Merge branch 'stanton-cs1-driver' of git://git.alsa-project.org/alsa-kprivate into...
[deliverable/linux.git] / drivers / scsi / libfc / fc_exch.c
1 /*
2 * Copyright(c) 2007 Intel Corporation. All rights reserved.
3 * Copyright(c) 2008 Red Hat, Inc. All rights reserved.
4 * Copyright(c) 2008 Mike Christie
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms and conditions of the GNU General Public License,
8 * version 2, as published by the Free Software Foundation.
9 *
10 * This program is distributed in the hope it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
14 *
15 * You should have received a copy of the GNU General Public License along with
16 * this program; if not, write to the Free Software Foundation, Inc.,
17 * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Maintained at www.Open-FCoE.org
20 */
21
22 /*
23 * Fibre Channel exchange and sequence handling.
24 */
25
26 #include <linux/timer.h>
27 #include <linux/slab.h>
28 #include <linux/err.h>
29 #include <linux/export.h>
30
31 #include <scsi/fc/fc_fc2.h>
32
33 #include <scsi/libfc.h>
34 #include <scsi/fc_encode.h>
35
36 #include "fc_libfc.h"
37
38 u16 fc_cpu_mask; /* cpu mask for possible cpus */
39 EXPORT_SYMBOL(fc_cpu_mask);
40 static u16 fc_cpu_order; /* 2's power to represent total possible cpus */
41 static struct kmem_cache *fc_em_cachep; /* cache for exchanges */
42 static struct workqueue_struct *fc_exch_workqueue;
43
44 /*
45 * Structure and function definitions for managing Fibre Channel Exchanges
46 * and Sequences.
47 *
48 * The three primary structures used here are fc_exch_mgr, fc_exch, and fc_seq.
49 *
50 * fc_exch_mgr holds the exchange state for an N port
51 *
52 * fc_exch holds state for one exchange and links to its active sequence.
53 *
54 * fc_seq holds the state for an individual sequence.
55 */
56
57 /**
58 * struct fc_exch_pool - Per cpu exchange pool
59 * @next_index: Next possible free exchange index
60 * @total_exches: Total allocated exchanges
61 * @lock: Exch pool lock
62 * @ex_list: List of exchanges
63 *
64 * This structure manages per cpu exchanges in array of exchange pointers.
65 * This array is allocated followed by struct fc_exch_pool memory for
66 * assigned range of exchanges to per cpu pool.
67 */
68 struct fc_exch_pool {
69 spinlock_t lock;
70 struct list_head ex_list;
71 u16 next_index;
72 u16 total_exches;
73
74 /* two cache of free slot in exch array */
75 u16 left;
76 u16 right;
77 } ____cacheline_aligned_in_smp;
78
79 /**
80 * struct fc_exch_mgr - The Exchange Manager (EM).
81 * @class: Default class for new sequences
82 * @kref: Reference counter
83 * @min_xid: Minimum exchange ID
84 * @max_xid: Maximum exchange ID
85 * @ep_pool: Reserved exchange pointers
86 * @pool_max_index: Max exch array index in exch pool
87 * @pool: Per cpu exch pool
88 * @stats: Statistics structure
89 *
90 * This structure is the center for creating exchanges and sequences.
91 * It manages the allocation of exchange IDs.
92 */
93 struct fc_exch_mgr {
94 struct fc_exch_pool __percpu *pool;
95 mempool_t *ep_pool;
96 enum fc_class class;
97 struct kref kref;
98 u16 min_xid;
99 u16 max_xid;
100 u16 pool_max_index;
101
102 struct {
103 atomic_t no_free_exch;
104 atomic_t no_free_exch_xid;
105 atomic_t xid_not_found;
106 atomic_t xid_busy;
107 atomic_t seq_not_found;
108 atomic_t non_bls_resp;
109 } stats;
110 };
111
112 /**
113 * struct fc_exch_mgr_anchor - primary structure for list of EMs
114 * @ema_list: Exchange Manager Anchor list
115 * @mp: Exchange Manager associated with this anchor
116 * @match: Routine to determine if this anchor's EM should be used
117 *
118 * When walking the list of anchors the match routine will be called
119 * for each anchor to determine if that EM should be used. The last
120 * anchor in the list will always match to handle any exchanges not
121 * handled by other EMs. The non-default EMs would be added to the
122 * anchor list by HW that provides offloads.
123 */
124 struct fc_exch_mgr_anchor {
125 struct list_head ema_list;
126 struct fc_exch_mgr *mp;
127 bool (*match)(struct fc_frame *);
128 };
129
130 static void fc_exch_rrq(struct fc_exch *);
131 static void fc_seq_ls_acc(struct fc_frame *);
132 static void fc_seq_ls_rjt(struct fc_frame *, enum fc_els_rjt_reason,
133 enum fc_els_rjt_explan);
134 static void fc_exch_els_rec(struct fc_frame *);
135 static void fc_exch_els_rrq(struct fc_frame *);
136
137 /*
138 * Internal implementation notes.
139 *
140 * The exchange manager is one by default in libfc but LLD may choose
141 * to have one per CPU. The sequence manager is one per exchange manager
142 * and currently never separated.
143 *
144 * Section 9.8 in FC-FS-2 specifies: "The SEQ_ID is a one-byte field
145 * assigned by the Sequence Initiator that shall be unique for a specific
146 * D_ID and S_ID pair while the Sequence is open." Note that it isn't
147 * qualified by exchange ID, which one might think it would be.
148 * In practice this limits the number of open sequences and exchanges to 256
149 * per session. For most targets we could treat this limit as per exchange.
150 *
151 * The exchange and its sequence are freed when the last sequence is received.
152 * It's possible for the remote port to leave an exchange open without
153 * sending any sequences.
154 *
155 * Notes on reference counts:
156 *
157 * Exchanges are reference counted and exchange gets freed when the reference
158 * count becomes zero.
159 *
160 * Timeouts:
161 * Sequences are timed out for E_D_TOV and R_A_TOV.
162 *
163 * Sequence event handling:
164 *
165 * The following events may occur on initiator sequences:
166 *
167 * Send.
168 * For now, the whole thing is sent.
169 * Receive ACK
170 * This applies only to class F.
171 * The sequence is marked complete.
172 * ULP completion.
173 * The upper layer calls fc_exch_done() when done
174 * with exchange and sequence tuple.
175 * RX-inferred completion.
176 * When we receive the next sequence on the same exchange, we can
177 * retire the previous sequence ID. (XXX not implemented).
178 * Timeout.
179 * R_A_TOV frees the sequence ID. If we're waiting for ACK,
180 * E_D_TOV causes abort and calls upper layer response handler
181 * with FC_EX_TIMEOUT error.
182 * Receive RJT
183 * XXX defer.
184 * Send ABTS
185 * On timeout.
186 *
187 * The following events may occur on recipient sequences:
188 *
189 * Receive
190 * Allocate sequence for first frame received.
191 * Hold during receive handler.
192 * Release when final frame received.
193 * Keep status of last N of these for the ELS RES command. XXX TBD.
194 * Receive ABTS
195 * Deallocate sequence
196 * Send RJT
197 * Deallocate
198 *
199 * For now, we neglect conditions where only part of a sequence was
200 * received or transmitted, or where out-of-order receipt is detected.
201 */
202
203 /*
204 * Locking notes:
205 *
206 * The EM code run in a per-CPU worker thread.
207 *
208 * To protect against concurrency between a worker thread code and timers,
209 * sequence allocation and deallocation must be locked.
210 * - exchange refcnt can be done atomicly without locks.
211 * - sequence allocation must be locked by exch lock.
212 * - If the EM pool lock and ex_lock must be taken at the same time, then the
213 * EM pool lock must be taken before the ex_lock.
214 */
215
216 /*
217 * opcode names for debugging.
218 */
219 static char *fc_exch_rctl_names[] = FC_RCTL_NAMES_INIT;
220
221 /**
222 * fc_exch_name_lookup() - Lookup name by opcode
223 * @op: Opcode to be looked up
224 * @table: Opcode/name table
225 * @max_index: Index not to be exceeded
226 *
227 * This routine is used to determine a human-readable string identifying
228 * a R_CTL opcode.
229 */
230 static inline const char *fc_exch_name_lookup(unsigned int op, char **table,
231 unsigned int max_index)
232 {
233 const char *name = NULL;
234
235 if (op < max_index)
236 name = table[op];
237 if (!name)
238 name = "unknown";
239 return name;
240 }
241
242 /**
243 * fc_exch_rctl_name() - Wrapper routine for fc_exch_name_lookup()
244 * @op: The opcode to be looked up
245 */
246 static const char *fc_exch_rctl_name(unsigned int op)
247 {
248 return fc_exch_name_lookup(op, fc_exch_rctl_names,
249 ARRAY_SIZE(fc_exch_rctl_names));
250 }
251
252 /**
253 * fc_exch_hold() - Increment an exchange's reference count
254 * @ep: Echange to be held
255 */
256 static inline void fc_exch_hold(struct fc_exch *ep)
257 {
258 atomic_inc(&ep->ex_refcnt);
259 }
260
261 /**
262 * fc_exch_setup_hdr() - Initialize a FC header by initializing some fields
263 * and determine SOF and EOF.
264 * @ep: The exchange to that will use the header
265 * @fp: The frame whose header is to be modified
266 * @f_ctl: F_CTL bits that will be used for the frame header
267 *
268 * The fields initialized by this routine are: fh_ox_id, fh_rx_id,
269 * fh_seq_id, fh_seq_cnt and the SOF and EOF.
270 */
271 static void fc_exch_setup_hdr(struct fc_exch *ep, struct fc_frame *fp,
272 u32 f_ctl)
273 {
274 struct fc_frame_header *fh = fc_frame_header_get(fp);
275 u16 fill;
276
277 fr_sof(fp) = ep->class;
278 if (ep->seq.cnt)
279 fr_sof(fp) = fc_sof_normal(ep->class);
280
281 if (f_ctl & FC_FC_END_SEQ) {
282 fr_eof(fp) = FC_EOF_T;
283 if (fc_sof_needs_ack(ep->class))
284 fr_eof(fp) = FC_EOF_N;
285 /*
286 * From F_CTL.
287 * The number of fill bytes to make the length a 4-byte
288 * multiple is the low order 2-bits of the f_ctl.
289 * The fill itself will have been cleared by the frame
290 * allocation.
291 * After this, the length will be even, as expected by
292 * the transport.
293 */
294 fill = fr_len(fp) & 3;
295 if (fill) {
296 fill = 4 - fill;
297 /* TODO, this may be a problem with fragmented skb */
298 skb_put(fp_skb(fp), fill);
299 hton24(fh->fh_f_ctl, f_ctl | fill);
300 }
301 } else {
302 WARN_ON(fr_len(fp) % 4 != 0); /* no pad to non last frame */
303 fr_eof(fp) = FC_EOF_N;
304 }
305
306 /*
307 * Initialize remainig fh fields
308 * from fc_fill_fc_hdr
309 */
310 fh->fh_ox_id = htons(ep->oxid);
311 fh->fh_rx_id = htons(ep->rxid);
312 fh->fh_seq_id = ep->seq.id;
313 fh->fh_seq_cnt = htons(ep->seq.cnt);
314 }
315
316 /**
317 * fc_exch_release() - Decrement an exchange's reference count
318 * @ep: Exchange to be released
319 *
320 * If the reference count reaches zero and the exchange is complete,
321 * it is freed.
322 */
323 static void fc_exch_release(struct fc_exch *ep)
324 {
325 struct fc_exch_mgr *mp;
326
327 if (atomic_dec_and_test(&ep->ex_refcnt)) {
328 mp = ep->em;
329 if (ep->destructor)
330 ep->destructor(&ep->seq, ep->arg);
331 WARN_ON(!(ep->esb_stat & ESB_ST_COMPLETE));
332 mempool_free(ep, mp->ep_pool);
333 }
334 }
335
336 /**
337 * fc_exch_timer_cancel() - cancel exch timer
338 * @ep: The exchange whose timer to be canceled
339 */
340 static inline void fc_exch_timer_cancel(struct fc_exch *ep)
341 {
342 if (cancel_delayed_work(&ep->timeout_work)) {
343 FC_EXCH_DBG(ep, "Exchange timer canceled\n");
344 atomic_dec(&ep->ex_refcnt); /* drop hold for timer */
345 }
346 }
347
348 /**
349 * fc_exch_timer_set_locked() - Start a timer for an exchange w/ the
350 * the exchange lock held
351 * @ep: The exchange whose timer will start
352 * @timer_msec: The timeout period
353 *
354 * Used for upper level protocols to time out the exchange.
355 * The timer is cancelled when it fires or when the exchange completes.
356 */
357 static inline void fc_exch_timer_set_locked(struct fc_exch *ep,
358 unsigned int timer_msec)
359 {
360 if (ep->state & (FC_EX_RST_CLEANUP | FC_EX_DONE))
361 return;
362
363 FC_EXCH_DBG(ep, "Exchange timer armed : %d msecs\n", timer_msec);
364
365 if (queue_delayed_work(fc_exch_workqueue, &ep->timeout_work,
366 msecs_to_jiffies(timer_msec)))
367 fc_exch_hold(ep); /* hold for timer */
368 }
369
370 /**
371 * fc_exch_timer_set() - Lock the exchange and set the timer
372 * @ep: The exchange whose timer will start
373 * @timer_msec: The timeout period
374 */
375 static void fc_exch_timer_set(struct fc_exch *ep, unsigned int timer_msec)
376 {
377 spin_lock_bh(&ep->ex_lock);
378 fc_exch_timer_set_locked(ep, timer_msec);
379 spin_unlock_bh(&ep->ex_lock);
380 }
381
382 /**
383 * fc_exch_done_locked() - Complete an exchange with the exchange lock held
384 * @ep: The exchange that is complete
385 */
386 static int fc_exch_done_locked(struct fc_exch *ep)
387 {
388 int rc = 1;
389
390 /*
391 * We must check for completion in case there are two threads
392 * tyring to complete this. But the rrq code will reuse the
393 * ep, and in that case we only clear the resp and set it as
394 * complete, so it can be reused by the timer to send the rrq.
395 */
396 ep->resp = NULL;
397 if (ep->state & FC_EX_DONE)
398 return rc;
399 ep->esb_stat |= ESB_ST_COMPLETE;
400
401 if (!(ep->esb_stat & ESB_ST_REC_QUAL)) {
402 ep->state |= FC_EX_DONE;
403 fc_exch_timer_cancel(ep);
404 rc = 0;
405 }
406 return rc;
407 }
408
409 /**
410 * fc_exch_ptr_get() - Return an exchange from an exchange pool
411 * @pool: Exchange Pool to get an exchange from
412 * @index: Index of the exchange within the pool
413 *
414 * Use the index to get an exchange from within an exchange pool. exches
415 * will point to an array of exchange pointers. The index will select
416 * the exchange within the array.
417 */
418 static inline struct fc_exch *fc_exch_ptr_get(struct fc_exch_pool *pool,
419 u16 index)
420 {
421 struct fc_exch **exches = (struct fc_exch **)(pool + 1);
422 return exches[index];
423 }
424
425 /**
426 * fc_exch_ptr_set() - Assign an exchange to a slot in an exchange pool
427 * @pool: The pool to assign the exchange to
428 * @index: The index in the pool where the exchange will be assigned
429 * @ep: The exchange to assign to the pool
430 */
431 static inline void fc_exch_ptr_set(struct fc_exch_pool *pool, u16 index,
432 struct fc_exch *ep)
433 {
434 ((struct fc_exch **)(pool + 1))[index] = ep;
435 }
436
437 /**
438 * fc_exch_delete() - Delete an exchange
439 * @ep: The exchange to be deleted
440 */
441 static void fc_exch_delete(struct fc_exch *ep)
442 {
443 struct fc_exch_pool *pool;
444 u16 index;
445
446 pool = ep->pool;
447 spin_lock_bh(&pool->lock);
448 WARN_ON(pool->total_exches <= 0);
449 pool->total_exches--;
450
451 /* update cache of free slot */
452 index = (ep->xid - ep->em->min_xid) >> fc_cpu_order;
453 if (pool->left == FC_XID_UNKNOWN)
454 pool->left = index;
455 else if (pool->right == FC_XID_UNKNOWN)
456 pool->right = index;
457 else
458 pool->next_index = index;
459
460 fc_exch_ptr_set(pool, index, NULL);
461 list_del(&ep->ex_list);
462 spin_unlock_bh(&pool->lock);
463 fc_exch_release(ep); /* drop hold for exch in mp */
464 }
465
466 /**
467 * fc_seq_send() - Send a frame using existing sequence/exchange pair
468 * @lport: The local port that the exchange will be sent on
469 * @sp: The sequence to be sent
470 * @fp: The frame to be sent on the exchange
471 */
472 static int fc_seq_send(struct fc_lport *lport, struct fc_seq *sp,
473 struct fc_frame *fp)
474 {
475 struct fc_exch *ep;
476 struct fc_frame_header *fh = fc_frame_header_get(fp);
477 int error;
478 u32 f_ctl;
479 u8 fh_type = fh->fh_type;
480
481 ep = fc_seq_exch(sp);
482 WARN_ON((ep->esb_stat & ESB_ST_SEQ_INIT) != ESB_ST_SEQ_INIT);
483
484 f_ctl = ntoh24(fh->fh_f_ctl);
485 fc_exch_setup_hdr(ep, fp, f_ctl);
486 fr_encaps(fp) = ep->encaps;
487
488 /*
489 * update sequence count if this frame is carrying
490 * multiple FC frames when sequence offload is enabled
491 * by LLD.
492 */
493 if (fr_max_payload(fp))
494 sp->cnt += DIV_ROUND_UP((fr_len(fp) - sizeof(*fh)),
495 fr_max_payload(fp));
496 else
497 sp->cnt++;
498
499 /*
500 * Send the frame.
501 */
502 error = lport->tt.frame_send(lport, fp);
503
504 if (fh_type == FC_TYPE_BLS)
505 return error;
506
507 /*
508 * Update the exchange and sequence flags,
509 * assuming all frames for the sequence have been sent.
510 * We can only be called to send once for each sequence.
511 */
512 spin_lock_bh(&ep->ex_lock);
513 ep->f_ctl = f_ctl & ~FC_FC_FIRST_SEQ; /* not first seq */
514 if (f_ctl & FC_FC_SEQ_INIT)
515 ep->esb_stat &= ~ESB_ST_SEQ_INIT;
516 spin_unlock_bh(&ep->ex_lock);
517 return error;
518 }
519
520 /**
521 * fc_seq_alloc() - Allocate a sequence for a given exchange
522 * @ep: The exchange to allocate a new sequence for
523 * @seq_id: The sequence ID to be used
524 *
525 * We don't support multiple originated sequences on the same exchange.
526 * By implication, any previously originated sequence on this exchange
527 * is complete, and we reallocate the same sequence.
528 */
529 static struct fc_seq *fc_seq_alloc(struct fc_exch *ep, u8 seq_id)
530 {
531 struct fc_seq *sp;
532
533 sp = &ep->seq;
534 sp->ssb_stat = 0;
535 sp->cnt = 0;
536 sp->id = seq_id;
537 return sp;
538 }
539
540 /**
541 * fc_seq_start_next_locked() - Allocate a new sequence on the same
542 * exchange as the supplied sequence
543 * @sp: The sequence/exchange to get a new sequence for
544 */
545 static struct fc_seq *fc_seq_start_next_locked(struct fc_seq *sp)
546 {
547 struct fc_exch *ep = fc_seq_exch(sp);
548
549 sp = fc_seq_alloc(ep, ep->seq_id++);
550 FC_EXCH_DBG(ep, "f_ctl %6x seq %2x\n",
551 ep->f_ctl, sp->id);
552 return sp;
553 }
554
555 /**
556 * fc_seq_start_next() - Lock the exchange and get a new sequence
557 * for a given sequence/exchange pair
558 * @sp: The sequence/exchange to get a new exchange for
559 */
560 static struct fc_seq *fc_seq_start_next(struct fc_seq *sp)
561 {
562 struct fc_exch *ep = fc_seq_exch(sp);
563
564 spin_lock_bh(&ep->ex_lock);
565 sp = fc_seq_start_next_locked(sp);
566 spin_unlock_bh(&ep->ex_lock);
567
568 return sp;
569 }
570
571 /*
572 * Set the response handler for the exchange associated with a sequence.
573 */
574 static void fc_seq_set_resp(struct fc_seq *sp,
575 void (*resp)(struct fc_seq *, struct fc_frame *,
576 void *),
577 void *arg)
578 {
579 struct fc_exch *ep = fc_seq_exch(sp);
580
581 spin_lock_bh(&ep->ex_lock);
582 ep->resp = resp;
583 ep->arg = arg;
584 spin_unlock_bh(&ep->ex_lock);
585 }
586
587 /**
588 * fc_exch_abort_locked() - Abort an exchange
589 * @ep: The exchange to be aborted
590 * @timer_msec: The period of time to wait before aborting
591 *
592 * Locking notes: Called with exch lock held
593 *
594 * Return value: 0 on success else error code
595 */
596 static int fc_exch_abort_locked(struct fc_exch *ep,
597 unsigned int timer_msec)
598 {
599 struct fc_seq *sp;
600 struct fc_frame *fp;
601 int error;
602
603 if (ep->esb_stat & (ESB_ST_COMPLETE | ESB_ST_ABNORMAL) ||
604 ep->state & (FC_EX_DONE | FC_EX_RST_CLEANUP))
605 return -ENXIO;
606
607 /*
608 * Send the abort on a new sequence if possible.
609 */
610 sp = fc_seq_start_next_locked(&ep->seq);
611 if (!sp)
612 return -ENOMEM;
613
614 ep->esb_stat |= ESB_ST_SEQ_INIT | ESB_ST_ABNORMAL;
615 if (timer_msec)
616 fc_exch_timer_set_locked(ep, timer_msec);
617
618 /*
619 * If not logged into the fabric, don't send ABTS but leave
620 * sequence active until next timeout.
621 */
622 if (!ep->sid)
623 return 0;
624
625 /*
626 * Send an abort for the sequence that timed out.
627 */
628 fp = fc_frame_alloc(ep->lp, 0);
629 if (fp) {
630 fc_fill_fc_hdr(fp, FC_RCTL_BA_ABTS, ep->did, ep->sid,
631 FC_TYPE_BLS, FC_FC_END_SEQ | FC_FC_SEQ_INIT, 0);
632 error = fc_seq_send(ep->lp, sp, fp);
633 } else
634 error = -ENOBUFS;
635 return error;
636 }
637
638 /**
639 * fc_seq_exch_abort() - Abort an exchange and sequence
640 * @req_sp: The sequence to be aborted
641 * @timer_msec: The period of time to wait before aborting
642 *
643 * Generally called because of a timeout or an abort from the upper layer.
644 *
645 * Return value: 0 on success else error code
646 */
647 static int fc_seq_exch_abort(const struct fc_seq *req_sp,
648 unsigned int timer_msec)
649 {
650 struct fc_exch *ep;
651 int error;
652
653 ep = fc_seq_exch(req_sp);
654 spin_lock_bh(&ep->ex_lock);
655 error = fc_exch_abort_locked(ep, timer_msec);
656 spin_unlock_bh(&ep->ex_lock);
657 return error;
658 }
659
660 /**
661 * fc_exch_timeout() - Handle exchange timer expiration
662 * @work: The work_struct identifying the exchange that timed out
663 */
664 static void fc_exch_timeout(struct work_struct *work)
665 {
666 struct fc_exch *ep = container_of(work, struct fc_exch,
667 timeout_work.work);
668 struct fc_seq *sp = &ep->seq;
669 void (*resp)(struct fc_seq *, struct fc_frame *fp, void *arg);
670 void *arg;
671 u32 e_stat;
672 int rc = 1;
673
674 FC_EXCH_DBG(ep, "Exchange timed out\n");
675
676 spin_lock_bh(&ep->ex_lock);
677 if (ep->state & (FC_EX_RST_CLEANUP | FC_EX_DONE))
678 goto unlock;
679
680 e_stat = ep->esb_stat;
681 if (e_stat & ESB_ST_COMPLETE) {
682 ep->esb_stat = e_stat & ~ESB_ST_REC_QUAL;
683 spin_unlock_bh(&ep->ex_lock);
684 if (e_stat & ESB_ST_REC_QUAL)
685 fc_exch_rrq(ep);
686 goto done;
687 } else {
688 resp = ep->resp;
689 arg = ep->arg;
690 ep->resp = NULL;
691 if (e_stat & ESB_ST_ABNORMAL)
692 rc = fc_exch_done_locked(ep);
693 spin_unlock_bh(&ep->ex_lock);
694 if (!rc)
695 fc_exch_delete(ep);
696 if (resp)
697 resp(sp, ERR_PTR(-FC_EX_TIMEOUT), arg);
698 fc_seq_exch_abort(sp, 2 * ep->r_a_tov);
699 goto done;
700 }
701 unlock:
702 spin_unlock_bh(&ep->ex_lock);
703 done:
704 /*
705 * This release matches the hold taken when the timer was set.
706 */
707 fc_exch_release(ep);
708 }
709
710 /**
711 * fc_exch_em_alloc() - Allocate an exchange from a specified EM.
712 * @lport: The local port that the exchange is for
713 * @mp: The exchange manager that will allocate the exchange
714 *
715 * Returns pointer to allocated fc_exch with exch lock held.
716 */
717 static struct fc_exch *fc_exch_em_alloc(struct fc_lport *lport,
718 struct fc_exch_mgr *mp)
719 {
720 struct fc_exch *ep;
721 unsigned int cpu;
722 u16 index;
723 struct fc_exch_pool *pool;
724
725 /* allocate memory for exchange */
726 ep = mempool_alloc(mp->ep_pool, GFP_ATOMIC);
727 if (!ep) {
728 atomic_inc(&mp->stats.no_free_exch);
729 goto out;
730 }
731 memset(ep, 0, sizeof(*ep));
732
733 cpu = get_cpu();
734 pool = per_cpu_ptr(mp->pool, cpu);
735 spin_lock_bh(&pool->lock);
736 put_cpu();
737
738 /* peek cache of free slot */
739 if (pool->left != FC_XID_UNKNOWN) {
740 index = pool->left;
741 pool->left = FC_XID_UNKNOWN;
742 goto hit;
743 }
744 if (pool->right != FC_XID_UNKNOWN) {
745 index = pool->right;
746 pool->right = FC_XID_UNKNOWN;
747 goto hit;
748 }
749
750 index = pool->next_index;
751 /* allocate new exch from pool */
752 while (fc_exch_ptr_get(pool, index)) {
753 index = index == mp->pool_max_index ? 0 : index + 1;
754 if (index == pool->next_index)
755 goto err;
756 }
757 pool->next_index = index == mp->pool_max_index ? 0 : index + 1;
758 hit:
759 fc_exch_hold(ep); /* hold for exch in mp */
760 spin_lock_init(&ep->ex_lock);
761 /*
762 * Hold exch lock for caller to prevent fc_exch_reset()
763 * from releasing exch while fc_exch_alloc() caller is
764 * still working on exch.
765 */
766 spin_lock_bh(&ep->ex_lock);
767
768 fc_exch_ptr_set(pool, index, ep);
769 list_add_tail(&ep->ex_list, &pool->ex_list);
770 fc_seq_alloc(ep, ep->seq_id++);
771 pool->total_exches++;
772 spin_unlock_bh(&pool->lock);
773
774 /*
775 * update exchange
776 */
777 ep->oxid = ep->xid = (index << fc_cpu_order | cpu) + mp->min_xid;
778 ep->em = mp;
779 ep->pool = pool;
780 ep->lp = lport;
781 ep->f_ctl = FC_FC_FIRST_SEQ; /* next seq is first seq */
782 ep->rxid = FC_XID_UNKNOWN;
783 ep->class = mp->class;
784 INIT_DELAYED_WORK(&ep->timeout_work, fc_exch_timeout);
785 out:
786 return ep;
787 err:
788 spin_unlock_bh(&pool->lock);
789 atomic_inc(&mp->stats.no_free_exch_xid);
790 mempool_free(ep, mp->ep_pool);
791 return NULL;
792 }
793
794 /**
795 * fc_exch_alloc() - Allocate an exchange from an EM on a
796 * local port's list of EMs.
797 * @lport: The local port that will own the exchange
798 * @fp: The FC frame that the exchange will be for
799 *
800 * This function walks the list of exchange manager(EM)
801 * anchors to select an EM for a new exchange allocation. The
802 * EM is selected when a NULL match function pointer is encountered
803 * or when a call to a match function returns true.
804 */
805 static inline struct fc_exch *fc_exch_alloc(struct fc_lport *lport,
806 struct fc_frame *fp)
807 {
808 struct fc_exch_mgr_anchor *ema;
809
810 list_for_each_entry(ema, &lport->ema_list, ema_list)
811 if (!ema->match || ema->match(fp))
812 return fc_exch_em_alloc(lport, ema->mp);
813 return NULL;
814 }
815
816 /**
817 * fc_exch_find() - Lookup and hold an exchange
818 * @mp: The exchange manager to lookup the exchange from
819 * @xid: The XID of the exchange to look up
820 */
821 static struct fc_exch *fc_exch_find(struct fc_exch_mgr *mp, u16 xid)
822 {
823 struct fc_exch_pool *pool;
824 struct fc_exch *ep = NULL;
825
826 if ((xid >= mp->min_xid) && (xid <= mp->max_xid)) {
827 pool = per_cpu_ptr(mp->pool, xid & fc_cpu_mask);
828 spin_lock_bh(&pool->lock);
829 ep = fc_exch_ptr_get(pool, (xid - mp->min_xid) >> fc_cpu_order);
830 if (ep && ep->xid == xid)
831 fc_exch_hold(ep);
832 spin_unlock_bh(&pool->lock);
833 }
834 return ep;
835 }
836
837
838 /**
839 * fc_exch_done() - Indicate that an exchange/sequence tuple is complete and
840 * the memory allocated for the related objects may be freed.
841 * @sp: The sequence that has completed
842 */
843 static void fc_exch_done(struct fc_seq *sp)
844 {
845 struct fc_exch *ep = fc_seq_exch(sp);
846 int rc;
847
848 spin_lock_bh(&ep->ex_lock);
849 rc = fc_exch_done_locked(ep);
850 spin_unlock_bh(&ep->ex_lock);
851 if (!rc)
852 fc_exch_delete(ep);
853 }
854
855 /**
856 * fc_exch_resp() - Allocate a new exchange for a response frame
857 * @lport: The local port that the exchange was for
858 * @mp: The exchange manager to allocate the exchange from
859 * @fp: The response frame
860 *
861 * Sets the responder ID in the frame header.
862 */
863 static struct fc_exch *fc_exch_resp(struct fc_lport *lport,
864 struct fc_exch_mgr *mp,
865 struct fc_frame *fp)
866 {
867 struct fc_exch *ep;
868 struct fc_frame_header *fh;
869
870 ep = fc_exch_alloc(lport, fp);
871 if (ep) {
872 ep->class = fc_frame_class(fp);
873
874 /*
875 * Set EX_CTX indicating we're responding on this exchange.
876 */
877 ep->f_ctl |= FC_FC_EX_CTX; /* we're responding */
878 ep->f_ctl &= ~FC_FC_FIRST_SEQ; /* not new */
879 fh = fc_frame_header_get(fp);
880 ep->sid = ntoh24(fh->fh_d_id);
881 ep->did = ntoh24(fh->fh_s_id);
882 ep->oid = ep->did;
883
884 /*
885 * Allocated exchange has placed the XID in the
886 * originator field. Move it to the responder field,
887 * and set the originator XID from the frame.
888 */
889 ep->rxid = ep->xid;
890 ep->oxid = ntohs(fh->fh_ox_id);
891 ep->esb_stat |= ESB_ST_RESP | ESB_ST_SEQ_INIT;
892 if ((ntoh24(fh->fh_f_ctl) & FC_FC_SEQ_INIT) == 0)
893 ep->esb_stat &= ~ESB_ST_SEQ_INIT;
894
895 fc_exch_hold(ep); /* hold for caller */
896 spin_unlock_bh(&ep->ex_lock); /* lock from fc_exch_alloc */
897 }
898 return ep;
899 }
900
901 /**
902 * fc_seq_lookup_recip() - Find a sequence where the other end
903 * originated the sequence
904 * @lport: The local port that the frame was sent to
905 * @mp: The Exchange Manager to lookup the exchange from
906 * @fp: The frame associated with the sequence we're looking for
907 *
908 * If fc_pf_rjt_reason is FC_RJT_NONE then this function will have a hold
909 * on the ep that should be released by the caller.
910 */
911 static enum fc_pf_rjt_reason fc_seq_lookup_recip(struct fc_lport *lport,
912 struct fc_exch_mgr *mp,
913 struct fc_frame *fp)
914 {
915 struct fc_frame_header *fh = fc_frame_header_get(fp);
916 struct fc_exch *ep = NULL;
917 struct fc_seq *sp = NULL;
918 enum fc_pf_rjt_reason reject = FC_RJT_NONE;
919 u32 f_ctl;
920 u16 xid;
921
922 f_ctl = ntoh24(fh->fh_f_ctl);
923 WARN_ON((f_ctl & FC_FC_SEQ_CTX) != 0);
924
925 /*
926 * Lookup or create the exchange if we will be creating the sequence.
927 */
928 if (f_ctl & FC_FC_EX_CTX) {
929 xid = ntohs(fh->fh_ox_id); /* we originated exch */
930 ep = fc_exch_find(mp, xid);
931 if (!ep) {
932 atomic_inc(&mp->stats.xid_not_found);
933 reject = FC_RJT_OX_ID;
934 goto out;
935 }
936 if (ep->rxid == FC_XID_UNKNOWN)
937 ep->rxid = ntohs(fh->fh_rx_id);
938 else if (ep->rxid != ntohs(fh->fh_rx_id)) {
939 reject = FC_RJT_OX_ID;
940 goto rel;
941 }
942 } else {
943 xid = ntohs(fh->fh_rx_id); /* we are the responder */
944
945 /*
946 * Special case for MDS issuing an ELS TEST with a
947 * bad rxid of 0.
948 * XXX take this out once we do the proper reject.
949 */
950 if (xid == 0 && fh->fh_r_ctl == FC_RCTL_ELS_REQ &&
951 fc_frame_payload_op(fp) == ELS_TEST) {
952 fh->fh_rx_id = htons(FC_XID_UNKNOWN);
953 xid = FC_XID_UNKNOWN;
954 }
955
956 /*
957 * new sequence - find the exchange
958 */
959 ep = fc_exch_find(mp, xid);
960 if ((f_ctl & FC_FC_FIRST_SEQ) && fc_sof_is_init(fr_sof(fp))) {
961 if (ep) {
962 atomic_inc(&mp->stats.xid_busy);
963 reject = FC_RJT_RX_ID;
964 goto rel;
965 }
966 ep = fc_exch_resp(lport, mp, fp);
967 if (!ep) {
968 reject = FC_RJT_EXCH_EST; /* XXX */
969 goto out;
970 }
971 xid = ep->xid; /* get our XID */
972 } else if (!ep) {
973 atomic_inc(&mp->stats.xid_not_found);
974 reject = FC_RJT_RX_ID; /* XID not found */
975 goto out;
976 }
977 }
978
979 /*
980 * At this point, we have the exchange held.
981 * Find or create the sequence.
982 */
983 if (fc_sof_is_init(fr_sof(fp))) {
984 sp = &ep->seq;
985 sp->ssb_stat |= SSB_ST_RESP;
986 sp->id = fh->fh_seq_id;
987 } else {
988 sp = &ep->seq;
989 if (sp->id != fh->fh_seq_id) {
990 atomic_inc(&mp->stats.seq_not_found);
991 if (f_ctl & FC_FC_END_SEQ) {
992 /*
993 * Update sequence_id based on incoming last
994 * frame of sequence exchange. This is needed
995 * for FC target where DDP has been used
996 * on target where, stack is indicated only
997 * about last frame's (payload _header) header.
998 * Whereas "seq_id" which is part of
999 * frame_header is allocated by initiator
1000 * which is totally different from "seq_id"
1001 * allocated when XFER_RDY was sent by target.
1002 * To avoid false -ve which results into not
1003 * sending RSP, hence write request on other
1004 * end never finishes.
1005 */
1006 spin_lock_bh(&ep->ex_lock);
1007 sp->ssb_stat |= SSB_ST_RESP;
1008 sp->id = fh->fh_seq_id;
1009 spin_unlock_bh(&ep->ex_lock);
1010 } else {
1011 /* sequence/exch should exist */
1012 reject = FC_RJT_SEQ_ID;
1013 goto rel;
1014 }
1015 }
1016 }
1017 WARN_ON(ep != fc_seq_exch(sp));
1018
1019 if (f_ctl & FC_FC_SEQ_INIT)
1020 ep->esb_stat |= ESB_ST_SEQ_INIT;
1021
1022 fr_seq(fp) = sp;
1023 out:
1024 return reject;
1025 rel:
1026 fc_exch_done(&ep->seq);
1027 fc_exch_release(ep); /* hold from fc_exch_find/fc_exch_resp */
1028 return reject;
1029 }
1030
1031 /**
1032 * fc_seq_lookup_orig() - Find a sequence where this end
1033 * originated the sequence
1034 * @mp: The Exchange Manager to lookup the exchange from
1035 * @fp: The frame associated with the sequence we're looking for
1036 *
1037 * Does not hold the sequence for the caller.
1038 */
1039 static struct fc_seq *fc_seq_lookup_orig(struct fc_exch_mgr *mp,
1040 struct fc_frame *fp)
1041 {
1042 struct fc_frame_header *fh = fc_frame_header_get(fp);
1043 struct fc_exch *ep;
1044 struct fc_seq *sp = NULL;
1045 u32 f_ctl;
1046 u16 xid;
1047
1048 f_ctl = ntoh24(fh->fh_f_ctl);
1049 WARN_ON((f_ctl & FC_FC_SEQ_CTX) != FC_FC_SEQ_CTX);
1050 xid = ntohs((f_ctl & FC_FC_EX_CTX) ? fh->fh_ox_id : fh->fh_rx_id);
1051 ep = fc_exch_find(mp, xid);
1052 if (!ep)
1053 return NULL;
1054 if (ep->seq.id == fh->fh_seq_id) {
1055 /*
1056 * Save the RX_ID if we didn't previously know it.
1057 */
1058 sp = &ep->seq;
1059 if ((f_ctl & FC_FC_EX_CTX) != 0 &&
1060 ep->rxid == FC_XID_UNKNOWN) {
1061 ep->rxid = ntohs(fh->fh_rx_id);
1062 }
1063 }
1064 fc_exch_release(ep);
1065 return sp;
1066 }
1067
1068 /**
1069 * fc_exch_set_addr() - Set the source and destination IDs for an exchange
1070 * @ep: The exchange to set the addresses for
1071 * @orig_id: The originator's ID
1072 * @resp_id: The responder's ID
1073 *
1074 * Note this must be done before the first sequence of the exchange is sent.
1075 */
1076 static void fc_exch_set_addr(struct fc_exch *ep,
1077 u32 orig_id, u32 resp_id)
1078 {
1079 ep->oid = orig_id;
1080 if (ep->esb_stat & ESB_ST_RESP) {
1081 ep->sid = resp_id;
1082 ep->did = orig_id;
1083 } else {
1084 ep->sid = orig_id;
1085 ep->did = resp_id;
1086 }
1087 }
1088
1089 /**
1090 * fc_seq_els_rsp_send() - Send an ELS response using information from
1091 * the existing sequence/exchange.
1092 * @fp: The received frame
1093 * @els_cmd: The ELS command to be sent
1094 * @els_data: The ELS data to be sent
1095 *
1096 * The received frame is not freed.
1097 */
1098 static void fc_seq_els_rsp_send(struct fc_frame *fp, enum fc_els_cmd els_cmd,
1099 struct fc_seq_els_data *els_data)
1100 {
1101 switch (els_cmd) {
1102 case ELS_LS_RJT:
1103 fc_seq_ls_rjt(fp, els_data->reason, els_data->explan);
1104 break;
1105 case ELS_LS_ACC:
1106 fc_seq_ls_acc(fp);
1107 break;
1108 case ELS_RRQ:
1109 fc_exch_els_rrq(fp);
1110 break;
1111 case ELS_REC:
1112 fc_exch_els_rec(fp);
1113 break;
1114 default:
1115 FC_LPORT_DBG(fr_dev(fp), "Invalid ELS CMD:%x\n", els_cmd);
1116 }
1117 }
1118
1119 /**
1120 * fc_seq_send_last() - Send a sequence that is the last in the exchange
1121 * @sp: The sequence that is to be sent
1122 * @fp: The frame that will be sent on the sequence
1123 * @rctl: The R_CTL information to be sent
1124 * @fh_type: The frame header type
1125 */
1126 static void fc_seq_send_last(struct fc_seq *sp, struct fc_frame *fp,
1127 enum fc_rctl rctl, enum fc_fh_type fh_type)
1128 {
1129 u32 f_ctl;
1130 struct fc_exch *ep = fc_seq_exch(sp);
1131
1132 f_ctl = FC_FC_LAST_SEQ | FC_FC_END_SEQ | FC_FC_SEQ_INIT;
1133 f_ctl |= ep->f_ctl;
1134 fc_fill_fc_hdr(fp, rctl, ep->did, ep->sid, fh_type, f_ctl, 0);
1135 fc_seq_send(ep->lp, sp, fp);
1136 }
1137
1138 /**
1139 * fc_seq_send_ack() - Send an acknowledgement that we've received a frame
1140 * @sp: The sequence to send the ACK on
1141 * @rx_fp: The received frame that is being acknoledged
1142 *
1143 * Send ACK_1 (or equiv.) indicating we received something.
1144 */
1145 static void fc_seq_send_ack(struct fc_seq *sp, const struct fc_frame *rx_fp)
1146 {
1147 struct fc_frame *fp;
1148 struct fc_frame_header *rx_fh;
1149 struct fc_frame_header *fh;
1150 struct fc_exch *ep = fc_seq_exch(sp);
1151 struct fc_lport *lport = ep->lp;
1152 unsigned int f_ctl;
1153
1154 /*
1155 * Don't send ACKs for class 3.
1156 */
1157 if (fc_sof_needs_ack(fr_sof(rx_fp))) {
1158 fp = fc_frame_alloc(lport, 0);
1159 if (!fp)
1160 return;
1161
1162 fh = fc_frame_header_get(fp);
1163 fh->fh_r_ctl = FC_RCTL_ACK_1;
1164 fh->fh_type = FC_TYPE_BLS;
1165
1166 /*
1167 * Form f_ctl by inverting EX_CTX and SEQ_CTX (bits 23, 22).
1168 * Echo FIRST_SEQ, LAST_SEQ, END_SEQ, END_CONN, SEQ_INIT.
1169 * Bits 9-8 are meaningful (retransmitted or unidirectional).
1170 * Last ACK uses bits 7-6 (continue sequence),
1171 * bits 5-4 are meaningful (what kind of ACK to use).
1172 */
1173 rx_fh = fc_frame_header_get(rx_fp);
1174 f_ctl = ntoh24(rx_fh->fh_f_ctl);
1175 f_ctl &= FC_FC_EX_CTX | FC_FC_SEQ_CTX |
1176 FC_FC_FIRST_SEQ | FC_FC_LAST_SEQ |
1177 FC_FC_END_SEQ | FC_FC_END_CONN | FC_FC_SEQ_INIT |
1178 FC_FC_RETX_SEQ | FC_FC_UNI_TX;
1179 f_ctl ^= FC_FC_EX_CTX | FC_FC_SEQ_CTX;
1180 hton24(fh->fh_f_ctl, f_ctl);
1181
1182 fc_exch_setup_hdr(ep, fp, f_ctl);
1183 fh->fh_seq_id = rx_fh->fh_seq_id;
1184 fh->fh_seq_cnt = rx_fh->fh_seq_cnt;
1185 fh->fh_parm_offset = htonl(1); /* ack single frame */
1186
1187 fr_sof(fp) = fr_sof(rx_fp);
1188 if (f_ctl & FC_FC_END_SEQ)
1189 fr_eof(fp) = FC_EOF_T;
1190 else
1191 fr_eof(fp) = FC_EOF_N;
1192
1193 lport->tt.frame_send(lport, fp);
1194 }
1195 }
1196
1197 /**
1198 * fc_exch_send_ba_rjt() - Send BLS Reject
1199 * @rx_fp: The frame being rejected
1200 * @reason: The reason the frame is being rejected
1201 * @explan: The explanation for the rejection
1202 *
1203 * This is for rejecting BA_ABTS only.
1204 */
1205 static void fc_exch_send_ba_rjt(struct fc_frame *rx_fp,
1206 enum fc_ba_rjt_reason reason,
1207 enum fc_ba_rjt_explan explan)
1208 {
1209 struct fc_frame *fp;
1210 struct fc_frame_header *rx_fh;
1211 struct fc_frame_header *fh;
1212 struct fc_ba_rjt *rp;
1213 struct fc_lport *lport;
1214 unsigned int f_ctl;
1215
1216 lport = fr_dev(rx_fp);
1217 fp = fc_frame_alloc(lport, sizeof(*rp));
1218 if (!fp)
1219 return;
1220 fh = fc_frame_header_get(fp);
1221 rx_fh = fc_frame_header_get(rx_fp);
1222
1223 memset(fh, 0, sizeof(*fh) + sizeof(*rp));
1224
1225 rp = fc_frame_payload_get(fp, sizeof(*rp));
1226 rp->br_reason = reason;
1227 rp->br_explan = explan;
1228
1229 /*
1230 * seq_id, cs_ctl, df_ctl and param/offset are zero.
1231 */
1232 memcpy(fh->fh_s_id, rx_fh->fh_d_id, 3);
1233 memcpy(fh->fh_d_id, rx_fh->fh_s_id, 3);
1234 fh->fh_ox_id = rx_fh->fh_ox_id;
1235 fh->fh_rx_id = rx_fh->fh_rx_id;
1236 fh->fh_seq_cnt = rx_fh->fh_seq_cnt;
1237 fh->fh_r_ctl = FC_RCTL_BA_RJT;
1238 fh->fh_type = FC_TYPE_BLS;
1239
1240 /*
1241 * Form f_ctl by inverting EX_CTX and SEQ_CTX (bits 23, 22).
1242 * Echo FIRST_SEQ, LAST_SEQ, END_SEQ, END_CONN, SEQ_INIT.
1243 * Bits 9-8 are meaningful (retransmitted or unidirectional).
1244 * Last ACK uses bits 7-6 (continue sequence),
1245 * bits 5-4 are meaningful (what kind of ACK to use).
1246 * Always set LAST_SEQ, END_SEQ.
1247 */
1248 f_ctl = ntoh24(rx_fh->fh_f_ctl);
1249 f_ctl &= FC_FC_EX_CTX | FC_FC_SEQ_CTX |
1250 FC_FC_END_CONN | FC_FC_SEQ_INIT |
1251 FC_FC_RETX_SEQ | FC_FC_UNI_TX;
1252 f_ctl ^= FC_FC_EX_CTX | FC_FC_SEQ_CTX;
1253 f_ctl |= FC_FC_LAST_SEQ | FC_FC_END_SEQ;
1254 f_ctl &= ~FC_FC_FIRST_SEQ;
1255 hton24(fh->fh_f_ctl, f_ctl);
1256
1257 fr_sof(fp) = fc_sof_class(fr_sof(rx_fp));
1258 fr_eof(fp) = FC_EOF_T;
1259 if (fc_sof_needs_ack(fr_sof(fp)))
1260 fr_eof(fp) = FC_EOF_N;
1261
1262 lport->tt.frame_send(lport, fp);
1263 }
1264
1265 /**
1266 * fc_exch_recv_abts() - Handle an incoming ABTS
1267 * @ep: The exchange the abort was on
1268 * @rx_fp: The ABTS frame
1269 *
1270 * This would be for target mode usually, but could be due to lost
1271 * FCP transfer ready, confirm or RRQ. We always handle this as an
1272 * exchange abort, ignoring the parameter.
1273 */
1274 static void fc_exch_recv_abts(struct fc_exch *ep, struct fc_frame *rx_fp)
1275 {
1276 struct fc_frame *fp;
1277 struct fc_ba_acc *ap;
1278 struct fc_frame_header *fh;
1279 struct fc_seq *sp;
1280
1281 if (!ep)
1282 goto reject;
1283 spin_lock_bh(&ep->ex_lock);
1284 if (ep->esb_stat & ESB_ST_COMPLETE) {
1285 spin_unlock_bh(&ep->ex_lock);
1286 goto reject;
1287 }
1288 if (!(ep->esb_stat & ESB_ST_REC_QUAL))
1289 fc_exch_hold(ep); /* hold for REC_QUAL */
1290 ep->esb_stat |= ESB_ST_ABNORMAL | ESB_ST_REC_QUAL;
1291 fc_exch_timer_set_locked(ep, ep->r_a_tov);
1292
1293 fp = fc_frame_alloc(ep->lp, sizeof(*ap));
1294 if (!fp) {
1295 spin_unlock_bh(&ep->ex_lock);
1296 goto free;
1297 }
1298 fh = fc_frame_header_get(fp);
1299 ap = fc_frame_payload_get(fp, sizeof(*ap));
1300 memset(ap, 0, sizeof(*ap));
1301 sp = &ep->seq;
1302 ap->ba_high_seq_cnt = htons(0xffff);
1303 if (sp->ssb_stat & SSB_ST_RESP) {
1304 ap->ba_seq_id = sp->id;
1305 ap->ba_seq_id_val = FC_BA_SEQ_ID_VAL;
1306 ap->ba_high_seq_cnt = fh->fh_seq_cnt;
1307 ap->ba_low_seq_cnt = htons(sp->cnt);
1308 }
1309 sp = fc_seq_start_next_locked(sp);
1310 spin_unlock_bh(&ep->ex_lock);
1311 fc_seq_send_last(sp, fp, FC_RCTL_BA_ACC, FC_TYPE_BLS);
1312 fc_frame_free(rx_fp);
1313 return;
1314
1315 reject:
1316 fc_exch_send_ba_rjt(rx_fp, FC_BA_RJT_UNABLE, FC_BA_RJT_INV_XID);
1317 free:
1318 fc_frame_free(rx_fp);
1319 }
1320
1321 /**
1322 * fc_seq_assign() - Assign exchange and sequence for incoming request
1323 * @lport: The local port that received the request
1324 * @fp: The request frame
1325 *
1326 * On success, the sequence pointer will be returned and also in fr_seq(@fp).
1327 * A reference will be held on the exchange/sequence for the caller, which
1328 * must call fc_seq_release().
1329 */
1330 static struct fc_seq *fc_seq_assign(struct fc_lport *lport, struct fc_frame *fp)
1331 {
1332 struct fc_exch_mgr_anchor *ema;
1333
1334 WARN_ON(lport != fr_dev(fp));
1335 WARN_ON(fr_seq(fp));
1336 fr_seq(fp) = NULL;
1337
1338 list_for_each_entry(ema, &lport->ema_list, ema_list)
1339 if ((!ema->match || ema->match(fp)) &&
1340 fc_seq_lookup_recip(lport, ema->mp, fp) == FC_RJT_NONE)
1341 break;
1342 return fr_seq(fp);
1343 }
1344
1345 /**
1346 * fc_seq_release() - Release the hold
1347 * @sp: The sequence.
1348 */
1349 static void fc_seq_release(struct fc_seq *sp)
1350 {
1351 fc_exch_release(fc_seq_exch(sp));
1352 }
1353
1354 /**
1355 * fc_exch_recv_req() - Handler for an incoming request
1356 * @lport: The local port that received the request
1357 * @mp: The EM that the exchange is on
1358 * @fp: The request frame
1359 *
1360 * This is used when the other end is originating the exchange
1361 * and the sequence.
1362 */
1363 static void fc_exch_recv_req(struct fc_lport *lport, struct fc_exch_mgr *mp,
1364 struct fc_frame *fp)
1365 {
1366 struct fc_frame_header *fh = fc_frame_header_get(fp);
1367 struct fc_seq *sp = NULL;
1368 struct fc_exch *ep = NULL;
1369 enum fc_pf_rjt_reason reject;
1370
1371 /* We can have the wrong fc_lport at this point with NPIV, which is a
1372 * problem now that we know a new exchange needs to be allocated
1373 */
1374 lport = fc_vport_id_lookup(lport, ntoh24(fh->fh_d_id));
1375 if (!lport) {
1376 fc_frame_free(fp);
1377 return;
1378 }
1379 fr_dev(fp) = lport;
1380
1381 BUG_ON(fr_seq(fp)); /* XXX remove later */
1382
1383 /*
1384 * If the RX_ID is 0xffff, don't allocate an exchange.
1385 * The upper-level protocol may request one later, if needed.
1386 */
1387 if (fh->fh_rx_id == htons(FC_XID_UNKNOWN))
1388 return lport->tt.lport_recv(lport, fp);
1389
1390 reject = fc_seq_lookup_recip(lport, mp, fp);
1391 if (reject == FC_RJT_NONE) {
1392 sp = fr_seq(fp); /* sequence will be held */
1393 ep = fc_seq_exch(sp);
1394 fc_seq_send_ack(sp, fp);
1395 ep->encaps = fr_encaps(fp);
1396
1397 /*
1398 * Call the receive function.
1399 *
1400 * The receive function may allocate a new sequence
1401 * over the old one, so we shouldn't change the
1402 * sequence after this.
1403 *
1404 * The frame will be freed by the receive function.
1405 * If new exch resp handler is valid then call that
1406 * first.
1407 */
1408 if (ep->resp)
1409 ep->resp(sp, fp, ep->arg);
1410 else
1411 lport->tt.lport_recv(lport, fp);
1412 fc_exch_release(ep); /* release from lookup */
1413 } else {
1414 FC_LPORT_DBG(lport, "exch/seq lookup failed: reject %x\n",
1415 reject);
1416 fc_frame_free(fp);
1417 }
1418 }
1419
1420 /**
1421 * fc_exch_recv_seq_resp() - Handler for an incoming response where the other
1422 * end is the originator of the sequence that is a
1423 * response to our initial exchange
1424 * @mp: The EM that the exchange is on
1425 * @fp: The response frame
1426 */
1427 static void fc_exch_recv_seq_resp(struct fc_exch_mgr *mp, struct fc_frame *fp)
1428 {
1429 struct fc_frame_header *fh = fc_frame_header_get(fp);
1430 struct fc_seq *sp;
1431 struct fc_exch *ep;
1432 enum fc_sof sof;
1433 u32 f_ctl;
1434 void (*resp)(struct fc_seq *, struct fc_frame *fp, void *arg);
1435 void *ex_resp_arg;
1436 int rc;
1437
1438 ep = fc_exch_find(mp, ntohs(fh->fh_ox_id));
1439 if (!ep) {
1440 atomic_inc(&mp->stats.xid_not_found);
1441 goto out;
1442 }
1443 if (ep->esb_stat & ESB_ST_COMPLETE) {
1444 atomic_inc(&mp->stats.xid_not_found);
1445 goto rel;
1446 }
1447 if (ep->rxid == FC_XID_UNKNOWN)
1448 ep->rxid = ntohs(fh->fh_rx_id);
1449 if (ep->sid != 0 && ep->sid != ntoh24(fh->fh_d_id)) {
1450 atomic_inc(&mp->stats.xid_not_found);
1451 goto rel;
1452 }
1453 if (ep->did != ntoh24(fh->fh_s_id) &&
1454 ep->did != FC_FID_FLOGI) {
1455 atomic_inc(&mp->stats.xid_not_found);
1456 goto rel;
1457 }
1458 sof = fr_sof(fp);
1459 sp = &ep->seq;
1460 if (fc_sof_is_init(sof)) {
1461 sp->ssb_stat |= SSB_ST_RESP;
1462 sp->id = fh->fh_seq_id;
1463 } else if (sp->id != fh->fh_seq_id) {
1464 atomic_inc(&mp->stats.seq_not_found);
1465 goto rel;
1466 }
1467
1468 f_ctl = ntoh24(fh->fh_f_ctl);
1469 fr_seq(fp) = sp;
1470 if (f_ctl & FC_FC_SEQ_INIT)
1471 ep->esb_stat |= ESB_ST_SEQ_INIT;
1472
1473 if (fc_sof_needs_ack(sof))
1474 fc_seq_send_ack(sp, fp);
1475 resp = ep->resp;
1476 ex_resp_arg = ep->arg;
1477
1478 if (fh->fh_type != FC_TYPE_FCP && fr_eof(fp) == FC_EOF_T &&
1479 (f_ctl & (FC_FC_LAST_SEQ | FC_FC_END_SEQ)) ==
1480 (FC_FC_LAST_SEQ | FC_FC_END_SEQ)) {
1481 spin_lock_bh(&ep->ex_lock);
1482 resp = ep->resp;
1483 rc = fc_exch_done_locked(ep);
1484 WARN_ON(fc_seq_exch(sp) != ep);
1485 spin_unlock_bh(&ep->ex_lock);
1486 if (!rc)
1487 fc_exch_delete(ep);
1488 }
1489
1490 /*
1491 * Call the receive function.
1492 * The sequence is held (has a refcnt) for us,
1493 * but not for the receive function.
1494 *
1495 * The receive function may allocate a new sequence
1496 * over the old one, so we shouldn't change the
1497 * sequence after this.
1498 *
1499 * The frame will be freed by the receive function.
1500 * If new exch resp handler is valid then call that
1501 * first.
1502 */
1503 if (resp)
1504 resp(sp, fp, ex_resp_arg);
1505 else
1506 fc_frame_free(fp);
1507 fc_exch_release(ep);
1508 return;
1509 rel:
1510 fc_exch_release(ep);
1511 out:
1512 fc_frame_free(fp);
1513 }
1514
1515 /**
1516 * fc_exch_recv_resp() - Handler for a sequence where other end is
1517 * responding to our sequence
1518 * @mp: The EM that the exchange is on
1519 * @fp: The response frame
1520 */
1521 static void fc_exch_recv_resp(struct fc_exch_mgr *mp, struct fc_frame *fp)
1522 {
1523 struct fc_seq *sp;
1524
1525 sp = fc_seq_lookup_orig(mp, fp); /* doesn't hold sequence */
1526
1527 if (!sp)
1528 atomic_inc(&mp->stats.xid_not_found);
1529 else
1530 atomic_inc(&mp->stats.non_bls_resp);
1531
1532 fc_frame_free(fp);
1533 }
1534
1535 /**
1536 * fc_exch_abts_resp() - Handler for a response to an ABT
1537 * @ep: The exchange that the frame is on
1538 * @fp: The response frame
1539 *
1540 * This response would be to an ABTS cancelling an exchange or sequence.
1541 * The response can be either BA_ACC or BA_RJT
1542 */
1543 static void fc_exch_abts_resp(struct fc_exch *ep, struct fc_frame *fp)
1544 {
1545 void (*resp)(struct fc_seq *, struct fc_frame *fp, void *arg);
1546 void *ex_resp_arg;
1547 struct fc_frame_header *fh;
1548 struct fc_ba_acc *ap;
1549 struct fc_seq *sp;
1550 u16 low;
1551 u16 high;
1552 int rc = 1, has_rec = 0;
1553
1554 fh = fc_frame_header_get(fp);
1555 FC_EXCH_DBG(ep, "exch: BLS rctl %x - %s\n", fh->fh_r_ctl,
1556 fc_exch_rctl_name(fh->fh_r_ctl));
1557
1558 if (cancel_delayed_work_sync(&ep->timeout_work)) {
1559 FC_EXCH_DBG(ep, "Exchange timer canceled\n");
1560 fc_exch_release(ep); /* release from pending timer hold */
1561 }
1562
1563 spin_lock_bh(&ep->ex_lock);
1564 switch (fh->fh_r_ctl) {
1565 case FC_RCTL_BA_ACC:
1566 ap = fc_frame_payload_get(fp, sizeof(*ap));
1567 if (!ap)
1568 break;
1569
1570 /*
1571 * Decide whether to establish a Recovery Qualifier.
1572 * We do this if there is a non-empty SEQ_CNT range and
1573 * SEQ_ID is the same as the one we aborted.
1574 */
1575 low = ntohs(ap->ba_low_seq_cnt);
1576 high = ntohs(ap->ba_high_seq_cnt);
1577 if ((ep->esb_stat & ESB_ST_REC_QUAL) == 0 &&
1578 (ap->ba_seq_id_val != FC_BA_SEQ_ID_VAL ||
1579 ap->ba_seq_id == ep->seq_id) && low != high) {
1580 ep->esb_stat |= ESB_ST_REC_QUAL;
1581 fc_exch_hold(ep); /* hold for recovery qualifier */
1582 has_rec = 1;
1583 }
1584 break;
1585 case FC_RCTL_BA_RJT:
1586 break;
1587 default:
1588 break;
1589 }
1590
1591 resp = ep->resp;
1592 ex_resp_arg = ep->arg;
1593
1594 /* do we need to do some other checks here. Can we reuse more of
1595 * fc_exch_recv_seq_resp
1596 */
1597 sp = &ep->seq;
1598 /*
1599 * do we want to check END_SEQ as well as LAST_SEQ here?
1600 */
1601 if (ep->fh_type != FC_TYPE_FCP &&
1602 ntoh24(fh->fh_f_ctl) & FC_FC_LAST_SEQ)
1603 rc = fc_exch_done_locked(ep);
1604 spin_unlock_bh(&ep->ex_lock);
1605 if (!rc)
1606 fc_exch_delete(ep);
1607
1608 if (resp)
1609 resp(sp, fp, ex_resp_arg);
1610 else
1611 fc_frame_free(fp);
1612
1613 if (has_rec)
1614 fc_exch_timer_set(ep, ep->r_a_tov);
1615
1616 }
1617
1618 /**
1619 * fc_exch_recv_bls() - Handler for a BLS sequence
1620 * @mp: The EM that the exchange is on
1621 * @fp: The request frame
1622 *
1623 * The BLS frame is always a sequence initiated by the remote side.
1624 * We may be either the originator or recipient of the exchange.
1625 */
1626 static void fc_exch_recv_bls(struct fc_exch_mgr *mp, struct fc_frame *fp)
1627 {
1628 struct fc_frame_header *fh;
1629 struct fc_exch *ep;
1630 u32 f_ctl;
1631
1632 fh = fc_frame_header_get(fp);
1633 f_ctl = ntoh24(fh->fh_f_ctl);
1634 fr_seq(fp) = NULL;
1635
1636 ep = fc_exch_find(mp, (f_ctl & FC_FC_EX_CTX) ?
1637 ntohs(fh->fh_ox_id) : ntohs(fh->fh_rx_id));
1638 if (ep && (f_ctl & FC_FC_SEQ_INIT)) {
1639 spin_lock_bh(&ep->ex_lock);
1640 ep->esb_stat |= ESB_ST_SEQ_INIT;
1641 spin_unlock_bh(&ep->ex_lock);
1642 }
1643 if (f_ctl & FC_FC_SEQ_CTX) {
1644 /*
1645 * A response to a sequence we initiated.
1646 * This should only be ACKs for class 2 or F.
1647 */
1648 switch (fh->fh_r_ctl) {
1649 case FC_RCTL_ACK_1:
1650 case FC_RCTL_ACK_0:
1651 break;
1652 default:
1653 if (ep)
1654 FC_EXCH_DBG(ep, "BLS rctl %x - %s received",
1655 fh->fh_r_ctl,
1656 fc_exch_rctl_name(fh->fh_r_ctl));
1657 break;
1658 }
1659 fc_frame_free(fp);
1660 } else {
1661 switch (fh->fh_r_ctl) {
1662 case FC_RCTL_BA_RJT:
1663 case FC_RCTL_BA_ACC:
1664 if (ep)
1665 fc_exch_abts_resp(ep, fp);
1666 else
1667 fc_frame_free(fp);
1668 break;
1669 case FC_RCTL_BA_ABTS:
1670 fc_exch_recv_abts(ep, fp);
1671 break;
1672 default: /* ignore junk */
1673 fc_frame_free(fp);
1674 break;
1675 }
1676 }
1677 if (ep)
1678 fc_exch_release(ep); /* release hold taken by fc_exch_find */
1679 }
1680
1681 /**
1682 * fc_seq_ls_acc() - Accept sequence with LS_ACC
1683 * @rx_fp: The received frame, not freed here.
1684 *
1685 * If this fails due to allocation or transmit congestion, assume the
1686 * originator will repeat the sequence.
1687 */
1688 static void fc_seq_ls_acc(struct fc_frame *rx_fp)
1689 {
1690 struct fc_lport *lport;
1691 struct fc_els_ls_acc *acc;
1692 struct fc_frame *fp;
1693
1694 lport = fr_dev(rx_fp);
1695 fp = fc_frame_alloc(lport, sizeof(*acc));
1696 if (!fp)
1697 return;
1698 acc = fc_frame_payload_get(fp, sizeof(*acc));
1699 memset(acc, 0, sizeof(*acc));
1700 acc->la_cmd = ELS_LS_ACC;
1701 fc_fill_reply_hdr(fp, rx_fp, FC_RCTL_ELS_REP, 0);
1702 lport->tt.frame_send(lport, fp);
1703 }
1704
1705 /**
1706 * fc_seq_ls_rjt() - Reject a sequence with ELS LS_RJT
1707 * @rx_fp: The received frame, not freed here.
1708 * @reason: The reason the sequence is being rejected
1709 * @explan: The explanation for the rejection
1710 *
1711 * If this fails due to allocation or transmit congestion, assume the
1712 * originator will repeat the sequence.
1713 */
1714 static void fc_seq_ls_rjt(struct fc_frame *rx_fp, enum fc_els_rjt_reason reason,
1715 enum fc_els_rjt_explan explan)
1716 {
1717 struct fc_lport *lport;
1718 struct fc_els_ls_rjt *rjt;
1719 struct fc_frame *fp;
1720
1721 lport = fr_dev(rx_fp);
1722 fp = fc_frame_alloc(lport, sizeof(*rjt));
1723 if (!fp)
1724 return;
1725 rjt = fc_frame_payload_get(fp, sizeof(*rjt));
1726 memset(rjt, 0, sizeof(*rjt));
1727 rjt->er_cmd = ELS_LS_RJT;
1728 rjt->er_reason = reason;
1729 rjt->er_explan = explan;
1730 fc_fill_reply_hdr(fp, rx_fp, FC_RCTL_ELS_REP, 0);
1731 lport->tt.frame_send(lport, fp);
1732 }
1733
1734 /**
1735 * fc_exch_reset() - Reset an exchange
1736 * @ep: The exchange to be reset
1737 */
1738 static void fc_exch_reset(struct fc_exch *ep)
1739 {
1740 struct fc_seq *sp;
1741 void (*resp)(struct fc_seq *, struct fc_frame *, void *);
1742 void *arg;
1743 int rc = 1;
1744
1745 spin_lock_bh(&ep->ex_lock);
1746 fc_exch_abort_locked(ep, 0);
1747 ep->state |= FC_EX_RST_CLEANUP;
1748 fc_exch_timer_cancel(ep);
1749 resp = ep->resp;
1750 ep->resp = NULL;
1751 if (ep->esb_stat & ESB_ST_REC_QUAL)
1752 atomic_dec(&ep->ex_refcnt); /* drop hold for rec_qual */
1753 ep->esb_stat &= ~ESB_ST_REC_QUAL;
1754 arg = ep->arg;
1755 sp = &ep->seq;
1756 rc = fc_exch_done_locked(ep);
1757 spin_unlock_bh(&ep->ex_lock);
1758 if (!rc)
1759 fc_exch_delete(ep);
1760
1761 if (resp)
1762 resp(sp, ERR_PTR(-FC_EX_CLOSED), arg);
1763 }
1764
1765 /**
1766 * fc_exch_pool_reset() - Reset a per cpu exchange pool
1767 * @lport: The local port that the exchange pool is on
1768 * @pool: The exchange pool to be reset
1769 * @sid: The source ID
1770 * @did: The destination ID
1771 *
1772 * Resets a per cpu exches pool, releasing all of its sequences
1773 * and exchanges. If sid is non-zero then reset only exchanges
1774 * we sourced from the local port's FID. If did is non-zero then
1775 * only reset exchanges destined for the local port's FID.
1776 */
1777 static void fc_exch_pool_reset(struct fc_lport *lport,
1778 struct fc_exch_pool *pool,
1779 u32 sid, u32 did)
1780 {
1781 struct fc_exch *ep;
1782 struct fc_exch *next;
1783
1784 spin_lock_bh(&pool->lock);
1785 restart:
1786 list_for_each_entry_safe(ep, next, &pool->ex_list, ex_list) {
1787 if ((lport == ep->lp) &&
1788 (sid == 0 || sid == ep->sid) &&
1789 (did == 0 || did == ep->did)) {
1790 fc_exch_hold(ep);
1791 spin_unlock_bh(&pool->lock);
1792
1793 fc_exch_reset(ep);
1794
1795 fc_exch_release(ep);
1796 spin_lock_bh(&pool->lock);
1797
1798 /*
1799 * must restart loop incase while lock
1800 * was down multiple eps were released.
1801 */
1802 goto restart;
1803 }
1804 }
1805 pool->next_index = 0;
1806 pool->left = FC_XID_UNKNOWN;
1807 pool->right = FC_XID_UNKNOWN;
1808 spin_unlock_bh(&pool->lock);
1809 }
1810
1811 /**
1812 * fc_exch_mgr_reset() - Reset all EMs of a local port
1813 * @lport: The local port whose EMs are to be reset
1814 * @sid: The source ID
1815 * @did: The destination ID
1816 *
1817 * Reset all EMs associated with a given local port. Release all
1818 * sequences and exchanges. If sid is non-zero then reset only the
1819 * exchanges sent from the local port's FID. If did is non-zero then
1820 * reset only exchanges destined for the local port's FID.
1821 */
1822 void fc_exch_mgr_reset(struct fc_lport *lport, u32 sid, u32 did)
1823 {
1824 struct fc_exch_mgr_anchor *ema;
1825 unsigned int cpu;
1826
1827 list_for_each_entry(ema, &lport->ema_list, ema_list) {
1828 for_each_possible_cpu(cpu)
1829 fc_exch_pool_reset(lport,
1830 per_cpu_ptr(ema->mp->pool, cpu),
1831 sid, did);
1832 }
1833 }
1834 EXPORT_SYMBOL(fc_exch_mgr_reset);
1835
1836 /**
1837 * fc_exch_lookup() - find an exchange
1838 * @lport: The local port
1839 * @xid: The exchange ID
1840 *
1841 * Returns exchange pointer with hold for caller, or NULL if not found.
1842 */
1843 static struct fc_exch *fc_exch_lookup(struct fc_lport *lport, u32 xid)
1844 {
1845 struct fc_exch_mgr_anchor *ema;
1846
1847 list_for_each_entry(ema, &lport->ema_list, ema_list)
1848 if (ema->mp->min_xid <= xid && xid <= ema->mp->max_xid)
1849 return fc_exch_find(ema->mp, xid);
1850 return NULL;
1851 }
1852
1853 /**
1854 * fc_exch_els_rec() - Handler for ELS REC (Read Exchange Concise) requests
1855 * @rfp: The REC frame, not freed here.
1856 *
1857 * Note that the requesting port may be different than the S_ID in the request.
1858 */
1859 static void fc_exch_els_rec(struct fc_frame *rfp)
1860 {
1861 struct fc_lport *lport;
1862 struct fc_frame *fp;
1863 struct fc_exch *ep;
1864 struct fc_els_rec *rp;
1865 struct fc_els_rec_acc *acc;
1866 enum fc_els_rjt_reason reason = ELS_RJT_LOGIC;
1867 enum fc_els_rjt_explan explan;
1868 u32 sid;
1869 u16 rxid;
1870 u16 oxid;
1871
1872 lport = fr_dev(rfp);
1873 rp = fc_frame_payload_get(rfp, sizeof(*rp));
1874 explan = ELS_EXPL_INV_LEN;
1875 if (!rp)
1876 goto reject;
1877 sid = ntoh24(rp->rec_s_id);
1878 rxid = ntohs(rp->rec_rx_id);
1879 oxid = ntohs(rp->rec_ox_id);
1880
1881 ep = fc_exch_lookup(lport,
1882 sid == fc_host_port_id(lport->host) ? oxid : rxid);
1883 explan = ELS_EXPL_OXID_RXID;
1884 if (!ep)
1885 goto reject;
1886 if (ep->oid != sid || oxid != ep->oxid)
1887 goto rel;
1888 if (rxid != FC_XID_UNKNOWN && rxid != ep->rxid)
1889 goto rel;
1890 fp = fc_frame_alloc(lport, sizeof(*acc));
1891 if (!fp)
1892 goto out;
1893
1894 acc = fc_frame_payload_get(fp, sizeof(*acc));
1895 memset(acc, 0, sizeof(*acc));
1896 acc->reca_cmd = ELS_LS_ACC;
1897 acc->reca_ox_id = rp->rec_ox_id;
1898 memcpy(acc->reca_ofid, rp->rec_s_id, 3);
1899 acc->reca_rx_id = htons(ep->rxid);
1900 if (ep->sid == ep->oid)
1901 hton24(acc->reca_rfid, ep->did);
1902 else
1903 hton24(acc->reca_rfid, ep->sid);
1904 acc->reca_fc4value = htonl(ep->seq.rec_data);
1905 acc->reca_e_stat = htonl(ep->esb_stat & (ESB_ST_RESP |
1906 ESB_ST_SEQ_INIT |
1907 ESB_ST_COMPLETE));
1908 fc_fill_reply_hdr(fp, rfp, FC_RCTL_ELS_REP, 0);
1909 lport->tt.frame_send(lport, fp);
1910 out:
1911 fc_exch_release(ep);
1912 return;
1913
1914 rel:
1915 fc_exch_release(ep);
1916 reject:
1917 fc_seq_ls_rjt(rfp, reason, explan);
1918 }
1919
1920 /**
1921 * fc_exch_rrq_resp() - Handler for RRQ responses
1922 * @sp: The sequence that the RRQ is on
1923 * @fp: The RRQ frame
1924 * @arg: The exchange that the RRQ is on
1925 *
1926 * TODO: fix error handler.
1927 */
1928 static void fc_exch_rrq_resp(struct fc_seq *sp, struct fc_frame *fp, void *arg)
1929 {
1930 struct fc_exch *aborted_ep = arg;
1931 unsigned int op;
1932
1933 if (IS_ERR(fp)) {
1934 int err = PTR_ERR(fp);
1935
1936 if (err == -FC_EX_CLOSED || err == -FC_EX_TIMEOUT)
1937 goto cleanup;
1938 FC_EXCH_DBG(aborted_ep, "Cannot process RRQ, "
1939 "frame error %d\n", err);
1940 return;
1941 }
1942
1943 op = fc_frame_payload_op(fp);
1944 fc_frame_free(fp);
1945
1946 switch (op) {
1947 case ELS_LS_RJT:
1948 FC_EXCH_DBG(aborted_ep, "LS_RJT for RRQ");
1949 /* fall through */
1950 case ELS_LS_ACC:
1951 goto cleanup;
1952 default:
1953 FC_EXCH_DBG(aborted_ep, "unexpected response op %x "
1954 "for RRQ", op);
1955 return;
1956 }
1957
1958 cleanup:
1959 fc_exch_done(&aborted_ep->seq);
1960 /* drop hold for rec qual */
1961 fc_exch_release(aborted_ep);
1962 }
1963
1964
1965 /**
1966 * fc_exch_seq_send() - Send a frame using a new exchange and sequence
1967 * @lport: The local port to send the frame on
1968 * @fp: The frame to be sent
1969 * @resp: The response handler for this request
1970 * @destructor: The destructor for the exchange
1971 * @arg: The argument to be passed to the response handler
1972 * @timer_msec: The timeout period for the exchange
1973 *
1974 * The frame pointer with some of the header's fields must be
1975 * filled before calling this routine, those fields are:
1976 *
1977 * - routing control
1978 * - FC port did
1979 * - FC port sid
1980 * - FC header type
1981 * - frame control
1982 * - parameter or relative offset
1983 */
1984 static struct fc_seq *fc_exch_seq_send(struct fc_lport *lport,
1985 struct fc_frame *fp,
1986 void (*resp)(struct fc_seq *,
1987 struct fc_frame *fp,
1988 void *arg),
1989 void (*destructor)(struct fc_seq *,
1990 void *),
1991 void *arg, u32 timer_msec)
1992 {
1993 struct fc_exch *ep;
1994 struct fc_seq *sp = NULL;
1995 struct fc_frame_header *fh;
1996 struct fc_fcp_pkt *fsp = NULL;
1997 int rc = 1;
1998
1999 ep = fc_exch_alloc(lport, fp);
2000 if (!ep) {
2001 fc_frame_free(fp);
2002 return NULL;
2003 }
2004 ep->esb_stat |= ESB_ST_SEQ_INIT;
2005 fh = fc_frame_header_get(fp);
2006 fc_exch_set_addr(ep, ntoh24(fh->fh_s_id), ntoh24(fh->fh_d_id));
2007 ep->resp = resp;
2008 ep->destructor = destructor;
2009 ep->arg = arg;
2010 ep->r_a_tov = FC_DEF_R_A_TOV;
2011 ep->lp = lport;
2012 sp = &ep->seq;
2013
2014 ep->fh_type = fh->fh_type; /* save for possbile timeout handling */
2015 ep->f_ctl = ntoh24(fh->fh_f_ctl);
2016 fc_exch_setup_hdr(ep, fp, ep->f_ctl);
2017 sp->cnt++;
2018
2019 if (ep->xid <= lport->lro_xid && fh->fh_r_ctl == FC_RCTL_DD_UNSOL_CMD) {
2020 fsp = fr_fsp(fp);
2021 fc_fcp_ddp_setup(fr_fsp(fp), ep->xid);
2022 }
2023
2024 if (unlikely(lport->tt.frame_send(lport, fp)))
2025 goto err;
2026
2027 if (timer_msec)
2028 fc_exch_timer_set_locked(ep, timer_msec);
2029 ep->f_ctl &= ~FC_FC_FIRST_SEQ; /* not first seq */
2030
2031 if (ep->f_ctl & FC_FC_SEQ_INIT)
2032 ep->esb_stat &= ~ESB_ST_SEQ_INIT;
2033 spin_unlock_bh(&ep->ex_lock);
2034 return sp;
2035 err:
2036 if (fsp)
2037 fc_fcp_ddp_done(fsp);
2038 rc = fc_exch_done_locked(ep);
2039 spin_unlock_bh(&ep->ex_lock);
2040 if (!rc)
2041 fc_exch_delete(ep);
2042 return NULL;
2043 }
2044
2045 /**
2046 * fc_exch_rrq() - Send an ELS RRQ (Reinstate Recovery Qualifier) command
2047 * @ep: The exchange to send the RRQ on
2048 *
2049 * This tells the remote port to stop blocking the use of
2050 * the exchange and the seq_cnt range.
2051 */
2052 static void fc_exch_rrq(struct fc_exch *ep)
2053 {
2054 struct fc_lport *lport;
2055 struct fc_els_rrq *rrq;
2056 struct fc_frame *fp;
2057 u32 did;
2058
2059 lport = ep->lp;
2060
2061 fp = fc_frame_alloc(lport, sizeof(*rrq));
2062 if (!fp)
2063 goto retry;
2064
2065 rrq = fc_frame_payload_get(fp, sizeof(*rrq));
2066 memset(rrq, 0, sizeof(*rrq));
2067 rrq->rrq_cmd = ELS_RRQ;
2068 hton24(rrq->rrq_s_id, ep->sid);
2069 rrq->rrq_ox_id = htons(ep->oxid);
2070 rrq->rrq_rx_id = htons(ep->rxid);
2071
2072 did = ep->did;
2073 if (ep->esb_stat & ESB_ST_RESP)
2074 did = ep->sid;
2075
2076 fc_fill_fc_hdr(fp, FC_RCTL_ELS_REQ, did,
2077 lport->port_id, FC_TYPE_ELS,
2078 FC_FC_FIRST_SEQ | FC_FC_END_SEQ | FC_FC_SEQ_INIT, 0);
2079
2080 if (fc_exch_seq_send(lport, fp, fc_exch_rrq_resp, NULL, ep,
2081 lport->e_d_tov))
2082 return;
2083
2084 retry:
2085 spin_lock_bh(&ep->ex_lock);
2086 if (ep->state & (FC_EX_RST_CLEANUP | FC_EX_DONE)) {
2087 spin_unlock_bh(&ep->ex_lock);
2088 /* drop hold for rec qual */
2089 fc_exch_release(ep);
2090 return;
2091 }
2092 ep->esb_stat |= ESB_ST_REC_QUAL;
2093 fc_exch_timer_set_locked(ep, ep->r_a_tov);
2094 spin_unlock_bh(&ep->ex_lock);
2095 }
2096
2097 /**
2098 * fc_exch_els_rrq() - Handler for ELS RRQ (Reset Recovery Qualifier) requests
2099 * @fp: The RRQ frame, not freed here.
2100 */
2101 static void fc_exch_els_rrq(struct fc_frame *fp)
2102 {
2103 struct fc_lport *lport;
2104 struct fc_exch *ep = NULL; /* request or subject exchange */
2105 struct fc_els_rrq *rp;
2106 u32 sid;
2107 u16 xid;
2108 enum fc_els_rjt_explan explan;
2109
2110 lport = fr_dev(fp);
2111 rp = fc_frame_payload_get(fp, sizeof(*rp));
2112 explan = ELS_EXPL_INV_LEN;
2113 if (!rp)
2114 goto reject;
2115
2116 /*
2117 * lookup subject exchange.
2118 */
2119 sid = ntoh24(rp->rrq_s_id); /* subject source */
2120 xid = fc_host_port_id(lport->host) == sid ?
2121 ntohs(rp->rrq_ox_id) : ntohs(rp->rrq_rx_id);
2122 ep = fc_exch_lookup(lport, xid);
2123 explan = ELS_EXPL_OXID_RXID;
2124 if (!ep)
2125 goto reject;
2126 spin_lock_bh(&ep->ex_lock);
2127 if (ep->oxid != ntohs(rp->rrq_ox_id))
2128 goto unlock_reject;
2129 if (ep->rxid != ntohs(rp->rrq_rx_id) &&
2130 ep->rxid != FC_XID_UNKNOWN)
2131 goto unlock_reject;
2132 explan = ELS_EXPL_SID;
2133 if (ep->sid != sid)
2134 goto unlock_reject;
2135
2136 /*
2137 * Clear Recovery Qualifier state, and cancel timer if complete.
2138 */
2139 if (ep->esb_stat & ESB_ST_REC_QUAL) {
2140 ep->esb_stat &= ~ESB_ST_REC_QUAL;
2141 atomic_dec(&ep->ex_refcnt); /* drop hold for rec qual */
2142 }
2143 if (ep->esb_stat & ESB_ST_COMPLETE)
2144 fc_exch_timer_cancel(ep);
2145
2146 spin_unlock_bh(&ep->ex_lock);
2147
2148 /*
2149 * Send LS_ACC.
2150 */
2151 fc_seq_ls_acc(fp);
2152 goto out;
2153
2154 unlock_reject:
2155 spin_unlock_bh(&ep->ex_lock);
2156 reject:
2157 fc_seq_ls_rjt(fp, ELS_RJT_LOGIC, explan);
2158 out:
2159 if (ep)
2160 fc_exch_release(ep); /* drop hold from fc_exch_find */
2161 }
2162
2163 /**
2164 * fc_exch_update_stats() - update exches stats to lport
2165 * @lport: The local port to update exchange manager stats
2166 */
2167 void fc_exch_update_stats(struct fc_lport *lport)
2168 {
2169 struct fc_host_statistics *st;
2170 struct fc_exch_mgr_anchor *ema;
2171 struct fc_exch_mgr *mp;
2172
2173 st = &lport->host_stats;
2174
2175 list_for_each_entry(ema, &lport->ema_list, ema_list) {
2176 mp = ema->mp;
2177 st->fc_no_free_exch += atomic_read(&mp->stats.no_free_exch);
2178 st->fc_no_free_exch_xid +=
2179 atomic_read(&mp->stats.no_free_exch_xid);
2180 st->fc_xid_not_found += atomic_read(&mp->stats.xid_not_found);
2181 st->fc_xid_busy += atomic_read(&mp->stats.xid_busy);
2182 st->fc_seq_not_found += atomic_read(&mp->stats.seq_not_found);
2183 st->fc_non_bls_resp += atomic_read(&mp->stats.non_bls_resp);
2184 }
2185 }
2186 EXPORT_SYMBOL(fc_exch_update_stats);
2187
2188 /**
2189 * fc_exch_mgr_add() - Add an exchange manager to a local port's list of EMs
2190 * @lport: The local port to add the exchange manager to
2191 * @mp: The exchange manager to be added to the local port
2192 * @match: The match routine that indicates when this EM should be used
2193 */
2194 struct fc_exch_mgr_anchor *fc_exch_mgr_add(struct fc_lport *lport,
2195 struct fc_exch_mgr *mp,
2196 bool (*match)(struct fc_frame *))
2197 {
2198 struct fc_exch_mgr_anchor *ema;
2199
2200 ema = kmalloc(sizeof(*ema), GFP_ATOMIC);
2201 if (!ema)
2202 return ema;
2203
2204 ema->mp = mp;
2205 ema->match = match;
2206 /* add EM anchor to EM anchors list */
2207 list_add_tail(&ema->ema_list, &lport->ema_list);
2208 kref_get(&mp->kref);
2209 return ema;
2210 }
2211 EXPORT_SYMBOL(fc_exch_mgr_add);
2212
2213 /**
2214 * fc_exch_mgr_destroy() - Destroy an exchange manager
2215 * @kref: The reference to the EM to be destroyed
2216 */
2217 static void fc_exch_mgr_destroy(struct kref *kref)
2218 {
2219 struct fc_exch_mgr *mp = container_of(kref, struct fc_exch_mgr, kref);
2220
2221 mempool_destroy(mp->ep_pool);
2222 free_percpu(mp->pool);
2223 kfree(mp);
2224 }
2225
2226 /**
2227 * fc_exch_mgr_del() - Delete an EM from a local port's list
2228 * @ema: The exchange manager anchor identifying the EM to be deleted
2229 */
2230 void fc_exch_mgr_del(struct fc_exch_mgr_anchor *ema)
2231 {
2232 /* remove EM anchor from EM anchors list */
2233 list_del(&ema->ema_list);
2234 kref_put(&ema->mp->kref, fc_exch_mgr_destroy);
2235 kfree(ema);
2236 }
2237 EXPORT_SYMBOL(fc_exch_mgr_del);
2238
2239 /**
2240 * fc_exch_mgr_list_clone() - Share all exchange manager objects
2241 * @src: Source lport to clone exchange managers from
2242 * @dst: New lport that takes references to all the exchange managers
2243 */
2244 int fc_exch_mgr_list_clone(struct fc_lport *src, struct fc_lport *dst)
2245 {
2246 struct fc_exch_mgr_anchor *ema, *tmp;
2247
2248 list_for_each_entry(ema, &src->ema_list, ema_list) {
2249 if (!fc_exch_mgr_add(dst, ema->mp, ema->match))
2250 goto err;
2251 }
2252 return 0;
2253 err:
2254 list_for_each_entry_safe(ema, tmp, &dst->ema_list, ema_list)
2255 fc_exch_mgr_del(ema);
2256 return -ENOMEM;
2257 }
2258 EXPORT_SYMBOL(fc_exch_mgr_list_clone);
2259
2260 /**
2261 * fc_exch_mgr_alloc() - Allocate an exchange manager
2262 * @lport: The local port that the new EM will be associated with
2263 * @class: The default FC class for new exchanges
2264 * @min_xid: The minimum XID for exchanges from the new EM
2265 * @max_xid: The maximum XID for exchanges from the new EM
2266 * @match: The match routine for the new EM
2267 */
2268 struct fc_exch_mgr *fc_exch_mgr_alloc(struct fc_lport *lport,
2269 enum fc_class class,
2270 u16 min_xid, u16 max_xid,
2271 bool (*match)(struct fc_frame *))
2272 {
2273 struct fc_exch_mgr *mp;
2274 u16 pool_exch_range;
2275 size_t pool_size;
2276 unsigned int cpu;
2277 struct fc_exch_pool *pool;
2278
2279 if (max_xid <= min_xid || max_xid == FC_XID_UNKNOWN ||
2280 (min_xid & fc_cpu_mask) != 0) {
2281 FC_LPORT_DBG(lport, "Invalid min_xid 0x:%x and max_xid 0x:%x\n",
2282 min_xid, max_xid);
2283 return NULL;
2284 }
2285
2286 /*
2287 * allocate memory for EM
2288 */
2289 mp = kzalloc(sizeof(struct fc_exch_mgr), GFP_ATOMIC);
2290 if (!mp)
2291 return NULL;
2292
2293 mp->class = class;
2294 /* adjust em exch xid range for offload */
2295 mp->min_xid = min_xid;
2296
2297 /* reduce range so per cpu pool fits into PCPU_MIN_UNIT_SIZE pool */
2298 pool_exch_range = (PCPU_MIN_UNIT_SIZE - sizeof(*pool)) /
2299 sizeof(struct fc_exch *);
2300 if ((max_xid - min_xid + 1) / (fc_cpu_mask + 1) > pool_exch_range) {
2301 mp->max_xid = pool_exch_range * (fc_cpu_mask + 1) +
2302 min_xid - 1;
2303 } else {
2304 mp->max_xid = max_xid;
2305 pool_exch_range = (mp->max_xid - mp->min_xid + 1) /
2306 (fc_cpu_mask + 1);
2307 }
2308
2309 mp->ep_pool = mempool_create_slab_pool(2, fc_em_cachep);
2310 if (!mp->ep_pool)
2311 goto free_mp;
2312
2313 /*
2314 * Setup per cpu exch pool with entire exchange id range equally
2315 * divided across all cpus. The exch pointers array memory is
2316 * allocated for exch range per pool.
2317 */
2318 mp->pool_max_index = pool_exch_range - 1;
2319
2320 /*
2321 * Allocate and initialize per cpu exch pool
2322 */
2323 pool_size = sizeof(*pool) + pool_exch_range * sizeof(struct fc_exch *);
2324 mp->pool = __alloc_percpu(pool_size, __alignof__(struct fc_exch_pool));
2325 if (!mp->pool)
2326 goto free_mempool;
2327 for_each_possible_cpu(cpu) {
2328 pool = per_cpu_ptr(mp->pool, cpu);
2329 pool->next_index = 0;
2330 pool->left = FC_XID_UNKNOWN;
2331 pool->right = FC_XID_UNKNOWN;
2332 spin_lock_init(&pool->lock);
2333 INIT_LIST_HEAD(&pool->ex_list);
2334 }
2335
2336 kref_init(&mp->kref);
2337 if (!fc_exch_mgr_add(lport, mp, match)) {
2338 free_percpu(mp->pool);
2339 goto free_mempool;
2340 }
2341
2342 /*
2343 * Above kref_init() sets mp->kref to 1 and then
2344 * call to fc_exch_mgr_add incremented mp->kref again,
2345 * so adjust that extra increment.
2346 */
2347 kref_put(&mp->kref, fc_exch_mgr_destroy);
2348 return mp;
2349
2350 free_mempool:
2351 mempool_destroy(mp->ep_pool);
2352 free_mp:
2353 kfree(mp);
2354 return NULL;
2355 }
2356 EXPORT_SYMBOL(fc_exch_mgr_alloc);
2357
2358 /**
2359 * fc_exch_mgr_free() - Free all exchange managers on a local port
2360 * @lport: The local port whose EMs are to be freed
2361 */
2362 void fc_exch_mgr_free(struct fc_lport *lport)
2363 {
2364 struct fc_exch_mgr_anchor *ema, *next;
2365
2366 flush_workqueue(fc_exch_workqueue);
2367 list_for_each_entry_safe(ema, next, &lport->ema_list, ema_list)
2368 fc_exch_mgr_del(ema);
2369 }
2370 EXPORT_SYMBOL(fc_exch_mgr_free);
2371
2372 /**
2373 * fc_find_ema() - Lookup and return appropriate Exchange Manager Anchor depending
2374 * upon 'xid'.
2375 * @f_ctl: f_ctl
2376 * @lport: The local port the frame was received on
2377 * @fh: The received frame header
2378 */
2379 static struct fc_exch_mgr_anchor *fc_find_ema(u32 f_ctl,
2380 struct fc_lport *lport,
2381 struct fc_frame_header *fh)
2382 {
2383 struct fc_exch_mgr_anchor *ema;
2384 u16 xid;
2385
2386 if (f_ctl & FC_FC_EX_CTX)
2387 xid = ntohs(fh->fh_ox_id);
2388 else {
2389 xid = ntohs(fh->fh_rx_id);
2390 if (xid == FC_XID_UNKNOWN)
2391 return list_entry(lport->ema_list.prev,
2392 typeof(*ema), ema_list);
2393 }
2394
2395 list_for_each_entry(ema, &lport->ema_list, ema_list) {
2396 if ((xid >= ema->mp->min_xid) &&
2397 (xid <= ema->mp->max_xid))
2398 return ema;
2399 }
2400 return NULL;
2401 }
2402 /**
2403 * fc_exch_recv() - Handler for received frames
2404 * @lport: The local port the frame was received on
2405 * @fp: The received frame
2406 */
2407 void fc_exch_recv(struct fc_lport *lport, struct fc_frame *fp)
2408 {
2409 struct fc_frame_header *fh = fc_frame_header_get(fp);
2410 struct fc_exch_mgr_anchor *ema;
2411 u32 f_ctl;
2412
2413 /* lport lock ? */
2414 if (!lport || lport->state == LPORT_ST_DISABLED) {
2415 FC_LPORT_DBG(lport, "Receiving frames for an lport that "
2416 "has not been initialized correctly\n");
2417 fc_frame_free(fp);
2418 return;
2419 }
2420
2421 f_ctl = ntoh24(fh->fh_f_ctl);
2422 ema = fc_find_ema(f_ctl, lport, fh);
2423 if (!ema) {
2424 FC_LPORT_DBG(lport, "Unable to find Exchange Manager Anchor,"
2425 "fc_ctl <0x%x>, xid <0x%x>\n",
2426 f_ctl,
2427 (f_ctl & FC_FC_EX_CTX) ?
2428 ntohs(fh->fh_ox_id) :
2429 ntohs(fh->fh_rx_id));
2430 fc_frame_free(fp);
2431 return;
2432 }
2433
2434 /*
2435 * If frame is marked invalid, just drop it.
2436 */
2437 switch (fr_eof(fp)) {
2438 case FC_EOF_T:
2439 if (f_ctl & FC_FC_END_SEQ)
2440 skb_trim(fp_skb(fp), fr_len(fp) - FC_FC_FILL(f_ctl));
2441 /* fall through */
2442 case FC_EOF_N:
2443 if (fh->fh_type == FC_TYPE_BLS)
2444 fc_exch_recv_bls(ema->mp, fp);
2445 else if ((f_ctl & (FC_FC_EX_CTX | FC_FC_SEQ_CTX)) ==
2446 FC_FC_EX_CTX)
2447 fc_exch_recv_seq_resp(ema->mp, fp);
2448 else if (f_ctl & FC_FC_SEQ_CTX)
2449 fc_exch_recv_resp(ema->mp, fp);
2450 else /* no EX_CTX and no SEQ_CTX */
2451 fc_exch_recv_req(lport, ema->mp, fp);
2452 break;
2453 default:
2454 FC_LPORT_DBG(lport, "dropping invalid frame (eof %x)",
2455 fr_eof(fp));
2456 fc_frame_free(fp);
2457 }
2458 }
2459 EXPORT_SYMBOL(fc_exch_recv);
2460
2461 /**
2462 * fc_exch_init() - Initialize the exchange layer for a local port
2463 * @lport: The local port to initialize the exchange layer for
2464 */
2465 int fc_exch_init(struct fc_lport *lport)
2466 {
2467 if (!lport->tt.seq_start_next)
2468 lport->tt.seq_start_next = fc_seq_start_next;
2469
2470 if (!lport->tt.seq_set_resp)
2471 lport->tt.seq_set_resp = fc_seq_set_resp;
2472
2473 if (!lport->tt.exch_seq_send)
2474 lport->tt.exch_seq_send = fc_exch_seq_send;
2475
2476 if (!lport->tt.seq_send)
2477 lport->tt.seq_send = fc_seq_send;
2478
2479 if (!lport->tt.seq_els_rsp_send)
2480 lport->tt.seq_els_rsp_send = fc_seq_els_rsp_send;
2481
2482 if (!lport->tt.exch_done)
2483 lport->tt.exch_done = fc_exch_done;
2484
2485 if (!lport->tt.exch_mgr_reset)
2486 lport->tt.exch_mgr_reset = fc_exch_mgr_reset;
2487
2488 if (!lport->tt.seq_exch_abort)
2489 lport->tt.seq_exch_abort = fc_seq_exch_abort;
2490
2491 if (!lport->tt.seq_assign)
2492 lport->tt.seq_assign = fc_seq_assign;
2493
2494 if (!lport->tt.seq_release)
2495 lport->tt.seq_release = fc_seq_release;
2496
2497 return 0;
2498 }
2499 EXPORT_SYMBOL(fc_exch_init);
2500
2501 /**
2502 * fc_setup_exch_mgr() - Setup an exchange manager
2503 */
2504 int fc_setup_exch_mgr(void)
2505 {
2506 fc_em_cachep = kmem_cache_create("libfc_em", sizeof(struct fc_exch),
2507 0, SLAB_HWCACHE_ALIGN, NULL);
2508 if (!fc_em_cachep)
2509 return -ENOMEM;
2510
2511 /*
2512 * Initialize fc_cpu_mask and fc_cpu_order. The
2513 * fc_cpu_mask is set for nr_cpu_ids rounded up
2514 * to order of 2's * power and order is stored
2515 * in fc_cpu_order as this is later required in
2516 * mapping between an exch id and exch array index
2517 * in per cpu exch pool.
2518 *
2519 * This round up is required to align fc_cpu_mask
2520 * to exchange id's lower bits such that all incoming
2521 * frames of an exchange gets delivered to the same
2522 * cpu on which exchange originated by simple bitwise
2523 * AND operation between fc_cpu_mask and exchange id.
2524 */
2525 fc_cpu_mask = 1;
2526 fc_cpu_order = 0;
2527 while (fc_cpu_mask < nr_cpu_ids) {
2528 fc_cpu_mask <<= 1;
2529 fc_cpu_order++;
2530 }
2531 fc_cpu_mask--;
2532
2533 fc_exch_workqueue = create_singlethread_workqueue("fc_exch_workqueue");
2534 if (!fc_exch_workqueue)
2535 goto err;
2536 return 0;
2537 err:
2538 kmem_cache_destroy(fc_em_cachep);
2539 return -ENOMEM;
2540 }
2541
2542 /**
2543 * fc_destroy_exch_mgr() - Destroy an exchange manager
2544 */
2545 void fc_destroy_exch_mgr(void)
2546 {
2547 destroy_workqueue(fc_exch_workqueue);
2548 kmem_cache_destroy(fc_em_cachep);
2549 }
This page took 0.117076 seconds and 5 git commands to generate.