[SCSI] lpfc 8.3.24: Add resource extent support
[deliverable/linux.git] / drivers / scsi / lpfc / lpfc_scsi.c
1 /*******************************************************************
2 * This file is part of the Emulex Linux Device Driver for *
3 * Fibre Channel Host Bus Adapters. *
4 * Copyright (C) 2004-2011 Emulex. All rights reserved. *
5 * EMULEX and SLI are trademarks of Emulex. *
6 * www.emulex.com *
7 * Portions Copyright (C) 2004-2005 Christoph Hellwig *
8 * *
9 * This program is free software; you can redistribute it and/or *
10 * modify it under the terms of version 2 of the GNU General *
11 * Public License as published by the Free Software Foundation. *
12 * This program is distributed in the hope that it will be useful. *
13 * ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND *
14 * WARRANTIES, INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, *
15 * FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT, ARE *
16 * DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD *
17 * TO BE LEGALLY INVALID. See the GNU General Public License for *
18 * more details, a copy of which can be found in the file COPYING *
19 * included with this package. *
20 *******************************************************************/
21 #include <linux/pci.h>
22 #include <linux/slab.h>
23 #include <linux/interrupt.h>
24 #include <linux/delay.h>
25 #include <asm/unaligned.h>
26
27 #include <scsi/scsi.h>
28 #include <scsi/scsi_device.h>
29 #include <scsi/scsi_eh.h>
30 #include <scsi/scsi_host.h>
31 #include <scsi/scsi_tcq.h>
32 #include <scsi/scsi_transport_fc.h>
33
34 #include "lpfc_version.h"
35 #include "lpfc_hw4.h"
36 #include "lpfc_hw.h"
37 #include "lpfc_sli.h"
38 #include "lpfc_sli4.h"
39 #include "lpfc_nl.h"
40 #include "lpfc_disc.h"
41 #include "lpfc_scsi.h"
42 #include "lpfc.h"
43 #include "lpfc_logmsg.h"
44 #include "lpfc_crtn.h"
45 #include "lpfc_vport.h"
46
47 #define LPFC_RESET_WAIT 2
48 #define LPFC_ABORT_WAIT 2
49
50 int _dump_buf_done;
51
52 static char *dif_op_str[] = {
53 "SCSI_PROT_NORMAL",
54 "SCSI_PROT_READ_INSERT",
55 "SCSI_PROT_WRITE_STRIP",
56 "SCSI_PROT_READ_STRIP",
57 "SCSI_PROT_WRITE_INSERT",
58 "SCSI_PROT_READ_PASS",
59 "SCSI_PROT_WRITE_PASS",
60 };
61 static void
62 lpfc_release_scsi_buf_s4(struct lpfc_hba *phba, struct lpfc_scsi_buf *psb);
63 static void
64 lpfc_release_scsi_buf_s3(struct lpfc_hba *phba, struct lpfc_scsi_buf *psb);
65
66 static void
67 lpfc_debug_save_data(struct lpfc_hba *phba, struct scsi_cmnd *cmnd)
68 {
69 void *src, *dst;
70 struct scatterlist *sgde = scsi_sglist(cmnd);
71
72 if (!_dump_buf_data) {
73 lpfc_printf_log(phba, KERN_ERR, LOG_BG,
74 "9050 BLKGRD: ERROR %s _dump_buf_data is NULL\n",
75 __func__);
76 return;
77 }
78
79
80 if (!sgde) {
81 lpfc_printf_log(phba, KERN_ERR, LOG_BG,
82 "9051 BLKGRD: ERROR: data scatterlist is null\n");
83 return;
84 }
85
86 dst = (void *) _dump_buf_data;
87 while (sgde) {
88 src = sg_virt(sgde);
89 memcpy(dst, src, sgde->length);
90 dst += sgde->length;
91 sgde = sg_next(sgde);
92 }
93 }
94
95 static void
96 lpfc_debug_save_dif(struct lpfc_hba *phba, struct scsi_cmnd *cmnd)
97 {
98 void *src, *dst;
99 struct scatterlist *sgde = scsi_prot_sglist(cmnd);
100
101 if (!_dump_buf_dif) {
102 lpfc_printf_log(phba, KERN_ERR, LOG_BG,
103 "9052 BLKGRD: ERROR %s _dump_buf_data is NULL\n",
104 __func__);
105 return;
106 }
107
108 if (!sgde) {
109 lpfc_printf_log(phba, KERN_ERR, LOG_BG,
110 "9053 BLKGRD: ERROR: prot scatterlist is null\n");
111 return;
112 }
113
114 dst = _dump_buf_dif;
115 while (sgde) {
116 src = sg_virt(sgde);
117 memcpy(dst, src, sgde->length);
118 dst += sgde->length;
119 sgde = sg_next(sgde);
120 }
121 }
122
123 /**
124 * lpfc_sli4_set_rsp_sgl_last - Set the last bit in the response sge.
125 * @phba: Pointer to HBA object.
126 * @lpfc_cmd: lpfc scsi command object pointer.
127 *
128 * This function is called from the lpfc_prep_task_mgmt_cmd function to
129 * set the last bit in the response sge entry.
130 **/
131 static void
132 lpfc_sli4_set_rsp_sgl_last(struct lpfc_hba *phba,
133 struct lpfc_scsi_buf *lpfc_cmd)
134 {
135 struct sli4_sge *sgl = (struct sli4_sge *)lpfc_cmd->fcp_bpl;
136 if (sgl) {
137 sgl += 1;
138 sgl->word2 = le32_to_cpu(sgl->word2);
139 bf_set(lpfc_sli4_sge_last, sgl, 1);
140 sgl->word2 = cpu_to_le32(sgl->word2);
141 }
142 }
143
144 /**
145 * lpfc_update_stats - Update statistical data for the command completion
146 * @phba: Pointer to HBA object.
147 * @lpfc_cmd: lpfc scsi command object pointer.
148 *
149 * This function is called when there is a command completion and this
150 * function updates the statistical data for the command completion.
151 **/
152 static void
153 lpfc_update_stats(struct lpfc_hba *phba, struct lpfc_scsi_buf *lpfc_cmd)
154 {
155 struct lpfc_rport_data *rdata = lpfc_cmd->rdata;
156 struct lpfc_nodelist *pnode = rdata->pnode;
157 struct scsi_cmnd *cmd = lpfc_cmd->pCmd;
158 unsigned long flags;
159 struct Scsi_Host *shost = cmd->device->host;
160 struct lpfc_vport *vport = (struct lpfc_vport *) shost->hostdata;
161 unsigned long latency;
162 int i;
163
164 if (cmd->result)
165 return;
166
167 latency = jiffies_to_msecs((long)jiffies - (long)lpfc_cmd->start_time);
168
169 spin_lock_irqsave(shost->host_lock, flags);
170 if (!vport->stat_data_enabled ||
171 vport->stat_data_blocked ||
172 !pnode ||
173 !pnode->lat_data ||
174 (phba->bucket_type == LPFC_NO_BUCKET)) {
175 spin_unlock_irqrestore(shost->host_lock, flags);
176 return;
177 }
178
179 if (phba->bucket_type == LPFC_LINEAR_BUCKET) {
180 i = (latency + phba->bucket_step - 1 - phba->bucket_base)/
181 phba->bucket_step;
182 /* check array subscript bounds */
183 if (i < 0)
184 i = 0;
185 else if (i >= LPFC_MAX_BUCKET_COUNT)
186 i = LPFC_MAX_BUCKET_COUNT - 1;
187 } else {
188 for (i = 0; i < LPFC_MAX_BUCKET_COUNT-1; i++)
189 if (latency <= (phba->bucket_base +
190 ((1<<i)*phba->bucket_step)))
191 break;
192 }
193
194 pnode->lat_data[i].cmd_count++;
195 spin_unlock_irqrestore(shost->host_lock, flags);
196 }
197
198 /**
199 * lpfc_send_sdev_queuedepth_change_event - Posts a queuedepth change event
200 * @phba: Pointer to HBA context object.
201 * @vport: Pointer to vport object.
202 * @ndlp: Pointer to FC node associated with the target.
203 * @lun: Lun number of the scsi device.
204 * @old_val: Old value of the queue depth.
205 * @new_val: New value of the queue depth.
206 *
207 * This function sends an event to the mgmt application indicating
208 * there is a change in the scsi device queue depth.
209 **/
210 static void
211 lpfc_send_sdev_queuedepth_change_event(struct lpfc_hba *phba,
212 struct lpfc_vport *vport,
213 struct lpfc_nodelist *ndlp,
214 uint32_t lun,
215 uint32_t old_val,
216 uint32_t new_val)
217 {
218 struct lpfc_fast_path_event *fast_path_evt;
219 unsigned long flags;
220
221 fast_path_evt = lpfc_alloc_fast_evt(phba);
222 if (!fast_path_evt)
223 return;
224
225 fast_path_evt->un.queue_depth_evt.scsi_event.event_type =
226 FC_REG_SCSI_EVENT;
227 fast_path_evt->un.queue_depth_evt.scsi_event.subcategory =
228 LPFC_EVENT_VARQUEDEPTH;
229
230 /* Report all luns with change in queue depth */
231 fast_path_evt->un.queue_depth_evt.scsi_event.lun = lun;
232 if (ndlp && NLP_CHK_NODE_ACT(ndlp)) {
233 memcpy(&fast_path_evt->un.queue_depth_evt.scsi_event.wwpn,
234 &ndlp->nlp_portname, sizeof(struct lpfc_name));
235 memcpy(&fast_path_evt->un.queue_depth_evt.scsi_event.wwnn,
236 &ndlp->nlp_nodename, sizeof(struct lpfc_name));
237 }
238
239 fast_path_evt->un.queue_depth_evt.oldval = old_val;
240 fast_path_evt->un.queue_depth_evt.newval = new_val;
241 fast_path_evt->vport = vport;
242
243 fast_path_evt->work_evt.evt = LPFC_EVT_FASTPATH_MGMT_EVT;
244 spin_lock_irqsave(&phba->hbalock, flags);
245 list_add_tail(&fast_path_evt->work_evt.evt_listp, &phba->work_list);
246 spin_unlock_irqrestore(&phba->hbalock, flags);
247 lpfc_worker_wake_up(phba);
248
249 return;
250 }
251
252 /**
253 * lpfc_change_queue_depth - Alter scsi device queue depth
254 * @sdev: Pointer the scsi device on which to change the queue depth.
255 * @qdepth: New queue depth to set the sdev to.
256 * @reason: The reason for the queue depth change.
257 *
258 * This function is called by the midlayer and the LLD to alter the queue
259 * depth for a scsi device. This function sets the queue depth to the new
260 * value and sends an event out to log the queue depth change.
261 **/
262 int
263 lpfc_change_queue_depth(struct scsi_device *sdev, int qdepth, int reason)
264 {
265 struct lpfc_vport *vport = (struct lpfc_vport *) sdev->host->hostdata;
266 struct lpfc_hba *phba = vport->phba;
267 struct lpfc_rport_data *rdata;
268 unsigned long new_queue_depth, old_queue_depth;
269
270 old_queue_depth = sdev->queue_depth;
271 scsi_adjust_queue_depth(sdev, scsi_get_tag_type(sdev), qdepth);
272 new_queue_depth = sdev->queue_depth;
273 rdata = sdev->hostdata;
274 if (rdata)
275 lpfc_send_sdev_queuedepth_change_event(phba, vport,
276 rdata->pnode, sdev->lun,
277 old_queue_depth,
278 new_queue_depth);
279 return sdev->queue_depth;
280 }
281
282 /**
283 * lpfc_rampdown_queue_depth - Post RAMP_DOWN_QUEUE event to worker thread
284 * @phba: The Hba for which this call is being executed.
285 *
286 * This routine is called when there is resource error in driver or firmware.
287 * This routine posts WORKER_RAMP_DOWN_QUEUE event for @phba. This routine
288 * posts at most 1 event each second. This routine wakes up worker thread of
289 * @phba to process WORKER_RAM_DOWN_EVENT event.
290 *
291 * This routine should be called with no lock held.
292 **/
293 void
294 lpfc_rampdown_queue_depth(struct lpfc_hba *phba)
295 {
296 unsigned long flags;
297 uint32_t evt_posted;
298
299 spin_lock_irqsave(&phba->hbalock, flags);
300 atomic_inc(&phba->num_rsrc_err);
301 phba->last_rsrc_error_time = jiffies;
302
303 if ((phba->last_ramp_down_time + QUEUE_RAMP_DOWN_INTERVAL) > jiffies) {
304 spin_unlock_irqrestore(&phba->hbalock, flags);
305 return;
306 }
307
308 phba->last_ramp_down_time = jiffies;
309
310 spin_unlock_irqrestore(&phba->hbalock, flags);
311
312 spin_lock_irqsave(&phba->pport->work_port_lock, flags);
313 evt_posted = phba->pport->work_port_events & WORKER_RAMP_DOWN_QUEUE;
314 if (!evt_posted)
315 phba->pport->work_port_events |= WORKER_RAMP_DOWN_QUEUE;
316 spin_unlock_irqrestore(&phba->pport->work_port_lock, flags);
317
318 if (!evt_posted)
319 lpfc_worker_wake_up(phba);
320 return;
321 }
322
323 /**
324 * lpfc_rampup_queue_depth - Post RAMP_UP_QUEUE event for worker thread
325 * @phba: The Hba for which this call is being executed.
326 *
327 * This routine post WORKER_RAMP_UP_QUEUE event for @phba vport. This routine
328 * post at most 1 event every 5 minute after last_ramp_up_time or
329 * last_rsrc_error_time. This routine wakes up worker thread of @phba
330 * to process WORKER_RAM_DOWN_EVENT event.
331 *
332 * This routine should be called with no lock held.
333 **/
334 static inline void
335 lpfc_rampup_queue_depth(struct lpfc_vport *vport,
336 uint32_t queue_depth)
337 {
338 unsigned long flags;
339 struct lpfc_hba *phba = vport->phba;
340 uint32_t evt_posted;
341 atomic_inc(&phba->num_cmd_success);
342
343 if (vport->cfg_lun_queue_depth <= queue_depth)
344 return;
345 spin_lock_irqsave(&phba->hbalock, flags);
346 if (time_before(jiffies,
347 phba->last_ramp_up_time + QUEUE_RAMP_UP_INTERVAL) ||
348 time_before(jiffies,
349 phba->last_rsrc_error_time + QUEUE_RAMP_UP_INTERVAL)) {
350 spin_unlock_irqrestore(&phba->hbalock, flags);
351 return;
352 }
353 phba->last_ramp_up_time = jiffies;
354 spin_unlock_irqrestore(&phba->hbalock, flags);
355
356 spin_lock_irqsave(&phba->pport->work_port_lock, flags);
357 evt_posted = phba->pport->work_port_events & WORKER_RAMP_UP_QUEUE;
358 if (!evt_posted)
359 phba->pport->work_port_events |= WORKER_RAMP_UP_QUEUE;
360 spin_unlock_irqrestore(&phba->pport->work_port_lock, flags);
361
362 if (!evt_posted)
363 lpfc_worker_wake_up(phba);
364 return;
365 }
366
367 /**
368 * lpfc_ramp_down_queue_handler - WORKER_RAMP_DOWN_QUEUE event handler
369 * @phba: The Hba for which this call is being executed.
370 *
371 * This routine is called to process WORKER_RAMP_DOWN_QUEUE event for worker
372 * thread.This routine reduces queue depth for all scsi device on each vport
373 * associated with @phba.
374 **/
375 void
376 lpfc_ramp_down_queue_handler(struct lpfc_hba *phba)
377 {
378 struct lpfc_vport **vports;
379 struct Scsi_Host *shost;
380 struct scsi_device *sdev;
381 unsigned long new_queue_depth;
382 unsigned long num_rsrc_err, num_cmd_success;
383 int i;
384
385 num_rsrc_err = atomic_read(&phba->num_rsrc_err);
386 num_cmd_success = atomic_read(&phba->num_cmd_success);
387
388 vports = lpfc_create_vport_work_array(phba);
389 if (vports != NULL)
390 for (i = 0; i <= phba->max_vports && vports[i] != NULL; i++) {
391 shost = lpfc_shost_from_vport(vports[i]);
392 shost_for_each_device(sdev, shost) {
393 new_queue_depth =
394 sdev->queue_depth * num_rsrc_err /
395 (num_rsrc_err + num_cmd_success);
396 if (!new_queue_depth)
397 new_queue_depth = sdev->queue_depth - 1;
398 else
399 new_queue_depth = sdev->queue_depth -
400 new_queue_depth;
401 lpfc_change_queue_depth(sdev, new_queue_depth,
402 SCSI_QDEPTH_DEFAULT);
403 }
404 }
405 lpfc_destroy_vport_work_array(phba, vports);
406 atomic_set(&phba->num_rsrc_err, 0);
407 atomic_set(&phba->num_cmd_success, 0);
408 }
409
410 /**
411 * lpfc_ramp_up_queue_handler - WORKER_RAMP_UP_QUEUE event handler
412 * @phba: The Hba for which this call is being executed.
413 *
414 * This routine is called to process WORKER_RAMP_UP_QUEUE event for worker
415 * thread.This routine increases queue depth for all scsi device on each vport
416 * associated with @phba by 1. This routine also sets @phba num_rsrc_err and
417 * num_cmd_success to zero.
418 **/
419 void
420 lpfc_ramp_up_queue_handler(struct lpfc_hba *phba)
421 {
422 struct lpfc_vport **vports;
423 struct Scsi_Host *shost;
424 struct scsi_device *sdev;
425 int i;
426
427 vports = lpfc_create_vport_work_array(phba);
428 if (vports != NULL)
429 for (i = 0; i <= phba->max_vports && vports[i] != NULL; i++) {
430 shost = lpfc_shost_from_vport(vports[i]);
431 shost_for_each_device(sdev, shost) {
432 if (vports[i]->cfg_lun_queue_depth <=
433 sdev->queue_depth)
434 continue;
435 lpfc_change_queue_depth(sdev,
436 sdev->queue_depth+1,
437 SCSI_QDEPTH_RAMP_UP);
438 }
439 }
440 lpfc_destroy_vport_work_array(phba, vports);
441 atomic_set(&phba->num_rsrc_err, 0);
442 atomic_set(&phba->num_cmd_success, 0);
443 }
444
445 /**
446 * lpfc_scsi_dev_block - set all scsi hosts to block state
447 * @phba: Pointer to HBA context object.
448 *
449 * This function walks vport list and set each SCSI host to block state
450 * by invoking fc_remote_port_delete() routine. This function is invoked
451 * with EEH when device's PCI slot has been permanently disabled.
452 **/
453 void
454 lpfc_scsi_dev_block(struct lpfc_hba *phba)
455 {
456 struct lpfc_vport **vports;
457 struct Scsi_Host *shost;
458 struct scsi_device *sdev;
459 struct fc_rport *rport;
460 int i;
461
462 vports = lpfc_create_vport_work_array(phba);
463 if (vports != NULL)
464 for (i = 0; i <= phba->max_vports && vports[i] != NULL; i++) {
465 shost = lpfc_shost_from_vport(vports[i]);
466 shost_for_each_device(sdev, shost) {
467 rport = starget_to_rport(scsi_target(sdev));
468 fc_remote_port_delete(rport);
469 }
470 }
471 lpfc_destroy_vport_work_array(phba, vports);
472 }
473
474 /**
475 * lpfc_new_scsi_buf_s3 - Scsi buffer allocator for HBA with SLI3 IF spec
476 * @vport: The virtual port for which this call being executed.
477 * @num_to_allocate: The requested number of buffers to allocate.
478 *
479 * This routine allocates a scsi buffer for device with SLI-3 interface spec,
480 * the scsi buffer contains all the necessary information needed to initiate
481 * a SCSI I/O. The non-DMAable buffer region contains information to build
482 * the IOCB. The DMAable region contains memory for the FCP CMND, FCP RSP,
483 * and the initial BPL. In addition to allocating memory, the FCP CMND and
484 * FCP RSP BDEs are setup in the BPL and the BPL BDE is setup in the IOCB.
485 *
486 * Return codes:
487 * int - number of scsi buffers that were allocated.
488 * 0 = failure, less than num_to_alloc is a partial failure.
489 **/
490 static int
491 lpfc_new_scsi_buf_s3(struct lpfc_vport *vport, int num_to_alloc)
492 {
493 struct lpfc_hba *phba = vport->phba;
494 struct lpfc_scsi_buf *psb;
495 struct ulp_bde64 *bpl;
496 IOCB_t *iocb;
497 dma_addr_t pdma_phys_fcp_cmd;
498 dma_addr_t pdma_phys_fcp_rsp;
499 dma_addr_t pdma_phys_bpl;
500 uint16_t iotag;
501 int bcnt;
502
503 for (bcnt = 0; bcnt < num_to_alloc; bcnt++) {
504 psb = kzalloc(sizeof(struct lpfc_scsi_buf), GFP_KERNEL);
505 if (!psb)
506 break;
507
508 /*
509 * Get memory from the pci pool to map the virt space to pci
510 * bus space for an I/O. The DMA buffer includes space for the
511 * struct fcp_cmnd, struct fcp_rsp and the number of bde's
512 * necessary to support the sg_tablesize.
513 */
514 psb->data = pci_pool_alloc(phba->lpfc_scsi_dma_buf_pool,
515 GFP_KERNEL, &psb->dma_handle);
516 if (!psb->data) {
517 kfree(psb);
518 break;
519 }
520
521 /* Initialize virtual ptrs to dma_buf region. */
522 memset(psb->data, 0, phba->cfg_sg_dma_buf_size);
523
524 /* Allocate iotag for psb->cur_iocbq. */
525 iotag = lpfc_sli_next_iotag(phba, &psb->cur_iocbq);
526 if (iotag == 0) {
527 pci_pool_free(phba->lpfc_scsi_dma_buf_pool,
528 psb->data, psb->dma_handle);
529 kfree(psb);
530 break;
531 }
532 psb->cur_iocbq.iocb_flag |= LPFC_IO_FCP;
533
534 psb->fcp_cmnd = psb->data;
535 psb->fcp_rsp = psb->data + sizeof(struct fcp_cmnd);
536 psb->fcp_bpl = psb->data + sizeof(struct fcp_cmnd) +
537 sizeof(struct fcp_rsp);
538
539 /* Initialize local short-hand pointers. */
540 bpl = psb->fcp_bpl;
541 pdma_phys_fcp_cmd = psb->dma_handle;
542 pdma_phys_fcp_rsp = psb->dma_handle + sizeof(struct fcp_cmnd);
543 pdma_phys_bpl = psb->dma_handle + sizeof(struct fcp_cmnd) +
544 sizeof(struct fcp_rsp);
545
546 /*
547 * The first two bdes are the FCP_CMD and FCP_RSP. The balance
548 * are sg list bdes. Initialize the first two and leave the
549 * rest for queuecommand.
550 */
551 bpl[0].addrHigh = le32_to_cpu(putPaddrHigh(pdma_phys_fcp_cmd));
552 bpl[0].addrLow = le32_to_cpu(putPaddrLow(pdma_phys_fcp_cmd));
553 bpl[0].tus.f.bdeSize = sizeof(struct fcp_cmnd);
554 bpl[0].tus.f.bdeFlags = BUFF_TYPE_BDE_64;
555 bpl[0].tus.w = le32_to_cpu(bpl[0].tus.w);
556
557 /* Setup the physical region for the FCP RSP */
558 bpl[1].addrHigh = le32_to_cpu(putPaddrHigh(pdma_phys_fcp_rsp));
559 bpl[1].addrLow = le32_to_cpu(putPaddrLow(pdma_phys_fcp_rsp));
560 bpl[1].tus.f.bdeSize = sizeof(struct fcp_rsp);
561 bpl[1].tus.f.bdeFlags = BUFF_TYPE_BDE_64;
562 bpl[1].tus.w = le32_to_cpu(bpl[1].tus.w);
563
564 /*
565 * Since the IOCB for the FCP I/O is built into this
566 * lpfc_scsi_buf, initialize it with all known data now.
567 */
568 iocb = &psb->cur_iocbq.iocb;
569 iocb->un.fcpi64.bdl.ulpIoTag32 = 0;
570 if ((phba->sli_rev == 3) &&
571 !(phba->sli3_options & LPFC_SLI3_BG_ENABLED)) {
572 /* fill in immediate fcp command BDE */
573 iocb->un.fcpi64.bdl.bdeFlags = BUFF_TYPE_BDE_IMMED;
574 iocb->un.fcpi64.bdl.bdeSize = sizeof(struct fcp_cmnd);
575 iocb->un.fcpi64.bdl.addrLow = offsetof(IOCB_t,
576 unsli3.fcp_ext.icd);
577 iocb->un.fcpi64.bdl.addrHigh = 0;
578 iocb->ulpBdeCount = 0;
579 iocb->ulpLe = 0;
580 /* fill in response BDE */
581 iocb->unsli3.fcp_ext.rbde.tus.f.bdeFlags =
582 BUFF_TYPE_BDE_64;
583 iocb->unsli3.fcp_ext.rbde.tus.f.bdeSize =
584 sizeof(struct fcp_rsp);
585 iocb->unsli3.fcp_ext.rbde.addrLow =
586 putPaddrLow(pdma_phys_fcp_rsp);
587 iocb->unsli3.fcp_ext.rbde.addrHigh =
588 putPaddrHigh(pdma_phys_fcp_rsp);
589 } else {
590 iocb->un.fcpi64.bdl.bdeFlags = BUFF_TYPE_BLP_64;
591 iocb->un.fcpi64.bdl.bdeSize =
592 (2 * sizeof(struct ulp_bde64));
593 iocb->un.fcpi64.bdl.addrLow =
594 putPaddrLow(pdma_phys_bpl);
595 iocb->un.fcpi64.bdl.addrHigh =
596 putPaddrHigh(pdma_phys_bpl);
597 iocb->ulpBdeCount = 1;
598 iocb->ulpLe = 1;
599 }
600 iocb->ulpClass = CLASS3;
601 psb->status = IOSTAT_SUCCESS;
602 /* Put it back into the SCSI buffer list */
603 psb->cur_iocbq.context1 = psb;
604 lpfc_release_scsi_buf_s3(phba, psb);
605
606 }
607
608 return bcnt;
609 }
610
611 /**
612 * lpfc_sli4_vport_delete_fcp_xri_aborted -Remove all ndlp references for vport
613 * @vport: pointer to lpfc vport data structure.
614 *
615 * This routine is invoked by the vport cleanup for deletions and the cleanup
616 * for an ndlp on removal.
617 **/
618 void
619 lpfc_sli4_vport_delete_fcp_xri_aborted(struct lpfc_vport *vport)
620 {
621 struct lpfc_hba *phba = vport->phba;
622 struct lpfc_scsi_buf *psb, *next_psb;
623 unsigned long iflag = 0;
624
625 spin_lock_irqsave(&phba->hbalock, iflag);
626 spin_lock(&phba->sli4_hba.abts_scsi_buf_list_lock);
627 list_for_each_entry_safe(psb, next_psb,
628 &phba->sli4_hba.lpfc_abts_scsi_buf_list, list) {
629 if (psb->rdata && psb->rdata->pnode
630 && psb->rdata->pnode->vport == vport)
631 psb->rdata = NULL;
632 }
633 spin_unlock(&phba->sli4_hba.abts_scsi_buf_list_lock);
634 spin_unlock_irqrestore(&phba->hbalock, iflag);
635 }
636
637 /**
638 * lpfc_sli4_fcp_xri_aborted - Fast-path process of fcp xri abort
639 * @phba: pointer to lpfc hba data structure.
640 * @axri: pointer to the fcp xri abort wcqe structure.
641 *
642 * This routine is invoked by the worker thread to process a SLI4 fast-path
643 * FCP aborted xri.
644 **/
645 void
646 lpfc_sli4_fcp_xri_aborted(struct lpfc_hba *phba,
647 struct sli4_wcqe_xri_aborted *axri)
648 {
649 uint16_t xri = bf_get(lpfc_wcqe_xa_xri, axri);
650 uint16_t rxid = bf_get(lpfc_wcqe_xa_remote_xid, axri);
651 struct lpfc_scsi_buf *psb, *next_psb;
652 unsigned long iflag = 0;
653 struct lpfc_iocbq *iocbq;
654 int i;
655 struct lpfc_nodelist *ndlp;
656 int rrq_empty = 0;
657 struct lpfc_sli_ring *pring = &phba->sli.ring[LPFC_ELS_RING];
658
659 spin_lock_irqsave(&phba->hbalock, iflag);
660 spin_lock(&phba->sli4_hba.abts_scsi_buf_list_lock);
661 list_for_each_entry_safe(psb, next_psb,
662 &phba->sli4_hba.lpfc_abts_scsi_buf_list, list) {
663 if (psb->cur_iocbq.sli4_xritag == xri) {
664 list_del(&psb->list);
665 psb->exch_busy = 0;
666 psb->status = IOSTAT_SUCCESS;
667 spin_unlock(
668 &phba->sli4_hba.abts_scsi_buf_list_lock);
669 if (psb->rdata && psb->rdata->pnode)
670 ndlp = psb->rdata->pnode;
671 else
672 ndlp = NULL;
673
674 rrq_empty = list_empty(&phba->active_rrq_list);
675 spin_unlock_irqrestore(&phba->hbalock, iflag);
676 if (ndlp)
677 lpfc_set_rrq_active(phba, ndlp, xri, rxid, 1);
678 lpfc_release_scsi_buf_s4(phba, psb);
679 if (rrq_empty)
680 lpfc_worker_wake_up(phba);
681 return;
682 }
683 }
684 spin_unlock(&phba->sli4_hba.abts_scsi_buf_list_lock);
685 for (i = 1; i <= phba->sli.last_iotag; i++) {
686 iocbq = phba->sli.iocbq_lookup[i];
687
688 if (!(iocbq->iocb_flag & LPFC_IO_FCP) ||
689 (iocbq->iocb_flag & LPFC_IO_LIBDFC))
690 continue;
691 if (iocbq->sli4_xritag != xri)
692 continue;
693 psb = container_of(iocbq, struct lpfc_scsi_buf, cur_iocbq);
694 psb->exch_busy = 0;
695 spin_unlock_irqrestore(&phba->hbalock, iflag);
696 if (pring->txq_cnt)
697 lpfc_worker_wake_up(phba);
698 return;
699
700 }
701 spin_unlock_irqrestore(&phba->hbalock, iflag);
702 }
703
704 /**
705 * lpfc_sli4_repost_scsi_sgl_list - Repsot the Scsi buffers sgl pages as block
706 * @phba: pointer to lpfc hba data structure.
707 *
708 * This routine walks the list of scsi buffers that have been allocated and
709 * repost them to the HBA by using SGL block post. This is needed after a
710 * pci_function_reset/warm_start or start. The lpfc_hba_down_post_s4 routine
711 * is responsible for moving all scsi buffers on the lpfc_abts_scsi_sgl_list
712 * to the lpfc_scsi_buf_list. If the repost fails, reject all scsi buffers.
713 *
714 * Returns: 0 = success, non-zero failure.
715 **/
716 int
717 lpfc_sli4_repost_scsi_sgl_list(struct lpfc_hba *phba)
718 {
719 struct lpfc_scsi_buf *psb;
720 int index, status, bcnt = 0, rcnt = 0, rc = 0;
721 LIST_HEAD(sblist);
722
723 for (index = 0; index < phba->sli4_hba.scsi_xri_cnt; index++) {
724 psb = phba->sli4_hba.lpfc_scsi_psb_array[index];
725 if (psb) {
726 /* Remove from SCSI buffer list */
727 list_del(&psb->list);
728 /* Add it to a local SCSI buffer list */
729 list_add_tail(&psb->list, &sblist);
730 if (++rcnt == LPFC_NEMBED_MBOX_SGL_CNT) {
731 bcnt = rcnt;
732 rcnt = 0;
733 }
734 } else
735 /* A hole present in the XRI array, need to skip */
736 bcnt = rcnt;
737
738 if (index == phba->sli4_hba.scsi_xri_cnt - 1)
739 /* End of XRI array for SCSI buffer, complete */
740 bcnt = rcnt;
741
742 /* Continue until collect up to a nembed page worth of sgls */
743 if (bcnt == 0)
744 continue;
745 /* Now, post the SCSI buffer list sgls as a block */
746 if (!phba->sli4_hba.extents_in_use)
747 status = lpfc_sli4_post_scsi_sgl_block(phba,
748 &sblist,
749 bcnt);
750 else
751 status = lpfc_sli4_post_scsi_sgl_blk_ext(phba,
752 &sblist,
753 bcnt);
754 /* Reset SCSI buffer count for next round of posting */
755 bcnt = 0;
756 while (!list_empty(&sblist)) {
757 list_remove_head(&sblist, psb, struct lpfc_scsi_buf,
758 list);
759 if (status) {
760 /* Put this back on the abort scsi list */
761 psb->exch_busy = 1;
762 rc++;
763 } else {
764 psb->exch_busy = 0;
765 psb->status = IOSTAT_SUCCESS;
766 }
767 /* Put it back into the SCSI buffer list */
768 lpfc_release_scsi_buf_s4(phba, psb);
769 }
770 }
771 return rc;
772 }
773
774 /**
775 * lpfc_new_scsi_buf_s4 - Scsi buffer allocator for HBA with SLI4 IF spec
776 * @vport: The virtual port for which this call being executed.
777 * @num_to_allocate: The requested number of buffers to allocate.
778 *
779 * This routine allocates a scsi buffer for device with SLI-4 interface spec,
780 * the scsi buffer contains all the necessary information needed to initiate
781 * a SCSI I/O.
782 *
783 * Return codes:
784 * int - number of scsi buffers that were allocated.
785 * 0 = failure, less than num_to_alloc is a partial failure.
786 **/
787 static int
788 lpfc_new_scsi_buf_s4(struct lpfc_vport *vport, int num_to_alloc)
789 {
790 struct lpfc_hba *phba = vport->phba;
791 struct lpfc_scsi_buf *psb;
792 struct sli4_sge *sgl;
793 IOCB_t *iocb;
794 dma_addr_t pdma_phys_fcp_cmd;
795 dma_addr_t pdma_phys_fcp_rsp;
796 dma_addr_t pdma_phys_bpl, pdma_phys_bpl1;
797 uint16_t iotag, last_xritag = NO_XRI, lxri = 0;
798 int status = 0, index;
799 int bcnt;
800 int non_sequential_xri = 0;
801 LIST_HEAD(sblist);
802
803 for (bcnt = 0; bcnt < num_to_alloc; bcnt++) {
804 psb = kzalloc(sizeof(struct lpfc_scsi_buf), GFP_KERNEL);
805 if (!psb)
806 break;
807
808 /*
809 * Get memory from the pci pool to map the virt space to pci bus
810 * space for an I/O. The DMA buffer includes space for the
811 * struct fcp_cmnd, struct fcp_rsp and the number of bde's
812 * necessary to support the sg_tablesize.
813 */
814 psb->data = pci_pool_alloc(phba->lpfc_scsi_dma_buf_pool,
815 GFP_KERNEL, &psb->dma_handle);
816 if (!psb->data) {
817 kfree(psb);
818 break;
819 }
820
821 /* Initialize virtual ptrs to dma_buf region. */
822 memset(psb->data, 0, phba->cfg_sg_dma_buf_size);
823
824 /* Allocate iotag for psb->cur_iocbq. */
825 iotag = lpfc_sli_next_iotag(phba, &psb->cur_iocbq);
826 if (iotag == 0) {
827 pci_pool_free(phba->lpfc_scsi_dma_buf_pool,
828 psb->data, psb->dma_handle);
829 kfree(psb);
830 break;
831 }
832
833 lxri = lpfc_sli4_next_xritag(phba);
834 if (lxri == NO_XRI) {
835 pci_pool_free(phba->lpfc_scsi_dma_buf_pool,
836 psb->data, psb->dma_handle);
837 kfree(psb);
838 break;
839 }
840 psb->cur_iocbq.sli4_lxritag = lxri;
841 psb->cur_iocbq.sli4_xritag = phba->sli4_hba.xri_ids[lxri];
842 if (last_xritag != NO_XRI
843 && psb->cur_iocbq.sli4_xritag != (last_xritag+1)) {
844 non_sequential_xri = 1;
845 } else
846 list_add_tail(&psb->list, &sblist);
847 last_xritag = psb->cur_iocbq.sli4_xritag;
848
849 index = phba->sli4_hba.scsi_xri_cnt++;
850 psb->cur_iocbq.iocb_flag |= LPFC_IO_FCP;
851
852 psb->fcp_bpl = psb->data;
853 psb->fcp_cmnd = (psb->data + phba->cfg_sg_dma_buf_size)
854 - (sizeof(struct fcp_cmnd) + sizeof(struct fcp_rsp));
855 psb->fcp_rsp = (struct fcp_rsp *)((uint8_t *)psb->fcp_cmnd +
856 sizeof(struct fcp_cmnd));
857
858 /* Initialize local short-hand pointers. */
859 sgl = (struct sli4_sge *)psb->fcp_bpl;
860 pdma_phys_bpl = psb->dma_handle;
861 pdma_phys_fcp_cmd =
862 (psb->dma_handle + phba->cfg_sg_dma_buf_size)
863 - (sizeof(struct fcp_cmnd) + sizeof(struct fcp_rsp));
864 pdma_phys_fcp_rsp = pdma_phys_fcp_cmd + sizeof(struct fcp_cmnd);
865
866 /*
867 * The first two bdes are the FCP_CMD and FCP_RSP. The balance
868 * are sg list bdes. Initialize the first two and leave the
869 * rest for queuecommand.
870 */
871 sgl->addr_hi = cpu_to_le32(putPaddrHigh(pdma_phys_fcp_cmd));
872 sgl->addr_lo = cpu_to_le32(putPaddrLow(pdma_phys_fcp_cmd));
873 sgl->word2 = le32_to_cpu(sgl->word2);
874 bf_set(lpfc_sli4_sge_last, sgl, 0);
875 sgl->word2 = cpu_to_le32(sgl->word2);
876 sgl->sge_len = cpu_to_le32(sizeof(struct fcp_cmnd));
877 sgl++;
878
879 /* Setup the physical region for the FCP RSP */
880 sgl->addr_hi = cpu_to_le32(putPaddrHigh(pdma_phys_fcp_rsp));
881 sgl->addr_lo = cpu_to_le32(putPaddrLow(pdma_phys_fcp_rsp));
882 sgl->word2 = le32_to_cpu(sgl->word2);
883 bf_set(lpfc_sli4_sge_last, sgl, 1);
884 sgl->word2 = cpu_to_le32(sgl->word2);
885 sgl->sge_len = cpu_to_le32(sizeof(struct fcp_rsp));
886
887 /*
888 * Since the IOCB for the FCP I/O is built into this
889 * lpfc_scsi_buf, initialize it with all known data now.
890 */
891 iocb = &psb->cur_iocbq.iocb;
892 iocb->un.fcpi64.bdl.ulpIoTag32 = 0;
893 iocb->un.fcpi64.bdl.bdeFlags = BUFF_TYPE_BDE_64;
894 /* setting the BLP size to 2 * sizeof BDE may not be correct.
895 * We are setting the bpl to point to out sgl. An sgl's
896 * entries are 16 bytes, a bpl entries are 12 bytes.
897 */
898 iocb->un.fcpi64.bdl.bdeSize = sizeof(struct fcp_cmnd);
899 iocb->un.fcpi64.bdl.addrLow = putPaddrLow(pdma_phys_fcp_cmd);
900 iocb->un.fcpi64.bdl.addrHigh = putPaddrHigh(pdma_phys_fcp_cmd);
901 iocb->ulpBdeCount = 1;
902 iocb->ulpLe = 1;
903 iocb->ulpClass = CLASS3;
904 psb->cur_iocbq.context1 = psb;
905 if (phba->cfg_sg_dma_buf_size > SGL_PAGE_SIZE)
906 pdma_phys_bpl1 = pdma_phys_bpl + SGL_PAGE_SIZE;
907 else
908 pdma_phys_bpl1 = 0;
909 psb->dma_phys_bpl = pdma_phys_bpl;
910 phba->sli4_hba.lpfc_scsi_psb_array[index] = psb;
911 if (non_sequential_xri) {
912 status = lpfc_sli4_post_sgl(phba, pdma_phys_bpl,
913 pdma_phys_bpl1,
914 psb->cur_iocbq.sli4_xritag);
915 if (status) {
916 /* Put this back on the abort scsi list */
917 psb->exch_busy = 1;
918 } else {
919 psb->exch_busy = 0;
920 psb->status = IOSTAT_SUCCESS;
921 }
922 /* Put it back into the SCSI buffer list */
923 lpfc_release_scsi_buf_s4(phba, psb);
924 break;
925 }
926 }
927 if (bcnt) {
928 if (!phba->sli4_hba.extents_in_use)
929 status = lpfc_sli4_post_scsi_sgl_block(phba,
930 &sblist,
931 bcnt);
932 else
933 status = lpfc_sli4_post_scsi_sgl_blk_ext(phba,
934 &sblist,
935 bcnt);
936
937 if (status) {
938 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
939 "3021 SCSI SGL post error %d\n",
940 status);
941 bcnt = 0;
942 }
943 /* Reset SCSI buffer count for next round of posting */
944 while (!list_empty(&sblist)) {
945 list_remove_head(&sblist, psb, struct lpfc_scsi_buf,
946 list);
947 if (status) {
948 /* Put this back on the abort scsi list */
949 psb->exch_busy = 1;
950 } else {
951 psb->exch_busy = 0;
952 psb->status = IOSTAT_SUCCESS;
953 }
954 /* Put it back into the SCSI buffer list */
955 lpfc_release_scsi_buf_s4(phba, psb);
956 }
957 }
958
959 return bcnt + non_sequential_xri;
960 }
961
962 /**
963 * lpfc_new_scsi_buf - Wrapper funciton for scsi buffer allocator
964 * @vport: The virtual port for which this call being executed.
965 * @num_to_allocate: The requested number of buffers to allocate.
966 *
967 * This routine wraps the actual SCSI buffer allocator function pointer from
968 * the lpfc_hba struct.
969 *
970 * Return codes:
971 * int - number of scsi buffers that were allocated.
972 * 0 = failure, less than num_to_alloc is a partial failure.
973 **/
974 static inline int
975 lpfc_new_scsi_buf(struct lpfc_vport *vport, int num_to_alloc)
976 {
977 return vport->phba->lpfc_new_scsi_buf(vport, num_to_alloc);
978 }
979
980 /**
981 * lpfc_get_scsi_buf_s3 - Get a scsi buffer from lpfc_scsi_buf_list of the HBA
982 * @phba: The HBA for which this call is being executed.
983 *
984 * This routine removes a scsi buffer from head of @phba lpfc_scsi_buf_list list
985 * and returns to caller.
986 *
987 * Return codes:
988 * NULL - Error
989 * Pointer to lpfc_scsi_buf - Success
990 **/
991 static struct lpfc_scsi_buf*
992 lpfc_get_scsi_buf_s3(struct lpfc_hba *phba, struct lpfc_nodelist *ndlp)
993 {
994 struct lpfc_scsi_buf * lpfc_cmd = NULL;
995 struct list_head *scsi_buf_list = &phba->lpfc_scsi_buf_list;
996 unsigned long iflag = 0;
997
998 spin_lock_irqsave(&phba->scsi_buf_list_lock, iflag);
999 list_remove_head(scsi_buf_list, lpfc_cmd, struct lpfc_scsi_buf, list);
1000 if (lpfc_cmd) {
1001 lpfc_cmd->seg_cnt = 0;
1002 lpfc_cmd->nonsg_phys = 0;
1003 lpfc_cmd->prot_seg_cnt = 0;
1004 }
1005 spin_unlock_irqrestore(&phba->scsi_buf_list_lock, iflag);
1006 return lpfc_cmd;
1007 }
1008 /**
1009 * lpfc_get_scsi_buf_s4 - Get a scsi buffer from lpfc_scsi_buf_list of the HBA
1010 * @phba: The HBA for which this call is being executed.
1011 *
1012 * This routine removes a scsi buffer from head of @phba lpfc_scsi_buf_list list
1013 * and returns to caller.
1014 *
1015 * Return codes:
1016 * NULL - Error
1017 * Pointer to lpfc_scsi_buf - Success
1018 **/
1019 static struct lpfc_scsi_buf*
1020 lpfc_get_scsi_buf_s4(struct lpfc_hba *phba, struct lpfc_nodelist *ndlp)
1021 {
1022 struct lpfc_scsi_buf *lpfc_cmd ;
1023 unsigned long iflag = 0;
1024 int found = 0;
1025
1026 spin_lock_irqsave(&phba->scsi_buf_list_lock, iflag);
1027 list_for_each_entry(lpfc_cmd, &phba->lpfc_scsi_buf_list,
1028 list) {
1029 if (lpfc_test_rrq_active(phba, ndlp,
1030 lpfc_cmd->cur_iocbq.sli4_xritag))
1031 continue;
1032 list_del(&lpfc_cmd->list);
1033 found = 1;
1034 lpfc_cmd->seg_cnt = 0;
1035 lpfc_cmd->nonsg_phys = 0;
1036 lpfc_cmd->prot_seg_cnt = 0;
1037 break;
1038 }
1039 spin_unlock_irqrestore(&phba->scsi_buf_list_lock,
1040 iflag);
1041 if (!found)
1042 return NULL;
1043 else
1044 return lpfc_cmd;
1045 }
1046 /**
1047 * lpfc_get_scsi_buf - Get a scsi buffer from lpfc_scsi_buf_list of the HBA
1048 * @phba: The HBA for which this call is being executed.
1049 *
1050 * This routine removes a scsi buffer from head of @phba lpfc_scsi_buf_list list
1051 * and returns to caller.
1052 *
1053 * Return codes:
1054 * NULL - Error
1055 * Pointer to lpfc_scsi_buf - Success
1056 **/
1057 static struct lpfc_scsi_buf*
1058 lpfc_get_scsi_buf(struct lpfc_hba *phba, struct lpfc_nodelist *ndlp)
1059 {
1060 return phba->lpfc_get_scsi_buf(phba, ndlp);
1061 }
1062
1063 /**
1064 * lpfc_release_scsi_buf - Return a scsi buffer back to hba scsi buf list
1065 * @phba: The Hba for which this call is being executed.
1066 * @psb: The scsi buffer which is being released.
1067 *
1068 * This routine releases @psb scsi buffer by adding it to tail of @phba
1069 * lpfc_scsi_buf_list list.
1070 **/
1071 static void
1072 lpfc_release_scsi_buf_s3(struct lpfc_hba *phba, struct lpfc_scsi_buf *psb)
1073 {
1074 unsigned long iflag = 0;
1075
1076 spin_lock_irqsave(&phba->scsi_buf_list_lock, iflag);
1077 psb->pCmd = NULL;
1078 list_add_tail(&psb->list, &phba->lpfc_scsi_buf_list);
1079 spin_unlock_irqrestore(&phba->scsi_buf_list_lock, iflag);
1080 }
1081
1082 /**
1083 * lpfc_release_scsi_buf_s4: Return a scsi buffer back to hba scsi buf list.
1084 * @phba: The Hba for which this call is being executed.
1085 * @psb: The scsi buffer which is being released.
1086 *
1087 * This routine releases @psb scsi buffer by adding it to tail of @phba
1088 * lpfc_scsi_buf_list list. For SLI4 XRI's are tied to the scsi buffer
1089 * and cannot be reused for at least RA_TOV amount of time if it was
1090 * aborted.
1091 **/
1092 static void
1093 lpfc_release_scsi_buf_s4(struct lpfc_hba *phba, struct lpfc_scsi_buf *psb)
1094 {
1095 unsigned long iflag = 0;
1096
1097 if (psb->exch_busy) {
1098 spin_lock_irqsave(&phba->sli4_hba.abts_scsi_buf_list_lock,
1099 iflag);
1100 psb->pCmd = NULL;
1101 list_add_tail(&psb->list,
1102 &phba->sli4_hba.lpfc_abts_scsi_buf_list);
1103 spin_unlock_irqrestore(&phba->sli4_hba.abts_scsi_buf_list_lock,
1104 iflag);
1105 } else {
1106
1107 spin_lock_irqsave(&phba->scsi_buf_list_lock, iflag);
1108 psb->pCmd = NULL;
1109 list_add_tail(&psb->list, &phba->lpfc_scsi_buf_list);
1110 spin_unlock_irqrestore(&phba->scsi_buf_list_lock, iflag);
1111 }
1112 }
1113
1114 /**
1115 * lpfc_release_scsi_buf: Return a scsi buffer back to hba scsi buf list.
1116 * @phba: The Hba for which this call is being executed.
1117 * @psb: The scsi buffer which is being released.
1118 *
1119 * This routine releases @psb scsi buffer by adding it to tail of @phba
1120 * lpfc_scsi_buf_list list.
1121 **/
1122 static void
1123 lpfc_release_scsi_buf(struct lpfc_hba *phba, struct lpfc_scsi_buf *psb)
1124 {
1125
1126 phba->lpfc_release_scsi_buf(phba, psb);
1127 }
1128
1129 /**
1130 * lpfc_scsi_prep_dma_buf_s3 - DMA mapping for scsi buffer to SLI3 IF spec
1131 * @phba: The Hba for which this call is being executed.
1132 * @lpfc_cmd: The scsi buffer which is going to be mapped.
1133 *
1134 * This routine does the pci dma mapping for scatter-gather list of scsi cmnd
1135 * field of @lpfc_cmd for device with SLI-3 interface spec. This routine scans
1136 * through sg elements and format the bdea. This routine also initializes all
1137 * IOCB fields which are dependent on scsi command request buffer.
1138 *
1139 * Return codes:
1140 * 1 - Error
1141 * 0 - Success
1142 **/
1143 static int
1144 lpfc_scsi_prep_dma_buf_s3(struct lpfc_hba *phba, struct lpfc_scsi_buf *lpfc_cmd)
1145 {
1146 struct scsi_cmnd *scsi_cmnd = lpfc_cmd->pCmd;
1147 struct scatterlist *sgel = NULL;
1148 struct fcp_cmnd *fcp_cmnd = lpfc_cmd->fcp_cmnd;
1149 struct ulp_bde64 *bpl = lpfc_cmd->fcp_bpl;
1150 struct lpfc_iocbq *iocbq = &lpfc_cmd->cur_iocbq;
1151 IOCB_t *iocb_cmd = &lpfc_cmd->cur_iocbq.iocb;
1152 struct ulp_bde64 *data_bde = iocb_cmd->unsli3.fcp_ext.dbde;
1153 dma_addr_t physaddr;
1154 uint32_t num_bde = 0;
1155 int nseg, datadir = scsi_cmnd->sc_data_direction;
1156
1157 /*
1158 * There are three possibilities here - use scatter-gather segment, use
1159 * the single mapping, or neither. Start the lpfc command prep by
1160 * bumping the bpl beyond the fcp_cmnd and fcp_rsp regions to the first
1161 * data bde entry.
1162 */
1163 bpl += 2;
1164 if (scsi_sg_count(scsi_cmnd)) {
1165 /*
1166 * The driver stores the segment count returned from pci_map_sg
1167 * because this a count of dma-mappings used to map the use_sg
1168 * pages. They are not guaranteed to be the same for those
1169 * architectures that implement an IOMMU.
1170 */
1171
1172 nseg = dma_map_sg(&phba->pcidev->dev, scsi_sglist(scsi_cmnd),
1173 scsi_sg_count(scsi_cmnd), datadir);
1174 if (unlikely(!nseg))
1175 return 1;
1176
1177 lpfc_cmd->seg_cnt = nseg;
1178 if (lpfc_cmd->seg_cnt > phba->cfg_sg_seg_cnt) {
1179 lpfc_printf_log(phba, KERN_ERR, LOG_BG,
1180 "9064 BLKGRD: %s: Too many sg segments from "
1181 "dma_map_sg. Config %d, seg_cnt %d\n",
1182 __func__, phba->cfg_sg_seg_cnt,
1183 lpfc_cmd->seg_cnt);
1184 scsi_dma_unmap(scsi_cmnd);
1185 return 1;
1186 }
1187
1188 /*
1189 * The driver established a maximum scatter-gather segment count
1190 * during probe that limits the number of sg elements in any
1191 * single scsi command. Just run through the seg_cnt and format
1192 * the bde's.
1193 * When using SLI-3 the driver will try to fit all the BDEs into
1194 * the IOCB. If it can't then the BDEs get added to a BPL as it
1195 * does for SLI-2 mode.
1196 */
1197 scsi_for_each_sg(scsi_cmnd, sgel, nseg, num_bde) {
1198 physaddr = sg_dma_address(sgel);
1199 if (phba->sli_rev == 3 &&
1200 !(phba->sli3_options & LPFC_SLI3_BG_ENABLED) &&
1201 !(iocbq->iocb_flag & DSS_SECURITY_OP) &&
1202 nseg <= LPFC_EXT_DATA_BDE_COUNT) {
1203 data_bde->tus.f.bdeFlags = BUFF_TYPE_BDE_64;
1204 data_bde->tus.f.bdeSize = sg_dma_len(sgel);
1205 data_bde->addrLow = putPaddrLow(physaddr);
1206 data_bde->addrHigh = putPaddrHigh(physaddr);
1207 data_bde++;
1208 } else {
1209 bpl->tus.f.bdeFlags = BUFF_TYPE_BDE_64;
1210 bpl->tus.f.bdeSize = sg_dma_len(sgel);
1211 bpl->tus.w = le32_to_cpu(bpl->tus.w);
1212 bpl->addrLow =
1213 le32_to_cpu(putPaddrLow(physaddr));
1214 bpl->addrHigh =
1215 le32_to_cpu(putPaddrHigh(physaddr));
1216 bpl++;
1217 }
1218 }
1219 }
1220
1221 /*
1222 * Finish initializing those IOCB fields that are dependent on the
1223 * scsi_cmnd request_buffer. Note that for SLI-2 the bdeSize is
1224 * explicitly reinitialized and for SLI-3 the extended bde count is
1225 * explicitly reinitialized since all iocb memory resources are reused.
1226 */
1227 if (phba->sli_rev == 3 &&
1228 !(phba->sli3_options & LPFC_SLI3_BG_ENABLED) &&
1229 !(iocbq->iocb_flag & DSS_SECURITY_OP)) {
1230 if (num_bde > LPFC_EXT_DATA_BDE_COUNT) {
1231 /*
1232 * The extended IOCB format can only fit 3 BDE or a BPL.
1233 * This I/O has more than 3 BDE so the 1st data bde will
1234 * be a BPL that is filled in here.
1235 */
1236 physaddr = lpfc_cmd->dma_handle;
1237 data_bde->tus.f.bdeFlags = BUFF_TYPE_BLP_64;
1238 data_bde->tus.f.bdeSize = (num_bde *
1239 sizeof(struct ulp_bde64));
1240 physaddr += (sizeof(struct fcp_cmnd) +
1241 sizeof(struct fcp_rsp) +
1242 (2 * sizeof(struct ulp_bde64)));
1243 data_bde->addrHigh = putPaddrHigh(physaddr);
1244 data_bde->addrLow = putPaddrLow(physaddr);
1245 /* ebde count includes the response bde and data bpl */
1246 iocb_cmd->unsli3.fcp_ext.ebde_count = 2;
1247 } else {
1248 /* ebde count includes the response bde and data bdes */
1249 iocb_cmd->unsli3.fcp_ext.ebde_count = (num_bde + 1);
1250 }
1251 } else {
1252 iocb_cmd->un.fcpi64.bdl.bdeSize =
1253 ((num_bde + 2) * sizeof(struct ulp_bde64));
1254 iocb_cmd->unsli3.fcp_ext.ebde_count = (num_bde + 1);
1255 }
1256 fcp_cmnd->fcpDl = cpu_to_be32(scsi_bufflen(scsi_cmnd));
1257
1258 /*
1259 * Due to difference in data length between DIF/non-DIF paths,
1260 * we need to set word 4 of IOCB here
1261 */
1262 iocb_cmd->un.fcpi.fcpi_parm = scsi_bufflen(scsi_cmnd);
1263 return 0;
1264 }
1265
1266 /*
1267 * Given a scsi cmnd, determine the BlockGuard opcodes to be used with it
1268 * @sc: The SCSI command to examine
1269 * @txopt: (out) BlockGuard operation for transmitted data
1270 * @rxopt: (out) BlockGuard operation for received data
1271 *
1272 * Returns: zero on success; non-zero if tx and/or rx op cannot be determined
1273 *
1274 */
1275 static int
1276 lpfc_sc_to_bg_opcodes(struct lpfc_hba *phba, struct scsi_cmnd *sc,
1277 uint8_t *txop, uint8_t *rxop)
1278 {
1279 uint8_t guard_type = scsi_host_get_guard(sc->device->host);
1280 uint8_t ret = 0;
1281
1282 if (guard_type == SHOST_DIX_GUARD_IP) {
1283 switch (scsi_get_prot_op(sc)) {
1284 case SCSI_PROT_READ_INSERT:
1285 case SCSI_PROT_WRITE_STRIP:
1286 *txop = BG_OP_IN_CSUM_OUT_NODIF;
1287 *rxop = BG_OP_IN_NODIF_OUT_CSUM;
1288 break;
1289
1290 case SCSI_PROT_READ_STRIP:
1291 case SCSI_PROT_WRITE_INSERT:
1292 *txop = BG_OP_IN_NODIF_OUT_CRC;
1293 *rxop = BG_OP_IN_CRC_OUT_NODIF;
1294 break;
1295
1296 case SCSI_PROT_READ_PASS:
1297 case SCSI_PROT_WRITE_PASS:
1298 *txop = BG_OP_IN_CSUM_OUT_CRC;
1299 *rxop = BG_OP_IN_CRC_OUT_CSUM;
1300 break;
1301
1302 case SCSI_PROT_NORMAL:
1303 default:
1304 lpfc_printf_log(phba, KERN_ERR, LOG_BG,
1305 "9063 BLKGRD: Bad op/guard:%d/%d combination\n",
1306 scsi_get_prot_op(sc), guard_type);
1307 ret = 1;
1308 break;
1309
1310 }
1311 } else if (guard_type == SHOST_DIX_GUARD_CRC) {
1312 switch (scsi_get_prot_op(sc)) {
1313 case SCSI_PROT_READ_STRIP:
1314 case SCSI_PROT_WRITE_INSERT:
1315 *txop = BG_OP_IN_NODIF_OUT_CRC;
1316 *rxop = BG_OP_IN_CRC_OUT_NODIF;
1317 break;
1318
1319 case SCSI_PROT_READ_PASS:
1320 case SCSI_PROT_WRITE_PASS:
1321 *txop = BG_OP_IN_CRC_OUT_CRC;
1322 *rxop = BG_OP_IN_CRC_OUT_CRC;
1323 break;
1324
1325 case SCSI_PROT_READ_INSERT:
1326 case SCSI_PROT_WRITE_STRIP:
1327 case SCSI_PROT_NORMAL:
1328 default:
1329 lpfc_printf_log(phba, KERN_ERR, LOG_BG,
1330 "9075 BLKGRD: Bad op/guard:%d/%d combination\n",
1331 scsi_get_prot_op(sc), guard_type);
1332 ret = 1;
1333 break;
1334 }
1335 } else {
1336 /* unsupported format */
1337 BUG();
1338 }
1339
1340 return ret;
1341 }
1342
1343 struct scsi_dif_tuple {
1344 __be16 guard_tag; /* Checksum */
1345 __be16 app_tag; /* Opaque storage */
1346 __be32 ref_tag; /* Target LBA or indirect LBA */
1347 };
1348
1349 static inline unsigned
1350 lpfc_cmd_blksize(struct scsi_cmnd *sc)
1351 {
1352 return sc->device->sector_size;
1353 }
1354
1355 /**
1356 * lpfc_get_cmd_dif_parms - Extract DIF parameters from SCSI command
1357 * @sc: in: SCSI command
1358 * @apptagmask: out: app tag mask
1359 * @apptagval: out: app tag value
1360 * @reftag: out: ref tag (reference tag)
1361 *
1362 * Description:
1363 * Extract DIF parameters from the command if possible. Otherwise,
1364 * use default parameters.
1365 *
1366 **/
1367 static inline void
1368 lpfc_get_cmd_dif_parms(struct scsi_cmnd *sc, uint16_t *apptagmask,
1369 uint16_t *apptagval, uint32_t *reftag)
1370 {
1371 struct scsi_dif_tuple *spt;
1372 unsigned char op = scsi_get_prot_op(sc);
1373 unsigned int protcnt = scsi_prot_sg_count(sc);
1374 static int cnt;
1375
1376 if (protcnt && (op == SCSI_PROT_WRITE_STRIP ||
1377 op == SCSI_PROT_WRITE_PASS)) {
1378
1379 cnt++;
1380 spt = page_address(sg_page(scsi_prot_sglist(sc))) +
1381 scsi_prot_sglist(sc)[0].offset;
1382 *apptagmask = 0;
1383 *apptagval = 0;
1384 *reftag = cpu_to_be32(spt->ref_tag);
1385
1386 } else {
1387 /* SBC defines ref tag to be lower 32bits of LBA */
1388 *reftag = (uint32_t) (0xffffffff & scsi_get_lba(sc));
1389 *apptagmask = 0;
1390 *apptagval = 0;
1391 }
1392 }
1393
1394 /*
1395 * This function sets up buffer list for protection groups of
1396 * type LPFC_PG_TYPE_NO_DIF
1397 *
1398 * This is usually used when the HBA is instructed to generate
1399 * DIFs and insert them into data stream (or strip DIF from
1400 * incoming data stream)
1401 *
1402 * The buffer list consists of just one protection group described
1403 * below:
1404 * +-------------------------+
1405 * start of prot group --> | PDE_5 |
1406 * +-------------------------+
1407 * | PDE_6 |
1408 * +-------------------------+
1409 * | Data BDE |
1410 * +-------------------------+
1411 * |more Data BDE's ... (opt)|
1412 * +-------------------------+
1413 *
1414 * @sc: pointer to scsi command we're working on
1415 * @bpl: pointer to buffer list for protection groups
1416 * @datacnt: number of segments of data that have been dma mapped
1417 *
1418 * Note: Data s/g buffers have been dma mapped
1419 */
1420 static int
1421 lpfc_bg_setup_bpl(struct lpfc_hba *phba, struct scsi_cmnd *sc,
1422 struct ulp_bde64 *bpl, int datasegcnt)
1423 {
1424 struct scatterlist *sgde = NULL; /* s/g data entry */
1425 struct lpfc_pde5 *pde5 = NULL;
1426 struct lpfc_pde6 *pde6 = NULL;
1427 dma_addr_t physaddr;
1428 int i = 0, num_bde = 0, status;
1429 int datadir = sc->sc_data_direction;
1430 unsigned blksize;
1431 uint32_t reftag;
1432 uint16_t apptagmask, apptagval;
1433 uint8_t txop, rxop;
1434
1435 status = lpfc_sc_to_bg_opcodes(phba, sc, &txop, &rxop);
1436 if (status)
1437 goto out;
1438
1439 /* extract some info from the scsi command for pde*/
1440 blksize = lpfc_cmd_blksize(sc);
1441 lpfc_get_cmd_dif_parms(sc, &apptagmask, &apptagval, &reftag);
1442
1443 /* setup PDE5 with what we have */
1444 pde5 = (struct lpfc_pde5 *) bpl;
1445 memset(pde5, 0, sizeof(struct lpfc_pde5));
1446 bf_set(pde5_type, pde5, LPFC_PDE5_DESCRIPTOR);
1447 pde5->reftag = reftag;
1448
1449 /* Endianness conversion if necessary for PDE5 */
1450 pde5->word0 = cpu_to_le32(pde5->word0);
1451 pde5->reftag = cpu_to_le32(pde5->reftag);
1452
1453 /* advance bpl and increment bde count */
1454 num_bde++;
1455 bpl++;
1456 pde6 = (struct lpfc_pde6 *) bpl;
1457
1458 /* setup PDE6 with the rest of the info */
1459 memset(pde6, 0, sizeof(struct lpfc_pde6));
1460 bf_set(pde6_type, pde6, LPFC_PDE6_DESCRIPTOR);
1461 bf_set(pde6_optx, pde6, txop);
1462 bf_set(pde6_oprx, pde6, rxop);
1463 if (datadir == DMA_FROM_DEVICE) {
1464 bf_set(pde6_ce, pde6, 1);
1465 bf_set(pde6_re, pde6, 1);
1466 bf_set(pde6_ae, pde6, 1);
1467 }
1468 bf_set(pde6_ai, pde6, 1);
1469 bf_set(pde6_apptagval, pde6, apptagval);
1470
1471 /* Endianness conversion if necessary for PDE6 */
1472 pde6->word0 = cpu_to_le32(pde6->word0);
1473 pde6->word1 = cpu_to_le32(pde6->word1);
1474 pde6->word2 = cpu_to_le32(pde6->word2);
1475
1476 /* advance bpl and increment bde count */
1477 num_bde++;
1478 bpl++;
1479
1480 /* assumption: caller has already run dma_map_sg on command data */
1481 scsi_for_each_sg(sc, sgde, datasegcnt, i) {
1482 physaddr = sg_dma_address(sgde);
1483 bpl->addrLow = le32_to_cpu(putPaddrLow(physaddr));
1484 bpl->addrHigh = le32_to_cpu(putPaddrHigh(physaddr));
1485 bpl->tus.f.bdeSize = sg_dma_len(sgde);
1486 if (datadir == DMA_TO_DEVICE)
1487 bpl->tus.f.bdeFlags = BUFF_TYPE_BDE_64;
1488 else
1489 bpl->tus.f.bdeFlags = BUFF_TYPE_BDE_64I;
1490 bpl->tus.w = le32_to_cpu(bpl->tus.w);
1491 bpl++;
1492 num_bde++;
1493 }
1494
1495 out:
1496 return num_bde;
1497 }
1498
1499 /*
1500 * This function sets up buffer list for protection groups of
1501 * type LPFC_PG_TYPE_DIF_BUF
1502 *
1503 * This is usually used when DIFs are in their own buffers,
1504 * separate from the data. The HBA can then by instructed
1505 * to place the DIFs in the outgoing stream. For read operations,
1506 * The HBA could extract the DIFs and place it in DIF buffers.
1507 *
1508 * The buffer list for this type consists of one or more of the
1509 * protection groups described below:
1510 * +-------------------------+
1511 * start of first prot group --> | PDE_5 |
1512 * +-------------------------+
1513 * | PDE_6 |
1514 * +-------------------------+
1515 * | PDE_7 (Prot BDE) |
1516 * +-------------------------+
1517 * | Data BDE |
1518 * +-------------------------+
1519 * |more Data BDE's ... (opt)|
1520 * +-------------------------+
1521 * start of new prot group --> | PDE_5 |
1522 * +-------------------------+
1523 * | ... |
1524 * +-------------------------+
1525 *
1526 * @sc: pointer to scsi command we're working on
1527 * @bpl: pointer to buffer list for protection groups
1528 * @datacnt: number of segments of data that have been dma mapped
1529 * @protcnt: number of segment of protection data that have been dma mapped
1530 *
1531 * Note: It is assumed that both data and protection s/g buffers have been
1532 * mapped for DMA
1533 */
1534 static int
1535 lpfc_bg_setup_bpl_prot(struct lpfc_hba *phba, struct scsi_cmnd *sc,
1536 struct ulp_bde64 *bpl, int datacnt, int protcnt)
1537 {
1538 struct scatterlist *sgde = NULL; /* s/g data entry */
1539 struct scatterlist *sgpe = NULL; /* s/g prot entry */
1540 struct lpfc_pde5 *pde5 = NULL;
1541 struct lpfc_pde6 *pde6 = NULL;
1542 struct lpfc_pde7 *pde7 = NULL;
1543 dma_addr_t dataphysaddr, protphysaddr;
1544 unsigned short curr_data = 0, curr_prot = 0;
1545 unsigned int split_offset;
1546 unsigned int protgroup_len, protgroup_offset = 0, protgroup_remainder;
1547 unsigned int protgrp_blks, protgrp_bytes;
1548 unsigned int remainder, subtotal;
1549 int status;
1550 int datadir = sc->sc_data_direction;
1551 unsigned char pgdone = 0, alldone = 0;
1552 unsigned blksize;
1553 uint32_t reftag;
1554 uint16_t apptagmask, apptagval;
1555 uint8_t txop, rxop;
1556 int num_bde = 0;
1557
1558 sgpe = scsi_prot_sglist(sc);
1559 sgde = scsi_sglist(sc);
1560
1561 if (!sgpe || !sgde) {
1562 lpfc_printf_log(phba, KERN_ERR, LOG_FCP,
1563 "9020 Invalid s/g entry: data=0x%p prot=0x%p\n",
1564 sgpe, sgde);
1565 return 0;
1566 }
1567
1568 status = lpfc_sc_to_bg_opcodes(phba, sc, &txop, &rxop);
1569 if (status)
1570 goto out;
1571
1572 /* extract some info from the scsi command */
1573 blksize = lpfc_cmd_blksize(sc);
1574 lpfc_get_cmd_dif_parms(sc, &apptagmask, &apptagval, &reftag);
1575
1576 split_offset = 0;
1577 do {
1578 /* setup PDE5 with what we have */
1579 pde5 = (struct lpfc_pde5 *) bpl;
1580 memset(pde5, 0, sizeof(struct lpfc_pde5));
1581 bf_set(pde5_type, pde5, LPFC_PDE5_DESCRIPTOR);
1582 pde5->reftag = reftag;
1583
1584 /* Endianness conversion if necessary for PDE5 */
1585 pde5->word0 = cpu_to_le32(pde5->word0);
1586 pde5->reftag = cpu_to_le32(pde5->reftag);
1587
1588 /* advance bpl and increment bde count */
1589 num_bde++;
1590 bpl++;
1591 pde6 = (struct lpfc_pde6 *) bpl;
1592
1593 /* setup PDE6 with the rest of the info */
1594 memset(pde6, 0, sizeof(struct lpfc_pde6));
1595 bf_set(pde6_type, pde6, LPFC_PDE6_DESCRIPTOR);
1596 bf_set(pde6_optx, pde6, txop);
1597 bf_set(pde6_oprx, pde6, rxop);
1598 bf_set(pde6_ce, pde6, 1);
1599 bf_set(pde6_re, pde6, 1);
1600 bf_set(pde6_ae, pde6, 1);
1601 bf_set(pde6_ai, pde6, 1);
1602 bf_set(pde6_apptagval, pde6, apptagval);
1603
1604 /* Endianness conversion if necessary for PDE6 */
1605 pde6->word0 = cpu_to_le32(pde6->word0);
1606 pde6->word1 = cpu_to_le32(pde6->word1);
1607 pde6->word2 = cpu_to_le32(pde6->word2);
1608
1609 /* advance bpl and increment bde count */
1610 num_bde++;
1611 bpl++;
1612
1613 /* setup the first BDE that points to protection buffer */
1614 protphysaddr = sg_dma_address(sgpe) + protgroup_offset;
1615 protgroup_len = sg_dma_len(sgpe) - protgroup_offset;
1616
1617 /* must be integer multiple of the DIF block length */
1618 BUG_ON(protgroup_len % 8);
1619
1620 pde7 = (struct lpfc_pde7 *) bpl;
1621 memset(pde7, 0, sizeof(struct lpfc_pde7));
1622 bf_set(pde7_type, pde7, LPFC_PDE7_DESCRIPTOR);
1623
1624 pde7->addrHigh = le32_to_cpu(putPaddrLow(protphysaddr));
1625 pde7->addrLow = le32_to_cpu(putPaddrHigh(protphysaddr));
1626
1627 protgrp_blks = protgroup_len / 8;
1628 protgrp_bytes = protgrp_blks * blksize;
1629
1630 /* check if this pde is crossing the 4K boundary; if so split */
1631 if ((pde7->addrLow & 0xfff) + protgroup_len > 0x1000) {
1632 protgroup_remainder = 0x1000 - (pde7->addrLow & 0xfff);
1633 protgroup_offset += protgroup_remainder;
1634 protgrp_blks = protgroup_remainder / 8;
1635 protgrp_bytes = protgroup_remainder * blksize;
1636 } else {
1637 protgroup_offset = 0;
1638 curr_prot++;
1639 }
1640
1641 num_bde++;
1642
1643 /* setup BDE's for data blocks associated with DIF data */
1644 pgdone = 0;
1645 subtotal = 0; /* total bytes processed for current prot grp */
1646 while (!pgdone) {
1647 if (!sgde) {
1648 lpfc_printf_log(phba, KERN_ERR, LOG_BG,
1649 "9065 BLKGRD:%s Invalid data segment\n",
1650 __func__);
1651 return 0;
1652 }
1653 bpl++;
1654 dataphysaddr = sg_dma_address(sgde) + split_offset;
1655 bpl->addrLow = le32_to_cpu(putPaddrLow(dataphysaddr));
1656 bpl->addrHigh = le32_to_cpu(putPaddrHigh(dataphysaddr));
1657
1658 remainder = sg_dma_len(sgde) - split_offset;
1659
1660 if ((subtotal + remainder) <= protgrp_bytes) {
1661 /* we can use this whole buffer */
1662 bpl->tus.f.bdeSize = remainder;
1663 split_offset = 0;
1664
1665 if ((subtotal + remainder) == protgrp_bytes)
1666 pgdone = 1;
1667 } else {
1668 /* must split this buffer with next prot grp */
1669 bpl->tus.f.bdeSize = protgrp_bytes - subtotal;
1670 split_offset += bpl->tus.f.bdeSize;
1671 }
1672
1673 subtotal += bpl->tus.f.bdeSize;
1674
1675 if (datadir == DMA_TO_DEVICE)
1676 bpl->tus.f.bdeFlags = BUFF_TYPE_BDE_64;
1677 else
1678 bpl->tus.f.bdeFlags = BUFF_TYPE_BDE_64I;
1679 bpl->tus.w = le32_to_cpu(bpl->tus.w);
1680
1681 num_bde++;
1682 curr_data++;
1683
1684 if (split_offset)
1685 break;
1686
1687 /* Move to the next s/g segment if possible */
1688 sgde = sg_next(sgde);
1689
1690 }
1691
1692 if (protgroup_offset) {
1693 /* update the reference tag */
1694 reftag += protgrp_blks;
1695 bpl++;
1696 continue;
1697 }
1698
1699 /* are we done ? */
1700 if (curr_prot == protcnt) {
1701 alldone = 1;
1702 } else if (curr_prot < protcnt) {
1703 /* advance to next prot buffer */
1704 sgpe = sg_next(sgpe);
1705 bpl++;
1706
1707 /* update the reference tag */
1708 reftag += protgrp_blks;
1709 } else {
1710 /* if we're here, we have a bug */
1711 lpfc_printf_log(phba, KERN_ERR, LOG_BG,
1712 "9054 BLKGRD: bug in %s\n", __func__);
1713 }
1714
1715 } while (!alldone);
1716
1717 out:
1718
1719 return num_bde;
1720 }
1721
1722 /*
1723 * Given a SCSI command that supports DIF, determine composition of protection
1724 * groups involved in setting up buffer lists
1725 *
1726 * Returns:
1727 * for DIF (for both read and write)
1728 * */
1729 static int
1730 lpfc_prot_group_type(struct lpfc_hba *phba, struct scsi_cmnd *sc)
1731 {
1732 int ret = LPFC_PG_TYPE_INVALID;
1733 unsigned char op = scsi_get_prot_op(sc);
1734
1735 switch (op) {
1736 case SCSI_PROT_READ_STRIP:
1737 case SCSI_PROT_WRITE_INSERT:
1738 ret = LPFC_PG_TYPE_NO_DIF;
1739 break;
1740 case SCSI_PROT_READ_INSERT:
1741 case SCSI_PROT_WRITE_STRIP:
1742 case SCSI_PROT_READ_PASS:
1743 case SCSI_PROT_WRITE_PASS:
1744 ret = LPFC_PG_TYPE_DIF_BUF;
1745 break;
1746 default:
1747 lpfc_printf_log(phba, KERN_ERR, LOG_FCP,
1748 "9021 Unsupported protection op:%d\n", op);
1749 break;
1750 }
1751
1752 return ret;
1753 }
1754
1755 /*
1756 * This is the protection/DIF aware version of
1757 * lpfc_scsi_prep_dma_buf(). It may be a good idea to combine the
1758 * two functions eventually, but for now, it's here
1759 */
1760 static int
1761 lpfc_bg_scsi_prep_dma_buf(struct lpfc_hba *phba,
1762 struct lpfc_scsi_buf *lpfc_cmd)
1763 {
1764 struct scsi_cmnd *scsi_cmnd = lpfc_cmd->pCmd;
1765 struct fcp_cmnd *fcp_cmnd = lpfc_cmd->fcp_cmnd;
1766 struct ulp_bde64 *bpl = lpfc_cmd->fcp_bpl;
1767 IOCB_t *iocb_cmd = &lpfc_cmd->cur_iocbq.iocb;
1768 uint32_t num_bde = 0;
1769 int datasegcnt, protsegcnt, datadir = scsi_cmnd->sc_data_direction;
1770 int prot_group_type = 0;
1771 int diflen, fcpdl;
1772 unsigned blksize;
1773
1774 /*
1775 * Start the lpfc command prep by bumping the bpl beyond fcp_cmnd
1776 * fcp_rsp regions to the first data bde entry
1777 */
1778 bpl += 2;
1779 if (scsi_sg_count(scsi_cmnd)) {
1780 /*
1781 * The driver stores the segment count returned from pci_map_sg
1782 * because this a count of dma-mappings used to map the use_sg
1783 * pages. They are not guaranteed to be the same for those
1784 * architectures that implement an IOMMU.
1785 */
1786 datasegcnt = dma_map_sg(&phba->pcidev->dev,
1787 scsi_sglist(scsi_cmnd),
1788 scsi_sg_count(scsi_cmnd), datadir);
1789 if (unlikely(!datasegcnt))
1790 return 1;
1791
1792 lpfc_cmd->seg_cnt = datasegcnt;
1793 if (lpfc_cmd->seg_cnt > phba->cfg_sg_seg_cnt) {
1794 lpfc_printf_log(phba, KERN_ERR, LOG_BG,
1795 "9067 BLKGRD: %s: Too many sg segments"
1796 " from dma_map_sg. Config %d, seg_cnt"
1797 " %d\n",
1798 __func__, phba->cfg_sg_seg_cnt,
1799 lpfc_cmd->seg_cnt);
1800 scsi_dma_unmap(scsi_cmnd);
1801 return 1;
1802 }
1803
1804 prot_group_type = lpfc_prot_group_type(phba, scsi_cmnd);
1805
1806 switch (prot_group_type) {
1807 case LPFC_PG_TYPE_NO_DIF:
1808 num_bde = lpfc_bg_setup_bpl(phba, scsi_cmnd, bpl,
1809 datasegcnt);
1810 /* we should have 2 or more entries in buffer list */
1811 if (num_bde < 2)
1812 goto err;
1813 break;
1814 case LPFC_PG_TYPE_DIF_BUF:{
1815 /*
1816 * This type indicates that protection buffers are
1817 * passed to the driver, so that needs to be prepared
1818 * for DMA
1819 */
1820 protsegcnt = dma_map_sg(&phba->pcidev->dev,
1821 scsi_prot_sglist(scsi_cmnd),
1822 scsi_prot_sg_count(scsi_cmnd), datadir);
1823 if (unlikely(!protsegcnt)) {
1824 scsi_dma_unmap(scsi_cmnd);
1825 return 1;
1826 }
1827
1828 lpfc_cmd->prot_seg_cnt = protsegcnt;
1829 if (lpfc_cmd->prot_seg_cnt
1830 > phba->cfg_prot_sg_seg_cnt) {
1831 lpfc_printf_log(phba, KERN_ERR, LOG_BG,
1832 "9068 BLKGRD: %s: Too many prot sg "
1833 "segments from dma_map_sg. Config %d,"
1834 "prot_seg_cnt %d\n", __func__,
1835 phba->cfg_prot_sg_seg_cnt,
1836 lpfc_cmd->prot_seg_cnt);
1837 dma_unmap_sg(&phba->pcidev->dev,
1838 scsi_prot_sglist(scsi_cmnd),
1839 scsi_prot_sg_count(scsi_cmnd),
1840 datadir);
1841 scsi_dma_unmap(scsi_cmnd);
1842 return 1;
1843 }
1844
1845 num_bde = lpfc_bg_setup_bpl_prot(phba, scsi_cmnd, bpl,
1846 datasegcnt, protsegcnt);
1847 /* we should have 3 or more entries in buffer list */
1848 if (num_bde < 3)
1849 goto err;
1850 break;
1851 }
1852 case LPFC_PG_TYPE_INVALID:
1853 default:
1854 lpfc_printf_log(phba, KERN_ERR, LOG_FCP,
1855 "9022 Unexpected protection group %i\n",
1856 prot_group_type);
1857 return 1;
1858 }
1859 }
1860
1861 /*
1862 * Finish initializing those IOCB fields that are dependent on the
1863 * scsi_cmnd request_buffer. Note that the bdeSize is explicitly
1864 * reinitialized since all iocb memory resources are used many times
1865 * for transmit, receive, and continuation bpl's.
1866 */
1867 iocb_cmd->un.fcpi64.bdl.bdeSize = (2 * sizeof(struct ulp_bde64));
1868 iocb_cmd->un.fcpi64.bdl.bdeSize += (num_bde * sizeof(struct ulp_bde64));
1869 iocb_cmd->ulpBdeCount = 1;
1870 iocb_cmd->ulpLe = 1;
1871
1872 fcpdl = scsi_bufflen(scsi_cmnd);
1873
1874 if (scsi_get_prot_type(scsi_cmnd) == SCSI_PROT_DIF_TYPE1) {
1875 /*
1876 * We are in DIF Type 1 mode
1877 * Every data block has a 8 byte DIF (trailer)
1878 * attached to it. Must ajust FCP data length
1879 */
1880 blksize = lpfc_cmd_blksize(scsi_cmnd);
1881 diflen = (fcpdl / blksize) * 8;
1882 fcpdl += diflen;
1883 }
1884 fcp_cmnd->fcpDl = be32_to_cpu(fcpdl);
1885
1886 /*
1887 * Due to difference in data length between DIF/non-DIF paths,
1888 * we need to set word 4 of IOCB here
1889 */
1890 iocb_cmd->un.fcpi.fcpi_parm = fcpdl;
1891
1892 return 0;
1893 err:
1894 lpfc_printf_log(phba, KERN_ERR, LOG_FCP,
1895 "9023 Could not setup all needed BDE's"
1896 "prot_group_type=%d, num_bde=%d\n",
1897 prot_group_type, num_bde);
1898 return 1;
1899 }
1900
1901 /*
1902 * This function checks for BlockGuard errors detected by
1903 * the HBA. In case of errors, the ASC/ASCQ fields in the
1904 * sense buffer will be set accordingly, paired with
1905 * ILLEGAL_REQUEST to signal to the kernel that the HBA
1906 * detected corruption.
1907 *
1908 * Returns:
1909 * 0 - No error found
1910 * 1 - BlockGuard error found
1911 * -1 - Internal error (bad profile, ...etc)
1912 */
1913 static int
1914 lpfc_parse_bg_err(struct lpfc_hba *phba, struct lpfc_scsi_buf *lpfc_cmd,
1915 struct lpfc_iocbq *pIocbOut)
1916 {
1917 struct scsi_cmnd *cmd = lpfc_cmd->pCmd;
1918 struct sli3_bg_fields *bgf = &pIocbOut->iocb.unsli3.sli3_bg;
1919 int ret = 0;
1920 uint32_t bghm = bgf->bghm;
1921 uint32_t bgstat = bgf->bgstat;
1922 uint64_t failing_sector = 0;
1923
1924 lpfc_printf_log(phba, KERN_ERR, LOG_BG, "9069 BLKGRD: BG ERROR in cmd"
1925 " 0x%x lba 0x%llx blk cnt 0x%x "
1926 "bgstat=0x%x bghm=0x%x\n",
1927 cmd->cmnd[0], (unsigned long long)scsi_get_lba(cmd),
1928 blk_rq_sectors(cmd->request), bgstat, bghm);
1929
1930 spin_lock(&_dump_buf_lock);
1931 if (!_dump_buf_done) {
1932 lpfc_printf_log(phba, KERN_ERR, LOG_BG, "9070 BLKGRD: Saving"
1933 " Data for %u blocks to debugfs\n",
1934 (cmd->cmnd[7] << 8 | cmd->cmnd[8]));
1935 lpfc_debug_save_data(phba, cmd);
1936
1937 /* If we have a prot sgl, save the DIF buffer */
1938 if (lpfc_prot_group_type(phba, cmd) ==
1939 LPFC_PG_TYPE_DIF_BUF) {
1940 lpfc_printf_log(phba, KERN_ERR, LOG_BG, "9071 BLKGRD: "
1941 "Saving DIF for %u blocks to debugfs\n",
1942 (cmd->cmnd[7] << 8 | cmd->cmnd[8]));
1943 lpfc_debug_save_dif(phba, cmd);
1944 }
1945
1946 _dump_buf_done = 1;
1947 }
1948 spin_unlock(&_dump_buf_lock);
1949
1950 if (lpfc_bgs_get_invalid_prof(bgstat)) {
1951 cmd->result = ScsiResult(DID_ERROR, 0);
1952 lpfc_printf_log(phba, KERN_ERR, LOG_BG, "9072 BLKGRD: Invalid"
1953 " BlockGuard profile. bgstat:0x%x\n",
1954 bgstat);
1955 ret = (-1);
1956 goto out;
1957 }
1958
1959 if (lpfc_bgs_get_uninit_dif_block(bgstat)) {
1960 cmd->result = ScsiResult(DID_ERROR, 0);
1961 lpfc_printf_log(phba, KERN_ERR, LOG_BG, "9073 BLKGRD: "
1962 "Invalid BlockGuard DIF Block. bgstat:0x%x\n",
1963 bgstat);
1964 ret = (-1);
1965 goto out;
1966 }
1967
1968 if (lpfc_bgs_get_guard_err(bgstat)) {
1969 ret = 1;
1970
1971 scsi_build_sense_buffer(1, cmd->sense_buffer, ILLEGAL_REQUEST,
1972 0x10, 0x1);
1973 cmd->result = DRIVER_SENSE << 24
1974 | ScsiResult(DID_ABORT, SAM_STAT_CHECK_CONDITION);
1975 phba->bg_guard_err_cnt++;
1976 lpfc_printf_log(phba, KERN_ERR, LOG_BG,
1977 "9055 BLKGRD: guard_tag error\n");
1978 }
1979
1980 if (lpfc_bgs_get_reftag_err(bgstat)) {
1981 ret = 1;
1982
1983 scsi_build_sense_buffer(1, cmd->sense_buffer, ILLEGAL_REQUEST,
1984 0x10, 0x3);
1985 cmd->result = DRIVER_SENSE << 24
1986 | ScsiResult(DID_ABORT, SAM_STAT_CHECK_CONDITION);
1987
1988 phba->bg_reftag_err_cnt++;
1989 lpfc_printf_log(phba, KERN_ERR, LOG_BG,
1990 "9056 BLKGRD: ref_tag error\n");
1991 }
1992
1993 if (lpfc_bgs_get_apptag_err(bgstat)) {
1994 ret = 1;
1995
1996 scsi_build_sense_buffer(1, cmd->sense_buffer, ILLEGAL_REQUEST,
1997 0x10, 0x2);
1998 cmd->result = DRIVER_SENSE << 24
1999 | ScsiResult(DID_ABORT, SAM_STAT_CHECK_CONDITION);
2000
2001 phba->bg_apptag_err_cnt++;
2002 lpfc_printf_log(phba, KERN_ERR, LOG_BG,
2003 "9061 BLKGRD: app_tag error\n");
2004 }
2005
2006 if (lpfc_bgs_get_hi_water_mark_present(bgstat)) {
2007 /*
2008 * setup sense data descriptor 0 per SPC-4 as an information
2009 * field, and put the failing LBA in it
2010 */
2011 cmd->sense_buffer[8] = 0; /* Information */
2012 cmd->sense_buffer[9] = 0xa; /* Add. length */
2013 bghm /= cmd->device->sector_size;
2014
2015 failing_sector = scsi_get_lba(cmd);
2016 failing_sector += bghm;
2017
2018 put_unaligned_be64(failing_sector, &cmd->sense_buffer[10]);
2019 }
2020
2021 if (!ret) {
2022 /* No error was reported - problem in FW? */
2023 cmd->result = ScsiResult(DID_ERROR, 0);
2024 lpfc_printf_log(phba, KERN_ERR, LOG_BG,
2025 "9057 BLKGRD: no errors reported!\n");
2026 }
2027
2028 out:
2029 return ret;
2030 }
2031
2032 /**
2033 * lpfc_scsi_prep_dma_buf_s4 - DMA mapping for scsi buffer to SLI4 IF spec
2034 * @phba: The Hba for which this call is being executed.
2035 * @lpfc_cmd: The scsi buffer which is going to be mapped.
2036 *
2037 * This routine does the pci dma mapping for scatter-gather list of scsi cmnd
2038 * field of @lpfc_cmd for device with SLI-4 interface spec.
2039 *
2040 * Return codes:
2041 * 1 - Error
2042 * 0 - Success
2043 **/
2044 static int
2045 lpfc_scsi_prep_dma_buf_s4(struct lpfc_hba *phba, struct lpfc_scsi_buf *lpfc_cmd)
2046 {
2047 struct scsi_cmnd *scsi_cmnd = lpfc_cmd->pCmd;
2048 struct scatterlist *sgel = NULL;
2049 struct fcp_cmnd *fcp_cmnd = lpfc_cmd->fcp_cmnd;
2050 struct sli4_sge *sgl = (struct sli4_sge *)lpfc_cmd->fcp_bpl;
2051 struct sli4_sge *first_data_sgl;
2052 IOCB_t *iocb_cmd = &lpfc_cmd->cur_iocbq.iocb;
2053 dma_addr_t physaddr;
2054 uint32_t num_bde = 0;
2055 uint32_t dma_len;
2056 uint32_t dma_offset = 0;
2057 int nseg;
2058 struct ulp_bde64 *bde;
2059
2060 /*
2061 * There are three possibilities here - use scatter-gather segment, use
2062 * the single mapping, or neither. Start the lpfc command prep by
2063 * bumping the bpl beyond the fcp_cmnd and fcp_rsp regions to the first
2064 * data bde entry.
2065 */
2066 if (scsi_sg_count(scsi_cmnd)) {
2067 /*
2068 * The driver stores the segment count returned from pci_map_sg
2069 * because this a count of dma-mappings used to map the use_sg
2070 * pages. They are not guaranteed to be the same for those
2071 * architectures that implement an IOMMU.
2072 */
2073
2074 nseg = scsi_dma_map(scsi_cmnd);
2075 if (unlikely(!nseg))
2076 return 1;
2077 sgl += 1;
2078 /* clear the last flag in the fcp_rsp map entry */
2079 sgl->word2 = le32_to_cpu(sgl->word2);
2080 bf_set(lpfc_sli4_sge_last, sgl, 0);
2081 sgl->word2 = cpu_to_le32(sgl->word2);
2082 sgl += 1;
2083 first_data_sgl = sgl;
2084 lpfc_cmd->seg_cnt = nseg;
2085 if (lpfc_cmd->seg_cnt > phba->cfg_sg_seg_cnt) {
2086 lpfc_printf_log(phba, KERN_ERR, LOG_BG, "9074 BLKGRD:"
2087 " %s: Too many sg segments from "
2088 "dma_map_sg. Config %d, seg_cnt %d\n",
2089 __func__, phba->cfg_sg_seg_cnt,
2090 lpfc_cmd->seg_cnt);
2091 scsi_dma_unmap(scsi_cmnd);
2092 return 1;
2093 }
2094
2095 /*
2096 * The driver established a maximum scatter-gather segment count
2097 * during probe that limits the number of sg elements in any
2098 * single scsi command. Just run through the seg_cnt and format
2099 * the sge's.
2100 * When using SLI-3 the driver will try to fit all the BDEs into
2101 * the IOCB. If it can't then the BDEs get added to a BPL as it
2102 * does for SLI-2 mode.
2103 */
2104 scsi_for_each_sg(scsi_cmnd, sgel, nseg, num_bde) {
2105 physaddr = sg_dma_address(sgel);
2106 dma_len = sg_dma_len(sgel);
2107 sgl->addr_lo = cpu_to_le32(putPaddrLow(physaddr));
2108 sgl->addr_hi = cpu_to_le32(putPaddrHigh(physaddr));
2109 sgl->word2 = le32_to_cpu(sgl->word2);
2110 if ((num_bde + 1) == nseg)
2111 bf_set(lpfc_sli4_sge_last, sgl, 1);
2112 else
2113 bf_set(lpfc_sli4_sge_last, sgl, 0);
2114 bf_set(lpfc_sli4_sge_offset, sgl, dma_offset);
2115 sgl->word2 = cpu_to_le32(sgl->word2);
2116 sgl->sge_len = cpu_to_le32(dma_len);
2117 dma_offset += dma_len;
2118 sgl++;
2119 }
2120 /* setup the performance hint (first data BDE) if enabled */
2121 if (phba->sli3_options & LPFC_SLI4_PERFH_ENABLED) {
2122 bde = (struct ulp_bde64 *)
2123 &(iocb_cmd->unsli3.sli3Words[5]);
2124 bde->addrLow = first_data_sgl->addr_lo;
2125 bde->addrHigh = first_data_sgl->addr_hi;
2126 bde->tus.f.bdeSize =
2127 le32_to_cpu(first_data_sgl->sge_len);
2128 bde->tus.f.bdeFlags = BUFF_TYPE_BDE_64;
2129 bde->tus.w = cpu_to_le32(bde->tus.w);
2130 }
2131 } else {
2132 sgl += 1;
2133 /* clear the last flag in the fcp_rsp map entry */
2134 sgl->word2 = le32_to_cpu(sgl->word2);
2135 bf_set(lpfc_sli4_sge_last, sgl, 1);
2136 sgl->word2 = cpu_to_le32(sgl->word2);
2137 }
2138
2139 /*
2140 * Finish initializing those IOCB fields that are dependent on the
2141 * scsi_cmnd request_buffer. Note that for SLI-2 the bdeSize is
2142 * explicitly reinitialized.
2143 * all iocb memory resources are reused.
2144 */
2145 fcp_cmnd->fcpDl = cpu_to_be32(scsi_bufflen(scsi_cmnd));
2146
2147 /*
2148 * Due to difference in data length between DIF/non-DIF paths,
2149 * we need to set word 4 of IOCB here
2150 */
2151 iocb_cmd->un.fcpi.fcpi_parm = scsi_bufflen(scsi_cmnd);
2152 return 0;
2153 }
2154
2155 /**
2156 * lpfc_scsi_prep_dma_buf - Wrapper function for DMA mapping of scsi buffer
2157 * @phba: The Hba for which this call is being executed.
2158 * @lpfc_cmd: The scsi buffer which is going to be mapped.
2159 *
2160 * This routine wraps the actual DMA mapping function pointer from the
2161 * lpfc_hba struct.
2162 *
2163 * Return codes:
2164 * 1 - Error
2165 * 0 - Success
2166 **/
2167 static inline int
2168 lpfc_scsi_prep_dma_buf(struct lpfc_hba *phba, struct lpfc_scsi_buf *lpfc_cmd)
2169 {
2170 return phba->lpfc_scsi_prep_dma_buf(phba, lpfc_cmd);
2171 }
2172
2173 /**
2174 * lpfc_send_scsi_error_event - Posts an event when there is SCSI error
2175 * @phba: Pointer to hba context object.
2176 * @vport: Pointer to vport object.
2177 * @lpfc_cmd: Pointer to lpfc scsi command which reported the error.
2178 * @rsp_iocb: Pointer to response iocb object which reported error.
2179 *
2180 * This function posts an event when there is a SCSI command reporting
2181 * error from the scsi device.
2182 **/
2183 static void
2184 lpfc_send_scsi_error_event(struct lpfc_hba *phba, struct lpfc_vport *vport,
2185 struct lpfc_scsi_buf *lpfc_cmd, struct lpfc_iocbq *rsp_iocb) {
2186 struct scsi_cmnd *cmnd = lpfc_cmd->pCmd;
2187 struct fcp_rsp *fcprsp = lpfc_cmd->fcp_rsp;
2188 uint32_t resp_info = fcprsp->rspStatus2;
2189 uint32_t scsi_status = fcprsp->rspStatus3;
2190 uint32_t fcpi_parm = rsp_iocb->iocb.un.fcpi.fcpi_parm;
2191 struct lpfc_fast_path_event *fast_path_evt = NULL;
2192 struct lpfc_nodelist *pnode = lpfc_cmd->rdata->pnode;
2193 unsigned long flags;
2194
2195 if (!pnode || !NLP_CHK_NODE_ACT(pnode))
2196 return;
2197
2198 /* If there is queuefull or busy condition send a scsi event */
2199 if ((cmnd->result == SAM_STAT_TASK_SET_FULL) ||
2200 (cmnd->result == SAM_STAT_BUSY)) {
2201 fast_path_evt = lpfc_alloc_fast_evt(phba);
2202 if (!fast_path_evt)
2203 return;
2204 fast_path_evt->un.scsi_evt.event_type =
2205 FC_REG_SCSI_EVENT;
2206 fast_path_evt->un.scsi_evt.subcategory =
2207 (cmnd->result == SAM_STAT_TASK_SET_FULL) ?
2208 LPFC_EVENT_QFULL : LPFC_EVENT_DEVBSY;
2209 fast_path_evt->un.scsi_evt.lun = cmnd->device->lun;
2210 memcpy(&fast_path_evt->un.scsi_evt.wwpn,
2211 &pnode->nlp_portname, sizeof(struct lpfc_name));
2212 memcpy(&fast_path_evt->un.scsi_evt.wwnn,
2213 &pnode->nlp_nodename, sizeof(struct lpfc_name));
2214 } else if ((resp_info & SNS_LEN_VALID) && fcprsp->rspSnsLen &&
2215 ((cmnd->cmnd[0] == READ_10) || (cmnd->cmnd[0] == WRITE_10))) {
2216 fast_path_evt = lpfc_alloc_fast_evt(phba);
2217 if (!fast_path_evt)
2218 return;
2219 fast_path_evt->un.check_cond_evt.scsi_event.event_type =
2220 FC_REG_SCSI_EVENT;
2221 fast_path_evt->un.check_cond_evt.scsi_event.subcategory =
2222 LPFC_EVENT_CHECK_COND;
2223 fast_path_evt->un.check_cond_evt.scsi_event.lun =
2224 cmnd->device->lun;
2225 memcpy(&fast_path_evt->un.check_cond_evt.scsi_event.wwpn,
2226 &pnode->nlp_portname, sizeof(struct lpfc_name));
2227 memcpy(&fast_path_evt->un.check_cond_evt.scsi_event.wwnn,
2228 &pnode->nlp_nodename, sizeof(struct lpfc_name));
2229 fast_path_evt->un.check_cond_evt.sense_key =
2230 cmnd->sense_buffer[2] & 0xf;
2231 fast_path_evt->un.check_cond_evt.asc = cmnd->sense_buffer[12];
2232 fast_path_evt->un.check_cond_evt.ascq = cmnd->sense_buffer[13];
2233 } else if ((cmnd->sc_data_direction == DMA_FROM_DEVICE) &&
2234 fcpi_parm &&
2235 ((be32_to_cpu(fcprsp->rspResId) != fcpi_parm) ||
2236 ((scsi_status == SAM_STAT_GOOD) &&
2237 !(resp_info & (RESID_UNDER | RESID_OVER))))) {
2238 /*
2239 * If status is good or resid does not match with fcp_param and
2240 * there is valid fcpi_parm, then there is a read_check error
2241 */
2242 fast_path_evt = lpfc_alloc_fast_evt(phba);
2243 if (!fast_path_evt)
2244 return;
2245 fast_path_evt->un.read_check_error.header.event_type =
2246 FC_REG_FABRIC_EVENT;
2247 fast_path_evt->un.read_check_error.header.subcategory =
2248 LPFC_EVENT_FCPRDCHKERR;
2249 memcpy(&fast_path_evt->un.read_check_error.header.wwpn,
2250 &pnode->nlp_portname, sizeof(struct lpfc_name));
2251 memcpy(&fast_path_evt->un.read_check_error.header.wwnn,
2252 &pnode->nlp_nodename, sizeof(struct lpfc_name));
2253 fast_path_evt->un.read_check_error.lun = cmnd->device->lun;
2254 fast_path_evt->un.read_check_error.opcode = cmnd->cmnd[0];
2255 fast_path_evt->un.read_check_error.fcpiparam =
2256 fcpi_parm;
2257 } else
2258 return;
2259
2260 fast_path_evt->vport = vport;
2261 spin_lock_irqsave(&phba->hbalock, flags);
2262 list_add_tail(&fast_path_evt->work_evt.evt_listp, &phba->work_list);
2263 spin_unlock_irqrestore(&phba->hbalock, flags);
2264 lpfc_worker_wake_up(phba);
2265 return;
2266 }
2267
2268 /**
2269 * lpfc_scsi_unprep_dma_buf - Un-map DMA mapping of SG-list for dev
2270 * @phba: The HBA for which this call is being executed.
2271 * @psb: The scsi buffer which is going to be un-mapped.
2272 *
2273 * This routine does DMA un-mapping of scatter gather list of scsi command
2274 * field of @lpfc_cmd for device with SLI-3 interface spec.
2275 **/
2276 static void
2277 lpfc_scsi_unprep_dma_buf(struct lpfc_hba *phba, struct lpfc_scsi_buf *psb)
2278 {
2279 /*
2280 * There are only two special cases to consider. (1) the scsi command
2281 * requested scatter-gather usage or (2) the scsi command allocated
2282 * a request buffer, but did not request use_sg. There is a third
2283 * case, but it does not require resource deallocation.
2284 */
2285 if (psb->seg_cnt > 0)
2286 scsi_dma_unmap(psb->pCmd);
2287 if (psb->prot_seg_cnt > 0)
2288 dma_unmap_sg(&phba->pcidev->dev, scsi_prot_sglist(psb->pCmd),
2289 scsi_prot_sg_count(psb->pCmd),
2290 psb->pCmd->sc_data_direction);
2291 }
2292
2293 /**
2294 * lpfc_handler_fcp_err - FCP response handler
2295 * @vport: The virtual port for which this call is being executed.
2296 * @lpfc_cmd: Pointer to lpfc_scsi_buf data structure.
2297 * @rsp_iocb: The response IOCB which contains FCP error.
2298 *
2299 * This routine is called to process response IOCB with status field
2300 * IOSTAT_FCP_RSP_ERROR. This routine sets result field of scsi command
2301 * based upon SCSI and FCP error.
2302 **/
2303 static void
2304 lpfc_handle_fcp_err(struct lpfc_vport *vport, struct lpfc_scsi_buf *lpfc_cmd,
2305 struct lpfc_iocbq *rsp_iocb)
2306 {
2307 struct scsi_cmnd *cmnd = lpfc_cmd->pCmd;
2308 struct fcp_cmnd *fcpcmd = lpfc_cmd->fcp_cmnd;
2309 struct fcp_rsp *fcprsp = lpfc_cmd->fcp_rsp;
2310 uint32_t fcpi_parm = rsp_iocb->iocb.un.fcpi.fcpi_parm;
2311 uint32_t resp_info = fcprsp->rspStatus2;
2312 uint32_t scsi_status = fcprsp->rspStatus3;
2313 uint32_t *lp;
2314 uint32_t host_status = DID_OK;
2315 uint32_t rsplen = 0;
2316 uint32_t logit = LOG_FCP | LOG_FCP_ERROR;
2317
2318
2319 /*
2320 * If this is a task management command, there is no
2321 * scsi packet associated with this lpfc_cmd. The driver
2322 * consumes it.
2323 */
2324 if (fcpcmd->fcpCntl2) {
2325 scsi_status = 0;
2326 goto out;
2327 }
2328
2329 if (resp_info & RSP_LEN_VALID) {
2330 rsplen = be32_to_cpu(fcprsp->rspRspLen);
2331 if (rsplen != 0 && rsplen != 4 && rsplen != 8) {
2332 lpfc_printf_vlog(vport, KERN_ERR, LOG_FCP,
2333 "2719 Invalid response length: "
2334 "tgt x%x lun x%x cmnd x%x rsplen x%x\n",
2335 cmnd->device->id,
2336 cmnd->device->lun, cmnd->cmnd[0],
2337 rsplen);
2338 host_status = DID_ERROR;
2339 goto out;
2340 }
2341 if (fcprsp->rspInfo3 != RSP_NO_FAILURE) {
2342 lpfc_printf_vlog(vport, KERN_ERR, LOG_FCP,
2343 "2757 Protocol failure detected during "
2344 "processing of FCP I/O op: "
2345 "tgt x%x lun x%x cmnd x%x rspInfo3 x%x\n",
2346 cmnd->device->id,
2347 cmnd->device->lun, cmnd->cmnd[0],
2348 fcprsp->rspInfo3);
2349 host_status = DID_ERROR;
2350 goto out;
2351 }
2352 }
2353
2354 if ((resp_info & SNS_LEN_VALID) && fcprsp->rspSnsLen) {
2355 uint32_t snslen = be32_to_cpu(fcprsp->rspSnsLen);
2356 if (snslen > SCSI_SENSE_BUFFERSIZE)
2357 snslen = SCSI_SENSE_BUFFERSIZE;
2358
2359 if (resp_info & RSP_LEN_VALID)
2360 rsplen = be32_to_cpu(fcprsp->rspRspLen);
2361 memcpy(cmnd->sense_buffer, &fcprsp->rspInfo0 + rsplen, snslen);
2362 }
2363 lp = (uint32_t *)cmnd->sense_buffer;
2364
2365 if (!scsi_status && (resp_info & RESID_UNDER))
2366 logit = LOG_FCP;
2367
2368 lpfc_printf_vlog(vport, KERN_WARNING, logit,
2369 "9024 FCP command x%x failed: x%x SNS x%x x%x "
2370 "Data: x%x x%x x%x x%x x%x\n",
2371 cmnd->cmnd[0], scsi_status,
2372 be32_to_cpu(*lp), be32_to_cpu(*(lp + 3)), resp_info,
2373 be32_to_cpu(fcprsp->rspResId),
2374 be32_to_cpu(fcprsp->rspSnsLen),
2375 be32_to_cpu(fcprsp->rspRspLen),
2376 fcprsp->rspInfo3);
2377
2378 scsi_set_resid(cmnd, 0);
2379 if (resp_info & RESID_UNDER) {
2380 scsi_set_resid(cmnd, be32_to_cpu(fcprsp->rspResId));
2381
2382 lpfc_printf_vlog(vport, KERN_INFO, LOG_FCP,
2383 "9025 FCP Read Underrun, expected %d, "
2384 "residual %d Data: x%x x%x x%x\n",
2385 be32_to_cpu(fcpcmd->fcpDl),
2386 scsi_get_resid(cmnd), fcpi_parm, cmnd->cmnd[0],
2387 cmnd->underflow);
2388
2389 /*
2390 * If there is an under run check if under run reported by
2391 * storage array is same as the under run reported by HBA.
2392 * If this is not same, there is a dropped frame.
2393 */
2394 if ((cmnd->sc_data_direction == DMA_FROM_DEVICE) &&
2395 fcpi_parm &&
2396 (scsi_get_resid(cmnd) != fcpi_parm)) {
2397 lpfc_printf_vlog(vport, KERN_WARNING,
2398 LOG_FCP | LOG_FCP_ERROR,
2399 "9026 FCP Read Check Error "
2400 "and Underrun Data: x%x x%x x%x x%x\n",
2401 be32_to_cpu(fcpcmd->fcpDl),
2402 scsi_get_resid(cmnd), fcpi_parm,
2403 cmnd->cmnd[0]);
2404 scsi_set_resid(cmnd, scsi_bufflen(cmnd));
2405 host_status = DID_ERROR;
2406 }
2407 /*
2408 * The cmnd->underflow is the minimum number of bytes that must
2409 * be transferred for this command. Provided a sense condition
2410 * is not present, make sure the actual amount transferred is at
2411 * least the underflow value or fail.
2412 */
2413 if (!(resp_info & SNS_LEN_VALID) &&
2414 (scsi_status == SAM_STAT_GOOD) &&
2415 (scsi_bufflen(cmnd) - scsi_get_resid(cmnd)
2416 < cmnd->underflow)) {
2417 lpfc_printf_vlog(vport, KERN_INFO, LOG_FCP,
2418 "9027 FCP command x%x residual "
2419 "underrun converted to error "
2420 "Data: x%x x%x x%x\n",
2421 cmnd->cmnd[0], scsi_bufflen(cmnd),
2422 scsi_get_resid(cmnd), cmnd->underflow);
2423 host_status = DID_ERROR;
2424 }
2425 } else if (resp_info & RESID_OVER) {
2426 lpfc_printf_vlog(vport, KERN_WARNING, LOG_FCP,
2427 "9028 FCP command x%x residual overrun error. "
2428 "Data: x%x x%x\n", cmnd->cmnd[0],
2429 scsi_bufflen(cmnd), scsi_get_resid(cmnd));
2430 host_status = DID_ERROR;
2431
2432 /*
2433 * Check SLI validation that all the transfer was actually done
2434 * (fcpi_parm should be zero). Apply check only to reads.
2435 */
2436 } else if (fcpi_parm && (cmnd->sc_data_direction == DMA_FROM_DEVICE)) {
2437 lpfc_printf_vlog(vport, KERN_WARNING, LOG_FCP | LOG_FCP_ERROR,
2438 "9029 FCP Read Check Error Data: "
2439 "x%x x%x x%x x%x x%x\n",
2440 be32_to_cpu(fcpcmd->fcpDl),
2441 be32_to_cpu(fcprsp->rspResId),
2442 fcpi_parm, cmnd->cmnd[0], scsi_status);
2443 switch (scsi_status) {
2444 case SAM_STAT_GOOD:
2445 case SAM_STAT_CHECK_CONDITION:
2446 /* Fabric dropped a data frame. Fail any successful
2447 * command in which we detected dropped frames.
2448 * A status of good or some check conditions could
2449 * be considered a successful command.
2450 */
2451 host_status = DID_ERROR;
2452 break;
2453 }
2454 scsi_set_resid(cmnd, scsi_bufflen(cmnd));
2455 }
2456
2457 out:
2458 cmnd->result = ScsiResult(host_status, scsi_status);
2459 lpfc_send_scsi_error_event(vport->phba, vport, lpfc_cmd, rsp_iocb);
2460 }
2461
2462 /**
2463 * lpfc_scsi_cmd_iocb_cmpl - Scsi cmnd IOCB completion routine
2464 * @phba: The Hba for which this call is being executed.
2465 * @pIocbIn: The command IOCBQ for the scsi cmnd.
2466 * @pIocbOut: The response IOCBQ for the scsi cmnd.
2467 *
2468 * This routine assigns scsi command result by looking into response IOCB
2469 * status field appropriately. This routine handles QUEUE FULL condition as
2470 * well by ramping down device queue depth.
2471 **/
2472 static void
2473 lpfc_scsi_cmd_iocb_cmpl(struct lpfc_hba *phba, struct lpfc_iocbq *pIocbIn,
2474 struct lpfc_iocbq *pIocbOut)
2475 {
2476 struct lpfc_scsi_buf *lpfc_cmd =
2477 (struct lpfc_scsi_buf *) pIocbIn->context1;
2478 struct lpfc_vport *vport = pIocbIn->vport;
2479 struct lpfc_rport_data *rdata = lpfc_cmd->rdata;
2480 struct lpfc_nodelist *pnode = rdata->pnode;
2481 struct scsi_cmnd *cmd;
2482 int result;
2483 struct scsi_device *tmp_sdev;
2484 int depth;
2485 unsigned long flags;
2486 struct lpfc_fast_path_event *fast_path_evt;
2487 struct Scsi_Host *shost;
2488 uint32_t queue_depth, scsi_id;
2489
2490 /* Sanity check on return of outstanding command */
2491 if (!(lpfc_cmd->pCmd))
2492 return;
2493 cmd = lpfc_cmd->pCmd;
2494 shost = cmd->device->host;
2495
2496 lpfc_cmd->result = pIocbOut->iocb.un.ulpWord[4];
2497 lpfc_cmd->status = pIocbOut->iocb.ulpStatus;
2498 /* pick up SLI4 exhange busy status from HBA */
2499 lpfc_cmd->exch_busy = pIocbOut->iocb_flag & LPFC_EXCHANGE_BUSY;
2500
2501 if (pnode && NLP_CHK_NODE_ACT(pnode))
2502 atomic_dec(&pnode->cmd_pending);
2503
2504 if (lpfc_cmd->status) {
2505 if (lpfc_cmd->status == IOSTAT_LOCAL_REJECT &&
2506 (lpfc_cmd->result & IOERR_DRVR_MASK))
2507 lpfc_cmd->status = IOSTAT_DRIVER_REJECT;
2508 else if (lpfc_cmd->status >= IOSTAT_CNT)
2509 lpfc_cmd->status = IOSTAT_DEFAULT;
2510
2511 lpfc_printf_vlog(vport, KERN_WARNING, LOG_FCP,
2512 "9030 FCP cmd x%x failed <%d/%d> "
2513 "status: x%x result: x%x Data: x%x x%x\n",
2514 cmd->cmnd[0],
2515 cmd->device ? cmd->device->id : 0xffff,
2516 cmd->device ? cmd->device->lun : 0xffff,
2517 lpfc_cmd->status, lpfc_cmd->result,
2518 pIocbOut->iocb.ulpContext,
2519 lpfc_cmd->cur_iocbq.iocb.ulpIoTag);
2520
2521 switch (lpfc_cmd->status) {
2522 case IOSTAT_FCP_RSP_ERROR:
2523 /* Call FCP RSP handler to determine result */
2524 lpfc_handle_fcp_err(vport, lpfc_cmd, pIocbOut);
2525 break;
2526 case IOSTAT_NPORT_BSY:
2527 case IOSTAT_FABRIC_BSY:
2528 cmd->result = ScsiResult(DID_TRANSPORT_DISRUPTED, 0);
2529 fast_path_evt = lpfc_alloc_fast_evt(phba);
2530 if (!fast_path_evt)
2531 break;
2532 fast_path_evt->un.fabric_evt.event_type =
2533 FC_REG_FABRIC_EVENT;
2534 fast_path_evt->un.fabric_evt.subcategory =
2535 (lpfc_cmd->status == IOSTAT_NPORT_BSY) ?
2536 LPFC_EVENT_PORT_BUSY : LPFC_EVENT_FABRIC_BUSY;
2537 if (pnode && NLP_CHK_NODE_ACT(pnode)) {
2538 memcpy(&fast_path_evt->un.fabric_evt.wwpn,
2539 &pnode->nlp_portname,
2540 sizeof(struct lpfc_name));
2541 memcpy(&fast_path_evt->un.fabric_evt.wwnn,
2542 &pnode->nlp_nodename,
2543 sizeof(struct lpfc_name));
2544 }
2545 fast_path_evt->vport = vport;
2546 fast_path_evt->work_evt.evt =
2547 LPFC_EVT_FASTPATH_MGMT_EVT;
2548 spin_lock_irqsave(&phba->hbalock, flags);
2549 list_add_tail(&fast_path_evt->work_evt.evt_listp,
2550 &phba->work_list);
2551 spin_unlock_irqrestore(&phba->hbalock, flags);
2552 lpfc_worker_wake_up(phba);
2553 break;
2554 case IOSTAT_LOCAL_REJECT:
2555 case IOSTAT_REMOTE_STOP:
2556 if (lpfc_cmd->result == IOERR_ELXSEC_KEY_UNWRAP_ERROR ||
2557 lpfc_cmd->result ==
2558 IOERR_ELXSEC_KEY_UNWRAP_COMPARE_ERROR ||
2559 lpfc_cmd->result == IOERR_ELXSEC_CRYPTO_ERROR ||
2560 lpfc_cmd->result ==
2561 IOERR_ELXSEC_CRYPTO_COMPARE_ERROR) {
2562 cmd->result = ScsiResult(DID_NO_CONNECT, 0);
2563 break;
2564 }
2565 if (lpfc_cmd->result == IOERR_INVALID_RPI ||
2566 lpfc_cmd->result == IOERR_NO_RESOURCES ||
2567 lpfc_cmd->result == IOERR_ABORT_REQUESTED ||
2568 lpfc_cmd->result == IOERR_SLER_CMD_RCV_FAILURE) {
2569 cmd->result = ScsiResult(DID_REQUEUE, 0);
2570 break;
2571 }
2572 if ((lpfc_cmd->result == IOERR_RX_DMA_FAILED ||
2573 lpfc_cmd->result == IOERR_TX_DMA_FAILED) &&
2574 pIocbOut->iocb.unsli3.sli3_bg.bgstat) {
2575 if (scsi_get_prot_op(cmd) != SCSI_PROT_NORMAL) {
2576 /*
2577 * This is a response for a BG enabled
2578 * cmd. Parse BG error
2579 */
2580 lpfc_parse_bg_err(phba, lpfc_cmd,
2581 pIocbOut);
2582 break;
2583 } else {
2584 lpfc_printf_vlog(vport, KERN_WARNING,
2585 LOG_BG,
2586 "9031 non-zero BGSTAT "
2587 "on unprotected cmd\n");
2588 }
2589 }
2590 if ((lpfc_cmd->status == IOSTAT_REMOTE_STOP)
2591 && (phba->sli_rev == LPFC_SLI_REV4)
2592 && (pnode && NLP_CHK_NODE_ACT(pnode))) {
2593 /* This IO was aborted by the target, we don't
2594 * know the rxid and because we did not send the
2595 * ABTS we cannot generate and RRQ.
2596 */
2597 lpfc_set_rrq_active(phba, pnode,
2598 lpfc_cmd->cur_iocbq.sli4_xritag,
2599 0, 0);
2600 }
2601 /* else: fall through */
2602 default:
2603 cmd->result = ScsiResult(DID_ERROR, 0);
2604 break;
2605 }
2606
2607 if (!pnode || !NLP_CHK_NODE_ACT(pnode)
2608 || (pnode->nlp_state != NLP_STE_MAPPED_NODE))
2609 cmd->result = ScsiResult(DID_TRANSPORT_DISRUPTED,
2610 SAM_STAT_BUSY);
2611 } else
2612 cmd->result = ScsiResult(DID_OK, 0);
2613
2614 if (cmd->result || lpfc_cmd->fcp_rsp->rspSnsLen) {
2615 uint32_t *lp = (uint32_t *)cmd->sense_buffer;
2616
2617 lpfc_printf_vlog(vport, KERN_INFO, LOG_FCP,
2618 "0710 Iodone <%d/%d> cmd %p, error "
2619 "x%x SNS x%x x%x Data: x%x x%x\n",
2620 cmd->device->id, cmd->device->lun, cmd,
2621 cmd->result, *lp, *(lp + 3), cmd->retries,
2622 scsi_get_resid(cmd));
2623 }
2624
2625 lpfc_update_stats(phba, lpfc_cmd);
2626 result = cmd->result;
2627 if (vport->cfg_max_scsicmpl_time &&
2628 time_after(jiffies, lpfc_cmd->start_time +
2629 msecs_to_jiffies(vport->cfg_max_scsicmpl_time))) {
2630 spin_lock_irqsave(shost->host_lock, flags);
2631 if (pnode && NLP_CHK_NODE_ACT(pnode)) {
2632 if (pnode->cmd_qdepth >
2633 atomic_read(&pnode->cmd_pending) &&
2634 (atomic_read(&pnode->cmd_pending) >
2635 LPFC_MIN_TGT_QDEPTH) &&
2636 ((cmd->cmnd[0] == READ_10) ||
2637 (cmd->cmnd[0] == WRITE_10)))
2638 pnode->cmd_qdepth =
2639 atomic_read(&pnode->cmd_pending);
2640
2641 pnode->last_change_time = jiffies;
2642 }
2643 spin_unlock_irqrestore(shost->host_lock, flags);
2644 } else if (pnode && NLP_CHK_NODE_ACT(pnode)) {
2645 if ((pnode->cmd_qdepth < vport->cfg_tgt_queue_depth) &&
2646 time_after(jiffies, pnode->last_change_time +
2647 msecs_to_jiffies(LPFC_TGTQ_INTERVAL))) {
2648 spin_lock_irqsave(shost->host_lock, flags);
2649 depth = pnode->cmd_qdepth * LPFC_TGTQ_RAMPUP_PCENT
2650 / 100;
2651 depth = depth ? depth : 1;
2652 pnode->cmd_qdepth += depth;
2653 if (pnode->cmd_qdepth > vport->cfg_tgt_queue_depth)
2654 pnode->cmd_qdepth = vport->cfg_tgt_queue_depth;
2655 pnode->last_change_time = jiffies;
2656 spin_unlock_irqrestore(shost->host_lock, flags);
2657 }
2658 }
2659
2660 lpfc_scsi_unprep_dma_buf(phba, lpfc_cmd);
2661
2662 /* The sdev is not guaranteed to be valid post scsi_done upcall. */
2663 queue_depth = cmd->device->queue_depth;
2664 scsi_id = cmd->device->id;
2665 cmd->scsi_done(cmd);
2666
2667 if (phba->cfg_poll & ENABLE_FCP_RING_POLLING) {
2668 /*
2669 * If there is a thread waiting for command completion
2670 * wake up the thread.
2671 */
2672 spin_lock_irqsave(shost->host_lock, flags);
2673 lpfc_cmd->pCmd = NULL;
2674 if (lpfc_cmd->waitq)
2675 wake_up(lpfc_cmd->waitq);
2676 spin_unlock_irqrestore(shost->host_lock, flags);
2677 lpfc_release_scsi_buf(phba, lpfc_cmd);
2678 return;
2679 }
2680
2681 if (!result)
2682 lpfc_rampup_queue_depth(vport, queue_depth);
2683
2684 /*
2685 * Check for queue full. If the lun is reporting queue full, then
2686 * back off the lun queue depth to prevent target overloads.
2687 */
2688 if (result == SAM_STAT_TASK_SET_FULL && pnode &&
2689 NLP_CHK_NODE_ACT(pnode)) {
2690 shost_for_each_device(tmp_sdev, shost) {
2691 if (tmp_sdev->id != scsi_id)
2692 continue;
2693 depth = scsi_track_queue_full(tmp_sdev,
2694 tmp_sdev->queue_depth-1);
2695 if (depth <= 0)
2696 continue;
2697 lpfc_printf_vlog(vport, KERN_WARNING, LOG_FCP,
2698 "0711 detected queue full - lun queue "
2699 "depth adjusted to %d.\n", depth);
2700 lpfc_send_sdev_queuedepth_change_event(phba, vport,
2701 pnode,
2702 tmp_sdev->lun,
2703 depth+1, depth);
2704 }
2705 }
2706
2707 /*
2708 * If there is a thread waiting for command completion
2709 * wake up the thread.
2710 */
2711 spin_lock_irqsave(shost->host_lock, flags);
2712 lpfc_cmd->pCmd = NULL;
2713 if (lpfc_cmd->waitq)
2714 wake_up(lpfc_cmd->waitq);
2715 spin_unlock_irqrestore(shost->host_lock, flags);
2716
2717 lpfc_release_scsi_buf(phba, lpfc_cmd);
2718 }
2719
2720 /**
2721 * lpfc_fcpcmd_to_iocb - copy the fcp_cmd data into the IOCB
2722 * @data: A pointer to the immediate command data portion of the IOCB.
2723 * @fcp_cmnd: The FCP Command that is provided by the SCSI layer.
2724 *
2725 * The routine copies the entire FCP command from @fcp_cmnd to @data while
2726 * byte swapping the data to big endian format for transmission on the wire.
2727 **/
2728 static void
2729 lpfc_fcpcmd_to_iocb(uint8_t *data, struct fcp_cmnd *fcp_cmnd)
2730 {
2731 int i, j;
2732 for (i = 0, j = 0; i < sizeof(struct fcp_cmnd);
2733 i += sizeof(uint32_t), j++) {
2734 ((uint32_t *)data)[j] = cpu_to_be32(((uint32_t *)fcp_cmnd)[j]);
2735 }
2736 }
2737
2738 /**
2739 * lpfc_scsi_prep_cmnd - Wrapper func for convert scsi cmnd to FCP info unit
2740 * @vport: The virtual port for which this call is being executed.
2741 * @lpfc_cmd: The scsi command which needs to send.
2742 * @pnode: Pointer to lpfc_nodelist.
2743 *
2744 * This routine initializes fcp_cmnd and iocb data structure from scsi command
2745 * to transfer for device with SLI3 interface spec.
2746 **/
2747 static void
2748 lpfc_scsi_prep_cmnd(struct lpfc_vport *vport, struct lpfc_scsi_buf *lpfc_cmd,
2749 struct lpfc_nodelist *pnode)
2750 {
2751 struct lpfc_hba *phba = vport->phba;
2752 struct scsi_cmnd *scsi_cmnd = lpfc_cmd->pCmd;
2753 struct fcp_cmnd *fcp_cmnd = lpfc_cmd->fcp_cmnd;
2754 IOCB_t *iocb_cmd = &lpfc_cmd->cur_iocbq.iocb;
2755 struct lpfc_iocbq *piocbq = &(lpfc_cmd->cur_iocbq);
2756 int datadir = scsi_cmnd->sc_data_direction;
2757 char tag[2];
2758
2759 if (!pnode || !NLP_CHK_NODE_ACT(pnode))
2760 return;
2761
2762 lpfc_cmd->fcp_rsp->rspSnsLen = 0;
2763 /* clear task management bits */
2764 lpfc_cmd->fcp_cmnd->fcpCntl2 = 0;
2765
2766 int_to_scsilun(lpfc_cmd->pCmd->device->lun,
2767 &lpfc_cmd->fcp_cmnd->fcp_lun);
2768
2769 memcpy(&fcp_cmnd->fcpCdb[0], scsi_cmnd->cmnd, 16);
2770
2771 if (scsi_populate_tag_msg(scsi_cmnd, tag)) {
2772 switch (tag[0]) {
2773 case HEAD_OF_QUEUE_TAG:
2774 fcp_cmnd->fcpCntl1 = HEAD_OF_Q;
2775 break;
2776 case ORDERED_QUEUE_TAG:
2777 fcp_cmnd->fcpCntl1 = ORDERED_Q;
2778 break;
2779 default:
2780 fcp_cmnd->fcpCntl1 = SIMPLE_Q;
2781 break;
2782 }
2783 } else
2784 fcp_cmnd->fcpCntl1 = 0;
2785
2786 /*
2787 * There are three possibilities here - use scatter-gather segment, use
2788 * the single mapping, or neither. Start the lpfc command prep by
2789 * bumping the bpl beyond the fcp_cmnd and fcp_rsp regions to the first
2790 * data bde entry.
2791 */
2792 if (scsi_sg_count(scsi_cmnd)) {
2793 if (datadir == DMA_TO_DEVICE) {
2794 iocb_cmd->ulpCommand = CMD_FCP_IWRITE64_CR;
2795 if (phba->sli_rev < LPFC_SLI_REV4) {
2796 iocb_cmd->un.fcpi.fcpi_parm = 0;
2797 iocb_cmd->ulpPU = 0;
2798 } else
2799 iocb_cmd->ulpPU = PARM_READ_CHECK;
2800 fcp_cmnd->fcpCntl3 = WRITE_DATA;
2801 phba->fc4OutputRequests++;
2802 } else {
2803 iocb_cmd->ulpCommand = CMD_FCP_IREAD64_CR;
2804 iocb_cmd->ulpPU = PARM_READ_CHECK;
2805 fcp_cmnd->fcpCntl3 = READ_DATA;
2806 phba->fc4InputRequests++;
2807 }
2808 } else {
2809 iocb_cmd->ulpCommand = CMD_FCP_ICMND64_CR;
2810 iocb_cmd->un.fcpi.fcpi_parm = 0;
2811 iocb_cmd->ulpPU = 0;
2812 fcp_cmnd->fcpCntl3 = 0;
2813 phba->fc4ControlRequests++;
2814 }
2815 if (phba->sli_rev == 3 &&
2816 !(phba->sli3_options & LPFC_SLI3_BG_ENABLED))
2817 lpfc_fcpcmd_to_iocb(iocb_cmd->unsli3.fcp_ext.icd, fcp_cmnd);
2818 /*
2819 * Finish initializing those IOCB fields that are independent
2820 * of the scsi_cmnd request_buffer
2821 */
2822 piocbq->iocb.ulpContext = pnode->nlp_rpi;
2823 if (phba->sli_rev == LPFC_SLI_REV4)
2824 piocbq->iocb.ulpContext =
2825 phba->sli4_hba.rpi_ids[pnode->nlp_rpi];
2826 if (pnode->nlp_fcp_info & NLP_FCP_2_DEVICE)
2827 piocbq->iocb.ulpFCP2Rcvy = 1;
2828 else
2829 piocbq->iocb.ulpFCP2Rcvy = 0;
2830
2831 piocbq->iocb.ulpClass = (pnode->nlp_fcp_info & 0x0f);
2832 piocbq->context1 = lpfc_cmd;
2833 piocbq->iocb_cmpl = lpfc_scsi_cmd_iocb_cmpl;
2834 piocbq->iocb.ulpTimeout = lpfc_cmd->timeout;
2835 piocbq->vport = vport;
2836 }
2837
2838 /**
2839 * lpfc_scsi_prep_task_mgmt_cmd - Convert SLI3 scsi TM cmd to FCP info unit
2840 * @vport: The virtual port for which this call is being executed.
2841 * @lpfc_cmd: Pointer to lpfc_scsi_buf data structure.
2842 * @lun: Logical unit number.
2843 * @task_mgmt_cmd: SCSI task management command.
2844 *
2845 * This routine creates FCP information unit corresponding to @task_mgmt_cmd
2846 * for device with SLI-3 interface spec.
2847 *
2848 * Return codes:
2849 * 0 - Error
2850 * 1 - Success
2851 **/
2852 static int
2853 lpfc_scsi_prep_task_mgmt_cmd(struct lpfc_vport *vport,
2854 struct lpfc_scsi_buf *lpfc_cmd,
2855 unsigned int lun,
2856 uint8_t task_mgmt_cmd)
2857 {
2858 struct lpfc_iocbq *piocbq;
2859 IOCB_t *piocb;
2860 struct fcp_cmnd *fcp_cmnd;
2861 struct lpfc_rport_data *rdata = lpfc_cmd->rdata;
2862 struct lpfc_nodelist *ndlp = rdata->pnode;
2863
2864 if (!ndlp || !NLP_CHK_NODE_ACT(ndlp) ||
2865 ndlp->nlp_state != NLP_STE_MAPPED_NODE)
2866 return 0;
2867
2868 piocbq = &(lpfc_cmd->cur_iocbq);
2869 piocbq->vport = vport;
2870
2871 piocb = &piocbq->iocb;
2872
2873 fcp_cmnd = lpfc_cmd->fcp_cmnd;
2874 /* Clear out any old data in the FCP command area */
2875 memset(fcp_cmnd, 0, sizeof(struct fcp_cmnd));
2876 int_to_scsilun(lun, &fcp_cmnd->fcp_lun);
2877 fcp_cmnd->fcpCntl2 = task_mgmt_cmd;
2878 if (vport->phba->sli_rev == 3 &&
2879 !(vport->phba->sli3_options & LPFC_SLI3_BG_ENABLED))
2880 lpfc_fcpcmd_to_iocb(piocb->unsli3.fcp_ext.icd, fcp_cmnd);
2881 piocb->ulpCommand = CMD_FCP_ICMND64_CR;
2882 piocb->ulpContext = ndlp->nlp_rpi;
2883 if (vport->phba->sli_rev == LPFC_SLI_REV4) {
2884 piocb->ulpContext =
2885 vport->phba->sli4_hba.rpi_ids[ndlp->nlp_rpi];
2886 }
2887 if (ndlp->nlp_fcp_info & NLP_FCP_2_DEVICE) {
2888 piocb->ulpFCP2Rcvy = 1;
2889 }
2890 piocb->ulpClass = (ndlp->nlp_fcp_info & 0x0f);
2891
2892 /* ulpTimeout is only one byte */
2893 if (lpfc_cmd->timeout > 0xff) {
2894 /*
2895 * Do not timeout the command at the firmware level.
2896 * The driver will provide the timeout mechanism.
2897 */
2898 piocb->ulpTimeout = 0;
2899 } else
2900 piocb->ulpTimeout = lpfc_cmd->timeout;
2901
2902 if (vport->phba->sli_rev == LPFC_SLI_REV4)
2903 lpfc_sli4_set_rsp_sgl_last(vport->phba, lpfc_cmd);
2904
2905 return 1;
2906 }
2907
2908 /**
2909 * lpfc_scsi_api_table_setup - Set up scsi api function jump table
2910 * @phba: The hba struct for which this call is being executed.
2911 * @dev_grp: The HBA PCI-Device group number.
2912 *
2913 * This routine sets up the SCSI interface API function jump table in @phba
2914 * struct.
2915 * Returns: 0 - success, -ENODEV - failure.
2916 **/
2917 int
2918 lpfc_scsi_api_table_setup(struct lpfc_hba *phba, uint8_t dev_grp)
2919 {
2920
2921 phba->lpfc_scsi_unprep_dma_buf = lpfc_scsi_unprep_dma_buf;
2922 phba->lpfc_scsi_prep_cmnd = lpfc_scsi_prep_cmnd;
2923
2924 switch (dev_grp) {
2925 case LPFC_PCI_DEV_LP:
2926 phba->lpfc_new_scsi_buf = lpfc_new_scsi_buf_s3;
2927 phba->lpfc_scsi_prep_dma_buf = lpfc_scsi_prep_dma_buf_s3;
2928 phba->lpfc_release_scsi_buf = lpfc_release_scsi_buf_s3;
2929 phba->lpfc_get_scsi_buf = lpfc_get_scsi_buf_s3;
2930 break;
2931 case LPFC_PCI_DEV_OC:
2932 phba->lpfc_new_scsi_buf = lpfc_new_scsi_buf_s4;
2933 phba->lpfc_scsi_prep_dma_buf = lpfc_scsi_prep_dma_buf_s4;
2934 phba->lpfc_release_scsi_buf = lpfc_release_scsi_buf_s4;
2935 phba->lpfc_get_scsi_buf = lpfc_get_scsi_buf_s4;
2936 break;
2937 default:
2938 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
2939 "1418 Invalid HBA PCI-device group: 0x%x\n",
2940 dev_grp);
2941 return -ENODEV;
2942 break;
2943 }
2944 phba->lpfc_rampdown_queue_depth = lpfc_rampdown_queue_depth;
2945 phba->lpfc_scsi_cmd_iocb_cmpl = lpfc_scsi_cmd_iocb_cmpl;
2946 return 0;
2947 }
2948
2949 /**
2950 * lpfc_taskmgmt_def_cmpl - IOCB completion routine for task management command
2951 * @phba: The Hba for which this call is being executed.
2952 * @cmdiocbq: Pointer to lpfc_iocbq data structure.
2953 * @rspiocbq: Pointer to lpfc_iocbq data structure.
2954 *
2955 * This routine is IOCB completion routine for device reset and target reset
2956 * routine. This routine release scsi buffer associated with lpfc_cmd.
2957 **/
2958 static void
2959 lpfc_tskmgmt_def_cmpl(struct lpfc_hba *phba,
2960 struct lpfc_iocbq *cmdiocbq,
2961 struct lpfc_iocbq *rspiocbq)
2962 {
2963 struct lpfc_scsi_buf *lpfc_cmd =
2964 (struct lpfc_scsi_buf *) cmdiocbq->context1;
2965 if (lpfc_cmd)
2966 lpfc_release_scsi_buf(phba, lpfc_cmd);
2967 return;
2968 }
2969
2970 /**
2971 * lpfc_info - Info entry point of scsi_host_template data structure
2972 * @host: The scsi host for which this call is being executed.
2973 *
2974 * This routine provides module information about hba.
2975 *
2976 * Reutrn code:
2977 * Pointer to char - Success.
2978 **/
2979 const char *
2980 lpfc_info(struct Scsi_Host *host)
2981 {
2982 struct lpfc_vport *vport = (struct lpfc_vport *) host->hostdata;
2983 struct lpfc_hba *phba = vport->phba;
2984 int len;
2985 static char lpfcinfobuf[384];
2986
2987 memset(lpfcinfobuf,0,384);
2988 if (phba && phba->pcidev){
2989 strncpy(lpfcinfobuf, phba->ModelDesc, 256);
2990 len = strlen(lpfcinfobuf);
2991 snprintf(lpfcinfobuf + len,
2992 384-len,
2993 " on PCI bus %02x device %02x irq %d",
2994 phba->pcidev->bus->number,
2995 phba->pcidev->devfn,
2996 phba->pcidev->irq);
2997 len = strlen(lpfcinfobuf);
2998 if (phba->Port[0]) {
2999 snprintf(lpfcinfobuf + len,
3000 384-len,
3001 " port %s",
3002 phba->Port);
3003 }
3004 len = strlen(lpfcinfobuf);
3005 if (phba->sli4_hba.link_state.logical_speed) {
3006 snprintf(lpfcinfobuf + len,
3007 384-len,
3008 " Logical Link Speed: %d Mbps",
3009 phba->sli4_hba.link_state.logical_speed * 10);
3010 }
3011 }
3012 return lpfcinfobuf;
3013 }
3014
3015 /**
3016 * lpfc_poll_rearm_time - Routine to modify fcp_poll timer of hba
3017 * @phba: The Hba for which this call is being executed.
3018 *
3019 * This routine modifies fcp_poll_timer field of @phba by cfg_poll_tmo.
3020 * The default value of cfg_poll_tmo is 10 milliseconds.
3021 **/
3022 static __inline__ void lpfc_poll_rearm_timer(struct lpfc_hba * phba)
3023 {
3024 unsigned long poll_tmo_expires =
3025 (jiffies + msecs_to_jiffies(phba->cfg_poll_tmo));
3026
3027 if (phba->sli.ring[LPFC_FCP_RING].txcmplq_cnt)
3028 mod_timer(&phba->fcp_poll_timer,
3029 poll_tmo_expires);
3030 }
3031
3032 /**
3033 * lpfc_poll_start_timer - Routine to start fcp_poll_timer of HBA
3034 * @phba: The Hba for which this call is being executed.
3035 *
3036 * This routine starts the fcp_poll_timer of @phba.
3037 **/
3038 void lpfc_poll_start_timer(struct lpfc_hba * phba)
3039 {
3040 lpfc_poll_rearm_timer(phba);
3041 }
3042
3043 /**
3044 * lpfc_poll_timeout - Restart polling timer
3045 * @ptr: Map to lpfc_hba data structure pointer.
3046 *
3047 * This routine restarts fcp_poll timer, when FCP ring polling is enable
3048 * and FCP Ring interrupt is disable.
3049 **/
3050
3051 void lpfc_poll_timeout(unsigned long ptr)
3052 {
3053 struct lpfc_hba *phba = (struct lpfc_hba *) ptr;
3054
3055 if (phba->cfg_poll & ENABLE_FCP_RING_POLLING) {
3056 lpfc_sli_handle_fast_ring_event(phba,
3057 &phba->sli.ring[LPFC_FCP_RING], HA_R0RE_REQ);
3058
3059 if (phba->cfg_poll & DISABLE_FCP_RING_INT)
3060 lpfc_poll_rearm_timer(phba);
3061 }
3062 }
3063
3064 /**
3065 * lpfc_queuecommand - scsi_host_template queuecommand entry point
3066 * @cmnd: Pointer to scsi_cmnd data structure.
3067 * @done: Pointer to done routine.
3068 *
3069 * Driver registers this routine to scsi midlayer to submit a @cmd to process.
3070 * This routine prepares an IOCB from scsi command and provides to firmware.
3071 * The @done callback is invoked after driver finished processing the command.
3072 *
3073 * Return value :
3074 * 0 - Success
3075 * SCSI_MLQUEUE_HOST_BUSY - Block all devices served by this host temporarily.
3076 **/
3077 static int
3078 lpfc_queuecommand_lck(struct scsi_cmnd *cmnd, void (*done) (struct scsi_cmnd *))
3079 {
3080 struct Scsi_Host *shost = cmnd->device->host;
3081 struct lpfc_vport *vport = (struct lpfc_vport *) shost->hostdata;
3082 struct lpfc_hba *phba = vport->phba;
3083 struct lpfc_rport_data *rdata = cmnd->device->hostdata;
3084 struct lpfc_nodelist *ndlp;
3085 struct lpfc_scsi_buf *lpfc_cmd;
3086 struct fc_rport *rport = starget_to_rport(scsi_target(cmnd->device));
3087 int err;
3088
3089 err = fc_remote_port_chkready(rport);
3090 if (err) {
3091 cmnd->result = err;
3092 goto out_fail_command;
3093 }
3094 ndlp = rdata->pnode;
3095
3096 if (!(phba->sli3_options & LPFC_SLI3_BG_ENABLED) &&
3097 scsi_get_prot_op(cmnd) != SCSI_PROT_NORMAL) {
3098
3099 lpfc_printf_log(phba, KERN_ERR, LOG_BG,
3100 "9058 BLKGRD: ERROR: rcvd protected cmd:%02x"
3101 " op:%02x str=%s without registering for"
3102 " BlockGuard - Rejecting command\n",
3103 cmnd->cmnd[0], scsi_get_prot_op(cmnd),
3104 dif_op_str[scsi_get_prot_op(cmnd)]);
3105 goto out_fail_command;
3106 }
3107
3108 /*
3109 * Catch race where our node has transitioned, but the
3110 * transport is still transitioning.
3111 */
3112 if (!ndlp || !NLP_CHK_NODE_ACT(ndlp)) {
3113 cmnd->result = ScsiResult(DID_IMM_RETRY, 0);
3114 goto out_fail_command;
3115 }
3116 if (atomic_read(&ndlp->cmd_pending) >= ndlp->cmd_qdepth)
3117 goto out_tgt_busy;
3118
3119 lpfc_cmd = lpfc_get_scsi_buf(phba, ndlp);
3120 if (lpfc_cmd == NULL) {
3121 lpfc_rampdown_queue_depth(phba);
3122
3123 lpfc_printf_vlog(vport, KERN_INFO, LOG_FCP,
3124 "0707 driver's buffer pool is empty, "
3125 "IO busied\n");
3126 goto out_host_busy;
3127 }
3128
3129 /*
3130 * Store the midlayer's command structure for the completion phase
3131 * and complete the command initialization.
3132 */
3133 lpfc_cmd->pCmd = cmnd;
3134 lpfc_cmd->rdata = rdata;
3135 lpfc_cmd->timeout = 0;
3136 lpfc_cmd->start_time = jiffies;
3137 cmnd->host_scribble = (unsigned char *)lpfc_cmd;
3138 cmnd->scsi_done = done;
3139
3140 if (scsi_get_prot_op(cmnd) != SCSI_PROT_NORMAL) {
3141 if (vport->phba->cfg_enable_bg) {
3142 lpfc_printf_vlog(vport, KERN_WARNING, LOG_BG,
3143 "9033 BLKGRD: rcvd protected cmd:%02x op:%02x "
3144 "str=%s\n",
3145 cmnd->cmnd[0], scsi_get_prot_op(cmnd),
3146 dif_op_str[scsi_get_prot_op(cmnd)]);
3147 lpfc_printf_vlog(vport, KERN_WARNING, LOG_BG,
3148 "9034 BLKGRD: CDB: %02x %02x %02x %02x %02x "
3149 "%02x %02x %02x %02x %02x\n",
3150 cmnd->cmnd[0], cmnd->cmnd[1], cmnd->cmnd[2],
3151 cmnd->cmnd[3], cmnd->cmnd[4], cmnd->cmnd[5],
3152 cmnd->cmnd[6], cmnd->cmnd[7], cmnd->cmnd[8],
3153 cmnd->cmnd[9]);
3154 if (cmnd->cmnd[0] == READ_10)
3155 lpfc_printf_vlog(vport, KERN_WARNING, LOG_BG,
3156 "9035 BLKGRD: READ @ sector %llu, "
3157 "count %u\n",
3158 (unsigned long long)scsi_get_lba(cmnd),
3159 blk_rq_sectors(cmnd->request));
3160 else if (cmnd->cmnd[0] == WRITE_10)
3161 lpfc_printf_vlog(vport, KERN_WARNING, LOG_BG,
3162 "9036 BLKGRD: WRITE @ sector %llu, "
3163 "count %u cmd=%p\n",
3164 (unsigned long long)scsi_get_lba(cmnd),
3165 blk_rq_sectors(cmnd->request),
3166 cmnd);
3167 }
3168
3169 err = lpfc_bg_scsi_prep_dma_buf(phba, lpfc_cmd);
3170 } else {
3171 if (vport->phba->cfg_enable_bg) {
3172 lpfc_printf_vlog(vport, KERN_WARNING, LOG_BG,
3173 "9038 BLKGRD: rcvd unprotected cmd:"
3174 "%02x op:%02x str=%s\n",
3175 cmnd->cmnd[0], scsi_get_prot_op(cmnd),
3176 dif_op_str[scsi_get_prot_op(cmnd)]);
3177 lpfc_printf_vlog(vport, KERN_WARNING, LOG_BG,
3178 "9039 BLKGRD: CDB: %02x %02x %02x "
3179 "%02x %02x %02x %02x %02x %02x %02x\n",
3180 cmnd->cmnd[0], cmnd->cmnd[1],
3181 cmnd->cmnd[2], cmnd->cmnd[3],
3182 cmnd->cmnd[4], cmnd->cmnd[5],
3183 cmnd->cmnd[6], cmnd->cmnd[7],
3184 cmnd->cmnd[8], cmnd->cmnd[9]);
3185 if (cmnd->cmnd[0] == READ_10)
3186 lpfc_printf_vlog(vport, KERN_WARNING, LOG_BG,
3187 "9040 dbg: READ @ sector %llu, "
3188 "count %u\n",
3189 (unsigned long long)scsi_get_lba(cmnd),
3190 blk_rq_sectors(cmnd->request));
3191 else if (cmnd->cmnd[0] == WRITE_10)
3192 lpfc_printf_vlog(vport, KERN_WARNING, LOG_BG,
3193 "9041 dbg: WRITE @ sector %llu, "
3194 "count %u cmd=%p\n",
3195 (unsigned long long)scsi_get_lba(cmnd),
3196 blk_rq_sectors(cmnd->request), cmnd);
3197 else
3198 lpfc_printf_vlog(vport, KERN_WARNING, LOG_BG,
3199 "9042 dbg: parser not implemented\n");
3200 }
3201 err = lpfc_scsi_prep_dma_buf(phba, lpfc_cmd);
3202 }
3203
3204 if (err)
3205 goto out_host_busy_free_buf;
3206
3207 lpfc_scsi_prep_cmnd(vport, lpfc_cmd, ndlp);
3208
3209 atomic_inc(&ndlp->cmd_pending);
3210 err = lpfc_sli_issue_iocb(phba, LPFC_FCP_RING,
3211 &lpfc_cmd->cur_iocbq, SLI_IOCB_RET_IOCB);
3212 if (err) {
3213 atomic_dec(&ndlp->cmd_pending);
3214 goto out_host_busy_free_buf;
3215 }
3216 if (phba->cfg_poll & ENABLE_FCP_RING_POLLING) {
3217 spin_unlock(shost->host_lock);
3218 lpfc_sli_handle_fast_ring_event(phba,
3219 &phba->sli.ring[LPFC_FCP_RING], HA_R0RE_REQ);
3220
3221 spin_lock(shost->host_lock);
3222 if (phba->cfg_poll & DISABLE_FCP_RING_INT)
3223 lpfc_poll_rearm_timer(phba);
3224 }
3225
3226 return 0;
3227
3228 out_host_busy_free_buf:
3229 lpfc_scsi_unprep_dma_buf(phba, lpfc_cmd);
3230 lpfc_release_scsi_buf(phba, lpfc_cmd);
3231 out_host_busy:
3232 return SCSI_MLQUEUE_HOST_BUSY;
3233
3234 out_tgt_busy:
3235 return SCSI_MLQUEUE_TARGET_BUSY;
3236
3237 out_fail_command:
3238 done(cmnd);
3239 return 0;
3240 }
3241
3242 static DEF_SCSI_QCMD(lpfc_queuecommand)
3243
3244 /**
3245 * lpfc_abort_handler - scsi_host_template eh_abort_handler entry point
3246 * @cmnd: Pointer to scsi_cmnd data structure.
3247 *
3248 * This routine aborts @cmnd pending in base driver.
3249 *
3250 * Return code :
3251 * 0x2003 - Error
3252 * 0x2002 - Success
3253 **/
3254 static int
3255 lpfc_abort_handler(struct scsi_cmnd *cmnd)
3256 {
3257 struct Scsi_Host *shost = cmnd->device->host;
3258 struct lpfc_vport *vport = (struct lpfc_vport *) shost->hostdata;
3259 struct lpfc_hba *phba = vport->phba;
3260 struct lpfc_iocbq *iocb;
3261 struct lpfc_iocbq *abtsiocb;
3262 struct lpfc_scsi_buf *lpfc_cmd;
3263 IOCB_t *cmd, *icmd;
3264 int ret = SUCCESS;
3265 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(waitq);
3266
3267 ret = fc_block_scsi_eh(cmnd);
3268 if (ret)
3269 return ret;
3270 lpfc_cmd = (struct lpfc_scsi_buf *)cmnd->host_scribble;
3271 if (!lpfc_cmd) {
3272 lpfc_printf_vlog(vport, KERN_WARNING, LOG_FCP,
3273 "2873 SCSI Layer I/O Abort Request IO CMPL Status "
3274 "x%x ID %d LUN %d\n",
3275 ret, cmnd->device->id, cmnd->device->lun);
3276 return SUCCESS;
3277 }
3278
3279 /*
3280 * If pCmd field of the corresponding lpfc_scsi_buf structure
3281 * points to a different SCSI command, then the driver has
3282 * already completed this command, but the midlayer did not
3283 * see the completion before the eh fired. Just return
3284 * SUCCESS.
3285 */
3286 iocb = &lpfc_cmd->cur_iocbq;
3287 if (lpfc_cmd->pCmd != cmnd)
3288 goto out;
3289
3290 BUG_ON(iocb->context1 != lpfc_cmd);
3291
3292 abtsiocb = lpfc_sli_get_iocbq(phba);
3293 if (abtsiocb == NULL) {
3294 ret = FAILED;
3295 goto out;
3296 }
3297
3298 /*
3299 * The scsi command can not be in txq and it is in flight because the
3300 * pCmd is still pointig at the SCSI command we have to abort. There
3301 * is no need to search the txcmplq. Just send an abort to the FW.
3302 */
3303
3304 cmd = &iocb->iocb;
3305 icmd = &abtsiocb->iocb;
3306 icmd->un.acxri.abortType = ABORT_TYPE_ABTS;
3307 icmd->un.acxri.abortContextTag = cmd->ulpContext;
3308 if (phba->sli_rev == LPFC_SLI_REV4)
3309 icmd->un.acxri.abortIoTag = iocb->sli4_xritag;
3310 else
3311 icmd->un.acxri.abortIoTag = cmd->ulpIoTag;
3312
3313 icmd->ulpLe = 1;
3314 icmd->ulpClass = cmd->ulpClass;
3315
3316 /* ABTS WQE must go to the same WQ as the WQE to be aborted */
3317 abtsiocb->fcp_wqidx = iocb->fcp_wqidx;
3318 abtsiocb->iocb_flag |= LPFC_USE_FCPWQIDX;
3319
3320 if (lpfc_is_link_up(phba))
3321 icmd->ulpCommand = CMD_ABORT_XRI_CN;
3322 else
3323 icmd->ulpCommand = CMD_CLOSE_XRI_CN;
3324
3325 abtsiocb->iocb_cmpl = lpfc_sli_abort_fcp_cmpl;
3326 abtsiocb->vport = vport;
3327 if (lpfc_sli_issue_iocb(phba, LPFC_FCP_RING, abtsiocb, 0) ==
3328 IOCB_ERROR) {
3329 lpfc_sli_release_iocbq(phba, abtsiocb);
3330 ret = FAILED;
3331 goto out;
3332 }
3333
3334 if (phba->cfg_poll & DISABLE_FCP_RING_INT)
3335 lpfc_sli_handle_fast_ring_event(phba,
3336 &phba->sli.ring[LPFC_FCP_RING], HA_R0RE_REQ);
3337
3338 lpfc_cmd->waitq = &waitq;
3339 /* Wait for abort to complete */
3340 wait_event_timeout(waitq,
3341 (lpfc_cmd->pCmd != cmnd),
3342 (2*vport->cfg_devloss_tmo*HZ));
3343
3344 spin_lock_irq(shost->host_lock);
3345 lpfc_cmd->waitq = NULL;
3346 spin_unlock_irq(shost->host_lock);
3347
3348 if (lpfc_cmd->pCmd == cmnd) {
3349 ret = FAILED;
3350 lpfc_printf_vlog(vport, KERN_ERR, LOG_FCP,
3351 "0748 abort handler timed out waiting "
3352 "for abort to complete: ret %#x, ID %d, "
3353 "LUN %d\n",
3354 ret, cmnd->device->id, cmnd->device->lun);
3355 }
3356
3357 out:
3358 lpfc_printf_vlog(vport, KERN_WARNING, LOG_FCP,
3359 "0749 SCSI Layer I/O Abort Request Status x%x ID %d "
3360 "LUN %d\n", ret, cmnd->device->id,
3361 cmnd->device->lun);
3362 return ret;
3363 }
3364
3365 static char *
3366 lpfc_taskmgmt_name(uint8_t task_mgmt_cmd)
3367 {
3368 switch (task_mgmt_cmd) {
3369 case FCP_ABORT_TASK_SET:
3370 return "ABORT_TASK_SET";
3371 case FCP_CLEAR_TASK_SET:
3372 return "FCP_CLEAR_TASK_SET";
3373 case FCP_BUS_RESET:
3374 return "FCP_BUS_RESET";
3375 case FCP_LUN_RESET:
3376 return "FCP_LUN_RESET";
3377 case FCP_TARGET_RESET:
3378 return "FCP_TARGET_RESET";
3379 case FCP_CLEAR_ACA:
3380 return "FCP_CLEAR_ACA";
3381 case FCP_TERMINATE_TASK:
3382 return "FCP_TERMINATE_TASK";
3383 default:
3384 return "unknown";
3385 }
3386 }
3387
3388 /**
3389 * lpfc_send_taskmgmt - Generic SCSI Task Mgmt Handler
3390 * @vport: The virtual port for which this call is being executed.
3391 * @rdata: Pointer to remote port local data
3392 * @tgt_id: Target ID of remote device.
3393 * @lun_id: Lun number for the TMF
3394 * @task_mgmt_cmd: type of TMF to send
3395 *
3396 * This routine builds and sends a TMF (SCSI Task Mgmt Function) to
3397 * a remote port.
3398 *
3399 * Return Code:
3400 * 0x2003 - Error
3401 * 0x2002 - Success.
3402 **/
3403 static int
3404 lpfc_send_taskmgmt(struct lpfc_vport *vport, struct lpfc_rport_data *rdata,
3405 unsigned tgt_id, unsigned int lun_id,
3406 uint8_t task_mgmt_cmd)
3407 {
3408 struct lpfc_hba *phba = vport->phba;
3409 struct lpfc_scsi_buf *lpfc_cmd;
3410 struct lpfc_iocbq *iocbq;
3411 struct lpfc_iocbq *iocbqrsp;
3412 struct lpfc_nodelist *pnode = rdata->pnode;
3413 int ret;
3414 int status;
3415
3416 if (!pnode || !NLP_CHK_NODE_ACT(pnode))
3417 return FAILED;
3418
3419 lpfc_cmd = lpfc_get_scsi_buf(phba, rdata->pnode);
3420 if (lpfc_cmd == NULL)
3421 return FAILED;
3422 lpfc_cmd->timeout = 60;
3423 lpfc_cmd->rdata = rdata;
3424
3425 status = lpfc_scsi_prep_task_mgmt_cmd(vport, lpfc_cmd, lun_id,
3426 task_mgmt_cmd);
3427 if (!status) {
3428 lpfc_release_scsi_buf(phba, lpfc_cmd);
3429 return FAILED;
3430 }
3431
3432 iocbq = &lpfc_cmd->cur_iocbq;
3433 iocbqrsp = lpfc_sli_get_iocbq(phba);
3434 if (iocbqrsp == NULL) {
3435 lpfc_release_scsi_buf(phba, lpfc_cmd);
3436 return FAILED;
3437 }
3438
3439 lpfc_printf_vlog(vport, KERN_INFO, LOG_FCP,
3440 "0702 Issue %s to TGT %d LUN %d "
3441 "rpi x%x nlp_flag x%x Data: x%x x%x\n",
3442 lpfc_taskmgmt_name(task_mgmt_cmd), tgt_id, lun_id,
3443 pnode->nlp_rpi, pnode->nlp_flag, iocbq->sli4_xritag,
3444 iocbq->iocb_flag);
3445
3446 status = lpfc_sli_issue_iocb_wait(phba, LPFC_FCP_RING,
3447 iocbq, iocbqrsp, lpfc_cmd->timeout);
3448 if (status != IOCB_SUCCESS) {
3449 if (status == IOCB_TIMEDOUT) {
3450 iocbq->iocb_cmpl = lpfc_tskmgmt_def_cmpl;
3451 ret = TIMEOUT_ERROR;
3452 } else
3453 ret = FAILED;
3454 lpfc_cmd->status = IOSTAT_DRIVER_REJECT;
3455 lpfc_printf_vlog(vport, KERN_ERR, LOG_FCP,
3456 "0727 TMF %s to TGT %d LUN %d failed (%d, %d) "
3457 "iocb_flag x%x\n",
3458 lpfc_taskmgmt_name(task_mgmt_cmd),
3459 tgt_id, lun_id, iocbqrsp->iocb.ulpStatus,
3460 iocbqrsp->iocb.un.ulpWord[4],
3461 iocbq->iocb_flag);
3462 } else if (status == IOCB_BUSY)
3463 ret = FAILED;
3464 else
3465 ret = SUCCESS;
3466
3467 lpfc_sli_release_iocbq(phba, iocbqrsp);
3468
3469 if (ret != TIMEOUT_ERROR)
3470 lpfc_release_scsi_buf(phba, lpfc_cmd);
3471
3472 return ret;
3473 }
3474
3475 /**
3476 * lpfc_chk_tgt_mapped -
3477 * @vport: The virtual port to check on
3478 * @cmnd: Pointer to scsi_cmnd data structure.
3479 *
3480 * This routine delays until the scsi target (aka rport) for the
3481 * command exists (is present and logged in) or we declare it non-existent.
3482 *
3483 * Return code :
3484 * 0x2003 - Error
3485 * 0x2002 - Success
3486 **/
3487 static int
3488 lpfc_chk_tgt_mapped(struct lpfc_vport *vport, struct scsi_cmnd *cmnd)
3489 {
3490 struct lpfc_rport_data *rdata = cmnd->device->hostdata;
3491 struct lpfc_nodelist *pnode;
3492 unsigned long later;
3493
3494 if (!rdata) {
3495 lpfc_printf_vlog(vport, KERN_INFO, LOG_FCP,
3496 "0797 Tgt Map rport failure: rdata x%p\n", rdata);
3497 return FAILED;
3498 }
3499 pnode = rdata->pnode;
3500 /*
3501 * If target is not in a MAPPED state, delay until
3502 * target is rediscovered or devloss timeout expires.
3503 */
3504 later = msecs_to_jiffies(2 * vport->cfg_devloss_tmo * 1000) + jiffies;
3505 while (time_after(later, jiffies)) {
3506 if (!pnode || !NLP_CHK_NODE_ACT(pnode))
3507 return FAILED;
3508 if (pnode->nlp_state == NLP_STE_MAPPED_NODE)
3509 return SUCCESS;
3510 schedule_timeout_uninterruptible(msecs_to_jiffies(500));
3511 rdata = cmnd->device->hostdata;
3512 if (!rdata)
3513 return FAILED;
3514 pnode = rdata->pnode;
3515 }
3516 if (!pnode || !NLP_CHK_NODE_ACT(pnode) ||
3517 (pnode->nlp_state != NLP_STE_MAPPED_NODE))
3518 return FAILED;
3519 return SUCCESS;
3520 }
3521
3522 /**
3523 * lpfc_reset_flush_io_context -
3524 * @vport: The virtual port (scsi_host) for the flush context
3525 * @tgt_id: If aborting by Target contect - specifies the target id
3526 * @lun_id: If aborting by Lun context - specifies the lun id
3527 * @context: specifies the context level to flush at.
3528 *
3529 * After a reset condition via TMF, we need to flush orphaned i/o
3530 * contexts from the adapter. This routine aborts any contexts
3531 * outstanding, then waits for their completions. The wait is
3532 * bounded by devloss_tmo though.
3533 *
3534 * Return code :
3535 * 0x2003 - Error
3536 * 0x2002 - Success
3537 **/
3538 static int
3539 lpfc_reset_flush_io_context(struct lpfc_vport *vport, uint16_t tgt_id,
3540 uint64_t lun_id, lpfc_ctx_cmd context)
3541 {
3542 struct lpfc_hba *phba = vport->phba;
3543 unsigned long later;
3544 int cnt;
3545
3546 cnt = lpfc_sli_sum_iocb(vport, tgt_id, lun_id, context);
3547 if (cnt)
3548 lpfc_sli_abort_iocb(vport, &phba->sli.ring[phba->sli.fcp_ring],
3549 tgt_id, lun_id, context);
3550 later = msecs_to_jiffies(2 * vport->cfg_devloss_tmo * 1000) + jiffies;
3551 while (time_after(later, jiffies) && cnt) {
3552 schedule_timeout_uninterruptible(msecs_to_jiffies(20));
3553 cnt = lpfc_sli_sum_iocb(vport, tgt_id, lun_id, context);
3554 }
3555 if (cnt) {
3556 lpfc_printf_vlog(vport, KERN_ERR, LOG_FCP,
3557 "0724 I/O flush failure for context %s : cnt x%x\n",
3558 ((context == LPFC_CTX_LUN) ? "LUN" :
3559 ((context == LPFC_CTX_TGT) ? "TGT" :
3560 ((context == LPFC_CTX_HOST) ? "HOST" : "Unknown"))),
3561 cnt);
3562 return FAILED;
3563 }
3564 return SUCCESS;
3565 }
3566
3567 /**
3568 * lpfc_device_reset_handler - scsi_host_template eh_device_reset entry point
3569 * @cmnd: Pointer to scsi_cmnd data structure.
3570 *
3571 * This routine does a device reset by sending a LUN_RESET task management
3572 * command.
3573 *
3574 * Return code :
3575 * 0x2003 - Error
3576 * 0x2002 - Success
3577 **/
3578 static int
3579 lpfc_device_reset_handler(struct scsi_cmnd *cmnd)
3580 {
3581 struct Scsi_Host *shost = cmnd->device->host;
3582 struct lpfc_vport *vport = (struct lpfc_vport *) shost->hostdata;
3583 struct lpfc_rport_data *rdata = cmnd->device->hostdata;
3584 struct lpfc_nodelist *pnode;
3585 unsigned tgt_id = cmnd->device->id;
3586 unsigned int lun_id = cmnd->device->lun;
3587 struct lpfc_scsi_event_header scsi_event;
3588 int status;
3589
3590 if (!rdata) {
3591 lpfc_printf_vlog(vport, KERN_ERR, LOG_FCP,
3592 "0798 Device Reset rport failure: rdata x%p\n", rdata);
3593 return FAILED;
3594 }
3595 pnode = rdata->pnode;
3596 status = fc_block_scsi_eh(cmnd);
3597 if (status)
3598 return status;
3599
3600 status = lpfc_chk_tgt_mapped(vport, cmnd);
3601 if (status == FAILED) {
3602 lpfc_printf_vlog(vport, KERN_ERR, LOG_FCP,
3603 "0721 Device Reset rport failure: rdata x%p\n", rdata);
3604 return FAILED;
3605 }
3606
3607 scsi_event.event_type = FC_REG_SCSI_EVENT;
3608 scsi_event.subcategory = LPFC_EVENT_LUNRESET;
3609 scsi_event.lun = lun_id;
3610 memcpy(scsi_event.wwpn, &pnode->nlp_portname, sizeof(struct lpfc_name));
3611 memcpy(scsi_event.wwnn, &pnode->nlp_nodename, sizeof(struct lpfc_name));
3612
3613 fc_host_post_vendor_event(shost, fc_get_event_number(),
3614 sizeof(scsi_event), (char *)&scsi_event, LPFC_NL_VENDOR_ID);
3615
3616 status = lpfc_send_taskmgmt(vport, rdata, tgt_id, lun_id,
3617 FCP_LUN_RESET);
3618
3619 lpfc_printf_vlog(vport, KERN_ERR, LOG_FCP,
3620 "0713 SCSI layer issued Device Reset (%d, %d) "
3621 "return x%x\n", tgt_id, lun_id, status);
3622
3623 /*
3624 * We have to clean up i/o as : they may be orphaned by the TMF;
3625 * or if the TMF failed, they may be in an indeterminate state.
3626 * So, continue on.
3627 * We will report success if all the i/o aborts successfully.
3628 */
3629 status = lpfc_reset_flush_io_context(vport, tgt_id, lun_id,
3630 LPFC_CTX_LUN);
3631 return status;
3632 }
3633
3634 /**
3635 * lpfc_target_reset_handler - scsi_host_template eh_target_reset entry point
3636 * @cmnd: Pointer to scsi_cmnd data structure.
3637 *
3638 * This routine does a target reset by sending a TARGET_RESET task management
3639 * command.
3640 *
3641 * Return code :
3642 * 0x2003 - Error
3643 * 0x2002 - Success
3644 **/
3645 static int
3646 lpfc_target_reset_handler(struct scsi_cmnd *cmnd)
3647 {
3648 struct Scsi_Host *shost = cmnd->device->host;
3649 struct lpfc_vport *vport = (struct lpfc_vport *) shost->hostdata;
3650 struct lpfc_rport_data *rdata = cmnd->device->hostdata;
3651 struct lpfc_nodelist *pnode;
3652 unsigned tgt_id = cmnd->device->id;
3653 unsigned int lun_id = cmnd->device->lun;
3654 struct lpfc_scsi_event_header scsi_event;
3655 int status;
3656
3657 if (!rdata) {
3658 lpfc_printf_vlog(vport, KERN_ERR, LOG_FCP,
3659 "0799 Target Reset rport failure: rdata x%p\n", rdata);
3660 return FAILED;
3661 }
3662 pnode = rdata->pnode;
3663 status = fc_block_scsi_eh(cmnd);
3664 if (status)
3665 return status;
3666
3667 status = lpfc_chk_tgt_mapped(vport, cmnd);
3668 if (status == FAILED) {
3669 lpfc_printf_vlog(vport, KERN_ERR, LOG_FCP,
3670 "0722 Target Reset rport failure: rdata x%p\n", rdata);
3671 return FAILED;
3672 }
3673
3674 scsi_event.event_type = FC_REG_SCSI_EVENT;
3675 scsi_event.subcategory = LPFC_EVENT_TGTRESET;
3676 scsi_event.lun = 0;
3677 memcpy(scsi_event.wwpn, &pnode->nlp_portname, sizeof(struct lpfc_name));
3678 memcpy(scsi_event.wwnn, &pnode->nlp_nodename, sizeof(struct lpfc_name));
3679
3680 fc_host_post_vendor_event(shost, fc_get_event_number(),
3681 sizeof(scsi_event), (char *)&scsi_event, LPFC_NL_VENDOR_ID);
3682
3683 status = lpfc_send_taskmgmt(vport, rdata, tgt_id, lun_id,
3684 FCP_TARGET_RESET);
3685
3686 lpfc_printf_vlog(vport, KERN_ERR, LOG_FCP,
3687 "0723 SCSI layer issued Target Reset (%d, %d) "
3688 "return x%x\n", tgt_id, lun_id, status);
3689
3690 /*
3691 * We have to clean up i/o as : they may be orphaned by the TMF;
3692 * or if the TMF failed, they may be in an indeterminate state.
3693 * So, continue on.
3694 * We will report success if all the i/o aborts successfully.
3695 */
3696 status = lpfc_reset_flush_io_context(vport, tgt_id, lun_id,
3697 LPFC_CTX_TGT);
3698 return status;
3699 }
3700
3701 /**
3702 * lpfc_bus_reset_handler - scsi_host_template eh_bus_reset_handler entry point
3703 * @cmnd: Pointer to scsi_cmnd data structure.
3704 *
3705 * This routine does target reset to all targets on @cmnd->device->host.
3706 * This emulates Parallel SCSI Bus Reset Semantics.
3707 *
3708 * Return code :
3709 * 0x2003 - Error
3710 * 0x2002 - Success
3711 **/
3712 static int
3713 lpfc_bus_reset_handler(struct scsi_cmnd *cmnd)
3714 {
3715 struct Scsi_Host *shost = cmnd->device->host;
3716 struct lpfc_vport *vport = (struct lpfc_vport *) shost->hostdata;
3717 struct lpfc_nodelist *ndlp = NULL;
3718 struct lpfc_scsi_event_header scsi_event;
3719 int match;
3720 int ret = SUCCESS, status, i;
3721
3722 scsi_event.event_type = FC_REG_SCSI_EVENT;
3723 scsi_event.subcategory = LPFC_EVENT_BUSRESET;
3724 scsi_event.lun = 0;
3725 memcpy(scsi_event.wwpn, &vport->fc_portname, sizeof(struct lpfc_name));
3726 memcpy(scsi_event.wwnn, &vport->fc_nodename, sizeof(struct lpfc_name));
3727
3728 fc_host_post_vendor_event(shost, fc_get_event_number(),
3729 sizeof(scsi_event), (char *)&scsi_event, LPFC_NL_VENDOR_ID);
3730
3731 ret = fc_block_scsi_eh(cmnd);
3732 if (ret)
3733 return ret;
3734
3735 /*
3736 * Since the driver manages a single bus device, reset all
3737 * targets known to the driver. Should any target reset
3738 * fail, this routine returns failure to the midlayer.
3739 */
3740 for (i = 0; i < LPFC_MAX_TARGET; i++) {
3741 /* Search for mapped node by target ID */
3742 match = 0;
3743 spin_lock_irq(shost->host_lock);
3744 list_for_each_entry(ndlp, &vport->fc_nodes, nlp_listp) {
3745 if (!NLP_CHK_NODE_ACT(ndlp))
3746 continue;
3747 if (ndlp->nlp_state == NLP_STE_MAPPED_NODE &&
3748 ndlp->nlp_sid == i &&
3749 ndlp->rport) {
3750 match = 1;
3751 break;
3752 }
3753 }
3754 spin_unlock_irq(shost->host_lock);
3755 if (!match)
3756 continue;
3757
3758 status = lpfc_send_taskmgmt(vport, ndlp->rport->dd_data,
3759 i, 0, FCP_TARGET_RESET);
3760
3761 if (status != SUCCESS) {
3762 lpfc_printf_vlog(vport, KERN_ERR, LOG_FCP,
3763 "0700 Bus Reset on target %d failed\n",
3764 i);
3765 ret = FAILED;
3766 }
3767 }
3768 /*
3769 * We have to clean up i/o as : they may be orphaned by the TMFs
3770 * above; or if any of the TMFs failed, they may be in an
3771 * indeterminate state.
3772 * We will report success if all the i/o aborts successfully.
3773 */
3774
3775 status = lpfc_reset_flush_io_context(vport, 0, 0, LPFC_CTX_HOST);
3776 if (status != SUCCESS)
3777 ret = FAILED;
3778
3779 lpfc_printf_vlog(vport, KERN_ERR, LOG_FCP,
3780 "0714 SCSI layer issued Bus Reset Data: x%x\n", ret);
3781 return ret;
3782 }
3783
3784 /**
3785 * lpfc_slave_alloc - scsi_host_template slave_alloc entry point
3786 * @sdev: Pointer to scsi_device.
3787 *
3788 * This routine populates the cmds_per_lun count + 2 scsi_bufs into this host's
3789 * globally available list of scsi buffers. This routine also makes sure scsi
3790 * buffer is not allocated more than HBA limit conveyed to midlayer. This list
3791 * of scsi buffer exists for the lifetime of the driver.
3792 *
3793 * Return codes:
3794 * non-0 - Error
3795 * 0 - Success
3796 **/
3797 static int
3798 lpfc_slave_alloc(struct scsi_device *sdev)
3799 {
3800 struct lpfc_vport *vport = (struct lpfc_vport *) sdev->host->hostdata;
3801 struct lpfc_hba *phba = vport->phba;
3802 struct fc_rport *rport = starget_to_rport(scsi_target(sdev));
3803 uint32_t total = 0;
3804 uint32_t num_to_alloc = 0;
3805 int num_allocated = 0;
3806 uint32_t sdev_cnt;
3807
3808 if (!rport || fc_remote_port_chkready(rport))
3809 return -ENXIO;
3810
3811 sdev->hostdata = rport->dd_data;
3812 sdev_cnt = atomic_inc_return(&phba->sdev_cnt);
3813
3814 /*
3815 * Populate the cmds_per_lun count scsi_bufs into this host's globally
3816 * available list of scsi buffers. Don't allocate more than the
3817 * HBA limit conveyed to the midlayer via the host structure. The
3818 * formula accounts for the lun_queue_depth + error handlers + 1
3819 * extra. This list of scsi bufs exists for the lifetime of the driver.
3820 */
3821 total = phba->total_scsi_bufs;
3822 num_to_alloc = vport->cfg_lun_queue_depth + 2;
3823
3824 /* If allocated buffers are enough do nothing */
3825 if ((sdev_cnt * (vport->cfg_lun_queue_depth + 2)) < total)
3826 return 0;
3827
3828 /* Allow some exchanges to be available always to complete discovery */
3829 if (total >= phba->cfg_hba_queue_depth - LPFC_DISC_IOCB_BUFF_COUNT ) {
3830 lpfc_printf_vlog(vport, KERN_WARNING, LOG_FCP,
3831 "0704 At limitation of %d preallocated "
3832 "command buffers\n", total);
3833 return 0;
3834 /* Allow some exchanges to be available always to complete discovery */
3835 } else if (total + num_to_alloc >
3836 phba->cfg_hba_queue_depth - LPFC_DISC_IOCB_BUFF_COUNT ) {
3837 lpfc_printf_vlog(vport, KERN_WARNING, LOG_FCP,
3838 "0705 Allocation request of %d "
3839 "command buffers will exceed max of %d. "
3840 "Reducing allocation request to %d.\n",
3841 num_to_alloc, phba->cfg_hba_queue_depth,
3842 (phba->cfg_hba_queue_depth - total));
3843 num_to_alloc = phba->cfg_hba_queue_depth - total;
3844 }
3845 num_allocated = lpfc_new_scsi_buf(vport, num_to_alloc);
3846 if (num_to_alloc != num_allocated) {
3847 lpfc_printf_vlog(vport, KERN_WARNING, LOG_FCP,
3848 "0708 Allocation request of %d "
3849 "command buffers did not succeed. "
3850 "Allocated %d buffers.\n",
3851 num_to_alloc, num_allocated);
3852 }
3853 if (num_allocated > 0)
3854 phba->total_scsi_bufs += num_allocated;
3855 return 0;
3856 }
3857
3858 /**
3859 * lpfc_slave_configure - scsi_host_template slave_configure entry point
3860 * @sdev: Pointer to scsi_device.
3861 *
3862 * This routine configures following items
3863 * - Tag command queuing support for @sdev if supported.
3864 * - Enable SLI polling for fcp ring if ENABLE_FCP_RING_POLLING flag is set.
3865 *
3866 * Return codes:
3867 * 0 - Success
3868 **/
3869 static int
3870 lpfc_slave_configure(struct scsi_device *sdev)
3871 {
3872 struct lpfc_vport *vport = (struct lpfc_vport *) sdev->host->hostdata;
3873 struct lpfc_hba *phba = vport->phba;
3874
3875 if (sdev->tagged_supported)
3876 scsi_activate_tcq(sdev, vport->cfg_lun_queue_depth);
3877 else
3878 scsi_deactivate_tcq(sdev, vport->cfg_lun_queue_depth);
3879
3880 if (phba->cfg_poll & ENABLE_FCP_RING_POLLING) {
3881 lpfc_sli_handle_fast_ring_event(phba,
3882 &phba->sli.ring[LPFC_FCP_RING], HA_R0RE_REQ);
3883 if (phba->cfg_poll & DISABLE_FCP_RING_INT)
3884 lpfc_poll_rearm_timer(phba);
3885 }
3886
3887 return 0;
3888 }
3889
3890 /**
3891 * lpfc_slave_destroy - slave_destroy entry point of SHT data structure
3892 * @sdev: Pointer to scsi_device.
3893 *
3894 * This routine sets @sdev hostatdata filed to null.
3895 **/
3896 static void
3897 lpfc_slave_destroy(struct scsi_device *sdev)
3898 {
3899 struct lpfc_vport *vport = (struct lpfc_vport *) sdev->host->hostdata;
3900 struct lpfc_hba *phba = vport->phba;
3901 atomic_dec(&phba->sdev_cnt);
3902 sdev->hostdata = NULL;
3903 return;
3904 }
3905
3906
3907 struct scsi_host_template lpfc_template = {
3908 .module = THIS_MODULE,
3909 .name = LPFC_DRIVER_NAME,
3910 .info = lpfc_info,
3911 .queuecommand = lpfc_queuecommand,
3912 .eh_abort_handler = lpfc_abort_handler,
3913 .eh_device_reset_handler = lpfc_device_reset_handler,
3914 .eh_target_reset_handler = lpfc_target_reset_handler,
3915 .eh_bus_reset_handler = lpfc_bus_reset_handler,
3916 .slave_alloc = lpfc_slave_alloc,
3917 .slave_configure = lpfc_slave_configure,
3918 .slave_destroy = lpfc_slave_destroy,
3919 .scan_finished = lpfc_scan_finished,
3920 .this_id = -1,
3921 .sg_tablesize = LPFC_DEFAULT_SG_SEG_CNT,
3922 .cmd_per_lun = LPFC_CMD_PER_LUN,
3923 .use_clustering = ENABLE_CLUSTERING,
3924 .shost_attrs = lpfc_hba_attrs,
3925 .max_sectors = 0xFFFF,
3926 .vendor_id = LPFC_NL_VENDOR_ID,
3927 .change_queue_depth = lpfc_change_queue_depth,
3928 };
3929
3930 struct scsi_host_template lpfc_vport_template = {
3931 .module = THIS_MODULE,
3932 .name = LPFC_DRIVER_NAME,
3933 .info = lpfc_info,
3934 .queuecommand = lpfc_queuecommand,
3935 .eh_abort_handler = lpfc_abort_handler,
3936 .eh_device_reset_handler = lpfc_device_reset_handler,
3937 .eh_target_reset_handler = lpfc_target_reset_handler,
3938 .eh_bus_reset_handler = lpfc_bus_reset_handler,
3939 .slave_alloc = lpfc_slave_alloc,
3940 .slave_configure = lpfc_slave_configure,
3941 .slave_destroy = lpfc_slave_destroy,
3942 .scan_finished = lpfc_scan_finished,
3943 .this_id = -1,
3944 .sg_tablesize = LPFC_DEFAULT_SG_SEG_CNT,
3945 .cmd_per_lun = LPFC_CMD_PER_LUN,
3946 .use_clustering = ENABLE_CLUSTERING,
3947 .shost_attrs = lpfc_vport_attrs,
3948 .max_sectors = 0xFFFF,
3949 .change_queue_depth = lpfc_change_queue_depth,
3950 };
This page took 0.168924 seconds and 5 git commands to generate.