[PATCH] libata: add 5s sleep between resets
[deliverable/linux.git] / drivers / scsi / libata-core.c
1 /*
2 * libata-core.c - helper library for ATA
3 *
4 * Maintained by: Jeff Garzik <jgarzik@pobox.com>
5 * Please ALWAYS copy linux-ide@vger.kernel.org
6 * on emails.
7 *
8 * Copyright 2003-2004 Red Hat, Inc. All rights reserved.
9 * Copyright 2003-2004 Jeff Garzik
10 *
11 *
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2, or (at your option)
15 * any later version.
16 *
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
21 *
22 * You should have received a copy of the GNU General Public License
23 * along with this program; see the file COPYING. If not, write to
24 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
25 *
26 *
27 * libata documentation is available via 'make {ps|pdf}docs',
28 * as Documentation/DocBook/libata.*
29 *
30 * Hardware documentation available from http://www.t13.org/ and
31 * http://www.sata-io.org/
32 *
33 */
34
35 #include <linux/config.h>
36 #include <linux/kernel.h>
37 #include <linux/module.h>
38 #include <linux/pci.h>
39 #include <linux/init.h>
40 #include <linux/list.h>
41 #include <linux/mm.h>
42 #include <linux/highmem.h>
43 #include <linux/spinlock.h>
44 #include <linux/blkdev.h>
45 #include <linux/delay.h>
46 #include <linux/timer.h>
47 #include <linux/interrupt.h>
48 #include <linux/completion.h>
49 #include <linux/suspend.h>
50 #include <linux/workqueue.h>
51 #include <linux/jiffies.h>
52 #include <linux/scatterlist.h>
53 #include <scsi/scsi.h>
54 #include "scsi_priv.h"
55 #include <scsi/scsi_cmnd.h>
56 #include <scsi/scsi_host.h>
57 #include <linux/libata.h>
58 #include <asm/io.h>
59 #include <asm/semaphore.h>
60 #include <asm/byteorder.h>
61
62 #include "libata.h"
63
64 static unsigned int ata_dev_init_params(struct ata_port *ap,
65 struct ata_device *dev,
66 u16 heads,
67 u16 sectors);
68 static int ata_down_sata_spd_limit(struct ata_port *ap);
69 static int ata_set_mode(struct ata_port *ap, struct ata_device **r_failed_dev);
70 static unsigned int ata_dev_set_xfermode(struct ata_port *ap,
71 struct ata_device *dev);
72 static void ata_dev_xfermask(struct ata_port *ap, struct ata_device *dev);
73
74 static unsigned int ata_unique_id = 1;
75 static struct workqueue_struct *ata_wq;
76
77 int atapi_enabled = 1;
78 module_param(atapi_enabled, int, 0444);
79 MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on)");
80
81 int libata_fua = 0;
82 module_param_named(fua, libata_fua, int, 0444);
83 MODULE_PARM_DESC(fua, "FUA support (0=off, 1=on)");
84
85 MODULE_AUTHOR("Jeff Garzik");
86 MODULE_DESCRIPTION("Library module for ATA devices");
87 MODULE_LICENSE("GPL");
88 MODULE_VERSION(DRV_VERSION);
89
90
91 /**
92 * ata_tf_to_fis - Convert ATA taskfile to SATA FIS structure
93 * @tf: Taskfile to convert
94 * @fis: Buffer into which data will output
95 * @pmp: Port multiplier port
96 *
97 * Converts a standard ATA taskfile to a Serial ATA
98 * FIS structure (Register - Host to Device).
99 *
100 * LOCKING:
101 * Inherited from caller.
102 */
103
104 void ata_tf_to_fis(const struct ata_taskfile *tf, u8 *fis, u8 pmp)
105 {
106 fis[0] = 0x27; /* Register - Host to Device FIS */
107 fis[1] = (pmp & 0xf) | (1 << 7); /* Port multiplier number,
108 bit 7 indicates Command FIS */
109 fis[2] = tf->command;
110 fis[3] = tf->feature;
111
112 fis[4] = tf->lbal;
113 fis[5] = tf->lbam;
114 fis[6] = tf->lbah;
115 fis[7] = tf->device;
116
117 fis[8] = tf->hob_lbal;
118 fis[9] = tf->hob_lbam;
119 fis[10] = tf->hob_lbah;
120 fis[11] = tf->hob_feature;
121
122 fis[12] = tf->nsect;
123 fis[13] = tf->hob_nsect;
124 fis[14] = 0;
125 fis[15] = tf->ctl;
126
127 fis[16] = 0;
128 fis[17] = 0;
129 fis[18] = 0;
130 fis[19] = 0;
131 }
132
133 /**
134 * ata_tf_from_fis - Convert SATA FIS to ATA taskfile
135 * @fis: Buffer from which data will be input
136 * @tf: Taskfile to output
137 *
138 * Converts a serial ATA FIS structure to a standard ATA taskfile.
139 *
140 * LOCKING:
141 * Inherited from caller.
142 */
143
144 void ata_tf_from_fis(const u8 *fis, struct ata_taskfile *tf)
145 {
146 tf->command = fis[2]; /* status */
147 tf->feature = fis[3]; /* error */
148
149 tf->lbal = fis[4];
150 tf->lbam = fis[5];
151 tf->lbah = fis[6];
152 tf->device = fis[7];
153
154 tf->hob_lbal = fis[8];
155 tf->hob_lbam = fis[9];
156 tf->hob_lbah = fis[10];
157
158 tf->nsect = fis[12];
159 tf->hob_nsect = fis[13];
160 }
161
162 static const u8 ata_rw_cmds[] = {
163 /* pio multi */
164 ATA_CMD_READ_MULTI,
165 ATA_CMD_WRITE_MULTI,
166 ATA_CMD_READ_MULTI_EXT,
167 ATA_CMD_WRITE_MULTI_EXT,
168 0,
169 0,
170 0,
171 ATA_CMD_WRITE_MULTI_FUA_EXT,
172 /* pio */
173 ATA_CMD_PIO_READ,
174 ATA_CMD_PIO_WRITE,
175 ATA_CMD_PIO_READ_EXT,
176 ATA_CMD_PIO_WRITE_EXT,
177 0,
178 0,
179 0,
180 0,
181 /* dma */
182 ATA_CMD_READ,
183 ATA_CMD_WRITE,
184 ATA_CMD_READ_EXT,
185 ATA_CMD_WRITE_EXT,
186 0,
187 0,
188 0,
189 ATA_CMD_WRITE_FUA_EXT
190 };
191
192 /**
193 * ata_rwcmd_protocol - set taskfile r/w commands and protocol
194 * @qc: command to examine and configure
195 *
196 * Examine the device configuration and tf->flags to calculate
197 * the proper read/write commands and protocol to use.
198 *
199 * LOCKING:
200 * caller.
201 */
202 int ata_rwcmd_protocol(struct ata_queued_cmd *qc)
203 {
204 struct ata_taskfile *tf = &qc->tf;
205 struct ata_device *dev = qc->dev;
206 u8 cmd;
207
208 int index, fua, lba48, write;
209
210 fua = (tf->flags & ATA_TFLAG_FUA) ? 4 : 0;
211 lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0;
212 write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0;
213
214 if (dev->flags & ATA_DFLAG_PIO) {
215 tf->protocol = ATA_PROT_PIO;
216 index = dev->multi_count ? 0 : 8;
217 } else if (lba48 && (qc->ap->flags & ATA_FLAG_PIO_LBA48)) {
218 /* Unable to use DMA due to host limitation */
219 tf->protocol = ATA_PROT_PIO;
220 index = dev->multi_count ? 0 : 8;
221 } else {
222 tf->protocol = ATA_PROT_DMA;
223 index = 16;
224 }
225
226 cmd = ata_rw_cmds[index + fua + lba48 + write];
227 if (cmd) {
228 tf->command = cmd;
229 return 0;
230 }
231 return -1;
232 }
233
234 /**
235 * ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask
236 * @pio_mask: pio_mask
237 * @mwdma_mask: mwdma_mask
238 * @udma_mask: udma_mask
239 *
240 * Pack @pio_mask, @mwdma_mask and @udma_mask into a single
241 * unsigned int xfer_mask.
242 *
243 * LOCKING:
244 * None.
245 *
246 * RETURNS:
247 * Packed xfer_mask.
248 */
249 static unsigned int ata_pack_xfermask(unsigned int pio_mask,
250 unsigned int mwdma_mask,
251 unsigned int udma_mask)
252 {
253 return ((pio_mask << ATA_SHIFT_PIO) & ATA_MASK_PIO) |
254 ((mwdma_mask << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA) |
255 ((udma_mask << ATA_SHIFT_UDMA) & ATA_MASK_UDMA);
256 }
257
258 /**
259 * ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks
260 * @xfer_mask: xfer_mask to unpack
261 * @pio_mask: resulting pio_mask
262 * @mwdma_mask: resulting mwdma_mask
263 * @udma_mask: resulting udma_mask
264 *
265 * Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask.
266 * Any NULL distination masks will be ignored.
267 */
268 static void ata_unpack_xfermask(unsigned int xfer_mask,
269 unsigned int *pio_mask,
270 unsigned int *mwdma_mask,
271 unsigned int *udma_mask)
272 {
273 if (pio_mask)
274 *pio_mask = (xfer_mask & ATA_MASK_PIO) >> ATA_SHIFT_PIO;
275 if (mwdma_mask)
276 *mwdma_mask = (xfer_mask & ATA_MASK_MWDMA) >> ATA_SHIFT_MWDMA;
277 if (udma_mask)
278 *udma_mask = (xfer_mask & ATA_MASK_UDMA) >> ATA_SHIFT_UDMA;
279 }
280
281 static const struct ata_xfer_ent {
282 int shift, bits;
283 u8 base;
284 } ata_xfer_tbl[] = {
285 { ATA_SHIFT_PIO, ATA_BITS_PIO, XFER_PIO_0 },
286 { ATA_SHIFT_MWDMA, ATA_BITS_MWDMA, XFER_MW_DMA_0 },
287 { ATA_SHIFT_UDMA, ATA_BITS_UDMA, XFER_UDMA_0 },
288 { -1, },
289 };
290
291 /**
292 * ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask
293 * @xfer_mask: xfer_mask of interest
294 *
295 * Return matching XFER_* value for @xfer_mask. Only the highest
296 * bit of @xfer_mask is considered.
297 *
298 * LOCKING:
299 * None.
300 *
301 * RETURNS:
302 * Matching XFER_* value, 0 if no match found.
303 */
304 static u8 ata_xfer_mask2mode(unsigned int xfer_mask)
305 {
306 int highbit = fls(xfer_mask) - 1;
307 const struct ata_xfer_ent *ent;
308
309 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
310 if (highbit >= ent->shift && highbit < ent->shift + ent->bits)
311 return ent->base + highbit - ent->shift;
312 return 0;
313 }
314
315 /**
316 * ata_xfer_mode2mask - Find matching xfer_mask for XFER_*
317 * @xfer_mode: XFER_* of interest
318 *
319 * Return matching xfer_mask for @xfer_mode.
320 *
321 * LOCKING:
322 * None.
323 *
324 * RETURNS:
325 * Matching xfer_mask, 0 if no match found.
326 */
327 static unsigned int ata_xfer_mode2mask(u8 xfer_mode)
328 {
329 const struct ata_xfer_ent *ent;
330
331 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
332 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
333 return 1 << (ent->shift + xfer_mode - ent->base);
334 return 0;
335 }
336
337 /**
338 * ata_xfer_mode2shift - Find matching xfer_shift for XFER_*
339 * @xfer_mode: XFER_* of interest
340 *
341 * Return matching xfer_shift for @xfer_mode.
342 *
343 * LOCKING:
344 * None.
345 *
346 * RETURNS:
347 * Matching xfer_shift, -1 if no match found.
348 */
349 static int ata_xfer_mode2shift(unsigned int xfer_mode)
350 {
351 const struct ata_xfer_ent *ent;
352
353 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
354 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
355 return ent->shift;
356 return -1;
357 }
358
359 /**
360 * ata_mode_string - convert xfer_mask to string
361 * @xfer_mask: mask of bits supported; only highest bit counts.
362 *
363 * Determine string which represents the highest speed
364 * (highest bit in @modemask).
365 *
366 * LOCKING:
367 * None.
368 *
369 * RETURNS:
370 * Constant C string representing highest speed listed in
371 * @mode_mask, or the constant C string "<n/a>".
372 */
373 static const char *ata_mode_string(unsigned int xfer_mask)
374 {
375 static const char * const xfer_mode_str[] = {
376 "PIO0",
377 "PIO1",
378 "PIO2",
379 "PIO3",
380 "PIO4",
381 "MWDMA0",
382 "MWDMA1",
383 "MWDMA2",
384 "UDMA/16",
385 "UDMA/25",
386 "UDMA/33",
387 "UDMA/44",
388 "UDMA/66",
389 "UDMA/100",
390 "UDMA/133",
391 "UDMA7",
392 };
393 int highbit;
394
395 highbit = fls(xfer_mask) - 1;
396 if (highbit >= 0 && highbit < ARRAY_SIZE(xfer_mode_str))
397 return xfer_mode_str[highbit];
398 return "<n/a>";
399 }
400
401 static const char *sata_spd_string(unsigned int spd)
402 {
403 static const char * const spd_str[] = {
404 "1.5 Gbps",
405 "3.0 Gbps",
406 };
407
408 if (spd == 0 || (spd - 1) >= ARRAY_SIZE(spd_str))
409 return "<unknown>";
410 return spd_str[spd - 1];
411 }
412
413 static void ata_dev_disable(struct ata_port *ap, struct ata_device *dev)
414 {
415 if (ata_dev_enabled(dev)) {
416 printk(KERN_WARNING "ata%u: dev %u disabled\n",
417 ap->id, dev->devno);
418 dev->class++;
419 }
420 }
421
422 /**
423 * ata_pio_devchk - PATA device presence detection
424 * @ap: ATA channel to examine
425 * @device: Device to examine (starting at zero)
426 *
427 * This technique was originally described in
428 * Hale Landis's ATADRVR (www.ata-atapi.com), and
429 * later found its way into the ATA/ATAPI spec.
430 *
431 * Write a pattern to the ATA shadow registers,
432 * and if a device is present, it will respond by
433 * correctly storing and echoing back the
434 * ATA shadow register contents.
435 *
436 * LOCKING:
437 * caller.
438 */
439
440 static unsigned int ata_pio_devchk(struct ata_port *ap,
441 unsigned int device)
442 {
443 struct ata_ioports *ioaddr = &ap->ioaddr;
444 u8 nsect, lbal;
445
446 ap->ops->dev_select(ap, device);
447
448 outb(0x55, ioaddr->nsect_addr);
449 outb(0xaa, ioaddr->lbal_addr);
450
451 outb(0xaa, ioaddr->nsect_addr);
452 outb(0x55, ioaddr->lbal_addr);
453
454 outb(0x55, ioaddr->nsect_addr);
455 outb(0xaa, ioaddr->lbal_addr);
456
457 nsect = inb(ioaddr->nsect_addr);
458 lbal = inb(ioaddr->lbal_addr);
459
460 if ((nsect == 0x55) && (lbal == 0xaa))
461 return 1; /* we found a device */
462
463 return 0; /* nothing found */
464 }
465
466 /**
467 * ata_mmio_devchk - PATA device presence detection
468 * @ap: ATA channel to examine
469 * @device: Device to examine (starting at zero)
470 *
471 * This technique was originally described in
472 * Hale Landis's ATADRVR (www.ata-atapi.com), and
473 * later found its way into the ATA/ATAPI spec.
474 *
475 * Write a pattern to the ATA shadow registers,
476 * and if a device is present, it will respond by
477 * correctly storing and echoing back the
478 * ATA shadow register contents.
479 *
480 * LOCKING:
481 * caller.
482 */
483
484 static unsigned int ata_mmio_devchk(struct ata_port *ap,
485 unsigned int device)
486 {
487 struct ata_ioports *ioaddr = &ap->ioaddr;
488 u8 nsect, lbal;
489
490 ap->ops->dev_select(ap, device);
491
492 writeb(0x55, (void __iomem *) ioaddr->nsect_addr);
493 writeb(0xaa, (void __iomem *) ioaddr->lbal_addr);
494
495 writeb(0xaa, (void __iomem *) ioaddr->nsect_addr);
496 writeb(0x55, (void __iomem *) ioaddr->lbal_addr);
497
498 writeb(0x55, (void __iomem *) ioaddr->nsect_addr);
499 writeb(0xaa, (void __iomem *) ioaddr->lbal_addr);
500
501 nsect = readb((void __iomem *) ioaddr->nsect_addr);
502 lbal = readb((void __iomem *) ioaddr->lbal_addr);
503
504 if ((nsect == 0x55) && (lbal == 0xaa))
505 return 1; /* we found a device */
506
507 return 0; /* nothing found */
508 }
509
510 /**
511 * ata_devchk - PATA device presence detection
512 * @ap: ATA channel to examine
513 * @device: Device to examine (starting at zero)
514 *
515 * Dispatch ATA device presence detection, depending
516 * on whether we are using PIO or MMIO to talk to the
517 * ATA shadow registers.
518 *
519 * LOCKING:
520 * caller.
521 */
522
523 static unsigned int ata_devchk(struct ata_port *ap,
524 unsigned int device)
525 {
526 if (ap->flags & ATA_FLAG_MMIO)
527 return ata_mmio_devchk(ap, device);
528 return ata_pio_devchk(ap, device);
529 }
530
531 /**
532 * ata_dev_classify - determine device type based on ATA-spec signature
533 * @tf: ATA taskfile register set for device to be identified
534 *
535 * Determine from taskfile register contents whether a device is
536 * ATA or ATAPI, as per "Signature and persistence" section
537 * of ATA/PI spec (volume 1, sect 5.14).
538 *
539 * LOCKING:
540 * None.
541 *
542 * RETURNS:
543 * Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, or %ATA_DEV_UNKNOWN
544 * the event of failure.
545 */
546
547 unsigned int ata_dev_classify(const struct ata_taskfile *tf)
548 {
549 /* Apple's open source Darwin code hints that some devices only
550 * put a proper signature into the LBA mid/high registers,
551 * So, we only check those. It's sufficient for uniqueness.
552 */
553
554 if (((tf->lbam == 0) && (tf->lbah == 0)) ||
555 ((tf->lbam == 0x3c) && (tf->lbah == 0xc3))) {
556 DPRINTK("found ATA device by sig\n");
557 return ATA_DEV_ATA;
558 }
559
560 if (((tf->lbam == 0x14) && (tf->lbah == 0xeb)) ||
561 ((tf->lbam == 0x69) && (tf->lbah == 0x96))) {
562 DPRINTK("found ATAPI device by sig\n");
563 return ATA_DEV_ATAPI;
564 }
565
566 DPRINTK("unknown device\n");
567 return ATA_DEV_UNKNOWN;
568 }
569
570 /**
571 * ata_dev_try_classify - Parse returned ATA device signature
572 * @ap: ATA channel to examine
573 * @device: Device to examine (starting at zero)
574 * @r_err: Value of error register on completion
575 *
576 * After an event -- SRST, E.D.D., or SATA COMRESET -- occurs,
577 * an ATA/ATAPI-defined set of values is placed in the ATA
578 * shadow registers, indicating the results of device detection
579 * and diagnostics.
580 *
581 * Select the ATA device, and read the values from the ATA shadow
582 * registers. Then parse according to the Error register value,
583 * and the spec-defined values examined by ata_dev_classify().
584 *
585 * LOCKING:
586 * caller.
587 *
588 * RETURNS:
589 * Device type - %ATA_DEV_ATA, %ATA_DEV_ATAPI or %ATA_DEV_NONE.
590 */
591
592 static unsigned int
593 ata_dev_try_classify(struct ata_port *ap, unsigned int device, u8 *r_err)
594 {
595 struct ata_taskfile tf;
596 unsigned int class;
597 u8 err;
598
599 ap->ops->dev_select(ap, device);
600
601 memset(&tf, 0, sizeof(tf));
602
603 ap->ops->tf_read(ap, &tf);
604 err = tf.feature;
605 if (r_err)
606 *r_err = err;
607
608 /* see if device passed diags */
609 if (err == 1)
610 /* do nothing */ ;
611 else if ((device == 0) && (err == 0x81))
612 /* do nothing */ ;
613 else
614 return ATA_DEV_NONE;
615
616 /* determine if device is ATA or ATAPI */
617 class = ata_dev_classify(&tf);
618
619 if (class == ATA_DEV_UNKNOWN)
620 return ATA_DEV_NONE;
621 if ((class == ATA_DEV_ATA) && (ata_chk_status(ap) == 0))
622 return ATA_DEV_NONE;
623 return class;
624 }
625
626 /**
627 * ata_id_string - Convert IDENTIFY DEVICE page into string
628 * @id: IDENTIFY DEVICE results we will examine
629 * @s: string into which data is output
630 * @ofs: offset into identify device page
631 * @len: length of string to return. must be an even number.
632 *
633 * The strings in the IDENTIFY DEVICE page are broken up into
634 * 16-bit chunks. Run through the string, and output each
635 * 8-bit chunk linearly, regardless of platform.
636 *
637 * LOCKING:
638 * caller.
639 */
640
641 void ata_id_string(const u16 *id, unsigned char *s,
642 unsigned int ofs, unsigned int len)
643 {
644 unsigned int c;
645
646 while (len > 0) {
647 c = id[ofs] >> 8;
648 *s = c;
649 s++;
650
651 c = id[ofs] & 0xff;
652 *s = c;
653 s++;
654
655 ofs++;
656 len -= 2;
657 }
658 }
659
660 /**
661 * ata_id_c_string - Convert IDENTIFY DEVICE page into C string
662 * @id: IDENTIFY DEVICE results we will examine
663 * @s: string into which data is output
664 * @ofs: offset into identify device page
665 * @len: length of string to return. must be an odd number.
666 *
667 * This function is identical to ata_id_string except that it
668 * trims trailing spaces and terminates the resulting string with
669 * null. @len must be actual maximum length (even number) + 1.
670 *
671 * LOCKING:
672 * caller.
673 */
674 void ata_id_c_string(const u16 *id, unsigned char *s,
675 unsigned int ofs, unsigned int len)
676 {
677 unsigned char *p;
678
679 WARN_ON(!(len & 1));
680
681 ata_id_string(id, s, ofs, len - 1);
682
683 p = s + strnlen(s, len - 1);
684 while (p > s && p[-1] == ' ')
685 p--;
686 *p = '\0';
687 }
688
689 static u64 ata_id_n_sectors(const u16 *id)
690 {
691 if (ata_id_has_lba(id)) {
692 if (ata_id_has_lba48(id))
693 return ata_id_u64(id, 100);
694 else
695 return ata_id_u32(id, 60);
696 } else {
697 if (ata_id_current_chs_valid(id))
698 return ata_id_u32(id, 57);
699 else
700 return id[1] * id[3] * id[6];
701 }
702 }
703
704 /**
705 * ata_noop_dev_select - Select device 0/1 on ATA bus
706 * @ap: ATA channel to manipulate
707 * @device: ATA device (numbered from zero) to select
708 *
709 * This function performs no actual function.
710 *
711 * May be used as the dev_select() entry in ata_port_operations.
712 *
713 * LOCKING:
714 * caller.
715 */
716 void ata_noop_dev_select (struct ata_port *ap, unsigned int device)
717 {
718 }
719
720
721 /**
722 * ata_std_dev_select - Select device 0/1 on ATA bus
723 * @ap: ATA channel to manipulate
724 * @device: ATA device (numbered from zero) to select
725 *
726 * Use the method defined in the ATA specification to
727 * make either device 0, or device 1, active on the
728 * ATA channel. Works with both PIO and MMIO.
729 *
730 * May be used as the dev_select() entry in ata_port_operations.
731 *
732 * LOCKING:
733 * caller.
734 */
735
736 void ata_std_dev_select (struct ata_port *ap, unsigned int device)
737 {
738 u8 tmp;
739
740 if (device == 0)
741 tmp = ATA_DEVICE_OBS;
742 else
743 tmp = ATA_DEVICE_OBS | ATA_DEV1;
744
745 if (ap->flags & ATA_FLAG_MMIO) {
746 writeb(tmp, (void __iomem *) ap->ioaddr.device_addr);
747 } else {
748 outb(tmp, ap->ioaddr.device_addr);
749 }
750 ata_pause(ap); /* needed; also flushes, for mmio */
751 }
752
753 /**
754 * ata_dev_select - Select device 0/1 on ATA bus
755 * @ap: ATA channel to manipulate
756 * @device: ATA device (numbered from zero) to select
757 * @wait: non-zero to wait for Status register BSY bit to clear
758 * @can_sleep: non-zero if context allows sleeping
759 *
760 * Use the method defined in the ATA specification to
761 * make either device 0, or device 1, active on the
762 * ATA channel.
763 *
764 * This is a high-level version of ata_std_dev_select(),
765 * which additionally provides the services of inserting
766 * the proper pauses and status polling, where needed.
767 *
768 * LOCKING:
769 * caller.
770 */
771
772 void ata_dev_select(struct ata_port *ap, unsigned int device,
773 unsigned int wait, unsigned int can_sleep)
774 {
775 VPRINTK("ENTER, ata%u: device %u, wait %u\n",
776 ap->id, device, wait);
777
778 if (wait)
779 ata_wait_idle(ap);
780
781 ap->ops->dev_select(ap, device);
782
783 if (wait) {
784 if (can_sleep && ap->device[device].class == ATA_DEV_ATAPI)
785 msleep(150);
786 ata_wait_idle(ap);
787 }
788 }
789
790 /**
791 * ata_dump_id - IDENTIFY DEVICE info debugging output
792 * @id: IDENTIFY DEVICE page to dump
793 *
794 * Dump selected 16-bit words from the given IDENTIFY DEVICE
795 * page.
796 *
797 * LOCKING:
798 * caller.
799 */
800
801 static inline void ata_dump_id(const u16 *id)
802 {
803 DPRINTK("49==0x%04x "
804 "53==0x%04x "
805 "63==0x%04x "
806 "64==0x%04x "
807 "75==0x%04x \n",
808 id[49],
809 id[53],
810 id[63],
811 id[64],
812 id[75]);
813 DPRINTK("80==0x%04x "
814 "81==0x%04x "
815 "82==0x%04x "
816 "83==0x%04x "
817 "84==0x%04x \n",
818 id[80],
819 id[81],
820 id[82],
821 id[83],
822 id[84]);
823 DPRINTK("88==0x%04x "
824 "93==0x%04x\n",
825 id[88],
826 id[93]);
827 }
828
829 /**
830 * ata_id_xfermask - Compute xfermask from the given IDENTIFY data
831 * @id: IDENTIFY data to compute xfer mask from
832 *
833 * Compute the xfermask for this device. This is not as trivial
834 * as it seems if we must consider early devices correctly.
835 *
836 * FIXME: pre IDE drive timing (do we care ?).
837 *
838 * LOCKING:
839 * None.
840 *
841 * RETURNS:
842 * Computed xfermask
843 */
844 static unsigned int ata_id_xfermask(const u16 *id)
845 {
846 unsigned int pio_mask, mwdma_mask, udma_mask;
847
848 /* Usual case. Word 53 indicates word 64 is valid */
849 if (id[ATA_ID_FIELD_VALID] & (1 << 1)) {
850 pio_mask = id[ATA_ID_PIO_MODES] & 0x03;
851 pio_mask <<= 3;
852 pio_mask |= 0x7;
853 } else {
854 /* If word 64 isn't valid then Word 51 high byte holds
855 * the PIO timing number for the maximum. Turn it into
856 * a mask.
857 */
858 pio_mask = (2 << (id[ATA_ID_OLD_PIO_MODES] & 0xFF)) - 1 ;
859
860 /* But wait.. there's more. Design your standards by
861 * committee and you too can get a free iordy field to
862 * process. However its the speeds not the modes that
863 * are supported... Note drivers using the timing API
864 * will get this right anyway
865 */
866 }
867
868 mwdma_mask = id[ATA_ID_MWDMA_MODES] & 0x07;
869
870 udma_mask = 0;
871 if (id[ATA_ID_FIELD_VALID] & (1 << 2))
872 udma_mask = id[ATA_ID_UDMA_MODES] & 0xff;
873
874 return ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
875 }
876
877 /**
878 * ata_port_queue_task - Queue port_task
879 * @ap: The ata_port to queue port_task for
880 *
881 * Schedule @fn(@data) for execution after @delay jiffies using
882 * port_task. There is one port_task per port and it's the
883 * user(low level driver)'s responsibility to make sure that only
884 * one task is active at any given time.
885 *
886 * libata core layer takes care of synchronization between
887 * port_task and EH. ata_port_queue_task() may be ignored for EH
888 * synchronization.
889 *
890 * LOCKING:
891 * Inherited from caller.
892 */
893 void ata_port_queue_task(struct ata_port *ap, void (*fn)(void *), void *data,
894 unsigned long delay)
895 {
896 int rc;
897
898 if (ap->flags & ATA_FLAG_FLUSH_PORT_TASK)
899 return;
900
901 PREPARE_WORK(&ap->port_task, fn, data);
902
903 if (!delay)
904 rc = queue_work(ata_wq, &ap->port_task);
905 else
906 rc = queue_delayed_work(ata_wq, &ap->port_task, delay);
907
908 /* rc == 0 means that another user is using port task */
909 WARN_ON(rc == 0);
910 }
911
912 /**
913 * ata_port_flush_task - Flush port_task
914 * @ap: The ata_port to flush port_task for
915 *
916 * After this function completes, port_task is guranteed not to
917 * be running or scheduled.
918 *
919 * LOCKING:
920 * Kernel thread context (may sleep)
921 */
922 void ata_port_flush_task(struct ata_port *ap)
923 {
924 unsigned long flags;
925
926 DPRINTK("ENTER\n");
927
928 spin_lock_irqsave(&ap->host_set->lock, flags);
929 ap->flags |= ATA_FLAG_FLUSH_PORT_TASK;
930 spin_unlock_irqrestore(&ap->host_set->lock, flags);
931
932 DPRINTK("flush #1\n");
933 flush_workqueue(ata_wq);
934
935 /*
936 * At this point, if a task is running, it's guaranteed to see
937 * the FLUSH flag; thus, it will never queue pio tasks again.
938 * Cancel and flush.
939 */
940 if (!cancel_delayed_work(&ap->port_task)) {
941 DPRINTK("flush #2\n");
942 flush_workqueue(ata_wq);
943 }
944
945 spin_lock_irqsave(&ap->host_set->lock, flags);
946 ap->flags &= ~ATA_FLAG_FLUSH_PORT_TASK;
947 spin_unlock_irqrestore(&ap->host_set->lock, flags);
948
949 DPRINTK("EXIT\n");
950 }
951
952 void ata_qc_complete_internal(struct ata_queued_cmd *qc)
953 {
954 struct completion *waiting = qc->private_data;
955
956 qc->ap->ops->tf_read(qc->ap, &qc->tf);
957 complete(waiting);
958 }
959
960 /**
961 * ata_exec_internal - execute libata internal command
962 * @ap: Port to which the command is sent
963 * @dev: Device to which the command is sent
964 * @tf: Taskfile registers for the command and the result
965 * @dma_dir: Data tranfer direction of the command
966 * @buf: Data buffer of the command
967 * @buflen: Length of data buffer
968 *
969 * Executes libata internal command with timeout. @tf contains
970 * command on entry and result on return. Timeout and error
971 * conditions are reported via return value. No recovery action
972 * is taken after a command times out. It's caller's duty to
973 * clean up after timeout.
974 *
975 * LOCKING:
976 * None. Should be called with kernel context, might sleep.
977 */
978
979 static unsigned
980 ata_exec_internal(struct ata_port *ap, struct ata_device *dev,
981 struct ata_taskfile *tf,
982 int dma_dir, void *buf, unsigned int buflen)
983 {
984 u8 command = tf->command;
985 struct ata_queued_cmd *qc;
986 DECLARE_COMPLETION(wait);
987 unsigned long flags;
988 unsigned int err_mask;
989
990 spin_lock_irqsave(&ap->host_set->lock, flags);
991
992 qc = ata_qc_new_init(ap, dev);
993 BUG_ON(qc == NULL);
994
995 qc->tf = *tf;
996 qc->dma_dir = dma_dir;
997 if (dma_dir != DMA_NONE) {
998 ata_sg_init_one(qc, buf, buflen);
999 qc->nsect = buflen / ATA_SECT_SIZE;
1000 }
1001
1002 qc->private_data = &wait;
1003 qc->complete_fn = ata_qc_complete_internal;
1004
1005 ata_qc_issue(qc);
1006
1007 spin_unlock_irqrestore(&ap->host_set->lock, flags);
1008
1009 if (!wait_for_completion_timeout(&wait, ATA_TMOUT_INTERNAL)) {
1010 ata_port_flush_task(ap);
1011
1012 spin_lock_irqsave(&ap->host_set->lock, flags);
1013
1014 /* We're racing with irq here. If we lose, the
1015 * following test prevents us from completing the qc
1016 * again. If completion irq occurs after here but
1017 * before the caller cleans up, it will result in a
1018 * spurious interrupt. We can live with that.
1019 */
1020 if (qc->flags & ATA_QCFLAG_ACTIVE) {
1021 qc->err_mask = AC_ERR_TIMEOUT;
1022 ata_qc_complete(qc);
1023 printk(KERN_WARNING "ata%u: qc timeout (cmd 0x%x)\n",
1024 ap->id, command);
1025 }
1026
1027 spin_unlock_irqrestore(&ap->host_set->lock, flags);
1028 }
1029
1030 *tf = qc->tf;
1031 err_mask = qc->err_mask;
1032
1033 ata_qc_free(qc);
1034
1035 /* XXX - Some LLDDs (sata_mv) disable port on command failure.
1036 * Until those drivers are fixed, we detect the condition
1037 * here, fail the command with AC_ERR_SYSTEM and reenable the
1038 * port.
1039 *
1040 * Note that this doesn't change any behavior as internal
1041 * command failure results in disabling the device in the
1042 * higher layer for LLDDs without new reset/EH callbacks.
1043 *
1044 * Kill the following code as soon as those drivers are fixed.
1045 */
1046 if (ap->flags & ATA_FLAG_PORT_DISABLED) {
1047 err_mask |= AC_ERR_SYSTEM;
1048 ata_port_probe(ap);
1049 }
1050
1051 return err_mask;
1052 }
1053
1054 /**
1055 * ata_pio_need_iordy - check if iordy needed
1056 * @adev: ATA device
1057 *
1058 * Check if the current speed of the device requires IORDY. Used
1059 * by various controllers for chip configuration.
1060 */
1061
1062 unsigned int ata_pio_need_iordy(const struct ata_device *adev)
1063 {
1064 int pio;
1065 int speed = adev->pio_mode - XFER_PIO_0;
1066
1067 if (speed < 2)
1068 return 0;
1069 if (speed > 2)
1070 return 1;
1071
1072 /* If we have no drive specific rule, then PIO 2 is non IORDY */
1073
1074 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE */
1075 pio = adev->id[ATA_ID_EIDE_PIO];
1076 /* Is the speed faster than the drive allows non IORDY ? */
1077 if (pio) {
1078 /* This is cycle times not frequency - watch the logic! */
1079 if (pio > 240) /* PIO2 is 240nS per cycle */
1080 return 1;
1081 return 0;
1082 }
1083 }
1084 return 0;
1085 }
1086
1087 /**
1088 * ata_dev_read_id - Read ID data from the specified device
1089 * @ap: port on which target device resides
1090 * @dev: target device
1091 * @p_class: pointer to class of the target device (may be changed)
1092 * @post_reset: is this read ID post-reset?
1093 * @p_id: read IDENTIFY page (newly allocated)
1094 *
1095 * Read ID data from the specified device. ATA_CMD_ID_ATA is
1096 * performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI
1097 * devices. This function also issues ATA_CMD_INIT_DEV_PARAMS
1098 * for pre-ATA4 drives.
1099 *
1100 * LOCKING:
1101 * Kernel thread context (may sleep)
1102 *
1103 * RETURNS:
1104 * 0 on success, -errno otherwise.
1105 */
1106 static int ata_dev_read_id(struct ata_port *ap, struct ata_device *dev,
1107 unsigned int *p_class, int post_reset, u16 **p_id)
1108 {
1109 unsigned int class = *p_class;
1110 struct ata_taskfile tf;
1111 unsigned int err_mask = 0;
1112 u16 *id;
1113 const char *reason;
1114 int rc;
1115
1116 DPRINTK("ENTER, host %u, dev %u\n", ap->id, dev->devno);
1117
1118 ata_dev_select(ap, dev->devno, 1, 1); /* select device 0/1 */
1119
1120 id = kmalloc(sizeof(id[0]) * ATA_ID_WORDS, GFP_KERNEL);
1121 if (id == NULL) {
1122 rc = -ENOMEM;
1123 reason = "out of memory";
1124 goto err_out;
1125 }
1126
1127 retry:
1128 ata_tf_init(ap, &tf, dev->devno);
1129
1130 switch (class) {
1131 case ATA_DEV_ATA:
1132 tf.command = ATA_CMD_ID_ATA;
1133 break;
1134 case ATA_DEV_ATAPI:
1135 tf.command = ATA_CMD_ID_ATAPI;
1136 break;
1137 default:
1138 rc = -ENODEV;
1139 reason = "unsupported class";
1140 goto err_out;
1141 }
1142
1143 tf.protocol = ATA_PROT_PIO;
1144
1145 err_mask = ata_exec_internal(ap, dev, &tf, DMA_FROM_DEVICE,
1146 id, sizeof(id[0]) * ATA_ID_WORDS);
1147 if (err_mask) {
1148 rc = -EIO;
1149 reason = "I/O error";
1150 goto err_out;
1151 }
1152
1153 swap_buf_le16(id, ATA_ID_WORDS);
1154
1155 /* sanity check */
1156 if ((class == ATA_DEV_ATA) != (ata_id_is_ata(id) | ata_id_is_cfa(id))) {
1157 rc = -EINVAL;
1158 reason = "device reports illegal type";
1159 goto err_out;
1160 }
1161
1162 if (post_reset && class == ATA_DEV_ATA) {
1163 /*
1164 * The exact sequence expected by certain pre-ATA4 drives is:
1165 * SRST RESET
1166 * IDENTIFY
1167 * INITIALIZE DEVICE PARAMETERS
1168 * anything else..
1169 * Some drives were very specific about that exact sequence.
1170 */
1171 if (ata_id_major_version(id) < 4 || !ata_id_has_lba(id)) {
1172 err_mask = ata_dev_init_params(ap, dev, id[3], id[6]);
1173 if (err_mask) {
1174 rc = -EIO;
1175 reason = "INIT_DEV_PARAMS failed";
1176 goto err_out;
1177 }
1178
1179 /* current CHS translation info (id[53-58]) might be
1180 * changed. reread the identify device info.
1181 */
1182 post_reset = 0;
1183 goto retry;
1184 }
1185 }
1186
1187 *p_class = class;
1188 *p_id = id;
1189 return 0;
1190
1191 err_out:
1192 printk(KERN_WARNING "ata%u: dev %u failed to IDENTIFY (%s)\n",
1193 ap->id, dev->devno, reason);
1194 kfree(id);
1195 return rc;
1196 }
1197
1198 static inline u8 ata_dev_knobble(const struct ata_port *ap,
1199 struct ata_device *dev)
1200 {
1201 return ((ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(dev->id)));
1202 }
1203
1204 /**
1205 * ata_dev_configure - Configure the specified ATA/ATAPI device
1206 * @ap: Port on which target device resides
1207 * @dev: Target device to configure
1208 * @print_info: Enable device info printout
1209 *
1210 * Configure @dev according to @dev->id. Generic and low-level
1211 * driver specific fixups are also applied.
1212 *
1213 * LOCKING:
1214 * Kernel thread context (may sleep)
1215 *
1216 * RETURNS:
1217 * 0 on success, -errno otherwise
1218 */
1219 static int ata_dev_configure(struct ata_port *ap, struct ata_device *dev,
1220 int print_info)
1221 {
1222 const u16 *id = dev->id;
1223 unsigned int xfer_mask;
1224 int i, rc;
1225
1226 if (!ata_dev_enabled(dev)) {
1227 DPRINTK("ENTER/EXIT (host %u, dev %u) -- nodev\n",
1228 ap->id, dev->devno);
1229 return 0;
1230 }
1231
1232 DPRINTK("ENTER, host %u, dev %u\n", ap->id, dev->devno);
1233
1234 /* print device capabilities */
1235 if (print_info)
1236 printk(KERN_DEBUG "ata%u: dev %u cfg 49:%04x 82:%04x 83:%04x "
1237 "84:%04x 85:%04x 86:%04x 87:%04x 88:%04x\n",
1238 ap->id, dev->devno, id[49], id[82], id[83],
1239 id[84], id[85], id[86], id[87], id[88]);
1240
1241 /* initialize to-be-configured parameters */
1242 dev->flags = 0;
1243 dev->max_sectors = 0;
1244 dev->cdb_len = 0;
1245 dev->n_sectors = 0;
1246 dev->cylinders = 0;
1247 dev->heads = 0;
1248 dev->sectors = 0;
1249
1250 /*
1251 * common ATA, ATAPI feature tests
1252 */
1253
1254 /* find max transfer mode; for printk only */
1255 xfer_mask = ata_id_xfermask(id);
1256
1257 ata_dump_id(id);
1258
1259 /* ATA-specific feature tests */
1260 if (dev->class == ATA_DEV_ATA) {
1261 dev->n_sectors = ata_id_n_sectors(id);
1262
1263 if (ata_id_has_lba(id)) {
1264 const char *lba_desc;
1265
1266 lba_desc = "LBA";
1267 dev->flags |= ATA_DFLAG_LBA;
1268 if (ata_id_has_lba48(id)) {
1269 dev->flags |= ATA_DFLAG_LBA48;
1270 lba_desc = "LBA48";
1271 }
1272
1273 /* print device info to dmesg */
1274 if (print_info)
1275 printk(KERN_INFO "ata%u: dev %u ATA-%d, "
1276 "max %s, %Lu sectors: %s\n",
1277 ap->id, dev->devno,
1278 ata_id_major_version(id),
1279 ata_mode_string(xfer_mask),
1280 (unsigned long long)dev->n_sectors,
1281 lba_desc);
1282 } else {
1283 /* CHS */
1284
1285 /* Default translation */
1286 dev->cylinders = id[1];
1287 dev->heads = id[3];
1288 dev->sectors = id[6];
1289
1290 if (ata_id_current_chs_valid(id)) {
1291 /* Current CHS translation is valid. */
1292 dev->cylinders = id[54];
1293 dev->heads = id[55];
1294 dev->sectors = id[56];
1295 }
1296
1297 /* print device info to dmesg */
1298 if (print_info)
1299 printk(KERN_INFO "ata%u: dev %u ATA-%d, "
1300 "max %s, %Lu sectors: CHS %u/%u/%u\n",
1301 ap->id, dev->devno,
1302 ata_id_major_version(id),
1303 ata_mode_string(xfer_mask),
1304 (unsigned long long)dev->n_sectors,
1305 dev->cylinders, dev->heads, dev->sectors);
1306 }
1307
1308 dev->cdb_len = 16;
1309 }
1310
1311 /* ATAPI-specific feature tests */
1312 else if (dev->class == ATA_DEV_ATAPI) {
1313 rc = atapi_cdb_len(id);
1314 if ((rc < 12) || (rc > ATAPI_CDB_LEN)) {
1315 printk(KERN_WARNING "ata%u: unsupported CDB len\n", ap->id);
1316 rc = -EINVAL;
1317 goto err_out_nosup;
1318 }
1319 dev->cdb_len = (unsigned int) rc;
1320
1321 /* print device info to dmesg */
1322 if (print_info)
1323 printk(KERN_INFO "ata%u: dev %u ATAPI, max %s\n",
1324 ap->id, dev->devno, ata_mode_string(xfer_mask));
1325 }
1326
1327 ap->host->max_cmd_len = 0;
1328 for (i = 0; i < ATA_MAX_DEVICES; i++)
1329 ap->host->max_cmd_len = max_t(unsigned int,
1330 ap->host->max_cmd_len,
1331 ap->device[i].cdb_len);
1332
1333 /* limit bridge transfers to udma5, 200 sectors */
1334 if (ata_dev_knobble(ap, dev)) {
1335 if (print_info)
1336 printk(KERN_INFO "ata%u(%u): applying bridge limits\n",
1337 ap->id, dev->devno);
1338 dev->udma_mask &= ATA_UDMA5;
1339 dev->max_sectors = ATA_MAX_SECTORS;
1340 }
1341
1342 if (ap->ops->dev_config)
1343 ap->ops->dev_config(ap, dev);
1344
1345 DPRINTK("EXIT, drv_stat = 0x%x\n", ata_chk_status(ap));
1346 return 0;
1347
1348 err_out_nosup:
1349 DPRINTK("EXIT, err\n");
1350 return rc;
1351 }
1352
1353 /**
1354 * ata_bus_probe - Reset and probe ATA bus
1355 * @ap: Bus to probe
1356 *
1357 * Master ATA bus probing function. Initiates a hardware-dependent
1358 * bus reset, then attempts to identify any devices found on
1359 * the bus.
1360 *
1361 * LOCKING:
1362 * PCI/etc. bus probe sem.
1363 *
1364 * RETURNS:
1365 * Zero on success, negative errno otherwise.
1366 */
1367
1368 static int ata_bus_probe(struct ata_port *ap)
1369 {
1370 unsigned int classes[ATA_MAX_DEVICES];
1371 int i, rc, found = 0;
1372 struct ata_device *dev;
1373
1374 ata_port_probe(ap);
1375
1376 /* reset and determine device classes */
1377 for (i = 0; i < ATA_MAX_DEVICES; i++)
1378 classes[i] = ATA_DEV_UNKNOWN;
1379
1380 if (ap->ops->probe_reset) {
1381 rc = ap->ops->probe_reset(ap, classes);
1382 if (rc) {
1383 printk("ata%u: reset failed (errno=%d)\n", ap->id, rc);
1384 return rc;
1385 }
1386 } else {
1387 ap->ops->phy_reset(ap);
1388
1389 if (!(ap->flags & ATA_FLAG_PORT_DISABLED))
1390 for (i = 0; i < ATA_MAX_DEVICES; i++)
1391 classes[i] = ap->device[i].class;
1392
1393 ata_port_probe(ap);
1394 }
1395
1396 for (i = 0; i < ATA_MAX_DEVICES; i++)
1397 if (classes[i] == ATA_DEV_UNKNOWN)
1398 classes[i] = ATA_DEV_NONE;
1399
1400 /* read IDENTIFY page and configure devices */
1401 for (i = 0; i < ATA_MAX_DEVICES; i++) {
1402 dev = &ap->device[i];
1403 dev->class = classes[i];
1404
1405 if (!ata_dev_enabled(dev))
1406 continue;
1407
1408 WARN_ON(dev->id != NULL);
1409 if (ata_dev_read_id(ap, dev, &dev->class, 1, &dev->id)) {
1410 dev->class = ATA_DEV_NONE;
1411 continue;
1412 }
1413
1414 if (ata_dev_configure(ap, dev, 1)) {
1415 ata_dev_disable(ap, dev);
1416 continue;
1417 }
1418
1419 found = 1;
1420 }
1421
1422 /* configure transfer mode */
1423 if (ap->ops->set_mode) {
1424 /* FIXME: make ->set_mode handle no device case and
1425 * return error code and failing device on failure as
1426 * ata_set_mode() does.
1427 */
1428 if (found)
1429 ap->ops->set_mode(ap);
1430 rc = 0;
1431 } else {
1432 while (ata_set_mode(ap, &dev))
1433 ata_dev_disable(ap, dev);
1434 }
1435
1436 for (i = 0; i < ATA_MAX_DEVICES; i++)
1437 if (ata_dev_enabled(&ap->device[i]))
1438 return 0;
1439
1440 /* no device present, disable port */
1441 ata_port_disable(ap);
1442 ap->ops->port_disable(ap);
1443 return -ENODEV;
1444 }
1445
1446 /**
1447 * ata_port_probe - Mark port as enabled
1448 * @ap: Port for which we indicate enablement
1449 *
1450 * Modify @ap data structure such that the system
1451 * thinks that the entire port is enabled.
1452 *
1453 * LOCKING: host_set lock, or some other form of
1454 * serialization.
1455 */
1456
1457 void ata_port_probe(struct ata_port *ap)
1458 {
1459 ap->flags &= ~ATA_FLAG_PORT_DISABLED;
1460 }
1461
1462 /**
1463 * sata_print_link_status - Print SATA link status
1464 * @ap: SATA port to printk link status about
1465 *
1466 * This function prints link speed and status of a SATA link.
1467 *
1468 * LOCKING:
1469 * None.
1470 */
1471 static void sata_print_link_status(struct ata_port *ap)
1472 {
1473 u32 sstatus, tmp;
1474
1475 if (!ap->ops->scr_read)
1476 return;
1477
1478 sstatus = scr_read(ap, SCR_STATUS);
1479
1480 if (sata_dev_present(ap)) {
1481 tmp = (sstatus >> 4) & 0xf;
1482 printk(KERN_INFO "ata%u: SATA link up %s (SStatus %X)\n",
1483 ap->id, sata_spd_string(tmp), sstatus);
1484 } else {
1485 printk(KERN_INFO "ata%u: SATA link down (SStatus %X)\n",
1486 ap->id, sstatus);
1487 }
1488 }
1489
1490 /**
1491 * __sata_phy_reset - Wake/reset a low-level SATA PHY
1492 * @ap: SATA port associated with target SATA PHY.
1493 *
1494 * This function issues commands to standard SATA Sxxx
1495 * PHY registers, to wake up the phy (and device), and
1496 * clear any reset condition.
1497 *
1498 * LOCKING:
1499 * PCI/etc. bus probe sem.
1500 *
1501 */
1502 void __sata_phy_reset(struct ata_port *ap)
1503 {
1504 u32 sstatus;
1505 unsigned long timeout = jiffies + (HZ * 5);
1506
1507 if (ap->flags & ATA_FLAG_SATA_RESET) {
1508 /* issue phy wake/reset */
1509 scr_write_flush(ap, SCR_CONTROL, 0x301);
1510 /* Couldn't find anything in SATA I/II specs, but
1511 * AHCI-1.1 10.4.2 says at least 1 ms. */
1512 mdelay(1);
1513 }
1514 scr_write_flush(ap, SCR_CONTROL, 0x300); /* phy wake/clear reset */
1515
1516 /* wait for phy to become ready, if necessary */
1517 do {
1518 msleep(200);
1519 sstatus = scr_read(ap, SCR_STATUS);
1520 if ((sstatus & 0xf) != 1)
1521 break;
1522 } while (time_before(jiffies, timeout));
1523
1524 /* print link status */
1525 sata_print_link_status(ap);
1526
1527 /* TODO: phy layer with polling, timeouts, etc. */
1528 if (sata_dev_present(ap))
1529 ata_port_probe(ap);
1530 else
1531 ata_port_disable(ap);
1532
1533 if (ap->flags & ATA_FLAG_PORT_DISABLED)
1534 return;
1535
1536 if (ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT)) {
1537 ata_port_disable(ap);
1538 return;
1539 }
1540
1541 ap->cbl = ATA_CBL_SATA;
1542 }
1543
1544 /**
1545 * sata_phy_reset - Reset SATA bus.
1546 * @ap: SATA port associated with target SATA PHY.
1547 *
1548 * This function resets the SATA bus, and then probes
1549 * the bus for devices.
1550 *
1551 * LOCKING:
1552 * PCI/etc. bus probe sem.
1553 *
1554 */
1555 void sata_phy_reset(struct ata_port *ap)
1556 {
1557 __sata_phy_reset(ap);
1558 if (ap->flags & ATA_FLAG_PORT_DISABLED)
1559 return;
1560 ata_bus_reset(ap);
1561 }
1562
1563 /**
1564 * ata_dev_pair - return other device on cable
1565 * @ap: port
1566 * @adev: device
1567 *
1568 * Obtain the other device on the same cable, or if none is
1569 * present NULL is returned
1570 */
1571
1572 struct ata_device *ata_dev_pair(struct ata_port *ap, struct ata_device *adev)
1573 {
1574 struct ata_device *pair = &ap->device[1 - adev->devno];
1575 if (!ata_dev_enabled(pair))
1576 return NULL;
1577 return pair;
1578 }
1579
1580 /**
1581 * ata_port_disable - Disable port.
1582 * @ap: Port to be disabled.
1583 *
1584 * Modify @ap data structure such that the system
1585 * thinks that the entire port is disabled, and should
1586 * never attempt to probe or communicate with devices
1587 * on this port.
1588 *
1589 * LOCKING: host_set lock, or some other form of
1590 * serialization.
1591 */
1592
1593 void ata_port_disable(struct ata_port *ap)
1594 {
1595 ap->device[0].class = ATA_DEV_NONE;
1596 ap->device[1].class = ATA_DEV_NONE;
1597 ap->flags |= ATA_FLAG_PORT_DISABLED;
1598 }
1599
1600 /**
1601 * ata_down_sata_spd_limit - adjust SATA spd limit downward
1602 * @ap: Port to adjust SATA spd limit for
1603 *
1604 * Adjust SATA spd limit of @ap downward. Note that this
1605 * function only adjusts the limit. The change must be applied
1606 * using ata_set_sata_spd().
1607 *
1608 * LOCKING:
1609 * Inherited from caller.
1610 *
1611 * RETURNS:
1612 * 0 on success, negative errno on failure
1613 */
1614 static int ata_down_sata_spd_limit(struct ata_port *ap)
1615 {
1616 u32 spd, mask;
1617 int highbit;
1618
1619 if (ap->cbl != ATA_CBL_SATA || !ap->ops->scr_read)
1620 return -EOPNOTSUPP;
1621
1622 mask = ap->sata_spd_limit;
1623 if (mask <= 1)
1624 return -EINVAL;
1625 highbit = fls(mask) - 1;
1626 mask &= ~(1 << highbit);
1627
1628 spd = (scr_read(ap, SCR_STATUS) >> 4) & 0xf;
1629 if (spd <= 1)
1630 return -EINVAL;
1631 spd--;
1632 mask &= (1 << spd) - 1;
1633 if (!mask)
1634 return -EINVAL;
1635
1636 ap->sata_spd_limit = mask;
1637
1638 printk(KERN_WARNING "ata%u: limiting SATA link speed to %s\n",
1639 ap->id, sata_spd_string(fls(mask)));
1640
1641 return 0;
1642 }
1643
1644 static int __ata_set_sata_spd_needed(struct ata_port *ap, u32 *scontrol)
1645 {
1646 u32 spd, limit;
1647
1648 if (ap->sata_spd_limit == UINT_MAX)
1649 limit = 0;
1650 else
1651 limit = fls(ap->sata_spd_limit);
1652
1653 spd = (*scontrol >> 4) & 0xf;
1654 *scontrol = (*scontrol & ~0xf0) | ((limit & 0xf) << 4);
1655
1656 return spd != limit;
1657 }
1658
1659 /**
1660 * ata_set_sata_spd_needed - is SATA spd configuration needed
1661 * @ap: Port in question
1662 *
1663 * Test whether the spd limit in SControl matches
1664 * @ap->sata_spd_limit. This function is used to determine
1665 * whether hardreset is necessary to apply SATA spd
1666 * configuration.
1667 *
1668 * LOCKING:
1669 * Inherited from caller.
1670 *
1671 * RETURNS:
1672 * 1 if SATA spd configuration is needed, 0 otherwise.
1673 */
1674 static int ata_set_sata_spd_needed(struct ata_port *ap)
1675 {
1676 u32 scontrol;
1677
1678 if (ap->cbl != ATA_CBL_SATA || !ap->ops->scr_read)
1679 return 0;
1680
1681 scontrol = scr_read(ap, SCR_CONTROL);
1682
1683 return __ata_set_sata_spd_needed(ap, &scontrol);
1684 }
1685
1686 /**
1687 * ata_set_sata_spd - set SATA spd according to spd limit
1688 * @ap: Port to set SATA spd for
1689 *
1690 * Set SATA spd of @ap according to sata_spd_limit.
1691 *
1692 * LOCKING:
1693 * Inherited from caller.
1694 *
1695 * RETURNS:
1696 * 0 if spd doesn't need to be changed, 1 if spd has been
1697 * changed. -EOPNOTSUPP if SCR registers are inaccessible.
1698 */
1699 static int ata_set_sata_spd(struct ata_port *ap)
1700 {
1701 u32 scontrol;
1702
1703 if (ap->cbl != ATA_CBL_SATA || !ap->ops->scr_read)
1704 return -EOPNOTSUPP;
1705
1706 scontrol = scr_read(ap, SCR_CONTROL);
1707 if (!__ata_set_sata_spd_needed(ap, &scontrol))
1708 return 0;
1709
1710 scr_write(ap, SCR_CONTROL, scontrol);
1711 return 1;
1712 }
1713
1714 /*
1715 * This mode timing computation functionality is ported over from
1716 * drivers/ide/ide-timing.h and was originally written by Vojtech Pavlik
1717 */
1718 /*
1719 * PIO 0-5, MWDMA 0-2 and UDMA 0-6 timings (in nanoseconds).
1720 * These were taken from ATA/ATAPI-6 standard, rev 0a, except
1721 * for PIO 5, which is a nonstandard extension and UDMA6, which
1722 * is currently supported only by Maxtor drives.
1723 */
1724
1725 static const struct ata_timing ata_timing[] = {
1726
1727 { XFER_UDMA_6, 0, 0, 0, 0, 0, 0, 0, 15 },
1728 { XFER_UDMA_5, 0, 0, 0, 0, 0, 0, 0, 20 },
1729 { XFER_UDMA_4, 0, 0, 0, 0, 0, 0, 0, 30 },
1730 { XFER_UDMA_3, 0, 0, 0, 0, 0, 0, 0, 45 },
1731
1732 { XFER_UDMA_2, 0, 0, 0, 0, 0, 0, 0, 60 },
1733 { XFER_UDMA_1, 0, 0, 0, 0, 0, 0, 0, 80 },
1734 { XFER_UDMA_0, 0, 0, 0, 0, 0, 0, 0, 120 },
1735
1736 /* { XFER_UDMA_SLOW, 0, 0, 0, 0, 0, 0, 0, 150 }, */
1737
1738 { XFER_MW_DMA_2, 25, 0, 0, 0, 70, 25, 120, 0 },
1739 { XFER_MW_DMA_1, 45, 0, 0, 0, 80, 50, 150, 0 },
1740 { XFER_MW_DMA_0, 60, 0, 0, 0, 215, 215, 480, 0 },
1741
1742 { XFER_SW_DMA_2, 60, 0, 0, 0, 120, 120, 240, 0 },
1743 { XFER_SW_DMA_1, 90, 0, 0, 0, 240, 240, 480, 0 },
1744 { XFER_SW_DMA_0, 120, 0, 0, 0, 480, 480, 960, 0 },
1745
1746 /* { XFER_PIO_5, 20, 50, 30, 100, 50, 30, 100, 0 }, */
1747 { XFER_PIO_4, 25, 70, 25, 120, 70, 25, 120, 0 },
1748 { XFER_PIO_3, 30, 80, 70, 180, 80, 70, 180, 0 },
1749
1750 { XFER_PIO_2, 30, 290, 40, 330, 100, 90, 240, 0 },
1751 { XFER_PIO_1, 50, 290, 93, 383, 125, 100, 383, 0 },
1752 { XFER_PIO_0, 70, 290, 240, 600, 165, 150, 600, 0 },
1753
1754 /* { XFER_PIO_SLOW, 120, 290, 240, 960, 290, 240, 960, 0 }, */
1755
1756 { 0xFF }
1757 };
1758
1759 #define ENOUGH(v,unit) (((v)-1)/(unit)+1)
1760 #define EZ(v,unit) ((v)?ENOUGH(v,unit):0)
1761
1762 static void ata_timing_quantize(const struct ata_timing *t, struct ata_timing *q, int T, int UT)
1763 {
1764 q->setup = EZ(t->setup * 1000, T);
1765 q->act8b = EZ(t->act8b * 1000, T);
1766 q->rec8b = EZ(t->rec8b * 1000, T);
1767 q->cyc8b = EZ(t->cyc8b * 1000, T);
1768 q->active = EZ(t->active * 1000, T);
1769 q->recover = EZ(t->recover * 1000, T);
1770 q->cycle = EZ(t->cycle * 1000, T);
1771 q->udma = EZ(t->udma * 1000, UT);
1772 }
1773
1774 void ata_timing_merge(const struct ata_timing *a, const struct ata_timing *b,
1775 struct ata_timing *m, unsigned int what)
1776 {
1777 if (what & ATA_TIMING_SETUP ) m->setup = max(a->setup, b->setup);
1778 if (what & ATA_TIMING_ACT8B ) m->act8b = max(a->act8b, b->act8b);
1779 if (what & ATA_TIMING_REC8B ) m->rec8b = max(a->rec8b, b->rec8b);
1780 if (what & ATA_TIMING_CYC8B ) m->cyc8b = max(a->cyc8b, b->cyc8b);
1781 if (what & ATA_TIMING_ACTIVE ) m->active = max(a->active, b->active);
1782 if (what & ATA_TIMING_RECOVER) m->recover = max(a->recover, b->recover);
1783 if (what & ATA_TIMING_CYCLE ) m->cycle = max(a->cycle, b->cycle);
1784 if (what & ATA_TIMING_UDMA ) m->udma = max(a->udma, b->udma);
1785 }
1786
1787 static const struct ata_timing* ata_timing_find_mode(unsigned short speed)
1788 {
1789 const struct ata_timing *t;
1790
1791 for (t = ata_timing; t->mode != speed; t++)
1792 if (t->mode == 0xFF)
1793 return NULL;
1794 return t;
1795 }
1796
1797 int ata_timing_compute(struct ata_device *adev, unsigned short speed,
1798 struct ata_timing *t, int T, int UT)
1799 {
1800 const struct ata_timing *s;
1801 struct ata_timing p;
1802
1803 /*
1804 * Find the mode.
1805 */
1806
1807 if (!(s = ata_timing_find_mode(speed)))
1808 return -EINVAL;
1809
1810 memcpy(t, s, sizeof(*s));
1811
1812 /*
1813 * If the drive is an EIDE drive, it can tell us it needs extended
1814 * PIO/MW_DMA cycle timing.
1815 */
1816
1817 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE drive */
1818 memset(&p, 0, sizeof(p));
1819 if(speed >= XFER_PIO_0 && speed <= XFER_SW_DMA_0) {
1820 if (speed <= XFER_PIO_2) p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO];
1821 else p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO_IORDY];
1822 } else if(speed >= XFER_MW_DMA_0 && speed <= XFER_MW_DMA_2) {
1823 p.cycle = adev->id[ATA_ID_EIDE_DMA_MIN];
1824 }
1825 ata_timing_merge(&p, t, t, ATA_TIMING_CYCLE | ATA_TIMING_CYC8B);
1826 }
1827
1828 /*
1829 * Convert the timing to bus clock counts.
1830 */
1831
1832 ata_timing_quantize(t, t, T, UT);
1833
1834 /*
1835 * Even in DMA/UDMA modes we still use PIO access for IDENTIFY,
1836 * S.M.A.R.T * and some other commands. We have to ensure that the
1837 * DMA cycle timing is slower/equal than the fastest PIO timing.
1838 */
1839
1840 if (speed > XFER_PIO_4) {
1841 ata_timing_compute(adev, adev->pio_mode, &p, T, UT);
1842 ata_timing_merge(&p, t, t, ATA_TIMING_ALL);
1843 }
1844
1845 /*
1846 * Lengthen active & recovery time so that cycle time is correct.
1847 */
1848
1849 if (t->act8b + t->rec8b < t->cyc8b) {
1850 t->act8b += (t->cyc8b - (t->act8b + t->rec8b)) / 2;
1851 t->rec8b = t->cyc8b - t->act8b;
1852 }
1853
1854 if (t->active + t->recover < t->cycle) {
1855 t->active += (t->cycle - (t->active + t->recover)) / 2;
1856 t->recover = t->cycle - t->active;
1857 }
1858
1859 return 0;
1860 }
1861
1862 static int ata_dev_set_mode(struct ata_port *ap, struct ata_device *dev)
1863 {
1864 unsigned int err_mask;
1865 int rc;
1866
1867 if (dev->xfer_shift == ATA_SHIFT_PIO)
1868 dev->flags |= ATA_DFLAG_PIO;
1869
1870 err_mask = ata_dev_set_xfermode(ap, dev);
1871 if (err_mask) {
1872 printk(KERN_ERR
1873 "ata%u: failed to set xfermode (err_mask=0x%x)\n",
1874 ap->id, err_mask);
1875 return -EIO;
1876 }
1877
1878 rc = ata_dev_revalidate(ap, dev, 0);
1879 if (rc) {
1880 printk(KERN_ERR
1881 "ata%u: failed to revalidate after set xfermode\n",
1882 ap->id);
1883 return rc;
1884 }
1885
1886 DPRINTK("xfer_shift=%u, xfer_mode=0x%x\n",
1887 dev->xfer_shift, (int)dev->xfer_mode);
1888
1889 printk(KERN_INFO "ata%u: dev %u configured for %s\n",
1890 ap->id, dev->devno,
1891 ata_mode_string(ata_xfer_mode2mask(dev->xfer_mode)));
1892 return 0;
1893 }
1894
1895 /**
1896 * ata_set_mode - Program timings and issue SET FEATURES - XFER
1897 * @ap: port on which timings will be programmed
1898 * @r_failed_dev: out paramter for failed device
1899 *
1900 * Set ATA device disk transfer mode (PIO3, UDMA6, etc.). If
1901 * ata_set_mode() fails, pointer to the failing device is
1902 * returned in @r_failed_dev.
1903 *
1904 * LOCKING:
1905 * PCI/etc. bus probe sem.
1906 *
1907 * RETURNS:
1908 * 0 on success, negative errno otherwise
1909 */
1910 static int ata_set_mode(struct ata_port *ap, struct ata_device **r_failed_dev)
1911 {
1912 struct ata_device *dev;
1913 int i, rc = 0, used_dma = 0, found = 0;
1914
1915 /* step 1: calculate xfer_mask */
1916 for (i = 0; i < ATA_MAX_DEVICES; i++) {
1917 unsigned int pio_mask, dma_mask;
1918
1919 dev = &ap->device[i];
1920
1921 if (!ata_dev_enabled(dev))
1922 continue;
1923
1924 ata_dev_xfermask(ap, dev);
1925
1926 pio_mask = ata_pack_xfermask(dev->pio_mask, 0, 0);
1927 dma_mask = ata_pack_xfermask(0, dev->mwdma_mask, dev->udma_mask);
1928 dev->pio_mode = ata_xfer_mask2mode(pio_mask);
1929 dev->dma_mode = ata_xfer_mask2mode(dma_mask);
1930
1931 found = 1;
1932 if (dev->dma_mode)
1933 used_dma = 1;
1934 }
1935 if (!found)
1936 goto out;
1937
1938 /* step 2: always set host PIO timings */
1939 for (i = 0; i < ATA_MAX_DEVICES; i++) {
1940 dev = &ap->device[i];
1941 if (!ata_dev_enabled(dev))
1942 continue;
1943
1944 if (!dev->pio_mode) {
1945 printk(KERN_WARNING "ata%u: dev %u no PIO support\n",
1946 ap->id, dev->devno);
1947 rc = -EINVAL;
1948 goto out;
1949 }
1950
1951 dev->xfer_mode = dev->pio_mode;
1952 dev->xfer_shift = ATA_SHIFT_PIO;
1953 if (ap->ops->set_piomode)
1954 ap->ops->set_piomode(ap, dev);
1955 }
1956
1957 /* step 3: set host DMA timings */
1958 for (i = 0; i < ATA_MAX_DEVICES; i++) {
1959 dev = &ap->device[i];
1960
1961 if (!ata_dev_enabled(dev) || !dev->dma_mode)
1962 continue;
1963
1964 dev->xfer_mode = dev->dma_mode;
1965 dev->xfer_shift = ata_xfer_mode2shift(dev->dma_mode);
1966 if (ap->ops->set_dmamode)
1967 ap->ops->set_dmamode(ap, dev);
1968 }
1969
1970 /* step 4: update devices' xfer mode */
1971 for (i = 0; i < ATA_MAX_DEVICES; i++) {
1972 dev = &ap->device[i];
1973
1974 if (!ata_dev_enabled(dev))
1975 continue;
1976
1977 rc = ata_dev_set_mode(ap, dev);
1978 if (rc)
1979 goto out;
1980 }
1981
1982 /* Record simplex status. If we selected DMA then the other
1983 * host channels are not permitted to do so.
1984 */
1985 if (used_dma && (ap->host_set->flags & ATA_HOST_SIMPLEX))
1986 ap->host_set->simplex_claimed = 1;
1987
1988 /* step5: chip specific finalisation */
1989 if (ap->ops->post_set_mode)
1990 ap->ops->post_set_mode(ap);
1991
1992 out:
1993 if (rc)
1994 *r_failed_dev = dev;
1995 return rc;
1996 }
1997
1998 /**
1999 * ata_tf_to_host - issue ATA taskfile to host controller
2000 * @ap: port to which command is being issued
2001 * @tf: ATA taskfile register set
2002 *
2003 * Issues ATA taskfile register set to ATA host controller,
2004 * with proper synchronization with interrupt handler and
2005 * other threads.
2006 *
2007 * LOCKING:
2008 * spin_lock_irqsave(host_set lock)
2009 */
2010
2011 static inline void ata_tf_to_host(struct ata_port *ap,
2012 const struct ata_taskfile *tf)
2013 {
2014 ap->ops->tf_load(ap, tf);
2015 ap->ops->exec_command(ap, tf);
2016 }
2017
2018 /**
2019 * ata_busy_sleep - sleep until BSY clears, or timeout
2020 * @ap: port containing status register to be polled
2021 * @tmout_pat: impatience timeout
2022 * @tmout: overall timeout
2023 *
2024 * Sleep until ATA Status register bit BSY clears,
2025 * or a timeout occurs.
2026 *
2027 * LOCKING: None.
2028 */
2029
2030 unsigned int ata_busy_sleep (struct ata_port *ap,
2031 unsigned long tmout_pat, unsigned long tmout)
2032 {
2033 unsigned long timer_start, timeout;
2034 u8 status;
2035
2036 status = ata_busy_wait(ap, ATA_BUSY, 300);
2037 timer_start = jiffies;
2038 timeout = timer_start + tmout_pat;
2039 while ((status & ATA_BUSY) && (time_before(jiffies, timeout))) {
2040 msleep(50);
2041 status = ata_busy_wait(ap, ATA_BUSY, 3);
2042 }
2043
2044 if (status & ATA_BUSY)
2045 printk(KERN_WARNING "ata%u is slow to respond, "
2046 "please be patient\n", ap->id);
2047
2048 timeout = timer_start + tmout;
2049 while ((status & ATA_BUSY) && (time_before(jiffies, timeout))) {
2050 msleep(50);
2051 status = ata_chk_status(ap);
2052 }
2053
2054 if (status & ATA_BUSY) {
2055 printk(KERN_ERR "ata%u failed to respond (%lu secs)\n",
2056 ap->id, tmout / HZ);
2057 return 1;
2058 }
2059
2060 return 0;
2061 }
2062
2063 static void ata_bus_post_reset(struct ata_port *ap, unsigned int devmask)
2064 {
2065 struct ata_ioports *ioaddr = &ap->ioaddr;
2066 unsigned int dev0 = devmask & (1 << 0);
2067 unsigned int dev1 = devmask & (1 << 1);
2068 unsigned long timeout;
2069
2070 /* if device 0 was found in ata_devchk, wait for its
2071 * BSY bit to clear
2072 */
2073 if (dev0)
2074 ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT);
2075
2076 /* if device 1 was found in ata_devchk, wait for
2077 * register access, then wait for BSY to clear
2078 */
2079 timeout = jiffies + ATA_TMOUT_BOOT;
2080 while (dev1) {
2081 u8 nsect, lbal;
2082
2083 ap->ops->dev_select(ap, 1);
2084 if (ap->flags & ATA_FLAG_MMIO) {
2085 nsect = readb((void __iomem *) ioaddr->nsect_addr);
2086 lbal = readb((void __iomem *) ioaddr->lbal_addr);
2087 } else {
2088 nsect = inb(ioaddr->nsect_addr);
2089 lbal = inb(ioaddr->lbal_addr);
2090 }
2091 if ((nsect == 1) && (lbal == 1))
2092 break;
2093 if (time_after(jiffies, timeout)) {
2094 dev1 = 0;
2095 break;
2096 }
2097 msleep(50); /* give drive a breather */
2098 }
2099 if (dev1)
2100 ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT);
2101
2102 /* is all this really necessary? */
2103 ap->ops->dev_select(ap, 0);
2104 if (dev1)
2105 ap->ops->dev_select(ap, 1);
2106 if (dev0)
2107 ap->ops->dev_select(ap, 0);
2108 }
2109
2110 static unsigned int ata_bus_softreset(struct ata_port *ap,
2111 unsigned int devmask)
2112 {
2113 struct ata_ioports *ioaddr = &ap->ioaddr;
2114
2115 DPRINTK("ata%u: bus reset via SRST\n", ap->id);
2116
2117 /* software reset. causes dev0 to be selected */
2118 if (ap->flags & ATA_FLAG_MMIO) {
2119 writeb(ap->ctl, (void __iomem *) ioaddr->ctl_addr);
2120 udelay(20); /* FIXME: flush */
2121 writeb(ap->ctl | ATA_SRST, (void __iomem *) ioaddr->ctl_addr);
2122 udelay(20); /* FIXME: flush */
2123 writeb(ap->ctl, (void __iomem *) ioaddr->ctl_addr);
2124 } else {
2125 outb(ap->ctl, ioaddr->ctl_addr);
2126 udelay(10);
2127 outb(ap->ctl | ATA_SRST, ioaddr->ctl_addr);
2128 udelay(10);
2129 outb(ap->ctl, ioaddr->ctl_addr);
2130 }
2131
2132 /* spec mandates ">= 2ms" before checking status.
2133 * We wait 150ms, because that was the magic delay used for
2134 * ATAPI devices in Hale Landis's ATADRVR, for the period of time
2135 * between when the ATA command register is written, and then
2136 * status is checked. Because waiting for "a while" before
2137 * checking status is fine, post SRST, we perform this magic
2138 * delay here as well.
2139 *
2140 * Old drivers/ide uses the 2mS rule and then waits for ready
2141 */
2142 msleep(150);
2143
2144 /* Before we perform post reset processing we want to see if
2145 * the bus shows 0xFF because the odd clown forgets the D7
2146 * pulldown resistor.
2147 */
2148 if (ata_check_status(ap) == 0xFF)
2149 return AC_ERR_OTHER;
2150
2151 ata_bus_post_reset(ap, devmask);
2152
2153 return 0;
2154 }
2155
2156 /**
2157 * ata_bus_reset - reset host port and associated ATA channel
2158 * @ap: port to reset
2159 *
2160 * This is typically the first time we actually start issuing
2161 * commands to the ATA channel. We wait for BSY to clear, then
2162 * issue EXECUTE DEVICE DIAGNOSTIC command, polling for its
2163 * result. Determine what devices, if any, are on the channel
2164 * by looking at the device 0/1 error register. Look at the signature
2165 * stored in each device's taskfile registers, to determine if
2166 * the device is ATA or ATAPI.
2167 *
2168 * LOCKING:
2169 * PCI/etc. bus probe sem.
2170 * Obtains host_set lock.
2171 *
2172 * SIDE EFFECTS:
2173 * Sets ATA_FLAG_PORT_DISABLED if bus reset fails.
2174 */
2175
2176 void ata_bus_reset(struct ata_port *ap)
2177 {
2178 struct ata_ioports *ioaddr = &ap->ioaddr;
2179 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
2180 u8 err;
2181 unsigned int dev0, dev1 = 0, devmask = 0;
2182
2183 DPRINTK("ENTER, host %u, port %u\n", ap->id, ap->port_no);
2184
2185 /* determine if device 0/1 are present */
2186 if (ap->flags & ATA_FLAG_SATA_RESET)
2187 dev0 = 1;
2188 else {
2189 dev0 = ata_devchk(ap, 0);
2190 if (slave_possible)
2191 dev1 = ata_devchk(ap, 1);
2192 }
2193
2194 if (dev0)
2195 devmask |= (1 << 0);
2196 if (dev1)
2197 devmask |= (1 << 1);
2198
2199 /* select device 0 again */
2200 ap->ops->dev_select(ap, 0);
2201
2202 /* issue bus reset */
2203 if (ap->flags & ATA_FLAG_SRST)
2204 if (ata_bus_softreset(ap, devmask))
2205 goto err_out;
2206
2207 /*
2208 * determine by signature whether we have ATA or ATAPI devices
2209 */
2210 ap->device[0].class = ata_dev_try_classify(ap, 0, &err);
2211 if ((slave_possible) && (err != 0x81))
2212 ap->device[1].class = ata_dev_try_classify(ap, 1, &err);
2213
2214 /* re-enable interrupts */
2215 if (ap->ioaddr.ctl_addr) /* FIXME: hack. create a hook instead */
2216 ata_irq_on(ap);
2217
2218 /* is double-select really necessary? */
2219 if (ap->device[1].class != ATA_DEV_NONE)
2220 ap->ops->dev_select(ap, 1);
2221 if (ap->device[0].class != ATA_DEV_NONE)
2222 ap->ops->dev_select(ap, 0);
2223
2224 /* if no devices were detected, disable this port */
2225 if ((ap->device[0].class == ATA_DEV_NONE) &&
2226 (ap->device[1].class == ATA_DEV_NONE))
2227 goto err_out;
2228
2229 if (ap->flags & (ATA_FLAG_SATA_RESET | ATA_FLAG_SRST)) {
2230 /* set up device control for ATA_FLAG_SATA_RESET */
2231 if (ap->flags & ATA_FLAG_MMIO)
2232 writeb(ap->ctl, (void __iomem *) ioaddr->ctl_addr);
2233 else
2234 outb(ap->ctl, ioaddr->ctl_addr);
2235 }
2236
2237 DPRINTK("EXIT\n");
2238 return;
2239
2240 err_out:
2241 printk(KERN_ERR "ata%u: disabling port\n", ap->id);
2242 ap->ops->port_disable(ap);
2243
2244 DPRINTK("EXIT\n");
2245 }
2246
2247 static int sata_phy_resume(struct ata_port *ap)
2248 {
2249 unsigned long timeout = jiffies + (HZ * 5);
2250 u32 scontrol, sstatus;
2251
2252 scontrol = scr_read(ap, SCR_CONTROL);
2253 scontrol = (scontrol & 0x0f0) | 0x300;
2254 scr_write_flush(ap, SCR_CONTROL, scontrol);
2255
2256 /* Wait for phy to become ready, if necessary. */
2257 do {
2258 msleep(200);
2259 sstatus = scr_read(ap, SCR_STATUS);
2260 if ((sstatus & 0xf) != 1)
2261 return 0;
2262 } while (time_before(jiffies, timeout));
2263
2264 return -1;
2265 }
2266
2267 /**
2268 * ata_std_probeinit - initialize probing
2269 * @ap: port to be probed
2270 *
2271 * @ap is about to be probed. Initialize it. This function is
2272 * to be used as standard callback for ata_drive_probe_reset().
2273 *
2274 * NOTE!!! Do not use this function as probeinit if a low level
2275 * driver implements only hardreset. Just pass NULL as probeinit
2276 * in that case. Using this function is probably okay but doing
2277 * so makes reset sequence different from the original
2278 * ->phy_reset implementation and Jeff nervous. :-P
2279 */
2280 void ata_std_probeinit(struct ata_port *ap)
2281 {
2282 if ((ap->flags & ATA_FLAG_SATA) && ap->ops->scr_read) {
2283 u32 spd;
2284
2285 sata_phy_resume(ap);
2286
2287 spd = (scr_read(ap, SCR_CONTROL) & 0xf0) >> 4;
2288 if (spd)
2289 ap->sata_spd_limit &= (1 << spd) - 1;
2290
2291 if (sata_dev_present(ap))
2292 ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT);
2293 }
2294 }
2295
2296 /**
2297 * ata_std_softreset - reset host port via ATA SRST
2298 * @ap: port to reset
2299 * @verbose: fail verbosely
2300 * @classes: resulting classes of attached devices
2301 *
2302 * Reset host port using ATA SRST. This function is to be used
2303 * as standard callback for ata_drive_*_reset() functions.
2304 *
2305 * LOCKING:
2306 * Kernel thread context (may sleep)
2307 *
2308 * RETURNS:
2309 * 0 on success, -errno otherwise.
2310 */
2311 int ata_std_softreset(struct ata_port *ap, int verbose, unsigned int *classes)
2312 {
2313 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
2314 unsigned int devmask = 0, err_mask;
2315 u8 err;
2316
2317 DPRINTK("ENTER\n");
2318
2319 if (ap->ops->scr_read && !sata_dev_present(ap)) {
2320 classes[0] = ATA_DEV_NONE;
2321 goto out;
2322 }
2323
2324 /* determine if device 0/1 are present */
2325 if (ata_devchk(ap, 0))
2326 devmask |= (1 << 0);
2327 if (slave_possible && ata_devchk(ap, 1))
2328 devmask |= (1 << 1);
2329
2330 /* select device 0 again */
2331 ap->ops->dev_select(ap, 0);
2332
2333 /* issue bus reset */
2334 DPRINTK("about to softreset, devmask=%x\n", devmask);
2335 err_mask = ata_bus_softreset(ap, devmask);
2336 if (err_mask) {
2337 if (verbose)
2338 printk(KERN_ERR "ata%u: SRST failed (err_mask=0x%x)\n",
2339 ap->id, err_mask);
2340 else
2341 DPRINTK("EXIT, softreset failed (err_mask=0x%x)\n",
2342 err_mask);
2343 return -EIO;
2344 }
2345
2346 /* determine by signature whether we have ATA or ATAPI devices */
2347 classes[0] = ata_dev_try_classify(ap, 0, &err);
2348 if (slave_possible && err != 0x81)
2349 classes[1] = ata_dev_try_classify(ap, 1, &err);
2350
2351 out:
2352 DPRINTK("EXIT, classes[0]=%u [1]=%u\n", classes[0], classes[1]);
2353 return 0;
2354 }
2355
2356 /**
2357 * sata_std_hardreset - reset host port via SATA phy reset
2358 * @ap: port to reset
2359 * @verbose: fail verbosely
2360 * @class: resulting class of attached device
2361 *
2362 * SATA phy-reset host port using DET bits of SControl register.
2363 * This function is to be used as standard callback for
2364 * ata_drive_*_reset().
2365 *
2366 * LOCKING:
2367 * Kernel thread context (may sleep)
2368 *
2369 * RETURNS:
2370 * 0 on success, -errno otherwise.
2371 */
2372 int sata_std_hardreset(struct ata_port *ap, int verbose, unsigned int *class)
2373 {
2374 u32 scontrol;
2375
2376 DPRINTK("ENTER\n");
2377
2378 if (ata_set_sata_spd_needed(ap)) {
2379 /* SATA spec says nothing about how to reconfigure
2380 * spd. To be on the safe side, turn off phy during
2381 * reconfiguration. This works for at least ICH7 AHCI
2382 * and Sil3124.
2383 */
2384 scontrol = scr_read(ap, SCR_CONTROL);
2385 scontrol = (scontrol & 0x0f0) | 0x302;
2386 scr_write_flush(ap, SCR_CONTROL, scontrol);
2387
2388 ata_set_sata_spd(ap);
2389 }
2390
2391 /* issue phy wake/reset */
2392 scontrol = scr_read(ap, SCR_CONTROL);
2393 scontrol = (scontrol & 0x0f0) | 0x301;
2394 scr_write_flush(ap, SCR_CONTROL, scontrol);
2395
2396 /* Couldn't find anything in SATA I/II specs, but AHCI-1.1
2397 * 10.4.2 says at least 1 ms.
2398 */
2399 msleep(1);
2400
2401 /* bring phy back */
2402 sata_phy_resume(ap);
2403
2404 /* TODO: phy layer with polling, timeouts, etc. */
2405 if (!sata_dev_present(ap)) {
2406 *class = ATA_DEV_NONE;
2407 DPRINTK("EXIT, link offline\n");
2408 return 0;
2409 }
2410
2411 if (ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT)) {
2412 if (verbose)
2413 printk(KERN_ERR "ata%u: COMRESET failed "
2414 "(device not ready)\n", ap->id);
2415 else
2416 DPRINTK("EXIT, device not ready\n");
2417 return -EIO;
2418 }
2419
2420 ap->ops->dev_select(ap, 0); /* probably unnecessary */
2421
2422 *class = ata_dev_try_classify(ap, 0, NULL);
2423
2424 DPRINTK("EXIT, class=%u\n", *class);
2425 return 0;
2426 }
2427
2428 /**
2429 * ata_std_postreset - standard postreset callback
2430 * @ap: the target ata_port
2431 * @classes: classes of attached devices
2432 *
2433 * This function is invoked after a successful reset. Note that
2434 * the device might have been reset more than once using
2435 * different reset methods before postreset is invoked.
2436 *
2437 * This function is to be used as standard callback for
2438 * ata_drive_*_reset().
2439 *
2440 * LOCKING:
2441 * Kernel thread context (may sleep)
2442 */
2443 void ata_std_postreset(struct ata_port *ap, unsigned int *classes)
2444 {
2445 DPRINTK("ENTER\n");
2446
2447 /* set cable type if it isn't already set */
2448 if (ap->cbl == ATA_CBL_NONE && ap->flags & ATA_FLAG_SATA)
2449 ap->cbl = ATA_CBL_SATA;
2450
2451 /* print link status */
2452 if (ap->cbl == ATA_CBL_SATA)
2453 sata_print_link_status(ap);
2454
2455 /* re-enable interrupts */
2456 if (ap->ioaddr.ctl_addr) /* FIXME: hack. create a hook instead */
2457 ata_irq_on(ap);
2458
2459 /* is double-select really necessary? */
2460 if (classes[0] != ATA_DEV_NONE)
2461 ap->ops->dev_select(ap, 1);
2462 if (classes[1] != ATA_DEV_NONE)
2463 ap->ops->dev_select(ap, 0);
2464
2465 /* bail out if no device is present */
2466 if (classes[0] == ATA_DEV_NONE && classes[1] == ATA_DEV_NONE) {
2467 DPRINTK("EXIT, no device\n");
2468 return;
2469 }
2470
2471 /* set up device control */
2472 if (ap->ioaddr.ctl_addr) {
2473 if (ap->flags & ATA_FLAG_MMIO)
2474 writeb(ap->ctl, (void __iomem *) ap->ioaddr.ctl_addr);
2475 else
2476 outb(ap->ctl, ap->ioaddr.ctl_addr);
2477 }
2478
2479 DPRINTK("EXIT\n");
2480 }
2481
2482 /**
2483 * ata_std_probe_reset - standard probe reset method
2484 * @ap: prot to perform probe-reset
2485 * @classes: resulting classes of attached devices
2486 *
2487 * The stock off-the-shelf ->probe_reset method.
2488 *
2489 * LOCKING:
2490 * Kernel thread context (may sleep)
2491 *
2492 * RETURNS:
2493 * 0 on success, -errno otherwise.
2494 */
2495 int ata_std_probe_reset(struct ata_port *ap, unsigned int *classes)
2496 {
2497 ata_reset_fn_t hardreset;
2498
2499 hardreset = NULL;
2500 if (ap->flags & ATA_FLAG_SATA && ap->ops->scr_read)
2501 hardreset = sata_std_hardreset;
2502
2503 return ata_drive_probe_reset(ap, ata_std_probeinit,
2504 ata_std_softreset, hardreset,
2505 ata_std_postreset, classes);
2506 }
2507
2508 static int ata_do_reset(struct ata_port *ap,
2509 ata_reset_fn_t reset, ata_postreset_fn_t postreset,
2510 int verbose, unsigned int *classes)
2511 {
2512 int i, rc;
2513
2514 for (i = 0; i < ATA_MAX_DEVICES; i++)
2515 classes[i] = ATA_DEV_UNKNOWN;
2516
2517 rc = reset(ap, verbose, classes);
2518 if (rc)
2519 return rc;
2520
2521 /* If any class isn't ATA_DEV_UNKNOWN, consider classification
2522 * is complete and convert all ATA_DEV_UNKNOWN to
2523 * ATA_DEV_NONE.
2524 */
2525 for (i = 0; i < ATA_MAX_DEVICES; i++)
2526 if (classes[i] != ATA_DEV_UNKNOWN)
2527 break;
2528
2529 if (i < ATA_MAX_DEVICES)
2530 for (i = 0; i < ATA_MAX_DEVICES; i++)
2531 if (classes[i] == ATA_DEV_UNKNOWN)
2532 classes[i] = ATA_DEV_NONE;
2533
2534 if (postreset)
2535 postreset(ap, classes);
2536
2537 return 0;
2538 }
2539
2540 /**
2541 * ata_drive_probe_reset - Perform probe reset with given methods
2542 * @ap: port to reset
2543 * @probeinit: probeinit method (can be NULL)
2544 * @softreset: softreset method (can be NULL)
2545 * @hardreset: hardreset method (can be NULL)
2546 * @postreset: postreset method (can be NULL)
2547 * @classes: resulting classes of attached devices
2548 *
2549 * Reset the specified port and classify attached devices using
2550 * given methods. This function prefers softreset but tries all
2551 * possible reset sequences to reset and classify devices. This
2552 * function is intended to be used for constructing ->probe_reset
2553 * callback by low level drivers.
2554 *
2555 * Reset methods should follow the following rules.
2556 *
2557 * - Return 0 on sucess, -errno on failure.
2558 * - If classification is supported, fill classes[] with
2559 * recognized class codes.
2560 * - If classification is not supported, leave classes[] alone.
2561 * - If verbose is non-zero, print error message on failure;
2562 * otherwise, shut up.
2563 *
2564 * LOCKING:
2565 * Kernel thread context (may sleep)
2566 *
2567 * RETURNS:
2568 * 0 on success, -EINVAL if no reset method is avaliable, -ENODEV
2569 * if classification fails, and any error code from reset
2570 * methods.
2571 */
2572 int ata_drive_probe_reset(struct ata_port *ap, ata_probeinit_fn_t probeinit,
2573 ata_reset_fn_t softreset, ata_reset_fn_t hardreset,
2574 ata_postreset_fn_t postreset, unsigned int *classes)
2575 {
2576 int rc = -EINVAL;
2577
2578 if (probeinit)
2579 probeinit(ap);
2580
2581 if (softreset && !ata_set_sata_spd_needed(ap)) {
2582 rc = ata_do_reset(ap, softreset, postreset, 0, classes);
2583 if (rc == 0 && classes[0] != ATA_DEV_UNKNOWN)
2584 goto done;
2585 printk(KERN_INFO "ata%u: softreset failed, will try "
2586 "hardreset in 5 secs\n", ap->id);
2587 ssleep(5);
2588 }
2589
2590 if (!hardreset)
2591 goto done;
2592
2593 while (1) {
2594 rc = ata_do_reset(ap, hardreset, postreset, 0, classes);
2595 if (rc == 0) {
2596 if (classes[0] != ATA_DEV_UNKNOWN)
2597 goto done;
2598 break;
2599 }
2600
2601 if (ata_down_sata_spd_limit(ap))
2602 goto done;
2603
2604 printk(KERN_INFO "ata%u: hardreset failed, will retry "
2605 "in 5 secs\n", ap->id);
2606 ssleep(5);
2607 }
2608
2609 if (softreset) {
2610 printk(KERN_INFO "ata%u: hardreset succeeded without "
2611 "classification, will retry softreset in 5 secs\n",
2612 ap->id);
2613 ssleep(5);
2614
2615 rc = ata_do_reset(ap, softreset, postreset, 0, classes);
2616 }
2617
2618 done:
2619 if (rc == 0 && classes[0] == ATA_DEV_UNKNOWN)
2620 rc = -ENODEV;
2621 return rc;
2622 }
2623
2624 /**
2625 * ata_dev_same_device - Determine whether new ID matches configured device
2626 * @ap: port on which the device to compare against resides
2627 * @dev: device to compare against
2628 * @new_class: class of the new device
2629 * @new_id: IDENTIFY page of the new device
2630 *
2631 * Compare @new_class and @new_id against @dev and determine
2632 * whether @dev is the device indicated by @new_class and
2633 * @new_id.
2634 *
2635 * LOCKING:
2636 * None.
2637 *
2638 * RETURNS:
2639 * 1 if @dev matches @new_class and @new_id, 0 otherwise.
2640 */
2641 static int ata_dev_same_device(struct ata_port *ap, struct ata_device *dev,
2642 unsigned int new_class, const u16 *new_id)
2643 {
2644 const u16 *old_id = dev->id;
2645 unsigned char model[2][41], serial[2][21];
2646 u64 new_n_sectors;
2647
2648 if (dev->class != new_class) {
2649 printk(KERN_INFO
2650 "ata%u: dev %u class mismatch %d != %d\n",
2651 ap->id, dev->devno, dev->class, new_class);
2652 return 0;
2653 }
2654
2655 ata_id_c_string(old_id, model[0], ATA_ID_PROD_OFS, sizeof(model[0]));
2656 ata_id_c_string(new_id, model[1], ATA_ID_PROD_OFS, sizeof(model[1]));
2657 ata_id_c_string(old_id, serial[0], ATA_ID_SERNO_OFS, sizeof(serial[0]));
2658 ata_id_c_string(new_id, serial[1], ATA_ID_SERNO_OFS, sizeof(serial[1]));
2659 new_n_sectors = ata_id_n_sectors(new_id);
2660
2661 if (strcmp(model[0], model[1])) {
2662 printk(KERN_INFO
2663 "ata%u: dev %u model number mismatch '%s' != '%s'\n",
2664 ap->id, dev->devno, model[0], model[1]);
2665 return 0;
2666 }
2667
2668 if (strcmp(serial[0], serial[1])) {
2669 printk(KERN_INFO
2670 "ata%u: dev %u serial number mismatch '%s' != '%s'\n",
2671 ap->id, dev->devno, serial[0], serial[1]);
2672 return 0;
2673 }
2674
2675 if (dev->class == ATA_DEV_ATA && dev->n_sectors != new_n_sectors) {
2676 printk(KERN_INFO
2677 "ata%u: dev %u n_sectors mismatch %llu != %llu\n",
2678 ap->id, dev->devno, (unsigned long long)dev->n_sectors,
2679 (unsigned long long)new_n_sectors);
2680 return 0;
2681 }
2682
2683 return 1;
2684 }
2685
2686 /**
2687 * ata_dev_revalidate - Revalidate ATA device
2688 * @ap: port on which the device to revalidate resides
2689 * @dev: device to revalidate
2690 * @post_reset: is this revalidation after reset?
2691 *
2692 * Re-read IDENTIFY page and make sure @dev is still attached to
2693 * the port.
2694 *
2695 * LOCKING:
2696 * Kernel thread context (may sleep)
2697 *
2698 * RETURNS:
2699 * 0 on success, negative errno otherwise
2700 */
2701 int ata_dev_revalidate(struct ata_port *ap, struct ata_device *dev,
2702 int post_reset)
2703 {
2704 unsigned int class;
2705 u16 *id;
2706 int rc;
2707
2708 if (!ata_dev_enabled(dev))
2709 return -ENODEV;
2710
2711 class = dev->class;
2712 id = NULL;
2713
2714 /* allocate & read ID data */
2715 rc = ata_dev_read_id(ap, dev, &class, post_reset, &id);
2716 if (rc)
2717 goto fail;
2718
2719 /* is the device still there? */
2720 if (!ata_dev_same_device(ap, dev, class, id)) {
2721 rc = -ENODEV;
2722 goto fail;
2723 }
2724
2725 kfree(dev->id);
2726 dev->id = id;
2727
2728 /* configure device according to the new ID */
2729 return ata_dev_configure(ap, dev, 0);
2730
2731 fail:
2732 printk(KERN_ERR "ata%u: dev %u revalidation failed (errno=%d)\n",
2733 ap->id, dev->devno, rc);
2734 kfree(id);
2735 return rc;
2736 }
2737
2738 static const char * const ata_dma_blacklist [] = {
2739 "WDC AC11000H", NULL,
2740 "WDC AC22100H", NULL,
2741 "WDC AC32500H", NULL,
2742 "WDC AC33100H", NULL,
2743 "WDC AC31600H", NULL,
2744 "WDC AC32100H", "24.09P07",
2745 "WDC AC23200L", "21.10N21",
2746 "Compaq CRD-8241B", NULL,
2747 "CRD-8400B", NULL,
2748 "CRD-8480B", NULL,
2749 "CRD-8482B", NULL,
2750 "CRD-84", NULL,
2751 "SanDisk SDP3B", NULL,
2752 "SanDisk SDP3B-64", NULL,
2753 "SANYO CD-ROM CRD", NULL,
2754 "HITACHI CDR-8", NULL,
2755 "HITACHI CDR-8335", NULL,
2756 "HITACHI CDR-8435", NULL,
2757 "Toshiba CD-ROM XM-6202B", NULL,
2758 "TOSHIBA CD-ROM XM-1702BC", NULL,
2759 "CD-532E-A", NULL,
2760 "E-IDE CD-ROM CR-840", NULL,
2761 "CD-ROM Drive/F5A", NULL,
2762 "WPI CDD-820", NULL,
2763 "SAMSUNG CD-ROM SC-148C", NULL,
2764 "SAMSUNG CD-ROM SC", NULL,
2765 "SanDisk SDP3B-64", NULL,
2766 "ATAPI CD-ROM DRIVE 40X MAXIMUM",NULL,
2767 "_NEC DV5800A", NULL,
2768 "SAMSUNG CD-ROM SN-124", "N001"
2769 };
2770
2771 static int ata_strim(char *s, size_t len)
2772 {
2773 len = strnlen(s, len);
2774
2775 /* ATAPI specifies that empty space is blank-filled; remove blanks */
2776 while ((len > 0) && (s[len - 1] == ' ')) {
2777 len--;
2778 s[len] = 0;
2779 }
2780 return len;
2781 }
2782
2783 static int ata_dma_blacklisted(const struct ata_device *dev)
2784 {
2785 unsigned char model_num[40];
2786 unsigned char model_rev[16];
2787 unsigned int nlen, rlen;
2788 int i;
2789
2790 ata_id_string(dev->id, model_num, ATA_ID_PROD_OFS,
2791 sizeof(model_num));
2792 ata_id_string(dev->id, model_rev, ATA_ID_FW_REV_OFS,
2793 sizeof(model_rev));
2794 nlen = ata_strim(model_num, sizeof(model_num));
2795 rlen = ata_strim(model_rev, sizeof(model_rev));
2796
2797 for (i = 0; i < ARRAY_SIZE(ata_dma_blacklist); i += 2) {
2798 if (!strncmp(ata_dma_blacklist[i], model_num, nlen)) {
2799 if (ata_dma_blacklist[i+1] == NULL)
2800 return 1;
2801 if (!strncmp(ata_dma_blacklist[i], model_rev, rlen))
2802 return 1;
2803 }
2804 }
2805 return 0;
2806 }
2807
2808 /**
2809 * ata_dev_xfermask - Compute supported xfermask of the given device
2810 * @ap: Port on which the device to compute xfermask for resides
2811 * @dev: Device to compute xfermask for
2812 *
2813 * Compute supported xfermask of @dev and store it in
2814 * dev->*_mask. This function is responsible for applying all
2815 * known limits including host controller limits, device
2816 * blacklist, etc...
2817 *
2818 * FIXME: The current implementation limits all transfer modes to
2819 * the fastest of the lowested device on the port. This is not
2820 * required on most controllers.
2821 *
2822 * LOCKING:
2823 * None.
2824 */
2825 static void ata_dev_xfermask(struct ata_port *ap, struct ata_device *dev)
2826 {
2827 struct ata_host_set *hs = ap->host_set;
2828 unsigned long xfer_mask;
2829 int i;
2830
2831 xfer_mask = ata_pack_xfermask(ap->pio_mask, ap->mwdma_mask,
2832 ap->udma_mask);
2833
2834 /* FIXME: Use port-wide xfermask for now */
2835 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2836 struct ata_device *d = &ap->device[i];
2837 if (!ata_dev_enabled(d))
2838 continue;
2839 xfer_mask &= ata_pack_xfermask(d->pio_mask, d->mwdma_mask,
2840 d->udma_mask);
2841 xfer_mask &= ata_id_xfermask(d->id);
2842 if (ata_dma_blacklisted(d))
2843 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
2844 /* Apply cable rule here. Don't apply it early because when
2845 we handle hot plug the cable type can itself change */
2846 if (ap->cbl == ATA_CBL_PATA40)
2847 xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA);
2848 }
2849
2850 if (ata_dma_blacklisted(dev))
2851 printk(KERN_WARNING "ata%u: dev %u is on DMA blacklist, "
2852 "disabling DMA\n", ap->id, dev->devno);
2853
2854 if (hs->flags & ATA_HOST_SIMPLEX) {
2855 if (hs->simplex_claimed)
2856 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
2857 }
2858 if (ap->ops->mode_filter)
2859 xfer_mask = ap->ops->mode_filter(ap, dev, xfer_mask);
2860
2861 ata_unpack_xfermask(xfer_mask, &dev->pio_mask, &dev->mwdma_mask,
2862 &dev->udma_mask);
2863 }
2864
2865 /**
2866 * ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command
2867 * @ap: Port associated with device @dev
2868 * @dev: Device to which command will be sent
2869 *
2870 * Issue SET FEATURES - XFER MODE command to device @dev
2871 * on port @ap.
2872 *
2873 * LOCKING:
2874 * PCI/etc. bus probe sem.
2875 *
2876 * RETURNS:
2877 * 0 on success, AC_ERR_* mask otherwise.
2878 */
2879
2880 static unsigned int ata_dev_set_xfermode(struct ata_port *ap,
2881 struct ata_device *dev)
2882 {
2883 struct ata_taskfile tf;
2884 unsigned int err_mask;
2885
2886 /* set up set-features taskfile */
2887 DPRINTK("set features - xfer mode\n");
2888
2889 ata_tf_init(ap, &tf, dev->devno);
2890 tf.command = ATA_CMD_SET_FEATURES;
2891 tf.feature = SETFEATURES_XFER;
2892 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
2893 tf.protocol = ATA_PROT_NODATA;
2894 tf.nsect = dev->xfer_mode;
2895
2896 err_mask = ata_exec_internal(ap, dev, &tf, DMA_NONE, NULL, 0);
2897
2898 DPRINTK("EXIT, err_mask=%x\n", err_mask);
2899 return err_mask;
2900 }
2901
2902 /**
2903 * ata_dev_init_params - Issue INIT DEV PARAMS command
2904 * @ap: Port associated with device @dev
2905 * @dev: Device to which command will be sent
2906 *
2907 * LOCKING:
2908 * Kernel thread context (may sleep)
2909 *
2910 * RETURNS:
2911 * 0 on success, AC_ERR_* mask otherwise.
2912 */
2913
2914 static unsigned int ata_dev_init_params(struct ata_port *ap,
2915 struct ata_device *dev,
2916 u16 heads,
2917 u16 sectors)
2918 {
2919 struct ata_taskfile tf;
2920 unsigned int err_mask;
2921
2922 /* Number of sectors per track 1-255. Number of heads 1-16 */
2923 if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16)
2924 return AC_ERR_INVALID;
2925
2926 /* set up init dev params taskfile */
2927 DPRINTK("init dev params \n");
2928
2929 ata_tf_init(ap, &tf, dev->devno);
2930 tf.command = ATA_CMD_INIT_DEV_PARAMS;
2931 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
2932 tf.protocol = ATA_PROT_NODATA;
2933 tf.nsect = sectors;
2934 tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */
2935
2936 err_mask = ata_exec_internal(ap, dev, &tf, DMA_NONE, NULL, 0);
2937
2938 DPRINTK("EXIT, err_mask=%x\n", err_mask);
2939 return err_mask;
2940 }
2941
2942 /**
2943 * ata_sg_clean - Unmap DMA memory associated with command
2944 * @qc: Command containing DMA memory to be released
2945 *
2946 * Unmap all mapped DMA memory associated with this command.
2947 *
2948 * LOCKING:
2949 * spin_lock_irqsave(host_set lock)
2950 */
2951
2952 static void ata_sg_clean(struct ata_queued_cmd *qc)
2953 {
2954 struct ata_port *ap = qc->ap;
2955 struct scatterlist *sg = qc->__sg;
2956 int dir = qc->dma_dir;
2957 void *pad_buf = NULL;
2958
2959 WARN_ON(!(qc->flags & ATA_QCFLAG_DMAMAP));
2960 WARN_ON(sg == NULL);
2961
2962 if (qc->flags & ATA_QCFLAG_SINGLE)
2963 WARN_ON(qc->n_elem > 1);
2964
2965 VPRINTK("unmapping %u sg elements\n", qc->n_elem);
2966
2967 /* if we padded the buffer out to 32-bit bound, and data
2968 * xfer direction is from-device, we must copy from the
2969 * pad buffer back into the supplied buffer
2970 */
2971 if (qc->pad_len && !(qc->tf.flags & ATA_TFLAG_WRITE))
2972 pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
2973
2974 if (qc->flags & ATA_QCFLAG_SG) {
2975 if (qc->n_elem)
2976 dma_unmap_sg(ap->dev, sg, qc->n_elem, dir);
2977 /* restore last sg */
2978 sg[qc->orig_n_elem - 1].length += qc->pad_len;
2979 if (pad_buf) {
2980 struct scatterlist *psg = &qc->pad_sgent;
2981 void *addr = kmap_atomic(psg->page, KM_IRQ0);
2982 memcpy(addr + psg->offset, pad_buf, qc->pad_len);
2983 kunmap_atomic(addr, KM_IRQ0);
2984 }
2985 } else {
2986 if (qc->n_elem)
2987 dma_unmap_single(ap->dev,
2988 sg_dma_address(&sg[0]), sg_dma_len(&sg[0]),
2989 dir);
2990 /* restore sg */
2991 sg->length += qc->pad_len;
2992 if (pad_buf)
2993 memcpy(qc->buf_virt + sg->length - qc->pad_len,
2994 pad_buf, qc->pad_len);
2995 }
2996
2997 qc->flags &= ~ATA_QCFLAG_DMAMAP;
2998 qc->__sg = NULL;
2999 }
3000
3001 /**
3002 * ata_fill_sg - Fill PCI IDE PRD table
3003 * @qc: Metadata associated with taskfile to be transferred
3004 *
3005 * Fill PCI IDE PRD (scatter-gather) table with segments
3006 * associated with the current disk command.
3007 *
3008 * LOCKING:
3009 * spin_lock_irqsave(host_set lock)
3010 *
3011 */
3012 static void ata_fill_sg(struct ata_queued_cmd *qc)
3013 {
3014 struct ata_port *ap = qc->ap;
3015 struct scatterlist *sg;
3016 unsigned int idx;
3017
3018 WARN_ON(qc->__sg == NULL);
3019 WARN_ON(qc->n_elem == 0 && qc->pad_len == 0);
3020
3021 idx = 0;
3022 ata_for_each_sg(sg, qc) {
3023 u32 addr, offset;
3024 u32 sg_len, len;
3025
3026 /* determine if physical DMA addr spans 64K boundary.
3027 * Note h/w doesn't support 64-bit, so we unconditionally
3028 * truncate dma_addr_t to u32.
3029 */
3030 addr = (u32) sg_dma_address(sg);
3031 sg_len = sg_dma_len(sg);
3032
3033 while (sg_len) {
3034 offset = addr & 0xffff;
3035 len = sg_len;
3036 if ((offset + sg_len) > 0x10000)
3037 len = 0x10000 - offset;
3038
3039 ap->prd[idx].addr = cpu_to_le32(addr);
3040 ap->prd[idx].flags_len = cpu_to_le32(len & 0xffff);
3041 VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", idx, addr, len);
3042
3043 idx++;
3044 sg_len -= len;
3045 addr += len;
3046 }
3047 }
3048
3049 if (idx)
3050 ap->prd[idx - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT);
3051 }
3052 /**
3053 * ata_check_atapi_dma - Check whether ATAPI DMA can be supported
3054 * @qc: Metadata associated with taskfile to check
3055 *
3056 * Allow low-level driver to filter ATA PACKET commands, returning
3057 * a status indicating whether or not it is OK to use DMA for the
3058 * supplied PACKET command.
3059 *
3060 * LOCKING:
3061 * spin_lock_irqsave(host_set lock)
3062 *
3063 * RETURNS: 0 when ATAPI DMA can be used
3064 * nonzero otherwise
3065 */
3066 int ata_check_atapi_dma(struct ata_queued_cmd *qc)
3067 {
3068 struct ata_port *ap = qc->ap;
3069 int rc = 0; /* Assume ATAPI DMA is OK by default */
3070
3071 if (ap->ops->check_atapi_dma)
3072 rc = ap->ops->check_atapi_dma(qc);
3073
3074 return rc;
3075 }
3076 /**
3077 * ata_qc_prep - Prepare taskfile for submission
3078 * @qc: Metadata associated with taskfile to be prepared
3079 *
3080 * Prepare ATA taskfile for submission.
3081 *
3082 * LOCKING:
3083 * spin_lock_irqsave(host_set lock)
3084 */
3085 void ata_qc_prep(struct ata_queued_cmd *qc)
3086 {
3087 if (!(qc->flags & ATA_QCFLAG_DMAMAP))
3088 return;
3089
3090 ata_fill_sg(qc);
3091 }
3092
3093 void ata_noop_qc_prep(struct ata_queued_cmd *qc) { }
3094
3095 /**
3096 * ata_sg_init_one - Associate command with memory buffer
3097 * @qc: Command to be associated
3098 * @buf: Memory buffer
3099 * @buflen: Length of memory buffer, in bytes.
3100 *
3101 * Initialize the data-related elements of queued_cmd @qc
3102 * to point to a single memory buffer, @buf of byte length @buflen.
3103 *
3104 * LOCKING:
3105 * spin_lock_irqsave(host_set lock)
3106 */
3107
3108 void ata_sg_init_one(struct ata_queued_cmd *qc, void *buf, unsigned int buflen)
3109 {
3110 struct scatterlist *sg;
3111
3112 qc->flags |= ATA_QCFLAG_SINGLE;
3113
3114 memset(&qc->sgent, 0, sizeof(qc->sgent));
3115 qc->__sg = &qc->sgent;
3116 qc->n_elem = 1;
3117 qc->orig_n_elem = 1;
3118 qc->buf_virt = buf;
3119
3120 sg = qc->__sg;
3121 sg_init_one(sg, buf, buflen);
3122 }
3123
3124 /**
3125 * ata_sg_init - Associate command with scatter-gather table.
3126 * @qc: Command to be associated
3127 * @sg: Scatter-gather table.
3128 * @n_elem: Number of elements in s/g table.
3129 *
3130 * Initialize the data-related elements of queued_cmd @qc
3131 * to point to a scatter-gather table @sg, containing @n_elem
3132 * elements.
3133 *
3134 * LOCKING:
3135 * spin_lock_irqsave(host_set lock)
3136 */
3137
3138 void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg,
3139 unsigned int n_elem)
3140 {
3141 qc->flags |= ATA_QCFLAG_SG;
3142 qc->__sg = sg;
3143 qc->n_elem = n_elem;
3144 qc->orig_n_elem = n_elem;
3145 }
3146
3147 /**
3148 * ata_sg_setup_one - DMA-map the memory buffer associated with a command.
3149 * @qc: Command with memory buffer to be mapped.
3150 *
3151 * DMA-map the memory buffer associated with queued_cmd @qc.
3152 *
3153 * LOCKING:
3154 * spin_lock_irqsave(host_set lock)
3155 *
3156 * RETURNS:
3157 * Zero on success, negative on error.
3158 */
3159
3160 static int ata_sg_setup_one(struct ata_queued_cmd *qc)
3161 {
3162 struct ata_port *ap = qc->ap;
3163 int dir = qc->dma_dir;
3164 struct scatterlist *sg = qc->__sg;
3165 dma_addr_t dma_address;
3166 int trim_sg = 0;
3167
3168 /* we must lengthen transfers to end on a 32-bit boundary */
3169 qc->pad_len = sg->length & 3;
3170 if (qc->pad_len) {
3171 void *pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
3172 struct scatterlist *psg = &qc->pad_sgent;
3173
3174 WARN_ON(qc->dev->class != ATA_DEV_ATAPI);
3175
3176 memset(pad_buf, 0, ATA_DMA_PAD_SZ);
3177
3178 if (qc->tf.flags & ATA_TFLAG_WRITE)
3179 memcpy(pad_buf, qc->buf_virt + sg->length - qc->pad_len,
3180 qc->pad_len);
3181
3182 sg_dma_address(psg) = ap->pad_dma + (qc->tag * ATA_DMA_PAD_SZ);
3183 sg_dma_len(psg) = ATA_DMA_PAD_SZ;
3184 /* trim sg */
3185 sg->length -= qc->pad_len;
3186 if (sg->length == 0)
3187 trim_sg = 1;
3188
3189 DPRINTK("padding done, sg->length=%u pad_len=%u\n",
3190 sg->length, qc->pad_len);
3191 }
3192
3193 if (trim_sg) {
3194 qc->n_elem--;
3195 goto skip_map;
3196 }
3197
3198 dma_address = dma_map_single(ap->dev, qc->buf_virt,
3199 sg->length, dir);
3200 if (dma_mapping_error(dma_address)) {
3201 /* restore sg */
3202 sg->length += qc->pad_len;
3203 return -1;
3204 }
3205
3206 sg_dma_address(sg) = dma_address;
3207 sg_dma_len(sg) = sg->length;
3208
3209 skip_map:
3210 DPRINTK("mapped buffer of %d bytes for %s\n", sg_dma_len(sg),
3211 qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
3212
3213 return 0;
3214 }
3215
3216 /**
3217 * ata_sg_setup - DMA-map the scatter-gather table associated with a command.
3218 * @qc: Command with scatter-gather table to be mapped.
3219 *
3220 * DMA-map the scatter-gather table associated with queued_cmd @qc.
3221 *
3222 * LOCKING:
3223 * spin_lock_irqsave(host_set lock)
3224 *
3225 * RETURNS:
3226 * Zero on success, negative on error.
3227 *
3228 */
3229
3230 static int ata_sg_setup(struct ata_queued_cmd *qc)
3231 {
3232 struct ata_port *ap = qc->ap;
3233 struct scatterlist *sg = qc->__sg;
3234 struct scatterlist *lsg = &sg[qc->n_elem - 1];
3235 int n_elem, pre_n_elem, dir, trim_sg = 0;
3236
3237 VPRINTK("ENTER, ata%u\n", ap->id);
3238 WARN_ON(!(qc->flags & ATA_QCFLAG_SG));
3239
3240 /* we must lengthen transfers to end on a 32-bit boundary */
3241 qc->pad_len = lsg->length & 3;
3242 if (qc->pad_len) {
3243 void *pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
3244 struct scatterlist *psg = &qc->pad_sgent;
3245 unsigned int offset;
3246
3247 WARN_ON(qc->dev->class != ATA_DEV_ATAPI);
3248
3249 memset(pad_buf, 0, ATA_DMA_PAD_SZ);
3250
3251 /*
3252 * psg->page/offset are used to copy to-be-written
3253 * data in this function or read data in ata_sg_clean.
3254 */
3255 offset = lsg->offset + lsg->length - qc->pad_len;
3256 psg->page = nth_page(lsg->page, offset >> PAGE_SHIFT);
3257 psg->offset = offset_in_page(offset);
3258
3259 if (qc->tf.flags & ATA_TFLAG_WRITE) {
3260 void *addr = kmap_atomic(psg->page, KM_IRQ0);
3261 memcpy(pad_buf, addr + psg->offset, qc->pad_len);
3262 kunmap_atomic(addr, KM_IRQ0);
3263 }
3264
3265 sg_dma_address(psg) = ap->pad_dma + (qc->tag * ATA_DMA_PAD_SZ);
3266 sg_dma_len(psg) = ATA_DMA_PAD_SZ;
3267 /* trim last sg */
3268 lsg->length -= qc->pad_len;
3269 if (lsg->length == 0)
3270 trim_sg = 1;
3271
3272 DPRINTK("padding done, sg[%d].length=%u pad_len=%u\n",
3273 qc->n_elem - 1, lsg->length, qc->pad_len);
3274 }
3275
3276 pre_n_elem = qc->n_elem;
3277 if (trim_sg && pre_n_elem)
3278 pre_n_elem--;
3279
3280 if (!pre_n_elem) {
3281 n_elem = 0;
3282 goto skip_map;
3283 }
3284
3285 dir = qc->dma_dir;
3286 n_elem = dma_map_sg(ap->dev, sg, pre_n_elem, dir);
3287 if (n_elem < 1) {
3288 /* restore last sg */
3289 lsg->length += qc->pad_len;
3290 return -1;
3291 }
3292
3293 DPRINTK("%d sg elements mapped\n", n_elem);
3294
3295 skip_map:
3296 qc->n_elem = n_elem;
3297
3298 return 0;
3299 }
3300
3301 /**
3302 * ata_poll_qc_complete - turn irq back on and finish qc
3303 * @qc: Command to complete
3304 * @err_mask: ATA status register content
3305 *
3306 * LOCKING:
3307 * None. (grabs host lock)
3308 */
3309
3310 void ata_poll_qc_complete(struct ata_queued_cmd *qc)
3311 {
3312 struct ata_port *ap = qc->ap;
3313 unsigned long flags;
3314
3315 spin_lock_irqsave(&ap->host_set->lock, flags);
3316 ap->flags &= ~ATA_FLAG_NOINTR;
3317 ata_irq_on(ap);
3318 ata_qc_complete(qc);
3319 spin_unlock_irqrestore(&ap->host_set->lock, flags);
3320 }
3321
3322 /**
3323 * ata_pio_poll - poll using PIO, depending on current state
3324 * @ap: the target ata_port
3325 *
3326 * LOCKING:
3327 * None. (executing in kernel thread context)
3328 *
3329 * RETURNS:
3330 * timeout value to use
3331 */
3332
3333 static unsigned long ata_pio_poll(struct ata_port *ap)
3334 {
3335 struct ata_queued_cmd *qc;
3336 u8 status;
3337 unsigned int poll_state = HSM_ST_UNKNOWN;
3338 unsigned int reg_state = HSM_ST_UNKNOWN;
3339
3340 qc = ata_qc_from_tag(ap, ap->active_tag);
3341 WARN_ON(qc == NULL);
3342
3343 switch (ap->hsm_task_state) {
3344 case HSM_ST:
3345 case HSM_ST_POLL:
3346 poll_state = HSM_ST_POLL;
3347 reg_state = HSM_ST;
3348 break;
3349 case HSM_ST_LAST:
3350 case HSM_ST_LAST_POLL:
3351 poll_state = HSM_ST_LAST_POLL;
3352 reg_state = HSM_ST_LAST;
3353 break;
3354 default:
3355 BUG();
3356 break;
3357 }
3358
3359 status = ata_chk_status(ap);
3360 if (status & ATA_BUSY) {
3361 if (time_after(jiffies, ap->pio_task_timeout)) {
3362 qc->err_mask |= AC_ERR_TIMEOUT;
3363 ap->hsm_task_state = HSM_ST_TMOUT;
3364 return 0;
3365 }
3366 ap->hsm_task_state = poll_state;
3367 return ATA_SHORT_PAUSE;
3368 }
3369
3370 ap->hsm_task_state = reg_state;
3371 return 0;
3372 }
3373
3374 /**
3375 * ata_pio_complete - check if drive is busy or idle
3376 * @ap: the target ata_port
3377 *
3378 * LOCKING:
3379 * None. (executing in kernel thread context)
3380 *
3381 * RETURNS:
3382 * Non-zero if qc completed, zero otherwise.
3383 */
3384
3385 static int ata_pio_complete (struct ata_port *ap)
3386 {
3387 struct ata_queued_cmd *qc;
3388 u8 drv_stat;
3389
3390 /*
3391 * This is purely heuristic. This is a fast path. Sometimes when
3392 * we enter, BSY will be cleared in a chk-status or two. If not,
3393 * the drive is probably seeking or something. Snooze for a couple
3394 * msecs, then chk-status again. If still busy, fall back to
3395 * HSM_ST_POLL state.
3396 */
3397 drv_stat = ata_busy_wait(ap, ATA_BUSY, 10);
3398 if (drv_stat & ATA_BUSY) {
3399 msleep(2);
3400 drv_stat = ata_busy_wait(ap, ATA_BUSY, 10);
3401 if (drv_stat & ATA_BUSY) {
3402 ap->hsm_task_state = HSM_ST_LAST_POLL;
3403 ap->pio_task_timeout = jiffies + ATA_TMOUT_PIO;
3404 return 0;
3405 }
3406 }
3407
3408 qc = ata_qc_from_tag(ap, ap->active_tag);
3409 WARN_ON(qc == NULL);
3410
3411 drv_stat = ata_wait_idle(ap);
3412 if (!ata_ok(drv_stat)) {
3413 qc->err_mask |= __ac_err_mask(drv_stat);
3414 ap->hsm_task_state = HSM_ST_ERR;
3415 return 0;
3416 }
3417
3418 ap->hsm_task_state = HSM_ST_IDLE;
3419
3420 WARN_ON(qc->err_mask);
3421 ata_poll_qc_complete(qc);
3422
3423 /* another command may start at this point */
3424
3425 return 1;
3426 }
3427
3428
3429 /**
3430 * swap_buf_le16 - swap halves of 16-bit words in place
3431 * @buf: Buffer to swap
3432 * @buf_words: Number of 16-bit words in buffer.
3433 *
3434 * Swap halves of 16-bit words if needed to convert from
3435 * little-endian byte order to native cpu byte order, or
3436 * vice-versa.
3437 *
3438 * LOCKING:
3439 * Inherited from caller.
3440 */
3441 void swap_buf_le16(u16 *buf, unsigned int buf_words)
3442 {
3443 #ifdef __BIG_ENDIAN
3444 unsigned int i;
3445
3446 for (i = 0; i < buf_words; i++)
3447 buf[i] = le16_to_cpu(buf[i]);
3448 #endif /* __BIG_ENDIAN */
3449 }
3450
3451 /**
3452 * ata_mmio_data_xfer - Transfer data by MMIO
3453 * @ap: port to read/write
3454 * @buf: data buffer
3455 * @buflen: buffer length
3456 * @write_data: read/write
3457 *
3458 * Transfer data from/to the device data register by MMIO.
3459 *
3460 * LOCKING:
3461 * Inherited from caller.
3462 */
3463
3464 static void ata_mmio_data_xfer(struct ata_port *ap, unsigned char *buf,
3465 unsigned int buflen, int write_data)
3466 {
3467 unsigned int i;
3468 unsigned int words = buflen >> 1;
3469 u16 *buf16 = (u16 *) buf;
3470 void __iomem *mmio = (void __iomem *)ap->ioaddr.data_addr;
3471
3472 /* Transfer multiple of 2 bytes */
3473 if (write_data) {
3474 for (i = 0; i < words; i++)
3475 writew(le16_to_cpu(buf16[i]), mmio);
3476 } else {
3477 for (i = 0; i < words; i++)
3478 buf16[i] = cpu_to_le16(readw(mmio));
3479 }
3480
3481 /* Transfer trailing 1 byte, if any. */
3482 if (unlikely(buflen & 0x01)) {
3483 u16 align_buf[1] = { 0 };
3484 unsigned char *trailing_buf = buf + buflen - 1;
3485
3486 if (write_data) {
3487 memcpy(align_buf, trailing_buf, 1);
3488 writew(le16_to_cpu(align_buf[0]), mmio);
3489 } else {
3490 align_buf[0] = cpu_to_le16(readw(mmio));
3491 memcpy(trailing_buf, align_buf, 1);
3492 }
3493 }
3494 }
3495
3496 /**
3497 * ata_pio_data_xfer - Transfer data by PIO
3498 * @ap: port to read/write
3499 * @buf: data buffer
3500 * @buflen: buffer length
3501 * @write_data: read/write
3502 *
3503 * Transfer data from/to the device data register by PIO.
3504 *
3505 * LOCKING:
3506 * Inherited from caller.
3507 */
3508
3509 static void ata_pio_data_xfer(struct ata_port *ap, unsigned char *buf,
3510 unsigned int buflen, int write_data)
3511 {
3512 unsigned int words = buflen >> 1;
3513
3514 /* Transfer multiple of 2 bytes */
3515 if (write_data)
3516 outsw(ap->ioaddr.data_addr, buf, words);
3517 else
3518 insw(ap->ioaddr.data_addr, buf, words);
3519
3520 /* Transfer trailing 1 byte, if any. */
3521 if (unlikely(buflen & 0x01)) {
3522 u16 align_buf[1] = { 0 };
3523 unsigned char *trailing_buf = buf + buflen - 1;
3524
3525 if (write_data) {
3526 memcpy(align_buf, trailing_buf, 1);
3527 outw(le16_to_cpu(align_buf[0]), ap->ioaddr.data_addr);
3528 } else {
3529 align_buf[0] = cpu_to_le16(inw(ap->ioaddr.data_addr));
3530 memcpy(trailing_buf, align_buf, 1);
3531 }
3532 }
3533 }
3534
3535 /**
3536 * ata_data_xfer - Transfer data from/to the data register.
3537 * @ap: port to read/write
3538 * @buf: data buffer
3539 * @buflen: buffer length
3540 * @do_write: read/write
3541 *
3542 * Transfer data from/to the device data register.
3543 *
3544 * LOCKING:
3545 * Inherited from caller.
3546 */
3547
3548 static void ata_data_xfer(struct ata_port *ap, unsigned char *buf,
3549 unsigned int buflen, int do_write)
3550 {
3551 /* Make the crap hardware pay the costs not the good stuff */
3552 if (unlikely(ap->flags & ATA_FLAG_IRQ_MASK)) {
3553 unsigned long flags;
3554 local_irq_save(flags);
3555 if (ap->flags & ATA_FLAG_MMIO)
3556 ata_mmio_data_xfer(ap, buf, buflen, do_write);
3557 else
3558 ata_pio_data_xfer(ap, buf, buflen, do_write);
3559 local_irq_restore(flags);
3560 } else {
3561 if (ap->flags & ATA_FLAG_MMIO)
3562 ata_mmio_data_xfer(ap, buf, buflen, do_write);
3563 else
3564 ata_pio_data_xfer(ap, buf, buflen, do_write);
3565 }
3566 }
3567
3568 /**
3569 * ata_pio_sector - Transfer ATA_SECT_SIZE (512 bytes) of data.
3570 * @qc: Command on going
3571 *
3572 * Transfer ATA_SECT_SIZE of data from/to the ATA device.
3573 *
3574 * LOCKING:
3575 * Inherited from caller.
3576 */
3577
3578 static void ata_pio_sector(struct ata_queued_cmd *qc)
3579 {
3580 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
3581 struct scatterlist *sg = qc->__sg;
3582 struct ata_port *ap = qc->ap;
3583 struct page *page;
3584 unsigned int offset;
3585 unsigned char *buf;
3586
3587 if (qc->cursect == (qc->nsect - 1))
3588 ap->hsm_task_state = HSM_ST_LAST;
3589
3590 page = sg[qc->cursg].page;
3591 offset = sg[qc->cursg].offset + qc->cursg_ofs * ATA_SECT_SIZE;
3592
3593 /* get the current page and offset */
3594 page = nth_page(page, (offset >> PAGE_SHIFT));
3595 offset %= PAGE_SIZE;
3596
3597 buf = kmap(page) + offset;
3598
3599 qc->cursect++;
3600 qc->cursg_ofs++;
3601
3602 if ((qc->cursg_ofs * ATA_SECT_SIZE) == (&sg[qc->cursg])->length) {
3603 qc->cursg++;
3604 qc->cursg_ofs = 0;
3605 }
3606
3607 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
3608
3609 /* do the actual data transfer */
3610 do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
3611 ata_data_xfer(ap, buf, ATA_SECT_SIZE, do_write);
3612
3613 kunmap(page);
3614 }
3615
3616 /**
3617 * __atapi_pio_bytes - Transfer data from/to the ATAPI device.
3618 * @qc: Command on going
3619 * @bytes: number of bytes
3620 *
3621 * Transfer Transfer data from/to the ATAPI device.
3622 *
3623 * LOCKING:
3624 * Inherited from caller.
3625 *
3626 */
3627
3628 static void __atapi_pio_bytes(struct ata_queued_cmd *qc, unsigned int bytes)
3629 {
3630 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
3631 struct scatterlist *sg = qc->__sg;
3632 struct ata_port *ap = qc->ap;
3633 struct page *page;
3634 unsigned char *buf;
3635 unsigned int offset, count;
3636
3637 if (qc->curbytes + bytes >= qc->nbytes)
3638 ap->hsm_task_state = HSM_ST_LAST;
3639
3640 next_sg:
3641 if (unlikely(qc->cursg >= qc->n_elem)) {
3642 /*
3643 * The end of qc->sg is reached and the device expects
3644 * more data to transfer. In order not to overrun qc->sg
3645 * and fulfill length specified in the byte count register,
3646 * - for read case, discard trailing data from the device
3647 * - for write case, padding zero data to the device
3648 */
3649 u16 pad_buf[1] = { 0 };
3650 unsigned int words = bytes >> 1;
3651 unsigned int i;
3652
3653 if (words) /* warning if bytes > 1 */
3654 printk(KERN_WARNING "ata%u: %u bytes trailing data\n",
3655 ap->id, bytes);
3656
3657 for (i = 0; i < words; i++)
3658 ata_data_xfer(ap, (unsigned char*)pad_buf, 2, do_write);
3659
3660 ap->hsm_task_state = HSM_ST_LAST;
3661 return;
3662 }
3663
3664 sg = &qc->__sg[qc->cursg];
3665
3666 page = sg->page;
3667 offset = sg->offset + qc->cursg_ofs;
3668
3669 /* get the current page and offset */
3670 page = nth_page(page, (offset >> PAGE_SHIFT));
3671 offset %= PAGE_SIZE;
3672
3673 /* don't overrun current sg */
3674 count = min(sg->length - qc->cursg_ofs, bytes);
3675
3676 /* don't cross page boundaries */
3677 count = min(count, (unsigned int)PAGE_SIZE - offset);
3678
3679 buf = kmap(page) + offset;
3680
3681 bytes -= count;
3682 qc->curbytes += count;
3683 qc->cursg_ofs += count;
3684
3685 if (qc->cursg_ofs == sg->length) {
3686 qc->cursg++;
3687 qc->cursg_ofs = 0;
3688 }
3689
3690 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
3691
3692 /* do the actual data transfer */
3693 ata_data_xfer(ap, buf, count, do_write);
3694
3695 kunmap(page);
3696
3697 if (bytes)
3698 goto next_sg;
3699 }
3700
3701 /**
3702 * atapi_pio_bytes - Transfer data from/to the ATAPI device.
3703 * @qc: Command on going
3704 *
3705 * Transfer Transfer data from/to the ATAPI device.
3706 *
3707 * LOCKING:
3708 * Inherited from caller.
3709 */
3710
3711 static void atapi_pio_bytes(struct ata_queued_cmd *qc)
3712 {
3713 struct ata_port *ap = qc->ap;
3714 struct ata_device *dev = qc->dev;
3715 unsigned int ireason, bc_lo, bc_hi, bytes;
3716 int i_write, do_write = (qc->tf.flags & ATA_TFLAG_WRITE) ? 1 : 0;
3717
3718 ap->ops->tf_read(ap, &qc->tf);
3719 ireason = qc->tf.nsect;
3720 bc_lo = qc->tf.lbam;
3721 bc_hi = qc->tf.lbah;
3722 bytes = (bc_hi << 8) | bc_lo;
3723
3724 /* shall be cleared to zero, indicating xfer of data */
3725 if (ireason & (1 << 0))
3726 goto err_out;
3727
3728 /* make sure transfer direction matches expected */
3729 i_write = ((ireason & (1 << 1)) == 0) ? 1 : 0;
3730 if (do_write != i_write)
3731 goto err_out;
3732
3733 __atapi_pio_bytes(qc, bytes);
3734
3735 return;
3736
3737 err_out:
3738 printk(KERN_INFO "ata%u: dev %u: ATAPI check failed\n",
3739 ap->id, dev->devno);
3740 qc->err_mask |= AC_ERR_HSM;
3741 ap->hsm_task_state = HSM_ST_ERR;
3742 }
3743
3744 /**
3745 * ata_pio_block - start PIO on a block
3746 * @ap: the target ata_port
3747 *
3748 * LOCKING:
3749 * None. (executing in kernel thread context)
3750 */
3751
3752 static void ata_pio_block(struct ata_port *ap)
3753 {
3754 struct ata_queued_cmd *qc;
3755 u8 status;
3756
3757 /*
3758 * This is purely heuristic. This is a fast path.
3759 * Sometimes when we enter, BSY will be cleared in
3760 * a chk-status or two. If not, the drive is probably seeking
3761 * or something. Snooze for a couple msecs, then
3762 * chk-status again. If still busy, fall back to
3763 * HSM_ST_POLL state.
3764 */
3765 status = ata_busy_wait(ap, ATA_BUSY, 5);
3766 if (status & ATA_BUSY) {
3767 msleep(2);
3768 status = ata_busy_wait(ap, ATA_BUSY, 10);
3769 if (status & ATA_BUSY) {
3770 ap->hsm_task_state = HSM_ST_POLL;
3771 ap->pio_task_timeout = jiffies + ATA_TMOUT_PIO;
3772 return;
3773 }
3774 }
3775
3776 qc = ata_qc_from_tag(ap, ap->active_tag);
3777 WARN_ON(qc == NULL);
3778
3779 /* check error */
3780 if (status & (ATA_ERR | ATA_DF)) {
3781 qc->err_mask |= AC_ERR_DEV;
3782 ap->hsm_task_state = HSM_ST_ERR;
3783 return;
3784 }
3785
3786 /* transfer data if any */
3787 if (is_atapi_taskfile(&qc->tf)) {
3788 /* DRQ=0 means no more data to transfer */
3789 if ((status & ATA_DRQ) == 0) {
3790 ap->hsm_task_state = HSM_ST_LAST;
3791 return;
3792 }
3793
3794 atapi_pio_bytes(qc);
3795 } else {
3796 /* handle BSY=0, DRQ=0 as error */
3797 if ((status & ATA_DRQ) == 0) {
3798 qc->err_mask |= AC_ERR_HSM;
3799 ap->hsm_task_state = HSM_ST_ERR;
3800 return;
3801 }
3802
3803 ata_pio_sector(qc);
3804 }
3805 }
3806
3807 static void ata_pio_error(struct ata_port *ap)
3808 {
3809 struct ata_queued_cmd *qc;
3810
3811 qc = ata_qc_from_tag(ap, ap->active_tag);
3812 WARN_ON(qc == NULL);
3813
3814 if (qc->tf.command != ATA_CMD_PACKET)
3815 printk(KERN_WARNING "ata%u: PIO error\n", ap->id);
3816
3817 /* make sure qc->err_mask is available to
3818 * know what's wrong and recover
3819 */
3820 WARN_ON(qc->err_mask == 0);
3821
3822 ap->hsm_task_state = HSM_ST_IDLE;
3823
3824 ata_poll_qc_complete(qc);
3825 }
3826
3827 static void ata_pio_task(void *_data)
3828 {
3829 struct ata_port *ap = _data;
3830 unsigned long timeout;
3831 int qc_completed;
3832
3833 fsm_start:
3834 timeout = 0;
3835 qc_completed = 0;
3836
3837 switch (ap->hsm_task_state) {
3838 case HSM_ST_IDLE:
3839 return;
3840
3841 case HSM_ST:
3842 ata_pio_block(ap);
3843 break;
3844
3845 case HSM_ST_LAST:
3846 qc_completed = ata_pio_complete(ap);
3847 break;
3848
3849 case HSM_ST_POLL:
3850 case HSM_ST_LAST_POLL:
3851 timeout = ata_pio_poll(ap);
3852 break;
3853
3854 case HSM_ST_TMOUT:
3855 case HSM_ST_ERR:
3856 ata_pio_error(ap);
3857 return;
3858 }
3859
3860 if (timeout)
3861 ata_port_queue_task(ap, ata_pio_task, ap, timeout);
3862 else if (!qc_completed)
3863 goto fsm_start;
3864 }
3865
3866 /**
3867 * atapi_packet_task - Write CDB bytes to hardware
3868 * @_data: Port to which ATAPI device is attached.
3869 *
3870 * When device has indicated its readiness to accept
3871 * a CDB, this function is called. Send the CDB.
3872 * If DMA is to be performed, exit immediately.
3873 * Otherwise, we are in polling mode, so poll
3874 * status under operation succeeds or fails.
3875 *
3876 * LOCKING:
3877 * Kernel thread context (may sleep)
3878 */
3879
3880 static void atapi_packet_task(void *_data)
3881 {
3882 struct ata_port *ap = _data;
3883 struct ata_queued_cmd *qc;
3884 u8 status;
3885
3886 qc = ata_qc_from_tag(ap, ap->active_tag);
3887 WARN_ON(qc == NULL);
3888 WARN_ON(!(qc->flags & ATA_QCFLAG_ACTIVE));
3889
3890 /* sleep-wait for BSY to clear */
3891 DPRINTK("busy wait\n");
3892 if (ata_busy_sleep(ap, ATA_TMOUT_CDB_QUICK, ATA_TMOUT_CDB)) {
3893 qc->err_mask |= AC_ERR_TIMEOUT;
3894 goto err_out;
3895 }
3896
3897 /* make sure DRQ is set */
3898 status = ata_chk_status(ap);
3899 if ((status & (ATA_BUSY | ATA_DRQ)) != ATA_DRQ) {
3900 qc->err_mask |= AC_ERR_HSM;
3901 goto err_out;
3902 }
3903
3904 /* send SCSI cdb */
3905 DPRINTK("send cdb\n");
3906 WARN_ON(qc->dev->cdb_len < 12);
3907
3908 if (qc->tf.protocol == ATA_PROT_ATAPI_DMA ||
3909 qc->tf.protocol == ATA_PROT_ATAPI_NODATA) {
3910 unsigned long flags;
3911
3912 /* Once we're done issuing command and kicking bmdma,
3913 * irq handler takes over. To not lose irq, we need
3914 * to clear NOINTR flag before sending cdb, but
3915 * interrupt handler shouldn't be invoked before we're
3916 * finished. Hence, the following locking.
3917 */
3918 spin_lock_irqsave(&ap->host_set->lock, flags);
3919 ap->flags &= ~ATA_FLAG_NOINTR;
3920 ata_data_xfer(ap, qc->cdb, qc->dev->cdb_len, 1);
3921 if (qc->tf.protocol == ATA_PROT_ATAPI_DMA)
3922 ap->ops->bmdma_start(qc); /* initiate bmdma */
3923 spin_unlock_irqrestore(&ap->host_set->lock, flags);
3924 } else {
3925 ata_data_xfer(ap, qc->cdb, qc->dev->cdb_len, 1);
3926
3927 /* PIO commands are handled by polling */
3928 ap->hsm_task_state = HSM_ST;
3929 ata_port_queue_task(ap, ata_pio_task, ap, 0);
3930 }
3931
3932 return;
3933
3934 err_out:
3935 ata_poll_qc_complete(qc);
3936 }
3937
3938 /**
3939 * ata_qc_timeout - Handle timeout of queued command
3940 * @qc: Command that timed out
3941 *
3942 * Some part of the kernel (currently, only the SCSI layer)
3943 * has noticed that the active command on port @ap has not
3944 * completed after a specified length of time. Handle this
3945 * condition by disabling DMA (if necessary) and completing
3946 * transactions, with error if necessary.
3947 *
3948 * This also handles the case of the "lost interrupt", where
3949 * for some reason (possibly hardware bug, possibly driver bug)
3950 * an interrupt was not delivered to the driver, even though the
3951 * transaction completed successfully.
3952 *
3953 * LOCKING:
3954 * Inherited from SCSI layer (none, can sleep)
3955 */
3956
3957 static void ata_qc_timeout(struct ata_queued_cmd *qc)
3958 {
3959 struct ata_port *ap = qc->ap;
3960 struct ata_host_set *host_set = ap->host_set;
3961 u8 host_stat = 0, drv_stat;
3962 unsigned long flags;
3963
3964 DPRINTK("ENTER\n");
3965
3966 ap->hsm_task_state = HSM_ST_IDLE;
3967
3968 spin_lock_irqsave(&host_set->lock, flags);
3969
3970 switch (qc->tf.protocol) {
3971
3972 case ATA_PROT_DMA:
3973 case ATA_PROT_ATAPI_DMA:
3974 host_stat = ap->ops->bmdma_status(ap);
3975
3976 /* before we do anything else, clear DMA-Start bit */
3977 ap->ops->bmdma_stop(qc);
3978
3979 /* fall through */
3980
3981 default:
3982 ata_altstatus(ap);
3983 drv_stat = ata_chk_status(ap);
3984
3985 /* ack bmdma irq events */
3986 ap->ops->irq_clear(ap);
3987
3988 printk(KERN_ERR "ata%u: command 0x%x timeout, stat 0x%x host_stat 0x%x\n",
3989 ap->id, qc->tf.command, drv_stat, host_stat);
3990
3991 /* complete taskfile transaction */
3992 qc->err_mask |= ac_err_mask(drv_stat);
3993 break;
3994 }
3995
3996 spin_unlock_irqrestore(&host_set->lock, flags);
3997
3998 ata_eh_qc_complete(qc);
3999
4000 DPRINTK("EXIT\n");
4001 }
4002
4003 /**
4004 * ata_eng_timeout - Handle timeout of queued command
4005 * @ap: Port on which timed-out command is active
4006 *
4007 * Some part of the kernel (currently, only the SCSI layer)
4008 * has noticed that the active command on port @ap has not
4009 * completed after a specified length of time. Handle this
4010 * condition by disabling DMA (if necessary) and completing
4011 * transactions, with error if necessary.
4012 *
4013 * This also handles the case of the "lost interrupt", where
4014 * for some reason (possibly hardware bug, possibly driver bug)
4015 * an interrupt was not delivered to the driver, even though the
4016 * transaction completed successfully.
4017 *
4018 * LOCKING:
4019 * Inherited from SCSI layer (none, can sleep)
4020 */
4021
4022 void ata_eng_timeout(struct ata_port *ap)
4023 {
4024 DPRINTK("ENTER\n");
4025
4026 ata_qc_timeout(ata_qc_from_tag(ap, ap->active_tag));
4027
4028 DPRINTK("EXIT\n");
4029 }
4030
4031 /**
4032 * ata_qc_new - Request an available ATA command, for queueing
4033 * @ap: Port associated with device @dev
4034 * @dev: Device from whom we request an available command structure
4035 *
4036 * LOCKING:
4037 * None.
4038 */
4039
4040 static struct ata_queued_cmd *ata_qc_new(struct ata_port *ap)
4041 {
4042 struct ata_queued_cmd *qc = NULL;
4043 unsigned int i;
4044
4045 for (i = 0; i < ATA_MAX_QUEUE; i++)
4046 if (!test_and_set_bit(i, &ap->qactive)) {
4047 qc = ata_qc_from_tag(ap, i);
4048 break;
4049 }
4050
4051 if (qc)
4052 qc->tag = i;
4053
4054 return qc;
4055 }
4056
4057 /**
4058 * ata_qc_new_init - Request an available ATA command, and initialize it
4059 * @ap: Port associated with device @dev
4060 * @dev: Device from whom we request an available command structure
4061 *
4062 * LOCKING:
4063 * None.
4064 */
4065
4066 struct ata_queued_cmd *ata_qc_new_init(struct ata_port *ap,
4067 struct ata_device *dev)
4068 {
4069 struct ata_queued_cmd *qc;
4070
4071 qc = ata_qc_new(ap);
4072 if (qc) {
4073 qc->scsicmd = NULL;
4074 qc->ap = ap;
4075 qc->dev = dev;
4076
4077 ata_qc_reinit(qc);
4078 }
4079
4080 return qc;
4081 }
4082
4083 /**
4084 * ata_qc_free - free unused ata_queued_cmd
4085 * @qc: Command to complete
4086 *
4087 * Designed to free unused ata_queued_cmd object
4088 * in case something prevents using it.
4089 *
4090 * LOCKING:
4091 * spin_lock_irqsave(host_set lock)
4092 */
4093 void ata_qc_free(struct ata_queued_cmd *qc)
4094 {
4095 struct ata_port *ap = qc->ap;
4096 unsigned int tag;
4097
4098 WARN_ON(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
4099
4100 qc->flags = 0;
4101 tag = qc->tag;
4102 if (likely(ata_tag_valid(tag))) {
4103 if (tag == ap->active_tag)
4104 ap->active_tag = ATA_TAG_POISON;
4105 qc->tag = ATA_TAG_POISON;
4106 clear_bit(tag, &ap->qactive);
4107 }
4108 }
4109
4110 void __ata_qc_complete(struct ata_queued_cmd *qc)
4111 {
4112 WARN_ON(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
4113 WARN_ON(!(qc->flags & ATA_QCFLAG_ACTIVE));
4114
4115 if (likely(qc->flags & ATA_QCFLAG_DMAMAP))
4116 ata_sg_clean(qc);
4117
4118 /* atapi: mark qc as inactive to prevent the interrupt handler
4119 * from completing the command twice later, before the error handler
4120 * is called. (when rc != 0 and atapi request sense is needed)
4121 */
4122 qc->flags &= ~ATA_QCFLAG_ACTIVE;
4123
4124 /* call completion callback */
4125 qc->complete_fn(qc);
4126 }
4127
4128 static inline int ata_should_dma_map(struct ata_queued_cmd *qc)
4129 {
4130 struct ata_port *ap = qc->ap;
4131
4132 switch (qc->tf.protocol) {
4133 case ATA_PROT_DMA:
4134 case ATA_PROT_ATAPI_DMA:
4135 return 1;
4136
4137 case ATA_PROT_ATAPI:
4138 case ATA_PROT_PIO:
4139 if (ap->flags & ATA_FLAG_PIO_DMA)
4140 return 1;
4141
4142 /* fall through */
4143
4144 default:
4145 return 0;
4146 }
4147
4148 /* never reached */
4149 }
4150
4151 /**
4152 * ata_qc_issue - issue taskfile to device
4153 * @qc: command to issue to device
4154 *
4155 * Prepare an ATA command to submission to device.
4156 * This includes mapping the data into a DMA-able
4157 * area, filling in the S/G table, and finally
4158 * writing the taskfile to hardware, starting the command.
4159 *
4160 * LOCKING:
4161 * spin_lock_irqsave(host_set lock)
4162 */
4163 void ata_qc_issue(struct ata_queued_cmd *qc)
4164 {
4165 struct ata_port *ap = qc->ap;
4166
4167 qc->ap->active_tag = qc->tag;
4168 qc->flags |= ATA_QCFLAG_ACTIVE;
4169
4170 if (ata_should_dma_map(qc)) {
4171 if (qc->flags & ATA_QCFLAG_SG) {
4172 if (ata_sg_setup(qc))
4173 goto sg_err;
4174 } else if (qc->flags & ATA_QCFLAG_SINGLE) {
4175 if (ata_sg_setup_one(qc))
4176 goto sg_err;
4177 }
4178 } else {
4179 qc->flags &= ~ATA_QCFLAG_DMAMAP;
4180 }
4181
4182 ap->ops->qc_prep(qc);
4183
4184 qc->err_mask |= ap->ops->qc_issue(qc);
4185 if (unlikely(qc->err_mask))
4186 goto err;
4187 return;
4188
4189 sg_err:
4190 qc->flags &= ~ATA_QCFLAG_DMAMAP;
4191 qc->err_mask |= AC_ERR_SYSTEM;
4192 err:
4193 ata_qc_complete(qc);
4194 }
4195
4196 /**
4197 * ata_qc_issue_prot - issue taskfile to device in proto-dependent manner
4198 * @qc: command to issue to device
4199 *
4200 * Using various libata functions and hooks, this function
4201 * starts an ATA command. ATA commands are grouped into
4202 * classes called "protocols", and issuing each type of protocol
4203 * is slightly different.
4204 *
4205 * May be used as the qc_issue() entry in ata_port_operations.
4206 *
4207 * LOCKING:
4208 * spin_lock_irqsave(host_set lock)
4209 *
4210 * RETURNS:
4211 * Zero on success, AC_ERR_* mask on failure
4212 */
4213
4214 unsigned int ata_qc_issue_prot(struct ata_queued_cmd *qc)
4215 {
4216 struct ata_port *ap = qc->ap;
4217
4218 ata_dev_select(ap, qc->dev->devno, 1, 0);
4219
4220 switch (qc->tf.protocol) {
4221 case ATA_PROT_NODATA:
4222 ata_tf_to_host(ap, &qc->tf);
4223 break;
4224
4225 case ATA_PROT_DMA:
4226 ap->ops->tf_load(ap, &qc->tf); /* load tf registers */
4227 ap->ops->bmdma_setup(qc); /* set up bmdma */
4228 ap->ops->bmdma_start(qc); /* initiate bmdma */
4229 break;
4230
4231 case ATA_PROT_PIO: /* load tf registers, initiate polling pio */
4232 ata_qc_set_polling(qc);
4233 ata_tf_to_host(ap, &qc->tf);
4234 ap->hsm_task_state = HSM_ST;
4235 ata_port_queue_task(ap, ata_pio_task, ap, 0);
4236 break;
4237
4238 case ATA_PROT_ATAPI:
4239 ata_qc_set_polling(qc);
4240 ata_tf_to_host(ap, &qc->tf);
4241 ata_port_queue_task(ap, atapi_packet_task, ap, 0);
4242 break;
4243
4244 case ATA_PROT_ATAPI_NODATA:
4245 ap->flags |= ATA_FLAG_NOINTR;
4246 ata_tf_to_host(ap, &qc->tf);
4247 ata_port_queue_task(ap, atapi_packet_task, ap, 0);
4248 break;
4249
4250 case ATA_PROT_ATAPI_DMA:
4251 ap->flags |= ATA_FLAG_NOINTR;
4252 ap->ops->tf_load(ap, &qc->tf); /* load tf registers */
4253 ap->ops->bmdma_setup(qc); /* set up bmdma */
4254 ata_port_queue_task(ap, atapi_packet_task, ap, 0);
4255 break;
4256
4257 default:
4258 WARN_ON(1);
4259 return AC_ERR_SYSTEM;
4260 }
4261
4262 return 0;
4263 }
4264
4265 /**
4266 * ata_host_intr - Handle host interrupt for given (port, task)
4267 * @ap: Port on which interrupt arrived (possibly...)
4268 * @qc: Taskfile currently active in engine
4269 *
4270 * Handle host interrupt for given queued command. Currently,
4271 * only DMA interrupts are handled. All other commands are
4272 * handled via polling with interrupts disabled (nIEN bit).
4273 *
4274 * LOCKING:
4275 * spin_lock_irqsave(host_set lock)
4276 *
4277 * RETURNS:
4278 * One if interrupt was handled, zero if not (shared irq).
4279 */
4280
4281 inline unsigned int ata_host_intr (struct ata_port *ap,
4282 struct ata_queued_cmd *qc)
4283 {
4284 u8 status, host_stat;
4285
4286 switch (qc->tf.protocol) {
4287
4288 case ATA_PROT_DMA:
4289 case ATA_PROT_ATAPI_DMA:
4290 case ATA_PROT_ATAPI:
4291 /* check status of DMA engine */
4292 host_stat = ap->ops->bmdma_status(ap);
4293 VPRINTK("ata%u: host_stat 0x%X\n", ap->id, host_stat);
4294
4295 /* if it's not our irq... */
4296 if (!(host_stat & ATA_DMA_INTR))
4297 goto idle_irq;
4298
4299 /* before we do anything else, clear DMA-Start bit */
4300 ap->ops->bmdma_stop(qc);
4301
4302 /* fall through */
4303
4304 case ATA_PROT_ATAPI_NODATA:
4305 case ATA_PROT_NODATA:
4306 /* check altstatus */
4307 status = ata_altstatus(ap);
4308 if (status & ATA_BUSY)
4309 goto idle_irq;
4310
4311 /* check main status, clearing INTRQ */
4312 status = ata_chk_status(ap);
4313 if (unlikely(status & ATA_BUSY))
4314 goto idle_irq;
4315 DPRINTK("ata%u: protocol %d (dev_stat 0x%X)\n",
4316 ap->id, qc->tf.protocol, status);
4317
4318 /* ack bmdma irq events */
4319 ap->ops->irq_clear(ap);
4320
4321 /* complete taskfile transaction */
4322 qc->err_mask |= ac_err_mask(status);
4323 ata_qc_complete(qc);
4324 break;
4325
4326 default:
4327 goto idle_irq;
4328 }
4329
4330 return 1; /* irq handled */
4331
4332 idle_irq:
4333 ap->stats.idle_irq++;
4334
4335 #ifdef ATA_IRQ_TRAP
4336 if ((ap->stats.idle_irq % 1000) == 0) {
4337 ata_irq_ack(ap, 0); /* debug trap */
4338 printk(KERN_WARNING "ata%d: irq trap\n", ap->id);
4339 return 1;
4340 }
4341 #endif
4342 return 0; /* irq not handled */
4343 }
4344
4345 /**
4346 * ata_interrupt - Default ATA host interrupt handler
4347 * @irq: irq line (unused)
4348 * @dev_instance: pointer to our ata_host_set information structure
4349 * @regs: unused
4350 *
4351 * Default interrupt handler for PCI IDE devices. Calls
4352 * ata_host_intr() for each port that is not disabled.
4353 *
4354 * LOCKING:
4355 * Obtains host_set lock during operation.
4356 *
4357 * RETURNS:
4358 * IRQ_NONE or IRQ_HANDLED.
4359 */
4360
4361 irqreturn_t ata_interrupt (int irq, void *dev_instance, struct pt_regs *regs)
4362 {
4363 struct ata_host_set *host_set = dev_instance;
4364 unsigned int i;
4365 unsigned int handled = 0;
4366 unsigned long flags;
4367
4368 /* TODO: make _irqsave conditional on x86 PCI IDE legacy mode */
4369 spin_lock_irqsave(&host_set->lock, flags);
4370
4371 for (i = 0; i < host_set->n_ports; i++) {
4372 struct ata_port *ap;
4373
4374 ap = host_set->ports[i];
4375 if (ap &&
4376 !(ap->flags & (ATA_FLAG_PORT_DISABLED | ATA_FLAG_NOINTR))) {
4377 struct ata_queued_cmd *qc;
4378
4379 qc = ata_qc_from_tag(ap, ap->active_tag);
4380 if (qc && (!(qc->tf.ctl & ATA_NIEN)) &&
4381 (qc->flags & ATA_QCFLAG_ACTIVE))
4382 handled |= ata_host_intr(ap, qc);
4383 }
4384 }
4385
4386 spin_unlock_irqrestore(&host_set->lock, flags);
4387
4388 return IRQ_RETVAL(handled);
4389 }
4390
4391
4392 /*
4393 * Execute a 'simple' command, that only consists of the opcode 'cmd' itself,
4394 * without filling any other registers
4395 */
4396 static int ata_do_simple_cmd(struct ata_port *ap, struct ata_device *dev,
4397 u8 cmd)
4398 {
4399 struct ata_taskfile tf;
4400 int err;
4401
4402 ata_tf_init(ap, &tf, dev->devno);
4403
4404 tf.command = cmd;
4405 tf.flags |= ATA_TFLAG_DEVICE;
4406 tf.protocol = ATA_PROT_NODATA;
4407
4408 err = ata_exec_internal(ap, dev, &tf, DMA_NONE, NULL, 0);
4409 if (err)
4410 printk(KERN_ERR "%s: ata command failed: %d\n",
4411 __FUNCTION__, err);
4412
4413 return err;
4414 }
4415
4416 static int ata_flush_cache(struct ata_port *ap, struct ata_device *dev)
4417 {
4418 u8 cmd;
4419
4420 if (!ata_try_flush_cache(dev))
4421 return 0;
4422
4423 if (ata_id_has_flush_ext(dev->id))
4424 cmd = ATA_CMD_FLUSH_EXT;
4425 else
4426 cmd = ATA_CMD_FLUSH;
4427
4428 return ata_do_simple_cmd(ap, dev, cmd);
4429 }
4430
4431 static int ata_standby_drive(struct ata_port *ap, struct ata_device *dev)
4432 {
4433 return ata_do_simple_cmd(ap, dev, ATA_CMD_STANDBYNOW1);
4434 }
4435
4436 static int ata_start_drive(struct ata_port *ap, struct ata_device *dev)
4437 {
4438 return ata_do_simple_cmd(ap, dev, ATA_CMD_IDLEIMMEDIATE);
4439 }
4440
4441 /**
4442 * ata_device_resume - wakeup a previously suspended devices
4443 * @ap: port the device is connected to
4444 * @dev: the device to resume
4445 *
4446 * Kick the drive back into action, by sending it an idle immediate
4447 * command and making sure its transfer mode matches between drive
4448 * and host.
4449 *
4450 */
4451 int ata_device_resume(struct ata_port *ap, struct ata_device *dev)
4452 {
4453 if (ap->flags & ATA_FLAG_SUSPENDED) {
4454 struct ata_device *failed_dev;
4455 ap->flags &= ~ATA_FLAG_SUSPENDED;
4456 while (ata_set_mode(ap, &failed_dev))
4457 ata_dev_disable(ap, failed_dev);
4458 }
4459 if (!ata_dev_enabled(dev))
4460 return 0;
4461 if (dev->class == ATA_DEV_ATA)
4462 ata_start_drive(ap, dev);
4463
4464 return 0;
4465 }
4466
4467 /**
4468 * ata_device_suspend - prepare a device for suspend
4469 * @ap: port the device is connected to
4470 * @dev: the device to suspend
4471 *
4472 * Flush the cache on the drive, if appropriate, then issue a
4473 * standbynow command.
4474 */
4475 int ata_device_suspend(struct ata_port *ap, struct ata_device *dev, pm_message_t state)
4476 {
4477 if (!ata_dev_enabled(dev))
4478 return 0;
4479 if (dev->class == ATA_DEV_ATA)
4480 ata_flush_cache(ap, dev);
4481
4482 if (state.event != PM_EVENT_FREEZE)
4483 ata_standby_drive(ap, dev);
4484 ap->flags |= ATA_FLAG_SUSPENDED;
4485 return 0;
4486 }
4487
4488 /**
4489 * ata_port_start - Set port up for dma.
4490 * @ap: Port to initialize
4491 *
4492 * Called just after data structures for each port are
4493 * initialized. Allocates space for PRD table.
4494 *
4495 * May be used as the port_start() entry in ata_port_operations.
4496 *
4497 * LOCKING:
4498 * Inherited from caller.
4499 */
4500
4501 int ata_port_start (struct ata_port *ap)
4502 {
4503 struct device *dev = ap->dev;
4504 int rc;
4505
4506 ap->prd = dma_alloc_coherent(dev, ATA_PRD_TBL_SZ, &ap->prd_dma, GFP_KERNEL);
4507 if (!ap->prd)
4508 return -ENOMEM;
4509
4510 rc = ata_pad_alloc(ap, dev);
4511 if (rc) {
4512 dma_free_coherent(dev, ATA_PRD_TBL_SZ, ap->prd, ap->prd_dma);
4513 return rc;
4514 }
4515
4516 DPRINTK("prd alloc, virt %p, dma %llx\n", ap->prd, (unsigned long long) ap->prd_dma);
4517
4518 return 0;
4519 }
4520
4521
4522 /**
4523 * ata_port_stop - Undo ata_port_start()
4524 * @ap: Port to shut down
4525 *
4526 * Frees the PRD table.
4527 *
4528 * May be used as the port_stop() entry in ata_port_operations.
4529 *
4530 * LOCKING:
4531 * Inherited from caller.
4532 */
4533
4534 void ata_port_stop (struct ata_port *ap)
4535 {
4536 struct device *dev = ap->dev;
4537
4538 dma_free_coherent(dev, ATA_PRD_TBL_SZ, ap->prd, ap->prd_dma);
4539 ata_pad_free(ap, dev);
4540 }
4541
4542 void ata_host_stop (struct ata_host_set *host_set)
4543 {
4544 if (host_set->mmio_base)
4545 iounmap(host_set->mmio_base);
4546 }
4547
4548
4549 /**
4550 * ata_host_remove - Unregister SCSI host structure with upper layers
4551 * @ap: Port to unregister
4552 * @do_unregister: 1 if we fully unregister, 0 to just stop the port
4553 *
4554 * LOCKING:
4555 * Inherited from caller.
4556 */
4557
4558 static void ata_host_remove(struct ata_port *ap, unsigned int do_unregister)
4559 {
4560 struct Scsi_Host *sh = ap->host;
4561
4562 DPRINTK("ENTER\n");
4563
4564 if (do_unregister)
4565 scsi_remove_host(sh);
4566
4567 ap->ops->port_stop(ap);
4568 }
4569
4570 /**
4571 * ata_host_init - Initialize an ata_port structure
4572 * @ap: Structure to initialize
4573 * @host: associated SCSI mid-layer structure
4574 * @host_set: Collection of hosts to which @ap belongs
4575 * @ent: Probe information provided by low-level driver
4576 * @port_no: Port number associated with this ata_port
4577 *
4578 * Initialize a new ata_port structure, and its associated
4579 * scsi_host.
4580 *
4581 * LOCKING:
4582 * Inherited from caller.
4583 */
4584
4585 static void ata_host_init(struct ata_port *ap, struct Scsi_Host *host,
4586 struct ata_host_set *host_set,
4587 const struct ata_probe_ent *ent, unsigned int port_no)
4588 {
4589 unsigned int i;
4590
4591 host->max_id = 16;
4592 host->max_lun = 1;
4593 host->max_channel = 1;
4594 host->unique_id = ata_unique_id++;
4595 host->max_cmd_len = 12;
4596
4597 ap->flags = ATA_FLAG_PORT_DISABLED;
4598 ap->id = host->unique_id;
4599 ap->host = host;
4600 ap->ctl = ATA_DEVCTL_OBS;
4601 ap->host_set = host_set;
4602 ap->dev = ent->dev;
4603 ap->port_no = port_no;
4604 ap->hard_port_no =
4605 ent->legacy_mode ? ent->hard_port_no : port_no;
4606 ap->pio_mask = ent->pio_mask;
4607 ap->mwdma_mask = ent->mwdma_mask;
4608 ap->udma_mask = ent->udma_mask;
4609 ap->flags |= ent->host_flags;
4610 ap->ops = ent->port_ops;
4611 ap->cbl = ATA_CBL_NONE;
4612 ap->sata_spd_limit = UINT_MAX;
4613 ap->active_tag = ATA_TAG_POISON;
4614 ap->last_ctl = 0xFF;
4615
4616 INIT_WORK(&ap->port_task, NULL, NULL);
4617 INIT_LIST_HEAD(&ap->eh_done_q);
4618
4619 for (i = 0; i < ATA_MAX_DEVICES; i++) {
4620 struct ata_device *dev = &ap->device[i];
4621 dev->devno = i;
4622 dev->pio_mask = UINT_MAX;
4623 dev->mwdma_mask = UINT_MAX;
4624 dev->udma_mask = UINT_MAX;
4625 }
4626
4627 #ifdef ATA_IRQ_TRAP
4628 ap->stats.unhandled_irq = 1;
4629 ap->stats.idle_irq = 1;
4630 #endif
4631
4632 memcpy(&ap->ioaddr, &ent->port[port_no], sizeof(struct ata_ioports));
4633 }
4634
4635 /**
4636 * ata_host_add - Attach low-level ATA driver to system
4637 * @ent: Information provided by low-level driver
4638 * @host_set: Collections of ports to which we add
4639 * @port_no: Port number associated with this host
4640 *
4641 * Attach low-level ATA driver to system.
4642 *
4643 * LOCKING:
4644 * PCI/etc. bus probe sem.
4645 *
4646 * RETURNS:
4647 * New ata_port on success, for NULL on error.
4648 */
4649
4650 static struct ata_port * ata_host_add(const struct ata_probe_ent *ent,
4651 struct ata_host_set *host_set,
4652 unsigned int port_no)
4653 {
4654 struct Scsi_Host *host;
4655 struct ata_port *ap;
4656 int rc;
4657
4658 DPRINTK("ENTER\n");
4659
4660 if (!ent->port_ops->probe_reset &&
4661 !(ent->host_flags & (ATA_FLAG_SATA_RESET | ATA_FLAG_SRST))) {
4662 printk(KERN_ERR "ata%u: no reset mechanism available\n",
4663 port_no);
4664 return NULL;
4665 }
4666
4667 host = scsi_host_alloc(ent->sht, sizeof(struct ata_port));
4668 if (!host)
4669 return NULL;
4670
4671 host->transportt = &ata_scsi_transport_template;
4672
4673 ap = (struct ata_port *) &host->hostdata[0];
4674
4675 ata_host_init(ap, host, host_set, ent, port_no);
4676
4677 rc = ap->ops->port_start(ap);
4678 if (rc)
4679 goto err_out;
4680
4681 return ap;
4682
4683 err_out:
4684 scsi_host_put(host);
4685 return NULL;
4686 }
4687
4688 /**
4689 * ata_device_add - Register hardware device with ATA and SCSI layers
4690 * @ent: Probe information describing hardware device to be registered
4691 *
4692 * This function processes the information provided in the probe
4693 * information struct @ent, allocates the necessary ATA and SCSI
4694 * host information structures, initializes them, and registers
4695 * everything with requisite kernel subsystems.
4696 *
4697 * This function requests irqs, probes the ATA bus, and probes
4698 * the SCSI bus.
4699 *
4700 * LOCKING:
4701 * PCI/etc. bus probe sem.
4702 *
4703 * RETURNS:
4704 * Number of ports registered. Zero on error (no ports registered).
4705 */
4706
4707 int ata_device_add(const struct ata_probe_ent *ent)
4708 {
4709 unsigned int count = 0, i;
4710 struct device *dev = ent->dev;
4711 struct ata_host_set *host_set;
4712
4713 DPRINTK("ENTER\n");
4714 /* alloc a container for our list of ATA ports (buses) */
4715 host_set = kzalloc(sizeof(struct ata_host_set) +
4716 (ent->n_ports * sizeof(void *)), GFP_KERNEL);
4717 if (!host_set)
4718 return 0;
4719 spin_lock_init(&host_set->lock);
4720
4721 host_set->dev = dev;
4722 host_set->n_ports = ent->n_ports;
4723 host_set->irq = ent->irq;
4724 host_set->mmio_base = ent->mmio_base;
4725 host_set->private_data = ent->private_data;
4726 host_set->ops = ent->port_ops;
4727 host_set->flags = ent->host_set_flags;
4728
4729 /* register each port bound to this device */
4730 for (i = 0; i < ent->n_ports; i++) {
4731 struct ata_port *ap;
4732 unsigned long xfer_mode_mask;
4733
4734 ap = ata_host_add(ent, host_set, i);
4735 if (!ap)
4736 goto err_out;
4737
4738 host_set->ports[i] = ap;
4739 xfer_mode_mask =(ap->udma_mask << ATA_SHIFT_UDMA) |
4740 (ap->mwdma_mask << ATA_SHIFT_MWDMA) |
4741 (ap->pio_mask << ATA_SHIFT_PIO);
4742
4743 /* print per-port info to dmesg */
4744 printk(KERN_INFO "ata%u: %cATA max %s cmd 0x%lX ctl 0x%lX "
4745 "bmdma 0x%lX irq %lu\n",
4746 ap->id,
4747 ap->flags & ATA_FLAG_SATA ? 'S' : 'P',
4748 ata_mode_string(xfer_mode_mask),
4749 ap->ioaddr.cmd_addr,
4750 ap->ioaddr.ctl_addr,
4751 ap->ioaddr.bmdma_addr,
4752 ent->irq);
4753
4754 ata_chk_status(ap);
4755 host_set->ops->irq_clear(ap);
4756 count++;
4757 }
4758
4759 if (!count)
4760 goto err_free_ret;
4761
4762 /* obtain irq, that is shared between channels */
4763 if (request_irq(ent->irq, ent->port_ops->irq_handler, ent->irq_flags,
4764 DRV_NAME, host_set))
4765 goto err_out;
4766
4767 /* perform each probe synchronously */
4768 DPRINTK("probe begin\n");
4769 for (i = 0; i < count; i++) {
4770 struct ata_port *ap;
4771 int rc;
4772
4773 ap = host_set->ports[i];
4774
4775 DPRINTK("ata%u: bus probe begin\n", ap->id);
4776 rc = ata_bus_probe(ap);
4777 DPRINTK("ata%u: bus probe end\n", ap->id);
4778
4779 if (rc) {
4780 /* FIXME: do something useful here?
4781 * Current libata behavior will
4782 * tear down everything when
4783 * the module is removed
4784 * or the h/w is unplugged.
4785 */
4786 }
4787
4788 rc = scsi_add_host(ap->host, dev);
4789 if (rc) {
4790 printk(KERN_ERR "ata%u: scsi_add_host failed\n",
4791 ap->id);
4792 /* FIXME: do something useful here */
4793 /* FIXME: handle unconditional calls to
4794 * scsi_scan_host and ata_host_remove, below,
4795 * at the very least
4796 */
4797 }
4798 }
4799
4800 /* probes are done, now scan each port's disk(s) */
4801 DPRINTK("host probe begin\n");
4802 for (i = 0; i < count; i++) {
4803 struct ata_port *ap = host_set->ports[i];
4804
4805 ata_scsi_scan_host(ap);
4806 }
4807
4808 dev_set_drvdata(dev, host_set);
4809
4810 VPRINTK("EXIT, returning %u\n", ent->n_ports);
4811 return ent->n_ports; /* success */
4812
4813 err_out:
4814 for (i = 0; i < count; i++) {
4815 ata_host_remove(host_set->ports[i], 1);
4816 scsi_host_put(host_set->ports[i]->host);
4817 }
4818 err_free_ret:
4819 kfree(host_set);
4820 VPRINTK("EXIT, returning 0\n");
4821 return 0;
4822 }
4823
4824 /**
4825 * ata_host_set_remove - PCI layer callback for device removal
4826 * @host_set: ATA host set that was removed
4827 *
4828 * Unregister all objects associated with this host set. Free those
4829 * objects.
4830 *
4831 * LOCKING:
4832 * Inherited from calling layer (may sleep).
4833 */
4834
4835 void ata_host_set_remove(struct ata_host_set *host_set)
4836 {
4837 struct ata_port *ap;
4838 unsigned int i;
4839
4840 for (i = 0; i < host_set->n_ports; i++) {
4841 ap = host_set->ports[i];
4842 scsi_remove_host(ap->host);
4843 }
4844
4845 free_irq(host_set->irq, host_set);
4846
4847 for (i = 0; i < host_set->n_ports; i++) {
4848 ap = host_set->ports[i];
4849
4850 ata_scsi_release(ap->host);
4851
4852 if ((ap->flags & ATA_FLAG_NO_LEGACY) == 0) {
4853 struct ata_ioports *ioaddr = &ap->ioaddr;
4854
4855 if (ioaddr->cmd_addr == 0x1f0)
4856 release_region(0x1f0, 8);
4857 else if (ioaddr->cmd_addr == 0x170)
4858 release_region(0x170, 8);
4859 }
4860
4861 scsi_host_put(ap->host);
4862 }
4863
4864 if (host_set->ops->host_stop)
4865 host_set->ops->host_stop(host_set);
4866
4867 kfree(host_set);
4868 }
4869
4870 /**
4871 * ata_scsi_release - SCSI layer callback hook for host unload
4872 * @host: libata host to be unloaded
4873 *
4874 * Performs all duties necessary to shut down a libata port...
4875 * Kill port kthread, disable port, and release resources.
4876 *
4877 * LOCKING:
4878 * Inherited from SCSI layer.
4879 *
4880 * RETURNS:
4881 * One.
4882 */
4883
4884 int ata_scsi_release(struct Scsi_Host *host)
4885 {
4886 struct ata_port *ap = (struct ata_port *) &host->hostdata[0];
4887 int i;
4888
4889 DPRINTK("ENTER\n");
4890
4891 ap->ops->port_disable(ap);
4892 ata_host_remove(ap, 0);
4893 for (i = 0; i < ATA_MAX_DEVICES; i++)
4894 kfree(ap->device[i].id);
4895
4896 DPRINTK("EXIT\n");
4897 return 1;
4898 }
4899
4900 /**
4901 * ata_std_ports - initialize ioaddr with standard port offsets.
4902 * @ioaddr: IO address structure to be initialized
4903 *
4904 * Utility function which initializes data_addr, error_addr,
4905 * feature_addr, nsect_addr, lbal_addr, lbam_addr, lbah_addr,
4906 * device_addr, status_addr, and command_addr to standard offsets
4907 * relative to cmd_addr.
4908 *
4909 * Does not set ctl_addr, altstatus_addr, bmdma_addr, or scr_addr.
4910 */
4911
4912 void ata_std_ports(struct ata_ioports *ioaddr)
4913 {
4914 ioaddr->data_addr = ioaddr->cmd_addr + ATA_REG_DATA;
4915 ioaddr->error_addr = ioaddr->cmd_addr + ATA_REG_ERR;
4916 ioaddr->feature_addr = ioaddr->cmd_addr + ATA_REG_FEATURE;
4917 ioaddr->nsect_addr = ioaddr->cmd_addr + ATA_REG_NSECT;
4918 ioaddr->lbal_addr = ioaddr->cmd_addr + ATA_REG_LBAL;
4919 ioaddr->lbam_addr = ioaddr->cmd_addr + ATA_REG_LBAM;
4920 ioaddr->lbah_addr = ioaddr->cmd_addr + ATA_REG_LBAH;
4921 ioaddr->device_addr = ioaddr->cmd_addr + ATA_REG_DEVICE;
4922 ioaddr->status_addr = ioaddr->cmd_addr + ATA_REG_STATUS;
4923 ioaddr->command_addr = ioaddr->cmd_addr + ATA_REG_CMD;
4924 }
4925
4926
4927 #ifdef CONFIG_PCI
4928
4929 void ata_pci_host_stop (struct ata_host_set *host_set)
4930 {
4931 struct pci_dev *pdev = to_pci_dev(host_set->dev);
4932
4933 pci_iounmap(pdev, host_set->mmio_base);
4934 }
4935
4936 /**
4937 * ata_pci_remove_one - PCI layer callback for device removal
4938 * @pdev: PCI device that was removed
4939 *
4940 * PCI layer indicates to libata via this hook that
4941 * hot-unplug or module unload event has occurred.
4942 * Handle this by unregistering all objects associated
4943 * with this PCI device. Free those objects. Then finally
4944 * release PCI resources and disable device.
4945 *
4946 * LOCKING:
4947 * Inherited from PCI layer (may sleep).
4948 */
4949
4950 void ata_pci_remove_one (struct pci_dev *pdev)
4951 {
4952 struct device *dev = pci_dev_to_dev(pdev);
4953 struct ata_host_set *host_set = dev_get_drvdata(dev);
4954
4955 ata_host_set_remove(host_set);
4956 pci_release_regions(pdev);
4957 pci_disable_device(pdev);
4958 dev_set_drvdata(dev, NULL);
4959 }
4960
4961 /* move to PCI subsystem */
4962 int pci_test_config_bits(struct pci_dev *pdev, const struct pci_bits *bits)
4963 {
4964 unsigned long tmp = 0;
4965
4966 switch (bits->width) {
4967 case 1: {
4968 u8 tmp8 = 0;
4969 pci_read_config_byte(pdev, bits->reg, &tmp8);
4970 tmp = tmp8;
4971 break;
4972 }
4973 case 2: {
4974 u16 tmp16 = 0;
4975 pci_read_config_word(pdev, bits->reg, &tmp16);
4976 tmp = tmp16;
4977 break;
4978 }
4979 case 4: {
4980 u32 tmp32 = 0;
4981 pci_read_config_dword(pdev, bits->reg, &tmp32);
4982 tmp = tmp32;
4983 break;
4984 }
4985
4986 default:
4987 return -EINVAL;
4988 }
4989
4990 tmp &= bits->mask;
4991
4992 return (tmp == bits->val) ? 1 : 0;
4993 }
4994
4995 int ata_pci_device_suspend(struct pci_dev *pdev, pm_message_t state)
4996 {
4997 pci_save_state(pdev);
4998 pci_disable_device(pdev);
4999 pci_set_power_state(pdev, PCI_D3hot);
5000 return 0;
5001 }
5002
5003 int ata_pci_device_resume(struct pci_dev *pdev)
5004 {
5005 pci_set_power_state(pdev, PCI_D0);
5006 pci_restore_state(pdev);
5007 pci_enable_device(pdev);
5008 pci_set_master(pdev);
5009 return 0;
5010 }
5011 #endif /* CONFIG_PCI */
5012
5013
5014 static int __init ata_init(void)
5015 {
5016 ata_wq = create_workqueue("ata");
5017 if (!ata_wq)
5018 return -ENOMEM;
5019
5020 printk(KERN_DEBUG "libata version " DRV_VERSION " loaded.\n");
5021 return 0;
5022 }
5023
5024 static void __exit ata_exit(void)
5025 {
5026 destroy_workqueue(ata_wq);
5027 }
5028
5029 module_init(ata_init);
5030 module_exit(ata_exit);
5031
5032 static unsigned long ratelimit_time;
5033 static spinlock_t ata_ratelimit_lock = SPIN_LOCK_UNLOCKED;
5034
5035 int ata_ratelimit(void)
5036 {
5037 int rc;
5038 unsigned long flags;
5039
5040 spin_lock_irqsave(&ata_ratelimit_lock, flags);
5041
5042 if (time_after(jiffies, ratelimit_time)) {
5043 rc = 1;
5044 ratelimit_time = jiffies + (HZ/5);
5045 } else
5046 rc = 0;
5047
5048 spin_unlock_irqrestore(&ata_ratelimit_lock, flags);
5049
5050 return rc;
5051 }
5052
5053 /*
5054 * libata is essentially a library of internal helper functions for
5055 * low-level ATA host controller drivers. As such, the API/ABI is
5056 * likely to change as new drivers are added and updated.
5057 * Do not depend on ABI/API stability.
5058 */
5059
5060 EXPORT_SYMBOL_GPL(ata_std_bios_param);
5061 EXPORT_SYMBOL_GPL(ata_std_ports);
5062 EXPORT_SYMBOL_GPL(ata_device_add);
5063 EXPORT_SYMBOL_GPL(ata_host_set_remove);
5064 EXPORT_SYMBOL_GPL(ata_sg_init);
5065 EXPORT_SYMBOL_GPL(ata_sg_init_one);
5066 EXPORT_SYMBOL_GPL(__ata_qc_complete);
5067 EXPORT_SYMBOL_GPL(ata_qc_issue_prot);
5068 EXPORT_SYMBOL_GPL(ata_eng_timeout);
5069 EXPORT_SYMBOL_GPL(ata_tf_load);
5070 EXPORT_SYMBOL_GPL(ata_tf_read);
5071 EXPORT_SYMBOL_GPL(ata_noop_dev_select);
5072 EXPORT_SYMBOL_GPL(ata_std_dev_select);
5073 EXPORT_SYMBOL_GPL(ata_tf_to_fis);
5074 EXPORT_SYMBOL_GPL(ata_tf_from_fis);
5075 EXPORT_SYMBOL_GPL(ata_check_status);
5076 EXPORT_SYMBOL_GPL(ata_altstatus);
5077 EXPORT_SYMBOL_GPL(ata_exec_command);
5078 EXPORT_SYMBOL_GPL(ata_port_start);
5079 EXPORT_SYMBOL_GPL(ata_port_stop);
5080 EXPORT_SYMBOL_GPL(ata_host_stop);
5081 EXPORT_SYMBOL_GPL(ata_interrupt);
5082 EXPORT_SYMBOL_GPL(ata_qc_prep);
5083 EXPORT_SYMBOL_GPL(ata_noop_qc_prep);
5084 EXPORT_SYMBOL_GPL(ata_bmdma_setup);
5085 EXPORT_SYMBOL_GPL(ata_bmdma_start);
5086 EXPORT_SYMBOL_GPL(ata_bmdma_irq_clear);
5087 EXPORT_SYMBOL_GPL(ata_bmdma_status);
5088 EXPORT_SYMBOL_GPL(ata_bmdma_stop);
5089 EXPORT_SYMBOL_GPL(ata_port_probe);
5090 EXPORT_SYMBOL_GPL(sata_phy_reset);
5091 EXPORT_SYMBOL_GPL(__sata_phy_reset);
5092 EXPORT_SYMBOL_GPL(ata_bus_reset);
5093 EXPORT_SYMBOL_GPL(ata_std_probeinit);
5094 EXPORT_SYMBOL_GPL(ata_std_softreset);
5095 EXPORT_SYMBOL_GPL(sata_std_hardreset);
5096 EXPORT_SYMBOL_GPL(ata_std_postreset);
5097 EXPORT_SYMBOL_GPL(ata_std_probe_reset);
5098 EXPORT_SYMBOL_GPL(ata_drive_probe_reset);
5099 EXPORT_SYMBOL_GPL(ata_dev_revalidate);
5100 EXPORT_SYMBOL_GPL(ata_dev_classify);
5101 EXPORT_SYMBOL_GPL(ata_dev_pair);
5102 EXPORT_SYMBOL_GPL(ata_port_disable);
5103 EXPORT_SYMBOL_GPL(ata_ratelimit);
5104 EXPORT_SYMBOL_GPL(ata_busy_sleep);
5105 EXPORT_SYMBOL_GPL(ata_port_queue_task);
5106 EXPORT_SYMBOL_GPL(ata_scsi_ioctl);
5107 EXPORT_SYMBOL_GPL(ata_scsi_queuecmd);
5108 EXPORT_SYMBOL_GPL(ata_scsi_error);
5109 EXPORT_SYMBOL_GPL(ata_scsi_slave_config);
5110 EXPORT_SYMBOL_GPL(ata_scsi_release);
5111 EXPORT_SYMBOL_GPL(ata_host_intr);
5112 EXPORT_SYMBOL_GPL(ata_id_string);
5113 EXPORT_SYMBOL_GPL(ata_id_c_string);
5114 EXPORT_SYMBOL_GPL(ata_scsi_simulate);
5115 EXPORT_SYMBOL_GPL(ata_eh_qc_complete);
5116 EXPORT_SYMBOL_GPL(ata_eh_qc_retry);
5117
5118 EXPORT_SYMBOL_GPL(ata_pio_need_iordy);
5119 EXPORT_SYMBOL_GPL(ata_timing_compute);
5120 EXPORT_SYMBOL_GPL(ata_timing_merge);
5121
5122 #ifdef CONFIG_PCI
5123 EXPORT_SYMBOL_GPL(pci_test_config_bits);
5124 EXPORT_SYMBOL_GPL(ata_pci_host_stop);
5125 EXPORT_SYMBOL_GPL(ata_pci_init_native_mode);
5126 EXPORT_SYMBOL_GPL(ata_pci_init_one);
5127 EXPORT_SYMBOL_GPL(ata_pci_remove_one);
5128 EXPORT_SYMBOL_GPL(ata_pci_device_suspend);
5129 EXPORT_SYMBOL_GPL(ata_pci_device_resume);
5130 EXPORT_SYMBOL_GPL(ata_pci_default_filter);
5131 EXPORT_SYMBOL_GPL(ata_pci_clear_simplex);
5132 #endif /* CONFIG_PCI */
5133
5134 EXPORT_SYMBOL_GPL(ata_device_suspend);
5135 EXPORT_SYMBOL_GPL(ata_device_resume);
5136 EXPORT_SYMBOL_GPL(ata_scsi_device_suspend);
5137 EXPORT_SYMBOL_GPL(ata_scsi_device_resume);
This page took 0.131812 seconds and 6 git commands to generate.