net: s2io: simplify logical constraint
[deliverable/linux.git] / drivers / scsi / libfc / fc_exch.c
1 /*
2 * Copyright(c) 2007 Intel Corporation. All rights reserved.
3 * Copyright(c) 2008 Red Hat, Inc. All rights reserved.
4 * Copyright(c) 2008 Mike Christie
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms and conditions of the GNU General Public License,
8 * version 2, as published by the Free Software Foundation.
9 *
10 * This program is distributed in the hope it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
14 *
15 * You should have received a copy of the GNU General Public License along with
16 * this program; if not, write to the Free Software Foundation, Inc.,
17 * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Maintained at www.Open-FCoE.org
20 */
21
22 /*
23 * Fibre Channel exchange and sequence handling.
24 */
25
26 #include <linux/timer.h>
27 #include <linux/slab.h>
28 #include <linux/err.h>
29 #include <linux/export.h>
30 #include <linux/log2.h>
31
32 #include <scsi/fc/fc_fc2.h>
33
34 #include <scsi/libfc.h>
35 #include <scsi/fc_encode.h>
36
37 #include "fc_libfc.h"
38
39 u16 fc_cpu_mask; /* cpu mask for possible cpus */
40 EXPORT_SYMBOL(fc_cpu_mask);
41 static u16 fc_cpu_order; /* 2's power to represent total possible cpus */
42 static struct kmem_cache *fc_em_cachep; /* cache for exchanges */
43 static struct workqueue_struct *fc_exch_workqueue;
44
45 /*
46 * Structure and function definitions for managing Fibre Channel Exchanges
47 * and Sequences.
48 *
49 * The three primary structures used here are fc_exch_mgr, fc_exch, and fc_seq.
50 *
51 * fc_exch_mgr holds the exchange state for an N port
52 *
53 * fc_exch holds state for one exchange and links to its active sequence.
54 *
55 * fc_seq holds the state for an individual sequence.
56 */
57
58 /**
59 * struct fc_exch_pool - Per cpu exchange pool
60 * @next_index: Next possible free exchange index
61 * @total_exches: Total allocated exchanges
62 * @lock: Exch pool lock
63 * @ex_list: List of exchanges
64 *
65 * This structure manages per cpu exchanges in array of exchange pointers.
66 * This array is allocated followed by struct fc_exch_pool memory for
67 * assigned range of exchanges to per cpu pool.
68 */
69 struct fc_exch_pool {
70 spinlock_t lock;
71 struct list_head ex_list;
72 u16 next_index;
73 u16 total_exches;
74
75 /* two cache of free slot in exch array */
76 u16 left;
77 u16 right;
78 } ____cacheline_aligned_in_smp;
79
80 /**
81 * struct fc_exch_mgr - The Exchange Manager (EM).
82 * @class: Default class for new sequences
83 * @kref: Reference counter
84 * @min_xid: Minimum exchange ID
85 * @max_xid: Maximum exchange ID
86 * @ep_pool: Reserved exchange pointers
87 * @pool_max_index: Max exch array index in exch pool
88 * @pool: Per cpu exch pool
89 * @stats: Statistics structure
90 *
91 * This structure is the center for creating exchanges and sequences.
92 * It manages the allocation of exchange IDs.
93 */
94 struct fc_exch_mgr {
95 struct fc_exch_pool __percpu *pool;
96 mempool_t *ep_pool;
97 enum fc_class class;
98 struct kref kref;
99 u16 min_xid;
100 u16 max_xid;
101 u16 pool_max_index;
102
103 struct {
104 atomic_t no_free_exch;
105 atomic_t no_free_exch_xid;
106 atomic_t xid_not_found;
107 atomic_t xid_busy;
108 atomic_t seq_not_found;
109 atomic_t non_bls_resp;
110 } stats;
111 };
112
113 /**
114 * struct fc_exch_mgr_anchor - primary structure for list of EMs
115 * @ema_list: Exchange Manager Anchor list
116 * @mp: Exchange Manager associated with this anchor
117 * @match: Routine to determine if this anchor's EM should be used
118 *
119 * When walking the list of anchors the match routine will be called
120 * for each anchor to determine if that EM should be used. The last
121 * anchor in the list will always match to handle any exchanges not
122 * handled by other EMs. The non-default EMs would be added to the
123 * anchor list by HW that provides offloads.
124 */
125 struct fc_exch_mgr_anchor {
126 struct list_head ema_list;
127 struct fc_exch_mgr *mp;
128 bool (*match)(struct fc_frame *);
129 };
130
131 static void fc_exch_rrq(struct fc_exch *);
132 static void fc_seq_ls_acc(struct fc_frame *);
133 static void fc_seq_ls_rjt(struct fc_frame *, enum fc_els_rjt_reason,
134 enum fc_els_rjt_explan);
135 static void fc_exch_els_rec(struct fc_frame *);
136 static void fc_exch_els_rrq(struct fc_frame *);
137
138 /*
139 * Internal implementation notes.
140 *
141 * The exchange manager is one by default in libfc but LLD may choose
142 * to have one per CPU. The sequence manager is one per exchange manager
143 * and currently never separated.
144 *
145 * Section 9.8 in FC-FS-2 specifies: "The SEQ_ID is a one-byte field
146 * assigned by the Sequence Initiator that shall be unique for a specific
147 * D_ID and S_ID pair while the Sequence is open." Note that it isn't
148 * qualified by exchange ID, which one might think it would be.
149 * In practice this limits the number of open sequences and exchanges to 256
150 * per session. For most targets we could treat this limit as per exchange.
151 *
152 * The exchange and its sequence are freed when the last sequence is received.
153 * It's possible for the remote port to leave an exchange open without
154 * sending any sequences.
155 *
156 * Notes on reference counts:
157 *
158 * Exchanges are reference counted and exchange gets freed when the reference
159 * count becomes zero.
160 *
161 * Timeouts:
162 * Sequences are timed out for E_D_TOV and R_A_TOV.
163 *
164 * Sequence event handling:
165 *
166 * The following events may occur on initiator sequences:
167 *
168 * Send.
169 * For now, the whole thing is sent.
170 * Receive ACK
171 * This applies only to class F.
172 * The sequence is marked complete.
173 * ULP completion.
174 * The upper layer calls fc_exch_done() when done
175 * with exchange and sequence tuple.
176 * RX-inferred completion.
177 * When we receive the next sequence on the same exchange, we can
178 * retire the previous sequence ID. (XXX not implemented).
179 * Timeout.
180 * R_A_TOV frees the sequence ID. If we're waiting for ACK,
181 * E_D_TOV causes abort and calls upper layer response handler
182 * with FC_EX_TIMEOUT error.
183 * Receive RJT
184 * XXX defer.
185 * Send ABTS
186 * On timeout.
187 *
188 * The following events may occur on recipient sequences:
189 *
190 * Receive
191 * Allocate sequence for first frame received.
192 * Hold during receive handler.
193 * Release when final frame received.
194 * Keep status of last N of these for the ELS RES command. XXX TBD.
195 * Receive ABTS
196 * Deallocate sequence
197 * Send RJT
198 * Deallocate
199 *
200 * For now, we neglect conditions where only part of a sequence was
201 * received or transmitted, or where out-of-order receipt is detected.
202 */
203
204 /*
205 * Locking notes:
206 *
207 * The EM code run in a per-CPU worker thread.
208 *
209 * To protect against concurrency between a worker thread code and timers,
210 * sequence allocation and deallocation must be locked.
211 * - exchange refcnt can be done atomicly without locks.
212 * - sequence allocation must be locked by exch lock.
213 * - If the EM pool lock and ex_lock must be taken at the same time, then the
214 * EM pool lock must be taken before the ex_lock.
215 */
216
217 /*
218 * opcode names for debugging.
219 */
220 static char *fc_exch_rctl_names[] = FC_RCTL_NAMES_INIT;
221
222 /**
223 * fc_exch_name_lookup() - Lookup name by opcode
224 * @op: Opcode to be looked up
225 * @table: Opcode/name table
226 * @max_index: Index not to be exceeded
227 *
228 * This routine is used to determine a human-readable string identifying
229 * a R_CTL opcode.
230 */
231 static inline const char *fc_exch_name_lookup(unsigned int op, char **table,
232 unsigned int max_index)
233 {
234 const char *name = NULL;
235
236 if (op < max_index)
237 name = table[op];
238 if (!name)
239 name = "unknown";
240 return name;
241 }
242
243 /**
244 * fc_exch_rctl_name() - Wrapper routine for fc_exch_name_lookup()
245 * @op: The opcode to be looked up
246 */
247 static const char *fc_exch_rctl_name(unsigned int op)
248 {
249 return fc_exch_name_lookup(op, fc_exch_rctl_names,
250 ARRAY_SIZE(fc_exch_rctl_names));
251 }
252
253 /**
254 * fc_exch_hold() - Increment an exchange's reference count
255 * @ep: Echange to be held
256 */
257 static inline void fc_exch_hold(struct fc_exch *ep)
258 {
259 atomic_inc(&ep->ex_refcnt);
260 }
261
262 /**
263 * fc_exch_setup_hdr() - Initialize a FC header by initializing some fields
264 * and determine SOF and EOF.
265 * @ep: The exchange to that will use the header
266 * @fp: The frame whose header is to be modified
267 * @f_ctl: F_CTL bits that will be used for the frame header
268 *
269 * The fields initialized by this routine are: fh_ox_id, fh_rx_id,
270 * fh_seq_id, fh_seq_cnt and the SOF and EOF.
271 */
272 static void fc_exch_setup_hdr(struct fc_exch *ep, struct fc_frame *fp,
273 u32 f_ctl)
274 {
275 struct fc_frame_header *fh = fc_frame_header_get(fp);
276 u16 fill;
277
278 fr_sof(fp) = ep->class;
279 if (ep->seq.cnt)
280 fr_sof(fp) = fc_sof_normal(ep->class);
281
282 if (f_ctl & FC_FC_END_SEQ) {
283 fr_eof(fp) = FC_EOF_T;
284 if (fc_sof_needs_ack(ep->class))
285 fr_eof(fp) = FC_EOF_N;
286 /*
287 * From F_CTL.
288 * The number of fill bytes to make the length a 4-byte
289 * multiple is the low order 2-bits of the f_ctl.
290 * The fill itself will have been cleared by the frame
291 * allocation.
292 * After this, the length will be even, as expected by
293 * the transport.
294 */
295 fill = fr_len(fp) & 3;
296 if (fill) {
297 fill = 4 - fill;
298 /* TODO, this may be a problem with fragmented skb */
299 skb_put(fp_skb(fp), fill);
300 hton24(fh->fh_f_ctl, f_ctl | fill);
301 }
302 } else {
303 WARN_ON(fr_len(fp) % 4 != 0); /* no pad to non last frame */
304 fr_eof(fp) = FC_EOF_N;
305 }
306
307 /* Initialize remaining fh fields from fc_fill_fc_hdr */
308 fh->fh_ox_id = htons(ep->oxid);
309 fh->fh_rx_id = htons(ep->rxid);
310 fh->fh_seq_id = ep->seq.id;
311 fh->fh_seq_cnt = htons(ep->seq.cnt);
312 }
313
314 /**
315 * fc_exch_release() - Decrement an exchange's reference count
316 * @ep: Exchange to be released
317 *
318 * If the reference count reaches zero and the exchange is complete,
319 * it is freed.
320 */
321 static void fc_exch_release(struct fc_exch *ep)
322 {
323 struct fc_exch_mgr *mp;
324
325 if (atomic_dec_and_test(&ep->ex_refcnt)) {
326 mp = ep->em;
327 if (ep->destructor)
328 ep->destructor(&ep->seq, ep->arg);
329 WARN_ON(!(ep->esb_stat & ESB_ST_COMPLETE));
330 mempool_free(ep, mp->ep_pool);
331 }
332 }
333
334 /**
335 * fc_exch_timer_cancel() - cancel exch timer
336 * @ep: The exchange whose timer to be canceled
337 */
338 static inline void fc_exch_timer_cancel(struct fc_exch *ep)
339 {
340 if (cancel_delayed_work(&ep->timeout_work)) {
341 FC_EXCH_DBG(ep, "Exchange timer canceled\n");
342 atomic_dec(&ep->ex_refcnt); /* drop hold for timer */
343 }
344 }
345
346 /**
347 * fc_exch_timer_set_locked() - Start a timer for an exchange w/ the
348 * the exchange lock held
349 * @ep: The exchange whose timer will start
350 * @timer_msec: The timeout period
351 *
352 * Used for upper level protocols to time out the exchange.
353 * The timer is cancelled when it fires or when the exchange completes.
354 */
355 static inline void fc_exch_timer_set_locked(struct fc_exch *ep,
356 unsigned int timer_msec)
357 {
358 if (ep->state & (FC_EX_RST_CLEANUP | FC_EX_DONE))
359 return;
360
361 FC_EXCH_DBG(ep, "Exchange timer armed : %d msecs\n", timer_msec);
362
363 fc_exch_hold(ep); /* hold for timer */
364 if (!queue_delayed_work(fc_exch_workqueue, &ep->timeout_work,
365 msecs_to_jiffies(timer_msec)))
366 fc_exch_release(ep);
367 }
368
369 /**
370 * fc_exch_timer_set() - Lock the exchange and set the timer
371 * @ep: The exchange whose timer will start
372 * @timer_msec: The timeout period
373 */
374 static void fc_exch_timer_set(struct fc_exch *ep, unsigned int timer_msec)
375 {
376 spin_lock_bh(&ep->ex_lock);
377 fc_exch_timer_set_locked(ep, timer_msec);
378 spin_unlock_bh(&ep->ex_lock);
379 }
380
381 /**
382 * fc_exch_done_locked() - Complete an exchange with the exchange lock held
383 * @ep: The exchange that is complete
384 *
385 * Note: May sleep if invoked from outside a response handler.
386 */
387 static int fc_exch_done_locked(struct fc_exch *ep)
388 {
389 int rc = 1;
390
391 /*
392 * We must check for completion in case there are two threads
393 * tyring to complete this. But the rrq code will reuse the
394 * ep, and in that case we only clear the resp and set it as
395 * complete, so it can be reused by the timer to send the rrq.
396 */
397 if (ep->state & FC_EX_DONE)
398 return rc;
399 ep->esb_stat |= ESB_ST_COMPLETE;
400
401 if (!(ep->esb_stat & ESB_ST_REC_QUAL)) {
402 ep->state |= FC_EX_DONE;
403 fc_exch_timer_cancel(ep);
404 rc = 0;
405 }
406 return rc;
407 }
408
409 /**
410 * fc_exch_ptr_get() - Return an exchange from an exchange pool
411 * @pool: Exchange Pool to get an exchange from
412 * @index: Index of the exchange within the pool
413 *
414 * Use the index to get an exchange from within an exchange pool. exches
415 * will point to an array of exchange pointers. The index will select
416 * the exchange within the array.
417 */
418 static inline struct fc_exch *fc_exch_ptr_get(struct fc_exch_pool *pool,
419 u16 index)
420 {
421 struct fc_exch **exches = (struct fc_exch **)(pool + 1);
422 return exches[index];
423 }
424
425 /**
426 * fc_exch_ptr_set() - Assign an exchange to a slot in an exchange pool
427 * @pool: The pool to assign the exchange to
428 * @index: The index in the pool where the exchange will be assigned
429 * @ep: The exchange to assign to the pool
430 */
431 static inline void fc_exch_ptr_set(struct fc_exch_pool *pool, u16 index,
432 struct fc_exch *ep)
433 {
434 ((struct fc_exch **)(pool + 1))[index] = ep;
435 }
436
437 /**
438 * fc_exch_delete() - Delete an exchange
439 * @ep: The exchange to be deleted
440 */
441 static void fc_exch_delete(struct fc_exch *ep)
442 {
443 struct fc_exch_pool *pool;
444 u16 index;
445
446 pool = ep->pool;
447 spin_lock_bh(&pool->lock);
448 WARN_ON(pool->total_exches <= 0);
449 pool->total_exches--;
450
451 /* update cache of free slot */
452 index = (ep->xid - ep->em->min_xid) >> fc_cpu_order;
453 if (pool->left == FC_XID_UNKNOWN)
454 pool->left = index;
455 else if (pool->right == FC_XID_UNKNOWN)
456 pool->right = index;
457 else
458 pool->next_index = index;
459
460 fc_exch_ptr_set(pool, index, NULL);
461 list_del(&ep->ex_list);
462 spin_unlock_bh(&pool->lock);
463 fc_exch_release(ep); /* drop hold for exch in mp */
464 }
465
466 static int fc_seq_send_locked(struct fc_lport *lport, struct fc_seq *sp,
467 struct fc_frame *fp)
468 {
469 struct fc_exch *ep;
470 struct fc_frame_header *fh = fc_frame_header_get(fp);
471 int error = -ENXIO;
472 u32 f_ctl;
473 u8 fh_type = fh->fh_type;
474
475 ep = fc_seq_exch(sp);
476
477 if (ep->esb_stat & (ESB_ST_COMPLETE | ESB_ST_ABNORMAL)) {
478 fc_frame_free(fp);
479 goto out;
480 }
481
482 WARN_ON(!(ep->esb_stat & ESB_ST_SEQ_INIT));
483
484 f_ctl = ntoh24(fh->fh_f_ctl);
485 fc_exch_setup_hdr(ep, fp, f_ctl);
486 fr_encaps(fp) = ep->encaps;
487
488 /*
489 * update sequence count if this frame is carrying
490 * multiple FC frames when sequence offload is enabled
491 * by LLD.
492 */
493 if (fr_max_payload(fp))
494 sp->cnt += DIV_ROUND_UP((fr_len(fp) - sizeof(*fh)),
495 fr_max_payload(fp));
496 else
497 sp->cnt++;
498
499 /*
500 * Send the frame.
501 */
502 error = lport->tt.frame_send(lport, fp);
503
504 if (fh_type == FC_TYPE_BLS)
505 goto out;
506
507 /*
508 * Update the exchange and sequence flags,
509 * assuming all frames for the sequence have been sent.
510 * We can only be called to send once for each sequence.
511 */
512 ep->f_ctl = f_ctl & ~FC_FC_FIRST_SEQ; /* not first seq */
513 if (f_ctl & FC_FC_SEQ_INIT)
514 ep->esb_stat &= ~ESB_ST_SEQ_INIT;
515 out:
516 return error;
517 }
518
519 /**
520 * fc_seq_send() - Send a frame using existing sequence/exchange pair
521 * @lport: The local port that the exchange will be sent on
522 * @sp: The sequence to be sent
523 * @fp: The frame to be sent on the exchange
524 *
525 * Note: The frame will be freed either by a direct call to fc_frame_free(fp)
526 * or indirectly by calling libfc_function_template.frame_send().
527 */
528 static int fc_seq_send(struct fc_lport *lport, struct fc_seq *sp,
529 struct fc_frame *fp)
530 {
531 struct fc_exch *ep;
532 int error;
533 ep = fc_seq_exch(sp);
534 spin_lock_bh(&ep->ex_lock);
535 error = fc_seq_send_locked(lport, sp, fp);
536 spin_unlock_bh(&ep->ex_lock);
537 return error;
538 }
539
540 /**
541 * fc_seq_alloc() - Allocate a sequence for a given exchange
542 * @ep: The exchange to allocate a new sequence for
543 * @seq_id: The sequence ID to be used
544 *
545 * We don't support multiple originated sequences on the same exchange.
546 * By implication, any previously originated sequence on this exchange
547 * is complete, and we reallocate the same sequence.
548 */
549 static struct fc_seq *fc_seq_alloc(struct fc_exch *ep, u8 seq_id)
550 {
551 struct fc_seq *sp;
552
553 sp = &ep->seq;
554 sp->ssb_stat = 0;
555 sp->cnt = 0;
556 sp->id = seq_id;
557 return sp;
558 }
559
560 /**
561 * fc_seq_start_next_locked() - Allocate a new sequence on the same
562 * exchange as the supplied sequence
563 * @sp: The sequence/exchange to get a new sequence for
564 */
565 static struct fc_seq *fc_seq_start_next_locked(struct fc_seq *sp)
566 {
567 struct fc_exch *ep = fc_seq_exch(sp);
568
569 sp = fc_seq_alloc(ep, ep->seq_id++);
570 FC_EXCH_DBG(ep, "f_ctl %6x seq %2x\n",
571 ep->f_ctl, sp->id);
572 return sp;
573 }
574
575 /**
576 * fc_seq_start_next() - Lock the exchange and get a new sequence
577 * for a given sequence/exchange pair
578 * @sp: The sequence/exchange to get a new exchange for
579 */
580 static struct fc_seq *fc_seq_start_next(struct fc_seq *sp)
581 {
582 struct fc_exch *ep = fc_seq_exch(sp);
583
584 spin_lock_bh(&ep->ex_lock);
585 sp = fc_seq_start_next_locked(sp);
586 spin_unlock_bh(&ep->ex_lock);
587
588 return sp;
589 }
590
591 /*
592 * Set the response handler for the exchange associated with a sequence.
593 *
594 * Note: May sleep if invoked from outside a response handler.
595 */
596 static void fc_seq_set_resp(struct fc_seq *sp,
597 void (*resp)(struct fc_seq *, struct fc_frame *,
598 void *),
599 void *arg)
600 {
601 struct fc_exch *ep = fc_seq_exch(sp);
602 DEFINE_WAIT(wait);
603
604 spin_lock_bh(&ep->ex_lock);
605 while (ep->resp_active && ep->resp_task != current) {
606 prepare_to_wait(&ep->resp_wq, &wait, TASK_UNINTERRUPTIBLE);
607 spin_unlock_bh(&ep->ex_lock);
608
609 schedule();
610
611 spin_lock_bh(&ep->ex_lock);
612 }
613 finish_wait(&ep->resp_wq, &wait);
614 ep->resp = resp;
615 ep->arg = arg;
616 spin_unlock_bh(&ep->ex_lock);
617 }
618
619 /**
620 * fc_exch_abort_locked() - Abort an exchange
621 * @ep: The exchange to be aborted
622 * @timer_msec: The period of time to wait before aborting
623 *
624 * Locking notes: Called with exch lock held
625 *
626 * Return value: 0 on success else error code
627 */
628 static int fc_exch_abort_locked(struct fc_exch *ep,
629 unsigned int timer_msec)
630 {
631 struct fc_seq *sp;
632 struct fc_frame *fp;
633 int error;
634
635 if (ep->esb_stat & (ESB_ST_COMPLETE | ESB_ST_ABNORMAL) ||
636 ep->state & (FC_EX_DONE | FC_EX_RST_CLEANUP))
637 return -ENXIO;
638
639 /*
640 * Send the abort on a new sequence if possible.
641 */
642 sp = fc_seq_start_next_locked(&ep->seq);
643 if (!sp)
644 return -ENOMEM;
645
646 if (timer_msec)
647 fc_exch_timer_set_locked(ep, timer_msec);
648
649 if (ep->sid) {
650 /*
651 * Send an abort for the sequence that timed out.
652 */
653 fp = fc_frame_alloc(ep->lp, 0);
654 if (fp) {
655 ep->esb_stat |= ESB_ST_SEQ_INIT;
656 fc_fill_fc_hdr(fp, FC_RCTL_BA_ABTS, ep->did, ep->sid,
657 FC_TYPE_BLS, FC_FC_END_SEQ |
658 FC_FC_SEQ_INIT, 0);
659 error = fc_seq_send_locked(ep->lp, sp, fp);
660 } else {
661 error = -ENOBUFS;
662 }
663 } else {
664 /*
665 * If not logged into the fabric, don't send ABTS but leave
666 * sequence active until next timeout.
667 */
668 error = 0;
669 }
670 ep->esb_stat |= ESB_ST_ABNORMAL;
671 return error;
672 }
673
674 /**
675 * fc_seq_exch_abort() - Abort an exchange and sequence
676 * @req_sp: The sequence to be aborted
677 * @timer_msec: The period of time to wait before aborting
678 *
679 * Generally called because of a timeout or an abort from the upper layer.
680 *
681 * Return value: 0 on success else error code
682 */
683 static int fc_seq_exch_abort(const struct fc_seq *req_sp,
684 unsigned int timer_msec)
685 {
686 struct fc_exch *ep;
687 int error;
688
689 ep = fc_seq_exch(req_sp);
690 spin_lock_bh(&ep->ex_lock);
691 error = fc_exch_abort_locked(ep, timer_msec);
692 spin_unlock_bh(&ep->ex_lock);
693 return error;
694 }
695
696 /**
697 * fc_invoke_resp() - invoke ep->resp()
698 *
699 * Notes:
700 * It is assumed that after initialization finished (this means the
701 * first unlock of ex_lock after fc_exch_alloc()) ep->resp and ep->arg are
702 * modified only via fc_seq_set_resp(). This guarantees that none of these
703 * two variables changes if ep->resp_active > 0.
704 *
705 * If an fc_seq_set_resp() call is busy modifying ep->resp and ep->arg when
706 * this function is invoked, the first spin_lock_bh() call in this function
707 * will wait until fc_seq_set_resp() has finished modifying these variables.
708 *
709 * Since fc_exch_done() invokes fc_seq_set_resp() it is guaranteed that that
710 * ep->resp() won't be invoked after fc_exch_done() has returned.
711 *
712 * The response handler itself may invoke fc_exch_done(), which will clear the
713 * ep->resp pointer.
714 *
715 * Return value:
716 * Returns true if and only if ep->resp has been invoked.
717 */
718 static bool fc_invoke_resp(struct fc_exch *ep, struct fc_seq *sp,
719 struct fc_frame *fp)
720 {
721 void (*resp)(struct fc_seq *, struct fc_frame *fp, void *arg);
722 void *arg;
723 bool res = false;
724
725 spin_lock_bh(&ep->ex_lock);
726 ep->resp_active++;
727 if (ep->resp_task != current)
728 ep->resp_task = !ep->resp_task ? current : NULL;
729 resp = ep->resp;
730 arg = ep->arg;
731 spin_unlock_bh(&ep->ex_lock);
732
733 if (resp) {
734 resp(sp, fp, arg);
735 res = true;
736 }
737
738 spin_lock_bh(&ep->ex_lock);
739 if (--ep->resp_active == 0)
740 ep->resp_task = NULL;
741 spin_unlock_bh(&ep->ex_lock);
742
743 if (ep->resp_active == 0)
744 wake_up(&ep->resp_wq);
745
746 return res;
747 }
748
749 /**
750 * fc_exch_timeout() - Handle exchange timer expiration
751 * @work: The work_struct identifying the exchange that timed out
752 */
753 static void fc_exch_timeout(struct work_struct *work)
754 {
755 struct fc_exch *ep = container_of(work, struct fc_exch,
756 timeout_work.work);
757 struct fc_seq *sp = &ep->seq;
758 u32 e_stat;
759 int rc = 1;
760
761 FC_EXCH_DBG(ep, "Exchange timed out\n");
762
763 spin_lock_bh(&ep->ex_lock);
764 if (ep->state & (FC_EX_RST_CLEANUP | FC_EX_DONE))
765 goto unlock;
766
767 e_stat = ep->esb_stat;
768 if (e_stat & ESB_ST_COMPLETE) {
769 ep->esb_stat = e_stat & ~ESB_ST_REC_QUAL;
770 spin_unlock_bh(&ep->ex_lock);
771 if (e_stat & ESB_ST_REC_QUAL)
772 fc_exch_rrq(ep);
773 goto done;
774 } else {
775 if (e_stat & ESB_ST_ABNORMAL)
776 rc = fc_exch_done_locked(ep);
777 spin_unlock_bh(&ep->ex_lock);
778 if (!rc)
779 fc_exch_delete(ep);
780 fc_invoke_resp(ep, sp, ERR_PTR(-FC_EX_TIMEOUT));
781 fc_seq_set_resp(sp, NULL, ep->arg);
782 fc_seq_exch_abort(sp, 2 * ep->r_a_tov);
783 goto done;
784 }
785 unlock:
786 spin_unlock_bh(&ep->ex_lock);
787 done:
788 /*
789 * This release matches the hold taken when the timer was set.
790 */
791 fc_exch_release(ep);
792 }
793
794 /**
795 * fc_exch_em_alloc() - Allocate an exchange from a specified EM.
796 * @lport: The local port that the exchange is for
797 * @mp: The exchange manager that will allocate the exchange
798 *
799 * Returns pointer to allocated fc_exch with exch lock held.
800 */
801 static struct fc_exch *fc_exch_em_alloc(struct fc_lport *lport,
802 struct fc_exch_mgr *mp)
803 {
804 struct fc_exch *ep;
805 unsigned int cpu;
806 u16 index;
807 struct fc_exch_pool *pool;
808
809 /* allocate memory for exchange */
810 ep = mempool_alloc(mp->ep_pool, GFP_ATOMIC);
811 if (!ep) {
812 atomic_inc(&mp->stats.no_free_exch);
813 goto out;
814 }
815 memset(ep, 0, sizeof(*ep));
816
817 cpu = get_cpu();
818 pool = per_cpu_ptr(mp->pool, cpu);
819 spin_lock_bh(&pool->lock);
820 put_cpu();
821
822 /* peek cache of free slot */
823 if (pool->left != FC_XID_UNKNOWN) {
824 index = pool->left;
825 pool->left = FC_XID_UNKNOWN;
826 goto hit;
827 }
828 if (pool->right != FC_XID_UNKNOWN) {
829 index = pool->right;
830 pool->right = FC_XID_UNKNOWN;
831 goto hit;
832 }
833
834 index = pool->next_index;
835 /* allocate new exch from pool */
836 while (fc_exch_ptr_get(pool, index)) {
837 index = index == mp->pool_max_index ? 0 : index + 1;
838 if (index == pool->next_index)
839 goto err;
840 }
841 pool->next_index = index == mp->pool_max_index ? 0 : index + 1;
842 hit:
843 fc_exch_hold(ep); /* hold for exch in mp */
844 spin_lock_init(&ep->ex_lock);
845 /*
846 * Hold exch lock for caller to prevent fc_exch_reset()
847 * from releasing exch while fc_exch_alloc() caller is
848 * still working on exch.
849 */
850 spin_lock_bh(&ep->ex_lock);
851
852 fc_exch_ptr_set(pool, index, ep);
853 list_add_tail(&ep->ex_list, &pool->ex_list);
854 fc_seq_alloc(ep, ep->seq_id++);
855 pool->total_exches++;
856 spin_unlock_bh(&pool->lock);
857
858 /*
859 * update exchange
860 */
861 ep->oxid = ep->xid = (index << fc_cpu_order | cpu) + mp->min_xid;
862 ep->em = mp;
863 ep->pool = pool;
864 ep->lp = lport;
865 ep->f_ctl = FC_FC_FIRST_SEQ; /* next seq is first seq */
866 ep->rxid = FC_XID_UNKNOWN;
867 ep->class = mp->class;
868 ep->resp_active = 0;
869 init_waitqueue_head(&ep->resp_wq);
870 INIT_DELAYED_WORK(&ep->timeout_work, fc_exch_timeout);
871 out:
872 return ep;
873 err:
874 spin_unlock_bh(&pool->lock);
875 atomic_inc(&mp->stats.no_free_exch_xid);
876 mempool_free(ep, mp->ep_pool);
877 return NULL;
878 }
879
880 /**
881 * fc_exch_alloc() - Allocate an exchange from an EM on a
882 * local port's list of EMs.
883 * @lport: The local port that will own the exchange
884 * @fp: The FC frame that the exchange will be for
885 *
886 * This function walks the list of exchange manager(EM)
887 * anchors to select an EM for a new exchange allocation. The
888 * EM is selected when a NULL match function pointer is encountered
889 * or when a call to a match function returns true.
890 */
891 static inline struct fc_exch *fc_exch_alloc(struct fc_lport *lport,
892 struct fc_frame *fp)
893 {
894 struct fc_exch_mgr_anchor *ema;
895
896 list_for_each_entry(ema, &lport->ema_list, ema_list)
897 if (!ema->match || ema->match(fp))
898 return fc_exch_em_alloc(lport, ema->mp);
899 return NULL;
900 }
901
902 /**
903 * fc_exch_find() - Lookup and hold an exchange
904 * @mp: The exchange manager to lookup the exchange from
905 * @xid: The XID of the exchange to look up
906 */
907 static struct fc_exch *fc_exch_find(struct fc_exch_mgr *mp, u16 xid)
908 {
909 struct fc_exch_pool *pool;
910 struct fc_exch *ep = NULL;
911 u16 cpu = xid & fc_cpu_mask;
912
913 if (cpu >= nr_cpu_ids || !cpu_possible(cpu)) {
914 printk_ratelimited(KERN_ERR
915 "libfc: lookup request for XID = %d, "
916 "indicates invalid CPU %d\n", xid, cpu);
917 return NULL;
918 }
919
920 if ((xid >= mp->min_xid) && (xid <= mp->max_xid)) {
921 pool = per_cpu_ptr(mp->pool, cpu);
922 spin_lock_bh(&pool->lock);
923 ep = fc_exch_ptr_get(pool, (xid - mp->min_xid) >> fc_cpu_order);
924 if (ep) {
925 WARN_ON(ep->xid != xid);
926 fc_exch_hold(ep);
927 }
928 spin_unlock_bh(&pool->lock);
929 }
930 return ep;
931 }
932
933
934 /**
935 * fc_exch_done() - Indicate that an exchange/sequence tuple is complete and
936 * the memory allocated for the related objects may be freed.
937 * @sp: The sequence that has completed
938 *
939 * Note: May sleep if invoked from outside a response handler.
940 */
941 static void fc_exch_done(struct fc_seq *sp)
942 {
943 struct fc_exch *ep = fc_seq_exch(sp);
944 int rc;
945
946 spin_lock_bh(&ep->ex_lock);
947 rc = fc_exch_done_locked(ep);
948 spin_unlock_bh(&ep->ex_lock);
949
950 fc_seq_set_resp(sp, NULL, ep->arg);
951 if (!rc)
952 fc_exch_delete(ep);
953 }
954
955 /**
956 * fc_exch_resp() - Allocate a new exchange for a response frame
957 * @lport: The local port that the exchange was for
958 * @mp: The exchange manager to allocate the exchange from
959 * @fp: The response frame
960 *
961 * Sets the responder ID in the frame header.
962 */
963 static struct fc_exch *fc_exch_resp(struct fc_lport *lport,
964 struct fc_exch_mgr *mp,
965 struct fc_frame *fp)
966 {
967 struct fc_exch *ep;
968 struct fc_frame_header *fh;
969
970 ep = fc_exch_alloc(lport, fp);
971 if (ep) {
972 ep->class = fc_frame_class(fp);
973
974 /*
975 * Set EX_CTX indicating we're responding on this exchange.
976 */
977 ep->f_ctl |= FC_FC_EX_CTX; /* we're responding */
978 ep->f_ctl &= ~FC_FC_FIRST_SEQ; /* not new */
979 fh = fc_frame_header_get(fp);
980 ep->sid = ntoh24(fh->fh_d_id);
981 ep->did = ntoh24(fh->fh_s_id);
982 ep->oid = ep->did;
983
984 /*
985 * Allocated exchange has placed the XID in the
986 * originator field. Move it to the responder field,
987 * and set the originator XID from the frame.
988 */
989 ep->rxid = ep->xid;
990 ep->oxid = ntohs(fh->fh_ox_id);
991 ep->esb_stat |= ESB_ST_RESP | ESB_ST_SEQ_INIT;
992 if ((ntoh24(fh->fh_f_ctl) & FC_FC_SEQ_INIT) == 0)
993 ep->esb_stat &= ~ESB_ST_SEQ_INIT;
994
995 fc_exch_hold(ep); /* hold for caller */
996 spin_unlock_bh(&ep->ex_lock); /* lock from fc_exch_alloc */
997 }
998 return ep;
999 }
1000
1001 /**
1002 * fc_seq_lookup_recip() - Find a sequence where the other end
1003 * originated the sequence
1004 * @lport: The local port that the frame was sent to
1005 * @mp: The Exchange Manager to lookup the exchange from
1006 * @fp: The frame associated with the sequence we're looking for
1007 *
1008 * If fc_pf_rjt_reason is FC_RJT_NONE then this function will have a hold
1009 * on the ep that should be released by the caller.
1010 */
1011 static enum fc_pf_rjt_reason fc_seq_lookup_recip(struct fc_lport *lport,
1012 struct fc_exch_mgr *mp,
1013 struct fc_frame *fp)
1014 {
1015 struct fc_frame_header *fh = fc_frame_header_get(fp);
1016 struct fc_exch *ep = NULL;
1017 struct fc_seq *sp = NULL;
1018 enum fc_pf_rjt_reason reject = FC_RJT_NONE;
1019 u32 f_ctl;
1020 u16 xid;
1021
1022 f_ctl = ntoh24(fh->fh_f_ctl);
1023 WARN_ON((f_ctl & FC_FC_SEQ_CTX) != 0);
1024
1025 /*
1026 * Lookup or create the exchange if we will be creating the sequence.
1027 */
1028 if (f_ctl & FC_FC_EX_CTX) {
1029 xid = ntohs(fh->fh_ox_id); /* we originated exch */
1030 ep = fc_exch_find(mp, xid);
1031 if (!ep) {
1032 atomic_inc(&mp->stats.xid_not_found);
1033 reject = FC_RJT_OX_ID;
1034 goto out;
1035 }
1036 if (ep->rxid == FC_XID_UNKNOWN)
1037 ep->rxid = ntohs(fh->fh_rx_id);
1038 else if (ep->rxid != ntohs(fh->fh_rx_id)) {
1039 reject = FC_RJT_OX_ID;
1040 goto rel;
1041 }
1042 } else {
1043 xid = ntohs(fh->fh_rx_id); /* we are the responder */
1044
1045 /*
1046 * Special case for MDS issuing an ELS TEST with a
1047 * bad rxid of 0.
1048 * XXX take this out once we do the proper reject.
1049 */
1050 if (xid == 0 && fh->fh_r_ctl == FC_RCTL_ELS_REQ &&
1051 fc_frame_payload_op(fp) == ELS_TEST) {
1052 fh->fh_rx_id = htons(FC_XID_UNKNOWN);
1053 xid = FC_XID_UNKNOWN;
1054 }
1055
1056 /*
1057 * new sequence - find the exchange
1058 */
1059 ep = fc_exch_find(mp, xid);
1060 if ((f_ctl & FC_FC_FIRST_SEQ) && fc_sof_is_init(fr_sof(fp))) {
1061 if (ep) {
1062 atomic_inc(&mp->stats.xid_busy);
1063 reject = FC_RJT_RX_ID;
1064 goto rel;
1065 }
1066 ep = fc_exch_resp(lport, mp, fp);
1067 if (!ep) {
1068 reject = FC_RJT_EXCH_EST; /* XXX */
1069 goto out;
1070 }
1071 xid = ep->xid; /* get our XID */
1072 } else if (!ep) {
1073 atomic_inc(&mp->stats.xid_not_found);
1074 reject = FC_RJT_RX_ID; /* XID not found */
1075 goto out;
1076 }
1077 }
1078
1079 spin_lock_bh(&ep->ex_lock);
1080 /*
1081 * At this point, we have the exchange held.
1082 * Find or create the sequence.
1083 */
1084 if (fc_sof_is_init(fr_sof(fp))) {
1085 sp = &ep->seq;
1086 sp->ssb_stat |= SSB_ST_RESP;
1087 sp->id = fh->fh_seq_id;
1088 } else {
1089 sp = &ep->seq;
1090 if (sp->id != fh->fh_seq_id) {
1091 atomic_inc(&mp->stats.seq_not_found);
1092 if (f_ctl & FC_FC_END_SEQ) {
1093 /*
1094 * Update sequence_id based on incoming last
1095 * frame of sequence exchange. This is needed
1096 * for FC target where DDP has been used
1097 * on target where, stack is indicated only
1098 * about last frame's (payload _header) header.
1099 * Whereas "seq_id" which is part of
1100 * frame_header is allocated by initiator
1101 * which is totally different from "seq_id"
1102 * allocated when XFER_RDY was sent by target.
1103 * To avoid false -ve which results into not
1104 * sending RSP, hence write request on other
1105 * end never finishes.
1106 */
1107 sp->ssb_stat |= SSB_ST_RESP;
1108 sp->id = fh->fh_seq_id;
1109 } else {
1110 spin_unlock_bh(&ep->ex_lock);
1111
1112 /* sequence/exch should exist */
1113 reject = FC_RJT_SEQ_ID;
1114 goto rel;
1115 }
1116 }
1117 }
1118 WARN_ON(ep != fc_seq_exch(sp));
1119
1120 if (f_ctl & FC_FC_SEQ_INIT)
1121 ep->esb_stat |= ESB_ST_SEQ_INIT;
1122 spin_unlock_bh(&ep->ex_lock);
1123
1124 fr_seq(fp) = sp;
1125 out:
1126 return reject;
1127 rel:
1128 fc_exch_done(&ep->seq);
1129 fc_exch_release(ep); /* hold from fc_exch_find/fc_exch_resp */
1130 return reject;
1131 }
1132
1133 /**
1134 * fc_seq_lookup_orig() - Find a sequence where this end
1135 * originated the sequence
1136 * @mp: The Exchange Manager to lookup the exchange from
1137 * @fp: The frame associated with the sequence we're looking for
1138 *
1139 * Does not hold the sequence for the caller.
1140 */
1141 static struct fc_seq *fc_seq_lookup_orig(struct fc_exch_mgr *mp,
1142 struct fc_frame *fp)
1143 {
1144 struct fc_frame_header *fh = fc_frame_header_get(fp);
1145 struct fc_exch *ep;
1146 struct fc_seq *sp = NULL;
1147 u32 f_ctl;
1148 u16 xid;
1149
1150 f_ctl = ntoh24(fh->fh_f_ctl);
1151 WARN_ON((f_ctl & FC_FC_SEQ_CTX) != FC_FC_SEQ_CTX);
1152 xid = ntohs((f_ctl & FC_FC_EX_CTX) ? fh->fh_ox_id : fh->fh_rx_id);
1153 ep = fc_exch_find(mp, xid);
1154 if (!ep)
1155 return NULL;
1156 if (ep->seq.id == fh->fh_seq_id) {
1157 /*
1158 * Save the RX_ID if we didn't previously know it.
1159 */
1160 sp = &ep->seq;
1161 if ((f_ctl & FC_FC_EX_CTX) != 0 &&
1162 ep->rxid == FC_XID_UNKNOWN) {
1163 ep->rxid = ntohs(fh->fh_rx_id);
1164 }
1165 }
1166 fc_exch_release(ep);
1167 return sp;
1168 }
1169
1170 /**
1171 * fc_exch_set_addr() - Set the source and destination IDs for an exchange
1172 * @ep: The exchange to set the addresses for
1173 * @orig_id: The originator's ID
1174 * @resp_id: The responder's ID
1175 *
1176 * Note this must be done before the first sequence of the exchange is sent.
1177 */
1178 static void fc_exch_set_addr(struct fc_exch *ep,
1179 u32 orig_id, u32 resp_id)
1180 {
1181 ep->oid = orig_id;
1182 if (ep->esb_stat & ESB_ST_RESP) {
1183 ep->sid = resp_id;
1184 ep->did = orig_id;
1185 } else {
1186 ep->sid = orig_id;
1187 ep->did = resp_id;
1188 }
1189 }
1190
1191 /**
1192 * fc_seq_els_rsp_send() - Send an ELS response using information from
1193 * the existing sequence/exchange.
1194 * @fp: The received frame
1195 * @els_cmd: The ELS command to be sent
1196 * @els_data: The ELS data to be sent
1197 *
1198 * The received frame is not freed.
1199 */
1200 static void fc_seq_els_rsp_send(struct fc_frame *fp, enum fc_els_cmd els_cmd,
1201 struct fc_seq_els_data *els_data)
1202 {
1203 switch (els_cmd) {
1204 case ELS_LS_RJT:
1205 fc_seq_ls_rjt(fp, els_data->reason, els_data->explan);
1206 break;
1207 case ELS_LS_ACC:
1208 fc_seq_ls_acc(fp);
1209 break;
1210 case ELS_RRQ:
1211 fc_exch_els_rrq(fp);
1212 break;
1213 case ELS_REC:
1214 fc_exch_els_rec(fp);
1215 break;
1216 default:
1217 FC_LPORT_DBG(fr_dev(fp), "Invalid ELS CMD:%x\n", els_cmd);
1218 }
1219 }
1220
1221 /**
1222 * fc_seq_send_last() - Send a sequence that is the last in the exchange
1223 * @sp: The sequence that is to be sent
1224 * @fp: The frame that will be sent on the sequence
1225 * @rctl: The R_CTL information to be sent
1226 * @fh_type: The frame header type
1227 */
1228 static void fc_seq_send_last(struct fc_seq *sp, struct fc_frame *fp,
1229 enum fc_rctl rctl, enum fc_fh_type fh_type)
1230 {
1231 u32 f_ctl;
1232 struct fc_exch *ep = fc_seq_exch(sp);
1233
1234 f_ctl = FC_FC_LAST_SEQ | FC_FC_END_SEQ | FC_FC_SEQ_INIT;
1235 f_ctl |= ep->f_ctl;
1236 fc_fill_fc_hdr(fp, rctl, ep->did, ep->sid, fh_type, f_ctl, 0);
1237 fc_seq_send_locked(ep->lp, sp, fp);
1238 }
1239
1240 /**
1241 * fc_seq_send_ack() - Send an acknowledgement that we've received a frame
1242 * @sp: The sequence to send the ACK on
1243 * @rx_fp: The received frame that is being acknoledged
1244 *
1245 * Send ACK_1 (or equiv.) indicating we received something.
1246 */
1247 static void fc_seq_send_ack(struct fc_seq *sp, const struct fc_frame *rx_fp)
1248 {
1249 struct fc_frame *fp;
1250 struct fc_frame_header *rx_fh;
1251 struct fc_frame_header *fh;
1252 struct fc_exch *ep = fc_seq_exch(sp);
1253 struct fc_lport *lport = ep->lp;
1254 unsigned int f_ctl;
1255
1256 /*
1257 * Don't send ACKs for class 3.
1258 */
1259 if (fc_sof_needs_ack(fr_sof(rx_fp))) {
1260 fp = fc_frame_alloc(lport, 0);
1261 if (!fp)
1262 return;
1263
1264 fh = fc_frame_header_get(fp);
1265 fh->fh_r_ctl = FC_RCTL_ACK_1;
1266 fh->fh_type = FC_TYPE_BLS;
1267
1268 /*
1269 * Form f_ctl by inverting EX_CTX and SEQ_CTX (bits 23, 22).
1270 * Echo FIRST_SEQ, LAST_SEQ, END_SEQ, END_CONN, SEQ_INIT.
1271 * Bits 9-8 are meaningful (retransmitted or unidirectional).
1272 * Last ACK uses bits 7-6 (continue sequence),
1273 * bits 5-4 are meaningful (what kind of ACK to use).
1274 */
1275 rx_fh = fc_frame_header_get(rx_fp);
1276 f_ctl = ntoh24(rx_fh->fh_f_ctl);
1277 f_ctl &= FC_FC_EX_CTX | FC_FC_SEQ_CTX |
1278 FC_FC_FIRST_SEQ | FC_FC_LAST_SEQ |
1279 FC_FC_END_SEQ | FC_FC_END_CONN | FC_FC_SEQ_INIT |
1280 FC_FC_RETX_SEQ | FC_FC_UNI_TX;
1281 f_ctl ^= FC_FC_EX_CTX | FC_FC_SEQ_CTX;
1282 hton24(fh->fh_f_ctl, f_ctl);
1283
1284 fc_exch_setup_hdr(ep, fp, f_ctl);
1285 fh->fh_seq_id = rx_fh->fh_seq_id;
1286 fh->fh_seq_cnt = rx_fh->fh_seq_cnt;
1287 fh->fh_parm_offset = htonl(1); /* ack single frame */
1288
1289 fr_sof(fp) = fr_sof(rx_fp);
1290 if (f_ctl & FC_FC_END_SEQ)
1291 fr_eof(fp) = FC_EOF_T;
1292 else
1293 fr_eof(fp) = FC_EOF_N;
1294
1295 lport->tt.frame_send(lport, fp);
1296 }
1297 }
1298
1299 /**
1300 * fc_exch_send_ba_rjt() - Send BLS Reject
1301 * @rx_fp: The frame being rejected
1302 * @reason: The reason the frame is being rejected
1303 * @explan: The explanation for the rejection
1304 *
1305 * This is for rejecting BA_ABTS only.
1306 */
1307 static void fc_exch_send_ba_rjt(struct fc_frame *rx_fp,
1308 enum fc_ba_rjt_reason reason,
1309 enum fc_ba_rjt_explan explan)
1310 {
1311 struct fc_frame *fp;
1312 struct fc_frame_header *rx_fh;
1313 struct fc_frame_header *fh;
1314 struct fc_ba_rjt *rp;
1315 struct fc_lport *lport;
1316 unsigned int f_ctl;
1317
1318 lport = fr_dev(rx_fp);
1319 fp = fc_frame_alloc(lport, sizeof(*rp));
1320 if (!fp)
1321 return;
1322 fh = fc_frame_header_get(fp);
1323 rx_fh = fc_frame_header_get(rx_fp);
1324
1325 memset(fh, 0, sizeof(*fh) + sizeof(*rp));
1326
1327 rp = fc_frame_payload_get(fp, sizeof(*rp));
1328 rp->br_reason = reason;
1329 rp->br_explan = explan;
1330
1331 /*
1332 * seq_id, cs_ctl, df_ctl and param/offset are zero.
1333 */
1334 memcpy(fh->fh_s_id, rx_fh->fh_d_id, 3);
1335 memcpy(fh->fh_d_id, rx_fh->fh_s_id, 3);
1336 fh->fh_ox_id = rx_fh->fh_ox_id;
1337 fh->fh_rx_id = rx_fh->fh_rx_id;
1338 fh->fh_seq_cnt = rx_fh->fh_seq_cnt;
1339 fh->fh_r_ctl = FC_RCTL_BA_RJT;
1340 fh->fh_type = FC_TYPE_BLS;
1341
1342 /*
1343 * Form f_ctl by inverting EX_CTX and SEQ_CTX (bits 23, 22).
1344 * Echo FIRST_SEQ, LAST_SEQ, END_SEQ, END_CONN, SEQ_INIT.
1345 * Bits 9-8 are meaningful (retransmitted or unidirectional).
1346 * Last ACK uses bits 7-6 (continue sequence),
1347 * bits 5-4 are meaningful (what kind of ACK to use).
1348 * Always set LAST_SEQ, END_SEQ.
1349 */
1350 f_ctl = ntoh24(rx_fh->fh_f_ctl);
1351 f_ctl &= FC_FC_EX_CTX | FC_FC_SEQ_CTX |
1352 FC_FC_END_CONN | FC_FC_SEQ_INIT |
1353 FC_FC_RETX_SEQ | FC_FC_UNI_TX;
1354 f_ctl ^= FC_FC_EX_CTX | FC_FC_SEQ_CTX;
1355 f_ctl |= FC_FC_LAST_SEQ | FC_FC_END_SEQ;
1356 f_ctl &= ~FC_FC_FIRST_SEQ;
1357 hton24(fh->fh_f_ctl, f_ctl);
1358
1359 fr_sof(fp) = fc_sof_class(fr_sof(rx_fp));
1360 fr_eof(fp) = FC_EOF_T;
1361 if (fc_sof_needs_ack(fr_sof(fp)))
1362 fr_eof(fp) = FC_EOF_N;
1363
1364 lport->tt.frame_send(lport, fp);
1365 }
1366
1367 /**
1368 * fc_exch_recv_abts() - Handle an incoming ABTS
1369 * @ep: The exchange the abort was on
1370 * @rx_fp: The ABTS frame
1371 *
1372 * This would be for target mode usually, but could be due to lost
1373 * FCP transfer ready, confirm or RRQ. We always handle this as an
1374 * exchange abort, ignoring the parameter.
1375 */
1376 static void fc_exch_recv_abts(struct fc_exch *ep, struct fc_frame *rx_fp)
1377 {
1378 struct fc_frame *fp;
1379 struct fc_ba_acc *ap;
1380 struct fc_frame_header *fh;
1381 struct fc_seq *sp;
1382
1383 if (!ep)
1384 goto reject;
1385
1386 fp = fc_frame_alloc(ep->lp, sizeof(*ap));
1387 if (!fp)
1388 goto free;
1389
1390 spin_lock_bh(&ep->ex_lock);
1391 if (ep->esb_stat & ESB_ST_COMPLETE) {
1392 spin_unlock_bh(&ep->ex_lock);
1393
1394 fc_frame_free(fp);
1395 goto reject;
1396 }
1397 if (!(ep->esb_stat & ESB_ST_REC_QUAL)) {
1398 ep->esb_stat |= ESB_ST_REC_QUAL;
1399 fc_exch_hold(ep); /* hold for REC_QUAL */
1400 }
1401 fc_exch_timer_set_locked(ep, ep->r_a_tov);
1402 fh = fc_frame_header_get(fp);
1403 ap = fc_frame_payload_get(fp, sizeof(*ap));
1404 memset(ap, 0, sizeof(*ap));
1405 sp = &ep->seq;
1406 ap->ba_high_seq_cnt = htons(0xffff);
1407 if (sp->ssb_stat & SSB_ST_RESP) {
1408 ap->ba_seq_id = sp->id;
1409 ap->ba_seq_id_val = FC_BA_SEQ_ID_VAL;
1410 ap->ba_high_seq_cnt = fh->fh_seq_cnt;
1411 ap->ba_low_seq_cnt = htons(sp->cnt);
1412 }
1413 sp = fc_seq_start_next_locked(sp);
1414 fc_seq_send_last(sp, fp, FC_RCTL_BA_ACC, FC_TYPE_BLS);
1415 ep->esb_stat |= ESB_ST_ABNORMAL;
1416 spin_unlock_bh(&ep->ex_lock);
1417
1418 free:
1419 fc_frame_free(rx_fp);
1420 return;
1421
1422 reject:
1423 fc_exch_send_ba_rjt(rx_fp, FC_BA_RJT_UNABLE, FC_BA_RJT_INV_XID);
1424 goto free;
1425 }
1426
1427 /**
1428 * fc_seq_assign() - Assign exchange and sequence for incoming request
1429 * @lport: The local port that received the request
1430 * @fp: The request frame
1431 *
1432 * On success, the sequence pointer will be returned and also in fr_seq(@fp).
1433 * A reference will be held on the exchange/sequence for the caller, which
1434 * must call fc_seq_release().
1435 */
1436 static struct fc_seq *fc_seq_assign(struct fc_lport *lport, struct fc_frame *fp)
1437 {
1438 struct fc_exch_mgr_anchor *ema;
1439
1440 WARN_ON(lport != fr_dev(fp));
1441 WARN_ON(fr_seq(fp));
1442 fr_seq(fp) = NULL;
1443
1444 list_for_each_entry(ema, &lport->ema_list, ema_list)
1445 if ((!ema->match || ema->match(fp)) &&
1446 fc_seq_lookup_recip(lport, ema->mp, fp) == FC_RJT_NONE)
1447 break;
1448 return fr_seq(fp);
1449 }
1450
1451 /**
1452 * fc_seq_release() - Release the hold
1453 * @sp: The sequence.
1454 */
1455 static void fc_seq_release(struct fc_seq *sp)
1456 {
1457 fc_exch_release(fc_seq_exch(sp));
1458 }
1459
1460 /**
1461 * fc_exch_recv_req() - Handler for an incoming request
1462 * @lport: The local port that received the request
1463 * @mp: The EM that the exchange is on
1464 * @fp: The request frame
1465 *
1466 * This is used when the other end is originating the exchange
1467 * and the sequence.
1468 */
1469 static void fc_exch_recv_req(struct fc_lport *lport, struct fc_exch_mgr *mp,
1470 struct fc_frame *fp)
1471 {
1472 struct fc_frame_header *fh = fc_frame_header_get(fp);
1473 struct fc_seq *sp = NULL;
1474 struct fc_exch *ep = NULL;
1475 enum fc_pf_rjt_reason reject;
1476
1477 /* We can have the wrong fc_lport at this point with NPIV, which is a
1478 * problem now that we know a new exchange needs to be allocated
1479 */
1480 lport = fc_vport_id_lookup(lport, ntoh24(fh->fh_d_id));
1481 if (!lport) {
1482 fc_frame_free(fp);
1483 return;
1484 }
1485 fr_dev(fp) = lport;
1486
1487 BUG_ON(fr_seq(fp)); /* XXX remove later */
1488
1489 /*
1490 * If the RX_ID is 0xffff, don't allocate an exchange.
1491 * The upper-level protocol may request one later, if needed.
1492 */
1493 if (fh->fh_rx_id == htons(FC_XID_UNKNOWN))
1494 return lport->tt.lport_recv(lport, fp);
1495
1496 reject = fc_seq_lookup_recip(lport, mp, fp);
1497 if (reject == FC_RJT_NONE) {
1498 sp = fr_seq(fp); /* sequence will be held */
1499 ep = fc_seq_exch(sp);
1500 fc_seq_send_ack(sp, fp);
1501 ep->encaps = fr_encaps(fp);
1502
1503 /*
1504 * Call the receive function.
1505 *
1506 * The receive function may allocate a new sequence
1507 * over the old one, so we shouldn't change the
1508 * sequence after this.
1509 *
1510 * The frame will be freed by the receive function.
1511 * If new exch resp handler is valid then call that
1512 * first.
1513 */
1514 if (!fc_invoke_resp(ep, sp, fp))
1515 lport->tt.lport_recv(lport, fp);
1516 fc_exch_release(ep); /* release from lookup */
1517 } else {
1518 FC_LPORT_DBG(lport, "exch/seq lookup failed: reject %x\n",
1519 reject);
1520 fc_frame_free(fp);
1521 }
1522 }
1523
1524 /**
1525 * fc_exch_recv_seq_resp() - Handler for an incoming response where the other
1526 * end is the originator of the sequence that is a
1527 * response to our initial exchange
1528 * @mp: The EM that the exchange is on
1529 * @fp: The response frame
1530 */
1531 static void fc_exch_recv_seq_resp(struct fc_exch_mgr *mp, struct fc_frame *fp)
1532 {
1533 struct fc_frame_header *fh = fc_frame_header_get(fp);
1534 struct fc_seq *sp;
1535 struct fc_exch *ep;
1536 enum fc_sof sof;
1537 u32 f_ctl;
1538 int rc;
1539
1540 ep = fc_exch_find(mp, ntohs(fh->fh_ox_id));
1541 if (!ep) {
1542 atomic_inc(&mp->stats.xid_not_found);
1543 goto out;
1544 }
1545 if (ep->esb_stat & ESB_ST_COMPLETE) {
1546 atomic_inc(&mp->stats.xid_not_found);
1547 goto rel;
1548 }
1549 if (ep->rxid == FC_XID_UNKNOWN)
1550 ep->rxid = ntohs(fh->fh_rx_id);
1551 if (ep->sid != 0 && ep->sid != ntoh24(fh->fh_d_id)) {
1552 atomic_inc(&mp->stats.xid_not_found);
1553 goto rel;
1554 }
1555 if (ep->did != ntoh24(fh->fh_s_id) &&
1556 ep->did != FC_FID_FLOGI) {
1557 atomic_inc(&mp->stats.xid_not_found);
1558 goto rel;
1559 }
1560 sof = fr_sof(fp);
1561 sp = &ep->seq;
1562 if (fc_sof_is_init(sof)) {
1563 sp->ssb_stat |= SSB_ST_RESP;
1564 sp->id = fh->fh_seq_id;
1565 } else if (sp->id != fh->fh_seq_id) {
1566 atomic_inc(&mp->stats.seq_not_found);
1567 goto rel;
1568 }
1569
1570 f_ctl = ntoh24(fh->fh_f_ctl);
1571 fr_seq(fp) = sp;
1572
1573 spin_lock_bh(&ep->ex_lock);
1574 if (f_ctl & FC_FC_SEQ_INIT)
1575 ep->esb_stat |= ESB_ST_SEQ_INIT;
1576 spin_unlock_bh(&ep->ex_lock);
1577
1578 if (fc_sof_needs_ack(sof))
1579 fc_seq_send_ack(sp, fp);
1580
1581 if (fh->fh_type != FC_TYPE_FCP && fr_eof(fp) == FC_EOF_T &&
1582 (f_ctl & (FC_FC_LAST_SEQ | FC_FC_END_SEQ)) ==
1583 (FC_FC_LAST_SEQ | FC_FC_END_SEQ)) {
1584 spin_lock_bh(&ep->ex_lock);
1585 rc = fc_exch_done_locked(ep);
1586 WARN_ON(fc_seq_exch(sp) != ep);
1587 spin_unlock_bh(&ep->ex_lock);
1588 if (!rc)
1589 fc_exch_delete(ep);
1590 }
1591
1592 /*
1593 * Call the receive function.
1594 * The sequence is held (has a refcnt) for us,
1595 * but not for the receive function.
1596 *
1597 * The receive function may allocate a new sequence
1598 * over the old one, so we shouldn't change the
1599 * sequence after this.
1600 *
1601 * The frame will be freed by the receive function.
1602 * If new exch resp handler is valid then call that
1603 * first.
1604 */
1605 if (!fc_invoke_resp(ep, sp, fp))
1606 fc_frame_free(fp);
1607
1608 fc_exch_release(ep);
1609 return;
1610 rel:
1611 fc_exch_release(ep);
1612 out:
1613 fc_frame_free(fp);
1614 }
1615
1616 /**
1617 * fc_exch_recv_resp() - Handler for a sequence where other end is
1618 * responding to our sequence
1619 * @mp: The EM that the exchange is on
1620 * @fp: The response frame
1621 */
1622 static void fc_exch_recv_resp(struct fc_exch_mgr *mp, struct fc_frame *fp)
1623 {
1624 struct fc_seq *sp;
1625
1626 sp = fc_seq_lookup_orig(mp, fp); /* doesn't hold sequence */
1627
1628 if (!sp)
1629 atomic_inc(&mp->stats.xid_not_found);
1630 else
1631 atomic_inc(&mp->stats.non_bls_resp);
1632
1633 fc_frame_free(fp);
1634 }
1635
1636 /**
1637 * fc_exch_abts_resp() - Handler for a response to an ABT
1638 * @ep: The exchange that the frame is on
1639 * @fp: The response frame
1640 *
1641 * This response would be to an ABTS cancelling an exchange or sequence.
1642 * The response can be either BA_ACC or BA_RJT
1643 */
1644 static void fc_exch_abts_resp(struct fc_exch *ep, struct fc_frame *fp)
1645 {
1646 struct fc_frame_header *fh;
1647 struct fc_ba_acc *ap;
1648 struct fc_seq *sp;
1649 u16 low;
1650 u16 high;
1651 int rc = 1, has_rec = 0;
1652
1653 fh = fc_frame_header_get(fp);
1654 FC_EXCH_DBG(ep, "exch: BLS rctl %x - %s\n", fh->fh_r_ctl,
1655 fc_exch_rctl_name(fh->fh_r_ctl));
1656
1657 if (cancel_delayed_work_sync(&ep->timeout_work)) {
1658 FC_EXCH_DBG(ep, "Exchange timer canceled due to ABTS response\n");
1659 fc_exch_release(ep); /* release from pending timer hold */
1660 }
1661
1662 spin_lock_bh(&ep->ex_lock);
1663 switch (fh->fh_r_ctl) {
1664 case FC_RCTL_BA_ACC:
1665 ap = fc_frame_payload_get(fp, sizeof(*ap));
1666 if (!ap)
1667 break;
1668
1669 /*
1670 * Decide whether to establish a Recovery Qualifier.
1671 * We do this if there is a non-empty SEQ_CNT range and
1672 * SEQ_ID is the same as the one we aborted.
1673 */
1674 low = ntohs(ap->ba_low_seq_cnt);
1675 high = ntohs(ap->ba_high_seq_cnt);
1676 if ((ep->esb_stat & ESB_ST_REC_QUAL) == 0 &&
1677 (ap->ba_seq_id_val != FC_BA_SEQ_ID_VAL ||
1678 ap->ba_seq_id == ep->seq_id) && low != high) {
1679 ep->esb_stat |= ESB_ST_REC_QUAL;
1680 fc_exch_hold(ep); /* hold for recovery qualifier */
1681 has_rec = 1;
1682 }
1683 break;
1684 case FC_RCTL_BA_RJT:
1685 break;
1686 default:
1687 break;
1688 }
1689
1690 /* do we need to do some other checks here. Can we reuse more of
1691 * fc_exch_recv_seq_resp
1692 */
1693 sp = &ep->seq;
1694 /*
1695 * do we want to check END_SEQ as well as LAST_SEQ here?
1696 */
1697 if (ep->fh_type != FC_TYPE_FCP &&
1698 ntoh24(fh->fh_f_ctl) & FC_FC_LAST_SEQ)
1699 rc = fc_exch_done_locked(ep);
1700 spin_unlock_bh(&ep->ex_lock);
1701
1702 fc_exch_hold(ep);
1703 if (!rc)
1704 fc_exch_delete(ep);
1705 if (!fc_invoke_resp(ep, sp, fp))
1706 fc_frame_free(fp);
1707 if (has_rec)
1708 fc_exch_timer_set(ep, ep->r_a_tov);
1709 fc_exch_release(ep);
1710 }
1711
1712 /**
1713 * fc_exch_recv_bls() - Handler for a BLS sequence
1714 * @mp: The EM that the exchange is on
1715 * @fp: The request frame
1716 *
1717 * The BLS frame is always a sequence initiated by the remote side.
1718 * We may be either the originator or recipient of the exchange.
1719 */
1720 static void fc_exch_recv_bls(struct fc_exch_mgr *mp, struct fc_frame *fp)
1721 {
1722 struct fc_frame_header *fh;
1723 struct fc_exch *ep;
1724 u32 f_ctl;
1725
1726 fh = fc_frame_header_get(fp);
1727 f_ctl = ntoh24(fh->fh_f_ctl);
1728 fr_seq(fp) = NULL;
1729
1730 ep = fc_exch_find(mp, (f_ctl & FC_FC_EX_CTX) ?
1731 ntohs(fh->fh_ox_id) : ntohs(fh->fh_rx_id));
1732 if (ep && (f_ctl & FC_FC_SEQ_INIT)) {
1733 spin_lock_bh(&ep->ex_lock);
1734 ep->esb_stat |= ESB_ST_SEQ_INIT;
1735 spin_unlock_bh(&ep->ex_lock);
1736 }
1737 if (f_ctl & FC_FC_SEQ_CTX) {
1738 /*
1739 * A response to a sequence we initiated.
1740 * This should only be ACKs for class 2 or F.
1741 */
1742 switch (fh->fh_r_ctl) {
1743 case FC_RCTL_ACK_1:
1744 case FC_RCTL_ACK_0:
1745 break;
1746 default:
1747 if (ep)
1748 FC_EXCH_DBG(ep, "BLS rctl %x - %s received\n",
1749 fh->fh_r_ctl,
1750 fc_exch_rctl_name(fh->fh_r_ctl));
1751 break;
1752 }
1753 fc_frame_free(fp);
1754 } else {
1755 switch (fh->fh_r_ctl) {
1756 case FC_RCTL_BA_RJT:
1757 case FC_RCTL_BA_ACC:
1758 if (ep)
1759 fc_exch_abts_resp(ep, fp);
1760 else
1761 fc_frame_free(fp);
1762 break;
1763 case FC_RCTL_BA_ABTS:
1764 fc_exch_recv_abts(ep, fp);
1765 break;
1766 default: /* ignore junk */
1767 fc_frame_free(fp);
1768 break;
1769 }
1770 }
1771 if (ep)
1772 fc_exch_release(ep); /* release hold taken by fc_exch_find */
1773 }
1774
1775 /**
1776 * fc_seq_ls_acc() - Accept sequence with LS_ACC
1777 * @rx_fp: The received frame, not freed here.
1778 *
1779 * If this fails due to allocation or transmit congestion, assume the
1780 * originator will repeat the sequence.
1781 */
1782 static void fc_seq_ls_acc(struct fc_frame *rx_fp)
1783 {
1784 struct fc_lport *lport;
1785 struct fc_els_ls_acc *acc;
1786 struct fc_frame *fp;
1787
1788 lport = fr_dev(rx_fp);
1789 fp = fc_frame_alloc(lport, sizeof(*acc));
1790 if (!fp)
1791 return;
1792 acc = fc_frame_payload_get(fp, sizeof(*acc));
1793 memset(acc, 0, sizeof(*acc));
1794 acc->la_cmd = ELS_LS_ACC;
1795 fc_fill_reply_hdr(fp, rx_fp, FC_RCTL_ELS_REP, 0);
1796 lport->tt.frame_send(lport, fp);
1797 }
1798
1799 /**
1800 * fc_seq_ls_rjt() - Reject a sequence with ELS LS_RJT
1801 * @rx_fp: The received frame, not freed here.
1802 * @reason: The reason the sequence is being rejected
1803 * @explan: The explanation for the rejection
1804 *
1805 * If this fails due to allocation or transmit congestion, assume the
1806 * originator will repeat the sequence.
1807 */
1808 static void fc_seq_ls_rjt(struct fc_frame *rx_fp, enum fc_els_rjt_reason reason,
1809 enum fc_els_rjt_explan explan)
1810 {
1811 struct fc_lport *lport;
1812 struct fc_els_ls_rjt *rjt;
1813 struct fc_frame *fp;
1814
1815 lport = fr_dev(rx_fp);
1816 fp = fc_frame_alloc(lport, sizeof(*rjt));
1817 if (!fp)
1818 return;
1819 rjt = fc_frame_payload_get(fp, sizeof(*rjt));
1820 memset(rjt, 0, sizeof(*rjt));
1821 rjt->er_cmd = ELS_LS_RJT;
1822 rjt->er_reason = reason;
1823 rjt->er_explan = explan;
1824 fc_fill_reply_hdr(fp, rx_fp, FC_RCTL_ELS_REP, 0);
1825 lport->tt.frame_send(lport, fp);
1826 }
1827
1828 /**
1829 * fc_exch_reset() - Reset an exchange
1830 * @ep: The exchange to be reset
1831 *
1832 * Note: May sleep if invoked from outside a response handler.
1833 */
1834 static void fc_exch_reset(struct fc_exch *ep)
1835 {
1836 struct fc_seq *sp;
1837 int rc = 1;
1838
1839 spin_lock_bh(&ep->ex_lock);
1840 fc_exch_abort_locked(ep, 0);
1841 ep->state |= FC_EX_RST_CLEANUP;
1842 fc_exch_timer_cancel(ep);
1843 if (ep->esb_stat & ESB_ST_REC_QUAL)
1844 atomic_dec(&ep->ex_refcnt); /* drop hold for rec_qual */
1845 ep->esb_stat &= ~ESB_ST_REC_QUAL;
1846 sp = &ep->seq;
1847 rc = fc_exch_done_locked(ep);
1848 spin_unlock_bh(&ep->ex_lock);
1849
1850 fc_exch_hold(ep);
1851
1852 if (!rc)
1853 fc_exch_delete(ep);
1854
1855 fc_invoke_resp(ep, sp, ERR_PTR(-FC_EX_CLOSED));
1856 fc_seq_set_resp(sp, NULL, ep->arg);
1857 fc_exch_release(ep);
1858 }
1859
1860 /**
1861 * fc_exch_pool_reset() - Reset a per cpu exchange pool
1862 * @lport: The local port that the exchange pool is on
1863 * @pool: The exchange pool to be reset
1864 * @sid: The source ID
1865 * @did: The destination ID
1866 *
1867 * Resets a per cpu exches pool, releasing all of its sequences
1868 * and exchanges. If sid is non-zero then reset only exchanges
1869 * we sourced from the local port's FID. If did is non-zero then
1870 * only reset exchanges destined for the local port's FID.
1871 */
1872 static void fc_exch_pool_reset(struct fc_lport *lport,
1873 struct fc_exch_pool *pool,
1874 u32 sid, u32 did)
1875 {
1876 struct fc_exch *ep;
1877 struct fc_exch *next;
1878
1879 spin_lock_bh(&pool->lock);
1880 restart:
1881 list_for_each_entry_safe(ep, next, &pool->ex_list, ex_list) {
1882 if ((lport == ep->lp) &&
1883 (sid == 0 || sid == ep->sid) &&
1884 (did == 0 || did == ep->did)) {
1885 fc_exch_hold(ep);
1886 spin_unlock_bh(&pool->lock);
1887
1888 fc_exch_reset(ep);
1889
1890 fc_exch_release(ep);
1891 spin_lock_bh(&pool->lock);
1892
1893 /*
1894 * must restart loop incase while lock
1895 * was down multiple eps were released.
1896 */
1897 goto restart;
1898 }
1899 }
1900 pool->next_index = 0;
1901 pool->left = FC_XID_UNKNOWN;
1902 pool->right = FC_XID_UNKNOWN;
1903 spin_unlock_bh(&pool->lock);
1904 }
1905
1906 /**
1907 * fc_exch_mgr_reset() - Reset all EMs of a local port
1908 * @lport: The local port whose EMs are to be reset
1909 * @sid: The source ID
1910 * @did: The destination ID
1911 *
1912 * Reset all EMs associated with a given local port. Release all
1913 * sequences and exchanges. If sid is non-zero then reset only the
1914 * exchanges sent from the local port's FID. If did is non-zero then
1915 * reset only exchanges destined for the local port's FID.
1916 */
1917 void fc_exch_mgr_reset(struct fc_lport *lport, u32 sid, u32 did)
1918 {
1919 struct fc_exch_mgr_anchor *ema;
1920 unsigned int cpu;
1921
1922 list_for_each_entry(ema, &lport->ema_list, ema_list) {
1923 for_each_possible_cpu(cpu)
1924 fc_exch_pool_reset(lport,
1925 per_cpu_ptr(ema->mp->pool, cpu),
1926 sid, did);
1927 }
1928 }
1929 EXPORT_SYMBOL(fc_exch_mgr_reset);
1930
1931 /**
1932 * fc_exch_lookup() - find an exchange
1933 * @lport: The local port
1934 * @xid: The exchange ID
1935 *
1936 * Returns exchange pointer with hold for caller, or NULL if not found.
1937 */
1938 static struct fc_exch *fc_exch_lookup(struct fc_lport *lport, u32 xid)
1939 {
1940 struct fc_exch_mgr_anchor *ema;
1941
1942 list_for_each_entry(ema, &lport->ema_list, ema_list)
1943 if (ema->mp->min_xid <= xid && xid <= ema->mp->max_xid)
1944 return fc_exch_find(ema->mp, xid);
1945 return NULL;
1946 }
1947
1948 /**
1949 * fc_exch_els_rec() - Handler for ELS REC (Read Exchange Concise) requests
1950 * @rfp: The REC frame, not freed here.
1951 *
1952 * Note that the requesting port may be different than the S_ID in the request.
1953 */
1954 static void fc_exch_els_rec(struct fc_frame *rfp)
1955 {
1956 struct fc_lport *lport;
1957 struct fc_frame *fp;
1958 struct fc_exch *ep;
1959 struct fc_els_rec *rp;
1960 struct fc_els_rec_acc *acc;
1961 enum fc_els_rjt_reason reason = ELS_RJT_LOGIC;
1962 enum fc_els_rjt_explan explan;
1963 u32 sid;
1964 u16 rxid;
1965 u16 oxid;
1966
1967 lport = fr_dev(rfp);
1968 rp = fc_frame_payload_get(rfp, sizeof(*rp));
1969 explan = ELS_EXPL_INV_LEN;
1970 if (!rp)
1971 goto reject;
1972 sid = ntoh24(rp->rec_s_id);
1973 rxid = ntohs(rp->rec_rx_id);
1974 oxid = ntohs(rp->rec_ox_id);
1975
1976 ep = fc_exch_lookup(lport,
1977 sid == fc_host_port_id(lport->host) ? oxid : rxid);
1978 explan = ELS_EXPL_OXID_RXID;
1979 if (!ep)
1980 goto reject;
1981 if (ep->oid != sid || oxid != ep->oxid)
1982 goto rel;
1983 if (rxid != FC_XID_UNKNOWN && rxid != ep->rxid)
1984 goto rel;
1985 fp = fc_frame_alloc(lport, sizeof(*acc));
1986 if (!fp)
1987 goto out;
1988
1989 acc = fc_frame_payload_get(fp, sizeof(*acc));
1990 memset(acc, 0, sizeof(*acc));
1991 acc->reca_cmd = ELS_LS_ACC;
1992 acc->reca_ox_id = rp->rec_ox_id;
1993 memcpy(acc->reca_ofid, rp->rec_s_id, 3);
1994 acc->reca_rx_id = htons(ep->rxid);
1995 if (ep->sid == ep->oid)
1996 hton24(acc->reca_rfid, ep->did);
1997 else
1998 hton24(acc->reca_rfid, ep->sid);
1999 acc->reca_fc4value = htonl(ep->seq.rec_data);
2000 acc->reca_e_stat = htonl(ep->esb_stat & (ESB_ST_RESP |
2001 ESB_ST_SEQ_INIT |
2002 ESB_ST_COMPLETE));
2003 fc_fill_reply_hdr(fp, rfp, FC_RCTL_ELS_REP, 0);
2004 lport->tt.frame_send(lport, fp);
2005 out:
2006 fc_exch_release(ep);
2007 return;
2008
2009 rel:
2010 fc_exch_release(ep);
2011 reject:
2012 fc_seq_ls_rjt(rfp, reason, explan);
2013 }
2014
2015 /**
2016 * fc_exch_rrq_resp() - Handler for RRQ responses
2017 * @sp: The sequence that the RRQ is on
2018 * @fp: The RRQ frame
2019 * @arg: The exchange that the RRQ is on
2020 *
2021 * TODO: fix error handler.
2022 */
2023 static void fc_exch_rrq_resp(struct fc_seq *sp, struct fc_frame *fp, void *arg)
2024 {
2025 struct fc_exch *aborted_ep = arg;
2026 unsigned int op;
2027
2028 if (IS_ERR(fp)) {
2029 int err = PTR_ERR(fp);
2030
2031 if (err == -FC_EX_CLOSED || err == -FC_EX_TIMEOUT)
2032 goto cleanup;
2033 FC_EXCH_DBG(aborted_ep, "Cannot process RRQ, "
2034 "frame error %d\n", err);
2035 return;
2036 }
2037
2038 op = fc_frame_payload_op(fp);
2039 fc_frame_free(fp);
2040
2041 switch (op) {
2042 case ELS_LS_RJT:
2043 FC_EXCH_DBG(aborted_ep, "LS_RJT for RRQ\n");
2044 /* fall through */
2045 case ELS_LS_ACC:
2046 goto cleanup;
2047 default:
2048 FC_EXCH_DBG(aborted_ep, "unexpected response op %x for RRQ\n",
2049 op);
2050 return;
2051 }
2052
2053 cleanup:
2054 fc_exch_done(&aborted_ep->seq);
2055 /* drop hold for rec qual */
2056 fc_exch_release(aborted_ep);
2057 }
2058
2059
2060 /**
2061 * fc_exch_seq_send() - Send a frame using a new exchange and sequence
2062 * @lport: The local port to send the frame on
2063 * @fp: The frame to be sent
2064 * @resp: The response handler for this request
2065 * @destructor: The destructor for the exchange
2066 * @arg: The argument to be passed to the response handler
2067 * @timer_msec: The timeout period for the exchange
2068 *
2069 * The frame pointer with some of the header's fields must be
2070 * filled before calling this routine, those fields are:
2071 *
2072 * - routing control
2073 * - FC port did
2074 * - FC port sid
2075 * - FC header type
2076 * - frame control
2077 * - parameter or relative offset
2078 */
2079 static struct fc_seq *fc_exch_seq_send(struct fc_lport *lport,
2080 struct fc_frame *fp,
2081 void (*resp)(struct fc_seq *,
2082 struct fc_frame *fp,
2083 void *arg),
2084 void (*destructor)(struct fc_seq *,
2085 void *),
2086 void *arg, u32 timer_msec)
2087 {
2088 struct fc_exch *ep;
2089 struct fc_seq *sp = NULL;
2090 struct fc_frame_header *fh;
2091 struct fc_fcp_pkt *fsp = NULL;
2092 int rc = 1;
2093
2094 ep = fc_exch_alloc(lport, fp);
2095 if (!ep) {
2096 fc_frame_free(fp);
2097 return NULL;
2098 }
2099 ep->esb_stat |= ESB_ST_SEQ_INIT;
2100 fh = fc_frame_header_get(fp);
2101 fc_exch_set_addr(ep, ntoh24(fh->fh_s_id), ntoh24(fh->fh_d_id));
2102 ep->resp = resp;
2103 ep->destructor = destructor;
2104 ep->arg = arg;
2105 ep->r_a_tov = FC_DEF_R_A_TOV;
2106 ep->lp = lport;
2107 sp = &ep->seq;
2108
2109 ep->fh_type = fh->fh_type; /* save for possbile timeout handling */
2110 ep->f_ctl = ntoh24(fh->fh_f_ctl);
2111 fc_exch_setup_hdr(ep, fp, ep->f_ctl);
2112 sp->cnt++;
2113
2114 if (ep->xid <= lport->lro_xid && fh->fh_r_ctl == FC_RCTL_DD_UNSOL_CMD) {
2115 fsp = fr_fsp(fp);
2116 fc_fcp_ddp_setup(fr_fsp(fp), ep->xid);
2117 }
2118
2119 if (unlikely(lport->tt.frame_send(lport, fp)))
2120 goto err;
2121
2122 if (timer_msec)
2123 fc_exch_timer_set_locked(ep, timer_msec);
2124 ep->f_ctl &= ~FC_FC_FIRST_SEQ; /* not first seq */
2125
2126 if (ep->f_ctl & FC_FC_SEQ_INIT)
2127 ep->esb_stat &= ~ESB_ST_SEQ_INIT;
2128 spin_unlock_bh(&ep->ex_lock);
2129 return sp;
2130 err:
2131 if (fsp)
2132 fc_fcp_ddp_done(fsp);
2133 rc = fc_exch_done_locked(ep);
2134 spin_unlock_bh(&ep->ex_lock);
2135 if (!rc)
2136 fc_exch_delete(ep);
2137 return NULL;
2138 }
2139
2140 /**
2141 * fc_exch_rrq() - Send an ELS RRQ (Reinstate Recovery Qualifier) command
2142 * @ep: The exchange to send the RRQ on
2143 *
2144 * This tells the remote port to stop blocking the use of
2145 * the exchange and the seq_cnt range.
2146 */
2147 static void fc_exch_rrq(struct fc_exch *ep)
2148 {
2149 struct fc_lport *lport;
2150 struct fc_els_rrq *rrq;
2151 struct fc_frame *fp;
2152 u32 did;
2153
2154 lport = ep->lp;
2155
2156 fp = fc_frame_alloc(lport, sizeof(*rrq));
2157 if (!fp)
2158 goto retry;
2159
2160 rrq = fc_frame_payload_get(fp, sizeof(*rrq));
2161 memset(rrq, 0, sizeof(*rrq));
2162 rrq->rrq_cmd = ELS_RRQ;
2163 hton24(rrq->rrq_s_id, ep->sid);
2164 rrq->rrq_ox_id = htons(ep->oxid);
2165 rrq->rrq_rx_id = htons(ep->rxid);
2166
2167 did = ep->did;
2168 if (ep->esb_stat & ESB_ST_RESP)
2169 did = ep->sid;
2170
2171 fc_fill_fc_hdr(fp, FC_RCTL_ELS_REQ, did,
2172 lport->port_id, FC_TYPE_ELS,
2173 FC_FC_FIRST_SEQ | FC_FC_END_SEQ | FC_FC_SEQ_INIT, 0);
2174
2175 if (fc_exch_seq_send(lport, fp, fc_exch_rrq_resp, NULL, ep,
2176 lport->e_d_tov))
2177 return;
2178
2179 retry:
2180 spin_lock_bh(&ep->ex_lock);
2181 if (ep->state & (FC_EX_RST_CLEANUP | FC_EX_DONE)) {
2182 spin_unlock_bh(&ep->ex_lock);
2183 /* drop hold for rec qual */
2184 fc_exch_release(ep);
2185 return;
2186 }
2187 ep->esb_stat |= ESB_ST_REC_QUAL;
2188 fc_exch_timer_set_locked(ep, ep->r_a_tov);
2189 spin_unlock_bh(&ep->ex_lock);
2190 }
2191
2192 /**
2193 * fc_exch_els_rrq() - Handler for ELS RRQ (Reset Recovery Qualifier) requests
2194 * @fp: The RRQ frame, not freed here.
2195 */
2196 static void fc_exch_els_rrq(struct fc_frame *fp)
2197 {
2198 struct fc_lport *lport;
2199 struct fc_exch *ep = NULL; /* request or subject exchange */
2200 struct fc_els_rrq *rp;
2201 u32 sid;
2202 u16 xid;
2203 enum fc_els_rjt_explan explan;
2204
2205 lport = fr_dev(fp);
2206 rp = fc_frame_payload_get(fp, sizeof(*rp));
2207 explan = ELS_EXPL_INV_LEN;
2208 if (!rp)
2209 goto reject;
2210
2211 /*
2212 * lookup subject exchange.
2213 */
2214 sid = ntoh24(rp->rrq_s_id); /* subject source */
2215 xid = fc_host_port_id(lport->host) == sid ?
2216 ntohs(rp->rrq_ox_id) : ntohs(rp->rrq_rx_id);
2217 ep = fc_exch_lookup(lport, xid);
2218 explan = ELS_EXPL_OXID_RXID;
2219 if (!ep)
2220 goto reject;
2221 spin_lock_bh(&ep->ex_lock);
2222 if (ep->oxid != ntohs(rp->rrq_ox_id))
2223 goto unlock_reject;
2224 if (ep->rxid != ntohs(rp->rrq_rx_id) &&
2225 ep->rxid != FC_XID_UNKNOWN)
2226 goto unlock_reject;
2227 explan = ELS_EXPL_SID;
2228 if (ep->sid != sid)
2229 goto unlock_reject;
2230
2231 /*
2232 * Clear Recovery Qualifier state, and cancel timer if complete.
2233 */
2234 if (ep->esb_stat & ESB_ST_REC_QUAL) {
2235 ep->esb_stat &= ~ESB_ST_REC_QUAL;
2236 atomic_dec(&ep->ex_refcnt); /* drop hold for rec qual */
2237 }
2238 if (ep->esb_stat & ESB_ST_COMPLETE)
2239 fc_exch_timer_cancel(ep);
2240
2241 spin_unlock_bh(&ep->ex_lock);
2242
2243 /*
2244 * Send LS_ACC.
2245 */
2246 fc_seq_ls_acc(fp);
2247 goto out;
2248
2249 unlock_reject:
2250 spin_unlock_bh(&ep->ex_lock);
2251 reject:
2252 fc_seq_ls_rjt(fp, ELS_RJT_LOGIC, explan);
2253 out:
2254 if (ep)
2255 fc_exch_release(ep); /* drop hold from fc_exch_find */
2256 }
2257
2258 /**
2259 * fc_exch_update_stats() - update exches stats to lport
2260 * @lport: The local port to update exchange manager stats
2261 */
2262 void fc_exch_update_stats(struct fc_lport *lport)
2263 {
2264 struct fc_host_statistics *st;
2265 struct fc_exch_mgr_anchor *ema;
2266 struct fc_exch_mgr *mp;
2267
2268 st = &lport->host_stats;
2269
2270 list_for_each_entry(ema, &lport->ema_list, ema_list) {
2271 mp = ema->mp;
2272 st->fc_no_free_exch += atomic_read(&mp->stats.no_free_exch);
2273 st->fc_no_free_exch_xid +=
2274 atomic_read(&mp->stats.no_free_exch_xid);
2275 st->fc_xid_not_found += atomic_read(&mp->stats.xid_not_found);
2276 st->fc_xid_busy += atomic_read(&mp->stats.xid_busy);
2277 st->fc_seq_not_found += atomic_read(&mp->stats.seq_not_found);
2278 st->fc_non_bls_resp += atomic_read(&mp->stats.non_bls_resp);
2279 }
2280 }
2281 EXPORT_SYMBOL(fc_exch_update_stats);
2282
2283 /**
2284 * fc_exch_mgr_add() - Add an exchange manager to a local port's list of EMs
2285 * @lport: The local port to add the exchange manager to
2286 * @mp: The exchange manager to be added to the local port
2287 * @match: The match routine that indicates when this EM should be used
2288 */
2289 struct fc_exch_mgr_anchor *fc_exch_mgr_add(struct fc_lport *lport,
2290 struct fc_exch_mgr *mp,
2291 bool (*match)(struct fc_frame *))
2292 {
2293 struct fc_exch_mgr_anchor *ema;
2294
2295 ema = kmalloc(sizeof(*ema), GFP_ATOMIC);
2296 if (!ema)
2297 return ema;
2298
2299 ema->mp = mp;
2300 ema->match = match;
2301 /* add EM anchor to EM anchors list */
2302 list_add_tail(&ema->ema_list, &lport->ema_list);
2303 kref_get(&mp->kref);
2304 return ema;
2305 }
2306 EXPORT_SYMBOL(fc_exch_mgr_add);
2307
2308 /**
2309 * fc_exch_mgr_destroy() - Destroy an exchange manager
2310 * @kref: The reference to the EM to be destroyed
2311 */
2312 static void fc_exch_mgr_destroy(struct kref *kref)
2313 {
2314 struct fc_exch_mgr *mp = container_of(kref, struct fc_exch_mgr, kref);
2315
2316 mempool_destroy(mp->ep_pool);
2317 free_percpu(mp->pool);
2318 kfree(mp);
2319 }
2320
2321 /**
2322 * fc_exch_mgr_del() - Delete an EM from a local port's list
2323 * @ema: The exchange manager anchor identifying the EM to be deleted
2324 */
2325 void fc_exch_mgr_del(struct fc_exch_mgr_anchor *ema)
2326 {
2327 /* remove EM anchor from EM anchors list */
2328 list_del(&ema->ema_list);
2329 kref_put(&ema->mp->kref, fc_exch_mgr_destroy);
2330 kfree(ema);
2331 }
2332 EXPORT_SYMBOL(fc_exch_mgr_del);
2333
2334 /**
2335 * fc_exch_mgr_list_clone() - Share all exchange manager objects
2336 * @src: Source lport to clone exchange managers from
2337 * @dst: New lport that takes references to all the exchange managers
2338 */
2339 int fc_exch_mgr_list_clone(struct fc_lport *src, struct fc_lport *dst)
2340 {
2341 struct fc_exch_mgr_anchor *ema, *tmp;
2342
2343 list_for_each_entry(ema, &src->ema_list, ema_list) {
2344 if (!fc_exch_mgr_add(dst, ema->mp, ema->match))
2345 goto err;
2346 }
2347 return 0;
2348 err:
2349 list_for_each_entry_safe(ema, tmp, &dst->ema_list, ema_list)
2350 fc_exch_mgr_del(ema);
2351 return -ENOMEM;
2352 }
2353 EXPORT_SYMBOL(fc_exch_mgr_list_clone);
2354
2355 /**
2356 * fc_exch_mgr_alloc() - Allocate an exchange manager
2357 * @lport: The local port that the new EM will be associated with
2358 * @class: The default FC class for new exchanges
2359 * @min_xid: The minimum XID for exchanges from the new EM
2360 * @max_xid: The maximum XID for exchanges from the new EM
2361 * @match: The match routine for the new EM
2362 */
2363 struct fc_exch_mgr *fc_exch_mgr_alloc(struct fc_lport *lport,
2364 enum fc_class class,
2365 u16 min_xid, u16 max_xid,
2366 bool (*match)(struct fc_frame *))
2367 {
2368 struct fc_exch_mgr *mp;
2369 u16 pool_exch_range;
2370 size_t pool_size;
2371 unsigned int cpu;
2372 struct fc_exch_pool *pool;
2373
2374 if (max_xid <= min_xid || max_xid == FC_XID_UNKNOWN ||
2375 (min_xid & fc_cpu_mask) != 0) {
2376 FC_LPORT_DBG(lport, "Invalid min_xid 0x:%x and max_xid 0x:%x\n",
2377 min_xid, max_xid);
2378 return NULL;
2379 }
2380
2381 /*
2382 * allocate memory for EM
2383 */
2384 mp = kzalloc(sizeof(struct fc_exch_mgr), GFP_ATOMIC);
2385 if (!mp)
2386 return NULL;
2387
2388 mp->class = class;
2389 /* adjust em exch xid range for offload */
2390 mp->min_xid = min_xid;
2391
2392 /* reduce range so per cpu pool fits into PCPU_MIN_UNIT_SIZE pool */
2393 pool_exch_range = (PCPU_MIN_UNIT_SIZE - sizeof(*pool)) /
2394 sizeof(struct fc_exch *);
2395 if ((max_xid - min_xid + 1) / (fc_cpu_mask + 1) > pool_exch_range) {
2396 mp->max_xid = pool_exch_range * (fc_cpu_mask + 1) +
2397 min_xid - 1;
2398 } else {
2399 mp->max_xid = max_xid;
2400 pool_exch_range = (mp->max_xid - mp->min_xid + 1) /
2401 (fc_cpu_mask + 1);
2402 }
2403
2404 mp->ep_pool = mempool_create_slab_pool(2, fc_em_cachep);
2405 if (!mp->ep_pool)
2406 goto free_mp;
2407
2408 /*
2409 * Setup per cpu exch pool with entire exchange id range equally
2410 * divided across all cpus. The exch pointers array memory is
2411 * allocated for exch range per pool.
2412 */
2413 mp->pool_max_index = pool_exch_range - 1;
2414
2415 /*
2416 * Allocate and initialize per cpu exch pool
2417 */
2418 pool_size = sizeof(*pool) + pool_exch_range * sizeof(struct fc_exch *);
2419 mp->pool = __alloc_percpu(pool_size, __alignof__(struct fc_exch_pool));
2420 if (!mp->pool)
2421 goto free_mempool;
2422 for_each_possible_cpu(cpu) {
2423 pool = per_cpu_ptr(mp->pool, cpu);
2424 pool->next_index = 0;
2425 pool->left = FC_XID_UNKNOWN;
2426 pool->right = FC_XID_UNKNOWN;
2427 spin_lock_init(&pool->lock);
2428 INIT_LIST_HEAD(&pool->ex_list);
2429 }
2430
2431 kref_init(&mp->kref);
2432 if (!fc_exch_mgr_add(lport, mp, match)) {
2433 free_percpu(mp->pool);
2434 goto free_mempool;
2435 }
2436
2437 /*
2438 * Above kref_init() sets mp->kref to 1 and then
2439 * call to fc_exch_mgr_add incremented mp->kref again,
2440 * so adjust that extra increment.
2441 */
2442 kref_put(&mp->kref, fc_exch_mgr_destroy);
2443 return mp;
2444
2445 free_mempool:
2446 mempool_destroy(mp->ep_pool);
2447 free_mp:
2448 kfree(mp);
2449 return NULL;
2450 }
2451 EXPORT_SYMBOL(fc_exch_mgr_alloc);
2452
2453 /**
2454 * fc_exch_mgr_free() - Free all exchange managers on a local port
2455 * @lport: The local port whose EMs are to be freed
2456 */
2457 void fc_exch_mgr_free(struct fc_lport *lport)
2458 {
2459 struct fc_exch_mgr_anchor *ema, *next;
2460
2461 flush_workqueue(fc_exch_workqueue);
2462 list_for_each_entry_safe(ema, next, &lport->ema_list, ema_list)
2463 fc_exch_mgr_del(ema);
2464 }
2465 EXPORT_SYMBOL(fc_exch_mgr_free);
2466
2467 /**
2468 * fc_find_ema() - Lookup and return appropriate Exchange Manager Anchor depending
2469 * upon 'xid'.
2470 * @f_ctl: f_ctl
2471 * @lport: The local port the frame was received on
2472 * @fh: The received frame header
2473 */
2474 static struct fc_exch_mgr_anchor *fc_find_ema(u32 f_ctl,
2475 struct fc_lport *lport,
2476 struct fc_frame_header *fh)
2477 {
2478 struct fc_exch_mgr_anchor *ema;
2479 u16 xid;
2480
2481 if (f_ctl & FC_FC_EX_CTX)
2482 xid = ntohs(fh->fh_ox_id);
2483 else {
2484 xid = ntohs(fh->fh_rx_id);
2485 if (xid == FC_XID_UNKNOWN)
2486 return list_entry(lport->ema_list.prev,
2487 typeof(*ema), ema_list);
2488 }
2489
2490 list_for_each_entry(ema, &lport->ema_list, ema_list) {
2491 if ((xid >= ema->mp->min_xid) &&
2492 (xid <= ema->mp->max_xid))
2493 return ema;
2494 }
2495 return NULL;
2496 }
2497 /**
2498 * fc_exch_recv() - Handler for received frames
2499 * @lport: The local port the frame was received on
2500 * @fp: The received frame
2501 */
2502 void fc_exch_recv(struct fc_lport *lport, struct fc_frame *fp)
2503 {
2504 struct fc_frame_header *fh = fc_frame_header_get(fp);
2505 struct fc_exch_mgr_anchor *ema;
2506 u32 f_ctl;
2507
2508 /* lport lock ? */
2509 if (!lport || lport->state == LPORT_ST_DISABLED) {
2510 FC_LPORT_DBG(lport, "Receiving frames for an lport that "
2511 "has not been initialized correctly\n");
2512 fc_frame_free(fp);
2513 return;
2514 }
2515
2516 f_ctl = ntoh24(fh->fh_f_ctl);
2517 ema = fc_find_ema(f_ctl, lport, fh);
2518 if (!ema) {
2519 FC_LPORT_DBG(lport, "Unable to find Exchange Manager Anchor,"
2520 "fc_ctl <0x%x>, xid <0x%x>\n",
2521 f_ctl,
2522 (f_ctl & FC_FC_EX_CTX) ?
2523 ntohs(fh->fh_ox_id) :
2524 ntohs(fh->fh_rx_id));
2525 fc_frame_free(fp);
2526 return;
2527 }
2528
2529 /*
2530 * If frame is marked invalid, just drop it.
2531 */
2532 switch (fr_eof(fp)) {
2533 case FC_EOF_T:
2534 if (f_ctl & FC_FC_END_SEQ)
2535 skb_trim(fp_skb(fp), fr_len(fp) - FC_FC_FILL(f_ctl));
2536 /* fall through */
2537 case FC_EOF_N:
2538 if (fh->fh_type == FC_TYPE_BLS)
2539 fc_exch_recv_bls(ema->mp, fp);
2540 else if ((f_ctl & (FC_FC_EX_CTX | FC_FC_SEQ_CTX)) ==
2541 FC_FC_EX_CTX)
2542 fc_exch_recv_seq_resp(ema->mp, fp);
2543 else if (f_ctl & FC_FC_SEQ_CTX)
2544 fc_exch_recv_resp(ema->mp, fp);
2545 else /* no EX_CTX and no SEQ_CTX */
2546 fc_exch_recv_req(lport, ema->mp, fp);
2547 break;
2548 default:
2549 FC_LPORT_DBG(lport, "dropping invalid frame (eof %x)",
2550 fr_eof(fp));
2551 fc_frame_free(fp);
2552 }
2553 }
2554 EXPORT_SYMBOL(fc_exch_recv);
2555
2556 /**
2557 * fc_exch_init() - Initialize the exchange layer for a local port
2558 * @lport: The local port to initialize the exchange layer for
2559 */
2560 int fc_exch_init(struct fc_lport *lport)
2561 {
2562 if (!lport->tt.seq_start_next)
2563 lport->tt.seq_start_next = fc_seq_start_next;
2564
2565 if (!lport->tt.seq_set_resp)
2566 lport->tt.seq_set_resp = fc_seq_set_resp;
2567
2568 if (!lport->tt.exch_seq_send)
2569 lport->tt.exch_seq_send = fc_exch_seq_send;
2570
2571 if (!lport->tt.seq_send)
2572 lport->tt.seq_send = fc_seq_send;
2573
2574 if (!lport->tt.seq_els_rsp_send)
2575 lport->tt.seq_els_rsp_send = fc_seq_els_rsp_send;
2576
2577 if (!lport->tt.exch_done)
2578 lport->tt.exch_done = fc_exch_done;
2579
2580 if (!lport->tt.exch_mgr_reset)
2581 lport->tt.exch_mgr_reset = fc_exch_mgr_reset;
2582
2583 if (!lport->tt.seq_exch_abort)
2584 lport->tt.seq_exch_abort = fc_seq_exch_abort;
2585
2586 if (!lport->tt.seq_assign)
2587 lport->tt.seq_assign = fc_seq_assign;
2588
2589 if (!lport->tt.seq_release)
2590 lport->tt.seq_release = fc_seq_release;
2591
2592 return 0;
2593 }
2594 EXPORT_SYMBOL(fc_exch_init);
2595
2596 /**
2597 * fc_setup_exch_mgr() - Setup an exchange manager
2598 */
2599 int fc_setup_exch_mgr(void)
2600 {
2601 fc_em_cachep = kmem_cache_create("libfc_em", sizeof(struct fc_exch),
2602 0, SLAB_HWCACHE_ALIGN, NULL);
2603 if (!fc_em_cachep)
2604 return -ENOMEM;
2605
2606 /*
2607 * Initialize fc_cpu_mask and fc_cpu_order. The
2608 * fc_cpu_mask is set for nr_cpu_ids rounded up
2609 * to order of 2's * power and order is stored
2610 * in fc_cpu_order as this is later required in
2611 * mapping between an exch id and exch array index
2612 * in per cpu exch pool.
2613 *
2614 * This round up is required to align fc_cpu_mask
2615 * to exchange id's lower bits such that all incoming
2616 * frames of an exchange gets delivered to the same
2617 * cpu on which exchange originated by simple bitwise
2618 * AND operation between fc_cpu_mask and exchange id.
2619 */
2620 fc_cpu_order = ilog2(roundup_pow_of_two(nr_cpu_ids));
2621 fc_cpu_mask = (1 << fc_cpu_order) - 1;
2622
2623 fc_exch_workqueue = create_singlethread_workqueue("fc_exch_workqueue");
2624 if (!fc_exch_workqueue)
2625 goto err;
2626 return 0;
2627 err:
2628 kmem_cache_destroy(fc_em_cachep);
2629 return -ENOMEM;
2630 }
2631
2632 /**
2633 * fc_destroy_exch_mgr() - Destroy an exchange manager
2634 */
2635 void fc_destroy_exch_mgr(void)
2636 {
2637 destroy_workqueue(fc_exch_workqueue);
2638 kmem_cache_destroy(fc_em_cachep);
2639 }
This page took 0.127134 seconds and 5 git commands to generate.