63c574227ebfb0379464dfb509d2081074515584
[deliverable/linux.git] / drivers / scsi / libsas / sas_expander.c
1 /*
2 * Serial Attached SCSI (SAS) Expander discovery and configuration
3 *
4 * Copyright (C) 2005 Adaptec, Inc. All rights reserved.
5 * Copyright (C) 2005 Luben Tuikov <luben_tuikov@adaptec.com>
6 *
7 * This file is licensed under GPLv2.
8 *
9 * This program is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU General Public License as
11 * published by the Free Software Foundation; either version 2 of the
12 * License, or (at your option) any later version.
13 *
14 * This program is distributed in the hope that it will be useful, but
15 * WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * General Public License for more details.
18 *
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, write to the Free Software
21 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
22 *
23 */
24
25 #include <linux/scatterlist.h>
26 #include <linux/blkdev.h>
27 #include <linux/slab.h>
28
29 #include "sas_internal.h"
30
31 #include <scsi/sas_ata.h>
32 #include <scsi/scsi_transport.h>
33 #include <scsi/scsi_transport_sas.h>
34 #include "../scsi_sas_internal.h"
35
36 static int sas_discover_expander(struct domain_device *dev);
37 static int sas_configure_routing(struct domain_device *dev, u8 *sas_addr);
38 static int sas_configure_phy(struct domain_device *dev, int phy_id,
39 u8 *sas_addr, int include);
40 static int sas_disable_routing(struct domain_device *dev, u8 *sas_addr);
41
42 /* ---------- SMP task management ---------- */
43
44 static void smp_task_timedout(unsigned long _task)
45 {
46 struct sas_task *task = (void *) _task;
47 unsigned long flags;
48
49 spin_lock_irqsave(&task->task_state_lock, flags);
50 if (!(task->task_state_flags & SAS_TASK_STATE_DONE))
51 task->task_state_flags |= SAS_TASK_STATE_ABORTED;
52 spin_unlock_irqrestore(&task->task_state_lock, flags);
53
54 complete(&task->completion);
55 }
56
57 static void smp_task_done(struct sas_task *task)
58 {
59 if (!del_timer(&task->timer))
60 return;
61 complete(&task->completion);
62 }
63
64 /* Give it some long enough timeout. In seconds. */
65 #define SMP_TIMEOUT 10
66
67 static int smp_execute_task(struct domain_device *dev, void *req, int req_size,
68 void *resp, int resp_size)
69 {
70 int res, retry;
71 struct sas_task *task = NULL;
72 struct sas_internal *i =
73 to_sas_internal(dev->port->ha->core.shost->transportt);
74
75 mutex_lock(&dev->ex_dev.cmd_mutex);
76 for (retry = 0; retry < 3; retry++) {
77 if (test_bit(SAS_DEV_GONE, &dev->state)) {
78 res = -ECOMM;
79 break;
80 }
81
82 task = sas_alloc_task(GFP_KERNEL);
83 if (!task) {
84 res = -ENOMEM;
85 break;
86 }
87 task->dev = dev;
88 task->task_proto = dev->tproto;
89 sg_init_one(&task->smp_task.smp_req, req, req_size);
90 sg_init_one(&task->smp_task.smp_resp, resp, resp_size);
91
92 task->task_done = smp_task_done;
93
94 task->timer.data = (unsigned long) task;
95 task->timer.function = smp_task_timedout;
96 task->timer.expires = jiffies + SMP_TIMEOUT*HZ;
97 add_timer(&task->timer);
98
99 res = i->dft->lldd_execute_task(task, 1, GFP_KERNEL);
100
101 if (res) {
102 del_timer(&task->timer);
103 SAS_DPRINTK("executing SMP task failed:%d\n", res);
104 break;
105 }
106
107 wait_for_completion(&task->completion);
108 res = -ECOMM;
109 if ((task->task_state_flags & SAS_TASK_STATE_ABORTED)) {
110 SAS_DPRINTK("smp task timed out or aborted\n");
111 i->dft->lldd_abort_task(task);
112 if (!(task->task_state_flags & SAS_TASK_STATE_DONE)) {
113 SAS_DPRINTK("SMP task aborted and not done\n");
114 break;
115 }
116 }
117 if (task->task_status.resp == SAS_TASK_COMPLETE &&
118 task->task_status.stat == SAM_STAT_GOOD) {
119 res = 0;
120 break;
121 }
122 if (task->task_status.resp == SAS_TASK_COMPLETE &&
123 task->task_status.stat == SAS_DATA_UNDERRUN) {
124 /* no error, but return the number of bytes of
125 * underrun */
126 res = task->task_status.residual;
127 break;
128 }
129 if (task->task_status.resp == SAS_TASK_COMPLETE &&
130 task->task_status.stat == SAS_DATA_OVERRUN) {
131 res = -EMSGSIZE;
132 break;
133 }
134 if (task->task_status.resp == SAS_TASK_UNDELIVERED &&
135 task->task_status.stat == SAS_DEVICE_UNKNOWN)
136 break;
137 else {
138 SAS_DPRINTK("%s: task to dev %016llx response: 0x%x "
139 "status 0x%x\n", __func__,
140 SAS_ADDR(dev->sas_addr),
141 task->task_status.resp,
142 task->task_status.stat);
143 sas_free_task(task);
144 task = NULL;
145 }
146 }
147 mutex_unlock(&dev->ex_dev.cmd_mutex);
148
149 BUG_ON(retry == 3 && task != NULL);
150 sas_free_task(task);
151 return res;
152 }
153
154 /* ---------- Allocations ---------- */
155
156 static inline void *alloc_smp_req(int size)
157 {
158 u8 *p = kzalloc(size, GFP_KERNEL);
159 if (p)
160 p[0] = SMP_REQUEST;
161 return p;
162 }
163
164 static inline void *alloc_smp_resp(int size)
165 {
166 return kzalloc(size, GFP_KERNEL);
167 }
168
169 static char sas_route_char(struct domain_device *dev, struct ex_phy *phy)
170 {
171 switch (phy->routing_attr) {
172 case TABLE_ROUTING:
173 if (dev->ex_dev.t2t_supp)
174 return 'U';
175 else
176 return 'T';
177 case DIRECT_ROUTING:
178 return 'D';
179 case SUBTRACTIVE_ROUTING:
180 return 'S';
181 default:
182 return '?';
183 }
184 }
185
186 static enum sas_dev_type to_dev_type(struct discover_resp *dr)
187 {
188 /* This is detecting a failure to transmit initial dev to host
189 * FIS as described in section J.5 of sas-2 r16
190 */
191 if (dr->attached_dev_type == NO_DEVICE && dr->attached_sata_dev &&
192 dr->linkrate >= SAS_LINK_RATE_1_5_GBPS)
193 return SATA_PENDING;
194 else
195 return dr->attached_dev_type;
196 }
197
198 static void sas_set_ex_phy(struct domain_device *dev, int phy_id, void *rsp)
199 {
200 enum sas_dev_type dev_type;
201 enum sas_linkrate linkrate;
202 u8 sas_addr[SAS_ADDR_SIZE];
203 struct smp_resp *resp = rsp;
204 struct discover_resp *dr = &resp->disc;
205 struct sas_ha_struct *ha = dev->port->ha;
206 struct expander_device *ex = &dev->ex_dev;
207 struct ex_phy *phy = &ex->ex_phy[phy_id];
208 struct sas_rphy *rphy = dev->rphy;
209 bool new_phy = !phy->phy;
210 char *type;
211
212 if (new_phy) {
213 if (WARN_ON_ONCE(test_bit(SAS_HA_ATA_EH_ACTIVE, &ha->state)))
214 return;
215 phy->phy = sas_phy_alloc(&rphy->dev, phy_id);
216
217 /* FIXME: error_handling */
218 BUG_ON(!phy->phy);
219 }
220
221 switch (resp->result) {
222 case SMP_RESP_PHY_VACANT:
223 phy->phy_state = PHY_VACANT;
224 break;
225 default:
226 phy->phy_state = PHY_NOT_PRESENT;
227 break;
228 case SMP_RESP_FUNC_ACC:
229 phy->phy_state = PHY_EMPTY; /* do not know yet */
230 break;
231 }
232
233 /* check if anything important changed to squelch debug */
234 dev_type = phy->attached_dev_type;
235 linkrate = phy->linkrate;
236 memcpy(sas_addr, phy->attached_sas_addr, SAS_ADDR_SIZE);
237
238 phy->attached_dev_type = to_dev_type(dr);
239 if (test_bit(SAS_HA_ATA_EH_ACTIVE, &ha->state))
240 goto out;
241 phy->phy_id = phy_id;
242 phy->linkrate = dr->linkrate;
243 phy->attached_sata_host = dr->attached_sata_host;
244 phy->attached_sata_dev = dr->attached_sata_dev;
245 phy->attached_sata_ps = dr->attached_sata_ps;
246 phy->attached_iproto = dr->iproto << 1;
247 phy->attached_tproto = dr->tproto << 1;
248 /* help some expanders that fail to zero sas_address in the 'no
249 * device' case
250 */
251 if (phy->attached_dev_type == NO_DEVICE ||
252 phy->linkrate < SAS_LINK_RATE_1_5_GBPS)
253 memset(phy->attached_sas_addr, 0, SAS_ADDR_SIZE);
254 else
255 memcpy(phy->attached_sas_addr, dr->attached_sas_addr, SAS_ADDR_SIZE);
256 phy->attached_phy_id = dr->attached_phy_id;
257 phy->phy_change_count = dr->change_count;
258 phy->routing_attr = dr->routing_attr;
259 phy->virtual = dr->virtual;
260 phy->last_da_index = -1;
261
262 phy->phy->identify.sas_address = SAS_ADDR(phy->attached_sas_addr);
263 phy->phy->identify.device_type = dr->attached_dev_type;
264 phy->phy->identify.initiator_port_protocols = phy->attached_iproto;
265 phy->phy->identify.target_port_protocols = phy->attached_tproto;
266 if (!phy->attached_tproto && dr->attached_sata_dev)
267 phy->phy->identify.target_port_protocols = SAS_PROTOCOL_SATA;
268 phy->phy->identify.phy_identifier = phy_id;
269 phy->phy->minimum_linkrate_hw = dr->hmin_linkrate;
270 phy->phy->maximum_linkrate_hw = dr->hmax_linkrate;
271 phy->phy->minimum_linkrate = dr->pmin_linkrate;
272 phy->phy->maximum_linkrate = dr->pmax_linkrate;
273 phy->phy->negotiated_linkrate = phy->linkrate;
274
275 if (new_phy)
276 if (sas_phy_add(phy->phy)) {
277 sas_phy_free(phy->phy);
278 return;
279 }
280
281 out:
282 switch (phy->attached_dev_type) {
283 case SATA_PENDING:
284 type = "stp pending";
285 break;
286 case NO_DEVICE:
287 type = "no device";
288 break;
289 case SAS_END_DEV:
290 if (phy->attached_iproto) {
291 if (phy->attached_tproto)
292 type = "host+target";
293 else
294 type = "host";
295 } else {
296 if (dr->attached_sata_dev)
297 type = "stp";
298 else
299 type = "ssp";
300 }
301 break;
302 case EDGE_DEV:
303 case FANOUT_DEV:
304 type = "smp";
305 break;
306 default:
307 type = "unknown";
308 }
309
310 /* this routine is polled by libata error recovery so filter
311 * unimportant messages
312 */
313 if (new_phy || phy->attached_dev_type != dev_type ||
314 phy->linkrate != linkrate ||
315 SAS_ADDR(phy->attached_sas_addr) != SAS_ADDR(sas_addr))
316 /* pass */;
317 else
318 return;
319
320 /* if the attached device type changed and ata_eh is active,
321 * make sure we run revalidation when eh completes (see:
322 * sas_enable_revalidation)
323 */
324 if (test_bit(SAS_HA_ATA_EH_ACTIVE, &ha->state))
325 set_bit(DISCE_REVALIDATE_DOMAIN, &dev->port->disc.pending);
326
327 SAS_DPRINTK("%sex %016llx phy%02d:%c:%X attached: %016llx (%s)\n",
328 test_bit(SAS_HA_ATA_EH_ACTIVE, &ha->state) ? "ata: " : "",
329 SAS_ADDR(dev->sas_addr), phy->phy_id,
330 sas_route_char(dev, phy), phy->linkrate,
331 SAS_ADDR(phy->attached_sas_addr), type);
332 }
333
334 /* check if we have an existing attached ata device on this expander phy */
335 struct domain_device *sas_ex_to_ata(struct domain_device *ex_dev, int phy_id)
336 {
337 struct ex_phy *ex_phy = &ex_dev->ex_dev.ex_phy[phy_id];
338 struct domain_device *dev;
339 struct sas_rphy *rphy;
340
341 if (!ex_phy->port)
342 return NULL;
343
344 rphy = ex_phy->port->rphy;
345 if (!rphy)
346 return NULL;
347
348 dev = sas_find_dev_by_rphy(rphy);
349
350 if (dev && dev_is_sata(dev))
351 return dev;
352
353 return NULL;
354 }
355
356 #define DISCOVER_REQ_SIZE 16
357 #define DISCOVER_RESP_SIZE 56
358
359 static int sas_ex_phy_discover_helper(struct domain_device *dev, u8 *disc_req,
360 u8 *disc_resp, int single)
361 {
362 struct discover_resp *dr;
363 int res;
364
365 disc_req[9] = single;
366
367 res = smp_execute_task(dev, disc_req, DISCOVER_REQ_SIZE,
368 disc_resp, DISCOVER_RESP_SIZE);
369 if (res)
370 return res;
371 dr = &((struct smp_resp *)disc_resp)->disc;
372 if (memcmp(dev->sas_addr, dr->attached_sas_addr, SAS_ADDR_SIZE) == 0) {
373 sas_printk("Found loopback topology, just ignore it!\n");
374 return 0;
375 }
376 sas_set_ex_phy(dev, single, disc_resp);
377 return 0;
378 }
379
380 int sas_ex_phy_discover(struct domain_device *dev, int single)
381 {
382 struct expander_device *ex = &dev->ex_dev;
383 int res = 0;
384 u8 *disc_req;
385 u8 *disc_resp;
386
387 disc_req = alloc_smp_req(DISCOVER_REQ_SIZE);
388 if (!disc_req)
389 return -ENOMEM;
390
391 disc_resp = alloc_smp_req(DISCOVER_RESP_SIZE);
392 if (!disc_resp) {
393 kfree(disc_req);
394 return -ENOMEM;
395 }
396
397 disc_req[1] = SMP_DISCOVER;
398
399 if (0 <= single && single < ex->num_phys) {
400 res = sas_ex_phy_discover_helper(dev, disc_req, disc_resp, single);
401 } else {
402 int i;
403
404 for (i = 0; i < ex->num_phys; i++) {
405 res = sas_ex_phy_discover_helper(dev, disc_req,
406 disc_resp, i);
407 if (res)
408 goto out_err;
409 }
410 }
411 out_err:
412 kfree(disc_resp);
413 kfree(disc_req);
414 return res;
415 }
416
417 static int sas_expander_discover(struct domain_device *dev)
418 {
419 struct expander_device *ex = &dev->ex_dev;
420 int res = -ENOMEM;
421
422 ex->ex_phy = kzalloc(sizeof(*ex->ex_phy)*ex->num_phys, GFP_KERNEL);
423 if (!ex->ex_phy)
424 return -ENOMEM;
425
426 res = sas_ex_phy_discover(dev, -1);
427 if (res)
428 goto out_err;
429
430 return 0;
431 out_err:
432 kfree(ex->ex_phy);
433 ex->ex_phy = NULL;
434 return res;
435 }
436
437 #define MAX_EXPANDER_PHYS 128
438
439 static void ex_assign_report_general(struct domain_device *dev,
440 struct smp_resp *resp)
441 {
442 struct report_general_resp *rg = &resp->rg;
443
444 dev->ex_dev.ex_change_count = be16_to_cpu(rg->change_count);
445 dev->ex_dev.max_route_indexes = be16_to_cpu(rg->route_indexes);
446 dev->ex_dev.num_phys = min(rg->num_phys, (u8)MAX_EXPANDER_PHYS);
447 dev->ex_dev.t2t_supp = rg->t2t_supp;
448 dev->ex_dev.conf_route_table = rg->conf_route_table;
449 dev->ex_dev.configuring = rg->configuring;
450 memcpy(dev->ex_dev.enclosure_logical_id, rg->enclosure_logical_id, 8);
451 }
452
453 #define RG_REQ_SIZE 8
454 #define RG_RESP_SIZE 32
455
456 static int sas_ex_general(struct domain_device *dev)
457 {
458 u8 *rg_req;
459 struct smp_resp *rg_resp;
460 int res;
461 int i;
462
463 rg_req = alloc_smp_req(RG_REQ_SIZE);
464 if (!rg_req)
465 return -ENOMEM;
466
467 rg_resp = alloc_smp_resp(RG_RESP_SIZE);
468 if (!rg_resp) {
469 kfree(rg_req);
470 return -ENOMEM;
471 }
472
473 rg_req[1] = SMP_REPORT_GENERAL;
474
475 for (i = 0; i < 5; i++) {
476 res = smp_execute_task(dev, rg_req, RG_REQ_SIZE, rg_resp,
477 RG_RESP_SIZE);
478
479 if (res) {
480 SAS_DPRINTK("RG to ex %016llx failed:0x%x\n",
481 SAS_ADDR(dev->sas_addr), res);
482 goto out;
483 } else if (rg_resp->result != SMP_RESP_FUNC_ACC) {
484 SAS_DPRINTK("RG:ex %016llx returned SMP result:0x%x\n",
485 SAS_ADDR(dev->sas_addr), rg_resp->result);
486 res = rg_resp->result;
487 goto out;
488 }
489
490 ex_assign_report_general(dev, rg_resp);
491
492 if (dev->ex_dev.configuring) {
493 SAS_DPRINTK("RG: ex %llx self-configuring...\n",
494 SAS_ADDR(dev->sas_addr));
495 schedule_timeout_interruptible(5*HZ);
496 } else
497 break;
498 }
499 out:
500 kfree(rg_req);
501 kfree(rg_resp);
502 return res;
503 }
504
505 static void ex_assign_manuf_info(struct domain_device *dev, void
506 *_mi_resp)
507 {
508 u8 *mi_resp = _mi_resp;
509 struct sas_rphy *rphy = dev->rphy;
510 struct sas_expander_device *edev = rphy_to_expander_device(rphy);
511
512 memcpy(edev->vendor_id, mi_resp + 12, SAS_EXPANDER_VENDOR_ID_LEN);
513 memcpy(edev->product_id, mi_resp + 20, SAS_EXPANDER_PRODUCT_ID_LEN);
514 memcpy(edev->product_rev, mi_resp + 36,
515 SAS_EXPANDER_PRODUCT_REV_LEN);
516
517 if (mi_resp[8] & 1) {
518 memcpy(edev->component_vendor_id, mi_resp + 40,
519 SAS_EXPANDER_COMPONENT_VENDOR_ID_LEN);
520 edev->component_id = mi_resp[48] << 8 | mi_resp[49];
521 edev->component_revision_id = mi_resp[50];
522 }
523 }
524
525 #define MI_REQ_SIZE 8
526 #define MI_RESP_SIZE 64
527
528 static int sas_ex_manuf_info(struct domain_device *dev)
529 {
530 u8 *mi_req;
531 u8 *mi_resp;
532 int res;
533
534 mi_req = alloc_smp_req(MI_REQ_SIZE);
535 if (!mi_req)
536 return -ENOMEM;
537
538 mi_resp = alloc_smp_resp(MI_RESP_SIZE);
539 if (!mi_resp) {
540 kfree(mi_req);
541 return -ENOMEM;
542 }
543
544 mi_req[1] = SMP_REPORT_MANUF_INFO;
545
546 res = smp_execute_task(dev, mi_req, MI_REQ_SIZE, mi_resp,MI_RESP_SIZE);
547 if (res) {
548 SAS_DPRINTK("MI: ex %016llx failed:0x%x\n",
549 SAS_ADDR(dev->sas_addr), res);
550 goto out;
551 } else if (mi_resp[2] != SMP_RESP_FUNC_ACC) {
552 SAS_DPRINTK("MI ex %016llx returned SMP result:0x%x\n",
553 SAS_ADDR(dev->sas_addr), mi_resp[2]);
554 goto out;
555 }
556
557 ex_assign_manuf_info(dev, mi_resp);
558 out:
559 kfree(mi_req);
560 kfree(mi_resp);
561 return res;
562 }
563
564 #define PC_REQ_SIZE 44
565 #define PC_RESP_SIZE 8
566
567 int sas_smp_phy_control(struct domain_device *dev, int phy_id,
568 enum phy_func phy_func,
569 struct sas_phy_linkrates *rates)
570 {
571 u8 *pc_req;
572 u8 *pc_resp;
573 int res;
574
575 pc_req = alloc_smp_req(PC_REQ_SIZE);
576 if (!pc_req)
577 return -ENOMEM;
578
579 pc_resp = alloc_smp_resp(PC_RESP_SIZE);
580 if (!pc_resp) {
581 kfree(pc_req);
582 return -ENOMEM;
583 }
584
585 pc_req[1] = SMP_PHY_CONTROL;
586 pc_req[9] = phy_id;
587 pc_req[10]= phy_func;
588 if (rates) {
589 pc_req[32] = rates->minimum_linkrate << 4;
590 pc_req[33] = rates->maximum_linkrate << 4;
591 }
592
593 res = smp_execute_task(dev, pc_req, PC_REQ_SIZE, pc_resp,PC_RESP_SIZE);
594
595 kfree(pc_resp);
596 kfree(pc_req);
597 return res;
598 }
599
600 static void sas_ex_disable_phy(struct domain_device *dev, int phy_id)
601 {
602 struct expander_device *ex = &dev->ex_dev;
603 struct ex_phy *phy = &ex->ex_phy[phy_id];
604
605 sas_smp_phy_control(dev, phy_id, PHY_FUNC_DISABLE, NULL);
606 phy->linkrate = SAS_PHY_DISABLED;
607 }
608
609 static void sas_ex_disable_port(struct domain_device *dev, u8 *sas_addr)
610 {
611 struct expander_device *ex = &dev->ex_dev;
612 int i;
613
614 for (i = 0; i < ex->num_phys; i++) {
615 struct ex_phy *phy = &ex->ex_phy[i];
616
617 if (phy->phy_state == PHY_VACANT ||
618 phy->phy_state == PHY_NOT_PRESENT)
619 continue;
620
621 if (SAS_ADDR(phy->attached_sas_addr) == SAS_ADDR(sas_addr))
622 sas_ex_disable_phy(dev, i);
623 }
624 }
625
626 static int sas_dev_present_in_domain(struct asd_sas_port *port,
627 u8 *sas_addr)
628 {
629 struct domain_device *dev;
630
631 if (SAS_ADDR(port->sas_addr) == SAS_ADDR(sas_addr))
632 return 1;
633 list_for_each_entry(dev, &port->dev_list, dev_list_node) {
634 if (SAS_ADDR(dev->sas_addr) == SAS_ADDR(sas_addr))
635 return 1;
636 }
637 return 0;
638 }
639
640 #define RPEL_REQ_SIZE 16
641 #define RPEL_RESP_SIZE 32
642 int sas_smp_get_phy_events(struct sas_phy *phy)
643 {
644 int res;
645 u8 *req;
646 u8 *resp;
647 struct sas_rphy *rphy = dev_to_rphy(phy->dev.parent);
648 struct domain_device *dev = sas_find_dev_by_rphy(rphy);
649
650 req = alloc_smp_req(RPEL_REQ_SIZE);
651 if (!req)
652 return -ENOMEM;
653
654 resp = alloc_smp_resp(RPEL_RESP_SIZE);
655 if (!resp) {
656 kfree(req);
657 return -ENOMEM;
658 }
659
660 req[1] = SMP_REPORT_PHY_ERR_LOG;
661 req[9] = phy->number;
662
663 res = smp_execute_task(dev, req, RPEL_REQ_SIZE,
664 resp, RPEL_RESP_SIZE);
665
666 if (!res)
667 goto out;
668
669 phy->invalid_dword_count = scsi_to_u32(&resp[12]);
670 phy->running_disparity_error_count = scsi_to_u32(&resp[16]);
671 phy->loss_of_dword_sync_count = scsi_to_u32(&resp[20]);
672 phy->phy_reset_problem_count = scsi_to_u32(&resp[24]);
673
674 out:
675 kfree(resp);
676 return res;
677
678 }
679
680 #ifdef CONFIG_SCSI_SAS_ATA
681
682 #define RPS_REQ_SIZE 16
683 #define RPS_RESP_SIZE 60
684
685 int sas_get_report_phy_sata(struct domain_device *dev, int phy_id,
686 struct smp_resp *rps_resp)
687 {
688 int res;
689 u8 *rps_req = alloc_smp_req(RPS_REQ_SIZE);
690 u8 *resp = (u8 *)rps_resp;
691
692 if (!rps_req)
693 return -ENOMEM;
694
695 rps_req[1] = SMP_REPORT_PHY_SATA;
696 rps_req[9] = phy_id;
697
698 res = smp_execute_task(dev, rps_req, RPS_REQ_SIZE,
699 rps_resp, RPS_RESP_SIZE);
700
701 /* 0x34 is the FIS type for the D2H fis. There's a potential
702 * standards cockup here. sas-2 explicitly specifies the FIS
703 * should be encoded so that FIS type is in resp[24].
704 * However, some expanders endian reverse this. Undo the
705 * reversal here */
706 if (!res && resp[27] == 0x34 && resp[24] != 0x34) {
707 int i;
708
709 for (i = 0; i < 5; i++) {
710 int j = 24 + (i*4);
711 u8 a, b;
712 a = resp[j + 0];
713 b = resp[j + 1];
714 resp[j + 0] = resp[j + 3];
715 resp[j + 1] = resp[j + 2];
716 resp[j + 2] = b;
717 resp[j + 3] = a;
718 }
719 }
720
721 kfree(rps_req);
722 return res;
723 }
724 #endif
725
726 static void sas_ex_get_linkrate(struct domain_device *parent,
727 struct domain_device *child,
728 struct ex_phy *parent_phy)
729 {
730 struct expander_device *parent_ex = &parent->ex_dev;
731 struct sas_port *port;
732 int i;
733
734 child->pathways = 0;
735
736 port = parent_phy->port;
737
738 for (i = 0; i < parent_ex->num_phys; i++) {
739 struct ex_phy *phy = &parent_ex->ex_phy[i];
740
741 if (phy->phy_state == PHY_VACANT ||
742 phy->phy_state == PHY_NOT_PRESENT)
743 continue;
744
745 if (SAS_ADDR(phy->attached_sas_addr) ==
746 SAS_ADDR(child->sas_addr)) {
747
748 child->min_linkrate = min(parent->min_linkrate,
749 phy->linkrate);
750 child->max_linkrate = max(parent->max_linkrate,
751 phy->linkrate);
752 child->pathways++;
753 sas_port_add_phy(port, phy->phy);
754 }
755 }
756 child->linkrate = min(parent_phy->linkrate, child->max_linkrate);
757 child->pathways = min(child->pathways, parent->pathways);
758 }
759
760 static struct domain_device *sas_ex_discover_end_dev(
761 struct domain_device *parent, int phy_id)
762 {
763 struct expander_device *parent_ex = &parent->ex_dev;
764 struct ex_phy *phy = &parent_ex->ex_phy[phy_id];
765 struct domain_device *child = NULL;
766 struct sas_rphy *rphy;
767 int res;
768
769 if (phy->attached_sata_host || phy->attached_sata_ps)
770 return NULL;
771
772 child = sas_alloc_device();
773 if (!child)
774 return NULL;
775
776 kref_get(&parent->kref);
777 child->parent = parent;
778 child->port = parent->port;
779 child->iproto = phy->attached_iproto;
780 memcpy(child->sas_addr, phy->attached_sas_addr, SAS_ADDR_SIZE);
781 sas_hash_addr(child->hashed_sas_addr, child->sas_addr);
782 if (!phy->port) {
783 phy->port = sas_port_alloc(&parent->rphy->dev, phy_id);
784 if (unlikely(!phy->port))
785 goto out_err;
786 if (unlikely(sas_port_add(phy->port) != 0)) {
787 sas_port_free(phy->port);
788 goto out_err;
789 }
790 }
791 sas_ex_get_linkrate(parent, child, phy);
792 sas_device_set_phy(child, phy->port);
793
794 #ifdef CONFIG_SCSI_SAS_ATA
795 if ((phy->attached_tproto & SAS_PROTOCOL_STP) || phy->attached_sata_dev) {
796 res = sas_get_ata_info(child, phy);
797 if (res)
798 goto out_free;
799
800 sas_init_dev(child);
801 res = sas_ata_init(child);
802 if (res)
803 goto out_free;
804 rphy = sas_end_device_alloc(phy->port);
805 if (!rphy)
806 goto out_free;
807
808 child->rphy = rphy;
809 get_device(&rphy->dev);
810
811 list_add_tail(&child->disco_list_node, &parent->port->disco_list);
812
813 res = sas_discover_sata(child);
814 if (res) {
815 SAS_DPRINTK("sas_discover_sata() for device %16llx at "
816 "%016llx:0x%x returned 0x%x\n",
817 SAS_ADDR(child->sas_addr),
818 SAS_ADDR(parent->sas_addr), phy_id, res);
819 goto out_list_del;
820 }
821 } else
822 #endif
823 if (phy->attached_tproto & SAS_PROTOCOL_SSP) {
824 child->dev_type = SAS_END_DEV;
825 rphy = sas_end_device_alloc(phy->port);
826 /* FIXME: error handling */
827 if (unlikely(!rphy))
828 goto out_free;
829 child->tproto = phy->attached_tproto;
830 sas_init_dev(child);
831
832 child->rphy = rphy;
833 get_device(&rphy->dev);
834 sas_fill_in_rphy(child, rphy);
835
836 list_add_tail(&child->disco_list_node, &parent->port->disco_list);
837
838 res = sas_discover_end_dev(child);
839 if (res) {
840 SAS_DPRINTK("sas_discover_end_dev() for device %16llx "
841 "at %016llx:0x%x returned 0x%x\n",
842 SAS_ADDR(child->sas_addr),
843 SAS_ADDR(parent->sas_addr), phy_id, res);
844 goto out_list_del;
845 }
846 } else {
847 SAS_DPRINTK("target proto 0x%x at %016llx:0x%x not handled\n",
848 phy->attached_tproto, SAS_ADDR(parent->sas_addr),
849 phy_id);
850 goto out_free;
851 }
852
853 list_add_tail(&child->siblings, &parent_ex->children);
854 return child;
855
856 out_list_del:
857 sas_rphy_free(child->rphy);
858 list_del(&child->disco_list_node);
859 spin_lock_irq(&parent->port->dev_list_lock);
860 list_del(&child->dev_list_node);
861 spin_unlock_irq(&parent->port->dev_list_lock);
862 out_free:
863 sas_port_delete(phy->port);
864 out_err:
865 phy->port = NULL;
866 sas_put_device(child);
867 return NULL;
868 }
869
870 /* See if this phy is part of a wide port */
871 static int sas_ex_join_wide_port(struct domain_device *parent, int phy_id)
872 {
873 struct ex_phy *phy = &parent->ex_dev.ex_phy[phy_id];
874 int i;
875
876 for (i = 0; i < parent->ex_dev.num_phys; i++) {
877 struct ex_phy *ephy = &parent->ex_dev.ex_phy[i];
878
879 if (ephy == phy)
880 continue;
881
882 if (!memcmp(phy->attached_sas_addr, ephy->attached_sas_addr,
883 SAS_ADDR_SIZE) && ephy->port) {
884 sas_port_add_phy(ephy->port, phy->phy);
885 phy->port = ephy->port;
886 phy->phy_state = PHY_DEVICE_DISCOVERED;
887 return 0;
888 }
889 }
890
891 return -ENODEV;
892 }
893
894 static struct domain_device *sas_ex_discover_expander(
895 struct domain_device *parent, int phy_id)
896 {
897 struct sas_expander_device *parent_ex = rphy_to_expander_device(parent->rphy);
898 struct ex_phy *phy = &parent->ex_dev.ex_phy[phy_id];
899 struct domain_device *child = NULL;
900 struct sas_rphy *rphy;
901 struct sas_expander_device *edev;
902 struct asd_sas_port *port;
903 int res;
904
905 if (phy->routing_attr == DIRECT_ROUTING) {
906 SAS_DPRINTK("ex %016llx:0x%x:D <--> ex %016llx:0x%x is not "
907 "allowed\n",
908 SAS_ADDR(parent->sas_addr), phy_id,
909 SAS_ADDR(phy->attached_sas_addr),
910 phy->attached_phy_id);
911 return NULL;
912 }
913 child = sas_alloc_device();
914 if (!child)
915 return NULL;
916
917 phy->port = sas_port_alloc(&parent->rphy->dev, phy_id);
918 /* FIXME: better error handling */
919 BUG_ON(sas_port_add(phy->port) != 0);
920
921
922 switch (phy->attached_dev_type) {
923 case EDGE_DEV:
924 rphy = sas_expander_alloc(phy->port,
925 SAS_EDGE_EXPANDER_DEVICE);
926 break;
927 case FANOUT_DEV:
928 rphy = sas_expander_alloc(phy->port,
929 SAS_FANOUT_EXPANDER_DEVICE);
930 break;
931 default:
932 rphy = NULL; /* shut gcc up */
933 BUG();
934 }
935 port = parent->port;
936 child->rphy = rphy;
937 get_device(&rphy->dev);
938 edev = rphy_to_expander_device(rphy);
939 child->dev_type = phy->attached_dev_type;
940 kref_get(&parent->kref);
941 child->parent = parent;
942 child->port = port;
943 child->iproto = phy->attached_iproto;
944 child->tproto = phy->attached_tproto;
945 memcpy(child->sas_addr, phy->attached_sas_addr, SAS_ADDR_SIZE);
946 sas_hash_addr(child->hashed_sas_addr, child->sas_addr);
947 sas_ex_get_linkrate(parent, child, phy);
948 edev->level = parent_ex->level + 1;
949 parent->port->disc.max_level = max(parent->port->disc.max_level,
950 edev->level);
951 sas_init_dev(child);
952 sas_fill_in_rphy(child, rphy);
953 sas_rphy_add(rphy);
954
955 spin_lock_irq(&parent->port->dev_list_lock);
956 list_add_tail(&child->dev_list_node, &parent->port->dev_list);
957 spin_unlock_irq(&parent->port->dev_list_lock);
958
959 res = sas_discover_expander(child);
960 if (res) {
961 sas_rphy_delete(rphy);
962 spin_lock_irq(&parent->port->dev_list_lock);
963 list_del(&child->dev_list_node);
964 spin_unlock_irq(&parent->port->dev_list_lock);
965 sas_put_device(child);
966 return NULL;
967 }
968 list_add_tail(&child->siblings, &parent->ex_dev.children);
969 return child;
970 }
971
972 static int sas_ex_discover_dev(struct domain_device *dev, int phy_id)
973 {
974 struct expander_device *ex = &dev->ex_dev;
975 struct ex_phy *ex_phy = &ex->ex_phy[phy_id];
976 struct domain_device *child = NULL;
977 int res = 0;
978
979 /* Phy state */
980 if (ex_phy->linkrate == SAS_SATA_SPINUP_HOLD) {
981 if (!sas_smp_phy_control(dev, phy_id, PHY_FUNC_LINK_RESET, NULL))
982 res = sas_ex_phy_discover(dev, phy_id);
983 if (res)
984 return res;
985 }
986
987 /* Parent and domain coherency */
988 if (!dev->parent && (SAS_ADDR(ex_phy->attached_sas_addr) ==
989 SAS_ADDR(dev->port->sas_addr))) {
990 sas_add_parent_port(dev, phy_id);
991 return 0;
992 }
993 if (dev->parent && (SAS_ADDR(ex_phy->attached_sas_addr) ==
994 SAS_ADDR(dev->parent->sas_addr))) {
995 sas_add_parent_port(dev, phy_id);
996 if (ex_phy->routing_attr == TABLE_ROUTING)
997 sas_configure_phy(dev, phy_id, dev->port->sas_addr, 1);
998 return 0;
999 }
1000
1001 if (sas_dev_present_in_domain(dev->port, ex_phy->attached_sas_addr))
1002 sas_ex_disable_port(dev, ex_phy->attached_sas_addr);
1003
1004 if (ex_phy->attached_dev_type == NO_DEVICE) {
1005 if (ex_phy->routing_attr == DIRECT_ROUTING) {
1006 memset(ex_phy->attached_sas_addr, 0, SAS_ADDR_SIZE);
1007 sas_configure_routing(dev, ex_phy->attached_sas_addr);
1008 }
1009 return 0;
1010 } else if (ex_phy->linkrate == SAS_LINK_RATE_UNKNOWN)
1011 return 0;
1012
1013 if (ex_phy->attached_dev_type != SAS_END_DEV &&
1014 ex_phy->attached_dev_type != FANOUT_DEV &&
1015 ex_phy->attached_dev_type != EDGE_DEV &&
1016 ex_phy->attached_dev_type != SATA_PENDING) {
1017 SAS_DPRINTK("unknown device type(0x%x) attached to ex %016llx "
1018 "phy 0x%x\n", ex_phy->attached_dev_type,
1019 SAS_ADDR(dev->sas_addr),
1020 phy_id);
1021 return 0;
1022 }
1023
1024 res = sas_configure_routing(dev, ex_phy->attached_sas_addr);
1025 if (res) {
1026 SAS_DPRINTK("configure routing for dev %016llx "
1027 "reported 0x%x. Forgotten\n",
1028 SAS_ADDR(ex_phy->attached_sas_addr), res);
1029 sas_disable_routing(dev, ex_phy->attached_sas_addr);
1030 return res;
1031 }
1032
1033 res = sas_ex_join_wide_port(dev, phy_id);
1034 if (!res) {
1035 SAS_DPRINTK("Attaching ex phy%d to wide port %016llx\n",
1036 phy_id, SAS_ADDR(ex_phy->attached_sas_addr));
1037 return res;
1038 }
1039
1040 switch (ex_phy->attached_dev_type) {
1041 case SAS_END_DEV:
1042 case SATA_PENDING:
1043 child = sas_ex_discover_end_dev(dev, phy_id);
1044 break;
1045 case FANOUT_DEV:
1046 if (SAS_ADDR(dev->port->disc.fanout_sas_addr)) {
1047 SAS_DPRINTK("second fanout expander %016llx phy 0x%x "
1048 "attached to ex %016llx phy 0x%x\n",
1049 SAS_ADDR(ex_phy->attached_sas_addr),
1050 ex_phy->attached_phy_id,
1051 SAS_ADDR(dev->sas_addr),
1052 phy_id);
1053 sas_ex_disable_phy(dev, phy_id);
1054 break;
1055 } else
1056 memcpy(dev->port->disc.fanout_sas_addr,
1057 ex_phy->attached_sas_addr, SAS_ADDR_SIZE);
1058 /* fallthrough */
1059 case EDGE_DEV:
1060 child = sas_ex_discover_expander(dev, phy_id);
1061 break;
1062 default:
1063 break;
1064 }
1065
1066 if (child) {
1067 int i;
1068
1069 for (i = 0; i < ex->num_phys; i++) {
1070 if (ex->ex_phy[i].phy_state == PHY_VACANT ||
1071 ex->ex_phy[i].phy_state == PHY_NOT_PRESENT)
1072 continue;
1073 /*
1074 * Due to races, the phy might not get added to the
1075 * wide port, so we add the phy to the wide port here.
1076 */
1077 if (SAS_ADDR(ex->ex_phy[i].attached_sas_addr) ==
1078 SAS_ADDR(child->sas_addr)) {
1079 ex->ex_phy[i].phy_state= PHY_DEVICE_DISCOVERED;
1080 res = sas_ex_join_wide_port(dev, i);
1081 if (!res)
1082 SAS_DPRINTK("Attaching ex phy%d to wide port %016llx\n",
1083 i, SAS_ADDR(ex->ex_phy[i].attached_sas_addr));
1084
1085 }
1086 }
1087 }
1088
1089 return res;
1090 }
1091
1092 static int sas_find_sub_addr(struct domain_device *dev, u8 *sub_addr)
1093 {
1094 struct expander_device *ex = &dev->ex_dev;
1095 int i;
1096
1097 for (i = 0; i < ex->num_phys; i++) {
1098 struct ex_phy *phy = &ex->ex_phy[i];
1099
1100 if (phy->phy_state == PHY_VACANT ||
1101 phy->phy_state == PHY_NOT_PRESENT)
1102 continue;
1103
1104 if ((phy->attached_dev_type == EDGE_DEV ||
1105 phy->attached_dev_type == FANOUT_DEV) &&
1106 phy->routing_attr == SUBTRACTIVE_ROUTING) {
1107
1108 memcpy(sub_addr, phy->attached_sas_addr,SAS_ADDR_SIZE);
1109
1110 return 1;
1111 }
1112 }
1113 return 0;
1114 }
1115
1116 static int sas_check_level_subtractive_boundary(struct domain_device *dev)
1117 {
1118 struct expander_device *ex = &dev->ex_dev;
1119 struct domain_device *child;
1120 u8 sub_addr[8] = {0, };
1121
1122 list_for_each_entry(child, &ex->children, siblings) {
1123 if (child->dev_type != EDGE_DEV &&
1124 child->dev_type != FANOUT_DEV)
1125 continue;
1126 if (sub_addr[0] == 0) {
1127 sas_find_sub_addr(child, sub_addr);
1128 continue;
1129 } else {
1130 u8 s2[8];
1131
1132 if (sas_find_sub_addr(child, s2) &&
1133 (SAS_ADDR(sub_addr) != SAS_ADDR(s2))) {
1134
1135 SAS_DPRINTK("ex %016llx->%016llx-?->%016llx "
1136 "diverges from subtractive "
1137 "boundary %016llx\n",
1138 SAS_ADDR(dev->sas_addr),
1139 SAS_ADDR(child->sas_addr),
1140 SAS_ADDR(s2),
1141 SAS_ADDR(sub_addr));
1142
1143 sas_ex_disable_port(child, s2);
1144 }
1145 }
1146 }
1147 return 0;
1148 }
1149 /**
1150 * sas_ex_discover_devices -- discover devices attached to this expander
1151 * dev: pointer to the expander domain device
1152 * single: if you want to do a single phy, else set to -1;
1153 *
1154 * Configure this expander for use with its devices and register the
1155 * devices of this expander.
1156 */
1157 static int sas_ex_discover_devices(struct domain_device *dev, int single)
1158 {
1159 struct expander_device *ex = &dev->ex_dev;
1160 int i = 0, end = ex->num_phys;
1161 int res = 0;
1162
1163 if (0 <= single && single < end) {
1164 i = single;
1165 end = i+1;
1166 }
1167
1168 for ( ; i < end; i++) {
1169 struct ex_phy *ex_phy = &ex->ex_phy[i];
1170
1171 if (ex_phy->phy_state == PHY_VACANT ||
1172 ex_phy->phy_state == PHY_NOT_PRESENT ||
1173 ex_phy->phy_state == PHY_DEVICE_DISCOVERED)
1174 continue;
1175
1176 switch (ex_phy->linkrate) {
1177 case SAS_PHY_DISABLED:
1178 case SAS_PHY_RESET_PROBLEM:
1179 case SAS_SATA_PORT_SELECTOR:
1180 continue;
1181 default:
1182 res = sas_ex_discover_dev(dev, i);
1183 if (res)
1184 break;
1185 continue;
1186 }
1187 }
1188
1189 if (!res)
1190 sas_check_level_subtractive_boundary(dev);
1191
1192 return res;
1193 }
1194
1195 static int sas_check_ex_subtractive_boundary(struct domain_device *dev)
1196 {
1197 struct expander_device *ex = &dev->ex_dev;
1198 int i;
1199 u8 *sub_sas_addr = NULL;
1200
1201 if (dev->dev_type != EDGE_DEV)
1202 return 0;
1203
1204 for (i = 0; i < ex->num_phys; i++) {
1205 struct ex_phy *phy = &ex->ex_phy[i];
1206
1207 if (phy->phy_state == PHY_VACANT ||
1208 phy->phy_state == PHY_NOT_PRESENT)
1209 continue;
1210
1211 if ((phy->attached_dev_type == FANOUT_DEV ||
1212 phy->attached_dev_type == EDGE_DEV) &&
1213 phy->routing_attr == SUBTRACTIVE_ROUTING) {
1214
1215 if (!sub_sas_addr)
1216 sub_sas_addr = &phy->attached_sas_addr[0];
1217 else if (SAS_ADDR(sub_sas_addr) !=
1218 SAS_ADDR(phy->attached_sas_addr)) {
1219
1220 SAS_DPRINTK("ex %016llx phy 0x%x "
1221 "diverges(%016llx) on subtractive "
1222 "boundary(%016llx). Disabled\n",
1223 SAS_ADDR(dev->sas_addr), i,
1224 SAS_ADDR(phy->attached_sas_addr),
1225 SAS_ADDR(sub_sas_addr));
1226 sas_ex_disable_phy(dev, i);
1227 }
1228 }
1229 }
1230 return 0;
1231 }
1232
1233 static void sas_print_parent_topology_bug(struct domain_device *child,
1234 struct ex_phy *parent_phy,
1235 struct ex_phy *child_phy)
1236 {
1237 static const char *ex_type[] = {
1238 [EDGE_DEV] = "edge",
1239 [FANOUT_DEV] = "fanout",
1240 };
1241 struct domain_device *parent = child->parent;
1242
1243 sas_printk("%s ex %016llx phy 0x%x <--> %s ex %016llx "
1244 "phy 0x%x has %c:%c routing link!\n",
1245
1246 ex_type[parent->dev_type],
1247 SAS_ADDR(parent->sas_addr),
1248 parent_phy->phy_id,
1249
1250 ex_type[child->dev_type],
1251 SAS_ADDR(child->sas_addr),
1252 child_phy->phy_id,
1253
1254 sas_route_char(parent, parent_phy),
1255 sas_route_char(child, child_phy));
1256 }
1257
1258 static int sas_check_eeds(struct domain_device *child,
1259 struct ex_phy *parent_phy,
1260 struct ex_phy *child_phy)
1261 {
1262 int res = 0;
1263 struct domain_device *parent = child->parent;
1264
1265 if (SAS_ADDR(parent->port->disc.fanout_sas_addr) != 0) {
1266 res = -ENODEV;
1267 SAS_DPRINTK("edge ex %016llx phy S:0x%x <--> edge ex %016llx "
1268 "phy S:0x%x, while there is a fanout ex %016llx\n",
1269 SAS_ADDR(parent->sas_addr),
1270 parent_phy->phy_id,
1271 SAS_ADDR(child->sas_addr),
1272 child_phy->phy_id,
1273 SAS_ADDR(parent->port->disc.fanout_sas_addr));
1274 } else if (SAS_ADDR(parent->port->disc.eeds_a) == 0) {
1275 memcpy(parent->port->disc.eeds_a, parent->sas_addr,
1276 SAS_ADDR_SIZE);
1277 memcpy(parent->port->disc.eeds_b, child->sas_addr,
1278 SAS_ADDR_SIZE);
1279 } else if (((SAS_ADDR(parent->port->disc.eeds_a) ==
1280 SAS_ADDR(parent->sas_addr)) ||
1281 (SAS_ADDR(parent->port->disc.eeds_a) ==
1282 SAS_ADDR(child->sas_addr)))
1283 &&
1284 ((SAS_ADDR(parent->port->disc.eeds_b) ==
1285 SAS_ADDR(parent->sas_addr)) ||
1286 (SAS_ADDR(parent->port->disc.eeds_b) ==
1287 SAS_ADDR(child->sas_addr))))
1288 ;
1289 else {
1290 res = -ENODEV;
1291 SAS_DPRINTK("edge ex %016llx phy 0x%x <--> edge ex %016llx "
1292 "phy 0x%x link forms a third EEDS!\n",
1293 SAS_ADDR(parent->sas_addr),
1294 parent_phy->phy_id,
1295 SAS_ADDR(child->sas_addr),
1296 child_phy->phy_id);
1297 }
1298
1299 return res;
1300 }
1301
1302 /* Here we spill over 80 columns. It is intentional.
1303 */
1304 static int sas_check_parent_topology(struct domain_device *child)
1305 {
1306 struct expander_device *child_ex = &child->ex_dev;
1307 struct expander_device *parent_ex;
1308 int i;
1309 int res = 0;
1310
1311 if (!child->parent)
1312 return 0;
1313
1314 if (child->parent->dev_type != EDGE_DEV &&
1315 child->parent->dev_type != FANOUT_DEV)
1316 return 0;
1317
1318 parent_ex = &child->parent->ex_dev;
1319
1320 for (i = 0; i < parent_ex->num_phys; i++) {
1321 struct ex_phy *parent_phy = &parent_ex->ex_phy[i];
1322 struct ex_phy *child_phy;
1323
1324 if (parent_phy->phy_state == PHY_VACANT ||
1325 parent_phy->phy_state == PHY_NOT_PRESENT)
1326 continue;
1327
1328 if (SAS_ADDR(parent_phy->attached_sas_addr) != SAS_ADDR(child->sas_addr))
1329 continue;
1330
1331 child_phy = &child_ex->ex_phy[parent_phy->attached_phy_id];
1332
1333 switch (child->parent->dev_type) {
1334 case EDGE_DEV:
1335 if (child->dev_type == FANOUT_DEV) {
1336 if (parent_phy->routing_attr != SUBTRACTIVE_ROUTING ||
1337 child_phy->routing_attr != TABLE_ROUTING) {
1338 sas_print_parent_topology_bug(child, parent_phy, child_phy);
1339 res = -ENODEV;
1340 }
1341 } else if (parent_phy->routing_attr == SUBTRACTIVE_ROUTING) {
1342 if (child_phy->routing_attr == SUBTRACTIVE_ROUTING) {
1343 res = sas_check_eeds(child, parent_phy, child_phy);
1344 } else if (child_phy->routing_attr != TABLE_ROUTING) {
1345 sas_print_parent_topology_bug(child, parent_phy, child_phy);
1346 res = -ENODEV;
1347 }
1348 } else if (parent_phy->routing_attr == TABLE_ROUTING) {
1349 if (child_phy->routing_attr == SUBTRACTIVE_ROUTING ||
1350 (child_phy->routing_attr == TABLE_ROUTING &&
1351 child_ex->t2t_supp && parent_ex->t2t_supp)) {
1352 /* All good */;
1353 } else {
1354 sas_print_parent_topology_bug(child, parent_phy, child_phy);
1355 res = -ENODEV;
1356 }
1357 }
1358 break;
1359 case FANOUT_DEV:
1360 if (parent_phy->routing_attr != TABLE_ROUTING ||
1361 child_phy->routing_attr != SUBTRACTIVE_ROUTING) {
1362 sas_print_parent_topology_bug(child, parent_phy, child_phy);
1363 res = -ENODEV;
1364 }
1365 break;
1366 default:
1367 break;
1368 }
1369 }
1370
1371 return res;
1372 }
1373
1374 #define RRI_REQ_SIZE 16
1375 #define RRI_RESP_SIZE 44
1376
1377 static int sas_configure_present(struct domain_device *dev, int phy_id,
1378 u8 *sas_addr, int *index, int *present)
1379 {
1380 int i, res = 0;
1381 struct expander_device *ex = &dev->ex_dev;
1382 struct ex_phy *phy = &ex->ex_phy[phy_id];
1383 u8 *rri_req;
1384 u8 *rri_resp;
1385
1386 *present = 0;
1387 *index = 0;
1388
1389 rri_req = alloc_smp_req(RRI_REQ_SIZE);
1390 if (!rri_req)
1391 return -ENOMEM;
1392
1393 rri_resp = alloc_smp_resp(RRI_RESP_SIZE);
1394 if (!rri_resp) {
1395 kfree(rri_req);
1396 return -ENOMEM;
1397 }
1398
1399 rri_req[1] = SMP_REPORT_ROUTE_INFO;
1400 rri_req[9] = phy_id;
1401
1402 for (i = 0; i < ex->max_route_indexes ; i++) {
1403 *(__be16 *)(rri_req+6) = cpu_to_be16(i);
1404 res = smp_execute_task(dev, rri_req, RRI_REQ_SIZE, rri_resp,
1405 RRI_RESP_SIZE);
1406 if (res)
1407 goto out;
1408 res = rri_resp[2];
1409 if (res == SMP_RESP_NO_INDEX) {
1410 SAS_DPRINTK("overflow of indexes: dev %016llx "
1411 "phy 0x%x index 0x%x\n",
1412 SAS_ADDR(dev->sas_addr), phy_id, i);
1413 goto out;
1414 } else if (res != SMP_RESP_FUNC_ACC) {
1415 SAS_DPRINTK("%s: dev %016llx phy 0x%x index 0x%x "
1416 "result 0x%x\n", __func__,
1417 SAS_ADDR(dev->sas_addr), phy_id, i, res);
1418 goto out;
1419 }
1420 if (SAS_ADDR(sas_addr) != 0) {
1421 if (SAS_ADDR(rri_resp+16) == SAS_ADDR(sas_addr)) {
1422 *index = i;
1423 if ((rri_resp[12] & 0x80) == 0x80)
1424 *present = 0;
1425 else
1426 *present = 1;
1427 goto out;
1428 } else if (SAS_ADDR(rri_resp+16) == 0) {
1429 *index = i;
1430 *present = 0;
1431 goto out;
1432 }
1433 } else if (SAS_ADDR(rri_resp+16) == 0 &&
1434 phy->last_da_index < i) {
1435 phy->last_da_index = i;
1436 *index = i;
1437 *present = 0;
1438 goto out;
1439 }
1440 }
1441 res = -1;
1442 out:
1443 kfree(rri_req);
1444 kfree(rri_resp);
1445 return res;
1446 }
1447
1448 #define CRI_REQ_SIZE 44
1449 #define CRI_RESP_SIZE 8
1450
1451 static int sas_configure_set(struct domain_device *dev, int phy_id,
1452 u8 *sas_addr, int index, int include)
1453 {
1454 int res;
1455 u8 *cri_req;
1456 u8 *cri_resp;
1457
1458 cri_req = alloc_smp_req(CRI_REQ_SIZE);
1459 if (!cri_req)
1460 return -ENOMEM;
1461
1462 cri_resp = alloc_smp_resp(CRI_RESP_SIZE);
1463 if (!cri_resp) {
1464 kfree(cri_req);
1465 return -ENOMEM;
1466 }
1467
1468 cri_req[1] = SMP_CONF_ROUTE_INFO;
1469 *(__be16 *)(cri_req+6) = cpu_to_be16(index);
1470 cri_req[9] = phy_id;
1471 if (SAS_ADDR(sas_addr) == 0 || !include)
1472 cri_req[12] |= 0x80;
1473 memcpy(cri_req+16, sas_addr, SAS_ADDR_SIZE);
1474
1475 res = smp_execute_task(dev, cri_req, CRI_REQ_SIZE, cri_resp,
1476 CRI_RESP_SIZE);
1477 if (res)
1478 goto out;
1479 res = cri_resp[2];
1480 if (res == SMP_RESP_NO_INDEX) {
1481 SAS_DPRINTK("overflow of indexes: dev %016llx phy 0x%x "
1482 "index 0x%x\n",
1483 SAS_ADDR(dev->sas_addr), phy_id, index);
1484 }
1485 out:
1486 kfree(cri_req);
1487 kfree(cri_resp);
1488 return res;
1489 }
1490
1491 static int sas_configure_phy(struct domain_device *dev, int phy_id,
1492 u8 *sas_addr, int include)
1493 {
1494 int index;
1495 int present;
1496 int res;
1497
1498 res = sas_configure_present(dev, phy_id, sas_addr, &index, &present);
1499 if (res)
1500 return res;
1501 if (include ^ present)
1502 return sas_configure_set(dev, phy_id, sas_addr, index,include);
1503
1504 return res;
1505 }
1506
1507 /**
1508 * sas_configure_parent -- configure routing table of parent
1509 * parent: parent expander
1510 * child: child expander
1511 * sas_addr: SAS port identifier of device directly attached to child
1512 */
1513 static int sas_configure_parent(struct domain_device *parent,
1514 struct domain_device *child,
1515 u8 *sas_addr, int include)
1516 {
1517 struct expander_device *ex_parent = &parent->ex_dev;
1518 int res = 0;
1519 int i;
1520
1521 if (parent->parent) {
1522 res = sas_configure_parent(parent->parent, parent, sas_addr,
1523 include);
1524 if (res)
1525 return res;
1526 }
1527
1528 if (ex_parent->conf_route_table == 0) {
1529 SAS_DPRINTK("ex %016llx has self-configuring routing table\n",
1530 SAS_ADDR(parent->sas_addr));
1531 return 0;
1532 }
1533
1534 for (i = 0; i < ex_parent->num_phys; i++) {
1535 struct ex_phy *phy = &ex_parent->ex_phy[i];
1536
1537 if ((phy->routing_attr == TABLE_ROUTING) &&
1538 (SAS_ADDR(phy->attached_sas_addr) ==
1539 SAS_ADDR(child->sas_addr))) {
1540 res = sas_configure_phy(parent, i, sas_addr, include);
1541 if (res)
1542 return res;
1543 }
1544 }
1545
1546 return res;
1547 }
1548
1549 /**
1550 * sas_configure_routing -- configure routing
1551 * dev: expander device
1552 * sas_addr: port identifier of device directly attached to the expander device
1553 */
1554 static int sas_configure_routing(struct domain_device *dev, u8 *sas_addr)
1555 {
1556 if (dev->parent)
1557 return sas_configure_parent(dev->parent, dev, sas_addr, 1);
1558 return 0;
1559 }
1560
1561 static int sas_disable_routing(struct domain_device *dev, u8 *sas_addr)
1562 {
1563 if (dev->parent)
1564 return sas_configure_parent(dev->parent, dev, sas_addr, 0);
1565 return 0;
1566 }
1567
1568 /**
1569 * sas_discover_expander -- expander discovery
1570 * @ex: pointer to expander domain device
1571 *
1572 * See comment in sas_discover_sata().
1573 */
1574 static int sas_discover_expander(struct domain_device *dev)
1575 {
1576 int res;
1577
1578 res = sas_notify_lldd_dev_found(dev);
1579 if (res)
1580 return res;
1581
1582 res = sas_ex_general(dev);
1583 if (res)
1584 goto out_err;
1585 res = sas_ex_manuf_info(dev);
1586 if (res)
1587 goto out_err;
1588
1589 res = sas_expander_discover(dev);
1590 if (res) {
1591 SAS_DPRINTK("expander %016llx discovery failed(0x%x)\n",
1592 SAS_ADDR(dev->sas_addr), res);
1593 goto out_err;
1594 }
1595
1596 sas_check_ex_subtractive_boundary(dev);
1597 res = sas_check_parent_topology(dev);
1598 if (res)
1599 goto out_err;
1600 return 0;
1601 out_err:
1602 sas_notify_lldd_dev_gone(dev);
1603 return res;
1604 }
1605
1606 static int sas_ex_level_discovery(struct asd_sas_port *port, const int level)
1607 {
1608 int res = 0;
1609 struct domain_device *dev;
1610
1611 list_for_each_entry(dev, &port->dev_list, dev_list_node) {
1612 if (dev->dev_type == EDGE_DEV ||
1613 dev->dev_type == FANOUT_DEV) {
1614 struct sas_expander_device *ex =
1615 rphy_to_expander_device(dev->rphy);
1616
1617 if (level == ex->level)
1618 res = sas_ex_discover_devices(dev, -1);
1619 else if (level > 0)
1620 res = sas_ex_discover_devices(port->port_dev, -1);
1621
1622 }
1623 }
1624
1625 return res;
1626 }
1627
1628 static int sas_ex_bfs_disc(struct asd_sas_port *port)
1629 {
1630 int res;
1631 int level;
1632
1633 do {
1634 level = port->disc.max_level;
1635 res = sas_ex_level_discovery(port, level);
1636 mb();
1637 } while (level < port->disc.max_level);
1638
1639 return res;
1640 }
1641
1642 int sas_discover_root_expander(struct domain_device *dev)
1643 {
1644 int res;
1645 struct sas_expander_device *ex = rphy_to_expander_device(dev->rphy);
1646
1647 res = sas_rphy_add(dev->rphy);
1648 if (res)
1649 goto out_err;
1650
1651 ex->level = dev->port->disc.max_level; /* 0 */
1652 res = sas_discover_expander(dev);
1653 if (res)
1654 goto out_err2;
1655
1656 sas_ex_bfs_disc(dev->port);
1657
1658 return res;
1659
1660 out_err2:
1661 sas_rphy_remove(dev->rphy);
1662 out_err:
1663 return res;
1664 }
1665
1666 /* ---------- Domain revalidation ---------- */
1667
1668 static int sas_get_phy_discover(struct domain_device *dev,
1669 int phy_id, struct smp_resp *disc_resp)
1670 {
1671 int res;
1672 u8 *disc_req;
1673
1674 disc_req = alloc_smp_req(DISCOVER_REQ_SIZE);
1675 if (!disc_req)
1676 return -ENOMEM;
1677
1678 disc_req[1] = SMP_DISCOVER;
1679 disc_req[9] = phy_id;
1680
1681 res = smp_execute_task(dev, disc_req, DISCOVER_REQ_SIZE,
1682 disc_resp, DISCOVER_RESP_SIZE);
1683 if (res)
1684 goto out;
1685 else if (disc_resp->result != SMP_RESP_FUNC_ACC) {
1686 res = disc_resp->result;
1687 goto out;
1688 }
1689 out:
1690 kfree(disc_req);
1691 return res;
1692 }
1693
1694 static int sas_get_phy_change_count(struct domain_device *dev,
1695 int phy_id, int *pcc)
1696 {
1697 int res;
1698 struct smp_resp *disc_resp;
1699
1700 disc_resp = alloc_smp_resp(DISCOVER_RESP_SIZE);
1701 if (!disc_resp)
1702 return -ENOMEM;
1703
1704 res = sas_get_phy_discover(dev, phy_id, disc_resp);
1705 if (!res)
1706 *pcc = disc_resp->disc.change_count;
1707
1708 kfree(disc_resp);
1709 return res;
1710 }
1711
1712 static int sas_get_phy_attached_dev(struct domain_device *dev, int phy_id,
1713 u8 *sas_addr, enum sas_dev_type *type)
1714 {
1715 int res;
1716 struct smp_resp *disc_resp;
1717 struct discover_resp *dr;
1718
1719 disc_resp = alloc_smp_resp(DISCOVER_RESP_SIZE);
1720 if (!disc_resp)
1721 return -ENOMEM;
1722 dr = &disc_resp->disc;
1723
1724 res = sas_get_phy_discover(dev, phy_id, disc_resp);
1725 if (res == 0) {
1726 memcpy(sas_addr, disc_resp->disc.attached_sas_addr, 8);
1727 *type = to_dev_type(dr);
1728 if (*type == 0)
1729 memset(sas_addr, 0, 8);
1730 }
1731 kfree(disc_resp);
1732 return res;
1733 }
1734
1735 static int sas_find_bcast_phy(struct domain_device *dev, int *phy_id,
1736 int from_phy, bool update)
1737 {
1738 struct expander_device *ex = &dev->ex_dev;
1739 int res = 0;
1740 int i;
1741
1742 for (i = from_phy; i < ex->num_phys; i++) {
1743 int phy_change_count = 0;
1744
1745 res = sas_get_phy_change_count(dev, i, &phy_change_count);
1746 switch (res) {
1747 case SMP_RESP_PHY_VACANT:
1748 case SMP_RESP_NO_PHY:
1749 continue;
1750 case SMP_RESP_FUNC_ACC:
1751 break;
1752 default:
1753 return res;
1754 }
1755
1756 if (phy_change_count != ex->ex_phy[i].phy_change_count) {
1757 if (update)
1758 ex->ex_phy[i].phy_change_count =
1759 phy_change_count;
1760 *phy_id = i;
1761 return 0;
1762 }
1763 }
1764 return 0;
1765 }
1766
1767 static int sas_get_ex_change_count(struct domain_device *dev, int *ecc)
1768 {
1769 int res;
1770 u8 *rg_req;
1771 struct smp_resp *rg_resp;
1772
1773 rg_req = alloc_smp_req(RG_REQ_SIZE);
1774 if (!rg_req)
1775 return -ENOMEM;
1776
1777 rg_resp = alloc_smp_resp(RG_RESP_SIZE);
1778 if (!rg_resp) {
1779 kfree(rg_req);
1780 return -ENOMEM;
1781 }
1782
1783 rg_req[1] = SMP_REPORT_GENERAL;
1784
1785 res = smp_execute_task(dev, rg_req, RG_REQ_SIZE, rg_resp,
1786 RG_RESP_SIZE);
1787 if (res)
1788 goto out;
1789 if (rg_resp->result != SMP_RESP_FUNC_ACC) {
1790 res = rg_resp->result;
1791 goto out;
1792 }
1793
1794 *ecc = be16_to_cpu(rg_resp->rg.change_count);
1795 out:
1796 kfree(rg_resp);
1797 kfree(rg_req);
1798 return res;
1799 }
1800 /**
1801 * sas_find_bcast_dev - find the device issue BROADCAST(CHANGE).
1802 * @dev:domain device to be detect.
1803 * @src_dev: the device which originated BROADCAST(CHANGE).
1804 *
1805 * Add self-configuration expander suport. Suppose two expander cascading,
1806 * when the first level expander is self-configuring, hotplug the disks in
1807 * second level expander, BROADCAST(CHANGE) will not only be originated
1808 * in the second level expander, but also be originated in the first level
1809 * expander (see SAS protocol SAS 2r-14, 7.11 for detail), it is to say,
1810 * expander changed count in two level expanders will all increment at least
1811 * once, but the phy which chang count has changed is the source device which
1812 * we concerned.
1813 */
1814
1815 static int sas_find_bcast_dev(struct domain_device *dev,
1816 struct domain_device **src_dev)
1817 {
1818 struct expander_device *ex = &dev->ex_dev;
1819 int ex_change_count = -1;
1820 int phy_id = -1;
1821 int res;
1822 struct domain_device *ch;
1823
1824 res = sas_get_ex_change_count(dev, &ex_change_count);
1825 if (res)
1826 goto out;
1827 if (ex_change_count != -1 && ex_change_count != ex->ex_change_count) {
1828 /* Just detect if this expander phys phy change count changed,
1829 * in order to determine if this expander originate BROADCAST,
1830 * and do not update phy change count field in our structure.
1831 */
1832 res = sas_find_bcast_phy(dev, &phy_id, 0, false);
1833 if (phy_id != -1) {
1834 *src_dev = dev;
1835 ex->ex_change_count = ex_change_count;
1836 SAS_DPRINTK("Expander phy change count has changed\n");
1837 return res;
1838 } else
1839 SAS_DPRINTK("Expander phys DID NOT change\n");
1840 }
1841 list_for_each_entry(ch, &ex->children, siblings) {
1842 if (ch->dev_type == EDGE_DEV || ch->dev_type == FANOUT_DEV) {
1843 res = sas_find_bcast_dev(ch, src_dev);
1844 if (*src_dev)
1845 return res;
1846 }
1847 }
1848 out:
1849 return res;
1850 }
1851
1852 static void sas_unregister_ex_tree(struct asd_sas_port *port, struct domain_device *dev)
1853 {
1854 struct expander_device *ex = &dev->ex_dev;
1855 struct domain_device *child, *n;
1856
1857 list_for_each_entry_safe(child, n, &ex->children, siblings) {
1858 set_bit(SAS_DEV_GONE, &child->state);
1859 if (child->dev_type == EDGE_DEV ||
1860 child->dev_type == FANOUT_DEV)
1861 sas_unregister_ex_tree(port, child);
1862 else
1863 sas_unregister_dev(port, child);
1864 }
1865 sas_unregister_dev(port, dev);
1866 }
1867
1868 static void sas_unregister_devs_sas_addr(struct domain_device *parent,
1869 int phy_id, bool last)
1870 {
1871 struct expander_device *ex_dev = &parent->ex_dev;
1872 struct ex_phy *phy = &ex_dev->ex_phy[phy_id];
1873 struct domain_device *child, *n, *found = NULL;
1874 if (last) {
1875 list_for_each_entry_safe(child, n,
1876 &ex_dev->children, siblings) {
1877 if (SAS_ADDR(child->sas_addr) ==
1878 SAS_ADDR(phy->attached_sas_addr)) {
1879 set_bit(SAS_DEV_GONE, &child->state);
1880 if (child->dev_type == EDGE_DEV ||
1881 child->dev_type == FANOUT_DEV)
1882 sas_unregister_ex_tree(parent->port, child);
1883 else
1884 sas_unregister_dev(parent->port, child);
1885 found = child;
1886 break;
1887 }
1888 }
1889 sas_disable_routing(parent, phy->attached_sas_addr);
1890 }
1891 memset(phy->attached_sas_addr, 0, SAS_ADDR_SIZE);
1892 if (phy->port) {
1893 sas_port_delete_phy(phy->port, phy->phy);
1894 sas_device_set_phy(found, phy->port);
1895 if (phy->port->num_phys == 0)
1896 sas_port_delete(phy->port);
1897 phy->port = NULL;
1898 }
1899 }
1900
1901 static int sas_discover_bfs_by_root_level(struct domain_device *root,
1902 const int level)
1903 {
1904 struct expander_device *ex_root = &root->ex_dev;
1905 struct domain_device *child;
1906 int res = 0;
1907
1908 list_for_each_entry(child, &ex_root->children, siblings) {
1909 if (child->dev_type == EDGE_DEV ||
1910 child->dev_type == FANOUT_DEV) {
1911 struct sas_expander_device *ex =
1912 rphy_to_expander_device(child->rphy);
1913
1914 if (level > ex->level)
1915 res = sas_discover_bfs_by_root_level(child,
1916 level);
1917 else if (level == ex->level)
1918 res = sas_ex_discover_devices(child, -1);
1919 }
1920 }
1921 return res;
1922 }
1923
1924 static int sas_discover_bfs_by_root(struct domain_device *dev)
1925 {
1926 int res;
1927 struct sas_expander_device *ex = rphy_to_expander_device(dev->rphy);
1928 int level = ex->level+1;
1929
1930 res = sas_ex_discover_devices(dev, -1);
1931 if (res)
1932 goto out;
1933 do {
1934 res = sas_discover_bfs_by_root_level(dev, level);
1935 mb();
1936 level += 1;
1937 } while (level <= dev->port->disc.max_level);
1938 out:
1939 return res;
1940 }
1941
1942 static int sas_discover_new(struct domain_device *dev, int phy_id)
1943 {
1944 struct ex_phy *ex_phy = &dev->ex_dev.ex_phy[phy_id];
1945 struct domain_device *child;
1946 bool found = false;
1947 int res, i;
1948
1949 SAS_DPRINTK("ex %016llx phy%d new device attached\n",
1950 SAS_ADDR(dev->sas_addr), phy_id);
1951 res = sas_ex_phy_discover(dev, phy_id);
1952 if (res)
1953 goto out;
1954 /* to support the wide port inserted */
1955 for (i = 0; i < dev->ex_dev.num_phys; i++) {
1956 struct ex_phy *ex_phy_temp = &dev->ex_dev.ex_phy[i];
1957 if (i == phy_id)
1958 continue;
1959 if (SAS_ADDR(ex_phy_temp->attached_sas_addr) ==
1960 SAS_ADDR(ex_phy->attached_sas_addr)) {
1961 found = true;
1962 break;
1963 }
1964 }
1965 if (found) {
1966 sas_ex_join_wide_port(dev, phy_id);
1967 return 0;
1968 }
1969 res = sas_ex_discover_devices(dev, phy_id);
1970 if (!res)
1971 goto out;
1972 list_for_each_entry(child, &dev->ex_dev.children, siblings) {
1973 if (SAS_ADDR(child->sas_addr) ==
1974 SAS_ADDR(ex_phy->attached_sas_addr)) {
1975 if (child->dev_type == EDGE_DEV ||
1976 child->dev_type == FANOUT_DEV)
1977 res = sas_discover_bfs_by_root(child);
1978 break;
1979 }
1980 }
1981 out:
1982 return res;
1983 }
1984
1985 static bool dev_type_flutter(enum sas_dev_type new, enum sas_dev_type old)
1986 {
1987 if (old == new)
1988 return true;
1989
1990 /* treat device directed resets as flutter, if we went
1991 * SAS_END_DEV to SATA_PENDING the link needs recovery
1992 */
1993 if ((old == SATA_PENDING && new == SAS_END_DEV) ||
1994 (old == SAS_END_DEV && new == SATA_PENDING))
1995 return true;
1996
1997 return false;
1998 }
1999
2000 static int sas_rediscover_dev(struct domain_device *dev, int phy_id, bool last)
2001 {
2002 struct expander_device *ex = &dev->ex_dev;
2003 struct ex_phy *phy = &ex->ex_phy[phy_id];
2004 enum sas_dev_type type = NO_DEVICE;
2005 u8 sas_addr[8];
2006 int res;
2007
2008 memset(sas_addr, 0, 8);
2009 res = sas_get_phy_attached_dev(dev, phy_id, sas_addr, &type);
2010 switch (res) {
2011 case SMP_RESP_NO_PHY:
2012 phy->phy_state = PHY_NOT_PRESENT;
2013 sas_unregister_devs_sas_addr(dev, phy_id, last);
2014 return res;
2015 case SMP_RESP_PHY_VACANT:
2016 phy->phy_state = PHY_VACANT;
2017 sas_unregister_devs_sas_addr(dev, phy_id, last);
2018 return res;
2019 case SMP_RESP_FUNC_ACC:
2020 break;
2021 case -ECOMM:
2022 break;
2023 default:
2024 return res;
2025 }
2026
2027 if ((SAS_ADDR(sas_addr) == 0) || (res == -ECOMM)) {
2028 phy->phy_state = PHY_EMPTY;
2029 sas_unregister_devs_sas_addr(dev, phy_id, last);
2030 return res;
2031 } else if (SAS_ADDR(sas_addr) == SAS_ADDR(phy->attached_sas_addr) &&
2032 dev_type_flutter(type, phy->attached_dev_type)) {
2033 struct domain_device *ata_dev = sas_ex_to_ata(dev, phy_id);
2034 char *action = "";
2035
2036 sas_ex_phy_discover(dev, phy_id);
2037
2038 if (ata_dev && phy->attached_dev_type == SATA_PENDING)
2039 action = ", needs recovery";
2040 SAS_DPRINTK("ex %016llx phy 0x%x broadcast flutter%s\n",
2041 SAS_ADDR(dev->sas_addr), phy_id, action);
2042 return res;
2043 }
2044
2045 /* delete the old link */
2046 if (SAS_ADDR(phy->attached_sas_addr) &&
2047 SAS_ADDR(sas_addr) != SAS_ADDR(phy->attached_sas_addr)) {
2048 SAS_DPRINTK("ex %016llx phy 0x%x replace %016llx\n",
2049 SAS_ADDR(dev->sas_addr), phy_id,
2050 SAS_ADDR(phy->attached_sas_addr));
2051 sas_unregister_devs_sas_addr(dev, phy_id, last);
2052 }
2053
2054 return sas_discover_new(dev, phy_id);
2055 }
2056
2057 /**
2058 * sas_rediscover - revalidate the domain.
2059 * @dev:domain device to be detect.
2060 * @phy_id: the phy id will be detected.
2061 *
2062 * NOTE: this process _must_ quit (return) as soon as any connection
2063 * errors are encountered. Connection recovery is done elsewhere.
2064 * Discover process only interrogates devices in order to discover the
2065 * domain.For plugging out, we un-register the device only when it is
2066 * the last phy in the port, for other phys in this port, we just delete it
2067 * from the port.For inserting, we do discovery when it is the
2068 * first phy,for other phys in this port, we add it to the port to
2069 * forming the wide-port.
2070 */
2071 static int sas_rediscover(struct domain_device *dev, const int phy_id)
2072 {
2073 struct expander_device *ex = &dev->ex_dev;
2074 struct ex_phy *changed_phy = &ex->ex_phy[phy_id];
2075 int res = 0;
2076 int i;
2077 bool last = true; /* is this the last phy of the port */
2078
2079 SAS_DPRINTK("ex %016llx phy%d originated BROADCAST(CHANGE)\n",
2080 SAS_ADDR(dev->sas_addr), phy_id);
2081
2082 if (SAS_ADDR(changed_phy->attached_sas_addr) != 0) {
2083 for (i = 0; i < ex->num_phys; i++) {
2084 struct ex_phy *phy = &ex->ex_phy[i];
2085
2086 if (i == phy_id)
2087 continue;
2088 if (SAS_ADDR(phy->attached_sas_addr) ==
2089 SAS_ADDR(changed_phy->attached_sas_addr)) {
2090 SAS_DPRINTK("phy%d part of wide port with "
2091 "phy%d\n", phy_id, i);
2092 last = false;
2093 break;
2094 }
2095 }
2096 res = sas_rediscover_dev(dev, phy_id, last);
2097 } else
2098 res = sas_discover_new(dev, phy_id);
2099 return res;
2100 }
2101
2102 /**
2103 * sas_revalidate_domain -- revalidate the domain
2104 * @port: port to the domain of interest
2105 *
2106 * NOTE: this process _must_ quit (return) as soon as any connection
2107 * errors are encountered. Connection recovery is done elsewhere.
2108 * Discover process only interrogates devices in order to discover the
2109 * domain.
2110 */
2111 int sas_ex_revalidate_domain(struct domain_device *port_dev)
2112 {
2113 int res;
2114 struct domain_device *dev = NULL;
2115
2116 res = sas_find_bcast_dev(port_dev, &dev);
2117 while (res == 0 && dev) {
2118 struct expander_device *ex = &dev->ex_dev;
2119 int i = 0, phy_id;
2120
2121 do {
2122 phy_id = -1;
2123 res = sas_find_bcast_phy(dev, &phy_id, i, true);
2124 if (phy_id == -1)
2125 break;
2126 res = sas_rediscover(dev, phy_id);
2127 i = phy_id + 1;
2128 } while (i < ex->num_phys);
2129
2130 dev = NULL;
2131 res = sas_find_bcast_dev(port_dev, &dev);
2132 }
2133 return res;
2134 }
2135
2136 int sas_smp_handler(struct Scsi_Host *shost, struct sas_rphy *rphy,
2137 struct request *req)
2138 {
2139 struct domain_device *dev;
2140 int ret, type;
2141 struct request *rsp = req->next_rq;
2142
2143 if (!rsp) {
2144 printk("%s: space for a smp response is missing\n",
2145 __func__);
2146 return -EINVAL;
2147 }
2148
2149 /* no rphy means no smp target support (ie aic94xx host) */
2150 if (!rphy)
2151 return sas_smp_host_handler(shost, req, rsp);
2152
2153 type = rphy->identify.device_type;
2154
2155 if (type != SAS_EDGE_EXPANDER_DEVICE &&
2156 type != SAS_FANOUT_EXPANDER_DEVICE) {
2157 printk("%s: can we send a smp request to a device?\n",
2158 __func__);
2159 return -EINVAL;
2160 }
2161
2162 dev = sas_find_dev_by_rphy(rphy);
2163 if (!dev) {
2164 printk("%s: fail to find a domain_device?\n", __func__);
2165 return -EINVAL;
2166 }
2167
2168 /* do we need to support multiple segments? */
2169 if (req->bio->bi_vcnt > 1 || rsp->bio->bi_vcnt > 1) {
2170 printk("%s: multiple segments req %u %u, rsp %u %u\n",
2171 __func__, req->bio->bi_vcnt, blk_rq_bytes(req),
2172 rsp->bio->bi_vcnt, blk_rq_bytes(rsp));
2173 return -EINVAL;
2174 }
2175
2176 ret = smp_execute_task(dev, bio_data(req->bio), blk_rq_bytes(req),
2177 bio_data(rsp->bio), blk_rq_bytes(rsp));
2178 if (ret > 0) {
2179 /* positive number is the untransferred residual */
2180 rsp->resid_len = ret;
2181 req->resid_len = 0;
2182 ret = 0;
2183 } else if (ret == 0) {
2184 rsp->resid_len = 0;
2185 req->resid_len = 0;
2186 }
2187
2188 return ret;
2189 }
This page took 0.140354 seconds and 4 git commands to generate.