libfc: Remove extra space in fc_exch_timer_cancel definition
[deliverable/linux.git] / drivers / scsi / libfc / fc_exch.c
1 /*
2 * Copyright(c) 2007 Intel Corporation. All rights reserved.
3 * Copyright(c) 2008 Red Hat, Inc. All rights reserved.
4 * Copyright(c) 2008 Mike Christie
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms and conditions of the GNU General Public License,
8 * version 2, as published by the Free Software Foundation.
9 *
10 * This program is distributed in the hope it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
14 *
15 * You should have received a copy of the GNU General Public License along with
16 * this program; if not, write to the Free Software Foundation, Inc.,
17 * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Maintained at www.Open-FCoE.org
20 */
21
22 /*
23 * Fibre Channel exchange and sequence handling.
24 */
25
26 #include <linux/timer.h>
27 #include <linux/slab.h>
28 #include <linux/err.h>
29 #include <linux/export.h>
30
31 #include <scsi/fc/fc_fc2.h>
32
33 #include <scsi/libfc.h>
34 #include <scsi/fc_encode.h>
35
36 #include "fc_libfc.h"
37
38 u16 fc_cpu_mask; /* cpu mask for possible cpus */
39 EXPORT_SYMBOL(fc_cpu_mask);
40 static u16 fc_cpu_order; /* 2's power to represent total possible cpus */
41 static struct kmem_cache *fc_em_cachep; /* cache for exchanges */
42 static struct workqueue_struct *fc_exch_workqueue;
43
44 /*
45 * Structure and function definitions for managing Fibre Channel Exchanges
46 * and Sequences.
47 *
48 * The three primary structures used here are fc_exch_mgr, fc_exch, and fc_seq.
49 *
50 * fc_exch_mgr holds the exchange state for an N port
51 *
52 * fc_exch holds state for one exchange and links to its active sequence.
53 *
54 * fc_seq holds the state for an individual sequence.
55 */
56
57 /**
58 * struct fc_exch_pool - Per cpu exchange pool
59 * @next_index: Next possible free exchange index
60 * @total_exches: Total allocated exchanges
61 * @lock: Exch pool lock
62 * @ex_list: List of exchanges
63 *
64 * This structure manages per cpu exchanges in array of exchange pointers.
65 * This array is allocated followed by struct fc_exch_pool memory for
66 * assigned range of exchanges to per cpu pool.
67 */
68 struct fc_exch_pool {
69 spinlock_t lock;
70 struct list_head ex_list;
71 u16 next_index;
72 u16 total_exches;
73
74 /* two cache of free slot in exch array */
75 u16 left;
76 u16 right;
77 } ____cacheline_aligned_in_smp;
78
79 /**
80 * struct fc_exch_mgr - The Exchange Manager (EM).
81 * @class: Default class for new sequences
82 * @kref: Reference counter
83 * @min_xid: Minimum exchange ID
84 * @max_xid: Maximum exchange ID
85 * @ep_pool: Reserved exchange pointers
86 * @pool_max_index: Max exch array index in exch pool
87 * @pool: Per cpu exch pool
88 * @stats: Statistics structure
89 *
90 * This structure is the center for creating exchanges and sequences.
91 * It manages the allocation of exchange IDs.
92 */
93 struct fc_exch_mgr {
94 struct fc_exch_pool __percpu *pool;
95 mempool_t *ep_pool;
96 enum fc_class class;
97 struct kref kref;
98 u16 min_xid;
99 u16 max_xid;
100 u16 pool_max_index;
101
102 struct {
103 atomic_t no_free_exch;
104 atomic_t no_free_exch_xid;
105 atomic_t xid_not_found;
106 atomic_t xid_busy;
107 atomic_t seq_not_found;
108 atomic_t non_bls_resp;
109 } stats;
110 };
111
112 /**
113 * struct fc_exch_mgr_anchor - primary structure for list of EMs
114 * @ema_list: Exchange Manager Anchor list
115 * @mp: Exchange Manager associated with this anchor
116 * @match: Routine to determine if this anchor's EM should be used
117 *
118 * When walking the list of anchors the match routine will be called
119 * for each anchor to determine if that EM should be used. The last
120 * anchor in the list will always match to handle any exchanges not
121 * handled by other EMs. The non-default EMs would be added to the
122 * anchor list by HW that provides offloads.
123 */
124 struct fc_exch_mgr_anchor {
125 struct list_head ema_list;
126 struct fc_exch_mgr *mp;
127 bool (*match)(struct fc_frame *);
128 };
129
130 static void fc_exch_rrq(struct fc_exch *);
131 static void fc_seq_ls_acc(struct fc_frame *);
132 static void fc_seq_ls_rjt(struct fc_frame *, enum fc_els_rjt_reason,
133 enum fc_els_rjt_explan);
134 static void fc_exch_els_rec(struct fc_frame *);
135 static void fc_exch_els_rrq(struct fc_frame *);
136
137 /*
138 * Internal implementation notes.
139 *
140 * The exchange manager is one by default in libfc but LLD may choose
141 * to have one per CPU. The sequence manager is one per exchange manager
142 * and currently never separated.
143 *
144 * Section 9.8 in FC-FS-2 specifies: "The SEQ_ID is a one-byte field
145 * assigned by the Sequence Initiator that shall be unique for a specific
146 * D_ID and S_ID pair while the Sequence is open." Note that it isn't
147 * qualified by exchange ID, which one might think it would be.
148 * In practice this limits the number of open sequences and exchanges to 256
149 * per session. For most targets we could treat this limit as per exchange.
150 *
151 * The exchange and its sequence are freed when the last sequence is received.
152 * It's possible for the remote port to leave an exchange open without
153 * sending any sequences.
154 *
155 * Notes on reference counts:
156 *
157 * Exchanges are reference counted and exchange gets freed when the reference
158 * count becomes zero.
159 *
160 * Timeouts:
161 * Sequences are timed out for E_D_TOV and R_A_TOV.
162 *
163 * Sequence event handling:
164 *
165 * The following events may occur on initiator sequences:
166 *
167 * Send.
168 * For now, the whole thing is sent.
169 * Receive ACK
170 * This applies only to class F.
171 * The sequence is marked complete.
172 * ULP completion.
173 * The upper layer calls fc_exch_done() when done
174 * with exchange and sequence tuple.
175 * RX-inferred completion.
176 * When we receive the next sequence on the same exchange, we can
177 * retire the previous sequence ID. (XXX not implemented).
178 * Timeout.
179 * R_A_TOV frees the sequence ID. If we're waiting for ACK,
180 * E_D_TOV causes abort and calls upper layer response handler
181 * with FC_EX_TIMEOUT error.
182 * Receive RJT
183 * XXX defer.
184 * Send ABTS
185 * On timeout.
186 *
187 * The following events may occur on recipient sequences:
188 *
189 * Receive
190 * Allocate sequence for first frame received.
191 * Hold during receive handler.
192 * Release when final frame received.
193 * Keep status of last N of these for the ELS RES command. XXX TBD.
194 * Receive ABTS
195 * Deallocate sequence
196 * Send RJT
197 * Deallocate
198 *
199 * For now, we neglect conditions where only part of a sequence was
200 * received or transmitted, or where out-of-order receipt is detected.
201 */
202
203 /*
204 * Locking notes:
205 *
206 * The EM code run in a per-CPU worker thread.
207 *
208 * To protect against concurrency between a worker thread code and timers,
209 * sequence allocation and deallocation must be locked.
210 * - exchange refcnt can be done atomicly without locks.
211 * - sequence allocation must be locked by exch lock.
212 * - If the EM pool lock and ex_lock must be taken at the same time, then the
213 * EM pool lock must be taken before the ex_lock.
214 */
215
216 /*
217 * opcode names for debugging.
218 */
219 static char *fc_exch_rctl_names[] = FC_RCTL_NAMES_INIT;
220
221 /**
222 * fc_exch_name_lookup() - Lookup name by opcode
223 * @op: Opcode to be looked up
224 * @table: Opcode/name table
225 * @max_index: Index not to be exceeded
226 *
227 * This routine is used to determine a human-readable string identifying
228 * a R_CTL opcode.
229 */
230 static inline const char *fc_exch_name_lookup(unsigned int op, char **table,
231 unsigned int max_index)
232 {
233 const char *name = NULL;
234
235 if (op < max_index)
236 name = table[op];
237 if (!name)
238 name = "unknown";
239 return name;
240 }
241
242 /**
243 * fc_exch_rctl_name() - Wrapper routine for fc_exch_name_lookup()
244 * @op: The opcode to be looked up
245 */
246 static const char *fc_exch_rctl_name(unsigned int op)
247 {
248 return fc_exch_name_lookup(op, fc_exch_rctl_names,
249 ARRAY_SIZE(fc_exch_rctl_names));
250 }
251
252 /**
253 * fc_exch_hold() - Increment an exchange's reference count
254 * @ep: Echange to be held
255 */
256 static inline void fc_exch_hold(struct fc_exch *ep)
257 {
258 atomic_inc(&ep->ex_refcnt);
259 }
260
261 /**
262 * fc_exch_setup_hdr() - Initialize a FC header by initializing some fields
263 * and determine SOF and EOF.
264 * @ep: The exchange to that will use the header
265 * @fp: The frame whose header is to be modified
266 * @f_ctl: F_CTL bits that will be used for the frame header
267 *
268 * The fields initialized by this routine are: fh_ox_id, fh_rx_id,
269 * fh_seq_id, fh_seq_cnt and the SOF and EOF.
270 */
271 static void fc_exch_setup_hdr(struct fc_exch *ep, struct fc_frame *fp,
272 u32 f_ctl)
273 {
274 struct fc_frame_header *fh = fc_frame_header_get(fp);
275 u16 fill;
276
277 fr_sof(fp) = ep->class;
278 if (ep->seq.cnt)
279 fr_sof(fp) = fc_sof_normal(ep->class);
280
281 if (f_ctl & FC_FC_END_SEQ) {
282 fr_eof(fp) = FC_EOF_T;
283 if (fc_sof_needs_ack(ep->class))
284 fr_eof(fp) = FC_EOF_N;
285 /*
286 * From F_CTL.
287 * The number of fill bytes to make the length a 4-byte
288 * multiple is the low order 2-bits of the f_ctl.
289 * The fill itself will have been cleared by the frame
290 * allocation.
291 * After this, the length will be even, as expected by
292 * the transport.
293 */
294 fill = fr_len(fp) & 3;
295 if (fill) {
296 fill = 4 - fill;
297 /* TODO, this may be a problem with fragmented skb */
298 skb_put(fp_skb(fp), fill);
299 hton24(fh->fh_f_ctl, f_ctl | fill);
300 }
301 } else {
302 WARN_ON(fr_len(fp) % 4 != 0); /* no pad to non last frame */
303 fr_eof(fp) = FC_EOF_N;
304 }
305
306 /*
307 * Initialize remainig fh fields
308 * from fc_fill_fc_hdr
309 */
310 fh->fh_ox_id = htons(ep->oxid);
311 fh->fh_rx_id = htons(ep->rxid);
312 fh->fh_seq_id = ep->seq.id;
313 fh->fh_seq_cnt = htons(ep->seq.cnt);
314 }
315
316 /**
317 * fc_exch_release() - Decrement an exchange's reference count
318 * @ep: Exchange to be released
319 *
320 * If the reference count reaches zero and the exchange is complete,
321 * it is freed.
322 */
323 static void fc_exch_release(struct fc_exch *ep)
324 {
325 struct fc_exch_mgr *mp;
326
327 if (atomic_dec_and_test(&ep->ex_refcnt)) {
328 mp = ep->em;
329 if (ep->destructor)
330 ep->destructor(&ep->seq, ep->arg);
331 WARN_ON(!(ep->esb_stat & ESB_ST_COMPLETE));
332 mempool_free(ep, mp->ep_pool);
333 }
334 }
335
336 /**
337 * fc_exch_timer_cancel() - cancel exch timer
338 * @ep: The exchange whose timer to be canceled
339 */
340 static inline void fc_exch_timer_cancel(struct fc_exch *ep)
341 {
342 if (cancel_delayed_work(&ep->timeout_work)) {
343 FC_EXCH_DBG(ep, "Exchange timer canceled\n");
344 atomic_dec(&ep->ex_refcnt); /* drop hold for timer */
345 }
346 }
347
348 /**
349 * fc_exch_timer_set_locked() - Start a timer for an exchange w/ the
350 * the exchange lock held
351 * @ep: The exchange whose timer will start
352 * @timer_msec: The timeout period
353 *
354 * Used for upper level protocols to time out the exchange.
355 * The timer is cancelled when it fires or when the exchange completes.
356 */
357 static inline void fc_exch_timer_set_locked(struct fc_exch *ep,
358 unsigned int timer_msec)
359 {
360 if (ep->state & (FC_EX_RST_CLEANUP | FC_EX_DONE))
361 return;
362
363 FC_EXCH_DBG(ep, "Exchange timer armed : %d msecs\n", timer_msec);
364
365 if (queue_delayed_work(fc_exch_workqueue, &ep->timeout_work,
366 msecs_to_jiffies(timer_msec)))
367 fc_exch_hold(ep); /* hold for timer */
368 }
369
370 /**
371 * fc_exch_timer_set() - Lock the exchange and set the timer
372 * @ep: The exchange whose timer will start
373 * @timer_msec: The timeout period
374 */
375 static void fc_exch_timer_set(struct fc_exch *ep, unsigned int timer_msec)
376 {
377 spin_lock_bh(&ep->ex_lock);
378 fc_exch_timer_set_locked(ep, timer_msec);
379 spin_unlock_bh(&ep->ex_lock);
380 }
381
382 /**
383 * fc_exch_done_locked() - Complete an exchange with the exchange lock held
384 * @ep: The exchange that is complete
385 */
386 static int fc_exch_done_locked(struct fc_exch *ep)
387 {
388 int rc = 1;
389
390 /*
391 * We must check for completion in case there are two threads
392 * tyring to complete this. But the rrq code will reuse the
393 * ep, and in that case we only clear the resp and set it as
394 * complete, so it can be reused by the timer to send the rrq.
395 */
396 ep->resp = NULL;
397 if (ep->state & FC_EX_DONE)
398 return rc;
399 ep->esb_stat |= ESB_ST_COMPLETE;
400
401 if (!(ep->esb_stat & ESB_ST_REC_QUAL)) {
402 ep->state |= FC_EX_DONE;
403 fc_exch_timer_cancel(ep);
404 rc = 0;
405 }
406 return rc;
407 }
408
409 /**
410 * fc_exch_ptr_get() - Return an exchange from an exchange pool
411 * @pool: Exchange Pool to get an exchange from
412 * @index: Index of the exchange within the pool
413 *
414 * Use the index to get an exchange from within an exchange pool. exches
415 * will point to an array of exchange pointers. The index will select
416 * the exchange within the array.
417 */
418 static inline struct fc_exch *fc_exch_ptr_get(struct fc_exch_pool *pool,
419 u16 index)
420 {
421 struct fc_exch **exches = (struct fc_exch **)(pool + 1);
422 return exches[index];
423 }
424
425 /**
426 * fc_exch_ptr_set() - Assign an exchange to a slot in an exchange pool
427 * @pool: The pool to assign the exchange to
428 * @index: The index in the pool where the exchange will be assigned
429 * @ep: The exchange to assign to the pool
430 */
431 static inline void fc_exch_ptr_set(struct fc_exch_pool *pool, u16 index,
432 struct fc_exch *ep)
433 {
434 ((struct fc_exch **)(pool + 1))[index] = ep;
435 }
436
437 /**
438 * fc_exch_delete() - Delete an exchange
439 * @ep: The exchange to be deleted
440 */
441 static void fc_exch_delete(struct fc_exch *ep)
442 {
443 struct fc_exch_pool *pool;
444 u16 index;
445
446 pool = ep->pool;
447 spin_lock_bh(&pool->lock);
448 WARN_ON(pool->total_exches <= 0);
449 pool->total_exches--;
450
451 /* update cache of free slot */
452 index = (ep->xid - ep->em->min_xid) >> fc_cpu_order;
453 if (pool->left == FC_XID_UNKNOWN)
454 pool->left = index;
455 else if (pool->right == FC_XID_UNKNOWN)
456 pool->right = index;
457 else
458 pool->next_index = index;
459
460 fc_exch_ptr_set(pool, index, NULL);
461 list_del(&ep->ex_list);
462 spin_unlock_bh(&pool->lock);
463 fc_exch_release(ep); /* drop hold for exch in mp */
464 }
465
466 static int fc_seq_send_locked(struct fc_lport *lport, struct fc_seq *sp,
467 struct fc_frame *fp)
468 {
469 struct fc_exch *ep;
470 struct fc_frame_header *fh = fc_frame_header_get(fp);
471 int error;
472 u32 f_ctl;
473 u8 fh_type = fh->fh_type;
474
475 ep = fc_seq_exch(sp);
476 WARN_ON(!(ep->esb_stat & ESB_ST_SEQ_INIT));
477
478 f_ctl = ntoh24(fh->fh_f_ctl);
479 fc_exch_setup_hdr(ep, fp, f_ctl);
480 fr_encaps(fp) = ep->encaps;
481
482 /*
483 * update sequence count if this frame is carrying
484 * multiple FC frames when sequence offload is enabled
485 * by LLD.
486 */
487 if (fr_max_payload(fp))
488 sp->cnt += DIV_ROUND_UP((fr_len(fp) - sizeof(*fh)),
489 fr_max_payload(fp));
490 else
491 sp->cnt++;
492
493 /*
494 * Send the frame.
495 */
496 error = lport->tt.frame_send(lport, fp);
497
498 if (fh_type == FC_TYPE_BLS)
499 goto out;
500
501 /*
502 * Update the exchange and sequence flags,
503 * assuming all frames for the sequence have been sent.
504 * We can only be called to send once for each sequence.
505 */
506 ep->f_ctl = f_ctl & ~FC_FC_FIRST_SEQ; /* not first seq */
507 if (f_ctl & FC_FC_SEQ_INIT)
508 ep->esb_stat &= ~ESB_ST_SEQ_INIT;
509 out:
510 return error;
511 }
512
513 /**
514 * fc_seq_send() - Send a frame using existing sequence/exchange pair
515 * @lport: The local port that the exchange will be sent on
516 * @sp: The sequence to be sent
517 * @fp: The frame to be sent on the exchange
518 */
519 static int fc_seq_send(struct fc_lport *lport, struct fc_seq *sp,
520 struct fc_frame *fp)
521 {
522 struct fc_exch *ep;
523 int error;
524 ep = fc_seq_exch(sp);
525 spin_lock_bh(&ep->ex_lock);
526 error = fc_seq_send_locked(lport, sp, fp);
527 spin_unlock_bh(&ep->ex_lock);
528 return error;
529 }
530
531 /**
532 * fc_seq_alloc() - Allocate a sequence for a given exchange
533 * @ep: The exchange to allocate a new sequence for
534 * @seq_id: The sequence ID to be used
535 *
536 * We don't support multiple originated sequences on the same exchange.
537 * By implication, any previously originated sequence on this exchange
538 * is complete, and we reallocate the same sequence.
539 */
540 static struct fc_seq *fc_seq_alloc(struct fc_exch *ep, u8 seq_id)
541 {
542 struct fc_seq *sp;
543
544 sp = &ep->seq;
545 sp->ssb_stat = 0;
546 sp->cnt = 0;
547 sp->id = seq_id;
548 return sp;
549 }
550
551 /**
552 * fc_seq_start_next_locked() - Allocate a new sequence on the same
553 * exchange as the supplied sequence
554 * @sp: The sequence/exchange to get a new sequence for
555 */
556 static struct fc_seq *fc_seq_start_next_locked(struct fc_seq *sp)
557 {
558 struct fc_exch *ep = fc_seq_exch(sp);
559
560 sp = fc_seq_alloc(ep, ep->seq_id++);
561 FC_EXCH_DBG(ep, "f_ctl %6x seq %2x\n",
562 ep->f_ctl, sp->id);
563 return sp;
564 }
565
566 /**
567 * fc_seq_start_next() - Lock the exchange and get a new sequence
568 * for a given sequence/exchange pair
569 * @sp: The sequence/exchange to get a new exchange for
570 */
571 static struct fc_seq *fc_seq_start_next(struct fc_seq *sp)
572 {
573 struct fc_exch *ep = fc_seq_exch(sp);
574
575 spin_lock_bh(&ep->ex_lock);
576 sp = fc_seq_start_next_locked(sp);
577 spin_unlock_bh(&ep->ex_lock);
578
579 return sp;
580 }
581
582 /*
583 * Set the response handler for the exchange associated with a sequence.
584 */
585 static void fc_seq_set_resp(struct fc_seq *sp,
586 void (*resp)(struct fc_seq *, struct fc_frame *,
587 void *),
588 void *arg)
589 {
590 struct fc_exch *ep = fc_seq_exch(sp);
591
592 spin_lock_bh(&ep->ex_lock);
593 ep->resp = resp;
594 ep->arg = arg;
595 spin_unlock_bh(&ep->ex_lock);
596 }
597
598 /**
599 * fc_exch_abort_locked() - Abort an exchange
600 * @ep: The exchange to be aborted
601 * @timer_msec: The period of time to wait before aborting
602 *
603 * Locking notes: Called with exch lock held
604 *
605 * Return value: 0 on success else error code
606 */
607 static int fc_exch_abort_locked(struct fc_exch *ep,
608 unsigned int timer_msec)
609 {
610 struct fc_seq *sp;
611 struct fc_frame *fp;
612 int error;
613
614 if (ep->esb_stat & (ESB_ST_COMPLETE | ESB_ST_ABNORMAL) ||
615 ep->state & (FC_EX_DONE | FC_EX_RST_CLEANUP))
616 return -ENXIO;
617
618 /*
619 * Send the abort on a new sequence if possible.
620 */
621 sp = fc_seq_start_next_locked(&ep->seq);
622 if (!sp)
623 return -ENOMEM;
624
625 ep->esb_stat |= ESB_ST_SEQ_INIT | ESB_ST_ABNORMAL;
626 if (timer_msec)
627 fc_exch_timer_set_locked(ep, timer_msec);
628
629 /*
630 * If not logged into the fabric, don't send ABTS but leave
631 * sequence active until next timeout.
632 */
633 if (!ep->sid)
634 return 0;
635
636 /*
637 * Send an abort for the sequence that timed out.
638 */
639 fp = fc_frame_alloc(ep->lp, 0);
640 if (fp) {
641 fc_fill_fc_hdr(fp, FC_RCTL_BA_ABTS, ep->did, ep->sid,
642 FC_TYPE_BLS, FC_FC_END_SEQ | FC_FC_SEQ_INIT, 0);
643 error = fc_seq_send_locked(ep->lp, sp, fp);
644 } else
645 error = -ENOBUFS;
646 return error;
647 }
648
649 /**
650 * fc_seq_exch_abort() - Abort an exchange and sequence
651 * @req_sp: The sequence to be aborted
652 * @timer_msec: The period of time to wait before aborting
653 *
654 * Generally called because of a timeout or an abort from the upper layer.
655 *
656 * Return value: 0 on success else error code
657 */
658 static int fc_seq_exch_abort(const struct fc_seq *req_sp,
659 unsigned int timer_msec)
660 {
661 struct fc_exch *ep;
662 int error;
663
664 ep = fc_seq_exch(req_sp);
665 spin_lock_bh(&ep->ex_lock);
666 error = fc_exch_abort_locked(ep, timer_msec);
667 spin_unlock_bh(&ep->ex_lock);
668 return error;
669 }
670
671 /**
672 * fc_exch_timeout() - Handle exchange timer expiration
673 * @work: The work_struct identifying the exchange that timed out
674 */
675 static void fc_exch_timeout(struct work_struct *work)
676 {
677 struct fc_exch *ep = container_of(work, struct fc_exch,
678 timeout_work.work);
679 struct fc_seq *sp = &ep->seq;
680 void (*resp)(struct fc_seq *, struct fc_frame *fp, void *arg);
681 void *arg;
682 u32 e_stat;
683 int rc = 1;
684
685 FC_EXCH_DBG(ep, "Exchange timed out\n");
686
687 spin_lock_bh(&ep->ex_lock);
688 if (ep->state & (FC_EX_RST_CLEANUP | FC_EX_DONE))
689 goto unlock;
690
691 e_stat = ep->esb_stat;
692 if (e_stat & ESB_ST_COMPLETE) {
693 ep->esb_stat = e_stat & ~ESB_ST_REC_QUAL;
694 spin_unlock_bh(&ep->ex_lock);
695 if (e_stat & ESB_ST_REC_QUAL)
696 fc_exch_rrq(ep);
697 goto done;
698 } else {
699 resp = ep->resp;
700 arg = ep->arg;
701 ep->resp = NULL;
702 if (e_stat & ESB_ST_ABNORMAL)
703 rc = fc_exch_done_locked(ep);
704 spin_unlock_bh(&ep->ex_lock);
705 if (!rc)
706 fc_exch_delete(ep);
707 if (resp)
708 resp(sp, ERR_PTR(-FC_EX_TIMEOUT), arg);
709 fc_seq_exch_abort(sp, 2 * ep->r_a_tov);
710 goto done;
711 }
712 unlock:
713 spin_unlock_bh(&ep->ex_lock);
714 done:
715 /*
716 * This release matches the hold taken when the timer was set.
717 */
718 fc_exch_release(ep);
719 }
720
721 /**
722 * fc_exch_em_alloc() - Allocate an exchange from a specified EM.
723 * @lport: The local port that the exchange is for
724 * @mp: The exchange manager that will allocate the exchange
725 *
726 * Returns pointer to allocated fc_exch with exch lock held.
727 */
728 static struct fc_exch *fc_exch_em_alloc(struct fc_lport *lport,
729 struct fc_exch_mgr *mp)
730 {
731 struct fc_exch *ep;
732 unsigned int cpu;
733 u16 index;
734 struct fc_exch_pool *pool;
735
736 /* allocate memory for exchange */
737 ep = mempool_alloc(mp->ep_pool, GFP_ATOMIC);
738 if (!ep) {
739 atomic_inc(&mp->stats.no_free_exch);
740 goto out;
741 }
742 memset(ep, 0, sizeof(*ep));
743
744 cpu = get_cpu();
745 pool = per_cpu_ptr(mp->pool, cpu);
746 spin_lock_bh(&pool->lock);
747 put_cpu();
748
749 /* peek cache of free slot */
750 if (pool->left != FC_XID_UNKNOWN) {
751 index = pool->left;
752 pool->left = FC_XID_UNKNOWN;
753 goto hit;
754 }
755 if (pool->right != FC_XID_UNKNOWN) {
756 index = pool->right;
757 pool->right = FC_XID_UNKNOWN;
758 goto hit;
759 }
760
761 index = pool->next_index;
762 /* allocate new exch from pool */
763 while (fc_exch_ptr_get(pool, index)) {
764 index = index == mp->pool_max_index ? 0 : index + 1;
765 if (index == pool->next_index)
766 goto err;
767 }
768 pool->next_index = index == mp->pool_max_index ? 0 : index + 1;
769 hit:
770 fc_exch_hold(ep); /* hold for exch in mp */
771 spin_lock_init(&ep->ex_lock);
772 /*
773 * Hold exch lock for caller to prevent fc_exch_reset()
774 * from releasing exch while fc_exch_alloc() caller is
775 * still working on exch.
776 */
777 spin_lock_bh(&ep->ex_lock);
778
779 fc_exch_ptr_set(pool, index, ep);
780 list_add_tail(&ep->ex_list, &pool->ex_list);
781 fc_seq_alloc(ep, ep->seq_id++);
782 pool->total_exches++;
783 spin_unlock_bh(&pool->lock);
784
785 /*
786 * update exchange
787 */
788 ep->oxid = ep->xid = (index << fc_cpu_order | cpu) + mp->min_xid;
789 ep->em = mp;
790 ep->pool = pool;
791 ep->lp = lport;
792 ep->f_ctl = FC_FC_FIRST_SEQ; /* next seq is first seq */
793 ep->rxid = FC_XID_UNKNOWN;
794 ep->class = mp->class;
795 INIT_DELAYED_WORK(&ep->timeout_work, fc_exch_timeout);
796 out:
797 return ep;
798 err:
799 spin_unlock_bh(&pool->lock);
800 atomic_inc(&mp->stats.no_free_exch_xid);
801 mempool_free(ep, mp->ep_pool);
802 return NULL;
803 }
804
805 /**
806 * fc_exch_alloc() - Allocate an exchange from an EM on a
807 * local port's list of EMs.
808 * @lport: The local port that will own the exchange
809 * @fp: The FC frame that the exchange will be for
810 *
811 * This function walks the list of exchange manager(EM)
812 * anchors to select an EM for a new exchange allocation. The
813 * EM is selected when a NULL match function pointer is encountered
814 * or when a call to a match function returns true.
815 */
816 static inline struct fc_exch *fc_exch_alloc(struct fc_lport *lport,
817 struct fc_frame *fp)
818 {
819 struct fc_exch_mgr_anchor *ema;
820
821 list_for_each_entry(ema, &lport->ema_list, ema_list)
822 if (!ema->match || ema->match(fp))
823 return fc_exch_em_alloc(lport, ema->mp);
824 return NULL;
825 }
826
827 /**
828 * fc_exch_find() - Lookup and hold an exchange
829 * @mp: The exchange manager to lookup the exchange from
830 * @xid: The XID of the exchange to look up
831 */
832 static struct fc_exch *fc_exch_find(struct fc_exch_mgr *mp, u16 xid)
833 {
834 struct fc_exch_pool *pool;
835 struct fc_exch *ep = NULL;
836
837 if ((xid >= mp->min_xid) && (xid <= mp->max_xid)) {
838 pool = per_cpu_ptr(mp->pool, xid & fc_cpu_mask);
839 spin_lock_bh(&pool->lock);
840 ep = fc_exch_ptr_get(pool, (xid - mp->min_xid) >> fc_cpu_order);
841 if (ep && ep->xid == xid)
842 fc_exch_hold(ep);
843 spin_unlock_bh(&pool->lock);
844 }
845 return ep;
846 }
847
848
849 /**
850 * fc_exch_done() - Indicate that an exchange/sequence tuple is complete and
851 * the memory allocated for the related objects may be freed.
852 * @sp: The sequence that has completed
853 */
854 static void fc_exch_done(struct fc_seq *sp)
855 {
856 struct fc_exch *ep = fc_seq_exch(sp);
857 int rc;
858
859 spin_lock_bh(&ep->ex_lock);
860 rc = fc_exch_done_locked(ep);
861 spin_unlock_bh(&ep->ex_lock);
862 if (!rc)
863 fc_exch_delete(ep);
864 }
865
866 /**
867 * fc_exch_resp() - Allocate a new exchange for a response frame
868 * @lport: The local port that the exchange was for
869 * @mp: The exchange manager to allocate the exchange from
870 * @fp: The response frame
871 *
872 * Sets the responder ID in the frame header.
873 */
874 static struct fc_exch *fc_exch_resp(struct fc_lport *lport,
875 struct fc_exch_mgr *mp,
876 struct fc_frame *fp)
877 {
878 struct fc_exch *ep;
879 struct fc_frame_header *fh;
880
881 ep = fc_exch_alloc(lport, fp);
882 if (ep) {
883 ep->class = fc_frame_class(fp);
884
885 /*
886 * Set EX_CTX indicating we're responding on this exchange.
887 */
888 ep->f_ctl |= FC_FC_EX_CTX; /* we're responding */
889 ep->f_ctl &= ~FC_FC_FIRST_SEQ; /* not new */
890 fh = fc_frame_header_get(fp);
891 ep->sid = ntoh24(fh->fh_d_id);
892 ep->did = ntoh24(fh->fh_s_id);
893 ep->oid = ep->did;
894
895 /*
896 * Allocated exchange has placed the XID in the
897 * originator field. Move it to the responder field,
898 * and set the originator XID from the frame.
899 */
900 ep->rxid = ep->xid;
901 ep->oxid = ntohs(fh->fh_ox_id);
902 ep->esb_stat |= ESB_ST_RESP | ESB_ST_SEQ_INIT;
903 if ((ntoh24(fh->fh_f_ctl) & FC_FC_SEQ_INIT) == 0)
904 ep->esb_stat &= ~ESB_ST_SEQ_INIT;
905
906 fc_exch_hold(ep); /* hold for caller */
907 spin_unlock_bh(&ep->ex_lock); /* lock from fc_exch_alloc */
908 }
909 return ep;
910 }
911
912 /**
913 * fc_seq_lookup_recip() - Find a sequence where the other end
914 * originated the sequence
915 * @lport: The local port that the frame was sent to
916 * @mp: The Exchange Manager to lookup the exchange from
917 * @fp: The frame associated with the sequence we're looking for
918 *
919 * If fc_pf_rjt_reason is FC_RJT_NONE then this function will have a hold
920 * on the ep that should be released by the caller.
921 */
922 static enum fc_pf_rjt_reason fc_seq_lookup_recip(struct fc_lport *lport,
923 struct fc_exch_mgr *mp,
924 struct fc_frame *fp)
925 {
926 struct fc_frame_header *fh = fc_frame_header_get(fp);
927 struct fc_exch *ep = NULL;
928 struct fc_seq *sp = NULL;
929 enum fc_pf_rjt_reason reject = FC_RJT_NONE;
930 u32 f_ctl;
931 u16 xid;
932
933 f_ctl = ntoh24(fh->fh_f_ctl);
934 WARN_ON((f_ctl & FC_FC_SEQ_CTX) != 0);
935
936 /*
937 * Lookup or create the exchange if we will be creating the sequence.
938 */
939 if (f_ctl & FC_FC_EX_CTX) {
940 xid = ntohs(fh->fh_ox_id); /* we originated exch */
941 ep = fc_exch_find(mp, xid);
942 if (!ep) {
943 atomic_inc(&mp->stats.xid_not_found);
944 reject = FC_RJT_OX_ID;
945 goto out;
946 }
947 if (ep->rxid == FC_XID_UNKNOWN)
948 ep->rxid = ntohs(fh->fh_rx_id);
949 else if (ep->rxid != ntohs(fh->fh_rx_id)) {
950 reject = FC_RJT_OX_ID;
951 goto rel;
952 }
953 } else {
954 xid = ntohs(fh->fh_rx_id); /* we are the responder */
955
956 /*
957 * Special case for MDS issuing an ELS TEST with a
958 * bad rxid of 0.
959 * XXX take this out once we do the proper reject.
960 */
961 if (xid == 0 && fh->fh_r_ctl == FC_RCTL_ELS_REQ &&
962 fc_frame_payload_op(fp) == ELS_TEST) {
963 fh->fh_rx_id = htons(FC_XID_UNKNOWN);
964 xid = FC_XID_UNKNOWN;
965 }
966
967 /*
968 * new sequence - find the exchange
969 */
970 ep = fc_exch_find(mp, xid);
971 if ((f_ctl & FC_FC_FIRST_SEQ) && fc_sof_is_init(fr_sof(fp))) {
972 if (ep) {
973 atomic_inc(&mp->stats.xid_busy);
974 reject = FC_RJT_RX_ID;
975 goto rel;
976 }
977 ep = fc_exch_resp(lport, mp, fp);
978 if (!ep) {
979 reject = FC_RJT_EXCH_EST; /* XXX */
980 goto out;
981 }
982 xid = ep->xid; /* get our XID */
983 } else if (!ep) {
984 atomic_inc(&mp->stats.xid_not_found);
985 reject = FC_RJT_RX_ID; /* XID not found */
986 goto out;
987 }
988 }
989
990 /*
991 * At this point, we have the exchange held.
992 * Find or create the sequence.
993 */
994 if (fc_sof_is_init(fr_sof(fp))) {
995 sp = &ep->seq;
996 sp->ssb_stat |= SSB_ST_RESP;
997 sp->id = fh->fh_seq_id;
998 } else {
999 sp = &ep->seq;
1000 if (sp->id != fh->fh_seq_id) {
1001 atomic_inc(&mp->stats.seq_not_found);
1002 if (f_ctl & FC_FC_END_SEQ) {
1003 /*
1004 * Update sequence_id based on incoming last
1005 * frame of sequence exchange. This is needed
1006 * for FC target where DDP has been used
1007 * on target where, stack is indicated only
1008 * about last frame's (payload _header) header.
1009 * Whereas "seq_id" which is part of
1010 * frame_header is allocated by initiator
1011 * which is totally different from "seq_id"
1012 * allocated when XFER_RDY was sent by target.
1013 * To avoid false -ve which results into not
1014 * sending RSP, hence write request on other
1015 * end never finishes.
1016 */
1017 spin_lock_bh(&ep->ex_lock);
1018 sp->ssb_stat |= SSB_ST_RESP;
1019 sp->id = fh->fh_seq_id;
1020 spin_unlock_bh(&ep->ex_lock);
1021 } else {
1022 /* sequence/exch should exist */
1023 reject = FC_RJT_SEQ_ID;
1024 goto rel;
1025 }
1026 }
1027 }
1028 WARN_ON(ep != fc_seq_exch(sp));
1029
1030 if (f_ctl & FC_FC_SEQ_INIT)
1031 ep->esb_stat |= ESB_ST_SEQ_INIT;
1032
1033 fr_seq(fp) = sp;
1034 out:
1035 return reject;
1036 rel:
1037 fc_exch_done(&ep->seq);
1038 fc_exch_release(ep); /* hold from fc_exch_find/fc_exch_resp */
1039 return reject;
1040 }
1041
1042 /**
1043 * fc_seq_lookup_orig() - Find a sequence where this end
1044 * originated the sequence
1045 * @mp: The Exchange Manager to lookup the exchange from
1046 * @fp: The frame associated with the sequence we're looking for
1047 *
1048 * Does not hold the sequence for the caller.
1049 */
1050 static struct fc_seq *fc_seq_lookup_orig(struct fc_exch_mgr *mp,
1051 struct fc_frame *fp)
1052 {
1053 struct fc_frame_header *fh = fc_frame_header_get(fp);
1054 struct fc_exch *ep;
1055 struct fc_seq *sp = NULL;
1056 u32 f_ctl;
1057 u16 xid;
1058
1059 f_ctl = ntoh24(fh->fh_f_ctl);
1060 WARN_ON((f_ctl & FC_FC_SEQ_CTX) != FC_FC_SEQ_CTX);
1061 xid = ntohs((f_ctl & FC_FC_EX_CTX) ? fh->fh_ox_id : fh->fh_rx_id);
1062 ep = fc_exch_find(mp, xid);
1063 if (!ep)
1064 return NULL;
1065 if (ep->seq.id == fh->fh_seq_id) {
1066 /*
1067 * Save the RX_ID if we didn't previously know it.
1068 */
1069 sp = &ep->seq;
1070 if ((f_ctl & FC_FC_EX_CTX) != 0 &&
1071 ep->rxid == FC_XID_UNKNOWN) {
1072 ep->rxid = ntohs(fh->fh_rx_id);
1073 }
1074 }
1075 fc_exch_release(ep);
1076 return sp;
1077 }
1078
1079 /**
1080 * fc_exch_set_addr() - Set the source and destination IDs for an exchange
1081 * @ep: The exchange to set the addresses for
1082 * @orig_id: The originator's ID
1083 * @resp_id: The responder's ID
1084 *
1085 * Note this must be done before the first sequence of the exchange is sent.
1086 */
1087 static void fc_exch_set_addr(struct fc_exch *ep,
1088 u32 orig_id, u32 resp_id)
1089 {
1090 ep->oid = orig_id;
1091 if (ep->esb_stat & ESB_ST_RESP) {
1092 ep->sid = resp_id;
1093 ep->did = orig_id;
1094 } else {
1095 ep->sid = orig_id;
1096 ep->did = resp_id;
1097 }
1098 }
1099
1100 /**
1101 * fc_seq_els_rsp_send() - Send an ELS response using information from
1102 * the existing sequence/exchange.
1103 * @fp: The received frame
1104 * @els_cmd: The ELS command to be sent
1105 * @els_data: The ELS data to be sent
1106 *
1107 * The received frame is not freed.
1108 */
1109 static void fc_seq_els_rsp_send(struct fc_frame *fp, enum fc_els_cmd els_cmd,
1110 struct fc_seq_els_data *els_data)
1111 {
1112 switch (els_cmd) {
1113 case ELS_LS_RJT:
1114 fc_seq_ls_rjt(fp, els_data->reason, els_data->explan);
1115 break;
1116 case ELS_LS_ACC:
1117 fc_seq_ls_acc(fp);
1118 break;
1119 case ELS_RRQ:
1120 fc_exch_els_rrq(fp);
1121 break;
1122 case ELS_REC:
1123 fc_exch_els_rec(fp);
1124 break;
1125 default:
1126 FC_LPORT_DBG(fr_dev(fp), "Invalid ELS CMD:%x\n", els_cmd);
1127 }
1128 }
1129
1130 /**
1131 * fc_seq_send_last() - Send a sequence that is the last in the exchange
1132 * @sp: The sequence that is to be sent
1133 * @fp: The frame that will be sent on the sequence
1134 * @rctl: The R_CTL information to be sent
1135 * @fh_type: The frame header type
1136 */
1137 static void fc_seq_send_last(struct fc_seq *sp, struct fc_frame *fp,
1138 enum fc_rctl rctl, enum fc_fh_type fh_type)
1139 {
1140 u32 f_ctl;
1141 struct fc_exch *ep = fc_seq_exch(sp);
1142
1143 f_ctl = FC_FC_LAST_SEQ | FC_FC_END_SEQ | FC_FC_SEQ_INIT;
1144 f_ctl |= ep->f_ctl;
1145 fc_fill_fc_hdr(fp, rctl, ep->did, ep->sid, fh_type, f_ctl, 0);
1146 fc_seq_send_locked(ep->lp, sp, fp);
1147 }
1148
1149 /**
1150 * fc_seq_send_ack() - Send an acknowledgement that we've received a frame
1151 * @sp: The sequence to send the ACK on
1152 * @rx_fp: The received frame that is being acknoledged
1153 *
1154 * Send ACK_1 (or equiv.) indicating we received something.
1155 */
1156 static void fc_seq_send_ack(struct fc_seq *sp, const struct fc_frame *rx_fp)
1157 {
1158 struct fc_frame *fp;
1159 struct fc_frame_header *rx_fh;
1160 struct fc_frame_header *fh;
1161 struct fc_exch *ep = fc_seq_exch(sp);
1162 struct fc_lport *lport = ep->lp;
1163 unsigned int f_ctl;
1164
1165 /*
1166 * Don't send ACKs for class 3.
1167 */
1168 if (fc_sof_needs_ack(fr_sof(rx_fp))) {
1169 fp = fc_frame_alloc(lport, 0);
1170 if (!fp)
1171 return;
1172
1173 fh = fc_frame_header_get(fp);
1174 fh->fh_r_ctl = FC_RCTL_ACK_1;
1175 fh->fh_type = FC_TYPE_BLS;
1176
1177 /*
1178 * Form f_ctl by inverting EX_CTX and SEQ_CTX (bits 23, 22).
1179 * Echo FIRST_SEQ, LAST_SEQ, END_SEQ, END_CONN, SEQ_INIT.
1180 * Bits 9-8 are meaningful (retransmitted or unidirectional).
1181 * Last ACK uses bits 7-6 (continue sequence),
1182 * bits 5-4 are meaningful (what kind of ACK to use).
1183 */
1184 rx_fh = fc_frame_header_get(rx_fp);
1185 f_ctl = ntoh24(rx_fh->fh_f_ctl);
1186 f_ctl &= FC_FC_EX_CTX | FC_FC_SEQ_CTX |
1187 FC_FC_FIRST_SEQ | FC_FC_LAST_SEQ |
1188 FC_FC_END_SEQ | FC_FC_END_CONN | FC_FC_SEQ_INIT |
1189 FC_FC_RETX_SEQ | FC_FC_UNI_TX;
1190 f_ctl ^= FC_FC_EX_CTX | FC_FC_SEQ_CTX;
1191 hton24(fh->fh_f_ctl, f_ctl);
1192
1193 fc_exch_setup_hdr(ep, fp, f_ctl);
1194 fh->fh_seq_id = rx_fh->fh_seq_id;
1195 fh->fh_seq_cnt = rx_fh->fh_seq_cnt;
1196 fh->fh_parm_offset = htonl(1); /* ack single frame */
1197
1198 fr_sof(fp) = fr_sof(rx_fp);
1199 if (f_ctl & FC_FC_END_SEQ)
1200 fr_eof(fp) = FC_EOF_T;
1201 else
1202 fr_eof(fp) = FC_EOF_N;
1203
1204 lport->tt.frame_send(lport, fp);
1205 }
1206 }
1207
1208 /**
1209 * fc_exch_send_ba_rjt() - Send BLS Reject
1210 * @rx_fp: The frame being rejected
1211 * @reason: The reason the frame is being rejected
1212 * @explan: The explanation for the rejection
1213 *
1214 * This is for rejecting BA_ABTS only.
1215 */
1216 static void fc_exch_send_ba_rjt(struct fc_frame *rx_fp,
1217 enum fc_ba_rjt_reason reason,
1218 enum fc_ba_rjt_explan explan)
1219 {
1220 struct fc_frame *fp;
1221 struct fc_frame_header *rx_fh;
1222 struct fc_frame_header *fh;
1223 struct fc_ba_rjt *rp;
1224 struct fc_lport *lport;
1225 unsigned int f_ctl;
1226
1227 lport = fr_dev(rx_fp);
1228 fp = fc_frame_alloc(lport, sizeof(*rp));
1229 if (!fp)
1230 return;
1231 fh = fc_frame_header_get(fp);
1232 rx_fh = fc_frame_header_get(rx_fp);
1233
1234 memset(fh, 0, sizeof(*fh) + sizeof(*rp));
1235
1236 rp = fc_frame_payload_get(fp, sizeof(*rp));
1237 rp->br_reason = reason;
1238 rp->br_explan = explan;
1239
1240 /*
1241 * seq_id, cs_ctl, df_ctl and param/offset are zero.
1242 */
1243 memcpy(fh->fh_s_id, rx_fh->fh_d_id, 3);
1244 memcpy(fh->fh_d_id, rx_fh->fh_s_id, 3);
1245 fh->fh_ox_id = rx_fh->fh_ox_id;
1246 fh->fh_rx_id = rx_fh->fh_rx_id;
1247 fh->fh_seq_cnt = rx_fh->fh_seq_cnt;
1248 fh->fh_r_ctl = FC_RCTL_BA_RJT;
1249 fh->fh_type = FC_TYPE_BLS;
1250
1251 /*
1252 * Form f_ctl by inverting EX_CTX and SEQ_CTX (bits 23, 22).
1253 * Echo FIRST_SEQ, LAST_SEQ, END_SEQ, END_CONN, SEQ_INIT.
1254 * Bits 9-8 are meaningful (retransmitted or unidirectional).
1255 * Last ACK uses bits 7-6 (continue sequence),
1256 * bits 5-4 are meaningful (what kind of ACK to use).
1257 * Always set LAST_SEQ, END_SEQ.
1258 */
1259 f_ctl = ntoh24(rx_fh->fh_f_ctl);
1260 f_ctl &= FC_FC_EX_CTX | FC_FC_SEQ_CTX |
1261 FC_FC_END_CONN | FC_FC_SEQ_INIT |
1262 FC_FC_RETX_SEQ | FC_FC_UNI_TX;
1263 f_ctl ^= FC_FC_EX_CTX | FC_FC_SEQ_CTX;
1264 f_ctl |= FC_FC_LAST_SEQ | FC_FC_END_SEQ;
1265 f_ctl &= ~FC_FC_FIRST_SEQ;
1266 hton24(fh->fh_f_ctl, f_ctl);
1267
1268 fr_sof(fp) = fc_sof_class(fr_sof(rx_fp));
1269 fr_eof(fp) = FC_EOF_T;
1270 if (fc_sof_needs_ack(fr_sof(fp)))
1271 fr_eof(fp) = FC_EOF_N;
1272
1273 lport->tt.frame_send(lport, fp);
1274 }
1275
1276 /**
1277 * fc_exch_recv_abts() - Handle an incoming ABTS
1278 * @ep: The exchange the abort was on
1279 * @rx_fp: The ABTS frame
1280 *
1281 * This would be for target mode usually, but could be due to lost
1282 * FCP transfer ready, confirm or RRQ. We always handle this as an
1283 * exchange abort, ignoring the parameter.
1284 */
1285 static void fc_exch_recv_abts(struct fc_exch *ep, struct fc_frame *rx_fp)
1286 {
1287 struct fc_frame *fp;
1288 struct fc_ba_acc *ap;
1289 struct fc_frame_header *fh;
1290 struct fc_seq *sp;
1291
1292 if (!ep)
1293 goto reject;
1294 spin_lock_bh(&ep->ex_lock);
1295 if (ep->esb_stat & ESB_ST_COMPLETE) {
1296 spin_unlock_bh(&ep->ex_lock);
1297 goto reject;
1298 }
1299 if (!(ep->esb_stat & ESB_ST_REC_QUAL))
1300 fc_exch_hold(ep); /* hold for REC_QUAL */
1301 ep->esb_stat |= ESB_ST_ABNORMAL | ESB_ST_REC_QUAL;
1302 fc_exch_timer_set_locked(ep, ep->r_a_tov);
1303
1304 fp = fc_frame_alloc(ep->lp, sizeof(*ap));
1305 if (!fp) {
1306 spin_unlock_bh(&ep->ex_lock);
1307 goto free;
1308 }
1309 fh = fc_frame_header_get(fp);
1310 ap = fc_frame_payload_get(fp, sizeof(*ap));
1311 memset(ap, 0, sizeof(*ap));
1312 sp = &ep->seq;
1313 ap->ba_high_seq_cnt = htons(0xffff);
1314 if (sp->ssb_stat & SSB_ST_RESP) {
1315 ap->ba_seq_id = sp->id;
1316 ap->ba_seq_id_val = FC_BA_SEQ_ID_VAL;
1317 ap->ba_high_seq_cnt = fh->fh_seq_cnt;
1318 ap->ba_low_seq_cnt = htons(sp->cnt);
1319 }
1320 sp = fc_seq_start_next_locked(sp);
1321 fc_seq_send_last(sp, fp, FC_RCTL_BA_ACC, FC_TYPE_BLS);
1322 spin_unlock_bh(&ep->ex_lock);
1323 fc_frame_free(rx_fp);
1324 return;
1325
1326 reject:
1327 fc_exch_send_ba_rjt(rx_fp, FC_BA_RJT_UNABLE, FC_BA_RJT_INV_XID);
1328 free:
1329 fc_frame_free(rx_fp);
1330 }
1331
1332 /**
1333 * fc_seq_assign() - Assign exchange and sequence for incoming request
1334 * @lport: The local port that received the request
1335 * @fp: The request frame
1336 *
1337 * On success, the sequence pointer will be returned and also in fr_seq(@fp).
1338 * A reference will be held on the exchange/sequence for the caller, which
1339 * must call fc_seq_release().
1340 */
1341 static struct fc_seq *fc_seq_assign(struct fc_lport *lport, struct fc_frame *fp)
1342 {
1343 struct fc_exch_mgr_anchor *ema;
1344
1345 WARN_ON(lport != fr_dev(fp));
1346 WARN_ON(fr_seq(fp));
1347 fr_seq(fp) = NULL;
1348
1349 list_for_each_entry(ema, &lport->ema_list, ema_list)
1350 if ((!ema->match || ema->match(fp)) &&
1351 fc_seq_lookup_recip(lport, ema->mp, fp) == FC_RJT_NONE)
1352 break;
1353 return fr_seq(fp);
1354 }
1355
1356 /**
1357 * fc_seq_release() - Release the hold
1358 * @sp: The sequence.
1359 */
1360 static void fc_seq_release(struct fc_seq *sp)
1361 {
1362 fc_exch_release(fc_seq_exch(sp));
1363 }
1364
1365 /**
1366 * fc_exch_recv_req() - Handler for an incoming request
1367 * @lport: The local port that received the request
1368 * @mp: The EM that the exchange is on
1369 * @fp: The request frame
1370 *
1371 * This is used when the other end is originating the exchange
1372 * and the sequence.
1373 */
1374 static void fc_exch_recv_req(struct fc_lport *lport, struct fc_exch_mgr *mp,
1375 struct fc_frame *fp)
1376 {
1377 struct fc_frame_header *fh = fc_frame_header_get(fp);
1378 struct fc_seq *sp = NULL;
1379 struct fc_exch *ep = NULL;
1380 enum fc_pf_rjt_reason reject;
1381
1382 /* We can have the wrong fc_lport at this point with NPIV, which is a
1383 * problem now that we know a new exchange needs to be allocated
1384 */
1385 lport = fc_vport_id_lookup(lport, ntoh24(fh->fh_d_id));
1386 if (!lport) {
1387 fc_frame_free(fp);
1388 return;
1389 }
1390 fr_dev(fp) = lport;
1391
1392 BUG_ON(fr_seq(fp)); /* XXX remove later */
1393
1394 /*
1395 * If the RX_ID is 0xffff, don't allocate an exchange.
1396 * The upper-level protocol may request one later, if needed.
1397 */
1398 if (fh->fh_rx_id == htons(FC_XID_UNKNOWN))
1399 return lport->tt.lport_recv(lport, fp);
1400
1401 reject = fc_seq_lookup_recip(lport, mp, fp);
1402 if (reject == FC_RJT_NONE) {
1403 sp = fr_seq(fp); /* sequence will be held */
1404 ep = fc_seq_exch(sp);
1405 fc_seq_send_ack(sp, fp);
1406 ep->encaps = fr_encaps(fp);
1407
1408 /*
1409 * Call the receive function.
1410 *
1411 * The receive function may allocate a new sequence
1412 * over the old one, so we shouldn't change the
1413 * sequence after this.
1414 *
1415 * The frame will be freed by the receive function.
1416 * If new exch resp handler is valid then call that
1417 * first.
1418 */
1419 if (ep->resp)
1420 ep->resp(sp, fp, ep->arg);
1421 else
1422 lport->tt.lport_recv(lport, fp);
1423 fc_exch_release(ep); /* release from lookup */
1424 } else {
1425 FC_LPORT_DBG(lport, "exch/seq lookup failed: reject %x\n",
1426 reject);
1427 fc_frame_free(fp);
1428 }
1429 }
1430
1431 /**
1432 * fc_exch_recv_seq_resp() - Handler for an incoming response where the other
1433 * end is the originator of the sequence that is a
1434 * response to our initial exchange
1435 * @mp: The EM that the exchange is on
1436 * @fp: The response frame
1437 */
1438 static void fc_exch_recv_seq_resp(struct fc_exch_mgr *mp, struct fc_frame *fp)
1439 {
1440 struct fc_frame_header *fh = fc_frame_header_get(fp);
1441 struct fc_seq *sp;
1442 struct fc_exch *ep;
1443 enum fc_sof sof;
1444 u32 f_ctl;
1445 void (*resp)(struct fc_seq *, struct fc_frame *fp, void *arg);
1446 void *ex_resp_arg;
1447 int rc;
1448
1449 ep = fc_exch_find(mp, ntohs(fh->fh_ox_id));
1450 if (!ep) {
1451 atomic_inc(&mp->stats.xid_not_found);
1452 goto out;
1453 }
1454 if (ep->esb_stat & ESB_ST_COMPLETE) {
1455 atomic_inc(&mp->stats.xid_not_found);
1456 goto rel;
1457 }
1458 if (ep->rxid == FC_XID_UNKNOWN)
1459 ep->rxid = ntohs(fh->fh_rx_id);
1460 if (ep->sid != 0 && ep->sid != ntoh24(fh->fh_d_id)) {
1461 atomic_inc(&mp->stats.xid_not_found);
1462 goto rel;
1463 }
1464 if (ep->did != ntoh24(fh->fh_s_id) &&
1465 ep->did != FC_FID_FLOGI) {
1466 atomic_inc(&mp->stats.xid_not_found);
1467 goto rel;
1468 }
1469 sof = fr_sof(fp);
1470 sp = &ep->seq;
1471 if (fc_sof_is_init(sof)) {
1472 sp->ssb_stat |= SSB_ST_RESP;
1473 sp->id = fh->fh_seq_id;
1474 } else if (sp->id != fh->fh_seq_id) {
1475 atomic_inc(&mp->stats.seq_not_found);
1476 goto rel;
1477 }
1478
1479 f_ctl = ntoh24(fh->fh_f_ctl);
1480 fr_seq(fp) = sp;
1481 if (f_ctl & FC_FC_SEQ_INIT)
1482 ep->esb_stat |= ESB_ST_SEQ_INIT;
1483
1484 if (fc_sof_needs_ack(sof))
1485 fc_seq_send_ack(sp, fp);
1486 resp = ep->resp;
1487 ex_resp_arg = ep->arg;
1488
1489 if (fh->fh_type != FC_TYPE_FCP && fr_eof(fp) == FC_EOF_T &&
1490 (f_ctl & (FC_FC_LAST_SEQ | FC_FC_END_SEQ)) ==
1491 (FC_FC_LAST_SEQ | FC_FC_END_SEQ)) {
1492 spin_lock_bh(&ep->ex_lock);
1493 resp = ep->resp;
1494 rc = fc_exch_done_locked(ep);
1495 WARN_ON(fc_seq_exch(sp) != ep);
1496 spin_unlock_bh(&ep->ex_lock);
1497 if (!rc)
1498 fc_exch_delete(ep);
1499 }
1500
1501 /*
1502 * Call the receive function.
1503 * The sequence is held (has a refcnt) for us,
1504 * but not for the receive function.
1505 *
1506 * The receive function may allocate a new sequence
1507 * over the old one, so we shouldn't change the
1508 * sequence after this.
1509 *
1510 * The frame will be freed by the receive function.
1511 * If new exch resp handler is valid then call that
1512 * first.
1513 */
1514 if (resp)
1515 resp(sp, fp, ex_resp_arg);
1516 else
1517 fc_frame_free(fp);
1518 fc_exch_release(ep);
1519 return;
1520 rel:
1521 fc_exch_release(ep);
1522 out:
1523 fc_frame_free(fp);
1524 }
1525
1526 /**
1527 * fc_exch_recv_resp() - Handler for a sequence where other end is
1528 * responding to our sequence
1529 * @mp: The EM that the exchange is on
1530 * @fp: The response frame
1531 */
1532 static void fc_exch_recv_resp(struct fc_exch_mgr *mp, struct fc_frame *fp)
1533 {
1534 struct fc_seq *sp;
1535
1536 sp = fc_seq_lookup_orig(mp, fp); /* doesn't hold sequence */
1537
1538 if (!sp)
1539 atomic_inc(&mp->stats.xid_not_found);
1540 else
1541 atomic_inc(&mp->stats.non_bls_resp);
1542
1543 fc_frame_free(fp);
1544 }
1545
1546 /**
1547 * fc_exch_abts_resp() - Handler for a response to an ABT
1548 * @ep: The exchange that the frame is on
1549 * @fp: The response frame
1550 *
1551 * This response would be to an ABTS cancelling an exchange or sequence.
1552 * The response can be either BA_ACC or BA_RJT
1553 */
1554 static void fc_exch_abts_resp(struct fc_exch *ep, struct fc_frame *fp)
1555 {
1556 void (*resp)(struct fc_seq *, struct fc_frame *fp, void *arg);
1557 void *ex_resp_arg;
1558 struct fc_frame_header *fh;
1559 struct fc_ba_acc *ap;
1560 struct fc_seq *sp;
1561 u16 low;
1562 u16 high;
1563 int rc = 1, has_rec = 0;
1564
1565 fh = fc_frame_header_get(fp);
1566 FC_EXCH_DBG(ep, "exch: BLS rctl %x - %s\n", fh->fh_r_ctl,
1567 fc_exch_rctl_name(fh->fh_r_ctl));
1568
1569 if (cancel_delayed_work_sync(&ep->timeout_work)) {
1570 FC_EXCH_DBG(ep, "Exchange timer canceled\n");
1571 fc_exch_release(ep); /* release from pending timer hold */
1572 }
1573
1574 spin_lock_bh(&ep->ex_lock);
1575 switch (fh->fh_r_ctl) {
1576 case FC_RCTL_BA_ACC:
1577 ap = fc_frame_payload_get(fp, sizeof(*ap));
1578 if (!ap)
1579 break;
1580
1581 /*
1582 * Decide whether to establish a Recovery Qualifier.
1583 * We do this if there is a non-empty SEQ_CNT range and
1584 * SEQ_ID is the same as the one we aborted.
1585 */
1586 low = ntohs(ap->ba_low_seq_cnt);
1587 high = ntohs(ap->ba_high_seq_cnt);
1588 if ((ep->esb_stat & ESB_ST_REC_QUAL) == 0 &&
1589 (ap->ba_seq_id_val != FC_BA_SEQ_ID_VAL ||
1590 ap->ba_seq_id == ep->seq_id) && low != high) {
1591 ep->esb_stat |= ESB_ST_REC_QUAL;
1592 fc_exch_hold(ep); /* hold for recovery qualifier */
1593 has_rec = 1;
1594 }
1595 break;
1596 case FC_RCTL_BA_RJT:
1597 break;
1598 default:
1599 break;
1600 }
1601
1602 resp = ep->resp;
1603 ex_resp_arg = ep->arg;
1604
1605 /* do we need to do some other checks here. Can we reuse more of
1606 * fc_exch_recv_seq_resp
1607 */
1608 sp = &ep->seq;
1609 /*
1610 * do we want to check END_SEQ as well as LAST_SEQ here?
1611 */
1612 if (ep->fh_type != FC_TYPE_FCP &&
1613 ntoh24(fh->fh_f_ctl) & FC_FC_LAST_SEQ)
1614 rc = fc_exch_done_locked(ep);
1615 spin_unlock_bh(&ep->ex_lock);
1616 if (!rc)
1617 fc_exch_delete(ep);
1618
1619 if (resp)
1620 resp(sp, fp, ex_resp_arg);
1621 else
1622 fc_frame_free(fp);
1623
1624 if (has_rec)
1625 fc_exch_timer_set(ep, ep->r_a_tov);
1626
1627 }
1628
1629 /**
1630 * fc_exch_recv_bls() - Handler for a BLS sequence
1631 * @mp: The EM that the exchange is on
1632 * @fp: The request frame
1633 *
1634 * The BLS frame is always a sequence initiated by the remote side.
1635 * We may be either the originator or recipient of the exchange.
1636 */
1637 static void fc_exch_recv_bls(struct fc_exch_mgr *mp, struct fc_frame *fp)
1638 {
1639 struct fc_frame_header *fh;
1640 struct fc_exch *ep;
1641 u32 f_ctl;
1642
1643 fh = fc_frame_header_get(fp);
1644 f_ctl = ntoh24(fh->fh_f_ctl);
1645 fr_seq(fp) = NULL;
1646
1647 ep = fc_exch_find(mp, (f_ctl & FC_FC_EX_CTX) ?
1648 ntohs(fh->fh_ox_id) : ntohs(fh->fh_rx_id));
1649 if (ep && (f_ctl & FC_FC_SEQ_INIT)) {
1650 spin_lock_bh(&ep->ex_lock);
1651 ep->esb_stat |= ESB_ST_SEQ_INIT;
1652 spin_unlock_bh(&ep->ex_lock);
1653 }
1654 if (f_ctl & FC_FC_SEQ_CTX) {
1655 /*
1656 * A response to a sequence we initiated.
1657 * This should only be ACKs for class 2 or F.
1658 */
1659 switch (fh->fh_r_ctl) {
1660 case FC_RCTL_ACK_1:
1661 case FC_RCTL_ACK_0:
1662 break;
1663 default:
1664 if (ep)
1665 FC_EXCH_DBG(ep, "BLS rctl %x - %s received",
1666 fh->fh_r_ctl,
1667 fc_exch_rctl_name(fh->fh_r_ctl));
1668 break;
1669 }
1670 fc_frame_free(fp);
1671 } else {
1672 switch (fh->fh_r_ctl) {
1673 case FC_RCTL_BA_RJT:
1674 case FC_RCTL_BA_ACC:
1675 if (ep)
1676 fc_exch_abts_resp(ep, fp);
1677 else
1678 fc_frame_free(fp);
1679 break;
1680 case FC_RCTL_BA_ABTS:
1681 fc_exch_recv_abts(ep, fp);
1682 break;
1683 default: /* ignore junk */
1684 fc_frame_free(fp);
1685 break;
1686 }
1687 }
1688 if (ep)
1689 fc_exch_release(ep); /* release hold taken by fc_exch_find */
1690 }
1691
1692 /**
1693 * fc_seq_ls_acc() - Accept sequence with LS_ACC
1694 * @rx_fp: The received frame, not freed here.
1695 *
1696 * If this fails due to allocation or transmit congestion, assume the
1697 * originator will repeat the sequence.
1698 */
1699 static void fc_seq_ls_acc(struct fc_frame *rx_fp)
1700 {
1701 struct fc_lport *lport;
1702 struct fc_els_ls_acc *acc;
1703 struct fc_frame *fp;
1704
1705 lport = fr_dev(rx_fp);
1706 fp = fc_frame_alloc(lport, sizeof(*acc));
1707 if (!fp)
1708 return;
1709 acc = fc_frame_payload_get(fp, sizeof(*acc));
1710 memset(acc, 0, sizeof(*acc));
1711 acc->la_cmd = ELS_LS_ACC;
1712 fc_fill_reply_hdr(fp, rx_fp, FC_RCTL_ELS_REP, 0);
1713 lport->tt.frame_send(lport, fp);
1714 }
1715
1716 /**
1717 * fc_seq_ls_rjt() - Reject a sequence with ELS LS_RJT
1718 * @rx_fp: The received frame, not freed here.
1719 * @reason: The reason the sequence is being rejected
1720 * @explan: The explanation for the rejection
1721 *
1722 * If this fails due to allocation or transmit congestion, assume the
1723 * originator will repeat the sequence.
1724 */
1725 static void fc_seq_ls_rjt(struct fc_frame *rx_fp, enum fc_els_rjt_reason reason,
1726 enum fc_els_rjt_explan explan)
1727 {
1728 struct fc_lport *lport;
1729 struct fc_els_ls_rjt *rjt;
1730 struct fc_frame *fp;
1731
1732 lport = fr_dev(rx_fp);
1733 fp = fc_frame_alloc(lport, sizeof(*rjt));
1734 if (!fp)
1735 return;
1736 rjt = fc_frame_payload_get(fp, sizeof(*rjt));
1737 memset(rjt, 0, sizeof(*rjt));
1738 rjt->er_cmd = ELS_LS_RJT;
1739 rjt->er_reason = reason;
1740 rjt->er_explan = explan;
1741 fc_fill_reply_hdr(fp, rx_fp, FC_RCTL_ELS_REP, 0);
1742 lport->tt.frame_send(lport, fp);
1743 }
1744
1745 /**
1746 * fc_exch_reset() - Reset an exchange
1747 * @ep: The exchange to be reset
1748 */
1749 static void fc_exch_reset(struct fc_exch *ep)
1750 {
1751 struct fc_seq *sp;
1752 void (*resp)(struct fc_seq *, struct fc_frame *, void *);
1753 void *arg;
1754 int rc = 1;
1755
1756 spin_lock_bh(&ep->ex_lock);
1757 fc_exch_abort_locked(ep, 0);
1758 ep->state |= FC_EX_RST_CLEANUP;
1759 fc_exch_timer_cancel(ep);
1760 resp = ep->resp;
1761 ep->resp = NULL;
1762 if (ep->esb_stat & ESB_ST_REC_QUAL)
1763 atomic_dec(&ep->ex_refcnt); /* drop hold for rec_qual */
1764 ep->esb_stat &= ~ESB_ST_REC_QUAL;
1765 arg = ep->arg;
1766 sp = &ep->seq;
1767 rc = fc_exch_done_locked(ep);
1768 spin_unlock_bh(&ep->ex_lock);
1769 if (!rc)
1770 fc_exch_delete(ep);
1771
1772 if (resp)
1773 resp(sp, ERR_PTR(-FC_EX_CLOSED), arg);
1774 }
1775
1776 /**
1777 * fc_exch_pool_reset() - Reset a per cpu exchange pool
1778 * @lport: The local port that the exchange pool is on
1779 * @pool: The exchange pool to be reset
1780 * @sid: The source ID
1781 * @did: The destination ID
1782 *
1783 * Resets a per cpu exches pool, releasing all of its sequences
1784 * and exchanges. If sid is non-zero then reset only exchanges
1785 * we sourced from the local port's FID. If did is non-zero then
1786 * only reset exchanges destined for the local port's FID.
1787 */
1788 static void fc_exch_pool_reset(struct fc_lport *lport,
1789 struct fc_exch_pool *pool,
1790 u32 sid, u32 did)
1791 {
1792 struct fc_exch *ep;
1793 struct fc_exch *next;
1794
1795 spin_lock_bh(&pool->lock);
1796 restart:
1797 list_for_each_entry_safe(ep, next, &pool->ex_list, ex_list) {
1798 if ((lport == ep->lp) &&
1799 (sid == 0 || sid == ep->sid) &&
1800 (did == 0 || did == ep->did)) {
1801 fc_exch_hold(ep);
1802 spin_unlock_bh(&pool->lock);
1803
1804 fc_exch_reset(ep);
1805
1806 fc_exch_release(ep);
1807 spin_lock_bh(&pool->lock);
1808
1809 /*
1810 * must restart loop incase while lock
1811 * was down multiple eps were released.
1812 */
1813 goto restart;
1814 }
1815 }
1816 pool->next_index = 0;
1817 pool->left = FC_XID_UNKNOWN;
1818 pool->right = FC_XID_UNKNOWN;
1819 spin_unlock_bh(&pool->lock);
1820 }
1821
1822 /**
1823 * fc_exch_mgr_reset() - Reset all EMs of a local port
1824 * @lport: The local port whose EMs are to be reset
1825 * @sid: The source ID
1826 * @did: The destination ID
1827 *
1828 * Reset all EMs associated with a given local port. Release all
1829 * sequences and exchanges. If sid is non-zero then reset only the
1830 * exchanges sent from the local port's FID. If did is non-zero then
1831 * reset only exchanges destined for the local port's FID.
1832 */
1833 void fc_exch_mgr_reset(struct fc_lport *lport, u32 sid, u32 did)
1834 {
1835 struct fc_exch_mgr_anchor *ema;
1836 unsigned int cpu;
1837
1838 list_for_each_entry(ema, &lport->ema_list, ema_list) {
1839 for_each_possible_cpu(cpu)
1840 fc_exch_pool_reset(lport,
1841 per_cpu_ptr(ema->mp->pool, cpu),
1842 sid, did);
1843 }
1844 }
1845 EXPORT_SYMBOL(fc_exch_mgr_reset);
1846
1847 /**
1848 * fc_exch_lookup() - find an exchange
1849 * @lport: The local port
1850 * @xid: The exchange ID
1851 *
1852 * Returns exchange pointer with hold for caller, or NULL if not found.
1853 */
1854 static struct fc_exch *fc_exch_lookup(struct fc_lport *lport, u32 xid)
1855 {
1856 struct fc_exch_mgr_anchor *ema;
1857
1858 list_for_each_entry(ema, &lport->ema_list, ema_list)
1859 if (ema->mp->min_xid <= xid && xid <= ema->mp->max_xid)
1860 return fc_exch_find(ema->mp, xid);
1861 return NULL;
1862 }
1863
1864 /**
1865 * fc_exch_els_rec() - Handler for ELS REC (Read Exchange Concise) requests
1866 * @rfp: The REC frame, not freed here.
1867 *
1868 * Note that the requesting port may be different than the S_ID in the request.
1869 */
1870 static void fc_exch_els_rec(struct fc_frame *rfp)
1871 {
1872 struct fc_lport *lport;
1873 struct fc_frame *fp;
1874 struct fc_exch *ep;
1875 struct fc_els_rec *rp;
1876 struct fc_els_rec_acc *acc;
1877 enum fc_els_rjt_reason reason = ELS_RJT_LOGIC;
1878 enum fc_els_rjt_explan explan;
1879 u32 sid;
1880 u16 rxid;
1881 u16 oxid;
1882
1883 lport = fr_dev(rfp);
1884 rp = fc_frame_payload_get(rfp, sizeof(*rp));
1885 explan = ELS_EXPL_INV_LEN;
1886 if (!rp)
1887 goto reject;
1888 sid = ntoh24(rp->rec_s_id);
1889 rxid = ntohs(rp->rec_rx_id);
1890 oxid = ntohs(rp->rec_ox_id);
1891
1892 ep = fc_exch_lookup(lport,
1893 sid == fc_host_port_id(lport->host) ? oxid : rxid);
1894 explan = ELS_EXPL_OXID_RXID;
1895 if (!ep)
1896 goto reject;
1897 if (ep->oid != sid || oxid != ep->oxid)
1898 goto rel;
1899 if (rxid != FC_XID_UNKNOWN && rxid != ep->rxid)
1900 goto rel;
1901 fp = fc_frame_alloc(lport, sizeof(*acc));
1902 if (!fp)
1903 goto out;
1904
1905 acc = fc_frame_payload_get(fp, sizeof(*acc));
1906 memset(acc, 0, sizeof(*acc));
1907 acc->reca_cmd = ELS_LS_ACC;
1908 acc->reca_ox_id = rp->rec_ox_id;
1909 memcpy(acc->reca_ofid, rp->rec_s_id, 3);
1910 acc->reca_rx_id = htons(ep->rxid);
1911 if (ep->sid == ep->oid)
1912 hton24(acc->reca_rfid, ep->did);
1913 else
1914 hton24(acc->reca_rfid, ep->sid);
1915 acc->reca_fc4value = htonl(ep->seq.rec_data);
1916 acc->reca_e_stat = htonl(ep->esb_stat & (ESB_ST_RESP |
1917 ESB_ST_SEQ_INIT |
1918 ESB_ST_COMPLETE));
1919 fc_fill_reply_hdr(fp, rfp, FC_RCTL_ELS_REP, 0);
1920 lport->tt.frame_send(lport, fp);
1921 out:
1922 fc_exch_release(ep);
1923 return;
1924
1925 rel:
1926 fc_exch_release(ep);
1927 reject:
1928 fc_seq_ls_rjt(rfp, reason, explan);
1929 }
1930
1931 /**
1932 * fc_exch_rrq_resp() - Handler for RRQ responses
1933 * @sp: The sequence that the RRQ is on
1934 * @fp: The RRQ frame
1935 * @arg: The exchange that the RRQ is on
1936 *
1937 * TODO: fix error handler.
1938 */
1939 static void fc_exch_rrq_resp(struct fc_seq *sp, struct fc_frame *fp, void *arg)
1940 {
1941 struct fc_exch *aborted_ep = arg;
1942 unsigned int op;
1943
1944 if (IS_ERR(fp)) {
1945 int err = PTR_ERR(fp);
1946
1947 if (err == -FC_EX_CLOSED || err == -FC_EX_TIMEOUT)
1948 goto cleanup;
1949 FC_EXCH_DBG(aborted_ep, "Cannot process RRQ, "
1950 "frame error %d\n", err);
1951 return;
1952 }
1953
1954 op = fc_frame_payload_op(fp);
1955 fc_frame_free(fp);
1956
1957 switch (op) {
1958 case ELS_LS_RJT:
1959 FC_EXCH_DBG(aborted_ep, "LS_RJT for RRQ");
1960 /* fall through */
1961 case ELS_LS_ACC:
1962 goto cleanup;
1963 default:
1964 FC_EXCH_DBG(aborted_ep, "unexpected response op %x "
1965 "for RRQ", op);
1966 return;
1967 }
1968
1969 cleanup:
1970 fc_exch_done(&aborted_ep->seq);
1971 /* drop hold for rec qual */
1972 fc_exch_release(aborted_ep);
1973 }
1974
1975
1976 /**
1977 * fc_exch_seq_send() - Send a frame using a new exchange and sequence
1978 * @lport: The local port to send the frame on
1979 * @fp: The frame to be sent
1980 * @resp: The response handler for this request
1981 * @destructor: The destructor for the exchange
1982 * @arg: The argument to be passed to the response handler
1983 * @timer_msec: The timeout period for the exchange
1984 *
1985 * The frame pointer with some of the header's fields must be
1986 * filled before calling this routine, those fields are:
1987 *
1988 * - routing control
1989 * - FC port did
1990 * - FC port sid
1991 * - FC header type
1992 * - frame control
1993 * - parameter or relative offset
1994 */
1995 static struct fc_seq *fc_exch_seq_send(struct fc_lport *lport,
1996 struct fc_frame *fp,
1997 void (*resp)(struct fc_seq *,
1998 struct fc_frame *fp,
1999 void *arg),
2000 void (*destructor)(struct fc_seq *,
2001 void *),
2002 void *arg, u32 timer_msec)
2003 {
2004 struct fc_exch *ep;
2005 struct fc_seq *sp = NULL;
2006 struct fc_frame_header *fh;
2007 struct fc_fcp_pkt *fsp = NULL;
2008 int rc = 1;
2009
2010 ep = fc_exch_alloc(lport, fp);
2011 if (!ep) {
2012 fc_frame_free(fp);
2013 return NULL;
2014 }
2015 ep->esb_stat |= ESB_ST_SEQ_INIT;
2016 fh = fc_frame_header_get(fp);
2017 fc_exch_set_addr(ep, ntoh24(fh->fh_s_id), ntoh24(fh->fh_d_id));
2018 ep->resp = resp;
2019 ep->destructor = destructor;
2020 ep->arg = arg;
2021 ep->r_a_tov = FC_DEF_R_A_TOV;
2022 ep->lp = lport;
2023 sp = &ep->seq;
2024
2025 ep->fh_type = fh->fh_type; /* save for possbile timeout handling */
2026 ep->f_ctl = ntoh24(fh->fh_f_ctl);
2027 fc_exch_setup_hdr(ep, fp, ep->f_ctl);
2028 sp->cnt++;
2029
2030 if (ep->xid <= lport->lro_xid && fh->fh_r_ctl == FC_RCTL_DD_UNSOL_CMD) {
2031 fsp = fr_fsp(fp);
2032 fc_fcp_ddp_setup(fr_fsp(fp), ep->xid);
2033 }
2034
2035 if (unlikely(lport->tt.frame_send(lport, fp)))
2036 goto err;
2037
2038 if (timer_msec)
2039 fc_exch_timer_set_locked(ep, timer_msec);
2040 ep->f_ctl &= ~FC_FC_FIRST_SEQ; /* not first seq */
2041
2042 if (ep->f_ctl & FC_FC_SEQ_INIT)
2043 ep->esb_stat &= ~ESB_ST_SEQ_INIT;
2044 spin_unlock_bh(&ep->ex_lock);
2045 return sp;
2046 err:
2047 if (fsp)
2048 fc_fcp_ddp_done(fsp);
2049 rc = fc_exch_done_locked(ep);
2050 spin_unlock_bh(&ep->ex_lock);
2051 if (!rc)
2052 fc_exch_delete(ep);
2053 return NULL;
2054 }
2055
2056 /**
2057 * fc_exch_rrq() - Send an ELS RRQ (Reinstate Recovery Qualifier) command
2058 * @ep: The exchange to send the RRQ on
2059 *
2060 * This tells the remote port to stop blocking the use of
2061 * the exchange and the seq_cnt range.
2062 */
2063 static void fc_exch_rrq(struct fc_exch *ep)
2064 {
2065 struct fc_lport *lport;
2066 struct fc_els_rrq *rrq;
2067 struct fc_frame *fp;
2068 u32 did;
2069
2070 lport = ep->lp;
2071
2072 fp = fc_frame_alloc(lport, sizeof(*rrq));
2073 if (!fp)
2074 goto retry;
2075
2076 rrq = fc_frame_payload_get(fp, sizeof(*rrq));
2077 memset(rrq, 0, sizeof(*rrq));
2078 rrq->rrq_cmd = ELS_RRQ;
2079 hton24(rrq->rrq_s_id, ep->sid);
2080 rrq->rrq_ox_id = htons(ep->oxid);
2081 rrq->rrq_rx_id = htons(ep->rxid);
2082
2083 did = ep->did;
2084 if (ep->esb_stat & ESB_ST_RESP)
2085 did = ep->sid;
2086
2087 fc_fill_fc_hdr(fp, FC_RCTL_ELS_REQ, did,
2088 lport->port_id, FC_TYPE_ELS,
2089 FC_FC_FIRST_SEQ | FC_FC_END_SEQ | FC_FC_SEQ_INIT, 0);
2090
2091 if (fc_exch_seq_send(lport, fp, fc_exch_rrq_resp, NULL, ep,
2092 lport->e_d_tov))
2093 return;
2094
2095 retry:
2096 spin_lock_bh(&ep->ex_lock);
2097 if (ep->state & (FC_EX_RST_CLEANUP | FC_EX_DONE)) {
2098 spin_unlock_bh(&ep->ex_lock);
2099 /* drop hold for rec qual */
2100 fc_exch_release(ep);
2101 return;
2102 }
2103 ep->esb_stat |= ESB_ST_REC_QUAL;
2104 fc_exch_timer_set_locked(ep, ep->r_a_tov);
2105 spin_unlock_bh(&ep->ex_lock);
2106 }
2107
2108 /**
2109 * fc_exch_els_rrq() - Handler for ELS RRQ (Reset Recovery Qualifier) requests
2110 * @fp: The RRQ frame, not freed here.
2111 */
2112 static void fc_exch_els_rrq(struct fc_frame *fp)
2113 {
2114 struct fc_lport *lport;
2115 struct fc_exch *ep = NULL; /* request or subject exchange */
2116 struct fc_els_rrq *rp;
2117 u32 sid;
2118 u16 xid;
2119 enum fc_els_rjt_explan explan;
2120
2121 lport = fr_dev(fp);
2122 rp = fc_frame_payload_get(fp, sizeof(*rp));
2123 explan = ELS_EXPL_INV_LEN;
2124 if (!rp)
2125 goto reject;
2126
2127 /*
2128 * lookup subject exchange.
2129 */
2130 sid = ntoh24(rp->rrq_s_id); /* subject source */
2131 xid = fc_host_port_id(lport->host) == sid ?
2132 ntohs(rp->rrq_ox_id) : ntohs(rp->rrq_rx_id);
2133 ep = fc_exch_lookup(lport, xid);
2134 explan = ELS_EXPL_OXID_RXID;
2135 if (!ep)
2136 goto reject;
2137 spin_lock_bh(&ep->ex_lock);
2138 if (ep->oxid != ntohs(rp->rrq_ox_id))
2139 goto unlock_reject;
2140 if (ep->rxid != ntohs(rp->rrq_rx_id) &&
2141 ep->rxid != FC_XID_UNKNOWN)
2142 goto unlock_reject;
2143 explan = ELS_EXPL_SID;
2144 if (ep->sid != sid)
2145 goto unlock_reject;
2146
2147 /*
2148 * Clear Recovery Qualifier state, and cancel timer if complete.
2149 */
2150 if (ep->esb_stat & ESB_ST_REC_QUAL) {
2151 ep->esb_stat &= ~ESB_ST_REC_QUAL;
2152 atomic_dec(&ep->ex_refcnt); /* drop hold for rec qual */
2153 }
2154 if (ep->esb_stat & ESB_ST_COMPLETE)
2155 fc_exch_timer_cancel(ep);
2156
2157 spin_unlock_bh(&ep->ex_lock);
2158
2159 /*
2160 * Send LS_ACC.
2161 */
2162 fc_seq_ls_acc(fp);
2163 goto out;
2164
2165 unlock_reject:
2166 spin_unlock_bh(&ep->ex_lock);
2167 reject:
2168 fc_seq_ls_rjt(fp, ELS_RJT_LOGIC, explan);
2169 out:
2170 if (ep)
2171 fc_exch_release(ep); /* drop hold from fc_exch_find */
2172 }
2173
2174 /**
2175 * fc_exch_update_stats() - update exches stats to lport
2176 * @lport: The local port to update exchange manager stats
2177 */
2178 void fc_exch_update_stats(struct fc_lport *lport)
2179 {
2180 struct fc_host_statistics *st;
2181 struct fc_exch_mgr_anchor *ema;
2182 struct fc_exch_mgr *mp;
2183
2184 st = &lport->host_stats;
2185
2186 list_for_each_entry(ema, &lport->ema_list, ema_list) {
2187 mp = ema->mp;
2188 st->fc_no_free_exch += atomic_read(&mp->stats.no_free_exch);
2189 st->fc_no_free_exch_xid +=
2190 atomic_read(&mp->stats.no_free_exch_xid);
2191 st->fc_xid_not_found += atomic_read(&mp->stats.xid_not_found);
2192 st->fc_xid_busy += atomic_read(&mp->stats.xid_busy);
2193 st->fc_seq_not_found += atomic_read(&mp->stats.seq_not_found);
2194 st->fc_non_bls_resp += atomic_read(&mp->stats.non_bls_resp);
2195 }
2196 }
2197 EXPORT_SYMBOL(fc_exch_update_stats);
2198
2199 /**
2200 * fc_exch_mgr_add() - Add an exchange manager to a local port's list of EMs
2201 * @lport: The local port to add the exchange manager to
2202 * @mp: The exchange manager to be added to the local port
2203 * @match: The match routine that indicates when this EM should be used
2204 */
2205 struct fc_exch_mgr_anchor *fc_exch_mgr_add(struct fc_lport *lport,
2206 struct fc_exch_mgr *mp,
2207 bool (*match)(struct fc_frame *))
2208 {
2209 struct fc_exch_mgr_anchor *ema;
2210
2211 ema = kmalloc(sizeof(*ema), GFP_ATOMIC);
2212 if (!ema)
2213 return ema;
2214
2215 ema->mp = mp;
2216 ema->match = match;
2217 /* add EM anchor to EM anchors list */
2218 list_add_tail(&ema->ema_list, &lport->ema_list);
2219 kref_get(&mp->kref);
2220 return ema;
2221 }
2222 EXPORT_SYMBOL(fc_exch_mgr_add);
2223
2224 /**
2225 * fc_exch_mgr_destroy() - Destroy an exchange manager
2226 * @kref: The reference to the EM to be destroyed
2227 */
2228 static void fc_exch_mgr_destroy(struct kref *kref)
2229 {
2230 struct fc_exch_mgr *mp = container_of(kref, struct fc_exch_mgr, kref);
2231
2232 mempool_destroy(mp->ep_pool);
2233 free_percpu(mp->pool);
2234 kfree(mp);
2235 }
2236
2237 /**
2238 * fc_exch_mgr_del() - Delete an EM from a local port's list
2239 * @ema: The exchange manager anchor identifying the EM to be deleted
2240 */
2241 void fc_exch_mgr_del(struct fc_exch_mgr_anchor *ema)
2242 {
2243 /* remove EM anchor from EM anchors list */
2244 list_del(&ema->ema_list);
2245 kref_put(&ema->mp->kref, fc_exch_mgr_destroy);
2246 kfree(ema);
2247 }
2248 EXPORT_SYMBOL(fc_exch_mgr_del);
2249
2250 /**
2251 * fc_exch_mgr_list_clone() - Share all exchange manager objects
2252 * @src: Source lport to clone exchange managers from
2253 * @dst: New lport that takes references to all the exchange managers
2254 */
2255 int fc_exch_mgr_list_clone(struct fc_lport *src, struct fc_lport *dst)
2256 {
2257 struct fc_exch_mgr_anchor *ema, *tmp;
2258
2259 list_for_each_entry(ema, &src->ema_list, ema_list) {
2260 if (!fc_exch_mgr_add(dst, ema->mp, ema->match))
2261 goto err;
2262 }
2263 return 0;
2264 err:
2265 list_for_each_entry_safe(ema, tmp, &dst->ema_list, ema_list)
2266 fc_exch_mgr_del(ema);
2267 return -ENOMEM;
2268 }
2269 EXPORT_SYMBOL(fc_exch_mgr_list_clone);
2270
2271 /**
2272 * fc_exch_mgr_alloc() - Allocate an exchange manager
2273 * @lport: The local port that the new EM will be associated with
2274 * @class: The default FC class for new exchanges
2275 * @min_xid: The minimum XID for exchanges from the new EM
2276 * @max_xid: The maximum XID for exchanges from the new EM
2277 * @match: The match routine for the new EM
2278 */
2279 struct fc_exch_mgr *fc_exch_mgr_alloc(struct fc_lport *lport,
2280 enum fc_class class,
2281 u16 min_xid, u16 max_xid,
2282 bool (*match)(struct fc_frame *))
2283 {
2284 struct fc_exch_mgr *mp;
2285 u16 pool_exch_range;
2286 size_t pool_size;
2287 unsigned int cpu;
2288 struct fc_exch_pool *pool;
2289
2290 if (max_xid <= min_xid || max_xid == FC_XID_UNKNOWN ||
2291 (min_xid & fc_cpu_mask) != 0) {
2292 FC_LPORT_DBG(lport, "Invalid min_xid 0x:%x and max_xid 0x:%x\n",
2293 min_xid, max_xid);
2294 return NULL;
2295 }
2296
2297 /*
2298 * allocate memory for EM
2299 */
2300 mp = kzalloc(sizeof(struct fc_exch_mgr), GFP_ATOMIC);
2301 if (!mp)
2302 return NULL;
2303
2304 mp->class = class;
2305 /* adjust em exch xid range for offload */
2306 mp->min_xid = min_xid;
2307
2308 /* reduce range so per cpu pool fits into PCPU_MIN_UNIT_SIZE pool */
2309 pool_exch_range = (PCPU_MIN_UNIT_SIZE - sizeof(*pool)) /
2310 sizeof(struct fc_exch *);
2311 if ((max_xid - min_xid + 1) / (fc_cpu_mask + 1) > pool_exch_range) {
2312 mp->max_xid = pool_exch_range * (fc_cpu_mask + 1) +
2313 min_xid - 1;
2314 } else {
2315 mp->max_xid = max_xid;
2316 pool_exch_range = (mp->max_xid - mp->min_xid + 1) /
2317 (fc_cpu_mask + 1);
2318 }
2319
2320 mp->ep_pool = mempool_create_slab_pool(2, fc_em_cachep);
2321 if (!mp->ep_pool)
2322 goto free_mp;
2323
2324 /*
2325 * Setup per cpu exch pool with entire exchange id range equally
2326 * divided across all cpus. The exch pointers array memory is
2327 * allocated for exch range per pool.
2328 */
2329 mp->pool_max_index = pool_exch_range - 1;
2330
2331 /*
2332 * Allocate and initialize per cpu exch pool
2333 */
2334 pool_size = sizeof(*pool) + pool_exch_range * sizeof(struct fc_exch *);
2335 mp->pool = __alloc_percpu(pool_size, __alignof__(struct fc_exch_pool));
2336 if (!mp->pool)
2337 goto free_mempool;
2338 for_each_possible_cpu(cpu) {
2339 pool = per_cpu_ptr(mp->pool, cpu);
2340 pool->next_index = 0;
2341 pool->left = FC_XID_UNKNOWN;
2342 pool->right = FC_XID_UNKNOWN;
2343 spin_lock_init(&pool->lock);
2344 INIT_LIST_HEAD(&pool->ex_list);
2345 }
2346
2347 kref_init(&mp->kref);
2348 if (!fc_exch_mgr_add(lport, mp, match)) {
2349 free_percpu(mp->pool);
2350 goto free_mempool;
2351 }
2352
2353 /*
2354 * Above kref_init() sets mp->kref to 1 and then
2355 * call to fc_exch_mgr_add incremented mp->kref again,
2356 * so adjust that extra increment.
2357 */
2358 kref_put(&mp->kref, fc_exch_mgr_destroy);
2359 return mp;
2360
2361 free_mempool:
2362 mempool_destroy(mp->ep_pool);
2363 free_mp:
2364 kfree(mp);
2365 return NULL;
2366 }
2367 EXPORT_SYMBOL(fc_exch_mgr_alloc);
2368
2369 /**
2370 * fc_exch_mgr_free() - Free all exchange managers on a local port
2371 * @lport: The local port whose EMs are to be freed
2372 */
2373 void fc_exch_mgr_free(struct fc_lport *lport)
2374 {
2375 struct fc_exch_mgr_anchor *ema, *next;
2376
2377 flush_workqueue(fc_exch_workqueue);
2378 list_for_each_entry_safe(ema, next, &lport->ema_list, ema_list)
2379 fc_exch_mgr_del(ema);
2380 }
2381 EXPORT_SYMBOL(fc_exch_mgr_free);
2382
2383 /**
2384 * fc_find_ema() - Lookup and return appropriate Exchange Manager Anchor depending
2385 * upon 'xid'.
2386 * @f_ctl: f_ctl
2387 * @lport: The local port the frame was received on
2388 * @fh: The received frame header
2389 */
2390 static struct fc_exch_mgr_anchor *fc_find_ema(u32 f_ctl,
2391 struct fc_lport *lport,
2392 struct fc_frame_header *fh)
2393 {
2394 struct fc_exch_mgr_anchor *ema;
2395 u16 xid;
2396
2397 if (f_ctl & FC_FC_EX_CTX)
2398 xid = ntohs(fh->fh_ox_id);
2399 else {
2400 xid = ntohs(fh->fh_rx_id);
2401 if (xid == FC_XID_UNKNOWN)
2402 return list_entry(lport->ema_list.prev,
2403 typeof(*ema), ema_list);
2404 }
2405
2406 list_for_each_entry(ema, &lport->ema_list, ema_list) {
2407 if ((xid >= ema->mp->min_xid) &&
2408 (xid <= ema->mp->max_xid))
2409 return ema;
2410 }
2411 return NULL;
2412 }
2413 /**
2414 * fc_exch_recv() - Handler for received frames
2415 * @lport: The local port the frame was received on
2416 * @fp: The received frame
2417 */
2418 void fc_exch_recv(struct fc_lport *lport, struct fc_frame *fp)
2419 {
2420 struct fc_frame_header *fh = fc_frame_header_get(fp);
2421 struct fc_exch_mgr_anchor *ema;
2422 u32 f_ctl;
2423
2424 /* lport lock ? */
2425 if (!lport || lport->state == LPORT_ST_DISABLED) {
2426 FC_LPORT_DBG(lport, "Receiving frames for an lport that "
2427 "has not been initialized correctly\n");
2428 fc_frame_free(fp);
2429 return;
2430 }
2431
2432 f_ctl = ntoh24(fh->fh_f_ctl);
2433 ema = fc_find_ema(f_ctl, lport, fh);
2434 if (!ema) {
2435 FC_LPORT_DBG(lport, "Unable to find Exchange Manager Anchor,"
2436 "fc_ctl <0x%x>, xid <0x%x>\n",
2437 f_ctl,
2438 (f_ctl & FC_FC_EX_CTX) ?
2439 ntohs(fh->fh_ox_id) :
2440 ntohs(fh->fh_rx_id));
2441 fc_frame_free(fp);
2442 return;
2443 }
2444
2445 /*
2446 * If frame is marked invalid, just drop it.
2447 */
2448 switch (fr_eof(fp)) {
2449 case FC_EOF_T:
2450 if (f_ctl & FC_FC_END_SEQ)
2451 skb_trim(fp_skb(fp), fr_len(fp) - FC_FC_FILL(f_ctl));
2452 /* fall through */
2453 case FC_EOF_N:
2454 if (fh->fh_type == FC_TYPE_BLS)
2455 fc_exch_recv_bls(ema->mp, fp);
2456 else if ((f_ctl & (FC_FC_EX_CTX | FC_FC_SEQ_CTX)) ==
2457 FC_FC_EX_CTX)
2458 fc_exch_recv_seq_resp(ema->mp, fp);
2459 else if (f_ctl & FC_FC_SEQ_CTX)
2460 fc_exch_recv_resp(ema->mp, fp);
2461 else /* no EX_CTX and no SEQ_CTX */
2462 fc_exch_recv_req(lport, ema->mp, fp);
2463 break;
2464 default:
2465 FC_LPORT_DBG(lport, "dropping invalid frame (eof %x)",
2466 fr_eof(fp));
2467 fc_frame_free(fp);
2468 }
2469 }
2470 EXPORT_SYMBOL(fc_exch_recv);
2471
2472 /**
2473 * fc_exch_init() - Initialize the exchange layer for a local port
2474 * @lport: The local port to initialize the exchange layer for
2475 */
2476 int fc_exch_init(struct fc_lport *lport)
2477 {
2478 if (!lport->tt.seq_start_next)
2479 lport->tt.seq_start_next = fc_seq_start_next;
2480
2481 if (!lport->tt.seq_set_resp)
2482 lport->tt.seq_set_resp = fc_seq_set_resp;
2483
2484 if (!lport->tt.exch_seq_send)
2485 lport->tt.exch_seq_send = fc_exch_seq_send;
2486
2487 if (!lport->tt.seq_send)
2488 lport->tt.seq_send = fc_seq_send;
2489
2490 if (!lport->tt.seq_els_rsp_send)
2491 lport->tt.seq_els_rsp_send = fc_seq_els_rsp_send;
2492
2493 if (!lport->tt.exch_done)
2494 lport->tt.exch_done = fc_exch_done;
2495
2496 if (!lport->tt.exch_mgr_reset)
2497 lport->tt.exch_mgr_reset = fc_exch_mgr_reset;
2498
2499 if (!lport->tt.seq_exch_abort)
2500 lport->tt.seq_exch_abort = fc_seq_exch_abort;
2501
2502 if (!lport->tt.seq_assign)
2503 lport->tt.seq_assign = fc_seq_assign;
2504
2505 if (!lport->tt.seq_release)
2506 lport->tt.seq_release = fc_seq_release;
2507
2508 return 0;
2509 }
2510 EXPORT_SYMBOL(fc_exch_init);
2511
2512 /**
2513 * fc_setup_exch_mgr() - Setup an exchange manager
2514 */
2515 int fc_setup_exch_mgr(void)
2516 {
2517 fc_em_cachep = kmem_cache_create("libfc_em", sizeof(struct fc_exch),
2518 0, SLAB_HWCACHE_ALIGN, NULL);
2519 if (!fc_em_cachep)
2520 return -ENOMEM;
2521
2522 /*
2523 * Initialize fc_cpu_mask and fc_cpu_order. The
2524 * fc_cpu_mask is set for nr_cpu_ids rounded up
2525 * to order of 2's * power and order is stored
2526 * in fc_cpu_order as this is later required in
2527 * mapping between an exch id and exch array index
2528 * in per cpu exch pool.
2529 *
2530 * This round up is required to align fc_cpu_mask
2531 * to exchange id's lower bits such that all incoming
2532 * frames of an exchange gets delivered to the same
2533 * cpu on which exchange originated by simple bitwise
2534 * AND operation between fc_cpu_mask and exchange id.
2535 */
2536 fc_cpu_mask = 1;
2537 fc_cpu_order = 0;
2538 while (fc_cpu_mask < nr_cpu_ids) {
2539 fc_cpu_mask <<= 1;
2540 fc_cpu_order++;
2541 }
2542 fc_cpu_mask--;
2543
2544 fc_exch_workqueue = create_singlethread_workqueue("fc_exch_workqueue");
2545 if (!fc_exch_workqueue)
2546 goto err;
2547 return 0;
2548 err:
2549 kmem_cache_destroy(fc_em_cachep);
2550 return -ENOMEM;
2551 }
2552
2553 /**
2554 * fc_destroy_exch_mgr() - Destroy an exchange manager
2555 */
2556 void fc_destroy_exch_mgr(void)
2557 {
2558 destroy_workqueue(fc_exch_workqueue);
2559 kmem_cache_destroy(fc_em_cachep);
2560 }
This page took 0.081118 seconds and 6 git commands to generate.