libfc: Fix a race in fc_exch_timer_set_locked()
[deliverable/linux.git] / drivers / scsi / libfc / fc_exch.c
1 /*
2 * Copyright(c) 2007 Intel Corporation. All rights reserved.
3 * Copyright(c) 2008 Red Hat, Inc. All rights reserved.
4 * Copyright(c) 2008 Mike Christie
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms and conditions of the GNU General Public License,
8 * version 2, as published by the Free Software Foundation.
9 *
10 * This program is distributed in the hope it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
14 *
15 * You should have received a copy of the GNU General Public License along with
16 * this program; if not, write to the Free Software Foundation, Inc.,
17 * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Maintained at www.Open-FCoE.org
20 */
21
22 /*
23 * Fibre Channel exchange and sequence handling.
24 */
25
26 #include <linux/timer.h>
27 #include <linux/slab.h>
28 #include <linux/err.h>
29 #include <linux/export.h>
30 #include <linux/log2.h>
31
32 #include <scsi/fc/fc_fc2.h>
33
34 #include <scsi/libfc.h>
35 #include <scsi/fc_encode.h>
36
37 #include "fc_libfc.h"
38
39 u16 fc_cpu_mask; /* cpu mask for possible cpus */
40 EXPORT_SYMBOL(fc_cpu_mask);
41 static u16 fc_cpu_order; /* 2's power to represent total possible cpus */
42 static struct kmem_cache *fc_em_cachep; /* cache for exchanges */
43 static struct workqueue_struct *fc_exch_workqueue;
44
45 /*
46 * Structure and function definitions for managing Fibre Channel Exchanges
47 * and Sequences.
48 *
49 * The three primary structures used here are fc_exch_mgr, fc_exch, and fc_seq.
50 *
51 * fc_exch_mgr holds the exchange state for an N port
52 *
53 * fc_exch holds state for one exchange and links to its active sequence.
54 *
55 * fc_seq holds the state for an individual sequence.
56 */
57
58 /**
59 * struct fc_exch_pool - Per cpu exchange pool
60 * @next_index: Next possible free exchange index
61 * @total_exches: Total allocated exchanges
62 * @lock: Exch pool lock
63 * @ex_list: List of exchanges
64 *
65 * This structure manages per cpu exchanges in array of exchange pointers.
66 * This array is allocated followed by struct fc_exch_pool memory for
67 * assigned range of exchanges to per cpu pool.
68 */
69 struct fc_exch_pool {
70 spinlock_t lock;
71 struct list_head ex_list;
72 u16 next_index;
73 u16 total_exches;
74
75 /* two cache of free slot in exch array */
76 u16 left;
77 u16 right;
78 } ____cacheline_aligned_in_smp;
79
80 /**
81 * struct fc_exch_mgr - The Exchange Manager (EM).
82 * @class: Default class for new sequences
83 * @kref: Reference counter
84 * @min_xid: Minimum exchange ID
85 * @max_xid: Maximum exchange ID
86 * @ep_pool: Reserved exchange pointers
87 * @pool_max_index: Max exch array index in exch pool
88 * @pool: Per cpu exch pool
89 * @stats: Statistics structure
90 *
91 * This structure is the center for creating exchanges and sequences.
92 * It manages the allocation of exchange IDs.
93 */
94 struct fc_exch_mgr {
95 struct fc_exch_pool __percpu *pool;
96 mempool_t *ep_pool;
97 enum fc_class class;
98 struct kref kref;
99 u16 min_xid;
100 u16 max_xid;
101 u16 pool_max_index;
102
103 struct {
104 atomic_t no_free_exch;
105 atomic_t no_free_exch_xid;
106 atomic_t xid_not_found;
107 atomic_t xid_busy;
108 atomic_t seq_not_found;
109 atomic_t non_bls_resp;
110 } stats;
111 };
112
113 /**
114 * struct fc_exch_mgr_anchor - primary structure for list of EMs
115 * @ema_list: Exchange Manager Anchor list
116 * @mp: Exchange Manager associated with this anchor
117 * @match: Routine to determine if this anchor's EM should be used
118 *
119 * When walking the list of anchors the match routine will be called
120 * for each anchor to determine if that EM should be used. The last
121 * anchor in the list will always match to handle any exchanges not
122 * handled by other EMs. The non-default EMs would be added to the
123 * anchor list by HW that provides offloads.
124 */
125 struct fc_exch_mgr_anchor {
126 struct list_head ema_list;
127 struct fc_exch_mgr *mp;
128 bool (*match)(struct fc_frame *);
129 };
130
131 static void fc_exch_rrq(struct fc_exch *);
132 static void fc_seq_ls_acc(struct fc_frame *);
133 static void fc_seq_ls_rjt(struct fc_frame *, enum fc_els_rjt_reason,
134 enum fc_els_rjt_explan);
135 static void fc_exch_els_rec(struct fc_frame *);
136 static void fc_exch_els_rrq(struct fc_frame *);
137
138 /*
139 * Internal implementation notes.
140 *
141 * The exchange manager is one by default in libfc but LLD may choose
142 * to have one per CPU. The sequence manager is one per exchange manager
143 * and currently never separated.
144 *
145 * Section 9.8 in FC-FS-2 specifies: "The SEQ_ID is a one-byte field
146 * assigned by the Sequence Initiator that shall be unique for a specific
147 * D_ID and S_ID pair while the Sequence is open." Note that it isn't
148 * qualified by exchange ID, which one might think it would be.
149 * In practice this limits the number of open sequences and exchanges to 256
150 * per session. For most targets we could treat this limit as per exchange.
151 *
152 * The exchange and its sequence are freed when the last sequence is received.
153 * It's possible for the remote port to leave an exchange open without
154 * sending any sequences.
155 *
156 * Notes on reference counts:
157 *
158 * Exchanges are reference counted and exchange gets freed when the reference
159 * count becomes zero.
160 *
161 * Timeouts:
162 * Sequences are timed out for E_D_TOV and R_A_TOV.
163 *
164 * Sequence event handling:
165 *
166 * The following events may occur on initiator sequences:
167 *
168 * Send.
169 * For now, the whole thing is sent.
170 * Receive ACK
171 * This applies only to class F.
172 * The sequence is marked complete.
173 * ULP completion.
174 * The upper layer calls fc_exch_done() when done
175 * with exchange and sequence tuple.
176 * RX-inferred completion.
177 * When we receive the next sequence on the same exchange, we can
178 * retire the previous sequence ID. (XXX not implemented).
179 * Timeout.
180 * R_A_TOV frees the sequence ID. If we're waiting for ACK,
181 * E_D_TOV causes abort and calls upper layer response handler
182 * with FC_EX_TIMEOUT error.
183 * Receive RJT
184 * XXX defer.
185 * Send ABTS
186 * On timeout.
187 *
188 * The following events may occur on recipient sequences:
189 *
190 * Receive
191 * Allocate sequence for first frame received.
192 * Hold during receive handler.
193 * Release when final frame received.
194 * Keep status of last N of these for the ELS RES command. XXX TBD.
195 * Receive ABTS
196 * Deallocate sequence
197 * Send RJT
198 * Deallocate
199 *
200 * For now, we neglect conditions where only part of a sequence was
201 * received or transmitted, or where out-of-order receipt is detected.
202 */
203
204 /*
205 * Locking notes:
206 *
207 * The EM code run in a per-CPU worker thread.
208 *
209 * To protect against concurrency between a worker thread code and timers,
210 * sequence allocation and deallocation must be locked.
211 * - exchange refcnt can be done atomicly without locks.
212 * - sequence allocation must be locked by exch lock.
213 * - If the EM pool lock and ex_lock must be taken at the same time, then the
214 * EM pool lock must be taken before the ex_lock.
215 */
216
217 /*
218 * opcode names for debugging.
219 */
220 static char *fc_exch_rctl_names[] = FC_RCTL_NAMES_INIT;
221
222 /**
223 * fc_exch_name_lookup() - Lookup name by opcode
224 * @op: Opcode to be looked up
225 * @table: Opcode/name table
226 * @max_index: Index not to be exceeded
227 *
228 * This routine is used to determine a human-readable string identifying
229 * a R_CTL opcode.
230 */
231 static inline const char *fc_exch_name_lookup(unsigned int op, char **table,
232 unsigned int max_index)
233 {
234 const char *name = NULL;
235
236 if (op < max_index)
237 name = table[op];
238 if (!name)
239 name = "unknown";
240 return name;
241 }
242
243 /**
244 * fc_exch_rctl_name() - Wrapper routine for fc_exch_name_lookup()
245 * @op: The opcode to be looked up
246 */
247 static const char *fc_exch_rctl_name(unsigned int op)
248 {
249 return fc_exch_name_lookup(op, fc_exch_rctl_names,
250 ARRAY_SIZE(fc_exch_rctl_names));
251 }
252
253 /**
254 * fc_exch_hold() - Increment an exchange's reference count
255 * @ep: Echange to be held
256 */
257 static inline void fc_exch_hold(struct fc_exch *ep)
258 {
259 atomic_inc(&ep->ex_refcnt);
260 }
261
262 /**
263 * fc_exch_setup_hdr() - Initialize a FC header by initializing some fields
264 * and determine SOF and EOF.
265 * @ep: The exchange to that will use the header
266 * @fp: The frame whose header is to be modified
267 * @f_ctl: F_CTL bits that will be used for the frame header
268 *
269 * The fields initialized by this routine are: fh_ox_id, fh_rx_id,
270 * fh_seq_id, fh_seq_cnt and the SOF and EOF.
271 */
272 static void fc_exch_setup_hdr(struct fc_exch *ep, struct fc_frame *fp,
273 u32 f_ctl)
274 {
275 struct fc_frame_header *fh = fc_frame_header_get(fp);
276 u16 fill;
277
278 fr_sof(fp) = ep->class;
279 if (ep->seq.cnt)
280 fr_sof(fp) = fc_sof_normal(ep->class);
281
282 if (f_ctl & FC_FC_END_SEQ) {
283 fr_eof(fp) = FC_EOF_T;
284 if (fc_sof_needs_ack(ep->class))
285 fr_eof(fp) = FC_EOF_N;
286 /*
287 * From F_CTL.
288 * The number of fill bytes to make the length a 4-byte
289 * multiple is the low order 2-bits of the f_ctl.
290 * The fill itself will have been cleared by the frame
291 * allocation.
292 * After this, the length will be even, as expected by
293 * the transport.
294 */
295 fill = fr_len(fp) & 3;
296 if (fill) {
297 fill = 4 - fill;
298 /* TODO, this may be a problem with fragmented skb */
299 skb_put(fp_skb(fp), fill);
300 hton24(fh->fh_f_ctl, f_ctl | fill);
301 }
302 } else {
303 WARN_ON(fr_len(fp) % 4 != 0); /* no pad to non last frame */
304 fr_eof(fp) = FC_EOF_N;
305 }
306
307 /* Initialize remaining fh fields from fc_fill_fc_hdr */
308 fh->fh_ox_id = htons(ep->oxid);
309 fh->fh_rx_id = htons(ep->rxid);
310 fh->fh_seq_id = ep->seq.id;
311 fh->fh_seq_cnt = htons(ep->seq.cnt);
312 }
313
314 /**
315 * fc_exch_release() - Decrement an exchange's reference count
316 * @ep: Exchange to be released
317 *
318 * If the reference count reaches zero and the exchange is complete,
319 * it is freed.
320 */
321 static void fc_exch_release(struct fc_exch *ep)
322 {
323 struct fc_exch_mgr *mp;
324
325 if (atomic_dec_and_test(&ep->ex_refcnt)) {
326 mp = ep->em;
327 if (ep->destructor)
328 ep->destructor(&ep->seq, ep->arg);
329 WARN_ON(!(ep->esb_stat & ESB_ST_COMPLETE));
330 mempool_free(ep, mp->ep_pool);
331 }
332 }
333
334 /**
335 * fc_exch_timer_cancel() - cancel exch timer
336 * @ep: The exchange whose timer to be canceled
337 */
338 static inline void fc_exch_timer_cancel(struct fc_exch *ep)
339 {
340 if (cancel_delayed_work(&ep->timeout_work)) {
341 FC_EXCH_DBG(ep, "Exchange timer canceled\n");
342 atomic_dec(&ep->ex_refcnt); /* drop hold for timer */
343 }
344 }
345
346 /**
347 * fc_exch_timer_set_locked() - Start a timer for an exchange w/ the
348 * the exchange lock held
349 * @ep: The exchange whose timer will start
350 * @timer_msec: The timeout period
351 *
352 * Used for upper level protocols to time out the exchange.
353 * The timer is cancelled when it fires or when the exchange completes.
354 */
355 static inline void fc_exch_timer_set_locked(struct fc_exch *ep,
356 unsigned int timer_msec)
357 {
358 if (ep->state & (FC_EX_RST_CLEANUP | FC_EX_DONE))
359 return;
360
361 FC_EXCH_DBG(ep, "Exchange timer armed : %d msecs\n", timer_msec);
362
363 fc_exch_hold(ep); /* hold for timer */
364 if (!queue_delayed_work(fc_exch_workqueue, &ep->timeout_work,
365 msecs_to_jiffies(timer_msec)))
366 fc_exch_release(ep);
367 }
368
369 /**
370 * fc_exch_timer_set() - Lock the exchange and set the timer
371 * @ep: The exchange whose timer will start
372 * @timer_msec: The timeout period
373 */
374 static void fc_exch_timer_set(struct fc_exch *ep, unsigned int timer_msec)
375 {
376 spin_lock_bh(&ep->ex_lock);
377 fc_exch_timer_set_locked(ep, timer_msec);
378 spin_unlock_bh(&ep->ex_lock);
379 }
380
381 /**
382 * fc_exch_done_locked() - Complete an exchange with the exchange lock held
383 * @ep: The exchange that is complete
384 */
385 static int fc_exch_done_locked(struct fc_exch *ep)
386 {
387 int rc = 1;
388
389 /*
390 * We must check for completion in case there are two threads
391 * tyring to complete this. But the rrq code will reuse the
392 * ep, and in that case we only clear the resp and set it as
393 * complete, so it can be reused by the timer to send the rrq.
394 */
395 ep->resp = NULL;
396 if (ep->state & FC_EX_DONE)
397 return rc;
398 ep->esb_stat |= ESB_ST_COMPLETE;
399
400 if (!(ep->esb_stat & ESB_ST_REC_QUAL)) {
401 ep->state |= FC_EX_DONE;
402 fc_exch_timer_cancel(ep);
403 rc = 0;
404 }
405 return rc;
406 }
407
408 /**
409 * fc_exch_ptr_get() - Return an exchange from an exchange pool
410 * @pool: Exchange Pool to get an exchange from
411 * @index: Index of the exchange within the pool
412 *
413 * Use the index to get an exchange from within an exchange pool. exches
414 * will point to an array of exchange pointers. The index will select
415 * the exchange within the array.
416 */
417 static inline struct fc_exch *fc_exch_ptr_get(struct fc_exch_pool *pool,
418 u16 index)
419 {
420 struct fc_exch **exches = (struct fc_exch **)(pool + 1);
421 return exches[index];
422 }
423
424 /**
425 * fc_exch_ptr_set() - Assign an exchange to a slot in an exchange pool
426 * @pool: The pool to assign the exchange to
427 * @index: The index in the pool where the exchange will be assigned
428 * @ep: The exchange to assign to the pool
429 */
430 static inline void fc_exch_ptr_set(struct fc_exch_pool *pool, u16 index,
431 struct fc_exch *ep)
432 {
433 ((struct fc_exch **)(pool + 1))[index] = ep;
434 }
435
436 /**
437 * fc_exch_delete() - Delete an exchange
438 * @ep: The exchange to be deleted
439 */
440 static void fc_exch_delete(struct fc_exch *ep)
441 {
442 struct fc_exch_pool *pool;
443 u16 index;
444
445 pool = ep->pool;
446 spin_lock_bh(&pool->lock);
447 WARN_ON(pool->total_exches <= 0);
448 pool->total_exches--;
449
450 /* update cache of free slot */
451 index = (ep->xid - ep->em->min_xid) >> fc_cpu_order;
452 if (pool->left == FC_XID_UNKNOWN)
453 pool->left = index;
454 else if (pool->right == FC_XID_UNKNOWN)
455 pool->right = index;
456 else
457 pool->next_index = index;
458
459 fc_exch_ptr_set(pool, index, NULL);
460 list_del(&ep->ex_list);
461 spin_unlock_bh(&pool->lock);
462 fc_exch_release(ep); /* drop hold for exch in mp */
463 }
464
465 static int fc_seq_send_locked(struct fc_lport *lport, struct fc_seq *sp,
466 struct fc_frame *fp)
467 {
468 struct fc_exch *ep;
469 struct fc_frame_header *fh = fc_frame_header_get(fp);
470 int error;
471 u32 f_ctl;
472 u8 fh_type = fh->fh_type;
473
474 ep = fc_seq_exch(sp);
475 WARN_ON(!(ep->esb_stat & ESB_ST_SEQ_INIT));
476
477 f_ctl = ntoh24(fh->fh_f_ctl);
478 fc_exch_setup_hdr(ep, fp, f_ctl);
479 fr_encaps(fp) = ep->encaps;
480
481 /*
482 * update sequence count if this frame is carrying
483 * multiple FC frames when sequence offload is enabled
484 * by LLD.
485 */
486 if (fr_max_payload(fp))
487 sp->cnt += DIV_ROUND_UP((fr_len(fp) - sizeof(*fh)),
488 fr_max_payload(fp));
489 else
490 sp->cnt++;
491
492 /*
493 * Send the frame.
494 */
495 error = lport->tt.frame_send(lport, fp);
496
497 if (fh_type == FC_TYPE_BLS)
498 goto out;
499
500 /*
501 * Update the exchange and sequence flags,
502 * assuming all frames for the sequence have been sent.
503 * We can only be called to send once for each sequence.
504 */
505 ep->f_ctl = f_ctl & ~FC_FC_FIRST_SEQ; /* not first seq */
506 if (f_ctl & FC_FC_SEQ_INIT)
507 ep->esb_stat &= ~ESB_ST_SEQ_INIT;
508 out:
509 return error;
510 }
511
512 /**
513 * fc_seq_send() - Send a frame using existing sequence/exchange pair
514 * @lport: The local port that the exchange will be sent on
515 * @sp: The sequence to be sent
516 * @fp: The frame to be sent on the exchange
517 */
518 static int fc_seq_send(struct fc_lport *lport, struct fc_seq *sp,
519 struct fc_frame *fp)
520 {
521 struct fc_exch *ep;
522 int error;
523 ep = fc_seq_exch(sp);
524 spin_lock_bh(&ep->ex_lock);
525 error = fc_seq_send_locked(lport, sp, fp);
526 spin_unlock_bh(&ep->ex_lock);
527 return error;
528 }
529
530 /**
531 * fc_seq_alloc() - Allocate a sequence for a given exchange
532 * @ep: The exchange to allocate a new sequence for
533 * @seq_id: The sequence ID to be used
534 *
535 * We don't support multiple originated sequences on the same exchange.
536 * By implication, any previously originated sequence on this exchange
537 * is complete, and we reallocate the same sequence.
538 */
539 static struct fc_seq *fc_seq_alloc(struct fc_exch *ep, u8 seq_id)
540 {
541 struct fc_seq *sp;
542
543 sp = &ep->seq;
544 sp->ssb_stat = 0;
545 sp->cnt = 0;
546 sp->id = seq_id;
547 return sp;
548 }
549
550 /**
551 * fc_seq_start_next_locked() - Allocate a new sequence on the same
552 * exchange as the supplied sequence
553 * @sp: The sequence/exchange to get a new sequence for
554 */
555 static struct fc_seq *fc_seq_start_next_locked(struct fc_seq *sp)
556 {
557 struct fc_exch *ep = fc_seq_exch(sp);
558
559 sp = fc_seq_alloc(ep, ep->seq_id++);
560 FC_EXCH_DBG(ep, "f_ctl %6x seq %2x\n",
561 ep->f_ctl, sp->id);
562 return sp;
563 }
564
565 /**
566 * fc_seq_start_next() - Lock the exchange and get a new sequence
567 * for a given sequence/exchange pair
568 * @sp: The sequence/exchange to get a new exchange for
569 */
570 static struct fc_seq *fc_seq_start_next(struct fc_seq *sp)
571 {
572 struct fc_exch *ep = fc_seq_exch(sp);
573
574 spin_lock_bh(&ep->ex_lock);
575 sp = fc_seq_start_next_locked(sp);
576 spin_unlock_bh(&ep->ex_lock);
577
578 return sp;
579 }
580
581 /*
582 * Set the response handler for the exchange associated with a sequence.
583 */
584 static void fc_seq_set_resp(struct fc_seq *sp,
585 void (*resp)(struct fc_seq *, struct fc_frame *,
586 void *),
587 void *arg)
588 {
589 struct fc_exch *ep = fc_seq_exch(sp);
590
591 spin_lock_bh(&ep->ex_lock);
592 ep->resp = resp;
593 ep->arg = arg;
594 spin_unlock_bh(&ep->ex_lock);
595 }
596
597 /**
598 * fc_exch_abort_locked() - Abort an exchange
599 * @ep: The exchange to be aborted
600 * @timer_msec: The period of time to wait before aborting
601 *
602 * Locking notes: Called with exch lock held
603 *
604 * Return value: 0 on success else error code
605 */
606 static int fc_exch_abort_locked(struct fc_exch *ep,
607 unsigned int timer_msec)
608 {
609 struct fc_seq *sp;
610 struct fc_frame *fp;
611 int error;
612
613 if (ep->esb_stat & (ESB_ST_COMPLETE | ESB_ST_ABNORMAL) ||
614 ep->state & (FC_EX_DONE | FC_EX_RST_CLEANUP))
615 return -ENXIO;
616
617 /*
618 * Send the abort on a new sequence if possible.
619 */
620 sp = fc_seq_start_next_locked(&ep->seq);
621 if (!sp)
622 return -ENOMEM;
623
624 ep->esb_stat |= ESB_ST_SEQ_INIT | ESB_ST_ABNORMAL;
625 if (timer_msec)
626 fc_exch_timer_set_locked(ep, timer_msec);
627
628 /*
629 * If not logged into the fabric, don't send ABTS but leave
630 * sequence active until next timeout.
631 */
632 if (!ep->sid)
633 return 0;
634
635 /*
636 * Send an abort for the sequence that timed out.
637 */
638 fp = fc_frame_alloc(ep->lp, 0);
639 if (fp) {
640 fc_fill_fc_hdr(fp, FC_RCTL_BA_ABTS, ep->did, ep->sid,
641 FC_TYPE_BLS, FC_FC_END_SEQ | FC_FC_SEQ_INIT, 0);
642 error = fc_seq_send_locked(ep->lp, sp, fp);
643 } else
644 error = -ENOBUFS;
645 return error;
646 }
647
648 /**
649 * fc_seq_exch_abort() - Abort an exchange and sequence
650 * @req_sp: The sequence to be aborted
651 * @timer_msec: The period of time to wait before aborting
652 *
653 * Generally called because of a timeout or an abort from the upper layer.
654 *
655 * Return value: 0 on success else error code
656 */
657 static int fc_seq_exch_abort(const struct fc_seq *req_sp,
658 unsigned int timer_msec)
659 {
660 struct fc_exch *ep;
661 int error;
662
663 ep = fc_seq_exch(req_sp);
664 spin_lock_bh(&ep->ex_lock);
665 error = fc_exch_abort_locked(ep, timer_msec);
666 spin_unlock_bh(&ep->ex_lock);
667 return error;
668 }
669
670 /**
671 * fc_exch_timeout() - Handle exchange timer expiration
672 * @work: The work_struct identifying the exchange that timed out
673 */
674 static void fc_exch_timeout(struct work_struct *work)
675 {
676 struct fc_exch *ep = container_of(work, struct fc_exch,
677 timeout_work.work);
678 struct fc_seq *sp = &ep->seq;
679 void (*resp)(struct fc_seq *, struct fc_frame *fp, void *arg);
680 void *arg;
681 u32 e_stat;
682 int rc = 1;
683
684 FC_EXCH_DBG(ep, "Exchange timed out\n");
685
686 spin_lock_bh(&ep->ex_lock);
687 if (ep->state & (FC_EX_RST_CLEANUP | FC_EX_DONE))
688 goto unlock;
689
690 e_stat = ep->esb_stat;
691 if (e_stat & ESB_ST_COMPLETE) {
692 ep->esb_stat = e_stat & ~ESB_ST_REC_QUAL;
693 spin_unlock_bh(&ep->ex_lock);
694 if (e_stat & ESB_ST_REC_QUAL)
695 fc_exch_rrq(ep);
696 goto done;
697 } else {
698 resp = ep->resp;
699 arg = ep->arg;
700 ep->resp = NULL;
701 if (e_stat & ESB_ST_ABNORMAL)
702 rc = fc_exch_done_locked(ep);
703 spin_unlock_bh(&ep->ex_lock);
704 if (!rc)
705 fc_exch_delete(ep);
706 if (resp)
707 resp(sp, ERR_PTR(-FC_EX_TIMEOUT), arg);
708 fc_seq_exch_abort(sp, 2 * ep->r_a_tov);
709 goto done;
710 }
711 unlock:
712 spin_unlock_bh(&ep->ex_lock);
713 done:
714 /*
715 * This release matches the hold taken when the timer was set.
716 */
717 fc_exch_release(ep);
718 }
719
720 /**
721 * fc_exch_em_alloc() - Allocate an exchange from a specified EM.
722 * @lport: The local port that the exchange is for
723 * @mp: The exchange manager that will allocate the exchange
724 *
725 * Returns pointer to allocated fc_exch with exch lock held.
726 */
727 static struct fc_exch *fc_exch_em_alloc(struct fc_lport *lport,
728 struct fc_exch_mgr *mp)
729 {
730 struct fc_exch *ep;
731 unsigned int cpu;
732 u16 index;
733 struct fc_exch_pool *pool;
734
735 /* allocate memory for exchange */
736 ep = mempool_alloc(mp->ep_pool, GFP_ATOMIC);
737 if (!ep) {
738 atomic_inc(&mp->stats.no_free_exch);
739 goto out;
740 }
741 memset(ep, 0, sizeof(*ep));
742
743 cpu = get_cpu();
744 pool = per_cpu_ptr(mp->pool, cpu);
745 spin_lock_bh(&pool->lock);
746 put_cpu();
747
748 /* peek cache of free slot */
749 if (pool->left != FC_XID_UNKNOWN) {
750 index = pool->left;
751 pool->left = FC_XID_UNKNOWN;
752 goto hit;
753 }
754 if (pool->right != FC_XID_UNKNOWN) {
755 index = pool->right;
756 pool->right = FC_XID_UNKNOWN;
757 goto hit;
758 }
759
760 index = pool->next_index;
761 /* allocate new exch from pool */
762 while (fc_exch_ptr_get(pool, index)) {
763 index = index == mp->pool_max_index ? 0 : index + 1;
764 if (index == pool->next_index)
765 goto err;
766 }
767 pool->next_index = index == mp->pool_max_index ? 0 : index + 1;
768 hit:
769 fc_exch_hold(ep); /* hold for exch in mp */
770 spin_lock_init(&ep->ex_lock);
771 /*
772 * Hold exch lock for caller to prevent fc_exch_reset()
773 * from releasing exch while fc_exch_alloc() caller is
774 * still working on exch.
775 */
776 spin_lock_bh(&ep->ex_lock);
777
778 fc_exch_ptr_set(pool, index, ep);
779 list_add_tail(&ep->ex_list, &pool->ex_list);
780 fc_seq_alloc(ep, ep->seq_id++);
781 pool->total_exches++;
782 spin_unlock_bh(&pool->lock);
783
784 /*
785 * update exchange
786 */
787 ep->oxid = ep->xid = (index << fc_cpu_order | cpu) + mp->min_xid;
788 ep->em = mp;
789 ep->pool = pool;
790 ep->lp = lport;
791 ep->f_ctl = FC_FC_FIRST_SEQ; /* next seq is first seq */
792 ep->rxid = FC_XID_UNKNOWN;
793 ep->class = mp->class;
794 INIT_DELAYED_WORK(&ep->timeout_work, fc_exch_timeout);
795 out:
796 return ep;
797 err:
798 spin_unlock_bh(&pool->lock);
799 atomic_inc(&mp->stats.no_free_exch_xid);
800 mempool_free(ep, mp->ep_pool);
801 return NULL;
802 }
803
804 /**
805 * fc_exch_alloc() - Allocate an exchange from an EM on a
806 * local port's list of EMs.
807 * @lport: The local port that will own the exchange
808 * @fp: The FC frame that the exchange will be for
809 *
810 * This function walks the list of exchange manager(EM)
811 * anchors to select an EM for a new exchange allocation. The
812 * EM is selected when a NULL match function pointer is encountered
813 * or when a call to a match function returns true.
814 */
815 static inline struct fc_exch *fc_exch_alloc(struct fc_lport *lport,
816 struct fc_frame *fp)
817 {
818 struct fc_exch_mgr_anchor *ema;
819
820 list_for_each_entry(ema, &lport->ema_list, ema_list)
821 if (!ema->match || ema->match(fp))
822 return fc_exch_em_alloc(lport, ema->mp);
823 return NULL;
824 }
825
826 /**
827 * fc_exch_find() - Lookup and hold an exchange
828 * @mp: The exchange manager to lookup the exchange from
829 * @xid: The XID of the exchange to look up
830 */
831 static struct fc_exch *fc_exch_find(struct fc_exch_mgr *mp, u16 xid)
832 {
833 struct fc_exch_pool *pool;
834 struct fc_exch *ep = NULL;
835
836 if ((xid >= mp->min_xid) && (xid <= mp->max_xid)) {
837 pool = per_cpu_ptr(mp->pool, xid & fc_cpu_mask);
838 spin_lock_bh(&pool->lock);
839 ep = fc_exch_ptr_get(pool, (xid - mp->min_xid) >> fc_cpu_order);
840 if (ep) {
841 WARN_ON(ep->xid != xid);
842 fc_exch_hold(ep);
843 }
844 spin_unlock_bh(&pool->lock);
845 }
846 return ep;
847 }
848
849
850 /**
851 * fc_exch_done() - Indicate that an exchange/sequence tuple is complete and
852 * the memory allocated for the related objects may be freed.
853 * @sp: The sequence that has completed
854 */
855 static void fc_exch_done(struct fc_seq *sp)
856 {
857 struct fc_exch *ep = fc_seq_exch(sp);
858 int rc;
859
860 spin_lock_bh(&ep->ex_lock);
861 rc = fc_exch_done_locked(ep);
862 spin_unlock_bh(&ep->ex_lock);
863 if (!rc)
864 fc_exch_delete(ep);
865 }
866
867 /**
868 * fc_exch_resp() - Allocate a new exchange for a response frame
869 * @lport: The local port that the exchange was for
870 * @mp: The exchange manager to allocate the exchange from
871 * @fp: The response frame
872 *
873 * Sets the responder ID in the frame header.
874 */
875 static struct fc_exch *fc_exch_resp(struct fc_lport *lport,
876 struct fc_exch_mgr *mp,
877 struct fc_frame *fp)
878 {
879 struct fc_exch *ep;
880 struct fc_frame_header *fh;
881
882 ep = fc_exch_alloc(lport, fp);
883 if (ep) {
884 ep->class = fc_frame_class(fp);
885
886 /*
887 * Set EX_CTX indicating we're responding on this exchange.
888 */
889 ep->f_ctl |= FC_FC_EX_CTX; /* we're responding */
890 ep->f_ctl &= ~FC_FC_FIRST_SEQ; /* not new */
891 fh = fc_frame_header_get(fp);
892 ep->sid = ntoh24(fh->fh_d_id);
893 ep->did = ntoh24(fh->fh_s_id);
894 ep->oid = ep->did;
895
896 /*
897 * Allocated exchange has placed the XID in the
898 * originator field. Move it to the responder field,
899 * and set the originator XID from the frame.
900 */
901 ep->rxid = ep->xid;
902 ep->oxid = ntohs(fh->fh_ox_id);
903 ep->esb_stat |= ESB_ST_RESP | ESB_ST_SEQ_INIT;
904 if ((ntoh24(fh->fh_f_ctl) & FC_FC_SEQ_INIT) == 0)
905 ep->esb_stat &= ~ESB_ST_SEQ_INIT;
906
907 fc_exch_hold(ep); /* hold for caller */
908 spin_unlock_bh(&ep->ex_lock); /* lock from fc_exch_alloc */
909 }
910 return ep;
911 }
912
913 /**
914 * fc_seq_lookup_recip() - Find a sequence where the other end
915 * originated the sequence
916 * @lport: The local port that the frame was sent to
917 * @mp: The Exchange Manager to lookup the exchange from
918 * @fp: The frame associated with the sequence we're looking for
919 *
920 * If fc_pf_rjt_reason is FC_RJT_NONE then this function will have a hold
921 * on the ep that should be released by the caller.
922 */
923 static enum fc_pf_rjt_reason fc_seq_lookup_recip(struct fc_lport *lport,
924 struct fc_exch_mgr *mp,
925 struct fc_frame *fp)
926 {
927 struct fc_frame_header *fh = fc_frame_header_get(fp);
928 struct fc_exch *ep = NULL;
929 struct fc_seq *sp = NULL;
930 enum fc_pf_rjt_reason reject = FC_RJT_NONE;
931 u32 f_ctl;
932 u16 xid;
933
934 f_ctl = ntoh24(fh->fh_f_ctl);
935 WARN_ON((f_ctl & FC_FC_SEQ_CTX) != 0);
936
937 /*
938 * Lookup or create the exchange if we will be creating the sequence.
939 */
940 if (f_ctl & FC_FC_EX_CTX) {
941 xid = ntohs(fh->fh_ox_id); /* we originated exch */
942 ep = fc_exch_find(mp, xid);
943 if (!ep) {
944 atomic_inc(&mp->stats.xid_not_found);
945 reject = FC_RJT_OX_ID;
946 goto out;
947 }
948 if (ep->rxid == FC_XID_UNKNOWN)
949 ep->rxid = ntohs(fh->fh_rx_id);
950 else if (ep->rxid != ntohs(fh->fh_rx_id)) {
951 reject = FC_RJT_OX_ID;
952 goto rel;
953 }
954 } else {
955 xid = ntohs(fh->fh_rx_id); /* we are the responder */
956
957 /*
958 * Special case for MDS issuing an ELS TEST with a
959 * bad rxid of 0.
960 * XXX take this out once we do the proper reject.
961 */
962 if (xid == 0 && fh->fh_r_ctl == FC_RCTL_ELS_REQ &&
963 fc_frame_payload_op(fp) == ELS_TEST) {
964 fh->fh_rx_id = htons(FC_XID_UNKNOWN);
965 xid = FC_XID_UNKNOWN;
966 }
967
968 /*
969 * new sequence - find the exchange
970 */
971 ep = fc_exch_find(mp, xid);
972 if ((f_ctl & FC_FC_FIRST_SEQ) && fc_sof_is_init(fr_sof(fp))) {
973 if (ep) {
974 atomic_inc(&mp->stats.xid_busy);
975 reject = FC_RJT_RX_ID;
976 goto rel;
977 }
978 ep = fc_exch_resp(lport, mp, fp);
979 if (!ep) {
980 reject = FC_RJT_EXCH_EST; /* XXX */
981 goto out;
982 }
983 xid = ep->xid; /* get our XID */
984 } else if (!ep) {
985 atomic_inc(&mp->stats.xid_not_found);
986 reject = FC_RJT_RX_ID; /* XID not found */
987 goto out;
988 }
989 }
990
991 /*
992 * At this point, we have the exchange held.
993 * Find or create the sequence.
994 */
995 if (fc_sof_is_init(fr_sof(fp))) {
996 sp = &ep->seq;
997 sp->ssb_stat |= SSB_ST_RESP;
998 sp->id = fh->fh_seq_id;
999 } else {
1000 sp = &ep->seq;
1001 if (sp->id != fh->fh_seq_id) {
1002 atomic_inc(&mp->stats.seq_not_found);
1003 if (f_ctl & FC_FC_END_SEQ) {
1004 /*
1005 * Update sequence_id based on incoming last
1006 * frame of sequence exchange. This is needed
1007 * for FC target where DDP has been used
1008 * on target where, stack is indicated only
1009 * about last frame's (payload _header) header.
1010 * Whereas "seq_id" which is part of
1011 * frame_header is allocated by initiator
1012 * which is totally different from "seq_id"
1013 * allocated when XFER_RDY was sent by target.
1014 * To avoid false -ve which results into not
1015 * sending RSP, hence write request on other
1016 * end never finishes.
1017 */
1018 spin_lock_bh(&ep->ex_lock);
1019 sp->ssb_stat |= SSB_ST_RESP;
1020 sp->id = fh->fh_seq_id;
1021 spin_unlock_bh(&ep->ex_lock);
1022 } else {
1023 /* sequence/exch should exist */
1024 reject = FC_RJT_SEQ_ID;
1025 goto rel;
1026 }
1027 }
1028 }
1029 WARN_ON(ep != fc_seq_exch(sp));
1030
1031 if (f_ctl & FC_FC_SEQ_INIT)
1032 ep->esb_stat |= ESB_ST_SEQ_INIT;
1033
1034 fr_seq(fp) = sp;
1035 out:
1036 return reject;
1037 rel:
1038 fc_exch_done(&ep->seq);
1039 fc_exch_release(ep); /* hold from fc_exch_find/fc_exch_resp */
1040 return reject;
1041 }
1042
1043 /**
1044 * fc_seq_lookup_orig() - Find a sequence where this end
1045 * originated the sequence
1046 * @mp: The Exchange Manager to lookup the exchange from
1047 * @fp: The frame associated with the sequence we're looking for
1048 *
1049 * Does not hold the sequence for the caller.
1050 */
1051 static struct fc_seq *fc_seq_lookup_orig(struct fc_exch_mgr *mp,
1052 struct fc_frame *fp)
1053 {
1054 struct fc_frame_header *fh = fc_frame_header_get(fp);
1055 struct fc_exch *ep;
1056 struct fc_seq *sp = NULL;
1057 u32 f_ctl;
1058 u16 xid;
1059
1060 f_ctl = ntoh24(fh->fh_f_ctl);
1061 WARN_ON((f_ctl & FC_FC_SEQ_CTX) != FC_FC_SEQ_CTX);
1062 xid = ntohs((f_ctl & FC_FC_EX_CTX) ? fh->fh_ox_id : fh->fh_rx_id);
1063 ep = fc_exch_find(mp, xid);
1064 if (!ep)
1065 return NULL;
1066 if (ep->seq.id == fh->fh_seq_id) {
1067 /*
1068 * Save the RX_ID if we didn't previously know it.
1069 */
1070 sp = &ep->seq;
1071 if ((f_ctl & FC_FC_EX_CTX) != 0 &&
1072 ep->rxid == FC_XID_UNKNOWN) {
1073 ep->rxid = ntohs(fh->fh_rx_id);
1074 }
1075 }
1076 fc_exch_release(ep);
1077 return sp;
1078 }
1079
1080 /**
1081 * fc_exch_set_addr() - Set the source and destination IDs for an exchange
1082 * @ep: The exchange to set the addresses for
1083 * @orig_id: The originator's ID
1084 * @resp_id: The responder's ID
1085 *
1086 * Note this must be done before the first sequence of the exchange is sent.
1087 */
1088 static void fc_exch_set_addr(struct fc_exch *ep,
1089 u32 orig_id, u32 resp_id)
1090 {
1091 ep->oid = orig_id;
1092 if (ep->esb_stat & ESB_ST_RESP) {
1093 ep->sid = resp_id;
1094 ep->did = orig_id;
1095 } else {
1096 ep->sid = orig_id;
1097 ep->did = resp_id;
1098 }
1099 }
1100
1101 /**
1102 * fc_seq_els_rsp_send() - Send an ELS response using information from
1103 * the existing sequence/exchange.
1104 * @fp: The received frame
1105 * @els_cmd: The ELS command to be sent
1106 * @els_data: The ELS data to be sent
1107 *
1108 * The received frame is not freed.
1109 */
1110 static void fc_seq_els_rsp_send(struct fc_frame *fp, enum fc_els_cmd els_cmd,
1111 struct fc_seq_els_data *els_data)
1112 {
1113 switch (els_cmd) {
1114 case ELS_LS_RJT:
1115 fc_seq_ls_rjt(fp, els_data->reason, els_data->explan);
1116 break;
1117 case ELS_LS_ACC:
1118 fc_seq_ls_acc(fp);
1119 break;
1120 case ELS_RRQ:
1121 fc_exch_els_rrq(fp);
1122 break;
1123 case ELS_REC:
1124 fc_exch_els_rec(fp);
1125 break;
1126 default:
1127 FC_LPORT_DBG(fr_dev(fp), "Invalid ELS CMD:%x\n", els_cmd);
1128 }
1129 }
1130
1131 /**
1132 * fc_seq_send_last() - Send a sequence that is the last in the exchange
1133 * @sp: The sequence that is to be sent
1134 * @fp: The frame that will be sent on the sequence
1135 * @rctl: The R_CTL information to be sent
1136 * @fh_type: The frame header type
1137 */
1138 static void fc_seq_send_last(struct fc_seq *sp, struct fc_frame *fp,
1139 enum fc_rctl rctl, enum fc_fh_type fh_type)
1140 {
1141 u32 f_ctl;
1142 struct fc_exch *ep = fc_seq_exch(sp);
1143
1144 f_ctl = FC_FC_LAST_SEQ | FC_FC_END_SEQ | FC_FC_SEQ_INIT;
1145 f_ctl |= ep->f_ctl;
1146 fc_fill_fc_hdr(fp, rctl, ep->did, ep->sid, fh_type, f_ctl, 0);
1147 fc_seq_send_locked(ep->lp, sp, fp);
1148 }
1149
1150 /**
1151 * fc_seq_send_ack() - Send an acknowledgement that we've received a frame
1152 * @sp: The sequence to send the ACK on
1153 * @rx_fp: The received frame that is being acknoledged
1154 *
1155 * Send ACK_1 (or equiv.) indicating we received something.
1156 */
1157 static void fc_seq_send_ack(struct fc_seq *sp, const struct fc_frame *rx_fp)
1158 {
1159 struct fc_frame *fp;
1160 struct fc_frame_header *rx_fh;
1161 struct fc_frame_header *fh;
1162 struct fc_exch *ep = fc_seq_exch(sp);
1163 struct fc_lport *lport = ep->lp;
1164 unsigned int f_ctl;
1165
1166 /*
1167 * Don't send ACKs for class 3.
1168 */
1169 if (fc_sof_needs_ack(fr_sof(rx_fp))) {
1170 fp = fc_frame_alloc(lport, 0);
1171 if (!fp)
1172 return;
1173
1174 fh = fc_frame_header_get(fp);
1175 fh->fh_r_ctl = FC_RCTL_ACK_1;
1176 fh->fh_type = FC_TYPE_BLS;
1177
1178 /*
1179 * Form f_ctl by inverting EX_CTX and SEQ_CTX (bits 23, 22).
1180 * Echo FIRST_SEQ, LAST_SEQ, END_SEQ, END_CONN, SEQ_INIT.
1181 * Bits 9-8 are meaningful (retransmitted or unidirectional).
1182 * Last ACK uses bits 7-6 (continue sequence),
1183 * bits 5-4 are meaningful (what kind of ACK to use).
1184 */
1185 rx_fh = fc_frame_header_get(rx_fp);
1186 f_ctl = ntoh24(rx_fh->fh_f_ctl);
1187 f_ctl &= FC_FC_EX_CTX | FC_FC_SEQ_CTX |
1188 FC_FC_FIRST_SEQ | FC_FC_LAST_SEQ |
1189 FC_FC_END_SEQ | FC_FC_END_CONN | FC_FC_SEQ_INIT |
1190 FC_FC_RETX_SEQ | FC_FC_UNI_TX;
1191 f_ctl ^= FC_FC_EX_CTX | FC_FC_SEQ_CTX;
1192 hton24(fh->fh_f_ctl, f_ctl);
1193
1194 fc_exch_setup_hdr(ep, fp, f_ctl);
1195 fh->fh_seq_id = rx_fh->fh_seq_id;
1196 fh->fh_seq_cnt = rx_fh->fh_seq_cnt;
1197 fh->fh_parm_offset = htonl(1); /* ack single frame */
1198
1199 fr_sof(fp) = fr_sof(rx_fp);
1200 if (f_ctl & FC_FC_END_SEQ)
1201 fr_eof(fp) = FC_EOF_T;
1202 else
1203 fr_eof(fp) = FC_EOF_N;
1204
1205 lport->tt.frame_send(lport, fp);
1206 }
1207 }
1208
1209 /**
1210 * fc_exch_send_ba_rjt() - Send BLS Reject
1211 * @rx_fp: The frame being rejected
1212 * @reason: The reason the frame is being rejected
1213 * @explan: The explanation for the rejection
1214 *
1215 * This is for rejecting BA_ABTS only.
1216 */
1217 static void fc_exch_send_ba_rjt(struct fc_frame *rx_fp,
1218 enum fc_ba_rjt_reason reason,
1219 enum fc_ba_rjt_explan explan)
1220 {
1221 struct fc_frame *fp;
1222 struct fc_frame_header *rx_fh;
1223 struct fc_frame_header *fh;
1224 struct fc_ba_rjt *rp;
1225 struct fc_lport *lport;
1226 unsigned int f_ctl;
1227
1228 lport = fr_dev(rx_fp);
1229 fp = fc_frame_alloc(lport, sizeof(*rp));
1230 if (!fp)
1231 return;
1232 fh = fc_frame_header_get(fp);
1233 rx_fh = fc_frame_header_get(rx_fp);
1234
1235 memset(fh, 0, sizeof(*fh) + sizeof(*rp));
1236
1237 rp = fc_frame_payload_get(fp, sizeof(*rp));
1238 rp->br_reason = reason;
1239 rp->br_explan = explan;
1240
1241 /*
1242 * seq_id, cs_ctl, df_ctl and param/offset are zero.
1243 */
1244 memcpy(fh->fh_s_id, rx_fh->fh_d_id, 3);
1245 memcpy(fh->fh_d_id, rx_fh->fh_s_id, 3);
1246 fh->fh_ox_id = rx_fh->fh_ox_id;
1247 fh->fh_rx_id = rx_fh->fh_rx_id;
1248 fh->fh_seq_cnt = rx_fh->fh_seq_cnt;
1249 fh->fh_r_ctl = FC_RCTL_BA_RJT;
1250 fh->fh_type = FC_TYPE_BLS;
1251
1252 /*
1253 * Form f_ctl by inverting EX_CTX and SEQ_CTX (bits 23, 22).
1254 * Echo FIRST_SEQ, LAST_SEQ, END_SEQ, END_CONN, SEQ_INIT.
1255 * Bits 9-8 are meaningful (retransmitted or unidirectional).
1256 * Last ACK uses bits 7-6 (continue sequence),
1257 * bits 5-4 are meaningful (what kind of ACK to use).
1258 * Always set LAST_SEQ, END_SEQ.
1259 */
1260 f_ctl = ntoh24(rx_fh->fh_f_ctl);
1261 f_ctl &= FC_FC_EX_CTX | FC_FC_SEQ_CTX |
1262 FC_FC_END_CONN | FC_FC_SEQ_INIT |
1263 FC_FC_RETX_SEQ | FC_FC_UNI_TX;
1264 f_ctl ^= FC_FC_EX_CTX | FC_FC_SEQ_CTX;
1265 f_ctl |= FC_FC_LAST_SEQ | FC_FC_END_SEQ;
1266 f_ctl &= ~FC_FC_FIRST_SEQ;
1267 hton24(fh->fh_f_ctl, f_ctl);
1268
1269 fr_sof(fp) = fc_sof_class(fr_sof(rx_fp));
1270 fr_eof(fp) = FC_EOF_T;
1271 if (fc_sof_needs_ack(fr_sof(fp)))
1272 fr_eof(fp) = FC_EOF_N;
1273
1274 lport->tt.frame_send(lport, fp);
1275 }
1276
1277 /**
1278 * fc_exch_recv_abts() - Handle an incoming ABTS
1279 * @ep: The exchange the abort was on
1280 * @rx_fp: The ABTS frame
1281 *
1282 * This would be for target mode usually, but could be due to lost
1283 * FCP transfer ready, confirm or RRQ. We always handle this as an
1284 * exchange abort, ignoring the parameter.
1285 */
1286 static void fc_exch_recv_abts(struct fc_exch *ep, struct fc_frame *rx_fp)
1287 {
1288 struct fc_frame *fp;
1289 struct fc_ba_acc *ap;
1290 struct fc_frame_header *fh;
1291 struct fc_seq *sp;
1292
1293 if (!ep)
1294 goto reject;
1295 spin_lock_bh(&ep->ex_lock);
1296 if (ep->esb_stat & ESB_ST_COMPLETE) {
1297 spin_unlock_bh(&ep->ex_lock);
1298 goto reject;
1299 }
1300 if (!(ep->esb_stat & ESB_ST_REC_QUAL))
1301 fc_exch_hold(ep); /* hold for REC_QUAL */
1302 ep->esb_stat |= ESB_ST_ABNORMAL | ESB_ST_REC_QUAL;
1303 fc_exch_timer_set_locked(ep, ep->r_a_tov);
1304
1305 fp = fc_frame_alloc(ep->lp, sizeof(*ap));
1306 if (!fp) {
1307 spin_unlock_bh(&ep->ex_lock);
1308 goto free;
1309 }
1310 fh = fc_frame_header_get(fp);
1311 ap = fc_frame_payload_get(fp, sizeof(*ap));
1312 memset(ap, 0, sizeof(*ap));
1313 sp = &ep->seq;
1314 ap->ba_high_seq_cnt = htons(0xffff);
1315 if (sp->ssb_stat & SSB_ST_RESP) {
1316 ap->ba_seq_id = sp->id;
1317 ap->ba_seq_id_val = FC_BA_SEQ_ID_VAL;
1318 ap->ba_high_seq_cnt = fh->fh_seq_cnt;
1319 ap->ba_low_seq_cnt = htons(sp->cnt);
1320 }
1321 sp = fc_seq_start_next_locked(sp);
1322 fc_seq_send_last(sp, fp, FC_RCTL_BA_ACC, FC_TYPE_BLS);
1323 spin_unlock_bh(&ep->ex_lock);
1324 fc_frame_free(rx_fp);
1325 return;
1326
1327 reject:
1328 fc_exch_send_ba_rjt(rx_fp, FC_BA_RJT_UNABLE, FC_BA_RJT_INV_XID);
1329 free:
1330 fc_frame_free(rx_fp);
1331 }
1332
1333 /**
1334 * fc_seq_assign() - Assign exchange and sequence for incoming request
1335 * @lport: The local port that received the request
1336 * @fp: The request frame
1337 *
1338 * On success, the sequence pointer will be returned and also in fr_seq(@fp).
1339 * A reference will be held on the exchange/sequence for the caller, which
1340 * must call fc_seq_release().
1341 */
1342 static struct fc_seq *fc_seq_assign(struct fc_lport *lport, struct fc_frame *fp)
1343 {
1344 struct fc_exch_mgr_anchor *ema;
1345
1346 WARN_ON(lport != fr_dev(fp));
1347 WARN_ON(fr_seq(fp));
1348 fr_seq(fp) = NULL;
1349
1350 list_for_each_entry(ema, &lport->ema_list, ema_list)
1351 if ((!ema->match || ema->match(fp)) &&
1352 fc_seq_lookup_recip(lport, ema->mp, fp) == FC_RJT_NONE)
1353 break;
1354 return fr_seq(fp);
1355 }
1356
1357 /**
1358 * fc_seq_release() - Release the hold
1359 * @sp: The sequence.
1360 */
1361 static void fc_seq_release(struct fc_seq *sp)
1362 {
1363 fc_exch_release(fc_seq_exch(sp));
1364 }
1365
1366 /**
1367 * fc_exch_recv_req() - Handler for an incoming request
1368 * @lport: The local port that received the request
1369 * @mp: The EM that the exchange is on
1370 * @fp: The request frame
1371 *
1372 * This is used when the other end is originating the exchange
1373 * and the sequence.
1374 */
1375 static void fc_exch_recv_req(struct fc_lport *lport, struct fc_exch_mgr *mp,
1376 struct fc_frame *fp)
1377 {
1378 struct fc_frame_header *fh = fc_frame_header_get(fp);
1379 struct fc_seq *sp = NULL;
1380 struct fc_exch *ep = NULL;
1381 enum fc_pf_rjt_reason reject;
1382
1383 /* We can have the wrong fc_lport at this point with NPIV, which is a
1384 * problem now that we know a new exchange needs to be allocated
1385 */
1386 lport = fc_vport_id_lookup(lport, ntoh24(fh->fh_d_id));
1387 if (!lport) {
1388 fc_frame_free(fp);
1389 return;
1390 }
1391 fr_dev(fp) = lport;
1392
1393 BUG_ON(fr_seq(fp)); /* XXX remove later */
1394
1395 /*
1396 * If the RX_ID is 0xffff, don't allocate an exchange.
1397 * The upper-level protocol may request one later, if needed.
1398 */
1399 if (fh->fh_rx_id == htons(FC_XID_UNKNOWN))
1400 return lport->tt.lport_recv(lport, fp);
1401
1402 reject = fc_seq_lookup_recip(lport, mp, fp);
1403 if (reject == FC_RJT_NONE) {
1404 sp = fr_seq(fp); /* sequence will be held */
1405 ep = fc_seq_exch(sp);
1406 fc_seq_send_ack(sp, fp);
1407 ep->encaps = fr_encaps(fp);
1408
1409 /*
1410 * Call the receive function.
1411 *
1412 * The receive function may allocate a new sequence
1413 * over the old one, so we shouldn't change the
1414 * sequence after this.
1415 *
1416 * The frame will be freed by the receive function.
1417 * If new exch resp handler is valid then call that
1418 * first.
1419 */
1420 if (ep->resp)
1421 ep->resp(sp, fp, ep->arg);
1422 else
1423 lport->tt.lport_recv(lport, fp);
1424 fc_exch_release(ep); /* release from lookup */
1425 } else {
1426 FC_LPORT_DBG(lport, "exch/seq lookup failed: reject %x\n",
1427 reject);
1428 fc_frame_free(fp);
1429 }
1430 }
1431
1432 /**
1433 * fc_exch_recv_seq_resp() - Handler for an incoming response where the other
1434 * end is the originator of the sequence that is a
1435 * response to our initial exchange
1436 * @mp: The EM that the exchange is on
1437 * @fp: The response frame
1438 */
1439 static void fc_exch_recv_seq_resp(struct fc_exch_mgr *mp, struct fc_frame *fp)
1440 {
1441 struct fc_frame_header *fh = fc_frame_header_get(fp);
1442 struct fc_seq *sp;
1443 struct fc_exch *ep;
1444 enum fc_sof sof;
1445 u32 f_ctl;
1446 void (*resp)(struct fc_seq *, struct fc_frame *fp, void *arg);
1447 void *ex_resp_arg;
1448 int rc;
1449
1450 ep = fc_exch_find(mp, ntohs(fh->fh_ox_id));
1451 if (!ep) {
1452 atomic_inc(&mp->stats.xid_not_found);
1453 goto out;
1454 }
1455 if (ep->esb_stat & ESB_ST_COMPLETE) {
1456 atomic_inc(&mp->stats.xid_not_found);
1457 goto rel;
1458 }
1459 if (ep->rxid == FC_XID_UNKNOWN)
1460 ep->rxid = ntohs(fh->fh_rx_id);
1461 if (ep->sid != 0 && ep->sid != ntoh24(fh->fh_d_id)) {
1462 atomic_inc(&mp->stats.xid_not_found);
1463 goto rel;
1464 }
1465 if (ep->did != ntoh24(fh->fh_s_id) &&
1466 ep->did != FC_FID_FLOGI) {
1467 atomic_inc(&mp->stats.xid_not_found);
1468 goto rel;
1469 }
1470 sof = fr_sof(fp);
1471 sp = &ep->seq;
1472 if (fc_sof_is_init(sof)) {
1473 sp->ssb_stat |= SSB_ST_RESP;
1474 sp->id = fh->fh_seq_id;
1475 } else if (sp->id != fh->fh_seq_id) {
1476 atomic_inc(&mp->stats.seq_not_found);
1477 goto rel;
1478 }
1479
1480 f_ctl = ntoh24(fh->fh_f_ctl);
1481 fr_seq(fp) = sp;
1482 if (f_ctl & FC_FC_SEQ_INIT)
1483 ep->esb_stat |= ESB_ST_SEQ_INIT;
1484
1485 if (fc_sof_needs_ack(sof))
1486 fc_seq_send_ack(sp, fp);
1487 resp = ep->resp;
1488 ex_resp_arg = ep->arg;
1489
1490 if (fh->fh_type != FC_TYPE_FCP && fr_eof(fp) == FC_EOF_T &&
1491 (f_ctl & (FC_FC_LAST_SEQ | FC_FC_END_SEQ)) ==
1492 (FC_FC_LAST_SEQ | FC_FC_END_SEQ)) {
1493 spin_lock_bh(&ep->ex_lock);
1494 resp = ep->resp;
1495 rc = fc_exch_done_locked(ep);
1496 WARN_ON(fc_seq_exch(sp) != ep);
1497 spin_unlock_bh(&ep->ex_lock);
1498 if (!rc)
1499 fc_exch_delete(ep);
1500 }
1501
1502 /*
1503 * Call the receive function.
1504 * The sequence is held (has a refcnt) for us,
1505 * but not for the receive function.
1506 *
1507 * The receive function may allocate a new sequence
1508 * over the old one, so we shouldn't change the
1509 * sequence after this.
1510 *
1511 * The frame will be freed by the receive function.
1512 * If new exch resp handler is valid then call that
1513 * first.
1514 */
1515 if (resp)
1516 resp(sp, fp, ex_resp_arg);
1517 else
1518 fc_frame_free(fp);
1519 fc_exch_release(ep);
1520 return;
1521 rel:
1522 fc_exch_release(ep);
1523 out:
1524 fc_frame_free(fp);
1525 }
1526
1527 /**
1528 * fc_exch_recv_resp() - Handler for a sequence where other end is
1529 * responding to our sequence
1530 * @mp: The EM that the exchange is on
1531 * @fp: The response frame
1532 */
1533 static void fc_exch_recv_resp(struct fc_exch_mgr *mp, struct fc_frame *fp)
1534 {
1535 struct fc_seq *sp;
1536
1537 sp = fc_seq_lookup_orig(mp, fp); /* doesn't hold sequence */
1538
1539 if (!sp)
1540 atomic_inc(&mp->stats.xid_not_found);
1541 else
1542 atomic_inc(&mp->stats.non_bls_resp);
1543
1544 fc_frame_free(fp);
1545 }
1546
1547 /**
1548 * fc_exch_abts_resp() - Handler for a response to an ABT
1549 * @ep: The exchange that the frame is on
1550 * @fp: The response frame
1551 *
1552 * This response would be to an ABTS cancelling an exchange or sequence.
1553 * The response can be either BA_ACC or BA_RJT
1554 */
1555 static void fc_exch_abts_resp(struct fc_exch *ep, struct fc_frame *fp)
1556 {
1557 void (*resp)(struct fc_seq *, struct fc_frame *fp, void *arg);
1558 void *ex_resp_arg;
1559 struct fc_frame_header *fh;
1560 struct fc_ba_acc *ap;
1561 struct fc_seq *sp;
1562 u16 low;
1563 u16 high;
1564 int rc = 1, has_rec = 0;
1565
1566 fh = fc_frame_header_get(fp);
1567 FC_EXCH_DBG(ep, "exch: BLS rctl %x - %s\n", fh->fh_r_ctl,
1568 fc_exch_rctl_name(fh->fh_r_ctl));
1569
1570 if (cancel_delayed_work_sync(&ep->timeout_work)) {
1571 FC_EXCH_DBG(ep, "Exchange timer canceled due to ABTS response\n");
1572 fc_exch_release(ep); /* release from pending timer hold */
1573 }
1574
1575 spin_lock_bh(&ep->ex_lock);
1576 switch (fh->fh_r_ctl) {
1577 case FC_RCTL_BA_ACC:
1578 ap = fc_frame_payload_get(fp, sizeof(*ap));
1579 if (!ap)
1580 break;
1581
1582 /*
1583 * Decide whether to establish a Recovery Qualifier.
1584 * We do this if there is a non-empty SEQ_CNT range and
1585 * SEQ_ID is the same as the one we aborted.
1586 */
1587 low = ntohs(ap->ba_low_seq_cnt);
1588 high = ntohs(ap->ba_high_seq_cnt);
1589 if ((ep->esb_stat & ESB_ST_REC_QUAL) == 0 &&
1590 (ap->ba_seq_id_val != FC_BA_SEQ_ID_VAL ||
1591 ap->ba_seq_id == ep->seq_id) && low != high) {
1592 ep->esb_stat |= ESB_ST_REC_QUAL;
1593 fc_exch_hold(ep); /* hold for recovery qualifier */
1594 has_rec = 1;
1595 }
1596 break;
1597 case FC_RCTL_BA_RJT:
1598 break;
1599 default:
1600 break;
1601 }
1602
1603 resp = ep->resp;
1604 ex_resp_arg = ep->arg;
1605
1606 /* do we need to do some other checks here. Can we reuse more of
1607 * fc_exch_recv_seq_resp
1608 */
1609 sp = &ep->seq;
1610 /*
1611 * do we want to check END_SEQ as well as LAST_SEQ here?
1612 */
1613 if (ep->fh_type != FC_TYPE_FCP &&
1614 ntoh24(fh->fh_f_ctl) & FC_FC_LAST_SEQ)
1615 rc = fc_exch_done_locked(ep);
1616 spin_unlock_bh(&ep->ex_lock);
1617 if (!rc)
1618 fc_exch_delete(ep);
1619
1620 if (resp)
1621 resp(sp, fp, ex_resp_arg);
1622 else
1623 fc_frame_free(fp);
1624
1625 if (has_rec)
1626 fc_exch_timer_set(ep, ep->r_a_tov);
1627
1628 }
1629
1630 /**
1631 * fc_exch_recv_bls() - Handler for a BLS sequence
1632 * @mp: The EM that the exchange is on
1633 * @fp: The request frame
1634 *
1635 * The BLS frame is always a sequence initiated by the remote side.
1636 * We may be either the originator or recipient of the exchange.
1637 */
1638 static void fc_exch_recv_bls(struct fc_exch_mgr *mp, struct fc_frame *fp)
1639 {
1640 struct fc_frame_header *fh;
1641 struct fc_exch *ep;
1642 u32 f_ctl;
1643
1644 fh = fc_frame_header_get(fp);
1645 f_ctl = ntoh24(fh->fh_f_ctl);
1646 fr_seq(fp) = NULL;
1647
1648 ep = fc_exch_find(mp, (f_ctl & FC_FC_EX_CTX) ?
1649 ntohs(fh->fh_ox_id) : ntohs(fh->fh_rx_id));
1650 if (ep && (f_ctl & FC_FC_SEQ_INIT)) {
1651 spin_lock_bh(&ep->ex_lock);
1652 ep->esb_stat |= ESB_ST_SEQ_INIT;
1653 spin_unlock_bh(&ep->ex_lock);
1654 }
1655 if (f_ctl & FC_FC_SEQ_CTX) {
1656 /*
1657 * A response to a sequence we initiated.
1658 * This should only be ACKs for class 2 or F.
1659 */
1660 switch (fh->fh_r_ctl) {
1661 case FC_RCTL_ACK_1:
1662 case FC_RCTL_ACK_0:
1663 break;
1664 default:
1665 if (ep)
1666 FC_EXCH_DBG(ep, "BLS rctl %x - %s received\n",
1667 fh->fh_r_ctl,
1668 fc_exch_rctl_name(fh->fh_r_ctl));
1669 break;
1670 }
1671 fc_frame_free(fp);
1672 } else {
1673 switch (fh->fh_r_ctl) {
1674 case FC_RCTL_BA_RJT:
1675 case FC_RCTL_BA_ACC:
1676 if (ep)
1677 fc_exch_abts_resp(ep, fp);
1678 else
1679 fc_frame_free(fp);
1680 break;
1681 case FC_RCTL_BA_ABTS:
1682 fc_exch_recv_abts(ep, fp);
1683 break;
1684 default: /* ignore junk */
1685 fc_frame_free(fp);
1686 break;
1687 }
1688 }
1689 if (ep)
1690 fc_exch_release(ep); /* release hold taken by fc_exch_find */
1691 }
1692
1693 /**
1694 * fc_seq_ls_acc() - Accept sequence with LS_ACC
1695 * @rx_fp: The received frame, not freed here.
1696 *
1697 * If this fails due to allocation or transmit congestion, assume the
1698 * originator will repeat the sequence.
1699 */
1700 static void fc_seq_ls_acc(struct fc_frame *rx_fp)
1701 {
1702 struct fc_lport *lport;
1703 struct fc_els_ls_acc *acc;
1704 struct fc_frame *fp;
1705
1706 lport = fr_dev(rx_fp);
1707 fp = fc_frame_alloc(lport, sizeof(*acc));
1708 if (!fp)
1709 return;
1710 acc = fc_frame_payload_get(fp, sizeof(*acc));
1711 memset(acc, 0, sizeof(*acc));
1712 acc->la_cmd = ELS_LS_ACC;
1713 fc_fill_reply_hdr(fp, rx_fp, FC_RCTL_ELS_REP, 0);
1714 lport->tt.frame_send(lport, fp);
1715 }
1716
1717 /**
1718 * fc_seq_ls_rjt() - Reject a sequence with ELS LS_RJT
1719 * @rx_fp: The received frame, not freed here.
1720 * @reason: The reason the sequence is being rejected
1721 * @explan: The explanation for the rejection
1722 *
1723 * If this fails due to allocation or transmit congestion, assume the
1724 * originator will repeat the sequence.
1725 */
1726 static void fc_seq_ls_rjt(struct fc_frame *rx_fp, enum fc_els_rjt_reason reason,
1727 enum fc_els_rjt_explan explan)
1728 {
1729 struct fc_lport *lport;
1730 struct fc_els_ls_rjt *rjt;
1731 struct fc_frame *fp;
1732
1733 lport = fr_dev(rx_fp);
1734 fp = fc_frame_alloc(lport, sizeof(*rjt));
1735 if (!fp)
1736 return;
1737 rjt = fc_frame_payload_get(fp, sizeof(*rjt));
1738 memset(rjt, 0, sizeof(*rjt));
1739 rjt->er_cmd = ELS_LS_RJT;
1740 rjt->er_reason = reason;
1741 rjt->er_explan = explan;
1742 fc_fill_reply_hdr(fp, rx_fp, FC_RCTL_ELS_REP, 0);
1743 lport->tt.frame_send(lport, fp);
1744 }
1745
1746 /**
1747 * fc_exch_reset() - Reset an exchange
1748 * @ep: The exchange to be reset
1749 */
1750 static void fc_exch_reset(struct fc_exch *ep)
1751 {
1752 struct fc_seq *sp;
1753 void (*resp)(struct fc_seq *, struct fc_frame *, void *);
1754 void *arg;
1755 int rc = 1;
1756
1757 spin_lock_bh(&ep->ex_lock);
1758 fc_exch_abort_locked(ep, 0);
1759 ep->state |= FC_EX_RST_CLEANUP;
1760 fc_exch_timer_cancel(ep);
1761 resp = ep->resp;
1762 ep->resp = NULL;
1763 if (ep->esb_stat & ESB_ST_REC_QUAL)
1764 atomic_dec(&ep->ex_refcnt); /* drop hold for rec_qual */
1765 ep->esb_stat &= ~ESB_ST_REC_QUAL;
1766 arg = ep->arg;
1767 sp = &ep->seq;
1768 rc = fc_exch_done_locked(ep);
1769 spin_unlock_bh(&ep->ex_lock);
1770 if (!rc)
1771 fc_exch_delete(ep);
1772
1773 if (resp)
1774 resp(sp, ERR_PTR(-FC_EX_CLOSED), arg);
1775 }
1776
1777 /**
1778 * fc_exch_pool_reset() - Reset a per cpu exchange pool
1779 * @lport: The local port that the exchange pool is on
1780 * @pool: The exchange pool to be reset
1781 * @sid: The source ID
1782 * @did: The destination ID
1783 *
1784 * Resets a per cpu exches pool, releasing all of its sequences
1785 * and exchanges. If sid is non-zero then reset only exchanges
1786 * we sourced from the local port's FID. If did is non-zero then
1787 * only reset exchanges destined for the local port's FID.
1788 */
1789 static void fc_exch_pool_reset(struct fc_lport *lport,
1790 struct fc_exch_pool *pool,
1791 u32 sid, u32 did)
1792 {
1793 struct fc_exch *ep;
1794 struct fc_exch *next;
1795
1796 spin_lock_bh(&pool->lock);
1797 restart:
1798 list_for_each_entry_safe(ep, next, &pool->ex_list, ex_list) {
1799 if ((lport == ep->lp) &&
1800 (sid == 0 || sid == ep->sid) &&
1801 (did == 0 || did == ep->did)) {
1802 fc_exch_hold(ep);
1803 spin_unlock_bh(&pool->lock);
1804
1805 fc_exch_reset(ep);
1806
1807 fc_exch_release(ep);
1808 spin_lock_bh(&pool->lock);
1809
1810 /*
1811 * must restart loop incase while lock
1812 * was down multiple eps were released.
1813 */
1814 goto restart;
1815 }
1816 }
1817 pool->next_index = 0;
1818 pool->left = FC_XID_UNKNOWN;
1819 pool->right = FC_XID_UNKNOWN;
1820 spin_unlock_bh(&pool->lock);
1821 }
1822
1823 /**
1824 * fc_exch_mgr_reset() - Reset all EMs of a local port
1825 * @lport: The local port whose EMs are to be reset
1826 * @sid: The source ID
1827 * @did: The destination ID
1828 *
1829 * Reset all EMs associated with a given local port. Release all
1830 * sequences and exchanges. If sid is non-zero then reset only the
1831 * exchanges sent from the local port's FID. If did is non-zero then
1832 * reset only exchanges destined for the local port's FID.
1833 */
1834 void fc_exch_mgr_reset(struct fc_lport *lport, u32 sid, u32 did)
1835 {
1836 struct fc_exch_mgr_anchor *ema;
1837 unsigned int cpu;
1838
1839 list_for_each_entry(ema, &lport->ema_list, ema_list) {
1840 for_each_possible_cpu(cpu)
1841 fc_exch_pool_reset(lport,
1842 per_cpu_ptr(ema->mp->pool, cpu),
1843 sid, did);
1844 }
1845 }
1846 EXPORT_SYMBOL(fc_exch_mgr_reset);
1847
1848 /**
1849 * fc_exch_lookup() - find an exchange
1850 * @lport: The local port
1851 * @xid: The exchange ID
1852 *
1853 * Returns exchange pointer with hold for caller, or NULL if not found.
1854 */
1855 static struct fc_exch *fc_exch_lookup(struct fc_lport *lport, u32 xid)
1856 {
1857 struct fc_exch_mgr_anchor *ema;
1858
1859 list_for_each_entry(ema, &lport->ema_list, ema_list)
1860 if (ema->mp->min_xid <= xid && xid <= ema->mp->max_xid)
1861 return fc_exch_find(ema->mp, xid);
1862 return NULL;
1863 }
1864
1865 /**
1866 * fc_exch_els_rec() - Handler for ELS REC (Read Exchange Concise) requests
1867 * @rfp: The REC frame, not freed here.
1868 *
1869 * Note that the requesting port may be different than the S_ID in the request.
1870 */
1871 static void fc_exch_els_rec(struct fc_frame *rfp)
1872 {
1873 struct fc_lport *lport;
1874 struct fc_frame *fp;
1875 struct fc_exch *ep;
1876 struct fc_els_rec *rp;
1877 struct fc_els_rec_acc *acc;
1878 enum fc_els_rjt_reason reason = ELS_RJT_LOGIC;
1879 enum fc_els_rjt_explan explan;
1880 u32 sid;
1881 u16 rxid;
1882 u16 oxid;
1883
1884 lport = fr_dev(rfp);
1885 rp = fc_frame_payload_get(rfp, sizeof(*rp));
1886 explan = ELS_EXPL_INV_LEN;
1887 if (!rp)
1888 goto reject;
1889 sid = ntoh24(rp->rec_s_id);
1890 rxid = ntohs(rp->rec_rx_id);
1891 oxid = ntohs(rp->rec_ox_id);
1892
1893 ep = fc_exch_lookup(lport,
1894 sid == fc_host_port_id(lport->host) ? oxid : rxid);
1895 explan = ELS_EXPL_OXID_RXID;
1896 if (!ep)
1897 goto reject;
1898 if (ep->oid != sid || oxid != ep->oxid)
1899 goto rel;
1900 if (rxid != FC_XID_UNKNOWN && rxid != ep->rxid)
1901 goto rel;
1902 fp = fc_frame_alloc(lport, sizeof(*acc));
1903 if (!fp)
1904 goto out;
1905
1906 acc = fc_frame_payload_get(fp, sizeof(*acc));
1907 memset(acc, 0, sizeof(*acc));
1908 acc->reca_cmd = ELS_LS_ACC;
1909 acc->reca_ox_id = rp->rec_ox_id;
1910 memcpy(acc->reca_ofid, rp->rec_s_id, 3);
1911 acc->reca_rx_id = htons(ep->rxid);
1912 if (ep->sid == ep->oid)
1913 hton24(acc->reca_rfid, ep->did);
1914 else
1915 hton24(acc->reca_rfid, ep->sid);
1916 acc->reca_fc4value = htonl(ep->seq.rec_data);
1917 acc->reca_e_stat = htonl(ep->esb_stat & (ESB_ST_RESP |
1918 ESB_ST_SEQ_INIT |
1919 ESB_ST_COMPLETE));
1920 fc_fill_reply_hdr(fp, rfp, FC_RCTL_ELS_REP, 0);
1921 lport->tt.frame_send(lport, fp);
1922 out:
1923 fc_exch_release(ep);
1924 return;
1925
1926 rel:
1927 fc_exch_release(ep);
1928 reject:
1929 fc_seq_ls_rjt(rfp, reason, explan);
1930 }
1931
1932 /**
1933 * fc_exch_rrq_resp() - Handler for RRQ responses
1934 * @sp: The sequence that the RRQ is on
1935 * @fp: The RRQ frame
1936 * @arg: The exchange that the RRQ is on
1937 *
1938 * TODO: fix error handler.
1939 */
1940 static void fc_exch_rrq_resp(struct fc_seq *sp, struct fc_frame *fp, void *arg)
1941 {
1942 struct fc_exch *aborted_ep = arg;
1943 unsigned int op;
1944
1945 if (IS_ERR(fp)) {
1946 int err = PTR_ERR(fp);
1947
1948 if (err == -FC_EX_CLOSED || err == -FC_EX_TIMEOUT)
1949 goto cleanup;
1950 FC_EXCH_DBG(aborted_ep, "Cannot process RRQ, "
1951 "frame error %d\n", err);
1952 return;
1953 }
1954
1955 op = fc_frame_payload_op(fp);
1956 fc_frame_free(fp);
1957
1958 switch (op) {
1959 case ELS_LS_RJT:
1960 FC_EXCH_DBG(aborted_ep, "LS_RJT for RRQ\n");
1961 /* fall through */
1962 case ELS_LS_ACC:
1963 goto cleanup;
1964 default:
1965 FC_EXCH_DBG(aborted_ep, "unexpected response op %x for RRQ\n",
1966 op);
1967 return;
1968 }
1969
1970 cleanup:
1971 fc_exch_done(&aborted_ep->seq);
1972 /* drop hold for rec qual */
1973 fc_exch_release(aborted_ep);
1974 }
1975
1976
1977 /**
1978 * fc_exch_seq_send() - Send a frame using a new exchange and sequence
1979 * @lport: The local port to send the frame on
1980 * @fp: The frame to be sent
1981 * @resp: The response handler for this request
1982 * @destructor: The destructor for the exchange
1983 * @arg: The argument to be passed to the response handler
1984 * @timer_msec: The timeout period for the exchange
1985 *
1986 * The frame pointer with some of the header's fields must be
1987 * filled before calling this routine, those fields are:
1988 *
1989 * - routing control
1990 * - FC port did
1991 * - FC port sid
1992 * - FC header type
1993 * - frame control
1994 * - parameter or relative offset
1995 */
1996 static struct fc_seq *fc_exch_seq_send(struct fc_lport *lport,
1997 struct fc_frame *fp,
1998 void (*resp)(struct fc_seq *,
1999 struct fc_frame *fp,
2000 void *arg),
2001 void (*destructor)(struct fc_seq *,
2002 void *),
2003 void *arg, u32 timer_msec)
2004 {
2005 struct fc_exch *ep;
2006 struct fc_seq *sp = NULL;
2007 struct fc_frame_header *fh;
2008 struct fc_fcp_pkt *fsp = NULL;
2009 int rc = 1;
2010
2011 ep = fc_exch_alloc(lport, fp);
2012 if (!ep) {
2013 fc_frame_free(fp);
2014 return NULL;
2015 }
2016 ep->esb_stat |= ESB_ST_SEQ_INIT;
2017 fh = fc_frame_header_get(fp);
2018 fc_exch_set_addr(ep, ntoh24(fh->fh_s_id), ntoh24(fh->fh_d_id));
2019 ep->resp = resp;
2020 ep->destructor = destructor;
2021 ep->arg = arg;
2022 ep->r_a_tov = FC_DEF_R_A_TOV;
2023 ep->lp = lport;
2024 sp = &ep->seq;
2025
2026 ep->fh_type = fh->fh_type; /* save for possbile timeout handling */
2027 ep->f_ctl = ntoh24(fh->fh_f_ctl);
2028 fc_exch_setup_hdr(ep, fp, ep->f_ctl);
2029 sp->cnt++;
2030
2031 if (ep->xid <= lport->lro_xid && fh->fh_r_ctl == FC_RCTL_DD_UNSOL_CMD) {
2032 fsp = fr_fsp(fp);
2033 fc_fcp_ddp_setup(fr_fsp(fp), ep->xid);
2034 }
2035
2036 if (unlikely(lport->tt.frame_send(lport, fp)))
2037 goto err;
2038
2039 if (timer_msec)
2040 fc_exch_timer_set_locked(ep, timer_msec);
2041 ep->f_ctl &= ~FC_FC_FIRST_SEQ; /* not first seq */
2042
2043 if (ep->f_ctl & FC_FC_SEQ_INIT)
2044 ep->esb_stat &= ~ESB_ST_SEQ_INIT;
2045 spin_unlock_bh(&ep->ex_lock);
2046 return sp;
2047 err:
2048 if (fsp)
2049 fc_fcp_ddp_done(fsp);
2050 rc = fc_exch_done_locked(ep);
2051 spin_unlock_bh(&ep->ex_lock);
2052 if (!rc)
2053 fc_exch_delete(ep);
2054 return NULL;
2055 }
2056
2057 /**
2058 * fc_exch_rrq() - Send an ELS RRQ (Reinstate Recovery Qualifier) command
2059 * @ep: The exchange to send the RRQ on
2060 *
2061 * This tells the remote port to stop blocking the use of
2062 * the exchange and the seq_cnt range.
2063 */
2064 static void fc_exch_rrq(struct fc_exch *ep)
2065 {
2066 struct fc_lport *lport;
2067 struct fc_els_rrq *rrq;
2068 struct fc_frame *fp;
2069 u32 did;
2070
2071 lport = ep->lp;
2072
2073 fp = fc_frame_alloc(lport, sizeof(*rrq));
2074 if (!fp)
2075 goto retry;
2076
2077 rrq = fc_frame_payload_get(fp, sizeof(*rrq));
2078 memset(rrq, 0, sizeof(*rrq));
2079 rrq->rrq_cmd = ELS_RRQ;
2080 hton24(rrq->rrq_s_id, ep->sid);
2081 rrq->rrq_ox_id = htons(ep->oxid);
2082 rrq->rrq_rx_id = htons(ep->rxid);
2083
2084 did = ep->did;
2085 if (ep->esb_stat & ESB_ST_RESP)
2086 did = ep->sid;
2087
2088 fc_fill_fc_hdr(fp, FC_RCTL_ELS_REQ, did,
2089 lport->port_id, FC_TYPE_ELS,
2090 FC_FC_FIRST_SEQ | FC_FC_END_SEQ | FC_FC_SEQ_INIT, 0);
2091
2092 if (fc_exch_seq_send(lport, fp, fc_exch_rrq_resp, NULL, ep,
2093 lport->e_d_tov))
2094 return;
2095
2096 retry:
2097 spin_lock_bh(&ep->ex_lock);
2098 if (ep->state & (FC_EX_RST_CLEANUP | FC_EX_DONE)) {
2099 spin_unlock_bh(&ep->ex_lock);
2100 /* drop hold for rec qual */
2101 fc_exch_release(ep);
2102 return;
2103 }
2104 ep->esb_stat |= ESB_ST_REC_QUAL;
2105 fc_exch_timer_set_locked(ep, ep->r_a_tov);
2106 spin_unlock_bh(&ep->ex_lock);
2107 }
2108
2109 /**
2110 * fc_exch_els_rrq() - Handler for ELS RRQ (Reset Recovery Qualifier) requests
2111 * @fp: The RRQ frame, not freed here.
2112 */
2113 static void fc_exch_els_rrq(struct fc_frame *fp)
2114 {
2115 struct fc_lport *lport;
2116 struct fc_exch *ep = NULL; /* request or subject exchange */
2117 struct fc_els_rrq *rp;
2118 u32 sid;
2119 u16 xid;
2120 enum fc_els_rjt_explan explan;
2121
2122 lport = fr_dev(fp);
2123 rp = fc_frame_payload_get(fp, sizeof(*rp));
2124 explan = ELS_EXPL_INV_LEN;
2125 if (!rp)
2126 goto reject;
2127
2128 /*
2129 * lookup subject exchange.
2130 */
2131 sid = ntoh24(rp->rrq_s_id); /* subject source */
2132 xid = fc_host_port_id(lport->host) == sid ?
2133 ntohs(rp->rrq_ox_id) : ntohs(rp->rrq_rx_id);
2134 ep = fc_exch_lookup(lport, xid);
2135 explan = ELS_EXPL_OXID_RXID;
2136 if (!ep)
2137 goto reject;
2138 spin_lock_bh(&ep->ex_lock);
2139 if (ep->oxid != ntohs(rp->rrq_ox_id))
2140 goto unlock_reject;
2141 if (ep->rxid != ntohs(rp->rrq_rx_id) &&
2142 ep->rxid != FC_XID_UNKNOWN)
2143 goto unlock_reject;
2144 explan = ELS_EXPL_SID;
2145 if (ep->sid != sid)
2146 goto unlock_reject;
2147
2148 /*
2149 * Clear Recovery Qualifier state, and cancel timer if complete.
2150 */
2151 if (ep->esb_stat & ESB_ST_REC_QUAL) {
2152 ep->esb_stat &= ~ESB_ST_REC_QUAL;
2153 atomic_dec(&ep->ex_refcnt); /* drop hold for rec qual */
2154 }
2155 if (ep->esb_stat & ESB_ST_COMPLETE)
2156 fc_exch_timer_cancel(ep);
2157
2158 spin_unlock_bh(&ep->ex_lock);
2159
2160 /*
2161 * Send LS_ACC.
2162 */
2163 fc_seq_ls_acc(fp);
2164 goto out;
2165
2166 unlock_reject:
2167 spin_unlock_bh(&ep->ex_lock);
2168 reject:
2169 fc_seq_ls_rjt(fp, ELS_RJT_LOGIC, explan);
2170 out:
2171 if (ep)
2172 fc_exch_release(ep); /* drop hold from fc_exch_find */
2173 }
2174
2175 /**
2176 * fc_exch_update_stats() - update exches stats to lport
2177 * @lport: The local port to update exchange manager stats
2178 */
2179 void fc_exch_update_stats(struct fc_lport *lport)
2180 {
2181 struct fc_host_statistics *st;
2182 struct fc_exch_mgr_anchor *ema;
2183 struct fc_exch_mgr *mp;
2184
2185 st = &lport->host_stats;
2186
2187 list_for_each_entry(ema, &lport->ema_list, ema_list) {
2188 mp = ema->mp;
2189 st->fc_no_free_exch += atomic_read(&mp->stats.no_free_exch);
2190 st->fc_no_free_exch_xid +=
2191 atomic_read(&mp->stats.no_free_exch_xid);
2192 st->fc_xid_not_found += atomic_read(&mp->stats.xid_not_found);
2193 st->fc_xid_busy += atomic_read(&mp->stats.xid_busy);
2194 st->fc_seq_not_found += atomic_read(&mp->stats.seq_not_found);
2195 st->fc_non_bls_resp += atomic_read(&mp->stats.non_bls_resp);
2196 }
2197 }
2198 EXPORT_SYMBOL(fc_exch_update_stats);
2199
2200 /**
2201 * fc_exch_mgr_add() - Add an exchange manager to a local port's list of EMs
2202 * @lport: The local port to add the exchange manager to
2203 * @mp: The exchange manager to be added to the local port
2204 * @match: The match routine that indicates when this EM should be used
2205 */
2206 struct fc_exch_mgr_anchor *fc_exch_mgr_add(struct fc_lport *lport,
2207 struct fc_exch_mgr *mp,
2208 bool (*match)(struct fc_frame *))
2209 {
2210 struct fc_exch_mgr_anchor *ema;
2211
2212 ema = kmalloc(sizeof(*ema), GFP_ATOMIC);
2213 if (!ema)
2214 return ema;
2215
2216 ema->mp = mp;
2217 ema->match = match;
2218 /* add EM anchor to EM anchors list */
2219 list_add_tail(&ema->ema_list, &lport->ema_list);
2220 kref_get(&mp->kref);
2221 return ema;
2222 }
2223 EXPORT_SYMBOL(fc_exch_mgr_add);
2224
2225 /**
2226 * fc_exch_mgr_destroy() - Destroy an exchange manager
2227 * @kref: The reference to the EM to be destroyed
2228 */
2229 static void fc_exch_mgr_destroy(struct kref *kref)
2230 {
2231 struct fc_exch_mgr *mp = container_of(kref, struct fc_exch_mgr, kref);
2232
2233 mempool_destroy(mp->ep_pool);
2234 free_percpu(mp->pool);
2235 kfree(mp);
2236 }
2237
2238 /**
2239 * fc_exch_mgr_del() - Delete an EM from a local port's list
2240 * @ema: The exchange manager anchor identifying the EM to be deleted
2241 */
2242 void fc_exch_mgr_del(struct fc_exch_mgr_anchor *ema)
2243 {
2244 /* remove EM anchor from EM anchors list */
2245 list_del(&ema->ema_list);
2246 kref_put(&ema->mp->kref, fc_exch_mgr_destroy);
2247 kfree(ema);
2248 }
2249 EXPORT_SYMBOL(fc_exch_mgr_del);
2250
2251 /**
2252 * fc_exch_mgr_list_clone() - Share all exchange manager objects
2253 * @src: Source lport to clone exchange managers from
2254 * @dst: New lport that takes references to all the exchange managers
2255 */
2256 int fc_exch_mgr_list_clone(struct fc_lport *src, struct fc_lport *dst)
2257 {
2258 struct fc_exch_mgr_anchor *ema, *tmp;
2259
2260 list_for_each_entry(ema, &src->ema_list, ema_list) {
2261 if (!fc_exch_mgr_add(dst, ema->mp, ema->match))
2262 goto err;
2263 }
2264 return 0;
2265 err:
2266 list_for_each_entry_safe(ema, tmp, &dst->ema_list, ema_list)
2267 fc_exch_mgr_del(ema);
2268 return -ENOMEM;
2269 }
2270 EXPORT_SYMBOL(fc_exch_mgr_list_clone);
2271
2272 /**
2273 * fc_exch_mgr_alloc() - Allocate an exchange manager
2274 * @lport: The local port that the new EM will be associated with
2275 * @class: The default FC class for new exchanges
2276 * @min_xid: The minimum XID for exchanges from the new EM
2277 * @max_xid: The maximum XID for exchanges from the new EM
2278 * @match: The match routine for the new EM
2279 */
2280 struct fc_exch_mgr *fc_exch_mgr_alloc(struct fc_lport *lport,
2281 enum fc_class class,
2282 u16 min_xid, u16 max_xid,
2283 bool (*match)(struct fc_frame *))
2284 {
2285 struct fc_exch_mgr *mp;
2286 u16 pool_exch_range;
2287 size_t pool_size;
2288 unsigned int cpu;
2289 struct fc_exch_pool *pool;
2290
2291 if (max_xid <= min_xid || max_xid == FC_XID_UNKNOWN ||
2292 (min_xid & fc_cpu_mask) != 0) {
2293 FC_LPORT_DBG(lport, "Invalid min_xid 0x:%x and max_xid 0x:%x\n",
2294 min_xid, max_xid);
2295 return NULL;
2296 }
2297
2298 /*
2299 * allocate memory for EM
2300 */
2301 mp = kzalloc(sizeof(struct fc_exch_mgr), GFP_ATOMIC);
2302 if (!mp)
2303 return NULL;
2304
2305 mp->class = class;
2306 /* adjust em exch xid range for offload */
2307 mp->min_xid = min_xid;
2308
2309 /* reduce range so per cpu pool fits into PCPU_MIN_UNIT_SIZE pool */
2310 pool_exch_range = (PCPU_MIN_UNIT_SIZE - sizeof(*pool)) /
2311 sizeof(struct fc_exch *);
2312 if ((max_xid - min_xid + 1) / (fc_cpu_mask + 1) > pool_exch_range) {
2313 mp->max_xid = pool_exch_range * (fc_cpu_mask + 1) +
2314 min_xid - 1;
2315 } else {
2316 mp->max_xid = max_xid;
2317 pool_exch_range = (mp->max_xid - mp->min_xid + 1) /
2318 (fc_cpu_mask + 1);
2319 }
2320
2321 mp->ep_pool = mempool_create_slab_pool(2, fc_em_cachep);
2322 if (!mp->ep_pool)
2323 goto free_mp;
2324
2325 /*
2326 * Setup per cpu exch pool with entire exchange id range equally
2327 * divided across all cpus. The exch pointers array memory is
2328 * allocated for exch range per pool.
2329 */
2330 mp->pool_max_index = pool_exch_range - 1;
2331
2332 /*
2333 * Allocate and initialize per cpu exch pool
2334 */
2335 pool_size = sizeof(*pool) + pool_exch_range * sizeof(struct fc_exch *);
2336 mp->pool = __alloc_percpu(pool_size, __alignof__(struct fc_exch_pool));
2337 if (!mp->pool)
2338 goto free_mempool;
2339 for_each_possible_cpu(cpu) {
2340 pool = per_cpu_ptr(mp->pool, cpu);
2341 pool->next_index = 0;
2342 pool->left = FC_XID_UNKNOWN;
2343 pool->right = FC_XID_UNKNOWN;
2344 spin_lock_init(&pool->lock);
2345 INIT_LIST_HEAD(&pool->ex_list);
2346 }
2347
2348 kref_init(&mp->kref);
2349 if (!fc_exch_mgr_add(lport, mp, match)) {
2350 free_percpu(mp->pool);
2351 goto free_mempool;
2352 }
2353
2354 /*
2355 * Above kref_init() sets mp->kref to 1 and then
2356 * call to fc_exch_mgr_add incremented mp->kref again,
2357 * so adjust that extra increment.
2358 */
2359 kref_put(&mp->kref, fc_exch_mgr_destroy);
2360 return mp;
2361
2362 free_mempool:
2363 mempool_destroy(mp->ep_pool);
2364 free_mp:
2365 kfree(mp);
2366 return NULL;
2367 }
2368 EXPORT_SYMBOL(fc_exch_mgr_alloc);
2369
2370 /**
2371 * fc_exch_mgr_free() - Free all exchange managers on a local port
2372 * @lport: The local port whose EMs are to be freed
2373 */
2374 void fc_exch_mgr_free(struct fc_lport *lport)
2375 {
2376 struct fc_exch_mgr_anchor *ema, *next;
2377
2378 flush_workqueue(fc_exch_workqueue);
2379 list_for_each_entry_safe(ema, next, &lport->ema_list, ema_list)
2380 fc_exch_mgr_del(ema);
2381 }
2382 EXPORT_SYMBOL(fc_exch_mgr_free);
2383
2384 /**
2385 * fc_find_ema() - Lookup and return appropriate Exchange Manager Anchor depending
2386 * upon 'xid'.
2387 * @f_ctl: f_ctl
2388 * @lport: The local port the frame was received on
2389 * @fh: The received frame header
2390 */
2391 static struct fc_exch_mgr_anchor *fc_find_ema(u32 f_ctl,
2392 struct fc_lport *lport,
2393 struct fc_frame_header *fh)
2394 {
2395 struct fc_exch_mgr_anchor *ema;
2396 u16 xid;
2397
2398 if (f_ctl & FC_FC_EX_CTX)
2399 xid = ntohs(fh->fh_ox_id);
2400 else {
2401 xid = ntohs(fh->fh_rx_id);
2402 if (xid == FC_XID_UNKNOWN)
2403 return list_entry(lport->ema_list.prev,
2404 typeof(*ema), ema_list);
2405 }
2406
2407 list_for_each_entry(ema, &lport->ema_list, ema_list) {
2408 if ((xid >= ema->mp->min_xid) &&
2409 (xid <= ema->mp->max_xid))
2410 return ema;
2411 }
2412 return NULL;
2413 }
2414 /**
2415 * fc_exch_recv() - Handler for received frames
2416 * @lport: The local port the frame was received on
2417 * @fp: The received frame
2418 */
2419 void fc_exch_recv(struct fc_lport *lport, struct fc_frame *fp)
2420 {
2421 struct fc_frame_header *fh = fc_frame_header_get(fp);
2422 struct fc_exch_mgr_anchor *ema;
2423 u32 f_ctl;
2424
2425 /* lport lock ? */
2426 if (!lport || lport->state == LPORT_ST_DISABLED) {
2427 FC_LPORT_DBG(lport, "Receiving frames for an lport that "
2428 "has not been initialized correctly\n");
2429 fc_frame_free(fp);
2430 return;
2431 }
2432
2433 f_ctl = ntoh24(fh->fh_f_ctl);
2434 ema = fc_find_ema(f_ctl, lport, fh);
2435 if (!ema) {
2436 FC_LPORT_DBG(lport, "Unable to find Exchange Manager Anchor,"
2437 "fc_ctl <0x%x>, xid <0x%x>\n",
2438 f_ctl,
2439 (f_ctl & FC_FC_EX_CTX) ?
2440 ntohs(fh->fh_ox_id) :
2441 ntohs(fh->fh_rx_id));
2442 fc_frame_free(fp);
2443 return;
2444 }
2445
2446 /*
2447 * If frame is marked invalid, just drop it.
2448 */
2449 switch (fr_eof(fp)) {
2450 case FC_EOF_T:
2451 if (f_ctl & FC_FC_END_SEQ)
2452 skb_trim(fp_skb(fp), fr_len(fp) - FC_FC_FILL(f_ctl));
2453 /* fall through */
2454 case FC_EOF_N:
2455 if (fh->fh_type == FC_TYPE_BLS)
2456 fc_exch_recv_bls(ema->mp, fp);
2457 else if ((f_ctl & (FC_FC_EX_CTX | FC_FC_SEQ_CTX)) ==
2458 FC_FC_EX_CTX)
2459 fc_exch_recv_seq_resp(ema->mp, fp);
2460 else if (f_ctl & FC_FC_SEQ_CTX)
2461 fc_exch_recv_resp(ema->mp, fp);
2462 else /* no EX_CTX and no SEQ_CTX */
2463 fc_exch_recv_req(lport, ema->mp, fp);
2464 break;
2465 default:
2466 FC_LPORT_DBG(lport, "dropping invalid frame (eof %x)",
2467 fr_eof(fp));
2468 fc_frame_free(fp);
2469 }
2470 }
2471 EXPORT_SYMBOL(fc_exch_recv);
2472
2473 /**
2474 * fc_exch_init() - Initialize the exchange layer for a local port
2475 * @lport: The local port to initialize the exchange layer for
2476 */
2477 int fc_exch_init(struct fc_lport *lport)
2478 {
2479 if (!lport->tt.seq_start_next)
2480 lport->tt.seq_start_next = fc_seq_start_next;
2481
2482 if (!lport->tt.seq_set_resp)
2483 lport->tt.seq_set_resp = fc_seq_set_resp;
2484
2485 if (!lport->tt.exch_seq_send)
2486 lport->tt.exch_seq_send = fc_exch_seq_send;
2487
2488 if (!lport->tt.seq_send)
2489 lport->tt.seq_send = fc_seq_send;
2490
2491 if (!lport->tt.seq_els_rsp_send)
2492 lport->tt.seq_els_rsp_send = fc_seq_els_rsp_send;
2493
2494 if (!lport->tt.exch_done)
2495 lport->tt.exch_done = fc_exch_done;
2496
2497 if (!lport->tt.exch_mgr_reset)
2498 lport->tt.exch_mgr_reset = fc_exch_mgr_reset;
2499
2500 if (!lport->tt.seq_exch_abort)
2501 lport->tt.seq_exch_abort = fc_seq_exch_abort;
2502
2503 if (!lport->tt.seq_assign)
2504 lport->tt.seq_assign = fc_seq_assign;
2505
2506 if (!lport->tt.seq_release)
2507 lport->tt.seq_release = fc_seq_release;
2508
2509 return 0;
2510 }
2511 EXPORT_SYMBOL(fc_exch_init);
2512
2513 /**
2514 * fc_setup_exch_mgr() - Setup an exchange manager
2515 */
2516 int fc_setup_exch_mgr(void)
2517 {
2518 fc_em_cachep = kmem_cache_create("libfc_em", sizeof(struct fc_exch),
2519 0, SLAB_HWCACHE_ALIGN, NULL);
2520 if (!fc_em_cachep)
2521 return -ENOMEM;
2522
2523 /*
2524 * Initialize fc_cpu_mask and fc_cpu_order. The
2525 * fc_cpu_mask is set for nr_cpu_ids rounded up
2526 * to order of 2's * power and order is stored
2527 * in fc_cpu_order as this is later required in
2528 * mapping between an exch id and exch array index
2529 * in per cpu exch pool.
2530 *
2531 * This round up is required to align fc_cpu_mask
2532 * to exchange id's lower bits such that all incoming
2533 * frames of an exchange gets delivered to the same
2534 * cpu on which exchange originated by simple bitwise
2535 * AND operation between fc_cpu_mask and exchange id.
2536 */
2537 fc_cpu_order = ilog2(roundup_pow_of_two(nr_cpu_ids));
2538 fc_cpu_mask = (1 << fc_cpu_order) - 1;
2539
2540 fc_exch_workqueue = create_singlethread_workqueue("fc_exch_workqueue");
2541 if (!fc_exch_workqueue)
2542 goto err;
2543 return 0;
2544 err:
2545 kmem_cache_destroy(fc_em_cachep);
2546 return -ENOMEM;
2547 }
2548
2549 /**
2550 * fc_destroy_exch_mgr() - Destroy an exchange manager
2551 */
2552 void fc_destroy_exch_mgr(void)
2553 {
2554 destroy_workqueue(fc_exch_workqueue);
2555 kmem_cache_destroy(fc_em_cachep);
2556 }
This page took 0.128011 seconds and 6 git commands to generate.