602 */
1603 /*
1604 * PIO 0-5, MWDMA 0-2 and UDMA 0-6 timings (in nanoseconds).
1605 * These were taken from ATA/ATAPI-6 standard, rev 0a, except
1606 * for PIO 5, which is a nonstandard extension and UDMA6, which
1607 * is currently supported only by Maxtor drives.
1608 */
1609
1610 static const struct ata_timing ata_timing[] = {
1611
1612 { XFER_UDMA_6, 0, 0, 0, 0, 0, 0, 0, 15 },
1613 { XFER_UDMA_5, 0, 0, 0, 0, 0, 0, 0, 20 },
1614 { XFER_UDMA_4, 0, 0, 0, 0, 0, 0, 0, 30 },
1615 { XFER_UDMA_3, 0, 0, 0, 0, 0, 0, 0, 45 },
1616
1617 { XFER_UDMA_2, 0, 0, 0, 0, 0, 0, 0, 60 },
1618 { XFER_UDMA_1, 0, 0, 0, 0, 0, 0, 0, 80 },
1619 { XFER_UDMA_0, 0, 0, 0, 0, 0, 0, 0, 120 },
1620
1621 /* { XFER_UDMA_SLOW, 0, 0, 0, 0, 0, 0, 0, 150 }, */
1622
1623 { XFER_MW_DMA_2, 25, 0, 0, 0, 70, 25, 120, 0 },
1624 { XFER_MW_DMA_1, 45, 0, 0, 0, 80, 50, 150, 0 },
1625 { XFER_MW_DMA_0, 60, 0, 0, 0, 215, 215, 480, 0 },
1626
1627 { XFER_SW_DMA_2, 60, 0, 0, 0, 120, 120, 240, 0 },
1628 { XFER_SW_DMA_1, 90, 0, 0, 0, 240, 240, 480, 0 },
1629 { XFER_SW_DMA_0, 120, 0, 0, 0, 480, 480, 960, 0 },
1630
1631 /* { XFER_PIO_5, 20, 50, 30, 100, 50, 30, 100, 0 }, */
1632 { XFER_PIO_4, 25, 70, 25, 120, 70, 25, 120, 0 },
1633 { XFER_PIO_3, 30, 80, 70, 180, 80, 70, 180, 0 },
1634
1635 { XFER_PIO_2, 30, 290, 40, 330, 100, 90, 240, 0 },
1636 { XFER_PIO_1, 50, 290, 93, 383, 125, 100, 383, 0 },
1637 { XFER_PIO_0, 70, 290, 240, 600, 165, 150, 600, 0 },
1638
1639 /* { XFER_PIO_SLOW, 120, 290, 240, 960, 290, 240, 960, 0 }, */
1640
1641 { 0xFF }
1642 };
1643
1644 #define ENOUGH(v,unit) (((v)-1)/(unit)+1)
1645 #define EZ(v,unit) ((v)?ENOUGH(v,unit):0)
1646
1647 static void ata_timing_quantize(const struct ata_timing *t, struct ata_timing *q, int T, int UT)
1648 {
1649 q->setup = EZ(t->setup * 1000, T);
1650 q->act8b = EZ(t->act8b * 1000, T);
1651 q->rec8b = EZ(t->rec8b * 1000, T);
1652 q->cyc8b = EZ(t->cyc8b * 1000, T);
1653 q->active = EZ(t->active * 1000, T);
1654 q->recover = EZ(t->recover * 1000, T);
1655 q->cycle = EZ(t->cycle * 1000, T);
1656 q->udma = EZ(t->udma * 1000, UT);
1657 }
1658
1659 void ata_timing_merge(const struct ata_timing *a, const struct ata_timing *b,
1660 struct ata_timing *m, unsigned int what)
1661 {
1662 if (what & ATA_TIMING_SETUP ) m->setup = max(a->setup, b->setup);
1663 if (what & ATA_TIMING_ACT8B ) m->act8b = max(a->act8b, b->act8b);
1664 if (what & ATA_TIMING_REC8B ) m->rec8b = max(a->rec8b, b->rec8b);
1665 if (what & ATA_TIMING_CYC8B ) m->cyc8b = max(a->cyc8b, b->cyc8b);
1666 if (what & ATA_TIMING_ACTIVE ) m->active = max(a->active, b->active);
1667 if (what & ATA_TIMING_RECOVER) m->recover = max(a->recover, b->recover);
1668 if (what & ATA_TIMING_CYCLE ) m->cycle = max(a->cycle, b->cycle);
1669 if (what & ATA_TIMING_UDMA ) m->udma = max(a->udma, b->udma);
1670 }
1671
1672 static const struct ata_timing* ata_timing_find_mode(unsigned short speed)
1673 {
1674 const struct ata_timing *t;
1675
1676 for (t = ata_timing; t->mode != speed; t++)
1677 if (t->mode == 0xFF)
1678 return NULL;
1679 return t;
1680 }
1681
1682 int ata_timing_compute(struct ata_device *adev, unsigned short speed,
1683 struct ata_timing *t, int T, int UT)
1684 {
1685 const struct ata_timing *s;
1686 struct ata_timing p;
1687
1688 /*
1689 * Find the mode.
1690 */
1691
1692 if (!(s = ata_timing_find_mode(speed)))
1693 return -EINVAL;
1694
1695 memcpy(t, s, sizeof(*s));
1696
1697 /*
1698 * If the drive is an EIDE drive, it can tell us it needs extended
1699 * PIO/MW_DMA cycle timing.
1700 */
1701
1702 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE drive */
1703 memset(&p, 0, sizeof(p));
1704 if(speed >= XFER_PIO_0 && speed <= XFER_SW_DMA_0) {
1705 if (speed <= XFER_PIO_2) p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO];
1706 else p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO_IORDY];
1707 } else if(speed >= XFER_MW_DMA_0 && speed <= XFER_MW_DMA_2) {
1708 p.cycle = adev->id[ATA_ID_EIDE_DMA_MIN];
1709 }
1710 ata_timing_merge(&p, t, t, ATA_TIMING_CYCLE | ATA_TIMING_CYC8B);
1711 }
1712
1713 /*
1714 * Convert the timing to bus clock counts.
1715 */
1716
1717 ata_timing_quantize(t, t, T, UT);
1718
1719 /*
1720 * Even in DMA/UDMA modes we still use PIO access for IDENTIFY,
1721 * S.M.A.R.T * and some other commands. We have to ensure that the
1722 * DMA cycle timing is slower/equal than the fastest PIO timing.
1723 */
1724
1725 if (speed > XFER_PIO_4) {
1726 ata_timing_compute(adev, adev->pio_mode, &p, T, UT);
1727 ata_timing_merge(&p, t, t, ATA_TIMING_ALL);
1728 }
1729
1730 /*
1731 * Lengthen active & recovery time so that cycle time is correct.
1732 */
1733
1734 if (t->act8b + t->rec8b < t->cyc8b) {
1735 t->act8b += (t->cyc8b - (t->act8b + t->rec8b)) / 2;
1736 t->rec8b = t->cyc8b - t->act8b;
1737 }
1738
1739 if (t->active + t->recover < t->cycle) {
1740 t->active += (t->cycle - (t->active + t->recover)) / 2;
1741 t->recover = t->cycle - t->active;
1742 }
1743
1744 return 0;
1745 }
1746
1747 static int ata_dev_set_mode(struct ata_port *ap, struct ata_device *dev)
1748 {
1749 unsigned int err_mask;
1750 int rc;
1751
1752 if (dev->xfer_shift == ATA_SHIFT_PIO)
1753 dev->flags |= ATA_DFLAG_PIO;
1754
1755 err_mask = ata_dev_set_xfermode(ap, dev);
1756 if (err_mask) {
1757 printk(KERN_ERR
1758 "ata%u: failed to set xfermode (err_mask=0x%x)\n",
1759 ap->id, err_mask);
1760 return -EIO;
1761 }
1762
1763 rc = ata_dev_revalidate(ap, dev, 0);
1764 if (rc) {
1765 printk(KERN_ERR
1766 "ata%u: failed to revalidate after set xfermode\n",
1767 ap->id);
1768 return rc;
1769 }
1770
1771 DPRINTK("xfer_shift=%u, xfer_mode=0x%x\n",
1772 dev->xfer_shift, (int)dev->xfer_mode);
1773
1774 printk(KERN_INFO "ata%u: dev %u configured for %s\n",
1775 ap->id, dev->devno,
1776 ata_mode_string(ata_xfer_mode2mask(dev->xfer_mode)));
1777 return 0;
1778 }
1779
1780 /**
1781 * ata_set_mode - Program timings and issue SET FEATURES - XFER
1782 * @ap: port on which timings will be programmed
1783 * @r_failed_dev: out paramter for failed device
1784 *
1785 * Set ATA device disk transfer mode (PIO3, UDMA6, etc.). If
1786 * ata_set_mode() fails, pointer to the failing device is
1787 * returned in @r_failed_dev.
1788 *
1789 * LOCKING:
1790 * PCI/etc. bus probe sem.
1791 *
1792 * RETURNS:
1793 * 0 on success, negative errno otherwise
1794 */
1795 static int ata_set_mode(struct ata_port *ap, struct ata_device **r_failed_dev)
1796 {
1797 struct ata_device *dev;
1798 int i, rc = 0, used_dma = 0, found = 0;
1799
1800 /* step 1: calculate xfer_mask */
1801 for (i = 0; i < ATA_MAX_DEVICES; i++) {
1802 unsigned int pio_mask, dma_mask;
1803
1804 dev = &ap->device[i];
1805
1806 if (!ata_dev_enabled(dev))
1807 continue;
1808
1809 ata_dev_xfermask(ap, dev);
1810
1811 pio_mask = ata_pack_xfermask(dev->pio_mask, 0, 0);
1812 dma_mask = ata_pack_xfermask(0, dev->mwdma_mask, dev->udma_mask);
1813 dev->pio_mode = ata_xfer_mask2mode(pio_mask);
1814 dev->dma_mode = ata_xfer_mask2mode(dma_mask);
1815
1816 found = 1;
1817 if (dev->dma_mode)
1818 used_dma = 1;
1819 }
1820 if (!found)
1821 goto out;
1822
1823 /* step 2: always set host PIO timings */
1824 for (i = 0; i < ATA_MAX_DEVICES; i++) {
1825 dev = &ap->device[i];
1826 if (!ata_dev_enabled(dev))
1827 continue;
1828
1829 if (!dev->pio_mode) {
1830 printk(KERN_WARNING "ata%u: dev %u no PIO support\n",
1831 ap->id, dev->devno);
1832 rc = -EINVAL;
1833 goto out;
1834 }
1835
1836 dev->xfer_mode = dev->pio_mode;
1837 dev->xfer_shift = ATA_SHIFT_PIO;
1838 if (ap->ops->set_piomode)
1839 ap->ops->set_piomode(ap, dev);
1840 }
1841
1842 /* step 3: set host DMA timings */
1843 for (i = 0; i < ATA_MAX_DEVICES; i++) {
1844 dev = &ap->device[i];
1845
1846 if (!ata_dev_enabled(dev) || !dev->dma_mode)
1847 continue;
1848
1849 dev->xfer_mode = dev->dma_mode;
1850 dev->xfer_shift = ata_xfer_mode2shift(dev->dma_mode);
1851 if (ap->ops->set_dmamode)
1852 ap->ops->set_dmamode(ap, dev);
1853 }
1854
1855 /* step 4: update devices' xfer mode */
1856 for (i = 0; i < ATA_MAX_DEVICES; i++) {
1857 dev = &ap->device[i];
1858
1859 if (!ata_dev_enabled(dev))
1860 continue;
1861
1862 rc = ata_dev_set_mode(ap, dev);
1863 if (rc)
1864 goto out;
1865 }
1866
1867 /* Record simplex status. If we selected DMA then the other
1868 * host channels are not permitted to do so.
1869 */
1870 if (used_dma && (ap->host_set->flags & ATA_HOST_SIMPLEX))
1871 ap->host_set->simplex_claimed = 1;
1872
1873 /* step5: chip specific finalisation */
1874 if (ap->ops->post_set_mode)
1875 ap->ops->post_set_mode(ap);
1876
1877 out:
1878 if (rc)
1879 *r_failed_dev = dev;
1880 return rc;
1881 }
1882
1883 /**
1884 * ata_tf_to_host - issue ATA taskfile to host controller
1885 * @ap: port to which command is being issued
1886 * @tf: ATA taskfile register set
1887 *
1888 * Issues ATA taskfile register set to ATA host controller,
1889 * with proper synchronization with interrupt handler and
1890 * other threads.
1891 *
1892 * LOCKING:
1893 * spin_lock_irqsave(host_set lock)
1894 */
1895
1896 static inline void ata_tf_to_host(struct ata_port *ap,
1897 const struct ata_taskfile *tf)
1898 {
1899 ap->ops->tf_load(ap, tf);
1900 ap->ops->exec_command(ap, tf);
1901 }
1902
1903 /**
1904 * ata_busy_sleep - sleep until BSY clears, or timeout
1905 * @ap: port containing status register to be polled
1906 * @tmout_pat: impatience timeout
1907 * @tmout: overall timeout
1908 *
1909 * Sleep until ATA Status register bit BSY clears,
1910 * or a timeout occurs.
1911 *
1912 * LOCKING: None.
1913 */
1914
1915 unsigned int ata_busy_sleep (struct ata_port *ap,
1916 unsigned long tmout_pat, unsigned long tmout)
1917 {
1918 unsigned long timer_start, timeout;
1919 u8 status;
1920
1921 status = ata_busy_wait(ap, ATA_BUSY, 300);
1922 timer_start = jiffies;
1923 timeout = timer_start + tmout_pat;
1924 while ((status & ATA_BUSY) && (time_before(jiffies, timeout))) {
1925 msleep(50);
1926 status = ata_busy_wait(ap, ATA_BUSY, 3);
1927 }
1928
1929 if (status & ATA_BUSY)
1930 printk(KERN_WARNING "ata%u is slow to respond, "
1931 "please be patient\n", ap->id);
1932
1933 timeout = timer_start + tmout;
1934 while ((status & ATA_BUSY) && (time_before(jiffies, timeout))) {
1935 msleep(50);
1936 status = ata_chk_status(ap);
1937 }
1938
1939 if (status & ATA_BUSY) {
1940 printk(KERN_ERR "ata%u failed to respond (%lu secs)\n",
1941 ap->id, tmout / HZ);
1942 return 1;
1943 }
1944
1945 return 0;
1946 }
1947
1948 static void ata_bus_post_reset(struct ata_port *ap, unsigned int devmask)
1949 {
1950 struct ata_ioports *ioaddr = &ap->ioaddr;
1951 unsigned int dev0 = devmask & (1 << 0);
1952 unsigned int dev1 = devmask & (1 << 1);
1953 unsigned long timeout;
1954
1955 /* if device 0 was found in ata_devchk, wait for its
1956 * BSY bit to clear
1957 */
1958 if (dev0)
1959 ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT);
1960
1961 /* if device 1 was found in ata_devchk, wait for
1962 * register access, then wait for BSY to clear
1963 */
1964 timeout = jiffies + ATA_TMOUT_BOOT;
1965 while (dev1) {
1966 u8 nsect, lbal;
1967
1968 ap->ops->dev_select(ap, 1);
1969 if (ap->flags & ATA_FLAG_MMIO) {
1970 nsect = readb((void __iomem *) ioaddr->nsect_addr);
1971 lbal = readb((void __iomem *) ioaddr->lbal_addr);
1972 } else {
1973 nsect = inb(ioaddr->nsect_addr);
1974 lbal = inb(ioaddr->lbal_addr);
1975 }
1976 if ((nsect == 1) && (lbal == 1))
1977 break;
1978 if (time_after(jiffies, timeout)) {
1979 dev1 = 0;
1980 break;
1981 }
1982 msleep(50); /* give drive a breather */
1983 }
1984 if (dev1)
1985 ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT);
1986
1987 /* is all this really necessary? */
1988 ap->ops->dev_select(ap, 0);
1989 if (dev1)
1990 ap->ops->dev_select(ap, 1);
1991 if (dev0)
1992 ap->ops->dev_select(ap, 0);
1993 }
1994
1995 static unsigned int ata_bus_softreset(struct ata_port *ap,
1996 unsigned int devmask)
1997 {
1998 struct ata_ioports *ioaddr = &ap->ioaddr;
1999
2000 DPRINTK("ata%u: bus reset via SRST\n", ap->id);
2001
2002 /* software reset. causes dev0 to be selected */
2003 if (ap->flags & ATA_FLAG_MMIO) {
2004 writeb(ap->ctl, (void __iomem *) ioaddr->ctl_addr);
2005 udelay(20); /* FIXME: flush */
2006 writeb(ap->ctl | ATA_SRST, (void __iomem *) ioaddr->ctl_addr);
2007 udelay(20); /* FIXME: flush */
2008 writeb(ap->ctl, (void __iomem *) ioaddr->ctl_addr);
2009 } else {
2010 outb(ap->ctl, ioaddr->ctl_addr);
2011 udelay(10);
2012 outb(ap->ctl | ATA_SRST, ioaddr->ctl_addr);
2013 udelay(10);
2014 outb(ap->ctl, ioaddr->ctl_addr);
2015 }
2016
2017 /* spec mandates ">= 2ms" before checking status.
2018 * We wait 150ms, because that was the magic delay used for
2019 * ATAPI devices in Hale Landis's ATADRVR, for the period of time
2020 * between when the ATA command register is written, and then
2021 * status is checked. Because waiting for "a while" before
2022 * checking status is fine, post SRST, we perform this magic
2023 * delay here as well.
2024 *
2025 * Old drivers/ide uses the 2mS rule and then waits for ready
2026 */
2027 msleep(150);
2028
2029 /* Before we perform post reset processing we want to see if
2030 * the bus shows 0xFF because the odd clown forgets the D7
2031 * pulldown resistor.
2032 */
2033 if (ata_check_status(ap) == 0xFF)
2034 return AC_ERR_OTHER;
2035
2036 ata_bus_post_reset(ap, devmask);
2037
2038 return 0;
2039 }
2040
2041 /**
2042 * ata_bus_reset - reset host port and associated ATA channel
2043 * @ap: port to reset
2044 *
2045 * This is typically the first time we actually start issuing
2046 * commands to the ATA channel. We wait for BSY to clear, then
2047 * issue EXECUTE DEVICE DIAGNOSTIC command, polling for its
2048 * result. Determine what devices, if any, are on the channel
2049 * by looking at the device 0/1 error register. Look at the signature
2050 * stored in each device's taskfile registers, to determine if
2051 * the device is ATA or ATAPI.
2052 *
2053 * LOCKING:
2054 * PCI/etc. bus probe sem.
2055 * Obtains host_set lock.
2056 *
2057 * SIDE EFFECTS:
2058 * Sets ATA_FLAG_PORT_DISABLED if bus reset fails.
2059 */
2060
2061 void ata_bus_reset(struct ata_port *ap)
2062 {
2063 struct ata_ioports *ioaddr = &ap->ioaddr;
2064 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
2065 u8 err;
2066 unsigned int dev0, dev1 = 0, devmask = 0;
2067
2068 DPRINTK("ENTER, host %u, port %u\n", ap->id, ap->port_no);
2069
2070 /* determine if device 0/1 are present */
2071 if (ap->flags & ATA_FLAG_SATA_RESET)
2072 dev0 = 1;
2073 else {
2074 dev0 = ata_devchk(ap, 0);
2075 if (slave_possible)
2076 dev1 = ata_devchk(ap, 1);
2077 }
2078
2079 if (dev0)
2080 devmask |= (1 << 0);
2081 if (dev1)
2082 devmask |= (1 << 1);
2083
2084 /* select device 0 again */
2085 ap->ops->dev_select(ap, 0);
2086
2087 /* issue bus reset */
2088 if (ap->flags & ATA_FLAG_SRST)
2089 if (ata_bus_softreset(ap, devmask))
2090 goto err_out;
2091
2092 /*
2093 * determine by signature whether we have ATA or ATAPI devices
2094 */
2095 ap->device[0].class = ata_dev_try_classify(ap, 0, &err);
2096 if ((slave_possible) && (err != 0x81))
2097 ap->device[1].class = ata_dev_try_classify(ap, 1, &err);
2098
2099 /* re-enable interrupts */
2100 if (ap->ioaddr.ctl_addr) /* FIXME: hack. create a hook instead */
2101 ata_irq_on(ap);
2102
2103 /* is double-select really necessary? */
2104 if (ap->device[1].class != ATA_DEV_NONE)
2105 ap->ops->dev_select(ap, 1);
2106 if (ap->device[0].class != ATA_DEV_NONE)
2107 ap->ops->dev_select(ap, 0);
2108
2109 /* if no devices were detected, disable this port */
2110 if ((ap->device[0].class == ATA_DEV_NONE) &&
2111 (ap->device[1].class == ATA_DEV_NONE))
2112 goto err_out;
2113
2114 if (ap->flags & (ATA_FLAG_SATA_RESET | ATA_FLAG_SRST)) {
2115 /* set up device control for ATA_FLAG_SATA_RESET */
2116 if (ap->flags & ATA_FLAG_MMIO)
2117 writeb(ap->ctl, (void __iomem *) ioaddr->ctl_addr);
2118 else
2119 outb(ap->ctl, ioaddr->ctl_addr);
2120 }
2121
2122 DPRINTK("EXIT\n");
2123 return;
2124
2125 err_out:
2126 printk(KERN_ERR "ata%u: disabling port\n", ap->id);
2127 ap->ops->port_disable(ap);
2128
2129 DPRINTK("EXIT\n");
2130 }
2131
2132 static int sata_phy_resume(struct ata_port *ap)
2133 {
2134 unsigned long timeout = jiffies + (HZ * 5);
2135 u32 sstatus;
2136
2137 scr_write_flush(ap, SCR_CONTROL, 0x300);
2138
2139 /* Wait for phy to become ready, if necessary. */
2140 do {
2141 msleep(200);
2142 sstatus = scr_read(ap, SCR_STATUS);
2143 if ((sstatus & 0xf) != 1)
2144 return 0;
2145 } while (time_before(jiffies, timeout));
2146
2147 return -1;
2148 }
2149
2150 /**
2151 * ata_std_probeinit - initialize probing
2152 * @ap: port to be probed
2153 *
2154 * @ap is about to be probed. Initialize it. This function is
2155 * to be used as standard callback for ata_drive_probe_reset().
2156 *
2157 * NOTE!!! Do not use this function as probeinit if a low level
2158 * driver implements only hardreset. Just pass NULL as probeinit
2159 * in that case. Using this function is probably okay but doing
2160 * so makes reset sequence different from the original
2161 * ->phy_reset implementation and Jeff nervous. :-P
2162 */
2163 void ata_std_probeinit(struct ata_port *ap)
2164 {
2165 if ((ap->flags & ATA_FLAG_SATA) && ap->ops->scr_read) {
2166 sata_phy_resume(ap);
2167 if (sata_dev_present(ap))
2168 ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT);
2169 }
2170 }
2171
2172 /**
2173 * ata_std_softreset - reset host port via ATA SRST
2174 * @ap: port to reset
2175 * @verbose: fail verbosely
2176 * @classes: resulting classes of attached devices
2177 *
2178 * Reset host port using ATA SRST. This function is to be used
2179 * as standard callback for ata_drive_*_reset() functions.
2180 *
2181 * LOCKING:
2182 * Kernel thread context (may sleep)
2183 *
2184 * RETURNS:
2185 * 0 on success, -errno otherwise.
2186 */
2187 int ata_std_softreset(struct ata_port *ap, int verbose, unsigned int *classes)
2188 {
2189 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
2190 unsigned int devmask = 0, err_mask;
2191 u8 err;
2192
2193 DPRINTK("ENTER\n");
2194
2195 if (ap->ops->scr_read && !sata_dev_present(ap)) {
2196 classes[0] = ATA_DEV_NONE;
2197 goto out;
2198 }
2199
2200 /* determine if device 0/1 are present */
2201 if (ata_devchk(ap, 0))
2202 devmask |= (1 << 0);
2203 if (slave_possible && ata_devchk(ap, 1))
2204 devmask |= (1 << 1);
2205
2206 /* select device 0 again */
2207 ap->ops->dev_select(ap, 0);
2208
2209 /* issue bus reset */
2210 DPRINTK("about to softreset, devmask=%x\n", devmask);
2211 err_mask = ata_bus_softreset(ap, devmask);
2212 if (err_mask) {
2213 if (verbose)
2214 printk(KERN_ERR "ata%u: SRST failed (err_mask=0x%x)\n",
2215 ap->id, err_mask);
2216 else
2217 DPRINTK("EXIT, softreset failed (err_mask=0x%x)\n",
2218 err_mask);
2219 return -EIO;
2220 }
2221
2222 /* determine by signature whether we have ATA or ATAPI devices */
2223 classes[0] = ata_dev_try_classify(ap, 0, &err);
2224 if (slave_possible && err != 0x81)
2225 classes[1] = ata_dev_try_classify(ap, 1, &err);
2226
2227 out:
2228 DPRINTK("EXIT, classes[0]=%u [1]=%u\n", classes[0], classes[1]);
2229 return 0;
2230 }
2231
2232 /**
2233 * sata_std_hardreset - reset host port via SATA phy reset
2234 * @ap: port to reset
2235 * @verbose: fail verbosely
2236 * @class: resulting class of attached device
2237 *
2238 * SATA phy-reset host port using DET bits of SControl register.
2239 * This function is to be used as standard callback for
2240 * ata_drive_*_reset().
2241 *
2242 * LOCKING:
2243 * Kernel thread context (may sleep)
2244 *
2245 * RETURNS:
2246 * 0 on success, -errno otherwise.
2247 */
2248 int sata_std_hardreset(struct ata_port *ap, int verbose, unsigned int *class)
2249 {
2250 DPRINTK("ENTER\n");
2251
2252 /* Issue phy wake/reset */
2253 scr_write_flush(ap, SCR_CONTROL, 0x301);
2254
2255 /*
2256 * Couldn't find anything in SATA I/II specs, but AHCI-1.1
2257 * 10.4.2 says at least 1 ms.
2258 */
2259 msleep(1);
2260
2261 /* Bring phy back */
2262 sata_phy_resume(ap);
2263
2264 /* TODO: phy layer with polling, timeouts, etc. */
2265 if (!sata_dev_present(ap)) {
2266 *class = ATA_DEV_NONE;
2267 DPRINTK("EXIT, link offline\n");
2268 return 0;
2269 }
2270
2271 if (ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT)) {
2272 if (verbose)
2273 printk(KERN_ERR "ata%u: COMRESET failed "
2274 "(device not ready)\n", ap->id);
2275 else
2276 DPRINTK("EXIT, device not ready\n");
2277 return -EIO;
2278 }
2279
2280 ap->ops->dev_select(ap, 0); /* probably unnecessary */
2281
2282 *class = ata_dev_try_classify(ap, 0, NULL);
2283
2284 DPRINTK("EXIT, class=%u\n", *class);
2285 return 0;
2286 }
2287
2288 /**
2289 * ata_std_postreset - standard postreset callback
2290 * @ap: the target ata_port
2291 * @classes: classes of attached devices
2292 *
2293 * This function is invoked after a successful reset. Note that
2294 * the device might have been reset more than once using
2295 * different reset methods before postreset is invoked.
2296 *
2297 * This function is to be used as standard callback for
2298 * ata_drive_*_reset().
2299 *
2300 * LOCKING:
2301 * Kernel thread context (may sleep)
2302 */
2303 void ata_std_postreset(struct ata_port *ap, unsigned int *classes)
2304 {
2305 DPRINTK("ENTER\n");
2306
2307 /* set cable type if it isn't already set */
2308 if (ap->cbl == ATA_CBL_NONE && ap->flags & ATA_FLAG_SATA)
2309 ap->cbl = ATA_CBL_SATA;
2310
2311 /* print link status */
2312 if (ap->cbl == ATA_CBL_SATA)
2313 sata_print_link_status(ap);
2314
2315 /* re-enable interrupts */
2316 if (ap->ioaddr.ctl_addr) /* FIXME: hack. create a hook instead */
2317 ata_irq_on(ap);
2318
2319 /* is double-select really necessary? */
2320 if (classes[0] != ATA_DEV_NONE)
2321 ap->ops->dev_select(ap, 1);
2322 if (classes[1] != ATA_DEV_NONE)
2323 ap->ops->dev_select(ap, 0);
2324
2325 /* bail out if no device is present */
2326 if (classes[0] == ATA_DEV_NONE && classes[1] == ATA_DEV_NONE) {
2327 DPRINTK("EXIT, no device\n");
2328 return;
2329 }
2330
2331 /* set up device control */
2332 if (ap->ioaddr.ctl_addr) {
2333 if (ap->flags & ATA_FLAG_MMIO)
2334 writeb(ap->ctl, (void __iomem *) ap->ioaddr.ctl_addr);
2335 else
2336 outb(ap->ctl, ap->ioaddr.ctl_addr);
2337 }
2338
2339 DPRINTK("EXIT\n");
2340 }
2341
2342 /**
2343 * ata_std_probe_reset - standard probe reset method
2344 * @ap: prot to perform probe-reset
2345 * @classes: resulting classes of attached devices
2346 *
2347 * The stock off-the-shelf ->probe_reset method.
2348 *
2349 * LOCKING:
2350 * Kernel thread context (may sleep)
2351 *
2352 * RETURNS:
2353 * 0 on success, -errno otherwise.
2354 */
2355 int ata_std_probe_reset(struct ata_port *ap, unsigned int *classes)
2356 {
2357 ata_reset_fn_t hardreset;
2358
2359 hardreset = NULL;
2360 if (ap->flags & ATA_FLAG_SATA && ap->ops->scr_read)
2361 hardreset = sata_std_hardreset;
2362
2363 return ata_drive_probe_reset(ap, ata_std_probeinit,
2364 ata_std_softreset, hardreset,
2365 ata_std_postreset, classes);
2366 }
2367
2368 static int ata_do_reset(struct ata_port *ap,
2369 ata_reset_fn_t reset, ata_postreset_fn_t postreset,
2370 int verbose, unsigned int *classes)
2371 {
2372 int i, rc;
2373
2374 for (i = 0; i < ATA_MAX_DEVICES; i++)
2375 classes[i] = ATA_DEV_UNKNOWN;
2376
2377 rc = reset(ap, verbose, classes);
2378 if (rc)
2379 return rc;
2380
2381 /* If any class isn't ATA_DEV_UNKNOWN, consider classification
2382 * is complete and convert all ATA_DEV_UNKNOWN to
2383 * ATA_DEV_NONE.
2384 */
2385 for (i = 0; i < ATA_MAX_DEVICES; i++)
2386 if (classes[i] != ATA_DEV_UNKNOWN)
2387 break;
2388
2389 if (i < ATA_MAX_DEVICES)
2390 for (i = 0; i < ATA_MAX_DEVICES; i++)
2391 if (classes[i] == ATA_DEV_UNKNOWN)
2392 classes[i] = ATA_DEV_NONE;
2393
2394 if (postreset)
2395 postreset(ap, classes);
2396
2397 return 0;
2398 }
2399
2400 /**
2401 * ata_drive_probe_reset - Perform probe reset with given methods
2402 * @ap: port to reset
2403 * @probeinit: probeinit method (can be NULL)
2404 * @softreset: softreset method (can be NULL)
2405 * @hardreset: hardreset method (can be NULL)
2406 * @postreset: postreset method (can be NULL)
2407 * @classes: resulting classes of attached devices
2408 *
2409 * Reset the specified port and classify attached devices using
2410 * given methods. This function prefers softreset but tries all
2411 * possible reset sequences to reset and classify devices. This
2412 * function is intended to be used for constructing ->probe_reset
2413 * callback by low level drivers.
2414 *
2415 * Reset methods should follow the following rules.
2416 *
2417 * - Return 0 on sucess, -errno on failure.
2418 * - If classification is supported, fill classes[] with
2419 * recognized class codes.
2420 * - If classification is not supported, leave classes[] alone.
2421 * - If verbose is non-zero, print error message on failure;
2422 * otherwise, shut up.
2423 *
2424 * LOCKING:
2425 * Kernel thread context (may sleep)
2426 *
2427 * RETURNS:
2428 * 0 on success, -EINVAL if no reset method is avaliable, -ENODEV
2429 * if classification fails, and any error code from reset
2430 * methods.
2431 */
2432 int ata_drive_probe_reset(struct ata_port *ap, ata_probeinit_fn_t probeinit,
2433 ata_reset_fn_t softreset, ata_reset_fn_t hardreset,
2434 ata_postreset_fn_t postreset, unsigned int *classes)
2435 {
2436 int rc = -EINVAL;
2437
2438 if (probeinit)
2439 probeinit(ap);
2440
2441 if (softreset) {
2442 rc = ata_do_reset(ap, softreset, postreset, 0, classes);
2443 if (rc == 0 && classes[0] != ATA_DEV_UNKNOWN)
2444 goto done;
2445 }
2446
2447 if (!hardreset)
2448 goto done;
2449
2450 rc = ata_do_reset(ap, hardreset, postreset, 0, classes);
2451 if (rc || classes[0] != ATA_DEV_UNKNOWN)
2452 goto done;
2453
2454 if (softreset)
2455 rc = ata_do_reset(ap, softreset, postreset, 0, classes);
2456
2457 done:
2458 if (rc == 0 && classes[0] == ATA_DEV_UNKNOWN)
2459 rc = -ENODEV;
2460 return rc;
2461 }
2462
2463 /**
2464 * ata_dev_same_device - Determine whether new ID matches configured device
2465 * @ap: port on which the device to compare against resides
2466 * @dev: device to compare against
2467 * @new_class: class of the new device
2468 * @new_id: IDENTIFY page of the new device
2469 *
2470 * Compare @new_class and @new_id against @dev and determine
2471 * whether @dev is the device indicated by @new_class and
2472 * @new_id.
2473 *
2474 * LOCKING:
2475 * None.
2476 *
2477 * RETURNS:
2478 * 1 if @dev matches @new_class and @new_id, 0 otherwise.
2479 */
2480 static int ata_dev_same_device(struct ata_port *ap, struct ata_device *dev,
2481 unsigned int new_class, const u16 *new_id)
2482 {
2483 const u16 *old_id = dev->id;
2484 unsigned char model[2][41], serial[2][21];
2485 u64 new_n_sectors;
2486
2487 if (dev->class != new_class) {
2488 printk(KERN_INFO
2489 "ata%u: dev %u class mismatch %d != %d\n",
2490 ap->id, dev->devno, dev->class, new_class);
2491 return 0;
2492 }
2493
2494 ata_id_c_string(old_id, model[0], ATA_ID_PROD_OFS, sizeof(model[0]));
2495 ata_id_c_string(new_id, model[1], ATA_ID_PROD_OFS, sizeof(model[1]));
2496 ata_id_c_string(old_id, serial[0], ATA_ID_SERNO_OFS, sizeof(serial[0]));
2497 ata_id_c_string(new_id, serial[1], ATA_ID_SERNO_OFS, sizeof(serial[1]));
2498 new_n_sectors = ata_id_n_sectors(new_id);
2499
2500 if (strcmp(model[0], model[1])) {
2501 printk(KERN_INFO
2502 "ata%u: dev %u model number mismatch '%s' != '%s'\n",
2503 ap->id, dev->devno, model[0], model[1]);
2504 return 0;
2505 }
2506
2507 if (strcmp(serial[0], serial[1])) {
2508 printk(KERN_INFO
2509 "ata%u: dev %u serial number mismatch '%s' != '%s'\n",
2510 ap->id, dev->devno, serial[0], serial[1]);
2511 return 0;
2512 }
2513
2514 if (dev->class == ATA_DEV_ATA && dev->n_sectors != new_n_sectors) {
2515 printk(KERN_INFO
2516 "ata%u: dev %u n_sectors mismatch %llu != %llu\n",
2517 ap->id, dev->devno, (unsigned long long)dev->n_sectors,
2518 (unsigned long long)new_n_sectors);
2519 return 0;
2520 }
2521
2522 return 1;
2523 }
2524
2525 /**
2526 * ata_dev_revalidate - Revalidate ATA device
2527 * @ap: port on which the device to revalidate resides
2528 * @dev: device to revalidate
2529 * @post_reset: is this revalidation after reset?
2530 *
2531 * Re-read IDENTIFY page and make sure @dev is still attached to
2532 * the port.
2533 *
2534 * LOCKING:
2535 * Kernel thread context (may sleep)
2536 *
2537 * RETURNS:
2538 * 0 on success, negative errno otherwise
2539 */
2540 int ata_dev_revalidate(struct ata_port *ap, struct ata_device *dev,
2541 int post_reset)
2542 {
2543 unsigned int class;
2544 u16 *id;
2545 int rc;
2546
2547 if (!ata_dev_enabled(dev))
2548 return -ENODEV;
2549
2550 class = dev->class;
2551 id = NULL;
2552
2553 /* allocate & read ID data */
2554 rc = ata_dev_read_id(ap, dev, &class, post_reset, &id);
2555 if (rc)
2556 goto fail;
2557
2558 /* is the device still there? */
2559 if (!ata_dev_same_device(ap, dev, class, id)) {
2560 rc = -ENODEV;
2561 goto fail;
2562 }
2563
2564 kfree(dev->id);
2565 dev->id = id;
2566
2567 /* configure device according to the new ID */
2568 return ata_dev_configure(ap, dev, 0);
2569
2570 fail:
2571 printk(KERN_ERR "ata%u: dev %u revalidation failed (errno=%d)\n",
2572 ap->id, dev->devno, rc);
2573 kfree(id);
2574 return rc;
2575 }
2576
2577 static const char * const ata_dma_blacklist [] = {
2578 "WDC AC11000H", NULL,
2579 "WDC AC22100H", NULL,
2580 "WDC AC32500H", NULL,
2581 "WDC AC33100H", NULL,
2582 "WDC AC31600H", NULL,
2583 "WDC AC32100H", "24.09P07",
2584 "WDC AC23200L", "21.10N21",
2585 "Compaq CRD-8241B", NULL,
2586 "CRD-8400B", NULL,
2587 "CRD-8480B", NULL,
2588 "CRD-8482B", NULL,
2589 "CRD-84", NULL,
2590 "SanDisk SDP3B", NULL,
2591 "SanDisk SDP3B-64", NULL,
2592 "SANYO CD-ROM CRD", NULL,
2593 "HITACHI CDR-8", NULL,
2594 "HITACHI CDR-8335", NULL,
2595 "HITACHI CDR-8435", NULL,
2596 "Toshiba CD-ROM XM-6202B", NULL,
2597 "TOSHIBA CD-ROM XM-1702BC", NULL,
2598 "CD-532E-A", NULL,
2599 "E-IDE CD-ROM CR-840", NULL,
2600 "CD-ROM Drive/F5A", NULL,
2601 "WPI CDD-820", NULL,
2602 "SAMSUNG CD-ROM SC-148C", NULL,
2603 "SAMSUNG CD-ROM SC", NULL,
2604 "SanDisk SDP3B-64", NULL,
2605 "ATAPI CD-ROM DRIVE 40X MAXIMUM",NULL,
2606 "_NEC DV5800A", NULL,
2607 "SAMSUNG CD-ROM SN-124", "N001"
2608 };
2609
2610 static int ata_strim(char *s, size_t len)
2611 {
2612 len = strnlen(s, len);
2613
2614 /* ATAPI specifies that empty space is blank-filled; remove blanks */
2615 while ((len > 0) && (s[len - 1] == ' ')) {
2616 len--;
2617 s[len] = 0;
2618 }
2619 return len;
2620 }
2621
2622 static int ata_dma_blacklisted(const struct ata_device *dev)
2623 {
2624 unsigned char model_num[40];
2625 unsigned char model_rev[16];
2626 unsigned int nlen, rlen;
2627 int i;
2628
2629 ata_id_string(dev->id, model_num, ATA_ID_PROD_OFS,
2630 sizeof(model_num));
2631 ata_id_string(dev->id, model_rev, ATA_ID_FW_REV_OFS,
2632 sizeof(model_rev));
2633 nlen = ata_strim(model_num, sizeof(model_num));
2634 rlen = ata_strim(model_rev, sizeof(model_rev));
2635
2636 for (i = 0; i < ARRAY_SIZE(ata_dma_blacklist); i += 2) {
2637 if (!strncmp(ata_dma_blacklist[i], model_num, nlen)) {
2638 if (ata_dma_blacklist[i+1] == NULL)
2639 return 1;
2640 if (!strncmp(ata_dma_blacklist[i], model_rev, rlen))
2641 return 1;
2642 }
2643 }
2644 return 0;
2645 }
2646
2647 /**
2648 * ata_dev_xfermask - Compute supported xfermask of the given device
2649 * @ap: Port on which the device to compute xfermask for resides
2650 * @dev: Device to compute xfermask for
2651 *
2652 * Compute supported xfermask of @dev and store it in
2653 * dev->*_mask. This function is responsible for applying all
2654 * known limits including host controller limits, device
2655 * blacklist, etc...
2656 *
2657 * FIXME: The current implementation limits all transfer modes to
2658 * the fastest of the lowested device on the port. This is not
2659 * required on most controllers.
2660 *
2661 * LOCKING:
2662 * None.
2663 */
2664 static void ata_dev_xfermask(struct ata_port *ap, struct ata_device *dev)
2665 {
2666 struct ata_host_set *hs = ap->host_set;
2667 unsigned long xfer_mask;
2668 int i;
2669
2670 xfer_mask = ata_pack_xfermask(ap->pio_mask, ap->mwdma_mask,
2671 ap->udma_mask);
2672
2673 /* FIXME: Use port-wide xfermask for now */
2674 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2675 struct ata_device *d = &ap->device[i];
2676 if (!ata_dev_enabled(d))
2677 continue;
2678 xfer_mask &= ata_pack_xfermask(d->pio_mask, d->mwdma_mask,
2679 d->udma_mask);
2680 xfer_mask &= ata_id_xfermask(d->id);
2681 if (ata_dma_blacklisted(d))
2682 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
2683 /* Apply cable rule here. Don't apply it early because when
2684 we handle hot plug the cable type can itself change */
2685 if (ap->cbl == ATA_CBL_PATA40)
2686 xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA);
2687 }
2688
2689 if (ata_dma_blacklisted(dev))
2690 printk(KERN_WARNING "ata%u: dev %u is on DMA blacklist, "
2691 "disabling DMA\n", ap->id, dev->devno);
2692
2693 if (hs->flags & ATA_HOST_SIMPLEX) {
2694 if (hs->simplex_claimed)
2695 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
2696 }
2697 if (ap->ops->mode_filter)
2698 xfer_mask = ap->ops->mode_filter(ap, dev, xfer_mask);
2699
2700 ata_unpack_xfermask(xfer_mask, &dev->pio_mask, &dev->mwdma_mask,
2701 &dev->udma_mask);
2702 }
2703
2704 /**
2705 * ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command
2706 * @ap: Port associated with device @dev
2707 * @dev: Device to which command will be sent
2708 *
2709 * Issue SET FEATURES - XFER MODE command to device @dev
2710 * on port @ap.
2711 *
2712 * LOCKING:
2713 * PCI/etc. bus probe sem.
2714 *
2715 * RETURNS:
2716 * 0 on success, AC_ERR_* mask otherwise.
2717 */
2718
2719 static unsigned int ata_dev_set_xfermode(struct ata_port *ap,
2720 struct ata_device *dev)
2721 {
2722 struct ata_taskfile tf;
2723 unsigned int err_mask;
2724
2725 /* set up set-features taskfile */
2726 DPRINTK("set features - xfer mode\n");
2727
2728 ata_tf_init(ap, &tf, dev->devno);
2729 tf.command = ATA_CMD_SET_FEATURES;
2730 tf.feature = SETFEATURES_XFER;
2731 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
2732 tf.protocol = ATA_PROT_NODATA;
2733 tf.nsect = dev->xfer_mode;
2734
2735 err_mask = ata_exec_internal(ap, dev, &tf, DMA_NONE, NULL, 0);
2736
2737 DPRINTK("EXIT, err_mask=%x\n", err_mask);
2738 return err_mask;
2739 }
2740
2741 /**
2742 * ata_dev_init_params - Issue INIT DEV PARAMS command
2743 * @ap: Port associated with device @dev
2744 * @dev: Device to which command will be sent
2745 *
2746 * LOCKING:
2747 * Kernel thread context (may sleep)
2748 *
2749 * RETURNS:
2750 * 0 on success, AC_ERR_* mask otherwise.
2751 */
2752
2753 static unsigned int ata_dev_init_params(struct ata_port *ap,
2754 struct ata_device *dev,
2755 u16 heads,
2756 u16 sectors)
2757 {
2758 struct ata_taskfile tf;
2759 unsigned int err_mask;
2760
2761 /* Number of sectors per track 1-255. Number of heads 1-16 */
2762 if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16)
2763 return AC_ERR_INVALID;
2764
2765 /* set up init dev params taskfile */
2766 DPRINTK("init dev params \n");
2767
2768 ata_tf_init(ap, &tf, dev->devno);
2769 tf.command = ATA_CMD_INIT_DEV_PARAMS;
2770 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
2771 tf.protocol = ATA_PROT_NODATA;
2772 tf.nsect = sectors;
2773 tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */
2774
2775 err_mask = ata_exec_internal(ap, dev, &tf, DMA_NONE, NULL, 0);
2776
2777 DPRINTK("EXIT, err_mask=%x\n", err_mask);
2778 return err_mask;
2779 }
2780
2781 /**
2782 * ata_sg_clean - Unmap DMA memory associated with command
2783 * @qc: Command containing DMA memory to be released
2784 *
2785 * Unmap all mapped DMA memory associated with this command.
2786 *
2787 * LOCKING:
2788 * spin_lock_irqsave(host_set lock)
2789 */
2790
2791 static void ata_sg_clean(struct ata_queued_cmd *qc)
2792 {
2793 struct ata_port *ap = qc->ap;
2794 struct scatterlist *sg = qc->__sg;
2795 int dir = qc->dma_dir;
2796 void *pad_buf = NULL;
2797
2798 WARN_ON(!(qc->flags & ATA_QCFLAG_DMAMAP));
2799 WARN_ON(sg == NULL);
2800
2801 if (qc->flags & ATA_QCFLAG_SINGLE)
2802 WARN_ON(qc->n_elem > 1);
2803
2804 VPRINTK("unmapping %u sg elements\n", qc->n_elem);
2805
2806 /* if we padded the buffer out to 32-bit bound, and data
2807 * xfer direction is from-device, we must copy from the
2808 * pad buffer back into the supplied buffer
2809 */
2810 if (qc->pad_len && !(qc->tf.flags & ATA_TFLAG_WRITE))
2811 pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
2812
2813 if (qc->flags & ATA_QCFLAG_SG) {
2814 if (qc->n_elem)
2815 dma_unmap_sg(ap->dev, sg, qc->n_elem, dir);
2816 /* restore last sg */
2817 sg[qc->orig_n_elem - 1].length += qc->pad_len;
2818 if (pad_buf) {
2819 struct scatterlist *psg = &qc->pad_sgent;
2820 void *addr = kmap_atomic(psg->page, KM_IRQ0);
2821 memcpy(addr + psg->offset, pad_buf, qc->pad_len);
2822 kunmap_atomic(addr, KM_IRQ0);
2823 }
2824 } else {
2825 if (qc->n_elem)
2826 dma_unmap_single(ap->dev,
2827 sg_dma_address(&sg[0]), sg_dma_len(&sg[0]),
2828 dir);
2829 /* restore sg */
2830 sg->length += qc->pad_len;
2831 if (pad_buf)
2832 memcpy(qc->buf_virt + sg->length - qc->pad_len,
2833 pad_buf, qc->pad_len);
2834 }
2835
2836 qc->flags &= ~ATA_QCFLAG_DMAMAP;
2837 qc->__sg = NULL;
2838 }
2839
2840 /**
2841 * ata_fill_sg - Fill PCI IDE PRD table
2842 * @qc: Metadata associated with taskfile to be transferred
2843 *
2844 * Fill PCI IDE PRD (scatter-gather) table with segments
2845 * associated with the current disk command.
2846 *
2847 * LOCKING:
2848 * spin_lock_irqsave(host_set lock)
2849 *
2850 */
2851 static void ata_fill_sg(struct ata_queued_cmd *qc)
2852 {
2853 struct ata_port *ap = qc->ap;
2854 struct scatterlist *sg;
2855 unsigned int idx;
2856
2857 WARN_ON(qc->__sg == NULL);
2858 WARN_ON(qc->n_elem == 0 && qc->pad_len == 0);
2859
2860 idx = 0;
2861 ata_for_each_sg(sg, qc) {
2862 u32 addr, offset;
2863 u32 sg_len, len;
2864
2865 /* determine if physical DMA addr spans 64K boundary.
2866 * Note h/w doesn't support 64-bit, so we unconditionally
2867 * truncate dma_addr_t to u32.
2868 */
2869 addr = (u32) sg_dma_address(sg);
2870 sg_len = sg_dma_len(sg);
2871
2872 while (sg_len) {
2873 offset = addr & 0xffff;
2874 len = sg_len;
2875 if ((offset + sg_len) > 0x10000)
2876 len = 0x10000 - offset;
2877
2878 ap->prd[idx].addr = cpu_to_le32(addr);
2879 ap->prd[idx].flags_len = cpu_to_le32(len & 0xffff);
2880 VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", idx, addr, len);
2881
2882 idx++;
2883 sg_len -= len;
2884 addr += len;
2885 }
2886 }
2887
2888 if (idx)
2889 ap->prd[idx - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT);
2890 }
2891 /**
2892 * ata_check_atapi_dma - Check whether ATAPI DMA can be supported
2893 * @qc: Metadata associated with taskfile to check
2894 *
2895 * Allow low-level driver to filter ATA PACKET commands, returning
2896 * a status indicating whether or not it is OK to use DMA for the
2897 * supplied PACKET command.
2898 *
2899 * LOCKING:
2900 * spin_lock_irqsave(host_set lock)
2901 *
2902 * RETURNS: 0 when ATAPI DMA can be used
2903 * nonzero otherwise
2904 */
2905 int ata_check_atapi_dma(struct ata_queued_cmd *qc)
2906 {
2907 struct ata_port *ap = qc->ap;
2908 int rc = 0; /* Assume ATAPI DMA is OK by default */
2909
2910 if (ap->ops->check_atapi_dma)
2911 rc = ap->ops->check_atapi_dma(qc);
2912
2913 return rc;
2914 }
2915 /**
2916 * ata_qc_prep - Prepare taskfile for submission
2917 * @qc: Metadata associated with taskfile to be prepared
2918 *
2919 * Prepare ATA taskfile for submission.
2920 *
2921 * LOCKING:
2922 * spin_lock_irqsave(host_set lock)
2923 */
2924 void ata_qc_prep(struct ata_queued_cmd *qc)
2925 {
2926 if (!(qc->flags & ATA_QCFLAG_DMAMAP))
2927 return;
2928
2929 ata_fill_sg(qc);
2930 }
2931
2932 void ata_noop_qc_prep(struct ata_queued_cmd *qc) { }
2933
2934 /**
2935 * ata_sg_init_one - Associate command with memory buffer
2936 * @qc: Command to be associated
2937 * @buf: Memory buffer
2938 * @buflen: Length of memory buffer, in bytes.
2939 *
2940 * Initialize the data-related elements of queued_cmd @qc
2941 * to point to a single memory buffer, @buf of byte length @buflen.
2942 *
2943 * LOCKING:
2944 * spin_lock_irqsave(host_set lock)
2945 */
2946
2947 void ata_sg_init_one(struct ata_queued_cmd *qc, void *buf, unsigned int buflen)
2948 {
2949 struct scatterlist *sg;
2950
2951 qc->flags |= ATA_QCFLAG_SINGLE;
2952
2953 memset(&qc->sgent, 0, sizeof(qc->sgent));
2954 qc->__sg = &qc->sgent;
2955 qc->n_elem = 1;
2956 qc->orig_n_elem = 1;
2957 qc->buf_virt = buf;
2958
2959 sg = qc->__sg;
2960 sg_init_one(sg, buf, buflen);
2961 }
2962
2963 /**
2964 * ata_sg_init - Associate command with scatter-gather table.
2965 * @qc: Command to be associated
2966 * @sg: Scatter-gather table.
2967 * @n_elem: Number of elements in s/g table.
2968 *
2969 * Initialize the data-related elements of queued_cmd @qc
2970 * to point to a scatter-gather table @sg, containing @n_elem
2971 * elements.
2972 *
2973 * LOCKING:
2974 * spin_lock_irqsave(host_set lock)
2975 */
2976
2977 void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg,
2978 unsigned int n_elem)
2979 {
2980 qc->flags |= ATA_QCFLAG_SG;
2981 qc->__sg = sg;
2982 qc->n_elem = n_elem;
2983 qc->orig_n_elem = n_elem;
2984 }
2985
2986 /**
2987 * ata_sg_setup_one - DMA-map the memory buffer associated with a command.
2988 * @qc: Command with memory buffer to be mapped.
2989 *
2990 * DMA-map the memory buffer associated with queued_cmd @qc.
2991 *
2992 * LOCKING:
2993 * spin_lock_irqsave(host_set lock)
2994 *
2995 * RETURNS:
2996 * Zero on success, negative on error.
2997 */
2998
2999 static int ata_sg_setup_one(struct ata_queued_cmd *qc)
3000 {
3001 struct ata_port *ap = qc->ap;
3002 int dir = qc->dma_dir;
3003 struct scatterlist *sg = qc->__sg;
3004 dma_addr_t dma_address;
3005 int trim_sg = 0;
3006
3007 /* we must lengthen transfers to end on a 32-bit boundary */
3008 qc->pad_len = sg->length & 3;
3009 if (qc->pad_len) {
3010 void *pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
3011 struct scatterlist *psg = &qc->pad_sgent;
3012
3013 WARN_ON(qc->dev->class != ATA_DEV_ATAPI);
3014
3015 memset(pad_buf, 0, ATA_DMA_PAD_SZ);
3016
3017 if (qc->tf.flags & ATA_TFLAG_WRITE)
3018 memcpy(pad_buf, qc->buf_virt + sg->length - qc->pad_len,
3019 qc->pad_len);
3020
3021 sg_dma_address(psg) = ap->pad_dma + (qc->tag * ATA_DMA_PAD_SZ);
3022 sg_dma_len(psg) = ATA_DMA_PAD_SZ;
3023 /* trim sg */
3024 sg->length -= qc->pad_len;
3025 if (sg->length == 0)
3026 trim_sg = 1;
3027
3028 DPRINTK("padding done, sg->length=%u pad_len=%u\n",
3029 sg->length, qc->pad_len);
3030 }
3031
3032 if (trim_sg) {
3033 qc->n_elem--;
3034 goto skip_map;
3035 }
3036
3037 dma_address = dma_map_single(ap->dev, qc->buf_virt,
3038 sg->length, dir);
3039 if (dma_mapping_error(dma_address)) {
3040 /* restore sg */
3041 sg->length += qc->pad_len;
3042 return -1;
3043 }
3044
3045 sg_dma_address(sg) = dma_address;
3046 sg_dma_len(sg) = sg->length;
3047
3048 skip_map:
3049 DPRINTK("mapped buffer of %d bytes for %s\n", sg_dma_len(sg),
3050 qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
3051
3052 return 0;
3053 }
3054
3055 /**
3056 * ata_sg_setup - DMA-map the scatter-gather table associated with a command.
3057 * @qc: Command with scatter-gather table to be mapped.
3058 *
3059 * DMA-map the scatter-gather table associated with queued_cmd @qc.
3060 *
3061 * LOCKING:
3062 * spin_lock_irqsave(host_set lock)
3063 *
3064 * RETURNS:
3065 * Zero on success, negative on error.
3066 *
3067 */
3068
3069 static int ata_sg_setup(struct ata_queued_cmd *qc)
3070 {
3071 struct ata_port *ap = qc->ap;
3072 struct scatterlist *sg = qc->__sg;
3073 struct scatterlist *lsg = &sg[qc->n_elem - 1];
3074 int n_elem, pre_n_elem, dir, trim_sg = 0;
3075
3076 VPRINTK("ENTER, ata%u\n", ap->id);
3077 WARN_ON(!(qc->flags & ATA_QCFLAG_SG));
3078
3079 /* we must lengthen transfers to end on a 32-bit boundary */
3080 qc->pad_len = lsg->length & 3;
3081 if (qc->pad_len) {
3082 void *pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
3083 struct scatterlist *psg = &qc->pad_sgent;
3084 unsigned int offset;
3085
3086 WARN_ON(qc->dev->class != ATA_DEV_ATAPI);
3087
3088 memset(pad_buf, 0, ATA_DMA_PAD_SZ);
3089
3090 /*
3091 * psg->page/offset are used to copy to-be-written
3092 * data in this function or read data in ata_sg_clean.
3093 */
3094 offset = lsg->offset + lsg->length - qc->pad_len;
3095 psg->page = nth_page(lsg->page, offset >> PAGE_SHIFT);
3096 psg->offset = offset_in_page(offset);
3097
3098 if (qc->tf.flags & ATA_TFLAG_WRITE) {
3099 void *addr = kmap_atomic(psg->page, KM_IRQ0);
3100 memcpy(pad_buf, addr + psg->offset, qc->pad_len);
3101 kunmap_atomic(addr, KM_IRQ0);
3102 }
3103
3104 sg_dma_address(psg) = ap->pad_dma + (qc->tag * ATA_DMA_PAD_SZ);
3105 sg_dma_len(psg) = ATA_DMA_PAD_SZ;
3106 /* trim last sg */
3107 lsg->length -= qc->pad_len;
3108 if (lsg->length == 0)
3109 trim_sg = 1;
3110
3111 DPRINTK("padding done, sg[%d].length=%u pad_len=%u\n",
3112 qc->n_elem - 1, lsg->length, qc->pad_len);
3113 }
3114
3115 pre_n_elem = qc->n_elem;
3116 if (trim_sg && pre_n_elem)
3117 pre_n_elem--;
3118
3119 if (!pre_n_elem) {
3120 n_elem = 0;
3121 goto skip_map;
3122 }
3123
3124 dir = qc->dma_dir;
3125 n_elem = dma_map_sg(ap->dev, sg, pre_n_elem, dir);
3126 if (n_elem < 1) {
3127 /* restore last sg */
3128 lsg->length += qc->pad_len;
3129 return -1;
3130 }
3131
3132 DPRINTK("%d sg elements mapped\n", n_elem);
3133
3134 skip_map:
3135 qc->n_elem = n_elem;
3136
3137 return 0;
3138 }
3139
3140 /**
3141 * ata_poll_qc_complete - turn irq back on and finish qc
3142 * @qc: Command to complete
3143 * @err_mask: ATA status register content
3144 *
3145 * LOCKING:
3146 * None. (grabs host lock)
3147 */
3148
3149 void ata_poll_qc_complete(struct ata_queued_cmd *qc)
3150 {
3151 struct ata_port *ap = qc->ap;
3152 unsigned long flags;
3153
3154 spin_lock_irqsave(&ap->host_set->lock, flags);
3155 ap->flags &= ~ATA_FLAG_NOINTR;
3156 ata_irq_on(ap);
3157 ata_qc_complete(qc);
3158 spin_unlock_irqrestore(&ap->host_set->lock, flags);
3159 }
3160
3161 /**
3162 * ata_pio_poll - poll using PIO, depending on current state
3163 * @ap: the target ata_port
3164 *
3165 * LOCKING:
3166 * None. (executing in kernel thread context)
3167 *
3168 * RETURNS:
3169 * timeout value to use
3170 */
3171
3172 static unsigned long ata_pio_poll(struct ata_port *ap)
3173 {
3174 struct ata_queued_cmd *qc;
3175 u8 status;
3176 unsigned int poll_state = HSM_ST_UNKNOWN;
3177 unsigned int reg_state = HSM_ST_UNKNOWN;
3178
3179 qc = ata_qc_from_tag(ap, ap->active_tag);
3180 WARN_ON(qc == NULL);
3181
3182 switch (ap->hsm_task_state) {
3183 case HSM_ST:
3184 case HSM_ST_POLL:
3185 poll_state = HSM_ST_POLL;
3186 reg_state = HSM_ST;
3187 break;
3188 case HSM_ST_LAST:
3189 case HSM_ST_LAST_POLL:
3190 poll_state = HSM_ST_LAST_POLL;
3191 reg_state = HSM_ST_LAST;
3192 break;
3193 default:
3194 BUG();
3195 break;
3196 }
3197
3198 status = ata_chk_status(ap);
3199 if (status & ATA_BUSY) {
3200 if (time_after(jiffies, ap->pio_task_timeout)) {
3201 qc->err_mask |= AC_ERR_TIMEOUT;
3202 ap->hsm_task_state = HSM_ST_TMOUT;
3203 return 0;
3204 }
3205 ap->hsm_task_state = poll_state;
3206 return ATA_SHORT_PAUSE;
3207 }
3208
3209 ap->hsm_task_state = reg_state;
3210 return 0;
3211 }
3212
3213 /**
3214 * ata_pio_complete - check if drive is busy or idle
3215 * @ap: the target ata_port
3216 *
3217 * LOCKING:
3218 * None. (executing in kernel thread context)
3219 *
3220 * RETURNS:
3221 * Non-zero if qc completed, zero otherwise.
3222 */
3223
3224 static int ata_pio_complete (struct ata_port *ap)
3225 {
3226 struct ata_queued_cmd *qc;
3227 u8 drv_stat;
3228
3229 /*
3230 * This is purely heuristic. This is a fast path. Sometimes when
3231 * we enter, BSY will be cleared in a chk-status or two. If not,
3232 * the drive is probably seeking or something. Snooze for a couple
3233 * msecs, then chk-status again. If still busy, fall back to
3234 * HSM_ST_POLL state.
3235 */
3236 drv_stat = ata_busy_wait(ap, ATA_BUSY, 10);
3237 if (drv_stat & ATA_BUSY) {
3238 msleep(2);
3239 drv_stat = ata_busy_wait(ap, ATA_BUSY, 10);
3240 if (drv_stat & ATA_BUSY) {
3241 ap->hsm_task_state = HSM_ST_LAST_POLL;
3242 ap->pio_task_timeout = jiffies + ATA_TMOUT_PIO;
3243 return 0;
3244 }
3245 }
3246
3247 qc = ata_qc_from_tag(ap, ap->active_tag);
3248 WARN_ON(qc == NULL);
3249
3250 drv_stat = ata_wait_idle(ap);
3251 if (!ata_ok(drv_stat)) {
3252 qc->err_mask |= __ac_err_mask(drv_stat);
3253 ap->hsm_task_state = HSM_ST_ERR;
3254 return 0;
3255 }
3256
3257 ap->hsm_task_state = HSM_ST_IDLE;
3258
3259 WARN_ON(qc->err_mask);
3260 ata_poll_qc_complete(qc);
3261
3262 /* another command may start at this point */
3263
3264 return 1;
3265 }
3266
3267
3268 /**
3269 * swap_buf_le16 - swap halves of 16-bit words in place
3270 * @buf: Buffer to swap
3271 * @buf_words: Number of 16-bit words in buffer.
3272 *
3273 * Swap halves of 16-bit words if needed to convert from
3274 * little-endian byte order to native cpu byte order, or
3275 * vice-versa.
3276 *
3277 * LOCKING:
3278 * Inherited from caller.
3279 */
3280 void swap_buf_le16(u16 *buf, unsigned int buf_words)
3281 {
3282 #ifdef __BIG_ENDIAN
3283 unsigned int i;
3284
3285 for (i = 0; i < buf_words; i++)
3286 buf[i] = le16_to_cpu(buf[i]);
3287 #endif /* __BIG_ENDIAN */
3288 }
3289
3290 /**
3291 * ata_mmio_data_xfer - Transfer data by MMIO
3292 * @ap: port to read/write
3293 * @buf: data buffer
3294 * @buflen: buffer length
3295 * @write_data: read/write
3296 *
3297 * Transfer data from/to the device data register by MMIO.
3298 *
3299 * LOCKING:
3300 * Inherited from caller.
3301 */
3302
3303 static void ata_mmio_data_xfer(struct ata_port *ap, unsigned char *buf,
3304 unsigned int buflen, int write_data)
3305 {
3306 unsigned int i;
3307 unsigned int words = buflen >> 1;
3308 u16 *buf16 = (u16 *) buf;
3309 void __iomem *mmio = (void __iomem *)ap->ioaddr.data_addr;
3310
3311 /* Transfer multiple of 2 bytes */
3312 if (write_data) {
3313 for (i = 0; i < words; i++)
3314 writew(le16_to_cpu(buf16[i]), mmio);
3315 } else {
3316 for (i = 0; i < words; i++)
3317 buf16[i] = cpu_to_le16(readw(mmio));
3318 }
3319
3320 /* Transfer trailing 1 byte, if any. */
3321 if (unlikely(buflen & 0x01)) {
3322 u16 align_buf[1] = { 0 };
3323 unsigned char *trailing_buf = buf + buflen - 1;
3324
3325 if (write_data) {
3326 memcpy(align_buf, trailing_buf, 1);
3327 writew(le16_to_cpu(align_buf[0]), mmio);
3328 } else {
3329 align_buf[0] = cpu_to_le16(readw(mmio));
3330 memcpy(trailing_buf, align_buf, 1);
3331 }
3332 }
3333 }
3334
3335 /**
3336 * ata_pio_data_xfer - Transfer data by PIO
3337 * @ap: port to read/write
3338 * @buf: data buffer
3339 * @buflen: buffer length
3340 * @write_data: read/write
3341 *
3342 * Transfer data from/to the device data register by PIO.
3343 *
3344 * LOCKING:
3345 * Inherited from caller.
3346 */
3347
3348 static void ata_pio_data_xfer(struct ata_port *ap, unsigned char *buf,
3349 unsigned int buflen, int write_data)
3350 {
3351 unsigned int words = buflen >> 1;
3352
3353 /* Transfer multiple of 2 bytes */
3354 if (write_data)
3355 outsw(ap->ioaddr.data_addr, buf, words);
3356 else
3357 insw(ap->ioaddr.data_addr, buf, words);
3358
3359 /* Transfer trailing 1 byte, if any. */
3360 if (unlikely(buflen & 0x01)) {
3361 u16 align_buf[1] = { 0 };
3362 unsigned char *trailing_buf = buf + buflen - 1;
3363
3364 if (write_data) {
3365 memcpy(align_buf, trailing_buf, 1);
3366 outw(le16_to_cpu(align_buf[0]), ap->ioaddr.data_addr);
3367 } else {
3368 align_buf[0] = cpu_to_le16(inw(ap->ioaddr.data_addr));
3369 memcpy(trailing_buf, align_buf, 1);
3370 }
3371 }
3372 }
3373
3374 /**
3375 * ata_data_xfer - Transfer data from/to the data register.
3376 * @ap: port to read/write
3377 * @buf: data buffer
3378 * @buflen: buffer length
3379 * @do_write: read/write
3380 *
3381 * Transfer data from/to the device data register.
3382 *
3383 * LOCKING:
3384 * Inherited from caller.
3385 */
3386
3387 static void ata_data_xfer(struct ata_port *ap, unsigned char *buf,
3388 unsigned int buflen, int do_write)
3389 {
3390 /* Make the crap hardware pay the costs not the good stuff */
3391 if (unlikely(ap->flags & ATA_FLAG_IRQ_MASK)) {
3392 unsigned long flags;
3393 local_irq_save(flags);
3394 if (ap->flags & ATA_FLAG_MMIO)
3395 ata_mmio_data_xfer(ap, buf, buflen, do_write);
3396 else
3397 ata_pio_data_xfer(ap, buf, buflen, do_write);
3398 local_irq_restore(flags);
3399 } else {
3400 if (ap->flags & ATA_FLAG_MMIO)
3401 ata_mmio_data_xfer(ap, buf, buflen, do_write);
3402 else
3403 ata_pio_data_xfer(ap, buf, buflen, do_write);
3404 }
3405 }
3406
3407 /**
3408 * ata_pio_sector - Transfer ATA_SECT_SIZE (512 bytes) of data.
3409 * @qc: Command on going
3410 *
3411 * Transfer ATA_SECT_SIZE of data from/to the ATA device.
3412 *
3413 * LOCKING:
3414 * Inherited from caller.
3415 */
3416
3417 static void ata_pio_sector(struct ata_queued_cmd *qc)
3418 {
3419 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
3420 struct scatterlist *sg = qc->__sg;
3421 struct ata_port *ap = qc->ap;
3422 struct page *page;
3423 unsigned int offset;
3424 unsigned char *buf;
3425
3426 if (qc->cursect == (qc->nsect - 1))
3427 ap->hsm_task_state = HSM_ST_LAST;
3428
3429 page = sg[qc->cursg].page;
3430 offset = sg[qc->cursg].offset + qc->cursg_ofs * ATA_SECT_SIZE;
3431
3432 /* get the current page and offset */
3433 page = nth_page(page, (offset >> PAGE_SHIFT));
3434 offset %= PAGE_SIZE;
3435
3436 buf = kmap(page) + offset;
3437
3438 qc->cursect++;
3439 qc->cursg_ofs++;
3440
3441 if ((qc->cursg_ofs * ATA_SECT_SIZE) == (&sg[qc->cursg])->length) {
3442 qc->cursg++;
3443 qc->cursg_ofs = 0;
3444 }
3445
3446 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
3447
3448 /* do the actual data transfer */
3449 do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
3450 ata_data_xfer(ap, buf, ATA_SECT_SIZE, do_write);
3451
3452 kunmap(page);
3453 }
3454
3455 /**
3456 * __atapi_pio_bytes - Transfer data from/to the ATAPI device.
3457 * @qc: Command on going
3458 * @bytes: number of bytes
3459 *
3460 * Transfer Transfer data from/to the ATAPI device.
3461 *
3462 * LOCKING:
3463 * Inherited from caller.
3464 *
3465 */
3466
3467 static void __atapi_pio_bytes(struct ata_queued_cmd *qc, unsigned int bytes)
3468 {
3469 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
3470 struct scatterlist *sg = qc->__sg;
3471 struct ata_port *ap = qc->ap;
3472 struct page *page;
3473 unsigned char *buf;
3474 unsigned int offset, count;
3475
3476 if (qc->curbytes + bytes >= qc->nbytes)
3477 ap->hsm_task_state = HSM_ST_LAST;
3478
3479 next_sg:
3480 if (unlikely(qc->cursg >= qc->n_elem)) {
3481 /*
3482 * The end of qc->sg is reached and the device expects
3483 * more data to transfer. In order not to overrun qc->sg
3484 * and fulfill length specified in the byte count register,
3485 * - for read case, discard trailing data from the device
3486 * - for write case, padding zero data to the device
3487 */
3488 u16 pad_buf[1] = { 0 };
3489 unsigned int words = bytes >> 1;
3490 unsigned int i;
3491
3492 if (words) /* warning if bytes > 1 */
3493 printk(KERN_WARNING "ata%u: %u bytes trailing data\n",
3494 ap->id, bytes);
3495
3496 for (i = 0; i < words; i++)
3497 ata_data_xfer(ap, (unsigned char*)pad_buf, 2, do_write);
3498
3499 ap->hsm_task_state = HSM_ST_LAST;
3500 return;
3501 }
3502
3503 sg = &qc->__sg[qc->cursg];
3504
3505 page = sg->page;
3506 offset = sg->offset + qc->cursg_ofs;
3507
3508 /* get the current page and offset */
3509 page = nth_page(page, (offset >> PAGE_SHIFT));
3510 offset %= PAGE_SIZE;
3511
3512 /* don't overrun current sg */
3513 count = min(sg->length - qc->cursg_ofs, bytes);
3514
3515 /* don't cross page boundaries */
3516 count = min(count, (unsigned int)PAGE_SIZE - offset);
3517
3518 buf = kmap(page) + offset;
3519
3520 bytes -= count;
3521 qc->curbytes += count;
3522 qc->cursg_ofs += count;
3523
3524 if (qc->cursg_ofs == sg->length) {
3525 qc->cursg++;
3526 qc->cursg_ofs = 0;
3527 }
3528
3529 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
3530
3531 /* do the actual data transfer */
3532 ata_data_xfer(ap, buf, count, do_write);
3533
3534 kunmap(page);
3535
3536 if (bytes)
3537 goto next_sg;
3538 }
3539
3540 /**
3541 * atapi_pio_bytes - Transfer data from/to the ATAPI device.
3542 * @qc: Command on going
3543 *
3544 * Transfer Transfer data from/to the ATAPI device.
3545 *
3546 * LOCKING:
3547 * Inherited from caller.
3548 */
3549
3550 static void atapi_pio_bytes(struct ata_queued_cmd *qc)
3551 {
3552 struct ata_port *ap = qc->ap;
3553 struct ata_device *dev = qc->dev;
3554 unsigned int ireason, bc_lo, bc_hi, bytes;
3555 int i_write, do_write = (qc->tf.flags & ATA_TFLAG_WRITE) ? 1 : 0;
3556
3557 ap->ops->tf_read(ap, &qc->tf);
3558 ireason = qc->tf.nsect;
3559 bc_lo = qc->tf.lbam;
3560 bc_hi = qc->tf.lbah;
3561 bytes = (bc_hi << 8) | bc_lo;
3562
3563 /* shall be cleared to zero, indicating xfer of data */
3564 if (ireason & (1 << 0))
3565 goto err_out;
3566
3567 /* make sure transfer direction matches expected */
3568 i_write = ((ireason & (1 << 1)) == 0) ? 1 : 0;
3569 if (do_write != i_write)
3570 goto err_out;
3571
3572 __atapi_pio_bytes(qc, bytes);
3573
3574 return;
3575
3576 err_out:
3577 printk(KERN_INFO "ata%u: dev %u: ATAPI check failed\n",
3578 ap->id, dev->devno);
3579 qc->err_mask |= AC_ERR_HSM;
3580 ap->hsm_task_state = HSM_ST_ERR;
3581 }
3582
3583 /**
3584 * ata_pio_block - start PIO on a block
3585 * @ap: the target ata_port
3586 *
3587 * LOCKING:
3588 * None. (executing in kernel thread context)
3589 */
3590
3591 static void ata_pio_block(struct ata_port *ap)
3592 {
3593 struct ata_queued_cmd *qc;
3594 u8 status;
3595
3596 /*
3597 * This is purely heuristic. This is a fast path.
3598 * Sometimes when we enter, BSY will be cleared in
3599 * a chk-status or two. If not, the drive is probably seeking
3600 * or something. Snooze for a couple msecs, then
3601 * chk-status again. If still busy, fall back to
3602 * HSM_ST_POLL state.
3603 */
3604 status = ata_busy_wait(ap, ATA_BUSY, 5);
3605 if (status & ATA_BUSY) {
3606 msleep(2);
3607 status = ata_busy_wait(ap, ATA_BUSY, 10);
3608 if (status & ATA_BUSY) {
3609 ap->hsm_task_state = HSM_ST_POLL;
3610 ap->pio_task_timeout = jiffies + ATA_TMOUT_PIO;
3611 return;
3612 }
3613 }
3614
3615 qc = ata_qc_from_tag(ap, ap->active_tag);
3616 WARN_ON(qc == NULL);
3617
3618 /* check error */
3619 if (status & (ATA_ERR | ATA_DF)) {
3620 qc->err_mask |= AC_ERR_DEV;
3621 ap->hsm_task_state = HSM_ST_ERR;
3622 return;
3623 }
3624
3625 /* transfer data if any */
3626 if (is_atapi_taskfile(&qc->tf)) {
3627 /* DRQ=0 means no more data to transfer */
3628 if ((status & ATA_DRQ) == 0) {
3629 ap->hsm_task_state = HSM_ST_LAST;
3630 return;
3631 }
3632
3633 atapi_pio_bytes(qc);
3634 } else {
3635 /* handle BSY=0, DRQ=0 as error */
3636 if ((status & ATA_DRQ) == 0) {
3637 qc->err_mask |= AC_ERR_HSM;
3638 ap->hsm_task_state = HSM_ST_ERR;
3639 return;
3640 }
3641
3642 ata_pio_sector(qc);
3643 }
3644 }
3645
3646 static void ata_pio_error(struct ata_port *ap)
3647 {
3648 struct ata_queued_cmd *qc;
3649
3650 qc = ata_qc_from_tag(ap, ap->active_tag);
3651 WARN_ON(qc == NULL);
3652
3653 if (qc->tf.command != ATA_CMD_PACKET)
3654 printk(KERN_WARNING "ata%u: PIO error\n", ap->id);
3655
3656 /* make sure qc->err_mask is available to
3657 * know what's wrong and recover
3658 */
3659 WARN_ON(qc->err_mask == 0);
3660
3661 ap->hsm_task_state = HSM_ST_IDLE;
3662
3663 ata_poll_qc_complete(qc);
3664 }
3665
3666 static void ata_pio_task(void *_data)
3667 {
3668 struct ata_port *ap = _data;
3669 unsigned long timeout;
3670 int qc_completed;
3671
3672 fsm_start:
3673 timeout = 0;
3674 qc_completed = 0;
3675
3676 switch (ap->hsm_task_state) {
3677 case HSM_ST_IDLE:
3678 return;
3679
3680 case HSM_ST:
3681 ata_pio_block(ap);
3682 break;
3683
3684 case HSM_ST_LAST:
3685 qc_completed = ata_pio_complete(ap);
3686 break;
3687
3688 case HSM_ST_POLL:
3689 case HSM_ST_LAST_POLL:
3690 timeout = ata_pio_poll(ap);
3691 break;
3692
3693 case HSM_ST_TMOUT:
3694 case HSM_ST_ERR:
3695 ata_pio_error(ap);
3696 return;
3697 }
3698
3699 if (timeout)
3700 ata_port_queue_task(ap, ata_pio_task, ap, timeout);
3701 else if (!qc_completed)
3702 goto fsm_start;
3703 }
3704
3705 /**
3706 * atapi_packet_task - Write CDB bytes to hardware
3707 * @_data: Port to which ATAPI device is attached.
3708 *
3709 * When device has indicated its readiness to accept
3710 * a CDB, this function is called. Send the CDB.
3711 * If DMA is to be performed, exit immediately.
3712 * Otherwise, we are in polling mode, so poll
3713 * status under operation succeeds or fails.
3714 *
3715 * LOCKING:
3716 * Kernel thread context (may sleep)
3717 */
3718
3719 static void atapi_packet_task(void *_data)
3720 {
3721 struct ata_port *ap = _data;
3722 struct ata_queued_cmd *qc;
3723 u8 status;
3724
3725 qc = ata_qc_from_tag(ap, ap->active_tag);
3726 WARN_ON(qc == NULL);
3727 WARN_ON(!(qc->flags & ATA_QCFLAG_ACTIVE));
3728
3729 /* sleep-wait for BSY to clear */
3730 DPRINTK("busy wait\n");
3731 if (ata_busy_sleep(ap, ATA_TMOUT_CDB_QUICK, ATA_TMOUT_CDB)) {
3732 qc->err_mask |= AC_ERR_TIMEOUT;
3733 goto err_out;
3734 }
3735
3736 /* make sure DRQ is set */
3737 status = ata_chk_status(ap);
3738 if ((status & (ATA_BUSY | ATA_DRQ)) != ATA_DRQ) {
3739 qc->err_mask |= AC_ERR_HSM;
3740 goto err_out;
3741 }
3742
3743 /* send SCSI cdb */
3744 DPRINTK("send cdb\n");
3745 WARN_ON(qc->dev->cdb_len < 12);
3746
3747 if (qc->tf.protocol == ATA_PROT_ATAPI_DMA ||
3748 qc->tf.protocol == ATA_PROT_ATAPI_NODATA) {
3749 unsigned long flags;
3750
3751 /* Once we're done issuing command and kicking bmdma,
3752 * irq handler takes over. To not lose irq, we need
3753 * to clear NOINTR flag before sending cdb, but
3754 * interrupt handler shouldn't be invoked before we're
3755 * finished. Hence, the following locking.
3756 */
3757 spin_lock_irqsave(&ap->host_set->lock, flags);
3758 ap->flags &= ~ATA_FLAG_NOINTR;
3759 ata_data_xfer(ap, qc->cdb, qc->dev->cdb_len, 1);
3760 if (qc->tf.protocol == ATA_PROT_ATAPI_DMA)
3761 ap->ops->bmdma_start(qc); /* initiate bmdma */
3762 spin_unlock_irqrestore(&ap->host_set->lock, flags);
3763 } else {
3764 ata_data_xfer(ap, qc->cdb, qc->dev->cdb_len, 1);
3765
3766 /* PIO commands are handled by polling */
3767 ap->hsm_task_state = HSM_ST;
3768 ata_port_queue_task(ap, ata_pio_task, ap, 0);
3769 }
3770
3771 return;
3772
3773 err_out:
3774 ata_poll_qc_complete(qc);
3775 }
3776
3777 /**
3778 * ata_qc_timeout - Handle timeout of queued command
3779 * @qc: Command that timed out
3780 *
3781 * Some part of the kernel (currently, only the SCSI layer)
3782 * has noticed that the active command on port @ap has not
3783 * completed after a specified length of time. Handle this
3784 * condition by disabling DMA (if necessary) and completing
3785 * transactions, with error if necessary.
3786 *
3787 * This also handles the case of the "lost interrupt", where
3788 * for some reason (possibly hardware bug, possibly driver bug)
3789 * an interrupt was not delivered to the driver, even though the
3790 * transaction completed successfully.
3791 *
3792 * LOCKING:
3793 * Inherited from SCSI layer (none, can sleep)
3794 */
3795
3796 static void ata_qc_timeout(struct ata_queued_cmd *qc)
3797 {
3798 struct ata_port *ap = qc->ap;
3799 struct ata_host_set *host_set = ap->host_set;
3800 u8 host_stat = 0, drv_stat;
3801 unsigned long flags;
3802
3803 DPRINTK("ENTER\n");
3804
3805 ap->hsm_task_state = HSM_ST_IDLE;
3806
3807 spin_lock_irqsave(&host_set->lock, flags);
3808
3809 switch (qc->tf.protocol) {
3810
3811 case ATA_PROT_DMA:
3812 case ATA_PROT_ATAPI_DMA:
3813 host_stat = ap->ops->bmdma_status(ap);
3814
3815 /* before we do anything else, clear DMA-Start bit */
3816 ap->ops->bmdma_stop(qc);
3817
3818 /* fall through */
3819
3820 default:
3821 ata_altstatus(ap);
3822 drv_stat = ata_chk_status(ap);
3823
3824 /* ack bmdma irq events */
3825 ap->ops->irq_clear(ap);
3826
3827 printk(KERN_ERR "ata%u: command 0x%x timeout, stat 0x%x host_stat 0x%x\n",
3828 ap->id, qc->tf.command, drv_stat, host_stat);
3829
3830 /* complete taskfile transaction */
3831 qc->err_mask |= ac_err_mask(drv_stat);
3832 break;
3833 }
3834
3835 spin_unlock_irqrestore(&host_set->lock, flags);
3836
3837 ata_eh_qc_complete(qc);
3838
3839 DPRINTK("EXIT\n");
3840 }
3841
3842 /**
3843 * ata_eng_timeout - Handle timeout of queued command
3844 * @ap: Port on which timed-out command is active
3845 *
3846 * Some part of the kernel (currently, only the SCSI layer)
3847 * has noticed that the active command on port @ap has not
3848 * completed after a specified length of time. Handle this
3849 * condition by disabling DMA (if necessary) and completing
3850 * transactions, with error if necessary.
3851 *
3852 * This also handles the case of the "lost interrupt", where
3853 * for some reason (possibly hardware bug, possibly driver bug)
3854 * an interrupt was not delivered to the driver, even though the
3855 * transaction completed successfully.
3856 *
3857 * LOCKING:
3858 * Inherited from SCSI layer (none, can sleep)
3859 */
3860
3861 void ata_eng_timeout(struct ata_port *ap)
3862 {
3863 DPRINTK("ENTER\n");
3864
3865 ata_qc_timeout(ata_qc_from_tag(ap, ap->active_tag));
3866
3867 DPRINTK("EXIT\n");
3868 }
3869
3870 /**
3871 * ata_qc_new - Request an available ATA command, for queueing
3872 * @ap: Port associated with device @dev
3873 * @dev: Device from whom we request an available command structure
3874 *
3875 * LOCKING:
3876 * None.
3877 */
3878
3879 static struct ata_queued_cmd *ata_qc_new(struct ata_port *ap)
3880 {
3881 struct ata_queued_cmd *qc = NULL;
3882 unsigned int i;
3883
3884 for (i = 0; i < ATA_MAX_QUEUE; i++)
3885 if (!test_and_set_bit(i, &ap->qactive)) {
3886 qc = ata_qc_from_tag(ap, i);
3887 break;
3888 }
3889
3890 if (qc)
3891 qc->tag = i;
3892
3893 return qc;
3894 }
3895
3896 /**
3897 * ata_qc_new_init - Request an available ATA command, and initialize it
3898 * @ap: Port associated with device @dev
3899 * @dev: Device from whom we request an available command structure
3900 *
3901 * LOCKING:
3902 * None.
3903 */
3904
3905 struct ata_queued_cmd *ata_qc_new_init(struct ata_port *ap,
3906 struct ata_device *dev)
3907 {
3908 struct ata_queued_cmd *qc;
3909
3910 qc = ata_qc_new(ap);
3911 if (qc) {
3912 qc->scsicmd = NULL;
3913 qc->ap = ap;
3914 qc->dev = dev;
3915
3916 ata_qc_reinit(qc);
3917 }
3918
3919 return qc;
3920 }
3921
3922 /**
3923 * ata_qc_free - free unused ata_queued_cmd
3924 * @qc: Command to complete
3925 *
3926 * Designed to free unused ata_queued_cmd object
3927 * in case something prevents using it.
3928 *
3929 * LOCKING:
3930 * spin_lock_irqsave(host_set lock)
3931 */
3932 void ata_qc_free(struct ata_queued_cmd *qc)
3933 {
3934 struct ata_port *ap = qc->ap;
3935 unsigned int tag;
3936
3937 WARN_ON(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
3938
3939 qc->flags = 0;
3940 tag = qc->tag;
3941 if (likely(ata_tag_valid(tag))) {
3942 if (tag == ap->active_tag)
3943 ap->active_tag = ATA_TAG_POISON;
3944 qc->tag = ATA_TAG_POISON;
3945 clear_bit(tag, &ap->qactive);
3946 }
3947 }
3948
3949 void __ata_qc_complete(struct ata_queued_cmd *qc)
3950 {
3951 WARN_ON(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
3952 WARN_ON(!(qc->flags & ATA_QCFLAG_ACTIVE));
3953
3954 if (likely(qc->flags & ATA_QCFLAG_DMAMAP))
3955 ata_sg_clean(qc);
3956
3957 /* atapi: mark qc as inactive to prevent the interrupt handler
3958 * from completing the command twice later, before the error handler
3959 * is called. (when rc != 0 and atapi request sense is needed)
3960 */
3961 qc->flags &= ~ATA_QCFLAG_ACTIVE;
3962
3963 /* call completion callback */
3964 qc->complete_fn(qc);
3965 }
3966
3967 static inline int ata_should_dma_map(struct ata_queued_cmd *qc)
3968 {
3969 struct ata_port *ap = qc->ap;
3970
3971 switch (qc->tf.protocol) {
3972 case ATA_PROT_DMA:
3973 case ATA_PROT_ATAPI_DMA:
3974 return 1;
3975
3976 case ATA_PROT_ATAPI:
3977 case ATA_PROT_PIO:
3978 if (ap->flags & ATA_FLAG_PIO_DMA)
3979 return 1;
3980
3981 /* fall through */
3982
3983 default:
3984 return 0;
3985 }
3986
3987 /* never reached */
3988 }
3989
3990 /**
3991 * ata_qc_issue - issue taskfile to device
3992 * @qc: command to issue to device
3993 *
3994 * Prepare an ATA command to submission to device.
3995 * This includes mapping the data into a DMA-able
3996 * area, filling in the S/G table, and finally
3997 * writing the taskfile to hardware, starting the command.
3998 *
3999 * LOCKING:
4000 * spin_lock_irqsave(host_set lock)
4001 */
4002 void ata_qc_issue(struct ata_queued_cmd *qc)
4003 {
4004 struct ata_port *ap = qc->ap;
4005
4006 qc->ap->active_tag = qc->tag;
4007 qc->flags |= ATA_QCFLAG_ACTIVE;
4008
4009 if (ata_should_dma_map(qc)) {
4010 if (qc->flags & ATA_QCFLAG_SG) {
4011 if (ata_sg_setup(qc))
4012 goto sg_err;
4013 } else if (qc->flags & ATA_QCFLAG_SINGLE) {
4014 if (ata_sg_setup_one(qc))
4015 goto sg_err;
4016 }
4017 } else {
4018 qc->flags &= ~ATA_QCFLAG_DMAMAP;
4019 }
4020
4021 ap->ops->qc_prep(qc);
4022
4023 qc->err_mask |= ap->ops->qc_issue(qc);
4024 if (unlikely(qc->err_mask))
4025 goto err;
4026 return;
4027
4028 sg_err:
4029 qc->flags &= ~ATA_QCFLAG_DMAMAP;
4030 qc->err_mask |= AC_ERR_SYSTEM;
4031 err:
4032 ata_qc_complete(qc);
4033 }
4034
4035 /**
4036 * ata_qc_issue_prot - issue taskfile to device in proto-dependent manner
4037 * @qc: command to issue to device
4038 *
4039 * Using various libata functions and hooks, this function
4040 * starts an ATA command. ATA commands are grouped into
4041 * classes called "protocols", and issuing each type of protocol
4042 * is slightly different.
4043 *
4044 * May be used as the qc_issue() entry in ata_port_operations.
4045 *
4046 * LOCKING:
4047 * spin_lock_irqsave(host_set lock)
4048 *
4049 * RETURNS:
4050 * Zero on success, AC_ERR_* mask on failure
4051 */
4052
4053 unsigned int ata_qc_issue_prot(struct ata_queued_cmd *qc)
4054 {
4055 struct ata_port *ap = qc->ap;
4056
4057 ata_dev_select(ap, qc->dev->devno, 1, 0);
4058
4059 switch (qc->tf.protocol) {
4060 case ATA_PROT_NODATA:
4061 ata_tf_to_host(ap, &qc->tf);
4062 break;
4063
4064 case ATA_PROT_DMA:
4065 ap->ops->tf_load(ap, &qc->tf); /* load tf registers */
4066 ap->ops->bmdma_setup(qc); /* set up bmdma */
4067 ap->ops->bmdma_start(qc); /* initiate bmdma */
4068 break;
4069
4070 case ATA_PROT_PIO: /* load tf registers, initiate polling pio */
4071 ata_qc_set_polling(qc);
4072 ata_tf_to_host(ap, &qc->tf);
4073 ap->hsm_task_state = HSM_ST;
4074 ata_port_queue_task(ap, ata_pio_task, ap, 0);
4075 break;
4076
4077 case ATA_PROT_ATAPI:
4078 ata_qc_set_polling(qc);
4079 ata_tf_to_host(ap, &qc->tf);
4080 ata_port_queue_task(ap, atapi_packet_task, ap, 0);
4081 break;
4082
4083 case ATA_PROT_ATAPI_NODATA:
4084 ap->flags |= ATA_FLAG_NOINTR;
4085 ata_tf_to_host(ap, &qc->tf);
4086 ata_port_queue_task(ap, atapi_packet_task, ap, 0);
4087 break;
4088
4089 case ATA_PROT_ATAPI_DMA:
4090 ap->flags |= ATA_FLAG_NOINTR;
4091 ap->ops->tf_load(ap, &qc->tf); /* load tf registers */
4092 ap->ops->bmdma_setup(qc); /* set up bmdma */
4093 ata_port_queue_task(ap, atapi_packet_task, ap, 0);
4094 break;
4095
4096 default:
4097 WARN_ON(1);
4098 return AC_ERR_SYSTEM;
4099 }
4100
4101 return 0;
4102 }
4103
4104 /**
4105 * ata_host_intr - Handle host interrupt for given (port, task)
4106 * @ap: Port on which interrupt arrived (possibly...)
4107 * @qc: Taskfile currently active in engine
4108 *
4109 * Handle host interrupt for given queued command. Currently,
4110 * only DMA interrupts are handled. All other commands are
4111 * handled via polling with interrupts disabled (nIEN bit).
4112 *
4113 * LOCKING:
4114 * spin_lock_irqsave(host_set lock)
4115 *
4116 * RETURNS:
4117 * One if interrupt was handled, zero if not (shared irq).
4118 */
4119
4120 inline unsigned int ata_host_intr (struct ata_port *ap,
4121 struct ata_queued_cmd *qc)
4122 {
4123 u8 status, host_stat;
4124
4125 switch (qc->tf.protocol) {
4126
4127 case ATA_PROT_DMA:
4128 case ATA_PROT_ATAPI_DMA:
4129 case ATA_PROT_ATAPI:
4130 /* check status of DMA engine */
4131 host_stat = ap->ops->bmdma_status(ap);
4132 VPRINTK("ata%u: host_stat 0x%X\n", ap->id, host_stat);
4133
4134 /* if it's not our irq... */
4135 if (!(host_stat & ATA_DMA_INTR))
4136 goto idle_irq;
4137
4138 /* before we do anything else, clear DMA-Start bit */
4139 ap->ops->bmdma_stop(qc);
4140
4141 /* fall through */
4142
4143 case ATA_PROT_ATAPI_NODATA:
4144 case ATA_PROT_NODATA:
4145 /* check altstatus */
4146 status = ata_altstatus(ap);
4147 if (status & ATA_BUSY)
4148 goto idle_irq;
4149
4150 /* check main status, clearing INTRQ */
4151 status = ata_chk_status(ap);
4152 if (unlikely(status & ATA_BUSY))
4153 goto idle_irq;
4154 DPRINTK("ata%u: protocol %d (dev_stat 0x%X)\n",
4155 ap->id, qc->tf.protocol, status);
4156
4157 /* ack bmdma irq events */
4158 ap->ops->irq_clear(ap);
4159
4160 /* complete taskfile transaction */
4161 qc->err_mask |= ac_err_mask(status);
4162 ata_qc_complete(qc);
4163 break;
4164
4165 default:
4166 goto idle_irq;
4167 }
4168
4169 return 1; /* irq handled */
4170
4171 idle_irq:
4172 ap->stats.idle_irq++;
4173
4174 #ifdef ATA_IRQ_TRAP
4175 if ((ap->stats.idle_irq % 1000) == 0) {
4176 ata_irq_ack(ap, 0); /* debug trap */
4177 printk(KERN_WARNING "ata%d: irq trap\n", ap->id);
4178 return 1;
4179 }
4180 #endif
4181 return 0; /* irq not handled */
4182 }
4183
4184 /**
4185 * ata_interrupt - Default ATA host interrupt handler
4186 * @irq: irq line (unused)
4187 * @dev_instance: pointer to our ata_host_set information structure
4188 * @regs: unused
4189 *
4190 * Default interrupt handler for PCI IDE devices. Calls
4191 * ata_host_intr() for each port that is not disabled.
4192 *
4193 * LOCKING:
4194 * Obtains host_set lock during operation.
4195 *
4196 * RETURNS:
4197 * IRQ_NONE or IRQ_HANDLED.
4198 */
4199
4200 irqreturn_t ata_interrupt (int irq, void *dev_instance, struct pt_regs *regs)
4201 {
4202 struct ata_host_set *host_set = dev_instance;
4203 unsigned int i;
4204 unsigned int handled = 0;
4205 unsigned long flags;
4206
4207 /* TODO: make _irqsave conditional on x86 PCI IDE legacy mode */
4208 spin_lock_irqsave(&host_set->lock, flags);
4209
4210 for (i = 0; i < host_set->n_ports; i++) {
4211 struct ata_port *ap;
4212
4213 ap = host_set->ports[i];
4214 if (ap &&
4215 !(ap->flags & (ATA_FLAG_PORT_DISABLED | ATA_FLAG_NOINTR))) {
4216 struct ata_queued_cmd *qc;
4217
4218 qc = ata_qc_from_tag(ap, ap->active_tag);
4219 if (qc && (!(qc->tf.ctl & ATA_NIEN)) &&
4220 (qc->flags & ATA_QCFLAG_ACTIVE))
4221 handled |= ata_host_intr(ap, qc);
4222 }
4223 }
4224
4225 spin_unlock_irqrestore(&host_set->lock, flags);
4226
4227 return IRQ_RETVAL(handled);
4228 }
4229
4230
4231 /*
4232 * Execute a 'simple' command, that only consists of the opcode 'cmd' itself,
4233 * without filling any other registers
4234 */
4235 static int ata_do_simple_cmd(struct ata_port *ap, struct ata_device *dev,
4236 u8 cmd)
4237 {
4238 struct ata_taskfile tf;
4239 int err;
4240
4241 ata_tf_init(ap, &tf, dev->devno);
4242
4243 tf.command = cmd;
4244 tf.flags |= ATA_TFLAG_DEVICE;
4245 tf.protocol = ATA_PROT_NODATA;
4246
4247 err = ata_exec_internal(ap, dev, &tf, DMA_NONE, NULL, 0);
4248 if (err)
4249 printk(KERN_ERR "%s: ata command failed: %d\n",
4250 __FUNCTION__, err);
4251
4252 return err;
4253 }
4254
4255 static int ata_flush_cache(struct ata_port *ap, struct ata_device *dev)
4256 {
4257 u8 cmd;
4258
4259 if (!ata_try_flush_cache(dev))
4260 return 0;
4261
4262 if (ata_id_has_flush_ext(dev->id))
4263 cmd = ATA_CMD_FLUSH_EXT;
4264 else
4265 cmd = ATA_CMD_FLUSH;
4266
4267 return ata_do_simple_cmd(ap, dev, cmd);
4268 }
4269
4270 static int ata_standby_drive(struct ata_port *ap, struct ata_device *dev)
4271 {
4272 return ata_do_simple_cmd(ap, dev, ATA_CMD_STANDBYNOW1);
4273 }
4274
4275 static int ata_start_drive(struct ata_port *ap, struct ata_device *dev)
4276 {
4277 return ata_do_simple_cmd(ap, dev, ATA_CMD_IDLEIMMEDIATE);
4278 }
4279
4280 /**
4281 * ata_device_resume - wakeup a previously suspended devices
4282 * @ap: port the device is connected to
4283 * @dev: the device to resume
4284 *
4285 * Kick the drive back into action, by sending it an idle immediate
4286 * command and making sure its transfer mode matches between drive
4287 * and host.
4288 *
4289 */
4290 int ata_device_resume(struct ata_port *ap, struct ata_device *dev)
4291 {
4292 if (ap->flags & ATA_FLAG_SUSPENDED) {
4293 struct ata_device *failed_dev;
4294 ap->flags &= ~ATA_FLAG_SUSPENDED;
4295 while (ata_set_mode(ap, &failed_dev))
4296 ata_dev_disable(ap, failed_dev);
4297 }
4298 if (!ata_dev_enabled(dev))
4299 return 0;
4300 if (dev->class == ATA_DEV_ATA)
4301 ata_start_drive(ap, dev);
4302
4303 return 0;
4304 }
4305
4306 /**
4307 * ata_device_suspend - prepare a device for suspend
4308 * @ap: port the device is connected to
4309 * @dev: the device to suspend
4310 *
4311 * Flush the cache on the drive, if appropriate, then issue a
4312 * standbynow command.
4313 */
4314 int ata_device_suspend(struct ata_port *ap, struct ata_device *dev, pm_message_t state)
4315 {
4316 if (!ata_dev_enabled(dev))
4317 return 0;
4318 if (dev->class == ATA_DEV_ATA)
4319 ata_flush_cache(ap, dev);
4320
4321 if (state.event != PM_EVENT_FREEZE)
4322 ata_standby_drive(ap, dev);
4323 ap->flags |= ATA_FLAG_SUSPENDED;
4324 return 0;
4325 }
4326
4327 /**
4328 * ata_port_start - Set port up for dma.
4329 * @ap: Port to initialize
4330 *
4331 * Called just after data structures for each port are
4332 * initialized. Allocates space for PRD table.
4333 *
4334 * May be used as the port_start() entry in ata_port_operations.
4335 *
4336 * LOCKING:
4337 * Inherited from caller.
4338 */
4339
4340 int ata_port_start (struct ata_port *ap)
4341 {
4342 struct device *dev = ap->dev;
4343 int rc;
4344
4345 ap->prd = dma_alloc_coherent(dev, ATA_PRD_TBL_SZ, &ap->prd_dma, GFP_KERNEL);
4346 if (!ap->prd)
4347 return -ENOMEM;
4348
4349 rc = ata_pad_alloc(ap, dev);
4350 if (rc) {
4351 dma_free_coherent(dev, ATA_PRD_TBL_SZ, ap->prd, ap->prd_dma);
4352 return rc;
4353 }
4354
4355 DPRINTK("prd alloc, virt %p, dma %llx\n", ap->prd, (unsigned long long) ap->prd_dma);
4356
4357 return 0;
4358 }
4359
4360
4361 /**
4362 * ata_port_stop - Undo ata_port_start()
4363 * @ap: Port to shut down
4364 *
4365 * Frees the PRD table.
4366 *
4367 * May be used as the port_stop() entry in ata_port_operations.
4368 *
4369 * LOCKING:
4370 * Inherited from caller.
4371 */
4372
4373 void ata_port_stop (struct ata_port *ap)
4374 {
4375 struct device *dev = ap->dev;
4376
4377 dma_free_coherent(dev, ATA_PRD_TBL_SZ, ap->prd, ap->prd_dma);
4378 ata_pad_free(ap, dev);
4379 }
4380
4381 void ata_host_stop (struct ata_host_set *host_set)
4382 {
4383 if (host_set->mmio_base)
4384 iounmap(host_set->mmio_base);
4385 }
4386
4387
4388 /**
4389 * ata_host_remove - Unregister SCSI host structure with upper layers
4390 * @ap: Port to unregister
4391 * @do_unregister: 1 if we fully unregister, 0 to just stop the port
4392 *
4393 * LOCKING:
4394 * Inherited from caller.
4395 */
4396
4397 static void ata_host_remove(struct ata_port *ap, unsigned int do_unregister)
4398 {
4399 struct Scsi_Host *sh = ap->host;
4400
4401 DPRINTK("ENTER\n");
4402
4403 if (do_unregister)
4404 scsi_remove_host(sh);
4405
4406 ap->ops->port_stop(ap);
4407 }
4408
4409 /**
4410 * ata_host_init - Initialize an ata_port structure
4411 * @ap: Structure to initialize
4412 * @host: associated SCSI mid-layer structure
4413 * @host_set: Collection of hosts to which @ap belongs
4414 * @ent: Probe information provided by low-level driver
4415 * @port_no: Port number associated with this ata_port
4416 *
4417 * Initialize a new ata_port structure, and its associated
4418 * scsi_host.
4419 *
4420 * LOCKING:
4421 * Inherited from caller.
4422 */
4423
4424 static void ata_host_init(struct ata_port *ap, struct Scsi_Host *host,
4425 struct ata_host_set *host_set,
4426 const struct ata_probe_ent *ent, unsigned int port_no)
4427 {
4428 unsigned int i;
4429
4430 host->max_id = 16;
4431 host->max_lun = 1;
4432 host->max_channel = 1;
4433 host->unique_id = ata_unique_id++;
4434 host->max_cmd_len = 12;
4435
4436 ap->flags = ATA_FLAG_PORT_DISABLED;
4437 ap->id = host->unique_id;
4438 ap->host = host;
4439 ap->ctl = ATA_DEVCTL_OBS;
4440 ap->host_set = host_set;
4441 ap->dev = ent->dev;
4442 ap->port_no = port_no;
4443 ap->hard_port_no =
4444 ent->legacy_mode ? ent->hard_port_no : port_no;
4445 ap->pio_mask = ent->pio_mask;
4446 ap->mwdma_mask = ent->mwdma_mask;
4447 ap->udma_mask = ent->udma_mask;
4448 ap->flags |= ent->host_flags;
4449 ap->ops = ent->port_ops;
4450 ap->cbl = ATA_CBL_NONE;
4451 ap->active_tag = ATA_TAG_POISON;
4452 ap->last_ctl = 0xFF;
4453
4454 INIT_WORK(&ap->port_task, NULL, NULL);
4455 INIT_LIST_HEAD(&ap->eh_done_q);
4456
4457 for (i = 0; i < ATA_MAX_DEVICES; i++) {
4458 struct ata_device *dev = &ap->device[i];
4459 dev->devno = i;
4460 dev->pio_mask = UINT_MAX;
4461 dev->mwdma_mask = UINT_MAX;
4462 dev->udma_mask = UINT_MAX;
4463 }
4464
4465 #ifdef ATA_IRQ_TRAP
4466 ap->stats.unhandled_irq = 1;
4467 ap->stats.idle_irq = 1;
4468 #endif
4469
4470 memcpy(&ap->ioaddr, &ent->port[port_no], sizeof(struct ata_ioports));
4471 }
4472
4473 /**
4474 * ata_host_add - Attach low-level ATA driver to system
4475 * @ent: Information provided by low-level driver
4476 * @host_set: Collections of ports to which we add
4477 * @port_no: Port number associated with this host
4478 *
4479 * Attach low-level ATA driver to system.
4480 *
4481 * LOCKING:
4482 * PCI/etc. bus probe sem.
4483 *
4484 * RETURNS:
4485 * New ata_port on success, for NULL on error.
4486 */
4487
4488 static struct ata_port * ata_host_add(const struct ata_probe_ent *ent,
4489 struct ata_host_set *host_set,
4490 unsigned int port_no)
4491 {
4492 struct Scsi_Host *host;
4493 struct ata_port *ap;
4494 int rc;
4495
4496 DPRINTK("ENTER\n");
4497
4498 if (!ent->port_ops->probe_reset &&
4499 !(ent->host_flags & (ATA_FLAG_SATA_RESET | ATA_FLAG_SRST))) {
4500 printk(KERN_ERR "ata%u: no reset mechanism available\n",
4501 port_no);
4502 return NULL;
4503 }
4504
4505 host = scsi_host_alloc(ent->sht, sizeof(struct ata_port));
4506 if (!host)
4507 return NULL;
4508
4509 host->transportt = &ata_scsi_transport_template;
4510
4511 ap = (struct ata_port *) &host->hostdata[0];
4512
4513 ata_host_init(ap, host, host_set, ent, port_no);
4514
4515 rc = ap->ops->port_start(ap);
4516 if (rc)
4517 goto err_out;
4518
4519 return ap;
4520
4521 err_out:
4522 scsi_host_put(host);
4523 return NULL;
4524 }
4525
4526 /**
4527 * ata_device_add - Register hardware device with ATA and SCSI layers
4528 * @ent: Probe information describing hardware device to be registered
4529 *
4530 * This function processes the information provided in the probe
4531 * information struct @ent, allocates the necessary ATA and SCSI
4532 * host information structures, initializes them, and registers
4533 * everything with requisite kernel subsystems.
4534 *
4535 * This function requests irqs, probes the ATA bus, and probes
4536 * the SCSI bus.
4537 *
4538 * LOCKING:
4539 * PCI/etc. bus probe sem.
4540 *
4541 * RETURNS:
4542 * Number of ports registered. Zero on error (no ports registered).
4543 */
4544
4545 int ata_device_add(const struct ata_probe_ent *ent)
4546 {
4547 unsigned int count = 0, i;
4548 struct device *dev = ent->dev;
4549 struct ata_host_set *host_set;
4550
4551 DPRINTK("ENTER\n");
4552 /* alloc a container for our list of ATA ports (buses) */
4553 host_set = kzalloc(sizeof(struct ata_host_set) +
4554 (ent->n_ports * sizeof(void *)), GFP_KERNEL);
4555 if (!host_set)
4556 return 0;
4557 spin_lock_init(&host_set->lock);
4558
4559 host_set->dev = dev;
4560 host_set->n_ports = ent->n_ports;
4561 host_set->irq = ent->irq;
4562 host_set->mmio_base = ent->mmio_base;
4563 host_set->private_data = ent->private_data;
4564 host_set->ops = ent->port_ops;
4565 host_set->flags = ent->host_set_flags;
4566
4567 /* register each port bound to this device */
4568 for (i = 0; i < ent->n_ports; i++) {
4569 struct ata_port *ap;
4570 unsigned long xfer_mode_mask;
4571
4572 ap = ata_host_add(ent, host_set, i);
4573 if (!ap)
4574 goto err_out;
4575
4576 host_set->ports[i] = ap;
4577 xfer_mode_mask =(ap->udma_mask << ATA_SHIFT_UDMA) |
4578 (ap->mwdma_mask << ATA_SHIFT_MWDMA) |
4579 (ap->pio_mask << ATA_SHIFT_PIO);
4580
4581 /* print per-port info to dmesg */
4582 printk(KERN_INFO "ata%u: %cATA max %s cmd 0x%lX ctl 0x%lX "
4583 "bmdma 0x%lX irq %lu\n",
4584 ap->id,
4585 ap->flags & ATA_FLAG_SATA ? 'S' : 'P',
4586 ata_mode_string(xfer_mode_mask),
4587 ap->ioaddr.cmd_addr,
4588 ap->ioaddr.ctl_addr,
4589 ap->ioaddr.bmdma_addr,
4590 ent->irq);
4591
4592 ata_chk_status(ap);
4593 host_set->ops->irq_clear(ap);
4594 count++;
4595 }
4596
4597 if (!count)
4598 goto err_free_ret;
4599
4600 /* obtain irq, that is shared between channels */
4601 if (request_irq(ent->irq, ent->port_ops->irq_handler, ent->irq_flags,
4602 DRV_NAME, host_set))
4603 goto err_out;
4604
4605 /* perform each probe synchronously */
4606 DPRINTK("probe begin\n");
4607 for (i = 0; i < count; i++) {
4608 struct ata_port *ap;
4609 int rc;
4610
4611 ap = host_set->ports[i];
4612
4613 DPRINTK("ata%u: bus probe begin\n", ap->id);
4614 rc = ata_bus_probe(ap);
4615 DPRINTK("ata%u: bus probe end\n", ap->id);
4616
4617 if (rc) {
4618 /* FIXME: do something useful here?
4619 * Current libata behavior will
4620 * tear down everything when
4621 * the module is removed
4622 * or the h/w is unplugged.
4623 */
4624 }
4625
4626 rc = scsi_add_host(ap->host, dev);
4627 if (rc) {
4628 printk(KERN_ERR "ata%u: scsi_add_host failed\n",
4629 ap->id);
4630 /* FIXME: do something useful here */
4631 /* FIXME: handle unconditional calls to
4632 * scsi_scan_host and ata_host_remove, below,
4633 * at the very least
4634 */
4635 }
4636 }
4637
4638 /* probes are done, now scan each port's disk(s) */
4639 DPRINTK("host probe begin\n");
4640 for (i = 0; i < count; i++) {
4641 struct ata_port *ap = host_set->ports[i];
4642
4643 ata_scsi_scan_host(ap);
4644 }
4645
4646 dev_set_drvdata(dev, host_set);
4647
4648 VPRINTK("EXIT, returning %u\n", ent->n_ports);
4649 return ent->n_ports; /* success */
4650
4651 err_out:
4652 for (i = 0; i < count; i++) {
4653 ata_host_remove(host_set->ports[i], 1);
4654 scsi_host_put(host_set->ports[i]->host);
4655 }
4656 err_free_ret:
4657 kfree(host_set);
4658 VPRINTK("EXIT, returning 0\n");
4659 return 0;
4660 }
4661
4662 /**
4663 * ata_host_set_remove - PCI layer callback for device removal
4664 * @host_set: ATA host set that was removed
4665 *
4666 * Unregister all objects associated with this host set. Free those
4667 * objects.
4668 *
4669 * LOCKING:
4670 * Inherited from calling layer (may sleep).
4671 */
4672
4673 void ata_host_set_remove(struct ata_host_set *host_set)
4674 {
4675 struct ata_port *ap;
4676 unsigned int i;
4677
4678 for (i = 0; i < host_set->n_ports; i++) {
4679 ap = host_set->ports[i];
4680 scsi_remove_host(ap->host);
4681 }
4682
4683 free_irq(host_set->irq, host_set);
4684
4685 for (i = 0; i < host_set->n_ports; i++) {
4686 ap = host_set->ports[i];
4687
4688 ata_scsi_release(ap->host);
4689
4690 if ((ap->flags & ATA_FLAG_NO_LEGACY) == 0) {
4691 struct ata_ioports *ioaddr = &ap->ioaddr;
4692
4693 if (ioaddr->cmd_addr == 0x1f0)
4694 release_region(0x1f0, 8);
4695 else if (ioaddr->cmd_addr == 0x170)
4696 release_region(0x170, 8);
4697 }
4698
4699 scsi_host_put(ap->host);
4700 }
4701
4702 if (host_set->ops->host_stop)
4703 host_set->ops->host_stop(host_set);
4704
4705 kfree(host_set);
4706 }
4707
4708 /**
4709 * ata_scsi_release - SCSI layer callback hook for host unload
4710 * @host: libata host to be unloaded
4711 *
4712 * Performs all duties necessary to shut down a libata port...
4713 * Kill port kthread, disable port, and release resources.
4714 *
4715 * LOCKING:
4716 * Inherited from SCSI layer.
4717 *
4718 * RETURNS:
4719 * One.
4720 */
4721
4722 int ata_scsi_release(struct Scsi_Host *host)
4723 {
4724 struct ata_port *ap = (struct ata_port *) &host->hostdata[0];
4725 int i;
4726
4727 DPRINTK("ENTER\n");
4728
4729 ap->ops->port_disable(ap);
4730 ata_host_remove(ap, 0);
4731 for (i = 0; i < ATA_MAX_DEVICES; i++)
4732 kfree(ap->device[i].id);
4733
4734 DPRINTK("EXIT\n");
4735 return 1;
4736 }
4737
4738 /**
4739 * ata_std_ports - initialize ioaddr with standard port offsets.
4740 * @ioaddr: IO address structure to be initialized
4741 *
4742 * Utility function which initializes data_addr, error_addr,
4743 * feature_addr, nsect_addr, lbal_addr, lbam_addr, lbah_addr,
4744 * device_addr, status_addr, and command_addr to standard offsets
4745 * relative to cmd_addr.
4746 *
4747 * Does not set ctl_addr, altstatus_addr, bmdma_addr, or scr_addr.
4748 */
4749
4750 void ata_std_ports(struct ata_ioports *ioaddr)
4751 {
4752 ioaddr->data_addr = ioaddr->cmd_addr + ATA_REG_DATA;
4753 ioaddr->error_addr = ioaddr->cmd_addr + ATA_REG_ERR;
4754 ioaddr->feature_addr = ioaddr->cmd_addr + ATA_REG_FEATURE;
4755 ioaddr->nsect_addr = ioaddr->cmd_addr + ATA_REG_NSECT;
4756 ioaddr->lbal_addr = ioaddr->cmd_addr + ATA_REG_LBAL;
4757 ioaddr->lbam_addr = ioaddr->cmd_addr + ATA_REG_LBAM;
4758 ioaddr->lbah_addr = ioaddr->cmd_addr + ATA_REG_LBAH;
4759 ioaddr->device_addr = ioaddr->cmd_addr + ATA_REG_DEVICE;
4760 ioaddr->status_addr = ioaddr->cmd_addr + ATA_REG_STATUS;
4761 ioaddr->command_addr = ioaddr->cmd_addr + ATA_REG_CMD;
4762 }
4763
4764
4765 #ifdef CONFIG_PCI
4766
4767 void ata_pci_host_stop (struct ata_host_set *host_set)
4768 {
4769 struct pci_dev *pdev = to_pci_dev(host_set->dev);
4770
4771 pci_iounmap(pdev, host_set->mmio_base);
4772 }
4773
4774 /**
4775 * ata_pci_remove_one - PCI layer callback for device removal
4776 * @pdev: PCI device that was removed
4777 *
4778 * PCI layer indicates to libata via this hook that
4779 * hot-unplug or module unload event has occurred.
4780 * Handle this by unregistering all objects associated
4781 * with this PCI device. Free those objects. Then finally
4782 * release PCI resources and disable device.
4783 *
4784 * LOCKING:
4785 * Inherited from PCI layer (may sleep).
4786 */
4787
4788 void ata_pci_remove_one (struct pci_dev *pdev)
4789 {
4790 struct device *dev = pci_dev_to_dev(pdev);
4791 struct ata_host_set *host_set = dev_get_drvdata(dev);
4792
4793 ata_host_set_remove(host_set);
4794 pci_release_regions(pdev);
4795 pci_disable_device(pdev);
4796 dev_set_drvdata(dev, NULL);
4797 }
4798
4799 /* move to PCI subsystem */
4800 int pci_test_config_bits(struct pci_dev *pdev, const struct pci_bits *bits)
4801 {
4802 unsigned long tmp = 0;
4803
4804 switch (bits->width) {
4805 case 1: {
4806 u8 tmp8 = 0;
4807 pci_read_config_byte(pdev, bits->reg, &tmp8);
4808 tmp = tmp8;
4809 break;
4810 }
4811 case 2: {
4812 u16 tmp16 = 0;
4813 pci_read_config_word(pdev, bits->reg, &tmp16);
4814 tmp = tmp16;
4815 break;
4816 }
4817 case 4: {
4818 u32 tmp32 = 0;
4819 pci_read_config_dword(pdev, bits->reg, &tmp32);
4820 tmp = tmp32;
4821 break;
4822 }
4823
4824 default:
4825 return -EINVAL;
4826 }
4827
4828 tmp &= bits->mask;
4829
4830 return (tmp == bits->val) ? 1 : 0;
4831 }
4832
4833 int ata_pci_device_suspend(struct pci_dev *pdev, pm_message_t state)
4834 {
4835 pci_save_state(pdev);
4836 pci_disable_device(pdev);
4837 pci_set_power_state(pdev, PCI_D3hot);
4838 return 0;
4839 }
4840
4841 int ata_pci_device_resume(struct pci_dev *pdev)
4842 {
4843 pci_set_power_state(pdev, PCI_D0);
4844 pci_restore_state(pdev);
4845 pci_enable_device(pdev);
4846 pci_set_master(pdev);
4847 return 0;
4848 }
4849 #endif /* CONFIG_PCI */
4850
4851
4852 static int __init ata_init(void)
4853 {
4854 ata_wq = create_workqueue("ata");
4855 if (!ata_wq)
4856 return -ENOMEM;
4857
4858 printk(KERN_DEBUG "libata version " DRV_VERSION " loaded.\n");
4859 return 0;
4860 }
4861
4862 static void __exit ata_exit(void)
4863 {
4864 destroy_workqueue(ata_wq);
4865 }
4866
4867 module_init(ata_init);
4868 module_exit(ata_exit);
4869
4870 static unsigned long ratelimit_time;
4871 static spinlock_t ata_ratelimit_lock = SPIN_LOCK_UNLOCKED;
4872
4873 int ata_ratelimit(void)
4874 {
4875 int rc;
4876 unsigned long flags;
4877
4878 spin_lock_irqsave(&ata_ratelimit_lock, flags);
4879
4880 if (time_after(jiffies, ratelimit_time)) {
4881 rc = 1;
4882 ratelimit_time = jiffies + (HZ/5);
4883 } else
4884 rc = 0;
4885
4886 spin_unlock_irqrestore(&ata_ratelimit_lock, flags);
4887
4888 return rc;
4889 }
4890
4891 /*
4892 * libata is essentially a library of internal helper functions for
4893 * low-level ATA host controller drivers. As such, the API/ABI is
4894 * likely to change as new drivers are added and updated.
4895 * Do not depend on ABI/API stability.
4896 */
4897
4898 EXPORT_SYMBOL_GPL(ata_std_bios_param);
4899 EXPORT_SYMBOL_GPL(ata_std_ports);
4900 EXPORT_SYMBOL_GPL(ata_device_add);
4901 EXPORT_SYMBOL_GPL(ata_host_set_remove);
4902 EXPORT_SYMBOL_GPL(ata_sg_init);
4903 EXPORT_SYMBOL_GPL(ata_sg_init_one);
4904 EXPORT_SYMBOL_GPL(__ata_qc_complete);
4905 EXPORT_SYMBOL_GPL(ata_qc_issue_prot);
4906 EXPORT_SYMBOL_GPL(ata_eng_timeout);
4907 EXPORT_SYMBOL_GPL(ata_tf_load);
4908 EXPORT_SYMBOL_GPL(ata_tf_read);
4909 EXPORT_SYMBOL_GPL(ata_noop_dev_select);
4910 EXPORT_SYMBOL_GPL(ata_std_dev_select);
4911 EXPORT_SYMBOL_GPL(ata_tf_to_fis);
4912 EXPORT_SYMBOL_GPL(ata_tf_from_fis);
4913 EXPORT_SYMBOL_GPL(ata_check_status);
4914 EXPORT_SYMBOL_GPL(ata_altstatus);
4915 EXPORT_SYMBOL_GPL(ata_exec_command);
4916 EXPORT_SYMBOL_GPL(ata_port_start);
4917 EXPORT_SYMBOL_GPL(ata_port_stop);
4918 EXPORT_SYMBOL_GPL(ata_host_stop);
4919 EXPORT_SYMBOL_GPL(ata_interrupt);
4920 EXPORT_SYMBOL_GPL(ata_qc_prep);
4921 EXPORT_SYMBOL_GPL(ata_noop_qc_prep);
4922 EXPORT_SYMBOL_GPL(ata_bmdma_setup);
4923 EXPORT_SYMBOL_GPL(ata_bmdma_start);
4924 EXPORT_SYMBOL_GPL(ata_bmdma_irq_clear);
4925 EXPORT_SYMBOL_GPL(ata_bmdma_status);
4926 EXPORT_SYMBOL_GPL(ata_bmdma_stop);
4927 EXPORT_SYMBOL_GPL(ata_port_probe);
4928 EXPORT_SYMBOL_GPL(sata_phy_reset);
4929 EXPORT_SYMBOL_GPL(__sata_phy_reset);
4930 EXPORT_SYMBOL_GPL(ata_bus_reset);
4931 EXPORT_SYMBOL_GPL(ata_std_probeinit);
4932 EXPORT_SYMBOL_GPL(ata_std_softreset);
4933 EXPORT_SYMBOL_GPL(sata_std_hardreset);
4934 EXPORT_SYMBOL_GPL(ata_std_postreset);
4935 EXPORT_SYMBOL_GPL(ata_std_probe_reset);
4936 EXPORT_SYMBOL_GPL(ata_drive_probe_reset);
4937 EXPORT_SYMBOL_GPL(ata_dev_revalidate);
4938 EXPORT_SYMBOL_GPL(ata_dev_classify);
4939 EXPORT_SYMBOL_GPL(ata_dev_pair);
4940 EXPORT_SYMBOL_GPL(ata_port_disable);
4941 EXPORT_SYMBOL_GPL(ata_ratelimit);
4942 EXPORT_SYMBOL_GPL(ata_busy_sleep);
4943 EXPORT_SYMBOL_GPL(ata_port_queue_task);
4944 EXPORT_SYMBOL_GPL(ata_scsi_ioctl);
4945 EXPORT_SYMBOL_GPL(ata_scsi_queuecmd);
4946 EXPORT_SYMBOL_GPL(ata_scsi_error);
4947 EXPORT_SYMBOL_GPL(ata_scsi_slave_config);
4948 EXPORT_SYMBOL_GPL(ata_scsi_release);
4949 EXPORT_SYMBOL_GPL(ata_host_intr);
4950 EXPORT_SYMBOL_GPL(ata_id_string);
4951 EXPORT_SYMBOL_GPL(ata_id_c_string);
4952 EXPORT_SYMBOL_GPL(ata_scsi_simulate);
4953 EXPORT_SYMBOL_GPL(ata_eh_qc_complete);
4954 EXPORT_SYMBOL_GPL(ata_eh_qc_retry);
4955
4956 EXPORT_SYMBOL_GPL(ata_pio_need_iordy);
4957 EXPORT_SYMBOL_GPL(ata_timing_compute);
4958 EXPORT_SYMBOL_GPL(ata_timing_merge);
4959
4960 #ifdef CONFIG_PCI
4961 EXPORT_SYMBOL_GPL(pci_test_config_bits);
4962 EXPORT_SYMBOL_GPL(ata_pci_host_stop);
4963 EXPORT_SYMBOL_GPL(ata_pci_init_native_mode);
4964 EXPORT_SYMBOL_GPL(ata_pci_init_one);
4965 EXPORT_SYMBOL_GPL(ata_pci_remove_one);
4966 EXPORT_SYMBOL_GPL(ata_pci_device_suspend);
4967 EXPORT_SYMBOL_GPL(ata_pci_device_resume);
4968 EXPORT_SYMBOL_GPL(ata_pci_default_filter);
4969 EXPORT_SYMBOL_GPL(ata_pci_clear_simplex);
4970 #endif /* CONFIG_PCI */
4971
4972 EXPORT_SYMBOL_GPL(ata_device_suspend);
4973 EXPORT_SYMBOL_GPL(ata_device_resume);
4974 EXPORT_SYMBOL_GPL(ata_scsi_device_suspend);
4975 EXPORT_SYMBOL_GPL(ata_scsi_device_resume);
This page took 0.130229 seconds and 6 git commands to generate.