[SCSI] lpfc 8.3.30: Fixed missing CVL event causing FCF failover
[deliverable/linux.git] / drivers / scsi / lpfc / lpfc_sli.c
1 /*******************************************************************
2 * This file is part of the Emulex Linux Device Driver for *
3 * Fibre Channel Host Bus Adapters. *
4 * Copyright (C) 2004-2012 Emulex. All rights reserved. *
5 * EMULEX and SLI are trademarks of Emulex. *
6 * www.emulex.com *
7 * Portions Copyright (C) 2004-2005 Christoph Hellwig *
8 * *
9 * This program is free software; you can redistribute it and/or *
10 * modify it under the terms of version 2 of the GNU General *
11 * Public License as published by the Free Software Foundation. *
12 * This program is distributed in the hope that it will be useful. *
13 * ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND *
14 * WARRANTIES, INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, *
15 * FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT, ARE *
16 * DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD *
17 * TO BE LEGALLY INVALID. See the GNU General Public License for *
18 * more details, a copy of which can be found in the file COPYING *
19 * included with this package. *
20 *******************************************************************/
21
22 #include <linux/blkdev.h>
23 #include <linux/pci.h>
24 #include <linux/interrupt.h>
25 #include <linux/delay.h>
26 #include <linux/slab.h>
27
28 #include <scsi/scsi.h>
29 #include <scsi/scsi_cmnd.h>
30 #include <scsi/scsi_device.h>
31 #include <scsi/scsi_host.h>
32 #include <scsi/scsi_transport_fc.h>
33 #include <scsi/fc/fc_fs.h>
34 #include <linux/aer.h>
35
36 #include "lpfc_hw4.h"
37 #include "lpfc_hw.h"
38 #include "lpfc_sli.h"
39 #include "lpfc_sli4.h"
40 #include "lpfc_nl.h"
41 #include "lpfc_disc.h"
42 #include "lpfc_scsi.h"
43 #include "lpfc.h"
44 #include "lpfc_crtn.h"
45 #include "lpfc_logmsg.h"
46 #include "lpfc_compat.h"
47 #include "lpfc_debugfs.h"
48 #include "lpfc_vport.h"
49
50 /* There are only four IOCB completion types. */
51 typedef enum _lpfc_iocb_type {
52 LPFC_UNKNOWN_IOCB,
53 LPFC_UNSOL_IOCB,
54 LPFC_SOL_IOCB,
55 LPFC_ABORT_IOCB
56 } lpfc_iocb_type;
57
58
59 /* Provide function prototypes local to this module. */
60 static int lpfc_sli_issue_mbox_s4(struct lpfc_hba *, LPFC_MBOXQ_t *,
61 uint32_t);
62 static int lpfc_sli4_read_rev(struct lpfc_hba *, LPFC_MBOXQ_t *,
63 uint8_t *, uint32_t *);
64 static struct lpfc_iocbq *lpfc_sli4_els_wcqe_to_rspiocbq(struct lpfc_hba *,
65 struct lpfc_iocbq *);
66 static void lpfc_sli4_send_seq_to_ulp(struct lpfc_vport *,
67 struct hbq_dmabuf *);
68 static int lpfc_sli4_fp_handle_wcqe(struct lpfc_hba *, struct lpfc_queue *,
69 struct lpfc_cqe *);
70
71 static IOCB_t *
72 lpfc_get_iocb_from_iocbq(struct lpfc_iocbq *iocbq)
73 {
74 return &iocbq->iocb;
75 }
76
77 /**
78 * lpfc_sli4_wq_put - Put a Work Queue Entry on an Work Queue
79 * @q: The Work Queue to operate on.
80 * @wqe: The work Queue Entry to put on the Work queue.
81 *
82 * This routine will copy the contents of @wqe to the next available entry on
83 * the @q. This function will then ring the Work Queue Doorbell to signal the
84 * HBA to start processing the Work Queue Entry. This function returns 0 if
85 * successful. If no entries are available on @q then this function will return
86 * -ENOMEM.
87 * The caller is expected to hold the hbalock when calling this routine.
88 **/
89 static uint32_t
90 lpfc_sli4_wq_put(struct lpfc_queue *q, union lpfc_wqe *wqe)
91 {
92 union lpfc_wqe *temp_wqe;
93 struct lpfc_register doorbell;
94 uint32_t host_index;
95
96 /* sanity check on queue memory */
97 if (unlikely(!q))
98 return -ENOMEM;
99 temp_wqe = q->qe[q->host_index].wqe;
100
101 /* If the host has not yet processed the next entry then we are done */
102 if (((q->host_index + 1) % q->entry_count) == q->hba_index)
103 return -ENOMEM;
104 /* set consumption flag every once in a while */
105 if (!((q->host_index + 1) % q->entry_repost))
106 bf_set(wqe_wqec, &wqe->generic.wqe_com, 1);
107 if (q->phba->sli3_options & LPFC_SLI4_PHWQ_ENABLED)
108 bf_set(wqe_wqid, &wqe->generic.wqe_com, q->queue_id);
109 lpfc_sli_pcimem_bcopy(wqe, temp_wqe, q->entry_size);
110
111 /* Update the host index before invoking device */
112 host_index = q->host_index;
113 q->host_index = ((q->host_index + 1) % q->entry_count);
114
115 /* Ring Doorbell */
116 doorbell.word0 = 0;
117 bf_set(lpfc_wq_doorbell_num_posted, &doorbell, 1);
118 bf_set(lpfc_wq_doorbell_index, &doorbell, host_index);
119 bf_set(lpfc_wq_doorbell_id, &doorbell, q->queue_id);
120 writel(doorbell.word0, q->phba->sli4_hba.WQDBregaddr);
121 readl(q->phba->sli4_hba.WQDBregaddr); /* Flush */
122
123 return 0;
124 }
125
126 /**
127 * lpfc_sli4_wq_release - Updates internal hba index for WQ
128 * @q: The Work Queue to operate on.
129 * @index: The index to advance the hba index to.
130 *
131 * This routine will update the HBA index of a queue to reflect consumption of
132 * Work Queue Entries by the HBA. When the HBA indicates that it has consumed
133 * an entry the host calls this function to update the queue's internal
134 * pointers. This routine returns the number of entries that were consumed by
135 * the HBA.
136 **/
137 static uint32_t
138 lpfc_sli4_wq_release(struct lpfc_queue *q, uint32_t index)
139 {
140 uint32_t released = 0;
141
142 /* sanity check on queue memory */
143 if (unlikely(!q))
144 return 0;
145
146 if (q->hba_index == index)
147 return 0;
148 do {
149 q->hba_index = ((q->hba_index + 1) % q->entry_count);
150 released++;
151 } while (q->hba_index != index);
152 return released;
153 }
154
155 /**
156 * lpfc_sli4_mq_put - Put a Mailbox Queue Entry on an Mailbox Queue
157 * @q: The Mailbox Queue to operate on.
158 * @wqe: The Mailbox Queue Entry to put on the Work queue.
159 *
160 * This routine will copy the contents of @mqe to the next available entry on
161 * the @q. This function will then ring the Work Queue Doorbell to signal the
162 * HBA to start processing the Work Queue Entry. This function returns 0 if
163 * successful. If no entries are available on @q then this function will return
164 * -ENOMEM.
165 * The caller is expected to hold the hbalock when calling this routine.
166 **/
167 static uint32_t
168 lpfc_sli4_mq_put(struct lpfc_queue *q, struct lpfc_mqe *mqe)
169 {
170 struct lpfc_mqe *temp_mqe;
171 struct lpfc_register doorbell;
172 uint32_t host_index;
173
174 /* sanity check on queue memory */
175 if (unlikely(!q))
176 return -ENOMEM;
177 temp_mqe = q->qe[q->host_index].mqe;
178
179 /* If the host has not yet processed the next entry then we are done */
180 if (((q->host_index + 1) % q->entry_count) == q->hba_index)
181 return -ENOMEM;
182 lpfc_sli_pcimem_bcopy(mqe, temp_mqe, q->entry_size);
183 /* Save off the mailbox pointer for completion */
184 q->phba->mbox = (MAILBOX_t *)temp_mqe;
185
186 /* Update the host index before invoking device */
187 host_index = q->host_index;
188 q->host_index = ((q->host_index + 1) % q->entry_count);
189
190 /* Ring Doorbell */
191 doorbell.word0 = 0;
192 bf_set(lpfc_mq_doorbell_num_posted, &doorbell, 1);
193 bf_set(lpfc_mq_doorbell_id, &doorbell, q->queue_id);
194 writel(doorbell.word0, q->phba->sli4_hba.MQDBregaddr);
195 readl(q->phba->sli4_hba.MQDBregaddr); /* Flush */
196 return 0;
197 }
198
199 /**
200 * lpfc_sli4_mq_release - Updates internal hba index for MQ
201 * @q: The Mailbox Queue to operate on.
202 *
203 * This routine will update the HBA index of a queue to reflect consumption of
204 * a Mailbox Queue Entry by the HBA. When the HBA indicates that it has consumed
205 * an entry the host calls this function to update the queue's internal
206 * pointers. This routine returns the number of entries that were consumed by
207 * the HBA.
208 **/
209 static uint32_t
210 lpfc_sli4_mq_release(struct lpfc_queue *q)
211 {
212 /* sanity check on queue memory */
213 if (unlikely(!q))
214 return 0;
215
216 /* Clear the mailbox pointer for completion */
217 q->phba->mbox = NULL;
218 q->hba_index = ((q->hba_index + 1) % q->entry_count);
219 return 1;
220 }
221
222 /**
223 * lpfc_sli4_eq_get - Gets the next valid EQE from a EQ
224 * @q: The Event Queue to get the first valid EQE from
225 *
226 * This routine will get the first valid Event Queue Entry from @q, update
227 * the queue's internal hba index, and return the EQE. If no valid EQEs are in
228 * the Queue (no more work to do), or the Queue is full of EQEs that have been
229 * processed, but not popped back to the HBA then this routine will return NULL.
230 **/
231 static struct lpfc_eqe *
232 lpfc_sli4_eq_get(struct lpfc_queue *q)
233 {
234 struct lpfc_eqe *eqe;
235
236 /* sanity check on queue memory */
237 if (unlikely(!q))
238 return NULL;
239 eqe = q->qe[q->hba_index].eqe;
240
241 /* If the next EQE is not valid then we are done */
242 if (!bf_get_le32(lpfc_eqe_valid, eqe))
243 return NULL;
244 /* If the host has not yet processed the next entry then we are done */
245 if (((q->hba_index + 1) % q->entry_count) == q->host_index)
246 return NULL;
247
248 q->hba_index = ((q->hba_index + 1) % q->entry_count);
249 return eqe;
250 }
251
252 /**
253 * lpfc_sli4_eq_release - Indicates the host has finished processing an EQ
254 * @q: The Event Queue that the host has completed processing for.
255 * @arm: Indicates whether the host wants to arms this CQ.
256 *
257 * This routine will mark all Event Queue Entries on @q, from the last
258 * known completed entry to the last entry that was processed, as completed
259 * by clearing the valid bit for each completion queue entry. Then it will
260 * notify the HBA, by ringing the doorbell, that the EQEs have been processed.
261 * The internal host index in the @q will be updated by this routine to indicate
262 * that the host has finished processing the entries. The @arm parameter
263 * indicates that the queue should be rearmed when ringing the doorbell.
264 *
265 * This function will return the number of EQEs that were popped.
266 **/
267 uint32_t
268 lpfc_sli4_eq_release(struct lpfc_queue *q, bool arm)
269 {
270 uint32_t released = 0;
271 struct lpfc_eqe *temp_eqe;
272 struct lpfc_register doorbell;
273
274 /* sanity check on queue memory */
275 if (unlikely(!q))
276 return 0;
277
278 /* while there are valid entries */
279 while (q->hba_index != q->host_index) {
280 temp_eqe = q->qe[q->host_index].eqe;
281 bf_set_le32(lpfc_eqe_valid, temp_eqe, 0);
282 released++;
283 q->host_index = ((q->host_index + 1) % q->entry_count);
284 }
285 if (unlikely(released == 0 && !arm))
286 return 0;
287
288 /* ring doorbell for number popped */
289 doorbell.word0 = 0;
290 if (arm) {
291 bf_set(lpfc_eqcq_doorbell_arm, &doorbell, 1);
292 bf_set(lpfc_eqcq_doorbell_eqci, &doorbell, 1);
293 }
294 bf_set(lpfc_eqcq_doorbell_num_released, &doorbell, released);
295 bf_set(lpfc_eqcq_doorbell_qt, &doorbell, LPFC_QUEUE_TYPE_EVENT);
296 bf_set(lpfc_eqcq_doorbell_eqid_hi, &doorbell,
297 (q->queue_id >> LPFC_EQID_HI_FIELD_SHIFT));
298 bf_set(lpfc_eqcq_doorbell_eqid_lo, &doorbell, q->queue_id);
299 writel(doorbell.word0, q->phba->sli4_hba.EQCQDBregaddr);
300 /* PCI read to flush PCI pipeline on re-arming for INTx mode */
301 if ((q->phba->intr_type == INTx) && (arm == LPFC_QUEUE_REARM))
302 readl(q->phba->sli4_hba.EQCQDBregaddr);
303 return released;
304 }
305
306 /**
307 * lpfc_sli4_cq_get - Gets the next valid CQE from a CQ
308 * @q: The Completion Queue to get the first valid CQE from
309 *
310 * This routine will get the first valid Completion Queue Entry from @q, update
311 * the queue's internal hba index, and return the CQE. If no valid CQEs are in
312 * the Queue (no more work to do), or the Queue is full of CQEs that have been
313 * processed, but not popped back to the HBA then this routine will return NULL.
314 **/
315 static struct lpfc_cqe *
316 lpfc_sli4_cq_get(struct lpfc_queue *q)
317 {
318 struct lpfc_cqe *cqe;
319
320 /* sanity check on queue memory */
321 if (unlikely(!q))
322 return NULL;
323
324 /* If the next CQE is not valid then we are done */
325 if (!bf_get_le32(lpfc_cqe_valid, q->qe[q->hba_index].cqe))
326 return NULL;
327 /* If the host has not yet processed the next entry then we are done */
328 if (((q->hba_index + 1) % q->entry_count) == q->host_index)
329 return NULL;
330
331 cqe = q->qe[q->hba_index].cqe;
332 q->hba_index = ((q->hba_index + 1) % q->entry_count);
333 return cqe;
334 }
335
336 /**
337 * lpfc_sli4_cq_release - Indicates the host has finished processing a CQ
338 * @q: The Completion Queue that the host has completed processing for.
339 * @arm: Indicates whether the host wants to arms this CQ.
340 *
341 * This routine will mark all Completion queue entries on @q, from the last
342 * known completed entry to the last entry that was processed, as completed
343 * by clearing the valid bit for each completion queue entry. Then it will
344 * notify the HBA, by ringing the doorbell, that the CQEs have been processed.
345 * The internal host index in the @q will be updated by this routine to indicate
346 * that the host has finished processing the entries. The @arm parameter
347 * indicates that the queue should be rearmed when ringing the doorbell.
348 *
349 * This function will return the number of CQEs that were released.
350 **/
351 uint32_t
352 lpfc_sli4_cq_release(struct lpfc_queue *q, bool arm)
353 {
354 uint32_t released = 0;
355 struct lpfc_cqe *temp_qe;
356 struct lpfc_register doorbell;
357
358 /* sanity check on queue memory */
359 if (unlikely(!q))
360 return 0;
361 /* while there are valid entries */
362 while (q->hba_index != q->host_index) {
363 temp_qe = q->qe[q->host_index].cqe;
364 bf_set_le32(lpfc_cqe_valid, temp_qe, 0);
365 released++;
366 q->host_index = ((q->host_index + 1) % q->entry_count);
367 }
368 if (unlikely(released == 0 && !arm))
369 return 0;
370
371 /* ring doorbell for number popped */
372 doorbell.word0 = 0;
373 if (arm)
374 bf_set(lpfc_eqcq_doorbell_arm, &doorbell, 1);
375 bf_set(lpfc_eqcq_doorbell_num_released, &doorbell, released);
376 bf_set(lpfc_eqcq_doorbell_qt, &doorbell, LPFC_QUEUE_TYPE_COMPLETION);
377 bf_set(lpfc_eqcq_doorbell_cqid_hi, &doorbell,
378 (q->queue_id >> LPFC_CQID_HI_FIELD_SHIFT));
379 bf_set(lpfc_eqcq_doorbell_cqid_lo, &doorbell, q->queue_id);
380 writel(doorbell.word0, q->phba->sli4_hba.EQCQDBregaddr);
381 return released;
382 }
383
384 /**
385 * lpfc_sli4_rq_put - Put a Receive Buffer Queue Entry on a Receive Queue
386 * @q: The Header Receive Queue to operate on.
387 * @wqe: The Receive Queue Entry to put on the Receive queue.
388 *
389 * This routine will copy the contents of @wqe to the next available entry on
390 * the @q. This function will then ring the Receive Queue Doorbell to signal the
391 * HBA to start processing the Receive Queue Entry. This function returns the
392 * index that the rqe was copied to if successful. If no entries are available
393 * on @q then this function will return -ENOMEM.
394 * The caller is expected to hold the hbalock when calling this routine.
395 **/
396 static int
397 lpfc_sli4_rq_put(struct lpfc_queue *hq, struct lpfc_queue *dq,
398 struct lpfc_rqe *hrqe, struct lpfc_rqe *drqe)
399 {
400 struct lpfc_rqe *temp_hrqe;
401 struct lpfc_rqe *temp_drqe;
402 struct lpfc_register doorbell;
403 int put_index = hq->host_index;
404
405 /* sanity check on queue memory */
406 if (unlikely(!hq) || unlikely(!dq))
407 return -ENOMEM;
408 temp_hrqe = hq->qe[hq->host_index].rqe;
409 temp_drqe = dq->qe[dq->host_index].rqe;
410
411 if (hq->type != LPFC_HRQ || dq->type != LPFC_DRQ)
412 return -EINVAL;
413 if (hq->host_index != dq->host_index)
414 return -EINVAL;
415 /* If the host has not yet processed the next entry then we are done */
416 if (((hq->host_index + 1) % hq->entry_count) == hq->hba_index)
417 return -EBUSY;
418 lpfc_sli_pcimem_bcopy(hrqe, temp_hrqe, hq->entry_size);
419 lpfc_sli_pcimem_bcopy(drqe, temp_drqe, dq->entry_size);
420
421 /* Update the host index to point to the next slot */
422 hq->host_index = ((hq->host_index + 1) % hq->entry_count);
423 dq->host_index = ((dq->host_index + 1) % dq->entry_count);
424
425 /* Ring The Header Receive Queue Doorbell */
426 if (!(hq->host_index % hq->entry_repost)) {
427 doorbell.word0 = 0;
428 bf_set(lpfc_rq_doorbell_num_posted, &doorbell,
429 hq->entry_repost);
430 bf_set(lpfc_rq_doorbell_id, &doorbell, hq->queue_id);
431 writel(doorbell.word0, hq->phba->sli4_hba.RQDBregaddr);
432 }
433 return put_index;
434 }
435
436 /**
437 * lpfc_sli4_rq_release - Updates internal hba index for RQ
438 * @q: The Header Receive Queue to operate on.
439 *
440 * This routine will update the HBA index of a queue to reflect consumption of
441 * one Receive Queue Entry by the HBA. When the HBA indicates that it has
442 * consumed an entry the host calls this function to update the queue's
443 * internal pointers. This routine returns the number of entries that were
444 * consumed by the HBA.
445 **/
446 static uint32_t
447 lpfc_sli4_rq_release(struct lpfc_queue *hq, struct lpfc_queue *dq)
448 {
449 /* sanity check on queue memory */
450 if (unlikely(!hq) || unlikely(!dq))
451 return 0;
452
453 if ((hq->type != LPFC_HRQ) || (dq->type != LPFC_DRQ))
454 return 0;
455 hq->hba_index = ((hq->hba_index + 1) % hq->entry_count);
456 dq->hba_index = ((dq->hba_index + 1) % dq->entry_count);
457 return 1;
458 }
459
460 /**
461 * lpfc_cmd_iocb - Get next command iocb entry in the ring
462 * @phba: Pointer to HBA context object.
463 * @pring: Pointer to driver SLI ring object.
464 *
465 * This function returns pointer to next command iocb entry
466 * in the command ring. The caller must hold hbalock to prevent
467 * other threads consume the next command iocb.
468 * SLI-2/SLI-3 provide different sized iocbs.
469 **/
470 static inline IOCB_t *
471 lpfc_cmd_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring)
472 {
473 return (IOCB_t *) (((char *) pring->cmdringaddr) +
474 pring->cmdidx * phba->iocb_cmd_size);
475 }
476
477 /**
478 * lpfc_resp_iocb - Get next response iocb entry in the ring
479 * @phba: Pointer to HBA context object.
480 * @pring: Pointer to driver SLI ring object.
481 *
482 * This function returns pointer to next response iocb entry
483 * in the response ring. The caller must hold hbalock to make sure
484 * that no other thread consume the next response iocb.
485 * SLI-2/SLI-3 provide different sized iocbs.
486 **/
487 static inline IOCB_t *
488 lpfc_resp_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring)
489 {
490 return (IOCB_t *) (((char *) pring->rspringaddr) +
491 pring->rspidx * phba->iocb_rsp_size);
492 }
493
494 /**
495 * __lpfc_sli_get_iocbq - Allocates an iocb object from iocb pool
496 * @phba: Pointer to HBA context object.
497 *
498 * This function is called with hbalock held. This function
499 * allocates a new driver iocb object from the iocb pool. If the
500 * allocation is successful, it returns pointer to the newly
501 * allocated iocb object else it returns NULL.
502 **/
503 static struct lpfc_iocbq *
504 __lpfc_sli_get_iocbq(struct lpfc_hba *phba)
505 {
506 struct list_head *lpfc_iocb_list = &phba->lpfc_iocb_list;
507 struct lpfc_iocbq * iocbq = NULL;
508
509 list_remove_head(lpfc_iocb_list, iocbq, struct lpfc_iocbq, list);
510 if (iocbq)
511 phba->iocb_cnt++;
512 if (phba->iocb_cnt > phba->iocb_max)
513 phba->iocb_max = phba->iocb_cnt;
514 return iocbq;
515 }
516
517 /**
518 * __lpfc_clear_active_sglq - Remove the active sglq for this XRI.
519 * @phba: Pointer to HBA context object.
520 * @xritag: XRI value.
521 *
522 * This function clears the sglq pointer from the array of acive
523 * sglq's. The xritag that is passed in is used to index into the
524 * array. Before the xritag can be used it needs to be adjusted
525 * by subtracting the xribase.
526 *
527 * Returns sglq ponter = success, NULL = Failure.
528 **/
529 static struct lpfc_sglq *
530 __lpfc_clear_active_sglq(struct lpfc_hba *phba, uint16_t xritag)
531 {
532 struct lpfc_sglq *sglq;
533
534 sglq = phba->sli4_hba.lpfc_sglq_active_list[xritag];
535 phba->sli4_hba.lpfc_sglq_active_list[xritag] = NULL;
536 return sglq;
537 }
538
539 /**
540 * __lpfc_get_active_sglq - Get the active sglq for this XRI.
541 * @phba: Pointer to HBA context object.
542 * @xritag: XRI value.
543 *
544 * This function returns the sglq pointer from the array of acive
545 * sglq's. The xritag that is passed in is used to index into the
546 * array. Before the xritag can be used it needs to be adjusted
547 * by subtracting the xribase.
548 *
549 * Returns sglq ponter = success, NULL = Failure.
550 **/
551 struct lpfc_sglq *
552 __lpfc_get_active_sglq(struct lpfc_hba *phba, uint16_t xritag)
553 {
554 struct lpfc_sglq *sglq;
555
556 sglq = phba->sli4_hba.lpfc_sglq_active_list[xritag];
557 return sglq;
558 }
559
560 /**
561 * lpfc_clr_rrq_active - Clears RRQ active bit in xri_bitmap.
562 * @phba: Pointer to HBA context object.
563 * @xritag: xri used in this exchange.
564 * @rrq: The RRQ to be cleared.
565 *
566 **/
567 void
568 lpfc_clr_rrq_active(struct lpfc_hba *phba,
569 uint16_t xritag,
570 struct lpfc_node_rrq *rrq)
571 {
572 struct lpfc_nodelist *ndlp = NULL;
573
574 if ((rrq->vport) && NLP_CHK_NODE_ACT(rrq->ndlp))
575 ndlp = lpfc_findnode_did(rrq->vport, rrq->nlp_DID);
576
577 /* The target DID could have been swapped (cable swap)
578 * we should use the ndlp from the findnode if it is
579 * available.
580 */
581 if ((!ndlp) && rrq->ndlp)
582 ndlp = rrq->ndlp;
583
584 if (!ndlp)
585 goto out;
586
587 if (test_and_clear_bit(xritag, ndlp->active_rrqs.xri_bitmap)) {
588 rrq->send_rrq = 0;
589 rrq->xritag = 0;
590 rrq->rrq_stop_time = 0;
591 }
592 out:
593 mempool_free(rrq, phba->rrq_pool);
594 }
595
596 /**
597 * lpfc_handle_rrq_active - Checks if RRQ has waithed RATOV.
598 * @phba: Pointer to HBA context object.
599 *
600 * This function is called with hbalock held. This function
601 * Checks if stop_time (ratov from setting rrq active) has
602 * been reached, if it has and the send_rrq flag is set then
603 * it will call lpfc_send_rrq. If the send_rrq flag is not set
604 * then it will just call the routine to clear the rrq and
605 * free the rrq resource.
606 * The timer is set to the next rrq that is going to expire before
607 * leaving the routine.
608 *
609 **/
610 void
611 lpfc_handle_rrq_active(struct lpfc_hba *phba)
612 {
613 struct lpfc_node_rrq *rrq;
614 struct lpfc_node_rrq *nextrrq;
615 unsigned long next_time;
616 unsigned long iflags;
617 LIST_HEAD(send_rrq);
618
619 spin_lock_irqsave(&phba->hbalock, iflags);
620 phba->hba_flag &= ~HBA_RRQ_ACTIVE;
621 next_time = jiffies + HZ * (phba->fc_ratov + 1);
622 list_for_each_entry_safe(rrq, nextrrq,
623 &phba->active_rrq_list, list) {
624 if (time_after(jiffies, rrq->rrq_stop_time))
625 list_move(&rrq->list, &send_rrq);
626 else if (time_before(rrq->rrq_stop_time, next_time))
627 next_time = rrq->rrq_stop_time;
628 }
629 spin_unlock_irqrestore(&phba->hbalock, iflags);
630 if (!list_empty(&phba->active_rrq_list))
631 mod_timer(&phba->rrq_tmr, next_time);
632 list_for_each_entry_safe(rrq, nextrrq, &send_rrq, list) {
633 list_del(&rrq->list);
634 if (!rrq->send_rrq)
635 /* this call will free the rrq */
636 lpfc_clr_rrq_active(phba, rrq->xritag, rrq);
637 else if (lpfc_send_rrq(phba, rrq)) {
638 /* if we send the rrq then the completion handler
639 * will clear the bit in the xribitmap.
640 */
641 lpfc_clr_rrq_active(phba, rrq->xritag,
642 rrq);
643 }
644 }
645 }
646
647 /**
648 * lpfc_get_active_rrq - Get the active RRQ for this exchange.
649 * @vport: Pointer to vport context object.
650 * @xri: The xri used in the exchange.
651 * @did: The targets DID for this exchange.
652 *
653 * returns NULL = rrq not found in the phba->active_rrq_list.
654 * rrq = rrq for this xri and target.
655 **/
656 struct lpfc_node_rrq *
657 lpfc_get_active_rrq(struct lpfc_vport *vport, uint16_t xri, uint32_t did)
658 {
659 struct lpfc_hba *phba = vport->phba;
660 struct lpfc_node_rrq *rrq;
661 struct lpfc_node_rrq *nextrrq;
662 unsigned long iflags;
663
664 if (phba->sli_rev != LPFC_SLI_REV4)
665 return NULL;
666 spin_lock_irqsave(&phba->hbalock, iflags);
667 list_for_each_entry_safe(rrq, nextrrq, &phba->active_rrq_list, list) {
668 if (rrq->vport == vport && rrq->xritag == xri &&
669 rrq->nlp_DID == did){
670 list_del(&rrq->list);
671 spin_unlock_irqrestore(&phba->hbalock, iflags);
672 return rrq;
673 }
674 }
675 spin_unlock_irqrestore(&phba->hbalock, iflags);
676 return NULL;
677 }
678
679 /**
680 * lpfc_cleanup_vports_rrqs - Remove and clear the active RRQ for this vport.
681 * @vport: Pointer to vport context object.
682 * @ndlp: Pointer to the lpfc_node_list structure.
683 * If ndlp is NULL Remove all active RRQs for this vport from the
684 * phba->active_rrq_list and clear the rrq.
685 * If ndlp is not NULL then only remove rrqs for this vport & this ndlp.
686 **/
687 void
688 lpfc_cleanup_vports_rrqs(struct lpfc_vport *vport, struct lpfc_nodelist *ndlp)
689
690 {
691 struct lpfc_hba *phba = vport->phba;
692 struct lpfc_node_rrq *rrq;
693 struct lpfc_node_rrq *nextrrq;
694 unsigned long iflags;
695 LIST_HEAD(rrq_list);
696
697 if (phba->sli_rev != LPFC_SLI_REV4)
698 return;
699 if (!ndlp) {
700 lpfc_sli4_vport_delete_els_xri_aborted(vport);
701 lpfc_sli4_vport_delete_fcp_xri_aborted(vport);
702 }
703 spin_lock_irqsave(&phba->hbalock, iflags);
704 list_for_each_entry_safe(rrq, nextrrq, &phba->active_rrq_list, list)
705 if ((rrq->vport == vport) && (!ndlp || rrq->ndlp == ndlp))
706 list_move(&rrq->list, &rrq_list);
707 spin_unlock_irqrestore(&phba->hbalock, iflags);
708
709 list_for_each_entry_safe(rrq, nextrrq, &rrq_list, list) {
710 list_del(&rrq->list);
711 lpfc_clr_rrq_active(phba, rrq->xritag, rrq);
712 }
713 }
714
715 /**
716 * lpfc_cleanup_wt_rrqs - Remove all rrq's from the active list.
717 * @phba: Pointer to HBA context object.
718 *
719 * Remove all rrqs from the phba->active_rrq_list and free them by
720 * calling __lpfc_clr_active_rrq
721 *
722 **/
723 void
724 lpfc_cleanup_wt_rrqs(struct lpfc_hba *phba)
725 {
726 struct lpfc_node_rrq *rrq;
727 struct lpfc_node_rrq *nextrrq;
728 unsigned long next_time;
729 unsigned long iflags;
730 LIST_HEAD(rrq_list);
731
732 if (phba->sli_rev != LPFC_SLI_REV4)
733 return;
734 spin_lock_irqsave(&phba->hbalock, iflags);
735 phba->hba_flag &= ~HBA_RRQ_ACTIVE;
736 next_time = jiffies + HZ * (phba->fc_ratov * 2);
737 list_splice_init(&phba->active_rrq_list, &rrq_list);
738 spin_unlock_irqrestore(&phba->hbalock, iflags);
739
740 list_for_each_entry_safe(rrq, nextrrq, &rrq_list, list) {
741 list_del(&rrq->list);
742 lpfc_clr_rrq_active(phba, rrq->xritag, rrq);
743 }
744 if (!list_empty(&phba->active_rrq_list))
745 mod_timer(&phba->rrq_tmr, next_time);
746 }
747
748
749 /**
750 * lpfc_test_rrq_active - Test RRQ bit in xri_bitmap.
751 * @phba: Pointer to HBA context object.
752 * @ndlp: Targets nodelist pointer for this exchange.
753 * @xritag the xri in the bitmap to test.
754 *
755 * This function is called with hbalock held. This function
756 * returns 0 = rrq not active for this xri
757 * 1 = rrq is valid for this xri.
758 **/
759 int
760 lpfc_test_rrq_active(struct lpfc_hba *phba, struct lpfc_nodelist *ndlp,
761 uint16_t xritag)
762 {
763 if (!ndlp)
764 return 0;
765 if (test_bit(xritag, ndlp->active_rrqs.xri_bitmap))
766 return 1;
767 else
768 return 0;
769 }
770
771 /**
772 * lpfc_set_rrq_active - set RRQ active bit in xri_bitmap.
773 * @phba: Pointer to HBA context object.
774 * @ndlp: nodelist pointer for this target.
775 * @xritag: xri used in this exchange.
776 * @rxid: Remote Exchange ID.
777 * @send_rrq: Flag used to determine if we should send rrq els cmd.
778 *
779 * This function takes the hbalock.
780 * The active bit is always set in the active rrq xri_bitmap even
781 * if there is no slot avaiable for the other rrq information.
782 *
783 * returns 0 rrq actived for this xri
784 * < 0 No memory or invalid ndlp.
785 **/
786 int
787 lpfc_set_rrq_active(struct lpfc_hba *phba, struct lpfc_nodelist *ndlp,
788 uint16_t xritag, uint16_t rxid, uint16_t send_rrq)
789 {
790 unsigned long iflags;
791 struct lpfc_node_rrq *rrq;
792 int empty;
793
794 if (!ndlp)
795 return -EINVAL;
796
797 if (!phba->cfg_enable_rrq)
798 return -EINVAL;
799
800 spin_lock_irqsave(&phba->hbalock, iflags);
801 if (phba->pport->load_flag & FC_UNLOADING) {
802 phba->hba_flag &= ~HBA_RRQ_ACTIVE;
803 goto out;
804 }
805
806 /*
807 * set the active bit even if there is no mem available.
808 */
809 if (NLP_CHK_FREE_REQ(ndlp))
810 goto out;
811
812 if (ndlp->vport && (ndlp->vport->load_flag & FC_UNLOADING))
813 goto out;
814
815 if (test_and_set_bit(xritag, ndlp->active_rrqs.xri_bitmap))
816 goto out;
817
818 spin_unlock_irqrestore(&phba->hbalock, iflags);
819 rrq = mempool_alloc(phba->rrq_pool, GFP_KERNEL);
820 if (!rrq) {
821 lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
822 "3155 Unable to allocate RRQ xri:0x%x rxid:0x%x"
823 " DID:0x%x Send:%d\n",
824 xritag, rxid, ndlp->nlp_DID, send_rrq);
825 return -EINVAL;
826 }
827 rrq->send_rrq = send_rrq;
828 rrq->xritag = xritag;
829 rrq->rrq_stop_time = jiffies + HZ * (phba->fc_ratov + 1);
830 rrq->ndlp = ndlp;
831 rrq->nlp_DID = ndlp->nlp_DID;
832 rrq->vport = ndlp->vport;
833 rrq->rxid = rxid;
834 rrq->send_rrq = send_rrq;
835 spin_lock_irqsave(&phba->hbalock, iflags);
836 empty = list_empty(&phba->active_rrq_list);
837 list_add_tail(&rrq->list, &phba->active_rrq_list);
838 phba->hba_flag |= HBA_RRQ_ACTIVE;
839 if (empty)
840 lpfc_worker_wake_up(phba);
841 spin_unlock_irqrestore(&phba->hbalock, iflags);
842 return 0;
843 out:
844 spin_unlock_irqrestore(&phba->hbalock, iflags);
845 lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
846 "2921 Can't set rrq active xri:0x%x rxid:0x%x"
847 " DID:0x%x Send:%d\n",
848 xritag, rxid, ndlp->nlp_DID, send_rrq);
849 return -EINVAL;
850 }
851
852 /**
853 * __lpfc_sli_get_sglq - Allocates an iocb object from sgl pool
854 * @phba: Pointer to HBA context object.
855 * @piocb: Pointer to the iocbq.
856 *
857 * This function is called with hbalock held. This function
858 * gets a new driver sglq object from the sglq list. If the
859 * list is not empty then it is successful, it returns pointer to the newly
860 * allocated sglq object else it returns NULL.
861 **/
862 static struct lpfc_sglq *
863 __lpfc_sli_get_sglq(struct lpfc_hba *phba, struct lpfc_iocbq *piocbq)
864 {
865 struct list_head *lpfc_sgl_list = &phba->sli4_hba.lpfc_sgl_list;
866 struct lpfc_sglq *sglq = NULL;
867 struct lpfc_sglq *start_sglq = NULL;
868 struct lpfc_scsi_buf *lpfc_cmd;
869 struct lpfc_nodelist *ndlp;
870 int found = 0;
871
872 if (piocbq->iocb_flag & LPFC_IO_FCP) {
873 lpfc_cmd = (struct lpfc_scsi_buf *) piocbq->context1;
874 ndlp = lpfc_cmd->rdata->pnode;
875 } else if ((piocbq->iocb.ulpCommand == CMD_GEN_REQUEST64_CR) &&
876 !(piocbq->iocb_flag & LPFC_IO_LIBDFC))
877 ndlp = piocbq->context_un.ndlp;
878 else
879 ndlp = piocbq->context1;
880
881 list_remove_head(lpfc_sgl_list, sglq, struct lpfc_sglq, list);
882 start_sglq = sglq;
883 while (!found) {
884 if (!sglq)
885 return NULL;
886 if (lpfc_test_rrq_active(phba, ndlp, sglq->sli4_xritag)) {
887 /* This xri has an rrq outstanding for this DID.
888 * put it back in the list and get another xri.
889 */
890 list_add_tail(&sglq->list, lpfc_sgl_list);
891 sglq = NULL;
892 list_remove_head(lpfc_sgl_list, sglq,
893 struct lpfc_sglq, list);
894 if (sglq == start_sglq) {
895 sglq = NULL;
896 break;
897 } else
898 continue;
899 }
900 sglq->ndlp = ndlp;
901 found = 1;
902 phba->sli4_hba.lpfc_sglq_active_list[sglq->sli4_lxritag] = sglq;
903 sglq->state = SGL_ALLOCATED;
904 }
905 return sglq;
906 }
907
908 /**
909 * lpfc_sli_get_iocbq - Allocates an iocb object from iocb pool
910 * @phba: Pointer to HBA context object.
911 *
912 * This function is called with no lock held. This function
913 * allocates a new driver iocb object from the iocb pool. If the
914 * allocation is successful, it returns pointer to the newly
915 * allocated iocb object else it returns NULL.
916 **/
917 struct lpfc_iocbq *
918 lpfc_sli_get_iocbq(struct lpfc_hba *phba)
919 {
920 struct lpfc_iocbq * iocbq = NULL;
921 unsigned long iflags;
922
923 spin_lock_irqsave(&phba->hbalock, iflags);
924 iocbq = __lpfc_sli_get_iocbq(phba);
925 spin_unlock_irqrestore(&phba->hbalock, iflags);
926 return iocbq;
927 }
928
929 /**
930 * __lpfc_sli_release_iocbq_s4 - Release iocb to the iocb pool
931 * @phba: Pointer to HBA context object.
932 * @iocbq: Pointer to driver iocb object.
933 *
934 * This function is called with hbalock held to release driver
935 * iocb object to the iocb pool. The iotag in the iocb object
936 * does not change for each use of the iocb object. This function
937 * clears all other fields of the iocb object when it is freed.
938 * The sqlq structure that holds the xritag and phys and virtual
939 * mappings for the scatter gather list is retrieved from the
940 * active array of sglq. The get of the sglq pointer also clears
941 * the entry in the array. If the status of the IO indiactes that
942 * this IO was aborted then the sglq entry it put on the
943 * lpfc_abts_els_sgl_list until the CQ_ABORTED_XRI is received. If the
944 * IO has good status or fails for any other reason then the sglq
945 * entry is added to the free list (lpfc_sgl_list).
946 **/
947 static void
948 __lpfc_sli_release_iocbq_s4(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq)
949 {
950 struct lpfc_sglq *sglq;
951 size_t start_clean = offsetof(struct lpfc_iocbq, iocb);
952 unsigned long iflag = 0;
953 struct lpfc_sli_ring *pring = &phba->sli.ring[LPFC_ELS_RING];
954
955 if (iocbq->sli4_xritag == NO_XRI)
956 sglq = NULL;
957 else
958 sglq = __lpfc_clear_active_sglq(phba, iocbq->sli4_lxritag);
959
960 if (sglq) {
961 if ((iocbq->iocb_flag & LPFC_EXCHANGE_BUSY) &&
962 (sglq->state != SGL_XRI_ABORTED)) {
963 spin_lock_irqsave(&phba->sli4_hba.abts_sgl_list_lock,
964 iflag);
965 list_add(&sglq->list,
966 &phba->sli4_hba.lpfc_abts_els_sgl_list);
967 spin_unlock_irqrestore(
968 &phba->sli4_hba.abts_sgl_list_lock, iflag);
969 } else {
970 sglq->state = SGL_FREED;
971 sglq->ndlp = NULL;
972 list_add_tail(&sglq->list,
973 &phba->sli4_hba.lpfc_sgl_list);
974
975 /* Check if TXQ queue needs to be serviced */
976 if (pring->txq_cnt)
977 lpfc_worker_wake_up(phba);
978 }
979 }
980
981
982 /*
983 * Clean all volatile data fields, preserve iotag and node struct.
984 */
985 memset((char *)iocbq + start_clean, 0, sizeof(*iocbq) - start_clean);
986 iocbq->sli4_lxritag = NO_XRI;
987 iocbq->sli4_xritag = NO_XRI;
988 list_add_tail(&iocbq->list, &phba->lpfc_iocb_list);
989 }
990
991
992 /**
993 * __lpfc_sli_release_iocbq_s3 - Release iocb to the iocb pool
994 * @phba: Pointer to HBA context object.
995 * @iocbq: Pointer to driver iocb object.
996 *
997 * This function is called with hbalock held to release driver
998 * iocb object to the iocb pool. The iotag in the iocb object
999 * does not change for each use of the iocb object. This function
1000 * clears all other fields of the iocb object when it is freed.
1001 **/
1002 static void
1003 __lpfc_sli_release_iocbq_s3(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq)
1004 {
1005 size_t start_clean = offsetof(struct lpfc_iocbq, iocb);
1006
1007 /*
1008 * Clean all volatile data fields, preserve iotag and node struct.
1009 */
1010 memset((char*)iocbq + start_clean, 0, sizeof(*iocbq) - start_clean);
1011 iocbq->sli4_xritag = NO_XRI;
1012 list_add_tail(&iocbq->list, &phba->lpfc_iocb_list);
1013 }
1014
1015 /**
1016 * __lpfc_sli_release_iocbq - Release iocb to the iocb pool
1017 * @phba: Pointer to HBA context object.
1018 * @iocbq: Pointer to driver iocb object.
1019 *
1020 * This function is called with hbalock held to release driver
1021 * iocb object to the iocb pool. The iotag in the iocb object
1022 * does not change for each use of the iocb object. This function
1023 * clears all other fields of the iocb object when it is freed.
1024 **/
1025 static void
1026 __lpfc_sli_release_iocbq(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq)
1027 {
1028 phba->__lpfc_sli_release_iocbq(phba, iocbq);
1029 phba->iocb_cnt--;
1030 }
1031
1032 /**
1033 * lpfc_sli_release_iocbq - Release iocb to the iocb pool
1034 * @phba: Pointer to HBA context object.
1035 * @iocbq: Pointer to driver iocb object.
1036 *
1037 * This function is called with no lock held to release the iocb to
1038 * iocb pool.
1039 **/
1040 void
1041 lpfc_sli_release_iocbq(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq)
1042 {
1043 unsigned long iflags;
1044
1045 /*
1046 * Clean all volatile data fields, preserve iotag and node struct.
1047 */
1048 spin_lock_irqsave(&phba->hbalock, iflags);
1049 __lpfc_sli_release_iocbq(phba, iocbq);
1050 spin_unlock_irqrestore(&phba->hbalock, iflags);
1051 }
1052
1053 /**
1054 * lpfc_sli_cancel_iocbs - Cancel all iocbs from a list.
1055 * @phba: Pointer to HBA context object.
1056 * @iocblist: List of IOCBs.
1057 * @ulpstatus: ULP status in IOCB command field.
1058 * @ulpWord4: ULP word-4 in IOCB command field.
1059 *
1060 * This function is called with a list of IOCBs to cancel. It cancels the IOCB
1061 * on the list by invoking the complete callback function associated with the
1062 * IOCB with the provided @ulpstatus and @ulpword4 set to the IOCB commond
1063 * fields.
1064 **/
1065 void
1066 lpfc_sli_cancel_iocbs(struct lpfc_hba *phba, struct list_head *iocblist,
1067 uint32_t ulpstatus, uint32_t ulpWord4)
1068 {
1069 struct lpfc_iocbq *piocb;
1070
1071 while (!list_empty(iocblist)) {
1072 list_remove_head(iocblist, piocb, struct lpfc_iocbq, list);
1073
1074 if (!piocb->iocb_cmpl)
1075 lpfc_sli_release_iocbq(phba, piocb);
1076 else {
1077 piocb->iocb.ulpStatus = ulpstatus;
1078 piocb->iocb.un.ulpWord[4] = ulpWord4;
1079 (piocb->iocb_cmpl) (phba, piocb, piocb);
1080 }
1081 }
1082 return;
1083 }
1084
1085 /**
1086 * lpfc_sli_iocb_cmd_type - Get the iocb type
1087 * @iocb_cmnd: iocb command code.
1088 *
1089 * This function is called by ring event handler function to get the iocb type.
1090 * This function translates the iocb command to an iocb command type used to
1091 * decide the final disposition of each completed IOCB.
1092 * The function returns
1093 * LPFC_UNKNOWN_IOCB if it is an unsupported iocb
1094 * LPFC_SOL_IOCB if it is a solicited iocb completion
1095 * LPFC_ABORT_IOCB if it is an abort iocb
1096 * LPFC_UNSOL_IOCB if it is an unsolicited iocb
1097 *
1098 * The caller is not required to hold any lock.
1099 **/
1100 static lpfc_iocb_type
1101 lpfc_sli_iocb_cmd_type(uint8_t iocb_cmnd)
1102 {
1103 lpfc_iocb_type type = LPFC_UNKNOWN_IOCB;
1104
1105 if (iocb_cmnd > CMD_MAX_IOCB_CMD)
1106 return 0;
1107
1108 switch (iocb_cmnd) {
1109 case CMD_XMIT_SEQUENCE_CR:
1110 case CMD_XMIT_SEQUENCE_CX:
1111 case CMD_XMIT_BCAST_CN:
1112 case CMD_XMIT_BCAST_CX:
1113 case CMD_ELS_REQUEST_CR:
1114 case CMD_ELS_REQUEST_CX:
1115 case CMD_CREATE_XRI_CR:
1116 case CMD_CREATE_XRI_CX:
1117 case CMD_GET_RPI_CN:
1118 case CMD_XMIT_ELS_RSP_CX:
1119 case CMD_GET_RPI_CR:
1120 case CMD_FCP_IWRITE_CR:
1121 case CMD_FCP_IWRITE_CX:
1122 case CMD_FCP_IREAD_CR:
1123 case CMD_FCP_IREAD_CX:
1124 case CMD_FCP_ICMND_CR:
1125 case CMD_FCP_ICMND_CX:
1126 case CMD_FCP_TSEND_CX:
1127 case CMD_FCP_TRSP_CX:
1128 case CMD_FCP_TRECEIVE_CX:
1129 case CMD_FCP_AUTO_TRSP_CX:
1130 case CMD_ADAPTER_MSG:
1131 case CMD_ADAPTER_DUMP:
1132 case CMD_XMIT_SEQUENCE64_CR:
1133 case CMD_XMIT_SEQUENCE64_CX:
1134 case CMD_XMIT_BCAST64_CN:
1135 case CMD_XMIT_BCAST64_CX:
1136 case CMD_ELS_REQUEST64_CR:
1137 case CMD_ELS_REQUEST64_CX:
1138 case CMD_FCP_IWRITE64_CR:
1139 case CMD_FCP_IWRITE64_CX:
1140 case CMD_FCP_IREAD64_CR:
1141 case CMD_FCP_IREAD64_CX:
1142 case CMD_FCP_ICMND64_CR:
1143 case CMD_FCP_ICMND64_CX:
1144 case CMD_FCP_TSEND64_CX:
1145 case CMD_FCP_TRSP64_CX:
1146 case CMD_FCP_TRECEIVE64_CX:
1147 case CMD_GEN_REQUEST64_CR:
1148 case CMD_GEN_REQUEST64_CX:
1149 case CMD_XMIT_ELS_RSP64_CX:
1150 case DSSCMD_IWRITE64_CR:
1151 case DSSCMD_IWRITE64_CX:
1152 case DSSCMD_IREAD64_CR:
1153 case DSSCMD_IREAD64_CX:
1154 type = LPFC_SOL_IOCB;
1155 break;
1156 case CMD_ABORT_XRI_CN:
1157 case CMD_ABORT_XRI_CX:
1158 case CMD_CLOSE_XRI_CN:
1159 case CMD_CLOSE_XRI_CX:
1160 case CMD_XRI_ABORTED_CX:
1161 case CMD_ABORT_MXRI64_CN:
1162 case CMD_XMIT_BLS_RSP64_CX:
1163 type = LPFC_ABORT_IOCB;
1164 break;
1165 case CMD_RCV_SEQUENCE_CX:
1166 case CMD_RCV_ELS_REQ_CX:
1167 case CMD_RCV_SEQUENCE64_CX:
1168 case CMD_RCV_ELS_REQ64_CX:
1169 case CMD_ASYNC_STATUS:
1170 case CMD_IOCB_RCV_SEQ64_CX:
1171 case CMD_IOCB_RCV_ELS64_CX:
1172 case CMD_IOCB_RCV_CONT64_CX:
1173 case CMD_IOCB_RET_XRI64_CX:
1174 type = LPFC_UNSOL_IOCB;
1175 break;
1176 case CMD_IOCB_XMIT_MSEQ64_CR:
1177 case CMD_IOCB_XMIT_MSEQ64_CX:
1178 case CMD_IOCB_RCV_SEQ_LIST64_CX:
1179 case CMD_IOCB_RCV_ELS_LIST64_CX:
1180 case CMD_IOCB_CLOSE_EXTENDED_CN:
1181 case CMD_IOCB_ABORT_EXTENDED_CN:
1182 case CMD_IOCB_RET_HBQE64_CN:
1183 case CMD_IOCB_FCP_IBIDIR64_CR:
1184 case CMD_IOCB_FCP_IBIDIR64_CX:
1185 case CMD_IOCB_FCP_ITASKMGT64_CX:
1186 case CMD_IOCB_LOGENTRY_CN:
1187 case CMD_IOCB_LOGENTRY_ASYNC_CN:
1188 printk("%s - Unhandled SLI-3 Command x%x\n",
1189 __func__, iocb_cmnd);
1190 type = LPFC_UNKNOWN_IOCB;
1191 break;
1192 default:
1193 type = LPFC_UNKNOWN_IOCB;
1194 break;
1195 }
1196
1197 return type;
1198 }
1199
1200 /**
1201 * lpfc_sli_ring_map - Issue config_ring mbox for all rings
1202 * @phba: Pointer to HBA context object.
1203 *
1204 * This function is called from SLI initialization code
1205 * to configure every ring of the HBA's SLI interface. The
1206 * caller is not required to hold any lock. This function issues
1207 * a config_ring mailbox command for each ring.
1208 * This function returns zero if successful else returns a negative
1209 * error code.
1210 **/
1211 static int
1212 lpfc_sli_ring_map(struct lpfc_hba *phba)
1213 {
1214 struct lpfc_sli *psli = &phba->sli;
1215 LPFC_MBOXQ_t *pmb;
1216 MAILBOX_t *pmbox;
1217 int i, rc, ret = 0;
1218
1219 pmb = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
1220 if (!pmb)
1221 return -ENOMEM;
1222 pmbox = &pmb->u.mb;
1223 phba->link_state = LPFC_INIT_MBX_CMDS;
1224 for (i = 0; i < psli->num_rings; i++) {
1225 lpfc_config_ring(phba, i, pmb);
1226 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL);
1227 if (rc != MBX_SUCCESS) {
1228 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
1229 "0446 Adapter failed to init (%d), "
1230 "mbxCmd x%x CFG_RING, mbxStatus x%x, "
1231 "ring %d\n",
1232 rc, pmbox->mbxCommand,
1233 pmbox->mbxStatus, i);
1234 phba->link_state = LPFC_HBA_ERROR;
1235 ret = -ENXIO;
1236 break;
1237 }
1238 }
1239 mempool_free(pmb, phba->mbox_mem_pool);
1240 return ret;
1241 }
1242
1243 /**
1244 * lpfc_sli_ringtxcmpl_put - Adds new iocb to the txcmplq
1245 * @phba: Pointer to HBA context object.
1246 * @pring: Pointer to driver SLI ring object.
1247 * @piocb: Pointer to the driver iocb object.
1248 *
1249 * This function is called with hbalock held. The function adds the
1250 * new iocb to txcmplq of the given ring. This function always returns
1251 * 0. If this function is called for ELS ring, this function checks if
1252 * there is a vport associated with the ELS command. This function also
1253 * starts els_tmofunc timer if this is an ELS command.
1254 **/
1255 static int
1256 lpfc_sli_ringtxcmpl_put(struct lpfc_hba *phba, struct lpfc_sli_ring *pring,
1257 struct lpfc_iocbq *piocb)
1258 {
1259 list_add_tail(&piocb->list, &pring->txcmplq);
1260 piocb->iocb_flag |= LPFC_IO_ON_Q;
1261 pring->txcmplq_cnt++;
1262 if (pring->txcmplq_cnt > pring->txcmplq_max)
1263 pring->txcmplq_max = pring->txcmplq_cnt;
1264
1265 if ((unlikely(pring->ringno == LPFC_ELS_RING)) &&
1266 (piocb->iocb.ulpCommand != CMD_ABORT_XRI_CN) &&
1267 (piocb->iocb.ulpCommand != CMD_CLOSE_XRI_CN)) {
1268 if (!piocb->vport)
1269 BUG();
1270 else
1271 mod_timer(&piocb->vport->els_tmofunc,
1272 jiffies + HZ * (phba->fc_ratov << 1));
1273 }
1274
1275
1276 return 0;
1277 }
1278
1279 /**
1280 * lpfc_sli_ringtx_get - Get first element of the txq
1281 * @phba: Pointer to HBA context object.
1282 * @pring: Pointer to driver SLI ring object.
1283 *
1284 * This function is called with hbalock held to get next
1285 * iocb in txq of the given ring. If there is any iocb in
1286 * the txq, the function returns first iocb in the list after
1287 * removing the iocb from the list, else it returns NULL.
1288 **/
1289 struct lpfc_iocbq *
1290 lpfc_sli_ringtx_get(struct lpfc_hba *phba, struct lpfc_sli_ring *pring)
1291 {
1292 struct lpfc_iocbq *cmd_iocb;
1293
1294 list_remove_head((&pring->txq), cmd_iocb, struct lpfc_iocbq, list);
1295 if (cmd_iocb != NULL)
1296 pring->txq_cnt--;
1297 return cmd_iocb;
1298 }
1299
1300 /**
1301 * lpfc_sli_next_iocb_slot - Get next iocb slot in the ring
1302 * @phba: Pointer to HBA context object.
1303 * @pring: Pointer to driver SLI ring object.
1304 *
1305 * This function is called with hbalock held and the caller must post the
1306 * iocb without releasing the lock. If the caller releases the lock,
1307 * iocb slot returned by the function is not guaranteed to be available.
1308 * The function returns pointer to the next available iocb slot if there
1309 * is available slot in the ring, else it returns NULL.
1310 * If the get index of the ring is ahead of the put index, the function
1311 * will post an error attention event to the worker thread to take the
1312 * HBA to offline state.
1313 **/
1314 static IOCB_t *
1315 lpfc_sli_next_iocb_slot (struct lpfc_hba *phba, struct lpfc_sli_ring *pring)
1316 {
1317 struct lpfc_pgp *pgp = &phba->port_gp[pring->ringno];
1318 uint32_t max_cmd_idx = pring->numCiocb;
1319 if ((pring->next_cmdidx == pring->cmdidx) &&
1320 (++pring->next_cmdidx >= max_cmd_idx))
1321 pring->next_cmdidx = 0;
1322
1323 if (unlikely(pring->local_getidx == pring->next_cmdidx)) {
1324
1325 pring->local_getidx = le32_to_cpu(pgp->cmdGetInx);
1326
1327 if (unlikely(pring->local_getidx >= max_cmd_idx)) {
1328 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
1329 "0315 Ring %d issue: portCmdGet %d "
1330 "is bigger than cmd ring %d\n",
1331 pring->ringno,
1332 pring->local_getidx, max_cmd_idx);
1333
1334 phba->link_state = LPFC_HBA_ERROR;
1335 /*
1336 * All error attention handlers are posted to
1337 * worker thread
1338 */
1339 phba->work_ha |= HA_ERATT;
1340 phba->work_hs = HS_FFER3;
1341
1342 lpfc_worker_wake_up(phba);
1343
1344 return NULL;
1345 }
1346
1347 if (pring->local_getidx == pring->next_cmdidx)
1348 return NULL;
1349 }
1350
1351 return lpfc_cmd_iocb(phba, pring);
1352 }
1353
1354 /**
1355 * lpfc_sli_next_iotag - Get an iotag for the iocb
1356 * @phba: Pointer to HBA context object.
1357 * @iocbq: Pointer to driver iocb object.
1358 *
1359 * This function gets an iotag for the iocb. If there is no unused iotag and
1360 * the iocbq_lookup_len < 0xffff, this function allocates a bigger iotag_lookup
1361 * array and assigns a new iotag.
1362 * The function returns the allocated iotag if successful, else returns zero.
1363 * Zero is not a valid iotag.
1364 * The caller is not required to hold any lock.
1365 **/
1366 uint16_t
1367 lpfc_sli_next_iotag(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq)
1368 {
1369 struct lpfc_iocbq **new_arr;
1370 struct lpfc_iocbq **old_arr;
1371 size_t new_len;
1372 struct lpfc_sli *psli = &phba->sli;
1373 uint16_t iotag;
1374
1375 spin_lock_irq(&phba->hbalock);
1376 iotag = psli->last_iotag;
1377 if(++iotag < psli->iocbq_lookup_len) {
1378 psli->last_iotag = iotag;
1379 psli->iocbq_lookup[iotag] = iocbq;
1380 spin_unlock_irq(&phba->hbalock);
1381 iocbq->iotag = iotag;
1382 return iotag;
1383 } else if (psli->iocbq_lookup_len < (0xffff
1384 - LPFC_IOCBQ_LOOKUP_INCREMENT)) {
1385 new_len = psli->iocbq_lookup_len + LPFC_IOCBQ_LOOKUP_INCREMENT;
1386 spin_unlock_irq(&phba->hbalock);
1387 new_arr = kzalloc(new_len * sizeof (struct lpfc_iocbq *),
1388 GFP_KERNEL);
1389 if (new_arr) {
1390 spin_lock_irq(&phba->hbalock);
1391 old_arr = psli->iocbq_lookup;
1392 if (new_len <= psli->iocbq_lookup_len) {
1393 /* highly unprobable case */
1394 kfree(new_arr);
1395 iotag = psli->last_iotag;
1396 if(++iotag < psli->iocbq_lookup_len) {
1397 psli->last_iotag = iotag;
1398 psli->iocbq_lookup[iotag] = iocbq;
1399 spin_unlock_irq(&phba->hbalock);
1400 iocbq->iotag = iotag;
1401 return iotag;
1402 }
1403 spin_unlock_irq(&phba->hbalock);
1404 return 0;
1405 }
1406 if (psli->iocbq_lookup)
1407 memcpy(new_arr, old_arr,
1408 ((psli->last_iotag + 1) *
1409 sizeof (struct lpfc_iocbq *)));
1410 psli->iocbq_lookup = new_arr;
1411 psli->iocbq_lookup_len = new_len;
1412 psli->last_iotag = iotag;
1413 psli->iocbq_lookup[iotag] = iocbq;
1414 spin_unlock_irq(&phba->hbalock);
1415 iocbq->iotag = iotag;
1416 kfree(old_arr);
1417 return iotag;
1418 }
1419 } else
1420 spin_unlock_irq(&phba->hbalock);
1421
1422 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
1423 "0318 Failed to allocate IOTAG.last IOTAG is %d\n",
1424 psli->last_iotag);
1425
1426 return 0;
1427 }
1428
1429 /**
1430 * lpfc_sli_submit_iocb - Submit an iocb to the firmware
1431 * @phba: Pointer to HBA context object.
1432 * @pring: Pointer to driver SLI ring object.
1433 * @iocb: Pointer to iocb slot in the ring.
1434 * @nextiocb: Pointer to driver iocb object which need to be
1435 * posted to firmware.
1436 *
1437 * This function is called with hbalock held to post a new iocb to
1438 * the firmware. This function copies the new iocb to ring iocb slot and
1439 * updates the ring pointers. It adds the new iocb to txcmplq if there is
1440 * a completion call back for this iocb else the function will free the
1441 * iocb object.
1442 **/
1443 static void
1444 lpfc_sli_submit_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring,
1445 IOCB_t *iocb, struct lpfc_iocbq *nextiocb)
1446 {
1447 /*
1448 * Set up an iotag
1449 */
1450 nextiocb->iocb.ulpIoTag = (nextiocb->iocb_cmpl) ? nextiocb->iotag : 0;
1451
1452
1453 if (pring->ringno == LPFC_ELS_RING) {
1454 lpfc_debugfs_slow_ring_trc(phba,
1455 "IOCB cmd ring: wd4:x%08x wd6:x%08x wd7:x%08x",
1456 *(((uint32_t *) &nextiocb->iocb) + 4),
1457 *(((uint32_t *) &nextiocb->iocb) + 6),
1458 *(((uint32_t *) &nextiocb->iocb) + 7));
1459 }
1460
1461 /*
1462 * Issue iocb command to adapter
1463 */
1464 lpfc_sli_pcimem_bcopy(&nextiocb->iocb, iocb, phba->iocb_cmd_size);
1465 wmb();
1466 pring->stats.iocb_cmd++;
1467
1468 /*
1469 * If there is no completion routine to call, we can release the
1470 * IOCB buffer back right now. For IOCBs, like QUE_RING_BUF,
1471 * that have no rsp ring completion, iocb_cmpl MUST be NULL.
1472 */
1473 if (nextiocb->iocb_cmpl)
1474 lpfc_sli_ringtxcmpl_put(phba, pring, nextiocb);
1475 else
1476 __lpfc_sli_release_iocbq(phba, nextiocb);
1477
1478 /*
1479 * Let the HBA know what IOCB slot will be the next one the
1480 * driver will put a command into.
1481 */
1482 pring->cmdidx = pring->next_cmdidx;
1483 writel(pring->cmdidx, &phba->host_gp[pring->ringno].cmdPutInx);
1484 }
1485
1486 /**
1487 * lpfc_sli_update_full_ring - Update the chip attention register
1488 * @phba: Pointer to HBA context object.
1489 * @pring: Pointer to driver SLI ring object.
1490 *
1491 * The caller is not required to hold any lock for calling this function.
1492 * This function updates the chip attention bits for the ring to inform firmware
1493 * that there are pending work to be done for this ring and requests an
1494 * interrupt when there is space available in the ring. This function is
1495 * called when the driver is unable to post more iocbs to the ring due
1496 * to unavailability of space in the ring.
1497 **/
1498 static void
1499 lpfc_sli_update_full_ring(struct lpfc_hba *phba, struct lpfc_sli_ring *pring)
1500 {
1501 int ringno = pring->ringno;
1502
1503 pring->flag |= LPFC_CALL_RING_AVAILABLE;
1504
1505 wmb();
1506
1507 /*
1508 * Set ring 'ringno' to SET R0CE_REQ in Chip Att register.
1509 * The HBA will tell us when an IOCB entry is available.
1510 */
1511 writel((CA_R0ATT|CA_R0CE_REQ) << (ringno*4), phba->CAregaddr);
1512 readl(phba->CAregaddr); /* flush */
1513
1514 pring->stats.iocb_cmd_full++;
1515 }
1516
1517 /**
1518 * lpfc_sli_update_ring - Update chip attention register
1519 * @phba: Pointer to HBA context object.
1520 * @pring: Pointer to driver SLI ring object.
1521 *
1522 * This function updates the chip attention register bit for the
1523 * given ring to inform HBA that there is more work to be done
1524 * in this ring. The caller is not required to hold any lock.
1525 **/
1526 static void
1527 lpfc_sli_update_ring(struct lpfc_hba *phba, struct lpfc_sli_ring *pring)
1528 {
1529 int ringno = pring->ringno;
1530
1531 /*
1532 * Tell the HBA that there is work to do in this ring.
1533 */
1534 if (!(phba->sli3_options & LPFC_SLI3_CRP_ENABLED)) {
1535 wmb();
1536 writel(CA_R0ATT << (ringno * 4), phba->CAregaddr);
1537 readl(phba->CAregaddr); /* flush */
1538 }
1539 }
1540
1541 /**
1542 * lpfc_sli_resume_iocb - Process iocbs in the txq
1543 * @phba: Pointer to HBA context object.
1544 * @pring: Pointer to driver SLI ring object.
1545 *
1546 * This function is called with hbalock held to post pending iocbs
1547 * in the txq to the firmware. This function is called when driver
1548 * detects space available in the ring.
1549 **/
1550 static void
1551 lpfc_sli_resume_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring)
1552 {
1553 IOCB_t *iocb;
1554 struct lpfc_iocbq *nextiocb;
1555
1556 /*
1557 * Check to see if:
1558 * (a) there is anything on the txq to send
1559 * (b) link is up
1560 * (c) link attention events can be processed (fcp ring only)
1561 * (d) IOCB processing is not blocked by the outstanding mbox command.
1562 */
1563 if (pring->txq_cnt &&
1564 lpfc_is_link_up(phba) &&
1565 (pring->ringno != phba->sli.fcp_ring ||
1566 phba->sli.sli_flag & LPFC_PROCESS_LA)) {
1567
1568 while ((iocb = lpfc_sli_next_iocb_slot(phba, pring)) &&
1569 (nextiocb = lpfc_sli_ringtx_get(phba, pring)))
1570 lpfc_sli_submit_iocb(phba, pring, iocb, nextiocb);
1571
1572 if (iocb)
1573 lpfc_sli_update_ring(phba, pring);
1574 else
1575 lpfc_sli_update_full_ring(phba, pring);
1576 }
1577
1578 return;
1579 }
1580
1581 /**
1582 * lpfc_sli_next_hbq_slot - Get next hbq entry for the HBQ
1583 * @phba: Pointer to HBA context object.
1584 * @hbqno: HBQ number.
1585 *
1586 * This function is called with hbalock held to get the next
1587 * available slot for the given HBQ. If there is free slot
1588 * available for the HBQ it will return pointer to the next available
1589 * HBQ entry else it will return NULL.
1590 **/
1591 static struct lpfc_hbq_entry *
1592 lpfc_sli_next_hbq_slot(struct lpfc_hba *phba, uint32_t hbqno)
1593 {
1594 struct hbq_s *hbqp = &phba->hbqs[hbqno];
1595
1596 if (hbqp->next_hbqPutIdx == hbqp->hbqPutIdx &&
1597 ++hbqp->next_hbqPutIdx >= hbqp->entry_count)
1598 hbqp->next_hbqPutIdx = 0;
1599
1600 if (unlikely(hbqp->local_hbqGetIdx == hbqp->next_hbqPutIdx)) {
1601 uint32_t raw_index = phba->hbq_get[hbqno];
1602 uint32_t getidx = le32_to_cpu(raw_index);
1603
1604 hbqp->local_hbqGetIdx = getidx;
1605
1606 if (unlikely(hbqp->local_hbqGetIdx >= hbqp->entry_count)) {
1607 lpfc_printf_log(phba, KERN_ERR,
1608 LOG_SLI | LOG_VPORT,
1609 "1802 HBQ %d: local_hbqGetIdx "
1610 "%u is > than hbqp->entry_count %u\n",
1611 hbqno, hbqp->local_hbqGetIdx,
1612 hbqp->entry_count);
1613
1614 phba->link_state = LPFC_HBA_ERROR;
1615 return NULL;
1616 }
1617
1618 if (hbqp->local_hbqGetIdx == hbqp->next_hbqPutIdx)
1619 return NULL;
1620 }
1621
1622 return (struct lpfc_hbq_entry *) phba->hbqs[hbqno].hbq_virt +
1623 hbqp->hbqPutIdx;
1624 }
1625
1626 /**
1627 * lpfc_sli_hbqbuf_free_all - Free all the hbq buffers
1628 * @phba: Pointer to HBA context object.
1629 *
1630 * This function is called with no lock held to free all the
1631 * hbq buffers while uninitializing the SLI interface. It also
1632 * frees the HBQ buffers returned by the firmware but not yet
1633 * processed by the upper layers.
1634 **/
1635 void
1636 lpfc_sli_hbqbuf_free_all(struct lpfc_hba *phba)
1637 {
1638 struct lpfc_dmabuf *dmabuf, *next_dmabuf;
1639 struct hbq_dmabuf *hbq_buf;
1640 unsigned long flags;
1641 int i, hbq_count;
1642 uint32_t hbqno;
1643
1644 hbq_count = lpfc_sli_hbq_count();
1645 /* Return all memory used by all HBQs */
1646 spin_lock_irqsave(&phba->hbalock, flags);
1647 for (i = 0; i < hbq_count; ++i) {
1648 list_for_each_entry_safe(dmabuf, next_dmabuf,
1649 &phba->hbqs[i].hbq_buffer_list, list) {
1650 hbq_buf = container_of(dmabuf, struct hbq_dmabuf, dbuf);
1651 list_del(&hbq_buf->dbuf.list);
1652 (phba->hbqs[i].hbq_free_buffer)(phba, hbq_buf);
1653 }
1654 phba->hbqs[i].buffer_count = 0;
1655 }
1656 /* Return all HBQ buffer that are in-fly */
1657 list_for_each_entry_safe(dmabuf, next_dmabuf, &phba->rb_pend_list,
1658 list) {
1659 hbq_buf = container_of(dmabuf, struct hbq_dmabuf, dbuf);
1660 list_del(&hbq_buf->dbuf.list);
1661 if (hbq_buf->tag == -1) {
1662 (phba->hbqs[LPFC_ELS_HBQ].hbq_free_buffer)
1663 (phba, hbq_buf);
1664 } else {
1665 hbqno = hbq_buf->tag >> 16;
1666 if (hbqno >= LPFC_MAX_HBQS)
1667 (phba->hbqs[LPFC_ELS_HBQ].hbq_free_buffer)
1668 (phba, hbq_buf);
1669 else
1670 (phba->hbqs[hbqno].hbq_free_buffer)(phba,
1671 hbq_buf);
1672 }
1673 }
1674
1675 /* Mark the HBQs not in use */
1676 phba->hbq_in_use = 0;
1677 spin_unlock_irqrestore(&phba->hbalock, flags);
1678 }
1679
1680 /**
1681 * lpfc_sli_hbq_to_firmware - Post the hbq buffer to firmware
1682 * @phba: Pointer to HBA context object.
1683 * @hbqno: HBQ number.
1684 * @hbq_buf: Pointer to HBQ buffer.
1685 *
1686 * This function is called with the hbalock held to post a
1687 * hbq buffer to the firmware. If the function finds an empty
1688 * slot in the HBQ, it will post the buffer. The function will return
1689 * pointer to the hbq entry if it successfully post the buffer
1690 * else it will return NULL.
1691 **/
1692 static int
1693 lpfc_sli_hbq_to_firmware(struct lpfc_hba *phba, uint32_t hbqno,
1694 struct hbq_dmabuf *hbq_buf)
1695 {
1696 return phba->lpfc_sli_hbq_to_firmware(phba, hbqno, hbq_buf);
1697 }
1698
1699 /**
1700 * lpfc_sli_hbq_to_firmware_s3 - Post the hbq buffer to SLI3 firmware
1701 * @phba: Pointer to HBA context object.
1702 * @hbqno: HBQ number.
1703 * @hbq_buf: Pointer to HBQ buffer.
1704 *
1705 * This function is called with the hbalock held to post a hbq buffer to the
1706 * firmware. If the function finds an empty slot in the HBQ, it will post the
1707 * buffer and place it on the hbq_buffer_list. The function will return zero if
1708 * it successfully post the buffer else it will return an error.
1709 **/
1710 static int
1711 lpfc_sli_hbq_to_firmware_s3(struct lpfc_hba *phba, uint32_t hbqno,
1712 struct hbq_dmabuf *hbq_buf)
1713 {
1714 struct lpfc_hbq_entry *hbqe;
1715 dma_addr_t physaddr = hbq_buf->dbuf.phys;
1716
1717 /* Get next HBQ entry slot to use */
1718 hbqe = lpfc_sli_next_hbq_slot(phba, hbqno);
1719 if (hbqe) {
1720 struct hbq_s *hbqp = &phba->hbqs[hbqno];
1721
1722 hbqe->bde.addrHigh = le32_to_cpu(putPaddrHigh(physaddr));
1723 hbqe->bde.addrLow = le32_to_cpu(putPaddrLow(physaddr));
1724 hbqe->bde.tus.f.bdeSize = hbq_buf->size;
1725 hbqe->bde.tus.f.bdeFlags = 0;
1726 hbqe->bde.tus.w = le32_to_cpu(hbqe->bde.tus.w);
1727 hbqe->buffer_tag = le32_to_cpu(hbq_buf->tag);
1728 /* Sync SLIM */
1729 hbqp->hbqPutIdx = hbqp->next_hbqPutIdx;
1730 writel(hbqp->hbqPutIdx, phba->hbq_put + hbqno);
1731 /* flush */
1732 readl(phba->hbq_put + hbqno);
1733 list_add_tail(&hbq_buf->dbuf.list, &hbqp->hbq_buffer_list);
1734 return 0;
1735 } else
1736 return -ENOMEM;
1737 }
1738
1739 /**
1740 * lpfc_sli_hbq_to_firmware_s4 - Post the hbq buffer to SLI4 firmware
1741 * @phba: Pointer to HBA context object.
1742 * @hbqno: HBQ number.
1743 * @hbq_buf: Pointer to HBQ buffer.
1744 *
1745 * This function is called with the hbalock held to post an RQE to the SLI4
1746 * firmware. If able to post the RQE to the RQ it will queue the hbq entry to
1747 * the hbq_buffer_list and return zero, otherwise it will return an error.
1748 **/
1749 static int
1750 lpfc_sli_hbq_to_firmware_s4(struct lpfc_hba *phba, uint32_t hbqno,
1751 struct hbq_dmabuf *hbq_buf)
1752 {
1753 int rc;
1754 struct lpfc_rqe hrqe;
1755 struct lpfc_rqe drqe;
1756
1757 hrqe.address_lo = putPaddrLow(hbq_buf->hbuf.phys);
1758 hrqe.address_hi = putPaddrHigh(hbq_buf->hbuf.phys);
1759 drqe.address_lo = putPaddrLow(hbq_buf->dbuf.phys);
1760 drqe.address_hi = putPaddrHigh(hbq_buf->dbuf.phys);
1761 rc = lpfc_sli4_rq_put(phba->sli4_hba.hdr_rq, phba->sli4_hba.dat_rq,
1762 &hrqe, &drqe);
1763 if (rc < 0)
1764 return rc;
1765 hbq_buf->tag = rc;
1766 list_add_tail(&hbq_buf->dbuf.list, &phba->hbqs[hbqno].hbq_buffer_list);
1767 return 0;
1768 }
1769
1770 /* HBQ for ELS and CT traffic. */
1771 static struct lpfc_hbq_init lpfc_els_hbq = {
1772 .rn = 1,
1773 .entry_count = 256,
1774 .mask_count = 0,
1775 .profile = 0,
1776 .ring_mask = (1 << LPFC_ELS_RING),
1777 .buffer_count = 0,
1778 .init_count = 40,
1779 .add_count = 40,
1780 };
1781
1782 /* HBQ for the extra ring if needed */
1783 static struct lpfc_hbq_init lpfc_extra_hbq = {
1784 .rn = 1,
1785 .entry_count = 200,
1786 .mask_count = 0,
1787 .profile = 0,
1788 .ring_mask = (1 << LPFC_EXTRA_RING),
1789 .buffer_count = 0,
1790 .init_count = 0,
1791 .add_count = 5,
1792 };
1793
1794 /* Array of HBQs */
1795 struct lpfc_hbq_init *lpfc_hbq_defs[] = {
1796 &lpfc_els_hbq,
1797 &lpfc_extra_hbq,
1798 };
1799
1800 /**
1801 * lpfc_sli_hbqbuf_fill_hbqs - Post more hbq buffers to HBQ
1802 * @phba: Pointer to HBA context object.
1803 * @hbqno: HBQ number.
1804 * @count: Number of HBQ buffers to be posted.
1805 *
1806 * This function is called with no lock held to post more hbq buffers to the
1807 * given HBQ. The function returns the number of HBQ buffers successfully
1808 * posted.
1809 **/
1810 static int
1811 lpfc_sli_hbqbuf_fill_hbqs(struct lpfc_hba *phba, uint32_t hbqno, uint32_t count)
1812 {
1813 uint32_t i, posted = 0;
1814 unsigned long flags;
1815 struct hbq_dmabuf *hbq_buffer;
1816 LIST_HEAD(hbq_buf_list);
1817 if (!phba->hbqs[hbqno].hbq_alloc_buffer)
1818 return 0;
1819
1820 if ((phba->hbqs[hbqno].buffer_count + count) >
1821 lpfc_hbq_defs[hbqno]->entry_count)
1822 count = lpfc_hbq_defs[hbqno]->entry_count -
1823 phba->hbqs[hbqno].buffer_count;
1824 if (!count)
1825 return 0;
1826 /* Allocate HBQ entries */
1827 for (i = 0; i < count; i++) {
1828 hbq_buffer = (phba->hbqs[hbqno].hbq_alloc_buffer)(phba);
1829 if (!hbq_buffer)
1830 break;
1831 list_add_tail(&hbq_buffer->dbuf.list, &hbq_buf_list);
1832 }
1833 /* Check whether HBQ is still in use */
1834 spin_lock_irqsave(&phba->hbalock, flags);
1835 if (!phba->hbq_in_use)
1836 goto err;
1837 while (!list_empty(&hbq_buf_list)) {
1838 list_remove_head(&hbq_buf_list, hbq_buffer, struct hbq_dmabuf,
1839 dbuf.list);
1840 hbq_buffer->tag = (phba->hbqs[hbqno].buffer_count |
1841 (hbqno << 16));
1842 if (!lpfc_sli_hbq_to_firmware(phba, hbqno, hbq_buffer)) {
1843 phba->hbqs[hbqno].buffer_count++;
1844 posted++;
1845 } else
1846 (phba->hbqs[hbqno].hbq_free_buffer)(phba, hbq_buffer);
1847 }
1848 spin_unlock_irqrestore(&phba->hbalock, flags);
1849 return posted;
1850 err:
1851 spin_unlock_irqrestore(&phba->hbalock, flags);
1852 while (!list_empty(&hbq_buf_list)) {
1853 list_remove_head(&hbq_buf_list, hbq_buffer, struct hbq_dmabuf,
1854 dbuf.list);
1855 (phba->hbqs[hbqno].hbq_free_buffer)(phba, hbq_buffer);
1856 }
1857 return 0;
1858 }
1859
1860 /**
1861 * lpfc_sli_hbqbuf_add_hbqs - Post more HBQ buffers to firmware
1862 * @phba: Pointer to HBA context object.
1863 * @qno: HBQ number.
1864 *
1865 * This function posts more buffers to the HBQ. This function
1866 * is called with no lock held. The function returns the number of HBQ entries
1867 * successfully allocated.
1868 **/
1869 int
1870 lpfc_sli_hbqbuf_add_hbqs(struct lpfc_hba *phba, uint32_t qno)
1871 {
1872 if (phba->sli_rev == LPFC_SLI_REV4)
1873 return 0;
1874 else
1875 return lpfc_sli_hbqbuf_fill_hbqs(phba, qno,
1876 lpfc_hbq_defs[qno]->add_count);
1877 }
1878
1879 /**
1880 * lpfc_sli_hbqbuf_init_hbqs - Post initial buffers to the HBQ
1881 * @phba: Pointer to HBA context object.
1882 * @qno: HBQ queue number.
1883 *
1884 * This function is called from SLI initialization code path with
1885 * no lock held to post initial HBQ buffers to firmware. The
1886 * function returns the number of HBQ entries successfully allocated.
1887 **/
1888 static int
1889 lpfc_sli_hbqbuf_init_hbqs(struct lpfc_hba *phba, uint32_t qno)
1890 {
1891 if (phba->sli_rev == LPFC_SLI_REV4)
1892 return lpfc_sli_hbqbuf_fill_hbqs(phba, qno,
1893 lpfc_hbq_defs[qno]->entry_count);
1894 else
1895 return lpfc_sli_hbqbuf_fill_hbqs(phba, qno,
1896 lpfc_hbq_defs[qno]->init_count);
1897 }
1898
1899 /**
1900 * lpfc_sli_hbqbuf_get - Remove the first hbq off of an hbq list
1901 * @phba: Pointer to HBA context object.
1902 * @hbqno: HBQ number.
1903 *
1904 * This function removes the first hbq buffer on an hbq list and returns a
1905 * pointer to that buffer. If it finds no buffers on the list it returns NULL.
1906 **/
1907 static struct hbq_dmabuf *
1908 lpfc_sli_hbqbuf_get(struct list_head *rb_list)
1909 {
1910 struct lpfc_dmabuf *d_buf;
1911
1912 list_remove_head(rb_list, d_buf, struct lpfc_dmabuf, list);
1913 if (!d_buf)
1914 return NULL;
1915 return container_of(d_buf, struct hbq_dmabuf, dbuf);
1916 }
1917
1918 /**
1919 * lpfc_sli_hbqbuf_find - Find the hbq buffer associated with a tag
1920 * @phba: Pointer to HBA context object.
1921 * @tag: Tag of the hbq buffer.
1922 *
1923 * This function is called with hbalock held. This function searches
1924 * for the hbq buffer associated with the given tag in the hbq buffer
1925 * list. If it finds the hbq buffer, it returns the hbq_buffer other wise
1926 * it returns NULL.
1927 **/
1928 static struct hbq_dmabuf *
1929 lpfc_sli_hbqbuf_find(struct lpfc_hba *phba, uint32_t tag)
1930 {
1931 struct lpfc_dmabuf *d_buf;
1932 struct hbq_dmabuf *hbq_buf;
1933 uint32_t hbqno;
1934
1935 hbqno = tag >> 16;
1936 if (hbqno >= LPFC_MAX_HBQS)
1937 return NULL;
1938
1939 spin_lock_irq(&phba->hbalock);
1940 list_for_each_entry(d_buf, &phba->hbqs[hbqno].hbq_buffer_list, list) {
1941 hbq_buf = container_of(d_buf, struct hbq_dmabuf, dbuf);
1942 if (hbq_buf->tag == tag) {
1943 spin_unlock_irq(&phba->hbalock);
1944 return hbq_buf;
1945 }
1946 }
1947 spin_unlock_irq(&phba->hbalock);
1948 lpfc_printf_log(phba, KERN_ERR, LOG_SLI | LOG_VPORT,
1949 "1803 Bad hbq tag. Data: x%x x%x\n",
1950 tag, phba->hbqs[tag >> 16].buffer_count);
1951 return NULL;
1952 }
1953
1954 /**
1955 * lpfc_sli_free_hbq - Give back the hbq buffer to firmware
1956 * @phba: Pointer to HBA context object.
1957 * @hbq_buffer: Pointer to HBQ buffer.
1958 *
1959 * This function is called with hbalock. This function gives back
1960 * the hbq buffer to firmware. If the HBQ does not have space to
1961 * post the buffer, it will free the buffer.
1962 **/
1963 void
1964 lpfc_sli_free_hbq(struct lpfc_hba *phba, struct hbq_dmabuf *hbq_buffer)
1965 {
1966 uint32_t hbqno;
1967
1968 if (hbq_buffer) {
1969 hbqno = hbq_buffer->tag >> 16;
1970 if (lpfc_sli_hbq_to_firmware(phba, hbqno, hbq_buffer))
1971 (phba->hbqs[hbqno].hbq_free_buffer)(phba, hbq_buffer);
1972 }
1973 }
1974
1975 /**
1976 * lpfc_sli_chk_mbx_command - Check if the mailbox is a legitimate mailbox
1977 * @mbxCommand: mailbox command code.
1978 *
1979 * This function is called by the mailbox event handler function to verify
1980 * that the completed mailbox command is a legitimate mailbox command. If the
1981 * completed mailbox is not known to the function, it will return MBX_SHUTDOWN
1982 * and the mailbox event handler will take the HBA offline.
1983 **/
1984 static int
1985 lpfc_sli_chk_mbx_command(uint8_t mbxCommand)
1986 {
1987 uint8_t ret;
1988
1989 switch (mbxCommand) {
1990 case MBX_LOAD_SM:
1991 case MBX_READ_NV:
1992 case MBX_WRITE_NV:
1993 case MBX_WRITE_VPARMS:
1994 case MBX_RUN_BIU_DIAG:
1995 case MBX_INIT_LINK:
1996 case MBX_DOWN_LINK:
1997 case MBX_CONFIG_LINK:
1998 case MBX_CONFIG_RING:
1999 case MBX_RESET_RING:
2000 case MBX_READ_CONFIG:
2001 case MBX_READ_RCONFIG:
2002 case MBX_READ_SPARM:
2003 case MBX_READ_STATUS:
2004 case MBX_READ_RPI:
2005 case MBX_READ_XRI:
2006 case MBX_READ_REV:
2007 case MBX_READ_LNK_STAT:
2008 case MBX_REG_LOGIN:
2009 case MBX_UNREG_LOGIN:
2010 case MBX_CLEAR_LA:
2011 case MBX_DUMP_MEMORY:
2012 case MBX_DUMP_CONTEXT:
2013 case MBX_RUN_DIAGS:
2014 case MBX_RESTART:
2015 case MBX_UPDATE_CFG:
2016 case MBX_DOWN_LOAD:
2017 case MBX_DEL_LD_ENTRY:
2018 case MBX_RUN_PROGRAM:
2019 case MBX_SET_MASK:
2020 case MBX_SET_VARIABLE:
2021 case MBX_UNREG_D_ID:
2022 case MBX_KILL_BOARD:
2023 case MBX_CONFIG_FARP:
2024 case MBX_BEACON:
2025 case MBX_LOAD_AREA:
2026 case MBX_RUN_BIU_DIAG64:
2027 case MBX_CONFIG_PORT:
2028 case MBX_READ_SPARM64:
2029 case MBX_READ_RPI64:
2030 case MBX_REG_LOGIN64:
2031 case MBX_READ_TOPOLOGY:
2032 case MBX_WRITE_WWN:
2033 case MBX_SET_DEBUG:
2034 case MBX_LOAD_EXP_ROM:
2035 case MBX_ASYNCEVT_ENABLE:
2036 case MBX_REG_VPI:
2037 case MBX_UNREG_VPI:
2038 case MBX_HEARTBEAT:
2039 case MBX_PORT_CAPABILITIES:
2040 case MBX_PORT_IOV_CONTROL:
2041 case MBX_SLI4_CONFIG:
2042 case MBX_SLI4_REQ_FTRS:
2043 case MBX_REG_FCFI:
2044 case MBX_UNREG_FCFI:
2045 case MBX_REG_VFI:
2046 case MBX_UNREG_VFI:
2047 case MBX_INIT_VPI:
2048 case MBX_INIT_VFI:
2049 case MBX_RESUME_RPI:
2050 case MBX_READ_EVENT_LOG_STATUS:
2051 case MBX_READ_EVENT_LOG:
2052 case MBX_SECURITY_MGMT:
2053 case MBX_AUTH_PORT:
2054 ret = mbxCommand;
2055 break;
2056 default:
2057 ret = MBX_SHUTDOWN;
2058 break;
2059 }
2060 return ret;
2061 }
2062
2063 /**
2064 * lpfc_sli_wake_mbox_wait - lpfc_sli_issue_mbox_wait mbox completion handler
2065 * @phba: Pointer to HBA context object.
2066 * @pmboxq: Pointer to mailbox command.
2067 *
2068 * This is completion handler function for mailbox commands issued from
2069 * lpfc_sli_issue_mbox_wait function. This function is called by the
2070 * mailbox event handler function with no lock held. This function
2071 * will wake up thread waiting on the wait queue pointed by context1
2072 * of the mailbox.
2073 **/
2074 void
2075 lpfc_sli_wake_mbox_wait(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmboxq)
2076 {
2077 wait_queue_head_t *pdone_q;
2078 unsigned long drvr_flag;
2079
2080 /*
2081 * If pdone_q is empty, the driver thread gave up waiting and
2082 * continued running.
2083 */
2084 pmboxq->mbox_flag |= LPFC_MBX_WAKE;
2085 spin_lock_irqsave(&phba->hbalock, drvr_flag);
2086 pdone_q = (wait_queue_head_t *) pmboxq->context1;
2087 if (pdone_q)
2088 wake_up_interruptible(pdone_q);
2089 spin_unlock_irqrestore(&phba->hbalock, drvr_flag);
2090 return;
2091 }
2092
2093
2094 /**
2095 * lpfc_sli_def_mbox_cmpl - Default mailbox completion handler
2096 * @phba: Pointer to HBA context object.
2097 * @pmb: Pointer to mailbox object.
2098 *
2099 * This function is the default mailbox completion handler. It
2100 * frees the memory resources associated with the completed mailbox
2101 * command. If the completed command is a REG_LOGIN mailbox command,
2102 * this function will issue a UREG_LOGIN to re-claim the RPI.
2103 **/
2104 void
2105 lpfc_sli_def_mbox_cmpl(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmb)
2106 {
2107 struct lpfc_vport *vport = pmb->vport;
2108 struct lpfc_dmabuf *mp;
2109 struct lpfc_nodelist *ndlp;
2110 struct Scsi_Host *shost;
2111 uint16_t rpi, vpi;
2112 int rc;
2113
2114 mp = (struct lpfc_dmabuf *) (pmb->context1);
2115
2116 if (mp) {
2117 lpfc_mbuf_free(phba, mp->virt, mp->phys);
2118 kfree(mp);
2119 }
2120
2121 /*
2122 * If a REG_LOGIN succeeded after node is destroyed or node
2123 * is in re-discovery driver need to cleanup the RPI.
2124 */
2125 if (!(phba->pport->load_flag & FC_UNLOADING) &&
2126 pmb->u.mb.mbxCommand == MBX_REG_LOGIN64 &&
2127 !pmb->u.mb.mbxStatus) {
2128 rpi = pmb->u.mb.un.varWords[0];
2129 vpi = pmb->u.mb.un.varRegLogin.vpi;
2130 lpfc_unreg_login(phba, vpi, rpi, pmb);
2131 pmb->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
2132 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT);
2133 if (rc != MBX_NOT_FINISHED)
2134 return;
2135 }
2136
2137 if ((pmb->u.mb.mbxCommand == MBX_REG_VPI) &&
2138 !(phba->pport->load_flag & FC_UNLOADING) &&
2139 !pmb->u.mb.mbxStatus) {
2140 shost = lpfc_shost_from_vport(vport);
2141 spin_lock_irq(shost->host_lock);
2142 vport->vpi_state |= LPFC_VPI_REGISTERED;
2143 vport->fc_flag &= ~FC_VPORT_NEEDS_REG_VPI;
2144 spin_unlock_irq(shost->host_lock);
2145 }
2146
2147 if (pmb->u.mb.mbxCommand == MBX_REG_LOGIN64) {
2148 ndlp = (struct lpfc_nodelist *)pmb->context2;
2149 lpfc_nlp_put(ndlp);
2150 pmb->context2 = NULL;
2151 }
2152
2153 /* Check security permission status on INIT_LINK mailbox command */
2154 if ((pmb->u.mb.mbxCommand == MBX_INIT_LINK) &&
2155 (pmb->u.mb.mbxStatus == MBXERR_SEC_NO_PERMISSION))
2156 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
2157 "2860 SLI authentication is required "
2158 "for INIT_LINK but has not done yet\n");
2159
2160 if (bf_get(lpfc_mqe_command, &pmb->u.mqe) == MBX_SLI4_CONFIG)
2161 lpfc_sli4_mbox_cmd_free(phba, pmb);
2162 else
2163 mempool_free(pmb, phba->mbox_mem_pool);
2164 }
2165
2166 /**
2167 * lpfc_sli_handle_mb_event - Handle mailbox completions from firmware
2168 * @phba: Pointer to HBA context object.
2169 *
2170 * This function is called with no lock held. This function processes all
2171 * the completed mailbox commands and gives it to upper layers. The interrupt
2172 * service routine processes mailbox completion interrupt and adds completed
2173 * mailbox commands to the mboxq_cmpl queue and signals the worker thread.
2174 * Worker thread call lpfc_sli_handle_mb_event, which will return the
2175 * completed mailbox commands in mboxq_cmpl queue to the upper layers. This
2176 * function returns the mailbox commands to the upper layer by calling the
2177 * completion handler function of each mailbox.
2178 **/
2179 int
2180 lpfc_sli_handle_mb_event(struct lpfc_hba *phba)
2181 {
2182 MAILBOX_t *pmbox;
2183 LPFC_MBOXQ_t *pmb;
2184 int rc;
2185 LIST_HEAD(cmplq);
2186
2187 phba->sli.slistat.mbox_event++;
2188
2189 /* Get all completed mailboxe buffers into the cmplq */
2190 spin_lock_irq(&phba->hbalock);
2191 list_splice_init(&phba->sli.mboxq_cmpl, &cmplq);
2192 spin_unlock_irq(&phba->hbalock);
2193
2194 /* Get a Mailbox buffer to setup mailbox commands for callback */
2195 do {
2196 list_remove_head(&cmplq, pmb, LPFC_MBOXQ_t, list);
2197 if (pmb == NULL)
2198 break;
2199
2200 pmbox = &pmb->u.mb;
2201
2202 if (pmbox->mbxCommand != MBX_HEARTBEAT) {
2203 if (pmb->vport) {
2204 lpfc_debugfs_disc_trc(pmb->vport,
2205 LPFC_DISC_TRC_MBOX_VPORT,
2206 "MBOX cmpl vport: cmd:x%x mb:x%x x%x",
2207 (uint32_t)pmbox->mbxCommand,
2208 pmbox->un.varWords[0],
2209 pmbox->un.varWords[1]);
2210 }
2211 else {
2212 lpfc_debugfs_disc_trc(phba->pport,
2213 LPFC_DISC_TRC_MBOX,
2214 "MBOX cmpl: cmd:x%x mb:x%x x%x",
2215 (uint32_t)pmbox->mbxCommand,
2216 pmbox->un.varWords[0],
2217 pmbox->un.varWords[1]);
2218 }
2219 }
2220
2221 /*
2222 * It is a fatal error if unknown mbox command completion.
2223 */
2224 if (lpfc_sli_chk_mbx_command(pmbox->mbxCommand) ==
2225 MBX_SHUTDOWN) {
2226 /* Unknown mailbox command compl */
2227 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
2228 "(%d):0323 Unknown Mailbox command "
2229 "x%x (x%x/x%x) Cmpl\n",
2230 pmb->vport ? pmb->vport->vpi : 0,
2231 pmbox->mbxCommand,
2232 lpfc_sli_config_mbox_subsys_get(phba,
2233 pmb),
2234 lpfc_sli_config_mbox_opcode_get(phba,
2235 pmb));
2236 phba->link_state = LPFC_HBA_ERROR;
2237 phba->work_hs = HS_FFER3;
2238 lpfc_handle_eratt(phba);
2239 continue;
2240 }
2241
2242 if (pmbox->mbxStatus) {
2243 phba->sli.slistat.mbox_stat_err++;
2244 if (pmbox->mbxStatus == MBXERR_NO_RESOURCES) {
2245 /* Mbox cmd cmpl error - RETRYing */
2246 lpfc_printf_log(phba, KERN_INFO,
2247 LOG_MBOX | LOG_SLI,
2248 "(%d):0305 Mbox cmd cmpl "
2249 "error - RETRYing Data: x%x "
2250 "(x%x/x%x) x%x x%x x%x\n",
2251 pmb->vport ? pmb->vport->vpi : 0,
2252 pmbox->mbxCommand,
2253 lpfc_sli_config_mbox_subsys_get(phba,
2254 pmb),
2255 lpfc_sli_config_mbox_opcode_get(phba,
2256 pmb),
2257 pmbox->mbxStatus,
2258 pmbox->un.varWords[0],
2259 pmb->vport->port_state);
2260 pmbox->mbxStatus = 0;
2261 pmbox->mbxOwner = OWN_HOST;
2262 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT);
2263 if (rc != MBX_NOT_FINISHED)
2264 continue;
2265 }
2266 }
2267
2268 /* Mailbox cmd <cmd> Cmpl <cmpl> */
2269 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI,
2270 "(%d):0307 Mailbox cmd x%x (x%x/x%x) Cmpl x%p "
2271 "Data: x%x x%x x%x x%x x%x x%x x%x x%x x%x\n",
2272 pmb->vport ? pmb->vport->vpi : 0,
2273 pmbox->mbxCommand,
2274 lpfc_sli_config_mbox_subsys_get(phba, pmb),
2275 lpfc_sli_config_mbox_opcode_get(phba, pmb),
2276 pmb->mbox_cmpl,
2277 *((uint32_t *) pmbox),
2278 pmbox->un.varWords[0],
2279 pmbox->un.varWords[1],
2280 pmbox->un.varWords[2],
2281 pmbox->un.varWords[3],
2282 pmbox->un.varWords[4],
2283 pmbox->un.varWords[5],
2284 pmbox->un.varWords[6],
2285 pmbox->un.varWords[7]);
2286
2287 if (pmb->mbox_cmpl)
2288 pmb->mbox_cmpl(phba,pmb);
2289 } while (1);
2290 return 0;
2291 }
2292
2293 /**
2294 * lpfc_sli_get_buff - Get the buffer associated with the buffer tag
2295 * @phba: Pointer to HBA context object.
2296 * @pring: Pointer to driver SLI ring object.
2297 * @tag: buffer tag.
2298 *
2299 * This function is called with no lock held. When QUE_BUFTAG_BIT bit
2300 * is set in the tag the buffer is posted for a particular exchange,
2301 * the function will return the buffer without replacing the buffer.
2302 * If the buffer is for unsolicited ELS or CT traffic, this function
2303 * returns the buffer and also posts another buffer to the firmware.
2304 **/
2305 static struct lpfc_dmabuf *
2306 lpfc_sli_get_buff(struct lpfc_hba *phba,
2307 struct lpfc_sli_ring *pring,
2308 uint32_t tag)
2309 {
2310 struct hbq_dmabuf *hbq_entry;
2311
2312 if (tag & QUE_BUFTAG_BIT)
2313 return lpfc_sli_ring_taggedbuf_get(phba, pring, tag);
2314 hbq_entry = lpfc_sli_hbqbuf_find(phba, tag);
2315 if (!hbq_entry)
2316 return NULL;
2317 return &hbq_entry->dbuf;
2318 }
2319
2320 /**
2321 * lpfc_complete_unsol_iocb - Complete an unsolicited sequence
2322 * @phba: Pointer to HBA context object.
2323 * @pring: Pointer to driver SLI ring object.
2324 * @saveq: Pointer to the iocbq struct representing the sequence starting frame.
2325 * @fch_r_ctl: the r_ctl for the first frame of the sequence.
2326 * @fch_type: the type for the first frame of the sequence.
2327 *
2328 * This function is called with no lock held. This function uses the r_ctl and
2329 * type of the received sequence to find the correct callback function to call
2330 * to process the sequence.
2331 **/
2332 static int
2333 lpfc_complete_unsol_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring,
2334 struct lpfc_iocbq *saveq, uint32_t fch_r_ctl,
2335 uint32_t fch_type)
2336 {
2337 int i;
2338
2339 /* unSolicited Responses */
2340 if (pring->prt[0].profile) {
2341 if (pring->prt[0].lpfc_sli_rcv_unsol_event)
2342 (pring->prt[0].lpfc_sli_rcv_unsol_event) (phba, pring,
2343 saveq);
2344 return 1;
2345 }
2346 /* We must search, based on rctl / type
2347 for the right routine */
2348 for (i = 0; i < pring->num_mask; i++) {
2349 if ((pring->prt[i].rctl == fch_r_ctl) &&
2350 (pring->prt[i].type == fch_type)) {
2351 if (pring->prt[i].lpfc_sli_rcv_unsol_event)
2352 (pring->prt[i].lpfc_sli_rcv_unsol_event)
2353 (phba, pring, saveq);
2354 return 1;
2355 }
2356 }
2357 return 0;
2358 }
2359
2360 /**
2361 * lpfc_sli_process_unsol_iocb - Unsolicited iocb handler
2362 * @phba: Pointer to HBA context object.
2363 * @pring: Pointer to driver SLI ring object.
2364 * @saveq: Pointer to the unsolicited iocb.
2365 *
2366 * This function is called with no lock held by the ring event handler
2367 * when there is an unsolicited iocb posted to the response ring by the
2368 * firmware. This function gets the buffer associated with the iocbs
2369 * and calls the event handler for the ring. This function handles both
2370 * qring buffers and hbq buffers.
2371 * When the function returns 1 the caller can free the iocb object otherwise
2372 * upper layer functions will free the iocb objects.
2373 **/
2374 static int
2375 lpfc_sli_process_unsol_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring,
2376 struct lpfc_iocbq *saveq)
2377 {
2378 IOCB_t * irsp;
2379 WORD5 * w5p;
2380 uint32_t Rctl, Type;
2381 uint32_t match;
2382 struct lpfc_iocbq *iocbq;
2383 struct lpfc_dmabuf *dmzbuf;
2384
2385 match = 0;
2386 irsp = &(saveq->iocb);
2387
2388 if (irsp->ulpCommand == CMD_ASYNC_STATUS) {
2389 if (pring->lpfc_sli_rcv_async_status)
2390 pring->lpfc_sli_rcv_async_status(phba, pring, saveq);
2391 else
2392 lpfc_printf_log(phba,
2393 KERN_WARNING,
2394 LOG_SLI,
2395 "0316 Ring %d handler: unexpected "
2396 "ASYNC_STATUS iocb received evt_code "
2397 "0x%x\n",
2398 pring->ringno,
2399 irsp->un.asyncstat.evt_code);
2400 return 1;
2401 }
2402
2403 if ((irsp->ulpCommand == CMD_IOCB_RET_XRI64_CX) &&
2404 (phba->sli3_options & LPFC_SLI3_HBQ_ENABLED)) {
2405 if (irsp->ulpBdeCount > 0) {
2406 dmzbuf = lpfc_sli_get_buff(phba, pring,
2407 irsp->un.ulpWord[3]);
2408 lpfc_in_buf_free(phba, dmzbuf);
2409 }
2410
2411 if (irsp->ulpBdeCount > 1) {
2412 dmzbuf = lpfc_sli_get_buff(phba, pring,
2413 irsp->unsli3.sli3Words[3]);
2414 lpfc_in_buf_free(phba, dmzbuf);
2415 }
2416
2417 if (irsp->ulpBdeCount > 2) {
2418 dmzbuf = lpfc_sli_get_buff(phba, pring,
2419 irsp->unsli3.sli3Words[7]);
2420 lpfc_in_buf_free(phba, dmzbuf);
2421 }
2422
2423 return 1;
2424 }
2425
2426 if (phba->sli3_options & LPFC_SLI3_HBQ_ENABLED) {
2427 if (irsp->ulpBdeCount != 0) {
2428 saveq->context2 = lpfc_sli_get_buff(phba, pring,
2429 irsp->un.ulpWord[3]);
2430 if (!saveq->context2)
2431 lpfc_printf_log(phba,
2432 KERN_ERR,
2433 LOG_SLI,
2434 "0341 Ring %d Cannot find buffer for "
2435 "an unsolicited iocb. tag 0x%x\n",
2436 pring->ringno,
2437 irsp->un.ulpWord[3]);
2438 }
2439 if (irsp->ulpBdeCount == 2) {
2440 saveq->context3 = lpfc_sli_get_buff(phba, pring,
2441 irsp->unsli3.sli3Words[7]);
2442 if (!saveq->context3)
2443 lpfc_printf_log(phba,
2444 KERN_ERR,
2445 LOG_SLI,
2446 "0342 Ring %d Cannot find buffer for an"
2447 " unsolicited iocb. tag 0x%x\n",
2448 pring->ringno,
2449 irsp->unsli3.sli3Words[7]);
2450 }
2451 list_for_each_entry(iocbq, &saveq->list, list) {
2452 irsp = &(iocbq->iocb);
2453 if (irsp->ulpBdeCount != 0) {
2454 iocbq->context2 = lpfc_sli_get_buff(phba, pring,
2455 irsp->un.ulpWord[3]);
2456 if (!iocbq->context2)
2457 lpfc_printf_log(phba,
2458 KERN_ERR,
2459 LOG_SLI,
2460 "0343 Ring %d Cannot find "
2461 "buffer for an unsolicited iocb"
2462 ". tag 0x%x\n", pring->ringno,
2463 irsp->un.ulpWord[3]);
2464 }
2465 if (irsp->ulpBdeCount == 2) {
2466 iocbq->context3 = lpfc_sli_get_buff(phba, pring,
2467 irsp->unsli3.sli3Words[7]);
2468 if (!iocbq->context3)
2469 lpfc_printf_log(phba,
2470 KERN_ERR,
2471 LOG_SLI,
2472 "0344 Ring %d Cannot find "
2473 "buffer for an unsolicited "
2474 "iocb. tag 0x%x\n",
2475 pring->ringno,
2476 irsp->unsli3.sli3Words[7]);
2477 }
2478 }
2479 }
2480 if (irsp->ulpBdeCount != 0 &&
2481 (irsp->ulpCommand == CMD_IOCB_RCV_CONT64_CX ||
2482 irsp->ulpStatus == IOSTAT_INTERMED_RSP)) {
2483 int found = 0;
2484
2485 /* search continue save q for same XRI */
2486 list_for_each_entry(iocbq, &pring->iocb_continue_saveq, clist) {
2487 if (iocbq->iocb.unsli3.rcvsli3.ox_id ==
2488 saveq->iocb.unsli3.rcvsli3.ox_id) {
2489 list_add_tail(&saveq->list, &iocbq->list);
2490 found = 1;
2491 break;
2492 }
2493 }
2494 if (!found)
2495 list_add_tail(&saveq->clist,
2496 &pring->iocb_continue_saveq);
2497 if (saveq->iocb.ulpStatus != IOSTAT_INTERMED_RSP) {
2498 list_del_init(&iocbq->clist);
2499 saveq = iocbq;
2500 irsp = &(saveq->iocb);
2501 } else
2502 return 0;
2503 }
2504 if ((irsp->ulpCommand == CMD_RCV_ELS_REQ64_CX) ||
2505 (irsp->ulpCommand == CMD_RCV_ELS_REQ_CX) ||
2506 (irsp->ulpCommand == CMD_IOCB_RCV_ELS64_CX)) {
2507 Rctl = FC_RCTL_ELS_REQ;
2508 Type = FC_TYPE_ELS;
2509 } else {
2510 w5p = (WORD5 *)&(saveq->iocb.un.ulpWord[5]);
2511 Rctl = w5p->hcsw.Rctl;
2512 Type = w5p->hcsw.Type;
2513
2514 /* Firmware Workaround */
2515 if ((Rctl == 0) && (pring->ringno == LPFC_ELS_RING) &&
2516 (irsp->ulpCommand == CMD_RCV_SEQUENCE64_CX ||
2517 irsp->ulpCommand == CMD_IOCB_RCV_SEQ64_CX)) {
2518 Rctl = FC_RCTL_ELS_REQ;
2519 Type = FC_TYPE_ELS;
2520 w5p->hcsw.Rctl = Rctl;
2521 w5p->hcsw.Type = Type;
2522 }
2523 }
2524
2525 if (!lpfc_complete_unsol_iocb(phba, pring, saveq, Rctl, Type))
2526 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
2527 "0313 Ring %d handler: unexpected Rctl x%x "
2528 "Type x%x received\n",
2529 pring->ringno, Rctl, Type);
2530
2531 return 1;
2532 }
2533
2534 /**
2535 * lpfc_sli_iocbq_lookup - Find command iocb for the given response iocb
2536 * @phba: Pointer to HBA context object.
2537 * @pring: Pointer to driver SLI ring object.
2538 * @prspiocb: Pointer to response iocb object.
2539 *
2540 * This function looks up the iocb_lookup table to get the command iocb
2541 * corresponding to the given response iocb using the iotag of the
2542 * response iocb. This function is called with the hbalock held.
2543 * This function returns the command iocb object if it finds the command
2544 * iocb else returns NULL.
2545 **/
2546 static struct lpfc_iocbq *
2547 lpfc_sli_iocbq_lookup(struct lpfc_hba *phba,
2548 struct lpfc_sli_ring *pring,
2549 struct lpfc_iocbq *prspiocb)
2550 {
2551 struct lpfc_iocbq *cmd_iocb = NULL;
2552 uint16_t iotag;
2553
2554 iotag = prspiocb->iocb.ulpIoTag;
2555
2556 if (iotag != 0 && iotag <= phba->sli.last_iotag) {
2557 cmd_iocb = phba->sli.iocbq_lookup[iotag];
2558 list_del_init(&cmd_iocb->list);
2559 if (cmd_iocb->iocb_flag & LPFC_IO_ON_Q) {
2560 pring->txcmplq_cnt--;
2561 cmd_iocb->iocb_flag &= ~LPFC_IO_ON_Q;
2562 }
2563 return cmd_iocb;
2564 }
2565
2566 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
2567 "0317 iotag x%x is out off "
2568 "range: max iotag x%x wd0 x%x\n",
2569 iotag, phba->sli.last_iotag,
2570 *(((uint32_t *) &prspiocb->iocb) + 7));
2571 return NULL;
2572 }
2573
2574 /**
2575 * lpfc_sli_iocbq_lookup_by_tag - Find command iocb for the iotag
2576 * @phba: Pointer to HBA context object.
2577 * @pring: Pointer to driver SLI ring object.
2578 * @iotag: IOCB tag.
2579 *
2580 * This function looks up the iocb_lookup table to get the command iocb
2581 * corresponding to the given iotag. This function is called with the
2582 * hbalock held.
2583 * This function returns the command iocb object if it finds the command
2584 * iocb else returns NULL.
2585 **/
2586 static struct lpfc_iocbq *
2587 lpfc_sli_iocbq_lookup_by_tag(struct lpfc_hba *phba,
2588 struct lpfc_sli_ring *pring, uint16_t iotag)
2589 {
2590 struct lpfc_iocbq *cmd_iocb;
2591
2592 if (iotag != 0 && iotag <= phba->sli.last_iotag) {
2593 cmd_iocb = phba->sli.iocbq_lookup[iotag];
2594 list_del_init(&cmd_iocb->list);
2595 if (cmd_iocb->iocb_flag & LPFC_IO_ON_Q) {
2596 cmd_iocb->iocb_flag &= ~LPFC_IO_ON_Q;
2597 pring->txcmplq_cnt--;
2598 }
2599 return cmd_iocb;
2600 }
2601
2602 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
2603 "0372 iotag x%x is out off range: max iotag (x%x)\n",
2604 iotag, phba->sli.last_iotag);
2605 return NULL;
2606 }
2607
2608 /**
2609 * lpfc_sli_process_sol_iocb - process solicited iocb completion
2610 * @phba: Pointer to HBA context object.
2611 * @pring: Pointer to driver SLI ring object.
2612 * @saveq: Pointer to the response iocb to be processed.
2613 *
2614 * This function is called by the ring event handler for non-fcp
2615 * rings when there is a new response iocb in the response ring.
2616 * The caller is not required to hold any locks. This function
2617 * gets the command iocb associated with the response iocb and
2618 * calls the completion handler for the command iocb. If there
2619 * is no completion handler, the function will free the resources
2620 * associated with command iocb. If the response iocb is for
2621 * an already aborted command iocb, the status of the completion
2622 * is changed to IOSTAT_LOCAL_REJECT/IOERR_SLI_ABORTED.
2623 * This function always returns 1.
2624 **/
2625 static int
2626 lpfc_sli_process_sol_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring,
2627 struct lpfc_iocbq *saveq)
2628 {
2629 struct lpfc_iocbq *cmdiocbp;
2630 int rc = 1;
2631 unsigned long iflag;
2632
2633 /* Based on the iotag field, get the cmd IOCB from the txcmplq */
2634 spin_lock_irqsave(&phba->hbalock, iflag);
2635 cmdiocbp = lpfc_sli_iocbq_lookup(phba, pring, saveq);
2636 spin_unlock_irqrestore(&phba->hbalock, iflag);
2637
2638 if (cmdiocbp) {
2639 if (cmdiocbp->iocb_cmpl) {
2640 /*
2641 * If an ELS command failed send an event to mgmt
2642 * application.
2643 */
2644 if (saveq->iocb.ulpStatus &&
2645 (pring->ringno == LPFC_ELS_RING) &&
2646 (cmdiocbp->iocb.ulpCommand ==
2647 CMD_ELS_REQUEST64_CR))
2648 lpfc_send_els_failure_event(phba,
2649 cmdiocbp, saveq);
2650
2651 /*
2652 * Post all ELS completions to the worker thread.
2653 * All other are passed to the completion callback.
2654 */
2655 if (pring->ringno == LPFC_ELS_RING) {
2656 if ((phba->sli_rev < LPFC_SLI_REV4) &&
2657 (cmdiocbp->iocb_flag &
2658 LPFC_DRIVER_ABORTED)) {
2659 spin_lock_irqsave(&phba->hbalock,
2660 iflag);
2661 cmdiocbp->iocb_flag &=
2662 ~LPFC_DRIVER_ABORTED;
2663 spin_unlock_irqrestore(&phba->hbalock,
2664 iflag);
2665 saveq->iocb.ulpStatus =
2666 IOSTAT_LOCAL_REJECT;
2667 saveq->iocb.un.ulpWord[4] =
2668 IOERR_SLI_ABORTED;
2669
2670 /* Firmware could still be in progress
2671 * of DMAing payload, so don't free data
2672 * buffer till after a hbeat.
2673 */
2674 spin_lock_irqsave(&phba->hbalock,
2675 iflag);
2676 saveq->iocb_flag |= LPFC_DELAY_MEM_FREE;
2677 spin_unlock_irqrestore(&phba->hbalock,
2678 iflag);
2679 }
2680 if (phba->sli_rev == LPFC_SLI_REV4) {
2681 if (saveq->iocb_flag &
2682 LPFC_EXCHANGE_BUSY) {
2683 /* Set cmdiocb flag for the
2684 * exchange busy so sgl (xri)
2685 * will not be released until
2686 * the abort xri is received
2687 * from hba.
2688 */
2689 spin_lock_irqsave(
2690 &phba->hbalock, iflag);
2691 cmdiocbp->iocb_flag |=
2692 LPFC_EXCHANGE_BUSY;
2693 spin_unlock_irqrestore(
2694 &phba->hbalock, iflag);
2695 }
2696 if (cmdiocbp->iocb_flag &
2697 LPFC_DRIVER_ABORTED) {
2698 /*
2699 * Clear LPFC_DRIVER_ABORTED
2700 * bit in case it was driver
2701 * initiated abort.
2702 */
2703 spin_lock_irqsave(
2704 &phba->hbalock, iflag);
2705 cmdiocbp->iocb_flag &=
2706 ~LPFC_DRIVER_ABORTED;
2707 spin_unlock_irqrestore(
2708 &phba->hbalock, iflag);
2709 cmdiocbp->iocb.ulpStatus =
2710 IOSTAT_LOCAL_REJECT;
2711 cmdiocbp->iocb.un.ulpWord[4] =
2712 IOERR_ABORT_REQUESTED;
2713 /*
2714 * For SLI4, irsiocb contains
2715 * NO_XRI in sli_xritag, it
2716 * shall not affect releasing
2717 * sgl (xri) process.
2718 */
2719 saveq->iocb.ulpStatus =
2720 IOSTAT_LOCAL_REJECT;
2721 saveq->iocb.un.ulpWord[4] =
2722 IOERR_SLI_ABORTED;
2723 spin_lock_irqsave(
2724 &phba->hbalock, iflag);
2725 saveq->iocb_flag |=
2726 LPFC_DELAY_MEM_FREE;
2727 spin_unlock_irqrestore(
2728 &phba->hbalock, iflag);
2729 }
2730 }
2731 }
2732 (cmdiocbp->iocb_cmpl) (phba, cmdiocbp, saveq);
2733 } else
2734 lpfc_sli_release_iocbq(phba, cmdiocbp);
2735 } else {
2736 /*
2737 * Unknown initiating command based on the response iotag.
2738 * This could be the case on the ELS ring because of
2739 * lpfc_els_abort().
2740 */
2741 if (pring->ringno != LPFC_ELS_RING) {
2742 /*
2743 * Ring <ringno> handler: unexpected completion IoTag
2744 * <IoTag>
2745 */
2746 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
2747 "0322 Ring %d handler: "
2748 "unexpected completion IoTag x%x "
2749 "Data: x%x x%x x%x x%x\n",
2750 pring->ringno,
2751 saveq->iocb.ulpIoTag,
2752 saveq->iocb.ulpStatus,
2753 saveq->iocb.un.ulpWord[4],
2754 saveq->iocb.ulpCommand,
2755 saveq->iocb.ulpContext);
2756 }
2757 }
2758
2759 return rc;
2760 }
2761
2762 /**
2763 * lpfc_sli_rsp_pointers_error - Response ring pointer error handler
2764 * @phba: Pointer to HBA context object.
2765 * @pring: Pointer to driver SLI ring object.
2766 *
2767 * This function is called from the iocb ring event handlers when
2768 * put pointer is ahead of the get pointer for a ring. This function signal
2769 * an error attention condition to the worker thread and the worker
2770 * thread will transition the HBA to offline state.
2771 **/
2772 static void
2773 lpfc_sli_rsp_pointers_error(struct lpfc_hba *phba, struct lpfc_sli_ring *pring)
2774 {
2775 struct lpfc_pgp *pgp = &phba->port_gp[pring->ringno];
2776 /*
2777 * Ring <ringno> handler: portRspPut <portRspPut> is bigger than
2778 * rsp ring <portRspMax>
2779 */
2780 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
2781 "0312 Ring %d handler: portRspPut %d "
2782 "is bigger than rsp ring %d\n",
2783 pring->ringno, le32_to_cpu(pgp->rspPutInx),
2784 pring->numRiocb);
2785
2786 phba->link_state = LPFC_HBA_ERROR;
2787
2788 /*
2789 * All error attention handlers are posted to
2790 * worker thread
2791 */
2792 phba->work_ha |= HA_ERATT;
2793 phba->work_hs = HS_FFER3;
2794
2795 lpfc_worker_wake_up(phba);
2796
2797 return;
2798 }
2799
2800 /**
2801 * lpfc_poll_eratt - Error attention polling timer timeout handler
2802 * @ptr: Pointer to address of HBA context object.
2803 *
2804 * This function is invoked by the Error Attention polling timer when the
2805 * timer times out. It will check the SLI Error Attention register for
2806 * possible attention events. If so, it will post an Error Attention event
2807 * and wake up worker thread to process it. Otherwise, it will set up the
2808 * Error Attention polling timer for the next poll.
2809 **/
2810 void lpfc_poll_eratt(unsigned long ptr)
2811 {
2812 struct lpfc_hba *phba;
2813 uint32_t eratt = 0;
2814
2815 phba = (struct lpfc_hba *)ptr;
2816
2817 /* Check chip HA register for error event */
2818 eratt = lpfc_sli_check_eratt(phba);
2819
2820 if (eratt)
2821 /* Tell the worker thread there is work to do */
2822 lpfc_worker_wake_up(phba);
2823 else
2824 /* Restart the timer for next eratt poll */
2825 mod_timer(&phba->eratt_poll, jiffies +
2826 HZ * LPFC_ERATT_POLL_INTERVAL);
2827 return;
2828 }
2829
2830
2831 /**
2832 * lpfc_sli_handle_fast_ring_event - Handle ring events on FCP ring
2833 * @phba: Pointer to HBA context object.
2834 * @pring: Pointer to driver SLI ring object.
2835 * @mask: Host attention register mask for this ring.
2836 *
2837 * This function is called from the interrupt context when there is a ring
2838 * event for the fcp ring. The caller does not hold any lock.
2839 * The function processes each response iocb in the response ring until it
2840 * finds an iocb with LE bit set and chains all the iocbs up to the iocb with
2841 * LE bit set. The function will call the completion handler of the command iocb
2842 * if the response iocb indicates a completion for a command iocb or it is
2843 * an abort completion. The function will call lpfc_sli_process_unsol_iocb
2844 * function if this is an unsolicited iocb.
2845 * This routine presumes LPFC_FCP_RING handling and doesn't bother
2846 * to check it explicitly.
2847 */
2848 int
2849 lpfc_sli_handle_fast_ring_event(struct lpfc_hba *phba,
2850 struct lpfc_sli_ring *pring, uint32_t mask)
2851 {
2852 struct lpfc_pgp *pgp = &phba->port_gp[pring->ringno];
2853 IOCB_t *irsp = NULL;
2854 IOCB_t *entry = NULL;
2855 struct lpfc_iocbq *cmdiocbq = NULL;
2856 struct lpfc_iocbq rspiocbq;
2857 uint32_t status;
2858 uint32_t portRspPut, portRspMax;
2859 int rc = 1;
2860 lpfc_iocb_type type;
2861 unsigned long iflag;
2862 uint32_t rsp_cmpl = 0;
2863
2864 spin_lock_irqsave(&phba->hbalock, iflag);
2865 pring->stats.iocb_event++;
2866
2867 /*
2868 * The next available response entry should never exceed the maximum
2869 * entries. If it does, treat it as an adapter hardware error.
2870 */
2871 portRspMax = pring->numRiocb;
2872 portRspPut = le32_to_cpu(pgp->rspPutInx);
2873 if (unlikely(portRspPut >= portRspMax)) {
2874 lpfc_sli_rsp_pointers_error(phba, pring);
2875 spin_unlock_irqrestore(&phba->hbalock, iflag);
2876 return 1;
2877 }
2878 if (phba->fcp_ring_in_use) {
2879 spin_unlock_irqrestore(&phba->hbalock, iflag);
2880 return 1;
2881 } else
2882 phba->fcp_ring_in_use = 1;
2883
2884 rmb();
2885 while (pring->rspidx != portRspPut) {
2886 /*
2887 * Fetch an entry off the ring and copy it into a local data
2888 * structure. The copy involves a byte-swap since the
2889 * network byte order and pci byte orders are different.
2890 */
2891 entry = lpfc_resp_iocb(phba, pring);
2892 phba->last_completion_time = jiffies;
2893
2894 if (++pring->rspidx >= portRspMax)
2895 pring->rspidx = 0;
2896
2897 lpfc_sli_pcimem_bcopy((uint32_t *) entry,
2898 (uint32_t *) &rspiocbq.iocb,
2899 phba->iocb_rsp_size);
2900 INIT_LIST_HEAD(&(rspiocbq.list));
2901 irsp = &rspiocbq.iocb;
2902
2903 type = lpfc_sli_iocb_cmd_type(irsp->ulpCommand & CMD_IOCB_MASK);
2904 pring->stats.iocb_rsp++;
2905 rsp_cmpl++;
2906
2907 if (unlikely(irsp->ulpStatus)) {
2908 /*
2909 * If resource errors reported from HBA, reduce
2910 * queuedepths of the SCSI device.
2911 */
2912 if ((irsp->ulpStatus == IOSTAT_LOCAL_REJECT) &&
2913 (irsp->un.ulpWord[4] == IOERR_NO_RESOURCES)) {
2914 spin_unlock_irqrestore(&phba->hbalock, iflag);
2915 phba->lpfc_rampdown_queue_depth(phba);
2916 spin_lock_irqsave(&phba->hbalock, iflag);
2917 }
2918
2919 /* Rsp ring <ringno> error: IOCB */
2920 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
2921 "0336 Rsp Ring %d error: IOCB Data: "
2922 "x%x x%x x%x x%x x%x x%x x%x x%x\n",
2923 pring->ringno,
2924 irsp->un.ulpWord[0],
2925 irsp->un.ulpWord[1],
2926 irsp->un.ulpWord[2],
2927 irsp->un.ulpWord[3],
2928 irsp->un.ulpWord[4],
2929 irsp->un.ulpWord[5],
2930 *(uint32_t *)&irsp->un1,
2931 *((uint32_t *)&irsp->un1 + 1));
2932 }
2933
2934 switch (type) {
2935 case LPFC_ABORT_IOCB:
2936 case LPFC_SOL_IOCB:
2937 /*
2938 * Idle exchange closed via ABTS from port. No iocb
2939 * resources need to be recovered.
2940 */
2941 if (unlikely(irsp->ulpCommand == CMD_XRI_ABORTED_CX)) {
2942 lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
2943 "0333 IOCB cmd 0x%x"
2944 " processed. Skipping"
2945 " completion\n",
2946 irsp->ulpCommand);
2947 break;
2948 }
2949
2950 cmdiocbq = lpfc_sli_iocbq_lookup(phba, pring,
2951 &rspiocbq);
2952 if (unlikely(!cmdiocbq))
2953 break;
2954 if (cmdiocbq->iocb_flag & LPFC_DRIVER_ABORTED)
2955 cmdiocbq->iocb_flag &= ~LPFC_DRIVER_ABORTED;
2956 if (cmdiocbq->iocb_cmpl) {
2957 spin_unlock_irqrestore(&phba->hbalock, iflag);
2958 (cmdiocbq->iocb_cmpl)(phba, cmdiocbq,
2959 &rspiocbq);
2960 spin_lock_irqsave(&phba->hbalock, iflag);
2961 }
2962 break;
2963 case LPFC_UNSOL_IOCB:
2964 spin_unlock_irqrestore(&phba->hbalock, iflag);
2965 lpfc_sli_process_unsol_iocb(phba, pring, &rspiocbq);
2966 spin_lock_irqsave(&phba->hbalock, iflag);
2967 break;
2968 default:
2969 if (irsp->ulpCommand == CMD_ADAPTER_MSG) {
2970 char adaptermsg[LPFC_MAX_ADPTMSG];
2971 memset(adaptermsg, 0, LPFC_MAX_ADPTMSG);
2972 memcpy(&adaptermsg[0], (uint8_t *) irsp,
2973 MAX_MSG_DATA);
2974 dev_warn(&((phba->pcidev)->dev),
2975 "lpfc%d: %s\n",
2976 phba->brd_no, adaptermsg);
2977 } else {
2978 /* Unknown IOCB command */
2979 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
2980 "0334 Unknown IOCB command "
2981 "Data: x%x, x%x x%x x%x x%x\n",
2982 type, irsp->ulpCommand,
2983 irsp->ulpStatus,
2984 irsp->ulpIoTag,
2985 irsp->ulpContext);
2986 }
2987 break;
2988 }
2989
2990 /*
2991 * The response IOCB has been processed. Update the ring
2992 * pointer in SLIM. If the port response put pointer has not
2993 * been updated, sync the pgp->rspPutInx and fetch the new port
2994 * response put pointer.
2995 */
2996 writel(pring->rspidx, &phba->host_gp[pring->ringno].rspGetInx);
2997
2998 if (pring->rspidx == portRspPut)
2999 portRspPut = le32_to_cpu(pgp->rspPutInx);
3000 }
3001
3002 if ((rsp_cmpl > 0) && (mask & HA_R0RE_REQ)) {
3003 pring->stats.iocb_rsp_full++;
3004 status = ((CA_R0ATT | CA_R0RE_RSP) << (pring->ringno * 4));
3005 writel(status, phba->CAregaddr);
3006 readl(phba->CAregaddr);
3007 }
3008 if ((mask & HA_R0CE_RSP) && (pring->flag & LPFC_CALL_RING_AVAILABLE)) {
3009 pring->flag &= ~LPFC_CALL_RING_AVAILABLE;
3010 pring->stats.iocb_cmd_empty++;
3011
3012 /* Force update of the local copy of cmdGetInx */
3013 pring->local_getidx = le32_to_cpu(pgp->cmdGetInx);
3014 lpfc_sli_resume_iocb(phba, pring);
3015
3016 if ((pring->lpfc_sli_cmd_available))
3017 (pring->lpfc_sli_cmd_available) (phba, pring);
3018
3019 }
3020
3021 phba->fcp_ring_in_use = 0;
3022 spin_unlock_irqrestore(&phba->hbalock, iflag);
3023 return rc;
3024 }
3025
3026 /**
3027 * lpfc_sli_sp_handle_rspiocb - Handle slow-path response iocb
3028 * @phba: Pointer to HBA context object.
3029 * @pring: Pointer to driver SLI ring object.
3030 * @rspiocbp: Pointer to driver response IOCB object.
3031 *
3032 * This function is called from the worker thread when there is a slow-path
3033 * response IOCB to process. This function chains all the response iocbs until
3034 * seeing the iocb with the LE bit set. The function will call
3035 * lpfc_sli_process_sol_iocb function if the response iocb indicates a
3036 * completion of a command iocb. The function will call the
3037 * lpfc_sli_process_unsol_iocb function if this is an unsolicited iocb.
3038 * The function frees the resources or calls the completion handler if this
3039 * iocb is an abort completion. The function returns NULL when the response
3040 * iocb has the LE bit set and all the chained iocbs are processed, otherwise
3041 * this function shall chain the iocb on to the iocb_continueq and return the
3042 * response iocb passed in.
3043 **/
3044 static struct lpfc_iocbq *
3045 lpfc_sli_sp_handle_rspiocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring,
3046 struct lpfc_iocbq *rspiocbp)
3047 {
3048 struct lpfc_iocbq *saveq;
3049 struct lpfc_iocbq *cmdiocbp;
3050 struct lpfc_iocbq *next_iocb;
3051 IOCB_t *irsp = NULL;
3052 uint32_t free_saveq;
3053 uint8_t iocb_cmd_type;
3054 lpfc_iocb_type type;
3055 unsigned long iflag;
3056 int rc;
3057
3058 spin_lock_irqsave(&phba->hbalock, iflag);
3059 /* First add the response iocb to the countinueq list */
3060 list_add_tail(&rspiocbp->list, &(pring->iocb_continueq));
3061 pring->iocb_continueq_cnt++;
3062
3063 /* Now, determine whether the list is completed for processing */
3064 irsp = &rspiocbp->iocb;
3065 if (irsp->ulpLe) {
3066 /*
3067 * By default, the driver expects to free all resources
3068 * associated with this iocb completion.
3069 */
3070 free_saveq = 1;
3071 saveq = list_get_first(&pring->iocb_continueq,
3072 struct lpfc_iocbq, list);
3073 irsp = &(saveq->iocb);
3074 list_del_init(&pring->iocb_continueq);
3075 pring->iocb_continueq_cnt = 0;
3076
3077 pring->stats.iocb_rsp++;
3078
3079 /*
3080 * If resource errors reported from HBA, reduce
3081 * queuedepths of the SCSI device.
3082 */
3083 if ((irsp->ulpStatus == IOSTAT_LOCAL_REJECT) &&
3084 (irsp->un.ulpWord[4] == IOERR_NO_RESOURCES)) {
3085 spin_unlock_irqrestore(&phba->hbalock, iflag);
3086 phba->lpfc_rampdown_queue_depth(phba);
3087 spin_lock_irqsave(&phba->hbalock, iflag);
3088 }
3089
3090 if (irsp->ulpStatus) {
3091 /* Rsp ring <ringno> error: IOCB */
3092 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
3093 "0328 Rsp Ring %d error: "
3094 "IOCB Data: "
3095 "x%x x%x x%x x%x "
3096 "x%x x%x x%x x%x "
3097 "x%x x%x x%x x%x "
3098 "x%x x%x x%x x%x\n",
3099 pring->ringno,
3100 irsp->un.ulpWord[0],
3101 irsp->un.ulpWord[1],
3102 irsp->un.ulpWord[2],
3103 irsp->un.ulpWord[3],
3104 irsp->un.ulpWord[4],
3105 irsp->un.ulpWord[5],
3106 *(((uint32_t *) irsp) + 6),
3107 *(((uint32_t *) irsp) + 7),
3108 *(((uint32_t *) irsp) + 8),
3109 *(((uint32_t *) irsp) + 9),
3110 *(((uint32_t *) irsp) + 10),
3111 *(((uint32_t *) irsp) + 11),
3112 *(((uint32_t *) irsp) + 12),
3113 *(((uint32_t *) irsp) + 13),
3114 *(((uint32_t *) irsp) + 14),
3115 *(((uint32_t *) irsp) + 15));
3116 }
3117
3118 /*
3119 * Fetch the IOCB command type and call the correct completion
3120 * routine. Solicited and Unsolicited IOCBs on the ELS ring
3121 * get freed back to the lpfc_iocb_list by the discovery
3122 * kernel thread.
3123 */
3124 iocb_cmd_type = irsp->ulpCommand & CMD_IOCB_MASK;
3125 type = lpfc_sli_iocb_cmd_type(iocb_cmd_type);
3126 switch (type) {
3127 case LPFC_SOL_IOCB:
3128 spin_unlock_irqrestore(&phba->hbalock, iflag);
3129 rc = lpfc_sli_process_sol_iocb(phba, pring, saveq);
3130 spin_lock_irqsave(&phba->hbalock, iflag);
3131 break;
3132
3133 case LPFC_UNSOL_IOCB:
3134 spin_unlock_irqrestore(&phba->hbalock, iflag);
3135 rc = lpfc_sli_process_unsol_iocb(phba, pring, saveq);
3136 spin_lock_irqsave(&phba->hbalock, iflag);
3137 if (!rc)
3138 free_saveq = 0;
3139 break;
3140
3141 case LPFC_ABORT_IOCB:
3142 cmdiocbp = NULL;
3143 if (irsp->ulpCommand != CMD_XRI_ABORTED_CX)
3144 cmdiocbp = lpfc_sli_iocbq_lookup(phba, pring,
3145 saveq);
3146 if (cmdiocbp) {
3147 /* Call the specified completion routine */
3148 if (cmdiocbp->iocb_cmpl) {
3149 spin_unlock_irqrestore(&phba->hbalock,
3150 iflag);
3151 (cmdiocbp->iocb_cmpl)(phba, cmdiocbp,
3152 saveq);
3153 spin_lock_irqsave(&phba->hbalock,
3154 iflag);
3155 } else
3156 __lpfc_sli_release_iocbq(phba,
3157 cmdiocbp);
3158 }
3159 break;
3160
3161 case LPFC_UNKNOWN_IOCB:
3162 if (irsp->ulpCommand == CMD_ADAPTER_MSG) {
3163 char adaptermsg[LPFC_MAX_ADPTMSG];
3164 memset(adaptermsg, 0, LPFC_MAX_ADPTMSG);
3165 memcpy(&adaptermsg[0], (uint8_t *)irsp,
3166 MAX_MSG_DATA);
3167 dev_warn(&((phba->pcidev)->dev),
3168 "lpfc%d: %s\n",
3169 phba->brd_no, adaptermsg);
3170 } else {
3171 /* Unknown IOCB command */
3172 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
3173 "0335 Unknown IOCB "
3174 "command Data: x%x "
3175 "x%x x%x x%x\n",
3176 irsp->ulpCommand,
3177 irsp->ulpStatus,
3178 irsp->ulpIoTag,
3179 irsp->ulpContext);
3180 }
3181 break;
3182 }
3183
3184 if (free_saveq) {
3185 list_for_each_entry_safe(rspiocbp, next_iocb,
3186 &saveq->list, list) {
3187 list_del(&rspiocbp->list);
3188 __lpfc_sli_release_iocbq(phba, rspiocbp);
3189 }
3190 __lpfc_sli_release_iocbq(phba, saveq);
3191 }
3192 rspiocbp = NULL;
3193 }
3194 spin_unlock_irqrestore(&phba->hbalock, iflag);
3195 return rspiocbp;
3196 }
3197
3198 /**
3199 * lpfc_sli_handle_slow_ring_event - Wrapper func for handling slow-path iocbs
3200 * @phba: Pointer to HBA context object.
3201 * @pring: Pointer to driver SLI ring object.
3202 * @mask: Host attention register mask for this ring.
3203 *
3204 * This routine wraps the actual slow_ring event process routine from the
3205 * API jump table function pointer from the lpfc_hba struct.
3206 **/
3207 void
3208 lpfc_sli_handle_slow_ring_event(struct lpfc_hba *phba,
3209 struct lpfc_sli_ring *pring, uint32_t mask)
3210 {
3211 phba->lpfc_sli_handle_slow_ring_event(phba, pring, mask);
3212 }
3213
3214 /**
3215 * lpfc_sli_handle_slow_ring_event_s3 - Handle SLI3 ring event for non-FCP rings
3216 * @phba: Pointer to HBA context object.
3217 * @pring: Pointer to driver SLI ring object.
3218 * @mask: Host attention register mask for this ring.
3219 *
3220 * This function is called from the worker thread when there is a ring event
3221 * for non-fcp rings. The caller does not hold any lock. The function will
3222 * remove each response iocb in the response ring and calls the handle
3223 * response iocb routine (lpfc_sli_sp_handle_rspiocb) to process it.
3224 **/
3225 static void
3226 lpfc_sli_handle_slow_ring_event_s3(struct lpfc_hba *phba,
3227 struct lpfc_sli_ring *pring, uint32_t mask)
3228 {
3229 struct lpfc_pgp *pgp;
3230 IOCB_t *entry;
3231 IOCB_t *irsp = NULL;
3232 struct lpfc_iocbq *rspiocbp = NULL;
3233 uint32_t portRspPut, portRspMax;
3234 unsigned long iflag;
3235 uint32_t status;
3236
3237 pgp = &phba->port_gp[pring->ringno];
3238 spin_lock_irqsave(&phba->hbalock, iflag);
3239 pring->stats.iocb_event++;
3240
3241 /*
3242 * The next available response entry should never exceed the maximum
3243 * entries. If it does, treat it as an adapter hardware error.
3244 */
3245 portRspMax = pring->numRiocb;
3246 portRspPut = le32_to_cpu(pgp->rspPutInx);
3247 if (portRspPut >= portRspMax) {
3248 /*
3249 * Ring <ringno> handler: portRspPut <portRspPut> is bigger than
3250 * rsp ring <portRspMax>
3251 */
3252 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
3253 "0303 Ring %d handler: portRspPut %d "
3254 "is bigger than rsp ring %d\n",
3255 pring->ringno, portRspPut, portRspMax);
3256
3257 phba->link_state = LPFC_HBA_ERROR;
3258 spin_unlock_irqrestore(&phba->hbalock, iflag);
3259
3260 phba->work_hs = HS_FFER3;
3261 lpfc_handle_eratt(phba);
3262
3263 return;
3264 }
3265
3266 rmb();
3267 while (pring->rspidx != portRspPut) {
3268 /*
3269 * Build a completion list and call the appropriate handler.
3270 * The process is to get the next available response iocb, get
3271 * a free iocb from the list, copy the response data into the
3272 * free iocb, insert to the continuation list, and update the
3273 * next response index to slim. This process makes response
3274 * iocb's in the ring available to DMA as fast as possible but
3275 * pays a penalty for a copy operation. Since the iocb is
3276 * only 32 bytes, this penalty is considered small relative to
3277 * the PCI reads for register values and a slim write. When
3278 * the ulpLe field is set, the entire Command has been
3279 * received.
3280 */
3281 entry = lpfc_resp_iocb(phba, pring);
3282
3283 phba->last_completion_time = jiffies;
3284 rspiocbp = __lpfc_sli_get_iocbq(phba);
3285 if (rspiocbp == NULL) {
3286 printk(KERN_ERR "%s: out of buffers! Failing "
3287 "completion.\n", __func__);
3288 break;
3289 }
3290
3291 lpfc_sli_pcimem_bcopy(entry, &rspiocbp->iocb,
3292 phba->iocb_rsp_size);
3293 irsp = &rspiocbp->iocb;
3294
3295 if (++pring->rspidx >= portRspMax)
3296 pring->rspidx = 0;
3297
3298 if (pring->ringno == LPFC_ELS_RING) {
3299 lpfc_debugfs_slow_ring_trc(phba,
3300 "IOCB rsp ring: wd4:x%08x wd6:x%08x wd7:x%08x",
3301 *(((uint32_t *) irsp) + 4),
3302 *(((uint32_t *) irsp) + 6),
3303 *(((uint32_t *) irsp) + 7));
3304 }
3305
3306 writel(pring->rspidx, &phba->host_gp[pring->ringno].rspGetInx);
3307
3308 spin_unlock_irqrestore(&phba->hbalock, iflag);
3309 /* Handle the response IOCB */
3310 rspiocbp = lpfc_sli_sp_handle_rspiocb(phba, pring, rspiocbp);
3311 spin_lock_irqsave(&phba->hbalock, iflag);
3312
3313 /*
3314 * If the port response put pointer has not been updated, sync
3315 * the pgp->rspPutInx in the MAILBOX_tand fetch the new port
3316 * response put pointer.
3317 */
3318 if (pring->rspidx == portRspPut) {
3319 portRspPut = le32_to_cpu(pgp->rspPutInx);
3320 }
3321 } /* while (pring->rspidx != portRspPut) */
3322
3323 if ((rspiocbp != NULL) && (mask & HA_R0RE_REQ)) {
3324 /* At least one response entry has been freed */
3325 pring->stats.iocb_rsp_full++;
3326 /* SET RxRE_RSP in Chip Att register */
3327 status = ((CA_R0ATT | CA_R0RE_RSP) << (pring->ringno * 4));
3328 writel(status, phba->CAregaddr);
3329 readl(phba->CAregaddr); /* flush */
3330 }
3331 if ((mask & HA_R0CE_RSP) && (pring->flag & LPFC_CALL_RING_AVAILABLE)) {
3332 pring->flag &= ~LPFC_CALL_RING_AVAILABLE;
3333 pring->stats.iocb_cmd_empty++;
3334
3335 /* Force update of the local copy of cmdGetInx */
3336 pring->local_getidx = le32_to_cpu(pgp->cmdGetInx);
3337 lpfc_sli_resume_iocb(phba, pring);
3338
3339 if ((pring->lpfc_sli_cmd_available))
3340 (pring->lpfc_sli_cmd_available) (phba, pring);
3341
3342 }
3343
3344 spin_unlock_irqrestore(&phba->hbalock, iflag);
3345 return;
3346 }
3347
3348 /**
3349 * lpfc_sli_handle_slow_ring_event_s4 - Handle SLI4 slow-path els events
3350 * @phba: Pointer to HBA context object.
3351 * @pring: Pointer to driver SLI ring object.
3352 * @mask: Host attention register mask for this ring.
3353 *
3354 * This function is called from the worker thread when there is a pending
3355 * ELS response iocb on the driver internal slow-path response iocb worker
3356 * queue. The caller does not hold any lock. The function will remove each
3357 * response iocb from the response worker queue and calls the handle
3358 * response iocb routine (lpfc_sli_sp_handle_rspiocb) to process it.
3359 **/
3360 static void
3361 lpfc_sli_handle_slow_ring_event_s4(struct lpfc_hba *phba,
3362 struct lpfc_sli_ring *pring, uint32_t mask)
3363 {
3364 struct lpfc_iocbq *irspiocbq;
3365 struct hbq_dmabuf *dmabuf;
3366 struct lpfc_cq_event *cq_event;
3367 unsigned long iflag;
3368
3369 spin_lock_irqsave(&phba->hbalock, iflag);
3370 phba->hba_flag &= ~HBA_SP_QUEUE_EVT;
3371 spin_unlock_irqrestore(&phba->hbalock, iflag);
3372 while (!list_empty(&phba->sli4_hba.sp_queue_event)) {
3373 /* Get the response iocb from the head of work queue */
3374 spin_lock_irqsave(&phba->hbalock, iflag);
3375 list_remove_head(&phba->sli4_hba.sp_queue_event,
3376 cq_event, struct lpfc_cq_event, list);
3377 spin_unlock_irqrestore(&phba->hbalock, iflag);
3378
3379 switch (bf_get(lpfc_wcqe_c_code, &cq_event->cqe.wcqe_cmpl)) {
3380 case CQE_CODE_COMPL_WQE:
3381 irspiocbq = container_of(cq_event, struct lpfc_iocbq,
3382 cq_event);
3383 /* Translate ELS WCQE to response IOCBQ */
3384 irspiocbq = lpfc_sli4_els_wcqe_to_rspiocbq(phba,
3385 irspiocbq);
3386 if (irspiocbq)
3387 lpfc_sli_sp_handle_rspiocb(phba, pring,
3388 irspiocbq);
3389 break;
3390 case CQE_CODE_RECEIVE:
3391 case CQE_CODE_RECEIVE_V1:
3392 dmabuf = container_of(cq_event, struct hbq_dmabuf,
3393 cq_event);
3394 lpfc_sli4_handle_received_buffer(phba, dmabuf);
3395 break;
3396 default:
3397 break;
3398 }
3399 }
3400 }
3401
3402 /**
3403 * lpfc_sli_abort_iocb_ring - Abort all iocbs in the ring
3404 * @phba: Pointer to HBA context object.
3405 * @pring: Pointer to driver SLI ring object.
3406 *
3407 * This function aborts all iocbs in the given ring and frees all the iocb
3408 * objects in txq. This function issues an abort iocb for all the iocb commands
3409 * in txcmplq. The iocbs in the txcmplq is not guaranteed to complete before
3410 * the return of this function. The caller is not required to hold any locks.
3411 **/
3412 void
3413 lpfc_sli_abort_iocb_ring(struct lpfc_hba *phba, struct lpfc_sli_ring *pring)
3414 {
3415 LIST_HEAD(completions);
3416 struct lpfc_iocbq *iocb, *next_iocb;
3417
3418 if (pring->ringno == LPFC_ELS_RING) {
3419 lpfc_fabric_abort_hba(phba);
3420 }
3421
3422 /* Error everything on txq and txcmplq
3423 * First do the txq.
3424 */
3425 spin_lock_irq(&phba->hbalock);
3426 list_splice_init(&pring->txq, &completions);
3427 pring->txq_cnt = 0;
3428
3429 /* Next issue ABTS for everything on the txcmplq */
3430 list_for_each_entry_safe(iocb, next_iocb, &pring->txcmplq, list)
3431 lpfc_sli_issue_abort_iotag(phba, pring, iocb);
3432
3433 spin_unlock_irq(&phba->hbalock);
3434
3435 /* Cancel all the IOCBs from the completions list */
3436 lpfc_sli_cancel_iocbs(phba, &completions, IOSTAT_LOCAL_REJECT,
3437 IOERR_SLI_ABORTED);
3438 }
3439
3440 /**
3441 * lpfc_sli_flush_fcp_rings - flush all iocbs in the fcp ring
3442 * @phba: Pointer to HBA context object.
3443 *
3444 * This function flushes all iocbs in the fcp ring and frees all the iocb
3445 * objects in txq and txcmplq. This function will not issue abort iocbs
3446 * for all the iocb commands in txcmplq, they will just be returned with
3447 * IOERR_SLI_DOWN. This function is invoked with EEH when device's PCI
3448 * slot has been permanently disabled.
3449 **/
3450 void
3451 lpfc_sli_flush_fcp_rings(struct lpfc_hba *phba)
3452 {
3453 LIST_HEAD(txq);
3454 LIST_HEAD(txcmplq);
3455 struct lpfc_sli *psli = &phba->sli;
3456 struct lpfc_sli_ring *pring;
3457
3458 /* Currently, only one fcp ring */
3459 pring = &psli->ring[psli->fcp_ring];
3460
3461 spin_lock_irq(&phba->hbalock);
3462 /* Retrieve everything on txq */
3463 list_splice_init(&pring->txq, &txq);
3464 pring->txq_cnt = 0;
3465
3466 /* Retrieve everything on the txcmplq */
3467 list_splice_init(&pring->txcmplq, &txcmplq);
3468 pring->txcmplq_cnt = 0;
3469 spin_unlock_irq(&phba->hbalock);
3470
3471 /* Flush the txq */
3472 lpfc_sli_cancel_iocbs(phba, &txq, IOSTAT_LOCAL_REJECT,
3473 IOERR_SLI_DOWN);
3474
3475 /* Flush the txcmpq */
3476 lpfc_sli_cancel_iocbs(phba, &txcmplq, IOSTAT_LOCAL_REJECT,
3477 IOERR_SLI_DOWN);
3478 }
3479
3480 /**
3481 * lpfc_sli_brdready_s3 - Check for sli3 host ready status
3482 * @phba: Pointer to HBA context object.
3483 * @mask: Bit mask to be checked.
3484 *
3485 * This function reads the host status register and compares
3486 * with the provided bit mask to check if HBA completed
3487 * the restart. This function will wait in a loop for the
3488 * HBA to complete restart. If the HBA does not restart within
3489 * 15 iterations, the function will reset the HBA again. The
3490 * function returns 1 when HBA fail to restart otherwise returns
3491 * zero.
3492 **/
3493 static int
3494 lpfc_sli_brdready_s3(struct lpfc_hba *phba, uint32_t mask)
3495 {
3496 uint32_t status;
3497 int i = 0;
3498 int retval = 0;
3499
3500 /* Read the HBA Host Status Register */
3501 if (lpfc_readl(phba->HSregaddr, &status))
3502 return 1;
3503
3504 /*
3505 * Check status register every 100ms for 5 retries, then every
3506 * 500ms for 5, then every 2.5 sec for 5, then reset board and
3507 * every 2.5 sec for 4.
3508 * Break our of the loop if errors occurred during init.
3509 */
3510 while (((status & mask) != mask) &&
3511 !(status & HS_FFERM) &&
3512 i++ < 20) {
3513
3514 if (i <= 5)
3515 msleep(10);
3516 else if (i <= 10)
3517 msleep(500);
3518 else
3519 msleep(2500);
3520
3521 if (i == 15) {
3522 /* Do post */
3523 phba->pport->port_state = LPFC_VPORT_UNKNOWN;
3524 lpfc_sli_brdrestart(phba);
3525 }
3526 /* Read the HBA Host Status Register */
3527 if (lpfc_readl(phba->HSregaddr, &status)) {
3528 retval = 1;
3529 break;
3530 }
3531 }
3532
3533 /* Check to see if any errors occurred during init */
3534 if ((status & HS_FFERM) || (i >= 20)) {
3535 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
3536 "2751 Adapter failed to restart, "
3537 "status reg x%x, FW Data: A8 x%x AC x%x\n",
3538 status,
3539 readl(phba->MBslimaddr + 0xa8),
3540 readl(phba->MBslimaddr + 0xac));
3541 phba->link_state = LPFC_HBA_ERROR;
3542 retval = 1;
3543 }
3544
3545 return retval;
3546 }
3547
3548 /**
3549 * lpfc_sli_brdready_s4 - Check for sli4 host ready status
3550 * @phba: Pointer to HBA context object.
3551 * @mask: Bit mask to be checked.
3552 *
3553 * This function checks the host status register to check if HBA is
3554 * ready. This function will wait in a loop for the HBA to be ready
3555 * If the HBA is not ready , the function will will reset the HBA PCI
3556 * function again. The function returns 1 when HBA fail to be ready
3557 * otherwise returns zero.
3558 **/
3559 static int
3560 lpfc_sli_brdready_s4(struct lpfc_hba *phba, uint32_t mask)
3561 {
3562 uint32_t status;
3563 int retval = 0;
3564
3565 /* Read the HBA Host Status Register */
3566 status = lpfc_sli4_post_status_check(phba);
3567
3568 if (status) {
3569 phba->pport->port_state = LPFC_VPORT_UNKNOWN;
3570 lpfc_sli_brdrestart(phba);
3571 status = lpfc_sli4_post_status_check(phba);
3572 }
3573
3574 /* Check to see if any errors occurred during init */
3575 if (status) {
3576 phba->link_state = LPFC_HBA_ERROR;
3577 retval = 1;
3578 } else
3579 phba->sli4_hba.intr_enable = 0;
3580
3581 return retval;
3582 }
3583
3584 /**
3585 * lpfc_sli_brdready - Wrapper func for checking the hba readyness
3586 * @phba: Pointer to HBA context object.
3587 * @mask: Bit mask to be checked.
3588 *
3589 * This routine wraps the actual SLI3 or SLI4 hba readyness check routine
3590 * from the API jump table function pointer from the lpfc_hba struct.
3591 **/
3592 int
3593 lpfc_sli_brdready(struct lpfc_hba *phba, uint32_t mask)
3594 {
3595 return phba->lpfc_sli_brdready(phba, mask);
3596 }
3597
3598 #define BARRIER_TEST_PATTERN (0xdeadbeef)
3599
3600 /**
3601 * lpfc_reset_barrier - Make HBA ready for HBA reset
3602 * @phba: Pointer to HBA context object.
3603 *
3604 * This function is called before resetting an HBA. This function is called
3605 * with hbalock held and requests HBA to quiesce DMAs before a reset.
3606 **/
3607 void lpfc_reset_barrier(struct lpfc_hba *phba)
3608 {
3609 uint32_t __iomem *resp_buf;
3610 uint32_t __iomem *mbox_buf;
3611 volatile uint32_t mbox;
3612 uint32_t hc_copy, ha_copy, resp_data;
3613 int i;
3614 uint8_t hdrtype;
3615
3616 pci_read_config_byte(phba->pcidev, PCI_HEADER_TYPE, &hdrtype);
3617 if (hdrtype != 0x80 ||
3618 (FC_JEDEC_ID(phba->vpd.rev.biuRev) != HELIOS_JEDEC_ID &&
3619 FC_JEDEC_ID(phba->vpd.rev.biuRev) != THOR_JEDEC_ID))
3620 return;
3621
3622 /*
3623 * Tell the other part of the chip to suspend temporarily all
3624 * its DMA activity.
3625 */
3626 resp_buf = phba->MBslimaddr;
3627
3628 /* Disable the error attention */
3629 if (lpfc_readl(phba->HCregaddr, &hc_copy))
3630 return;
3631 writel((hc_copy & ~HC_ERINT_ENA), phba->HCregaddr);
3632 readl(phba->HCregaddr); /* flush */
3633 phba->link_flag |= LS_IGNORE_ERATT;
3634
3635 if (lpfc_readl(phba->HAregaddr, &ha_copy))
3636 return;
3637 if (ha_copy & HA_ERATT) {
3638 /* Clear Chip error bit */
3639 writel(HA_ERATT, phba->HAregaddr);
3640 phba->pport->stopped = 1;
3641 }
3642
3643 mbox = 0;
3644 ((MAILBOX_t *)&mbox)->mbxCommand = MBX_KILL_BOARD;
3645 ((MAILBOX_t *)&mbox)->mbxOwner = OWN_CHIP;
3646
3647 writel(BARRIER_TEST_PATTERN, (resp_buf + 1));
3648 mbox_buf = phba->MBslimaddr;
3649 writel(mbox, mbox_buf);
3650
3651 for (i = 0; i < 50; i++) {
3652 if (lpfc_readl((resp_buf + 1), &resp_data))
3653 return;
3654 if (resp_data != ~(BARRIER_TEST_PATTERN))
3655 mdelay(1);
3656 else
3657 break;
3658 }
3659 resp_data = 0;
3660 if (lpfc_readl((resp_buf + 1), &resp_data))
3661 return;
3662 if (resp_data != ~(BARRIER_TEST_PATTERN)) {
3663 if (phba->sli.sli_flag & LPFC_SLI_ACTIVE ||
3664 phba->pport->stopped)
3665 goto restore_hc;
3666 else
3667 goto clear_errat;
3668 }
3669
3670 ((MAILBOX_t *)&mbox)->mbxOwner = OWN_HOST;
3671 resp_data = 0;
3672 for (i = 0; i < 500; i++) {
3673 if (lpfc_readl(resp_buf, &resp_data))
3674 return;
3675 if (resp_data != mbox)
3676 mdelay(1);
3677 else
3678 break;
3679 }
3680
3681 clear_errat:
3682
3683 while (++i < 500) {
3684 if (lpfc_readl(phba->HAregaddr, &ha_copy))
3685 return;
3686 if (!(ha_copy & HA_ERATT))
3687 mdelay(1);
3688 else
3689 break;
3690 }
3691
3692 if (readl(phba->HAregaddr) & HA_ERATT) {
3693 writel(HA_ERATT, phba->HAregaddr);
3694 phba->pport->stopped = 1;
3695 }
3696
3697 restore_hc:
3698 phba->link_flag &= ~LS_IGNORE_ERATT;
3699 writel(hc_copy, phba->HCregaddr);
3700 readl(phba->HCregaddr); /* flush */
3701 }
3702
3703 /**
3704 * lpfc_sli_brdkill - Issue a kill_board mailbox command
3705 * @phba: Pointer to HBA context object.
3706 *
3707 * This function issues a kill_board mailbox command and waits for
3708 * the error attention interrupt. This function is called for stopping
3709 * the firmware processing. The caller is not required to hold any
3710 * locks. This function calls lpfc_hba_down_post function to free
3711 * any pending commands after the kill. The function will return 1 when it
3712 * fails to kill the board else will return 0.
3713 **/
3714 int
3715 lpfc_sli_brdkill(struct lpfc_hba *phba)
3716 {
3717 struct lpfc_sli *psli;
3718 LPFC_MBOXQ_t *pmb;
3719 uint32_t status;
3720 uint32_t ha_copy;
3721 int retval;
3722 int i = 0;
3723
3724 psli = &phba->sli;
3725
3726 /* Kill HBA */
3727 lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
3728 "0329 Kill HBA Data: x%x x%x\n",
3729 phba->pport->port_state, psli->sli_flag);
3730
3731 pmb = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
3732 if (!pmb)
3733 return 1;
3734
3735 /* Disable the error attention */
3736 spin_lock_irq(&phba->hbalock);
3737 if (lpfc_readl(phba->HCregaddr, &status)) {
3738 spin_unlock_irq(&phba->hbalock);
3739 mempool_free(pmb, phba->mbox_mem_pool);
3740 return 1;
3741 }
3742 status &= ~HC_ERINT_ENA;
3743 writel(status, phba->HCregaddr);
3744 readl(phba->HCregaddr); /* flush */
3745 phba->link_flag |= LS_IGNORE_ERATT;
3746 spin_unlock_irq(&phba->hbalock);
3747
3748 lpfc_kill_board(phba, pmb);
3749 pmb->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
3750 retval = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT);
3751
3752 if (retval != MBX_SUCCESS) {
3753 if (retval != MBX_BUSY)
3754 mempool_free(pmb, phba->mbox_mem_pool);
3755 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
3756 "2752 KILL_BOARD command failed retval %d\n",
3757 retval);
3758 spin_lock_irq(&phba->hbalock);
3759 phba->link_flag &= ~LS_IGNORE_ERATT;
3760 spin_unlock_irq(&phba->hbalock);
3761 return 1;
3762 }
3763
3764 spin_lock_irq(&phba->hbalock);
3765 psli->sli_flag &= ~LPFC_SLI_ACTIVE;
3766 spin_unlock_irq(&phba->hbalock);
3767
3768 mempool_free(pmb, phba->mbox_mem_pool);
3769
3770 /* There is no completion for a KILL_BOARD mbox cmd. Check for an error
3771 * attention every 100ms for 3 seconds. If we don't get ERATT after
3772 * 3 seconds we still set HBA_ERROR state because the status of the
3773 * board is now undefined.
3774 */
3775 if (lpfc_readl(phba->HAregaddr, &ha_copy))
3776 return 1;
3777 while ((i++ < 30) && !(ha_copy & HA_ERATT)) {
3778 mdelay(100);
3779 if (lpfc_readl(phba->HAregaddr, &ha_copy))
3780 return 1;
3781 }
3782
3783 del_timer_sync(&psli->mbox_tmo);
3784 if (ha_copy & HA_ERATT) {
3785 writel(HA_ERATT, phba->HAregaddr);
3786 phba->pport->stopped = 1;
3787 }
3788 spin_lock_irq(&phba->hbalock);
3789 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE;
3790 psli->mbox_active = NULL;
3791 phba->link_flag &= ~LS_IGNORE_ERATT;
3792 spin_unlock_irq(&phba->hbalock);
3793
3794 lpfc_hba_down_post(phba);
3795 phba->link_state = LPFC_HBA_ERROR;
3796
3797 return ha_copy & HA_ERATT ? 0 : 1;
3798 }
3799
3800 /**
3801 * lpfc_sli_brdreset - Reset a sli-2 or sli-3 HBA
3802 * @phba: Pointer to HBA context object.
3803 *
3804 * This function resets the HBA by writing HC_INITFF to the control
3805 * register. After the HBA resets, this function resets all the iocb ring
3806 * indices. This function disables PCI layer parity checking during
3807 * the reset.
3808 * This function returns 0 always.
3809 * The caller is not required to hold any locks.
3810 **/
3811 int
3812 lpfc_sli_brdreset(struct lpfc_hba *phba)
3813 {
3814 struct lpfc_sli *psli;
3815 struct lpfc_sli_ring *pring;
3816 uint16_t cfg_value;
3817 int i;
3818
3819 psli = &phba->sli;
3820
3821 /* Reset HBA */
3822 lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
3823 "0325 Reset HBA Data: x%x x%x\n",
3824 phba->pport->port_state, psli->sli_flag);
3825
3826 /* perform board reset */
3827 phba->fc_eventTag = 0;
3828 phba->link_events = 0;
3829 phba->pport->fc_myDID = 0;
3830 phba->pport->fc_prevDID = 0;
3831
3832 /* Turn off parity checking and serr during the physical reset */
3833 pci_read_config_word(phba->pcidev, PCI_COMMAND, &cfg_value);
3834 pci_write_config_word(phba->pcidev, PCI_COMMAND,
3835 (cfg_value &
3836 ~(PCI_COMMAND_PARITY | PCI_COMMAND_SERR)));
3837
3838 psli->sli_flag &= ~(LPFC_SLI_ACTIVE | LPFC_PROCESS_LA);
3839
3840 /* Now toggle INITFF bit in the Host Control Register */
3841 writel(HC_INITFF, phba->HCregaddr);
3842 mdelay(1);
3843 readl(phba->HCregaddr); /* flush */
3844 writel(0, phba->HCregaddr);
3845 readl(phba->HCregaddr); /* flush */
3846
3847 /* Restore PCI cmd register */
3848 pci_write_config_word(phba->pcidev, PCI_COMMAND, cfg_value);
3849
3850 /* Initialize relevant SLI info */
3851 for (i = 0; i < psli->num_rings; i++) {
3852 pring = &psli->ring[i];
3853 pring->flag = 0;
3854 pring->rspidx = 0;
3855 pring->next_cmdidx = 0;
3856 pring->local_getidx = 0;
3857 pring->cmdidx = 0;
3858 pring->missbufcnt = 0;
3859 }
3860
3861 phba->link_state = LPFC_WARM_START;
3862 return 0;
3863 }
3864
3865 /**
3866 * lpfc_sli4_brdreset - Reset a sli-4 HBA
3867 * @phba: Pointer to HBA context object.
3868 *
3869 * This function resets a SLI4 HBA. This function disables PCI layer parity
3870 * checking during resets the device. The caller is not required to hold
3871 * any locks.
3872 *
3873 * This function returns 0 always.
3874 **/
3875 int
3876 lpfc_sli4_brdreset(struct lpfc_hba *phba)
3877 {
3878 struct lpfc_sli *psli = &phba->sli;
3879 uint16_t cfg_value;
3880
3881 /* Reset HBA */
3882 lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
3883 "0295 Reset HBA Data: x%x x%x\n",
3884 phba->pport->port_state, psli->sli_flag);
3885
3886 /* perform board reset */
3887 phba->fc_eventTag = 0;
3888 phba->link_events = 0;
3889 phba->pport->fc_myDID = 0;
3890 phba->pport->fc_prevDID = 0;
3891
3892 spin_lock_irq(&phba->hbalock);
3893 psli->sli_flag &= ~(LPFC_PROCESS_LA);
3894 phba->fcf.fcf_flag = 0;
3895 spin_unlock_irq(&phba->hbalock);
3896
3897 /* Now physically reset the device */
3898 lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
3899 "0389 Performing PCI function reset!\n");
3900
3901 /* Turn off parity checking and serr during the physical reset */
3902 pci_read_config_word(phba->pcidev, PCI_COMMAND, &cfg_value);
3903 pci_write_config_word(phba->pcidev, PCI_COMMAND, (cfg_value &
3904 ~(PCI_COMMAND_PARITY | PCI_COMMAND_SERR)));
3905
3906 /* Perform FCoE PCI function reset */
3907 lpfc_sli4_queue_destroy(phba);
3908 lpfc_pci_function_reset(phba);
3909
3910 /* Restore PCI cmd register */
3911 pci_write_config_word(phba->pcidev, PCI_COMMAND, cfg_value);
3912
3913 return 0;
3914 }
3915
3916 /**
3917 * lpfc_sli_brdrestart_s3 - Restart a sli-3 hba
3918 * @phba: Pointer to HBA context object.
3919 *
3920 * This function is called in the SLI initialization code path to
3921 * restart the HBA. The caller is not required to hold any lock.
3922 * This function writes MBX_RESTART mailbox command to the SLIM and
3923 * resets the HBA. At the end of the function, it calls lpfc_hba_down_post
3924 * function to free any pending commands. The function enables
3925 * POST only during the first initialization. The function returns zero.
3926 * The function does not guarantee completion of MBX_RESTART mailbox
3927 * command before the return of this function.
3928 **/
3929 static int
3930 lpfc_sli_brdrestart_s3(struct lpfc_hba *phba)
3931 {
3932 MAILBOX_t *mb;
3933 struct lpfc_sli *psli;
3934 volatile uint32_t word0;
3935 void __iomem *to_slim;
3936 uint32_t hba_aer_enabled;
3937
3938 spin_lock_irq(&phba->hbalock);
3939
3940 /* Take PCIe device Advanced Error Reporting (AER) state */
3941 hba_aer_enabled = phba->hba_flag & HBA_AER_ENABLED;
3942
3943 psli = &phba->sli;
3944
3945 /* Restart HBA */
3946 lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
3947 "0337 Restart HBA Data: x%x x%x\n",
3948 phba->pport->port_state, psli->sli_flag);
3949
3950 word0 = 0;
3951 mb = (MAILBOX_t *) &word0;
3952 mb->mbxCommand = MBX_RESTART;
3953 mb->mbxHc = 1;
3954
3955 lpfc_reset_barrier(phba);
3956
3957 to_slim = phba->MBslimaddr;
3958 writel(*(uint32_t *) mb, to_slim);
3959 readl(to_slim); /* flush */
3960
3961 /* Only skip post after fc_ffinit is completed */
3962 if (phba->pport->port_state)
3963 word0 = 1; /* This is really setting up word1 */
3964 else
3965 word0 = 0; /* This is really setting up word1 */
3966 to_slim = phba->MBslimaddr + sizeof (uint32_t);
3967 writel(*(uint32_t *) mb, to_slim);
3968 readl(to_slim); /* flush */
3969
3970 lpfc_sli_brdreset(phba);
3971 phba->pport->stopped = 0;
3972 phba->link_state = LPFC_INIT_START;
3973 phba->hba_flag = 0;
3974 spin_unlock_irq(&phba->hbalock);
3975
3976 memset(&psli->lnk_stat_offsets, 0, sizeof(psli->lnk_stat_offsets));
3977 psli->stats_start = get_seconds();
3978
3979 /* Give the INITFF and Post time to settle. */
3980 mdelay(100);
3981
3982 /* Reset HBA AER if it was enabled, note hba_flag was reset above */
3983 if (hba_aer_enabled)
3984 pci_disable_pcie_error_reporting(phba->pcidev);
3985
3986 lpfc_hba_down_post(phba);
3987
3988 return 0;
3989 }
3990
3991 /**
3992 * lpfc_sli_brdrestart_s4 - Restart the sli-4 hba
3993 * @phba: Pointer to HBA context object.
3994 *
3995 * This function is called in the SLI initialization code path to restart
3996 * a SLI4 HBA. The caller is not required to hold any lock.
3997 * At the end of the function, it calls lpfc_hba_down_post function to
3998 * free any pending commands.
3999 **/
4000 static int
4001 lpfc_sli_brdrestart_s4(struct lpfc_hba *phba)
4002 {
4003 struct lpfc_sli *psli = &phba->sli;
4004 uint32_t hba_aer_enabled;
4005
4006 /* Restart HBA */
4007 lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
4008 "0296 Restart HBA Data: x%x x%x\n",
4009 phba->pport->port_state, psli->sli_flag);
4010
4011 /* Take PCIe device Advanced Error Reporting (AER) state */
4012 hba_aer_enabled = phba->hba_flag & HBA_AER_ENABLED;
4013
4014 lpfc_sli4_brdreset(phba);
4015
4016 spin_lock_irq(&phba->hbalock);
4017 phba->pport->stopped = 0;
4018 phba->link_state = LPFC_INIT_START;
4019 phba->hba_flag = 0;
4020 spin_unlock_irq(&phba->hbalock);
4021
4022 memset(&psli->lnk_stat_offsets, 0, sizeof(psli->lnk_stat_offsets));
4023 psli->stats_start = get_seconds();
4024
4025 /* Reset HBA AER if it was enabled, note hba_flag was reset above */
4026 if (hba_aer_enabled)
4027 pci_disable_pcie_error_reporting(phba->pcidev);
4028
4029 lpfc_hba_down_post(phba);
4030
4031 return 0;
4032 }
4033
4034 /**
4035 * lpfc_sli_brdrestart - Wrapper func for restarting hba
4036 * @phba: Pointer to HBA context object.
4037 *
4038 * This routine wraps the actual SLI3 or SLI4 hba restart routine from the
4039 * API jump table function pointer from the lpfc_hba struct.
4040 **/
4041 int
4042 lpfc_sli_brdrestart(struct lpfc_hba *phba)
4043 {
4044 return phba->lpfc_sli_brdrestart(phba);
4045 }
4046
4047 /**
4048 * lpfc_sli_chipset_init - Wait for the restart of the HBA after a restart
4049 * @phba: Pointer to HBA context object.
4050 *
4051 * This function is called after a HBA restart to wait for successful
4052 * restart of the HBA. Successful restart of the HBA is indicated by
4053 * HS_FFRDY and HS_MBRDY bits. If the HBA fails to restart even after 15
4054 * iteration, the function will restart the HBA again. The function returns
4055 * zero if HBA successfully restarted else returns negative error code.
4056 **/
4057 static int
4058 lpfc_sli_chipset_init(struct lpfc_hba *phba)
4059 {
4060 uint32_t status, i = 0;
4061
4062 /* Read the HBA Host Status Register */
4063 if (lpfc_readl(phba->HSregaddr, &status))
4064 return -EIO;
4065
4066 /* Check status register to see what current state is */
4067 i = 0;
4068 while ((status & (HS_FFRDY | HS_MBRDY)) != (HS_FFRDY | HS_MBRDY)) {
4069
4070 /* Check every 10ms for 10 retries, then every 100ms for 90
4071 * retries, then every 1 sec for 50 retires for a total of
4072 * ~60 seconds before reset the board again and check every
4073 * 1 sec for 50 retries. The up to 60 seconds before the
4074 * board ready is required by the Falcon FIPS zeroization
4075 * complete, and any reset the board in between shall cause
4076 * restart of zeroization, further delay the board ready.
4077 */
4078 if (i++ >= 200) {
4079 /* Adapter failed to init, timeout, status reg
4080 <status> */
4081 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
4082 "0436 Adapter failed to init, "
4083 "timeout, status reg x%x, "
4084 "FW Data: A8 x%x AC x%x\n", status,
4085 readl(phba->MBslimaddr + 0xa8),
4086 readl(phba->MBslimaddr + 0xac));
4087 phba->link_state = LPFC_HBA_ERROR;
4088 return -ETIMEDOUT;
4089 }
4090
4091 /* Check to see if any errors occurred during init */
4092 if (status & HS_FFERM) {
4093 /* ERROR: During chipset initialization */
4094 /* Adapter failed to init, chipset, status reg
4095 <status> */
4096 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
4097 "0437 Adapter failed to init, "
4098 "chipset, status reg x%x, "
4099 "FW Data: A8 x%x AC x%x\n", status,
4100 readl(phba->MBslimaddr + 0xa8),
4101 readl(phba->MBslimaddr + 0xac));
4102 phba->link_state = LPFC_HBA_ERROR;
4103 return -EIO;
4104 }
4105
4106 if (i <= 10)
4107 msleep(10);
4108 else if (i <= 100)
4109 msleep(100);
4110 else
4111 msleep(1000);
4112
4113 if (i == 150) {
4114 /* Do post */
4115 phba->pport->port_state = LPFC_VPORT_UNKNOWN;
4116 lpfc_sli_brdrestart(phba);
4117 }
4118 /* Read the HBA Host Status Register */
4119 if (lpfc_readl(phba->HSregaddr, &status))
4120 return -EIO;
4121 }
4122
4123 /* Check to see if any errors occurred during init */
4124 if (status & HS_FFERM) {
4125 /* ERROR: During chipset initialization */
4126 /* Adapter failed to init, chipset, status reg <status> */
4127 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
4128 "0438 Adapter failed to init, chipset, "
4129 "status reg x%x, "
4130 "FW Data: A8 x%x AC x%x\n", status,
4131 readl(phba->MBslimaddr + 0xa8),
4132 readl(phba->MBslimaddr + 0xac));
4133 phba->link_state = LPFC_HBA_ERROR;
4134 return -EIO;
4135 }
4136
4137 /* Clear all interrupt enable conditions */
4138 writel(0, phba->HCregaddr);
4139 readl(phba->HCregaddr); /* flush */
4140
4141 /* setup host attn register */
4142 writel(0xffffffff, phba->HAregaddr);
4143 readl(phba->HAregaddr); /* flush */
4144 return 0;
4145 }
4146
4147 /**
4148 * lpfc_sli_hbq_count - Get the number of HBQs to be configured
4149 *
4150 * This function calculates and returns the number of HBQs required to be
4151 * configured.
4152 **/
4153 int
4154 lpfc_sli_hbq_count(void)
4155 {
4156 return ARRAY_SIZE(lpfc_hbq_defs);
4157 }
4158
4159 /**
4160 * lpfc_sli_hbq_entry_count - Calculate total number of hbq entries
4161 *
4162 * This function adds the number of hbq entries in every HBQ to get
4163 * the total number of hbq entries required for the HBA and returns
4164 * the total count.
4165 **/
4166 static int
4167 lpfc_sli_hbq_entry_count(void)
4168 {
4169 int hbq_count = lpfc_sli_hbq_count();
4170 int count = 0;
4171 int i;
4172
4173 for (i = 0; i < hbq_count; ++i)
4174 count += lpfc_hbq_defs[i]->entry_count;
4175 return count;
4176 }
4177
4178 /**
4179 * lpfc_sli_hbq_size - Calculate memory required for all hbq entries
4180 *
4181 * This function calculates amount of memory required for all hbq entries
4182 * to be configured and returns the total memory required.
4183 **/
4184 int
4185 lpfc_sli_hbq_size(void)
4186 {
4187 return lpfc_sli_hbq_entry_count() * sizeof(struct lpfc_hbq_entry);
4188 }
4189
4190 /**
4191 * lpfc_sli_hbq_setup - configure and initialize HBQs
4192 * @phba: Pointer to HBA context object.
4193 *
4194 * This function is called during the SLI initialization to configure
4195 * all the HBQs and post buffers to the HBQ. The caller is not
4196 * required to hold any locks. This function will return zero if successful
4197 * else it will return negative error code.
4198 **/
4199 static int
4200 lpfc_sli_hbq_setup(struct lpfc_hba *phba)
4201 {
4202 int hbq_count = lpfc_sli_hbq_count();
4203 LPFC_MBOXQ_t *pmb;
4204 MAILBOX_t *pmbox;
4205 uint32_t hbqno;
4206 uint32_t hbq_entry_index;
4207
4208 /* Get a Mailbox buffer to setup mailbox
4209 * commands for HBA initialization
4210 */
4211 pmb = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
4212
4213 if (!pmb)
4214 return -ENOMEM;
4215
4216 pmbox = &pmb->u.mb;
4217
4218 /* Initialize the struct lpfc_sli_hbq structure for each hbq */
4219 phba->link_state = LPFC_INIT_MBX_CMDS;
4220 phba->hbq_in_use = 1;
4221
4222 hbq_entry_index = 0;
4223 for (hbqno = 0; hbqno < hbq_count; ++hbqno) {
4224 phba->hbqs[hbqno].next_hbqPutIdx = 0;
4225 phba->hbqs[hbqno].hbqPutIdx = 0;
4226 phba->hbqs[hbqno].local_hbqGetIdx = 0;
4227 phba->hbqs[hbqno].entry_count =
4228 lpfc_hbq_defs[hbqno]->entry_count;
4229 lpfc_config_hbq(phba, hbqno, lpfc_hbq_defs[hbqno],
4230 hbq_entry_index, pmb);
4231 hbq_entry_index += phba->hbqs[hbqno].entry_count;
4232
4233 if (lpfc_sli_issue_mbox(phba, pmb, MBX_POLL) != MBX_SUCCESS) {
4234 /* Adapter failed to init, mbxCmd <cmd> CFG_RING,
4235 mbxStatus <status>, ring <num> */
4236
4237 lpfc_printf_log(phba, KERN_ERR,
4238 LOG_SLI | LOG_VPORT,
4239 "1805 Adapter failed to init. "
4240 "Data: x%x x%x x%x\n",
4241 pmbox->mbxCommand,
4242 pmbox->mbxStatus, hbqno);
4243
4244 phba->link_state = LPFC_HBA_ERROR;
4245 mempool_free(pmb, phba->mbox_mem_pool);
4246 return -ENXIO;
4247 }
4248 }
4249 phba->hbq_count = hbq_count;
4250
4251 mempool_free(pmb, phba->mbox_mem_pool);
4252
4253 /* Initially populate or replenish the HBQs */
4254 for (hbqno = 0; hbqno < hbq_count; ++hbqno)
4255 lpfc_sli_hbqbuf_init_hbqs(phba, hbqno);
4256 return 0;
4257 }
4258
4259 /**
4260 * lpfc_sli4_rb_setup - Initialize and post RBs to HBA
4261 * @phba: Pointer to HBA context object.
4262 *
4263 * This function is called during the SLI initialization to configure
4264 * all the HBQs and post buffers to the HBQ. The caller is not
4265 * required to hold any locks. This function will return zero if successful
4266 * else it will return negative error code.
4267 **/
4268 static int
4269 lpfc_sli4_rb_setup(struct lpfc_hba *phba)
4270 {
4271 phba->hbq_in_use = 1;
4272 phba->hbqs[0].entry_count = lpfc_hbq_defs[0]->entry_count;
4273 phba->hbq_count = 1;
4274 /* Initially populate or replenish the HBQs */
4275 lpfc_sli_hbqbuf_init_hbqs(phba, 0);
4276 return 0;
4277 }
4278
4279 /**
4280 * lpfc_sli_config_port - Issue config port mailbox command
4281 * @phba: Pointer to HBA context object.
4282 * @sli_mode: sli mode - 2/3
4283 *
4284 * This function is called by the sli intialization code path
4285 * to issue config_port mailbox command. This function restarts the
4286 * HBA firmware and issues a config_port mailbox command to configure
4287 * the SLI interface in the sli mode specified by sli_mode
4288 * variable. The caller is not required to hold any locks.
4289 * The function returns 0 if successful, else returns negative error
4290 * code.
4291 **/
4292 int
4293 lpfc_sli_config_port(struct lpfc_hba *phba, int sli_mode)
4294 {
4295 LPFC_MBOXQ_t *pmb;
4296 uint32_t resetcount = 0, rc = 0, done = 0;
4297
4298 pmb = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
4299 if (!pmb) {
4300 phba->link_state = LPFC_HBA_ERROR;
4301 return -ENOMEM;
4302 }
4303
4304 phba->sli_rev = sli_mode;
4305 while (resetcount < 2 && !done) {
4306 spin_lock_irq(&phba->hbalock);
4307 phba->sli.sli_flag |= LPFC_SLI_MBOX_ACTIVE;
4308 spin_unlock_irq(&phba->hbalock);
4309 phba->pport->port_state = LPFC_VPORT_UNKNOWN;
4310 lpfc_sli_brdrestart(phba);
4311 rc = lpfc_sli_chipset_init(phba);
4312 if (rc)
4313 break;
4314
4315 spin_lock_irq(&phba->hbalock);
4316 phba->sli.sli_flag &= ~LPFC_SLI_MBOX_ACTIVE;
4317 spin_unlock_irq(&phba->hbalock);
4318 resetcount++;
4319
4320 /* Call pre CONFIG_PORT mailbox command initialization. A
4321 * value of 0 means the call was successful. Any other
4322 * nonzero value is a failure, but if ERESTART is returned,
4323 * the driver may reset the HBA and try again.
4324 */
4325 rc = lpfc_config_port_prep(phba);
4326 if (rc == -ERESTART) {
4327 phba->link_state = LPFC_LINK_UNKNOWN;
4328 continue;
4329 } else if (rc)
4330 break;
4331
4332 phba->link_state = LPFC_INIT_MBX_CMDS;
4333 lpfc_config_port(phba, pmb);
4334 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL);
4335 phba->sli3_options &= ~(LPFC_SLI3_NPIV_ENABLED |
4336 LPFC_SLI3_HBQ_ENABLED |
4337 LPFC_SLI3_CRP_ENABLED |
4338 LPFC_SLI3_BG_ENABLED |
4339 LPFC_SLI3_DSS_ENABLED);
4340 if (rc != MBX_SUCCESS) {
4341 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
4342 "0442 Adapter failed to init, mbxCmd x%x "
4343 "CONFIG_PORT, mbxStatus x%x Data: x%x\n",
4344 pmb->u.mb.mbxCommand, pmb->u.mb.mbxStatus, 0);
4345 spin_lock_irq(&phba->hbalock);
4346 phba->sli.sli_flag &= ~LPFC_SLI_ACTIVE;
4347 spin_unlock_irq(&phba->hbalock);
4348 rc = -ENXIO;
4349 } else {
4350 /* Allow asynchronous mailbox command to go through */
4351 spin_lock_irq(&phba->hbalock);
4352 phba->sli.sli_flag &= ~LPFC_SLI_ASYNC_MBX_BLK;
4353 spin_unlock_irq(&phba->hbalock);
4354 done = 1;
4355
4356 if ((pmb->u.mb.un.varCfgPort.casabt == 1) &&
4357 (pmb->u.mb.un.varCfgPort.gasabt == 0))
4358 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
4359 "3110 Port did not grant ASABT\n");
4360 }
4361 }
4362 if (!done) {
4363 rc = -EINVAL;
4364 goto do_prep_failed;
4365 }
4366 if (pmb->u.mb.un.varCfgPort.sli_mode == 3) {
4367 if (!pmb->u.mb.un.varCfgPort.cMA) {
4368 rc = -ENXIO;
4369 goto do_prep_failed;
4370 }
4371 if (phba->max_vpi && pmb->u.mb.un.varCfgPort.gmv) {
4372 phba->sli3_options |= LPFC_SLI3_NPIV_ENABLED;
4373 phba->max_vpi = pmb->u.mb.un.varCfgPort.max_vpi;
4374 phba->max_vports = (phba->max_vpi > phba->max_vports) ?
4375 phba->max_vpi : phba->max_vports;
4376
4377 } else
4378 phba->max_vpi = 0;
4379 phba->fips_level = 0;
4380 phba->fips_spec_rev = 0;
4381 if (pmb->u.mb.un.varCfgPort.gdss) {
4382 phba->sli3_options |= LPFC_SLI3_DSS_ENABLED;
4383 phba->fips_level = pmb->u.mb.un.varCfgPort.fips_level;
4384 phba->fips_spec_rev = pmb->u.mb.un.varCfgPort.fips_rev;
4385 lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
4386 "2850 Security Crypto Active. FIPS x%d "
4387 "(Spec Rev: x%d)",
4388 phba->fips_level, phba->fips_spec_rev);
4389 }
4390 if (pmb->u.mb.un.varCfgPort.sec_err) {
4391 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
4392 "2856 Config Port Security Crypto "
4393 "Error: x%x ",
4394 pmb->u.mb.un.varCfgPort.sec_err);
4395 }
4396 if (pmb->u.mb.un.varCfgPort.gerbm)
4397 phba->sli3_options |= LPFC_SLI3_HBQ_ENABLED;
4398 if (pmb->u.mb.un.varCfgPort.gcrp)
4399 phba->sli3_options |= LPFC_SLI3_CRP_ENABLED;
4400
4401 phba->hbq_get = phba->mbox->us.s3_pgp.hbq_get;
4402 phba->port_gp = phba->mbox->us.s3_pgp.port;
4403
4404 if (phba->cfg_enable_bg) {
4405 if (pmb->u.mb.un.varCfgPort.gbg)
4406 phba->sli3_options |= LPFC_SLI3_BG_ENABLED;
4407 else
4408 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
4409 "0443 Adapter did not grant "
4410 "BlockGuard\n");
4411 }
4412 } else {
4413 phba->hbq_get = NULL;
4414 phba->port_gp = phba->mbox->us.s2.port;
4415 phba->max_vpi = 0;
4416 }
4417 do_prep_failed:
4418 mempool_free(pmb, phba->mbox_mem_pool);
4419 return rc;
4420 }
4421
4422
4423 /**
4424 * lpfc_sli_hba_setup - SLI intialization function
4425 * @phba: Pointer to HBA context object.
4426 *
4427 * This function is the main SLI intialization function. This function
4428 * is called by the HBA intialization code, HBA reset code and HBA
4429 * error attention handler code. Caller is not required to hold any
4430 * locks. This function issues config_port mailbox command to configure
4431 * the SLI, setup iocb rings and HBQ rings. In the end the function
4432 * calls the config_port_post function to issue init_link mailbox
4433 * command and to start the discovery. The function will return zero
4434 * if successful, else it will return negative error code.
4435 **/
4436 int
4437 lpfc_sli_hba_setup(struct lpfc_hba *phba)
4438 {
4439 uint32_t rc;
4440 int mode = 3, i;
4441 int longs;
4442
4443 switch (lpfc_sli_mode) {
4444 case 2:
4445 if (phba->cfg_enable_npiv) {
4446 lpfc_printf_log(phba, KERN_ERR, LOG_INIT | LOG_VPORT,
4447 "1824 NPIV enabled: Override lpfc_sli_mode "
4448 "parameter (%d) to auto (0).\n",
4449 lpfc_sli_mode);
4450 break;
4451 }
4452 mode = 2;
4453 break;
4454 case 0:
4455 case 3:
4456 break;
4457 default:
4458 lpfc_printf_log(phba, KERN_ERR, LOG_INIT | LOG_VPORT,
4459 "1819 Unrecognized lpfc_sli_mode "
4460 "parameter: %d.\n", lpfc_sli_mode);
4461
4462 break;
4463 }
4464
4465 rc = lpfc_sli_config_port(phba, mode);
4466
4467 if (rc && lpfc_sli_mode == 3)
4468 lpfc_printf_log(phba, KERN_ERR, LOG_INIT | LOG_VPORT,
4469 "1820 Unable to select SLI-3. "
4470 "Not supported by adapter.\n");
4471 if (rc && mode != 2)
4472 rc = lpfc_sli_config_port(phba, 2);
4473 if (rc)
4474 goto lpfc_sli_hba_setup_error;
4475
4476 /* Enable PCIe device Advanced Error Reporting (AER) if configured */
4477 if (phba->cfg_aer_support == 1 && !(phba->hba_flag & HBA_AER_ENABLED)) {
4478 rc = pci_enable_pcie_error_reporting(phba->pcidev);
4479 if (!rc) {
4480 lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
4481 "2709 This device supports "
4482 "Advanced Error Reporting (AER)\n");
4483 spin_lock_irq(&phba->hbalock);
4484 phba->hba_flag |= HBA_AER_ENABLED;
4485 spin_unlock_irq(&phba->hbalock);
4486 } else {
4487 lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
4488 "2708 This device does not support "
4489 "Advanced Error Reporting (AER)\n");
4490 phba->cfg_aer_support = 0;
4491 }
4492 }
4493
4494 if (phba->sli_rev == 3) {
4495 phba->iocb_cmd_size = SLI3_IOCB_CMD_SIZE;
4496 phba->iocb_rsp_size = SLI3_IOCB_RSP_SIZE;
4497 } else {
4498 phba->iocb_cmd_size = SLI2_IOCB_CMD_SIZE;
4499 phba->iocb_rsp_size = SLI2_IOCB_RSP_SIZE;
4500 phba->sli3_options = 0;
4501 }
4502
4503 lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
4504 "0444 Firmware in SLI %x mode. Max_vpi %d\n",
4505 phba->sli_rev, phba->max_vpi);
4506 rc = lpfc_sli_ring_map(phba);
4507
4508 if (rc)
4509 goto lpfc_sli_hba_setup_error;
4510
4511 /* Initialize VPIs. */
4512 if (phba->sli_rev == LPFC_SLI_REV3) {
4513 /*
4514 * The VPI bitmask and physical ID array are allocated
4515 * and initialized once only - at driver load. A port
4516 * reset doesn't need to reinitialize this memory.
4517 */
4518 if ((phba->vpi_bmask == NULL) && (phba->vpi_ids == NULL)) {
4519 longs = (phba->max_vpi + BITS_PER_LONG) / BITS_PER_LONG;
4520 phba->vpi_bmask = kzalloc(longs * sizeof(unsigned long),
4521 GFP_KERNEL);
4522 if (!phba->vpi_bmask) {
4523 rc = -ENOMEM;
4524 goto lpfc_sli_hba_setup_error;
4525 }
4526
4527 phba->vpi_ids = kzalloc(
4528 (phba->max_vpi+1) * sizeof(uint16_t),
4529 GFP_KERNEL);
4530 if (!phba->vpi_ids) {
4531 kfree(phba->vpi_bmask);
4532 rc = -ENOMEM;
4533 goto lpfc_sli_hba_setup_error;
4534 }
4535 for (i = 0; i < phba->max_vpi; i++)
4536 phba->vpi_ids[i] = i;
4537 }
4538 }
4539
4540 /* Init HBQs */
4541 if (phba->sli3_options & LPFC_SLI3_HBQ_ENABLED) {
4542 rc = lpfc_sli_hbq_setup(phba);
4543 if (rc)
4544 goto lpfc_sli_hba_setup_error;
4545 }
4546 spin_lock_irq(&phba->hbalock);
4547 phba->sli.sli_flag |= LPFC_PROCESS_LA;
4548 spin_unlock_irq(&phba->hbalock);
4549
4550 rc = lpfc_config_port_post(phba);
4551 if (rc)
4552 goto lpfc_sli_hba_setup_error;
4553
4554 return rc;
4555
4556 lpfc_sli_hba_setup_error:
4557 phba->link_state = LPFC_HBA_ERROR;
4558 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
4559 "0445 Firmware initialization failed\n");
4560 return rc;
4561 }
4562
4563 /**
4564 * lpfc_sli4_read_fcoe_params - Read fcoe params from conf region
4565 * @phba: Pointer to HBA context object.
4566 * @mboxq: mailbox pointer.
4567 * This function issue a dump mailbox command to read config region
4568 * 23 and parse the records in the region and populate driver
4569 * data structure.
4570 **/
4571 static int
4572 lpfc_sli4_read_fcoe_params(struct lpfc_hba *phba)
4573 {
4574 LPFC_MBOXQ_t *mboxq;
4575 struct lpfc_dmabuf *mp;
4576 struct lpfc_mqe *mqe;
4577 uint32_t data_length;
4578 int rc;
4579
4580 /* Program the default value of vlan_id and fc_map */
4581 phba->valid_vlan = 0;
4582 phba->fc_map[0] = LPFC_FCOE_FCF_MAP0;
4583 phba->fc_map[1] = LPFC_FCOE_FCF_MAP1;
4584 phba->fc_map[2] = LPFC_FCOE_FCF_MAP2;
4585
4586 mboxq = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
4587 if (!mboxq)
4588 return -ENOMEM;
4589
4590 mqe = &mboxq->u.mqe;
4591 if (lpfc_sli4_dump_cfg_rg23(phba, mboxq)) {
4592 rc = -ENOMEM;
4593 goto out_free_mboxq;
4594 }
4595
4596 mp = (struct lpfc_dmabuf *) mboxq->context1;
4597 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
4598
4599 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI,
4600 "(%d):2571 Mailbox cmd x%x Status x%x "
4601 "Data: x%x x%x x%x x%x x%x x%x x%x x%x x%x "
4602 "x%x x%x x%x x%x x%x x%x x%x x%x x%x "
4603 "CQ: x%x x%x x%x x%x\n",
4604 mboxq->vport ? mboxq->vport->vpi : 0,
4605 bf_get(lpfc_mqe_command, mqe),
4606 bf_get(lpfc_mqe_status, mqe),
4607 mqe->un.mb_words[0], mqe->un.mb_words[1],
4608 mqe->un.mb_words[2], mqe->un.mb_words[3],
4609 mqe->un.mb_words[4], mqe->un.mb_words[5],
4610 mqe->un.mb_words[6], mqe->un.mb_words[7],
4611 mqe->un.mb_words[8], mqe->un.mb_words[9],
4612 mqe->un.mb_words[10], mqe->un.mb_words[11],
4613 mqe->un.mb_words[12], mqe->un.mb_words[13],
4614 mqe->un.mb_words[14], mqe->un.mb_words[15],
4615 mqe->un.mb_words[16], mqe->un.mb_words[50],
4616 mboxq->mcqe.word0,
4617 mboxq->mcqe.mcqe_tag0, mboxq->mcqe.mcqe_tag1,
4618 mboxq->mcqe.trailer);
4619
4620 if (rc) {
4621 lpfc_mbuf_free(phba, mp->virt, mp->phys);
4622 kfree(mp);
4623 rc = -EIO;
4624 goto out_free_mboxq;
4625 }
4626 data_length = mqe->un.mb_words[5];
4627 if (data_length > DMP_RGN23_SIZE) {
4628 lpfc_mbuf_free(phba, mp->virt, mp->phys);
4629 kfree(mp);
4630 rc = -EIO;
4631 goto out_free_mboxq;
4632 }
4633
4634 lpfc_parse_fcoe_conf(phba, mp->virt, data_length);
4635 lpfc_mbuf_free(phba, mp->virt, mp->phys);
4636 kfree(mp);
4637 rc = 0;
4638
4639 out_free_mboxq:
4640 mempool_free(mboxq, phba->mbox_mem_pool);
4641 return rc;
4642 }
4643
4644 /**
4645 * lpfc_sli4_read_rev - Issue READ_REV and collect vpd data
4646 * @phba: pointer to lpfc hba data structure.
4647 * @mboxq: pointer to the LPFC_MBOXQ_t structure.
4648 * @vpd: pointer to the memory to hold resulting port vpd data.
4649 * @vpd_size: On input, the number of bytes allocated to @vpd.
4650 * On output, the number of data bytes in @vpd.
4651 *
4652 * This routine executes a READ_REV SLI4 mailbox command. In
4653 * addition, this routine gets the port vpd data.
4654 *
4655 * Return codes
4656 * 0 - successful
4657 * -ENOMEM - could not allocated memory.
4658 **/
4659 static int
4660 lpfc_sli4_read_rev(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq,
4661 uint8_t *vpd, uint32_t *vpd_size)
4662 {
4663 int rc = 0;
4664 uint32_t dma_size;
4665 struct lpfc_dmabuf *dmabuf;
4666 struct lpfc_mqe *mqe;
4667
4668 dmabuf = kzalloc(sizeof(struct lpfc_dmabuf), GFP_KERNEL);
4669 if (!dmabuf)
4670 return -ENOMEM;
4671
4672 /*
4673 * Get a DMA buffer for the vpd data resulting from the READ_REV
4674 * mailbox command.
4675 */
4676 dma_size = *vpd_size;
4677 dmabuf->virt = dma_alloc_coherent(&phba->pcidev->dev,
4678 dma_size,
4679 &dmabuf->phys,
4680 GFP_KERNEL);
4681 if (!dmabuf->virt) {
4682 kfree(dmabuf);
4683 return -ENOMEM;
4684 }
4685 memset(dmabuf->virt, 0, dma_size);
4686
4687 /*
4688 * The SLI4 implementation of READ_REV conflicts at word1,
4689 * bits 31:16 and SLI4 adds vpd functionality not present
4690 * in SLI3. This code corrects the conflicts.
4691 */
4692 lpfc_read_rev(phba, mboxq);
4693 mqe = &mboxq->u.mqe;
4694 mqe->un.read_rev.vpd_paddr_high = putPaddrHigh(dmabuf->phys);
4695 mqe->un.read_rev.vpd_paddr_low = putPaddrLow(dmabuf->phys);
4696 mqe->un.read_rev.word1 &= 0x0000FFFF;
4697 bf_set(lpfc_mbx_rd_rev_vpd, &mqe->un.read_rev, 1);
4698 bf_set(lpfc_mbx_rd_rev_avail_len, &mqe->un.read_rev, dma_size);
4699
4700 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
4701 if (rc) {
4702 dma_free_coherent(&phba->pcidev->dev, dma_size,
4703 dmabuf->virt, dmabuf->phys);
4704 kfree(dmabuf);
4705 return -EIO;
4706 }
4707
4708 /*
4709 * The available vpd length cannot be bigger than the
4710 * DMA buffer passed to the port. Catch the less than
4711 * case and update the caller's size.
4712 */
4713 if (mqe->un.read_rev.avail_vpd_len < *vpd_size)
4714 *vpd_size = mqe->un.read_rev.avail_vpd_len;
4715
4716 memcpy(vpd, dmabuf->virt, *vpd_size);
4717
4718 dma_free_coherent(&phba->pcidev->dev, dma_size,
4719 dmabuf->virt, dmabuf->phys);
4720 kfree(dmabuf);
4721 return 0;
4722 }
4723
4724 /**
4725 * lpfc_sli4_retrieve_pport_name - Retrieve SLI4 device physical port name
4726 * @phba: pointer to lpfc hba data structure.
4727 *
4728 * This routine retrieves SLI4 device physical port name this PCI function
4729 * is attached to.
4730 *
4731 * Return codes
4732 * 0 - sucessful
4733 * otherwise - failed to retrieve physical port name
4734 **/
4735 static int
4736 lpfc_sli4_retrieve_pport_name(struct lpfc_hba *phba)
4737 {
4738 LPFC_MBOXQ_t *mboxq;
4739 struct lpfc_mbx_get_cntl_attributes *mbx_cntl_attr;
4740 struct lpfc_controller_attribute *cntl_attr;
4741 struct lpfc_mbx_get_port_name *get_port_name;
4742 void *virtaddr = NULL;
4743 uint32_t alloclen, reqlen;
4744 uint32_t shdr_status, shdr_add_status;
4745 union lpfc_sli4_cfg_shdr *shdr;
4746 char cport_name = 0;
4747 int rc;
4748
4749 /* We assume nothing at this point */
4750 phba->sli4_hba.lnk_info.lnk_dv = LPFC_LNK_DAT_INVAL;
4751 phba->sli4_hba.pport_name_sta = LPFC_SLI4_PPNAME_NON;
4752
4753 mboxq = (LPFC_MBOXQ_t *)mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
4754 if (!mboxq)
4755 return -ENOMEM;
4756 /* obtain link type and link number via READ_CONFIG */
4757 phba->sli4_hba.lnk_info.lnk_dv = LPFC_LNK_DAT_INVAL;
4758 lpfc_sli4_read_config(phba);
4759 if (phba->sli4_hba.lnk_info.lnk_dv == LPFC_LNK_DAT_VAL)
4760 goto retrieve_ppname;
4761
4762 /* obtain link type and link number via COMMON_GET_CNTL_ATTRIBUTES */
4763 reqlen = sizeof(struct lpfc_mbx_get_cntl_attributes);
4764 alloclen = lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_COMMON,
4765 LPFC_MBOX_OPCODE_GET_CNTL_ATTRIBUTES, reqlen,
4766 LPFC_SLI4_MBX_NEMBED);
4767 if (alloclen < reqlen) {
4768 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
4769 "3084 Allocated DMA memory size (%d) is "
4770 "less than the requested DMA memory size "
4771 "(%d)\n", alloclen, reqlen);
4772 rc = -ENOMEM;
4773 goto out_free_mboxq;
4774 }
4775 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
4776 virtaddr = mboxq->sge_array->addr[0];
4777 mbx_cntl_attr = (struct lpfc_mbx_get_cntl_attributes *)virtaddr;
4778 shdr = &mbx_cntl_attr->cfg_shdr;
4779 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
4780 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
4781 if (shdr_status || shdr_add_status || rc) {
4782 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
4783 "3085 Mailbox x%x (x%x/x%x) failed, "
4784 "rc:x%x, status:x%x, add_status:x%x\n",
4785 bf_get(lpfc_mqe_command, &mboxq->u.mqe),
4786 lpfc_sli_config_mbox_subsys_get(phba, mboxq),
4787 lpfc_sli_config_mbox_opcode_get(phba, mboxq),
4788 rc, shdr_status, shdr_add_status);
4789 rc = -ENXIO;
4790 goto out_free_mboxq;
4791 }
4792 cntl_attr = &mbx_cntl_attr->cntl_attr;
4793 phba->sli4_hba.lnk_info.lnk_dv = LPFC_LNK_DAT_VAL;
4794 phba->sli4_hba.lnk_info.lnk_tp =
4795 bf_get(lpfc_cntl_attr_lnk_type, cntl_attr);
4796 phba->sli4_hba.lnk_info.lnk_no =
4797 bf_get(lpfc_cntl_attr_lnk_numb, cntl_attr);
4798 lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
4799 "3086 lnk_type:%d, lnk_numb:%d\n",
4800 phba->sli4_hba.lnk_info.lnk_tp,
4801 phba->sli4_hba.lnk_info.lnk_no);
4802
4803 retrieve_ppname:
4804 lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_COMMON,
4805 LPFC_MBOX_OPCODE_GET_PORT_NAME,
4806 sizeof(struct lpfc_mbx_get_port_name) -
4807 sizeof(struct lpfc_sli4_cfg_mhdr),
4808 LPFC_SLI4_MBX_EMBED);
4809 get_port_name = &mboxq->u.mqe.un.get_port_name;
4810 shdr = (union lpfc_sli4_cfg_shdr *)&get_port_name->header.cfg_shdr;
4811 bf_set(lpfc_mbox_hdr_version, &shdr->request, LPFC_OPCODE_VERSION_1);
4812 bf_set(lpfc_mbx_get_port_name_lnk_type, &get_port_name->u.request,
4813 phba->sli4_hba.lnk_info.lnk_tp);
4814 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
4815 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
4816 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
4817 if (shdr_status || shdr_add_status || rc) {
4818 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
4819 "3087 Mailbox x%x (x%x/x%x) failed: "
4820 "rc:x%x, status:x%x, add_status:x%x\n",
4821 bf_get(lpfc_mqe_command, &mboxq->u.mqe),
4822 lpfc_sli_config_mbox_subsys_get(phba, mboxq),
4823 lpfc_sli_config_mbox_opcode_get(phba, mboxq),
4824 rc, shdr_status, shdr_add_status);
4825 rc = -ENXIO;
4826 goto out_free_mboxq;
4827 }
4828 switch (phba->sli4_hba.lnk_info.lnk_no) {
4829 case LPFC_LINK_NUMBER_0:
4830 cport_name = bf_get(lpfc_mbx_get_port_name_name0,
4831 &get_port_name->u.response);
4832 phba->sli4_hba.pport_name_sta = LPFC_SLI4_PPNAME_GET;
4833 break;
4834 case LPFC_LINK_NUMBER_1:
4835 cport_name = bf_get(lpfc_mbx_get_port_name_name1,
4836 &get_port_name->u.response);
4837 phba->sli4_hba.pport_name_sta = LPFC_SLI4_PPNAME_GET;
4838 break;
4839 case LPFC_LINK_NUMBER_2:
4840 cport_name = bf_get(lpfc_mbx_get_port_name_name2,
4841 &get_port_name->u.response);
4842 phba->sli4_hba.pport_name_sta = LPFC_SLI4_PPNAME_GET;
4843 break;
4844 case LPFC_LINK_NUMBER_3:
4845 cport_name = bf_get(lpfc_mbx_get_port_name_name3,
4846 &get_port_name->u.response);
4847 phba->sli4_hba.pport_name_sta = LPFC_SLI4_PPNAME_GET;
4848 break;
4849 default:
4850 break;
4851 }
4852
4853 if (phba->sli4_hba.pport_name_sta == LPFC_SLI4_PPNAME_GET) {
4854 phba->Port[0] = cport_name;
4855 phba->Port[1] = '\0';
4856 lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
4857 "3091 SLI get port name: %s\n", phba->Port);
4858 }
4859
4860 out_free_mboxq:
4861 if (rc != MBX_TIMEOUT) {
4862 if (bf_get(lpfc_mqe_command, &mboxq->u.mqe) == MBX_SLI4_CONFIG)
4863 lpfc_sli4_mbox_cmd_free(phba, mboxq);
4864 else
4865 mempool_free(mboxq, phba->mbox_mem_pool);
4866 }
4867 return rc;
4868 }
4869
4870 /**
4871 * lpfc_sli4_arm_cqeq_intr - Arm sli-4 device completion and event queues
4872 * @phba: pointer to lpfc hba data structure.
4873 *
4874 * This routine is called to explicitly arm the SLI4 device's completion and
4875 * event queues
4876 **/
4877 static void
4878 lpfc_sli4_arm_cqeq_intr(struct lpfc_hba *phba)
4879 {
4880 uint8_t fcp_eqidx;
4881
4882 lpfc_sli4_cq_release(phba->sli4_hba.mbx_cq, LPFC_QUEUE_REARM);
4883 lpfc_sli4_cq_release(phba->sli4_hba.els_cq, LPFC_QUEUE_REARM);
4884 fcp_eqidx = 0;
4885 if (phba->sli4_hba.fcp_cq) {
4886 do
4887 lpfc_sli4_cq_release(phba->sli4_hba.fcp_cq[fcp_eqidx],
4888 LPFC_QUEUE_REARM);
4889 while (++fcp_eqidx < phba->cfg_fcp_eq_count);
4890 }
4891 lpfc_sli4_eq_release(phba->sli4_hba.sp_eq, LPFC_QUEUE_REARM);
4892 if (phba->sli4_hba.fp_eq) {
4893 for (fcp_eqidx = 0; fcp_eqidx < phba->cfg_fcp_eq_count;
4894 fcp_eqidx++)
4895 lpfc_sli4_eq_release(phba->sli4_hba.fp_eq[fcp_eqidx],
4896 LPFC_QUEUE_REARM);
4897 }
4898 }
4899
4900 /**
4901 * lpfc_sli4_get_avail_extnt_rsrc - Get available resource extent count.
4902 * @phba: Pointer to HBA context object.
4903 * @type: The resource extent type.
4904 * @extnt_count: buffer to hold port available extent count.
4905 * @extnt_size: buffer to hold element count per extent.
4906 *
4907 * This function calls the port and retrievs the number of available
4908 * extents and their size for a particular extent type.
4909 *
4910 * Returns: 0 if successful. Nonzero otherwise.
4911 **/
4912 int
4913 lpfc_sli4_get_avail_extnt_rsrc(struct lpfc_hba *phba, uint16_t type,
4914 uint16_t *extnt_count, uint16_t *extnt_size)
4915 {
4916 int rc = 0;
4917 uint32_t length;
4918 uint32_t mbox_tmo;
4919 struct lpfc_mbx_get_rsrc_extent_info *rsrc_info;
4920 LPFC_MBOXQ_t *mbox;
4921
4922 mbox = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
4923 if (!mbox)
4924 return -ENOMEM;
4925
4926 /* Find out how many extents are available for this resource type */
4927 length = (sizeof(struct lpfc_mbx_get_rsrc_extent_info) -
4928 sizeof(struct lpfc_sli4_cfg_mhdr));
4929 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
4930 LPFC_MBOX_OPCODE_GET_RSRC_EXTENT_INFO,
4931 length, LPFC_SLI4_MBX_EMBED);
4932
4933 /* Send an extents count of 0 - the GET doesn't use it. */
4934 rc = lpfc_sli4_mbox_rsrc_extent(phba, mbox, 0, type,
4935 LPFC_SLI4_MBX_EMBED);
4936 if (unlikely(rc)) {
4937 rc = -EIO;
4938 goto err_exit;
4939 }
4940
4941 if (!phba->sli4_hba.intr_enable)
4942 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
4943 else {
4944 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox);
4945 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo);
4946 }
4947 if (unlikely(rc)) {
4948 rc = -EIO;
4949 goto err_exit;
4950 }
4951
4952 rsrc_info = &mbox->u.mqe.un.rsrc_extent_info;
4953 if (bf_get(lpfc_mbox_hdr_status,
4954 &rsrc_info->header.cfg_shdr.response)) {
4955 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_INIT,
4956 "2930 Failed to get resource extents "
4957 "Status 0x%x Add'l Status 0x%x\n",
4958 bf_get(lpfc_mbox_hdr_status,
4959 &rsrc_info->header.cfg_shdr.response),
4960 bf_get(lpfc_mbox_hdr_add_status,
4961 &rsrc_info->header.cfg_shdr.response));
4962 rc = -EIO;
4963 goto err_exit;
4964 }
4965
4966 *extnt_count = bf_get(lpfc_mbx_get_rsrc_extent_info_cnt,
4967 &rsrc_info->u.rsp);
4968 *extnt_size = bf_get(lpfc_mbx_get_rsrc_extent_info_size,
4969 &rsrc_info->u.rsp);
4970 err_exit:
4971 mempool_free(mbox, phba->mbox_mem_pool);
4972 return rc;
4973 }
4974
4975 /**
4976 * lpfc_sli4_chk_avail_extnt_rsrc - Check for available SLI4 resource extents.
4977 * @phba: Pointer to HBA context object.
4978 * @type: The extent type to check.
4979 *
4980 * This function reads the current available extents from the port and checks
4981 * if the extent count or extent size has changed since the last access.
4982 * Callers use this routine post port reset to understand if there is a
4983 * extent reprovisioning requirement.
4984 *
4985 * Returns:
4986 * -Error: error indicates problem.
4987 * 1: Extent count or size has changed.
4988 * 0: No changes.
4989 **/
4990 static int
4991 lpfc_sli4_chk_avail_extnt_rsrc(struct lpfc_hba *phba, uint16_t type)
4992 {
4993 uint16_t curr_ext_cnt, rsrc_ext_cnt;
4994 uint16_t size_diff, rsrc_ext_size;
4995 int rc = 0;
4996 struct lpfc_rsrc_blks *rsrc_entry;
4997 struct list_head *rsrc_blk_list = NULL;
4998
4999 size_diff = 0;
5000 curr_ext_cnt = 0;
5001 rc = lpfc_sli4_get_avail_extnt_rsrc(phba, type,
5002 &rsrc_ext_cnt,
5003 &rsrc_ext_size);
5004 if (unlikely(rc))
5005 return -EIO;
5006
5007 switch (type) {
5008 case LPFC_RSC_TYPE_FCOE_RPI:
5009 rsrc_blk_list = &phba->sli4_hba.lpfc_rpi_blk_list;
5010 break;
5011 case LPFC_RSC_TYPE_FCOE_VPI:
5012 rsrc_blk_list = &phba->lpfc_vpi_blk_list;
5013 break;
5014 case LPFC_RSC_TYPE_FCOE_XRI:
5015 rsrc_blk_list = &phba->sli4_hba.lpfc_xri_blk_list;
5016 break;
5017 case LPFC_RSC_TYPE_FCOE_VFI:
5018 rsrc_blk_list = &phba->sli4_hba.lpfc_vfi_blk_list;
5019 break;
5020 default:
5021 break;
5022 }
5023
5024 list_for_each_entry(rsrc_entry, rsrc_blk_list, list) {
5025 curr_ext_cnt++;
5026 if (rsrc_entry->rsrc_size != rsrc_ext_size)
5027 size_diff++;
5028 }
5029
5030 if (curr_ext_cnt != rsrc_ext_cnt || size_diff != 0)
5031 rc = 1;
5032
5033 return rc;
5034 }
5035
5036 /**
5037 * lpfc_sli4_cfg_post_extnts -
5038 * @phba: Pointer to HBA context object.
5039 * @extnt_cnt - number of available extents.
5040 * @type - the extent type (rpi, xri, vfi, vpi).
5041 * @emb - buffer to hold either MBX_EMBED or MBX_NEMBED operation.
5042 * @mbox - pointer to the caller's allocated mailbox structure.
5043 *
5044 * This function executes the extents allocation request. It also
5045 * takes care of the amount of memory needed to allocate or get the
5046 * allocated extents. It is the caller's responsibility to evaluate
5047 * the response.
5048 *
5049 * Returns:
5050 * -Error: Error value describes the condition found.
5051 * 0: if successful
5052 **/
5053 static int
5054 lpfc_sli4_cfg_post_extnts(struct lpfc_hba *phba, uint16_t *extnt_cnt,
5055 uint16_t type, bool *emb, LPFC_MBOXQ_t *mbox)
5056 {
5057 int rc = 0;
5058 uint32_t req_len;
5059 uint32_t emb_len;
5060 uint32_t alloc_len, mbox_tmo;
5061
5062 /* Calculate the total requested length of the dma memory */
5063 req_len = *extnt_cnt * sizeof(uint16_t);
5064
5065 /*
5066 * Calculate the size of an embedded mailbox. The uint32_t
5067 * accounts for extents-specific word.
5068 */
5069 emb_len = sizeof(MAILBOX_t) - sizeof(struct mbox_header) -
5070 sizeof(uint32_t);
5071
5072 /*
5073 * Presume the allocation and response will fit into an embedded
5074 * mailbox. If not true, reconfigure to a non-embedded mailbox.
5075 */
5076 *emb = LPFC_SLI4_MBX_EMBED;
5077 if (req_len > emb_len) {
5078 req_len = *extnt_cnt * sizeof(uint16_t) +
5079 sizeof(union lpfc_sli4_cfg_shdr) +
5080 sizeof(uint32_t);
5081 *emb = LPFC_SLI4_MBX_NEMBED;
5082 }
5083
5084 alloc_len = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
5085 LPFC_MBOX_OPCODE_ALLOC_RSRC_EXTENT,
5086 req_len, *emb);
5087 if (alloc_len < req_len) {
5088 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
5089 "2982 Allocated DMA memory size (x%x) is "
5090 "less than the requested DMA memory "
5091 "size (x%x)\n", alloc_len, req_len);
5092 return -ENOMEM;
5093 }
5094 rc = lpfc_sli4_mbox_rsrc_extent(phba, mbox, *extnt_cnt, type, *emb);
5095 if (unlikely(rc))
5096 return -EIO;
5097
5098 if (!phba->sli4_hba.intr_enable)
5099 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
5100 else {
5101 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox);
5102 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo);
5103 }
5104
5105 if (unlikely(rc))
5106 rc = -EIO;
5107 return rc;
5108 }
5109
5110 /**
5111 * lpfc_sli4_alloc_extent - Allocate an SLI4 resource extent.
5112 * @phba: Pointer to HBA context object.
5113 * @type: The resource extent type to allocate.
5114 *
5115 * This function allocates the number of elements for the specified
5116 * resource type.
5117 **/
5118 static int
5119 lpfc_sli4_alloc_extent(struct lpfc_hba *phba, uint16_t type)
5120 {
5121 bool emb = false;
5122 uint16_t rsrc_id_cnt, rsrc_cnt, rsrc_size;
5123 uint16_t rsrc_id, rsrc_start, j, k;
5124 uint16_t *ids;
5125 int i, rc;
5126 unsigned long longs;
5127 unsigned long *bmask;
5128 struct lpfc_rsrc_blks *rsrc_blks;
5129 LPFC_MBOXQ_t *mbox;
5130 uint32_t length;
5131 struct lpfc_id_range *id_array = NULL;
5132 void *virtaddr = NULL;
5133 struct lpfc_mbx_nembed_rsrc_extent *n_rsrc;
5134 struct lpfc_mbx_alloc_rsrc_extents *rsrc_ext;
5135 struct list_head *ext_blk_list;
5136
5137 rc = lpfc_sli4_get_avail_extnt_rsrc(phba, type,
5138 &rsrc_cnt,
5139 &rsrc_size);
5140 if (unlikely(rc))
5141 return -EIO;
5142
5143 if ((rsrc_cnt == 0) || (rsrc_size == 0)) {
5144 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_INIT,
5145 "3009 No available Resource Extents "
5146 "for resource type 0x%x: Count: 0x%x, "
5147 "Size 0x%x\n", type, rsrc_cnt,
5148 rsrc_size);
5149 return -ENOMEM;
5150 }
5151
5152 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_INIT,
5153 "2903 Available Resource Extents "
5154 "for resource type 0x%x: Count: 0x%x, "
5155 "Size 0x%x\n", type, rsrc_cnt,
5156 rsrc_size);
5157
5158 mbox = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
5159 if (!mbox)
5160 return -ENOMEM;
5161
5162 rc = lpfc_sli4_cfg_post_extnts(phba, &rsrc_cnt, type, &emb, mbox);
5163 if (unlikely(rc)) {
5164 rc = -EIO;
5165 goto err_exit;
5166 }
5167
5168 /*
5169 * Figure out where the response is located. Then get local pointers
5170 * to the response data. The port does not guarantee to respond to
5171 * all extents counts request so update the local variable with the
5172 * allocated count from the port.
5173 */
5174 if (emb == LPFC_SLI4_MBX_EMBED) {
5175 rsrc_ext = &mbox->u.mqe.un.alloc_rsrc_extents;
5176 id_array = &rsrc_ext->u.rsp.id[0];
5177 rsrc_cnt = bf_get(lpfc_mbx_rsrc_cnt, &rsrc_ext->u.rsp);
5178 } else {
5179 virtaddr = mbox->sge_array->addr[0];
5180 n_rsrc = (struct lpfc_mbx_nembed_rsrc_extent *) virtaddr;
5181 rsrc_cnt = bf_get(lpfc_mbx_rsrc_cnt, n_rsrc);
5182 id_array = &n_rsrc->id;
5183 }
5184
5185 longs = ((rsrc_cnt * rsrc_size) + BITS_PER_LONG - 1) / BITS_PER_LONG;
5186 rsrc_id_cnt = rsrc_cnt * rsrc_size;
5187
5188 /*
5189 * Based on the resource size and count, correct the base and max
5190 * resource values.
5191 */
5192 length = sizeof(struct lpfc_rsrc_blks);
5193 switch (type) {
5194 case LPFC_RSC_TYPE_FCOE_RPI:
5195 phba->sli4_hba.rpi_bmask = kzalloc(longs *
5196 sizeof(unsigned long),
5197 GFP_KERNEL);
5198 if (unlikely(!phba->sli4_hba.rpi_bmask)) {
5199 rc = -ENOMEM;
5200 goto err_exit;
5201 }
5202 phba->sli4_hba.rpi_ids = kzalloc(rsrc_id_cnt *
5203 sizeof(uint16_t),
5204 GFP_KERNEL);
5205 if (unlikely(!phba->sli4_hba.rpi_ids)) {
5206 kfree(phba->sli4_hba.rpi_bmask);
5207 rc = -ENOMEM;
5208 goto err_exit;
5209 }
5210
5211 /*
5212 * The next_rpi was initialized with the maximum available
5213 * count but the port may allocate a smaller number. Catch
5214 * that case and update the next_rpi.
5215 */
5216 phba->sli4_hba.next_rpi = rsrc_id_cnt;
5217
5218 /* Initialize local ptrs for common extent processing later. */
5219 bmask = phba->sli4_hba.rpi_bmask;
5220 ids = phba->sli4_hba.rpi_ids;
5221 ext_blk_list = &phba->sli4_hba.lpfc_rpi_blk_list;
5222 break;
5223 case LPFC_RSC_TYPE_FCOE_VPI:
5224 phba->vpi_bmask = kzalloc(longs *
5225 sizeof(unsigned long),
5226 GFP_KERNEL);
5227 if (unlikely(!phba->vpi_bmask)) {
5228 rc = -ENOMEM;
5229 goto err_exit;
5230 }
5231 phba->vpi_ids = kzalloc(rsrc_id_cnt *
5232 sizeof(uint16_t),
5233 GFP_KERNEL);
5234 if (unlikely(!phba->vpi_ids)) {
5235 kfree(phba->vpi_bmask);
5236 rc = -ENOMEM;
5237 goto err_exit;
5238 }
5239
5240 /* Initialize local ptrs for common extent processing later. */
5241 bmask = phba->vpi_bmask;
5242 ids = phba->vpi_ids;
5243 ext_blk_list = &phba->lpfc_vpi_blk_list;
5244 break;
5245 case LPFC_RSC_TYPE_FCOE_XRI:
5246 phba->sli4_hba.xri_bmask = kzalloc(longs *
5247 sizeof(unsigned long),
5248 GFP_KERNEL);
5249 if (unlikely(!phba->sli4_hba.xri_bmask)) {
5250 rc = -ENOMEM;
5251 goto err_exit;
5252 }
5253 phba->sli4_hba.xri_ids = kzalloc(rsrc_id_cnt *
5254 sizeof(uint16_t),
5255 GFP_KERNEL);
5256 if (unlikely(!phba->sli4_hba.xri_ids)) {
5257 kfree(phba->sli4_hba.xri_bmask);
5258 rc = -ENOMEM;
5259 goto err_exit;
5260 }
5261
5262 /* Initialize local ptrs for common extent processing later. */
5263 bmask = phba->sli4_hba.xri_bmask;
5264 ids = phba->sli4_hba.xri_ids;
5265 ext_blk_list = &phba->sli4_hba.lpfc_xri_blk_list;
5266 break;
5267 case LPFC_RSC_TYPE_FCOE_VFI:
5268 phba->sli4_hba.vfi_bmask = kzalloc(longs *
5269 sizeof(unsigned long),
5270 GFP_KERNEL);
5271 if (unlikely(!phba->sli4_hba.vfi_bmask)) {
5272 rc = -ENOMEM;
5273 goto err_exit;
5274 }
5275 phba->sli4_hba.vfi_ids = kzalloc(rsrc_id_cnt *
5276 sizeof(uint16_t),
5277 GFP_KERNEL);
5278 if (unlikely(!phba->sli4_hba.vfi_ids)) {
5279 kfree(phba->sli4_hba.vfi_bmask);
5280 rc = -ENOMEM;
5281 goto err_exit;
5282 }
5283
5284 /* Initialize local ptrs for common extent processing later. */
5285 bmask = phba->sli4_hba.vfi_bmask;
5286 ids = phba->sli4_hba.vfi_ids;
5287 ext_blk_list = &phba->sli4_hba.lpfc_vfi_blk_list;
5288 break;
5289 default:
5290 /* Unsupported Opcode. Fail call. */
5291 id_array = NULL;
5292 bmask = NULL;
5293 ids = NULL;
5294 ext_blk_list = NULL;
5295 goto err_exit;
5296 }
5297
5298 /*
5299 * Complete initializing the extent configuration with the
5300 * allocated ids assigned to this function. The bitmask serves
5301 * as an index into the array and manages the available ids. The
5302 * array just stores the ids communicated to the port via the wqes.
5303 */
5304 for (i = 0, j = 0, k = 0; i < rsrc_cnt; i++) {
5305 if ((i % 2) == 0)
5306 rsrc_id = bf_get(lpfc_mbx_rsrc_id_word4_0,
5307 &id_array[k]);
5308 else
5309 rsrc_id = bf_get(lpfc_mbx_rsrc_id_word4_1,
5310 &id_array[k]);
5311
5312 rsrc_blks = kzalloc(length, GFP_KERNEL);
5313 if (unlikely(!rsrc_blks)) {
5314 rc = -ENOMEM;
5315 kfree(bmask);
5316 kfree(ids);
5317 goto err_exit;
5318 }
5319 rsrc_blks->rsrc_start = rsrc_id;
5320 rsrc_blks->rsrc_size = rsrc_size;
5321 list_add_tail(&rsrc_blks->list, ext_blk_list);
5322 rsrc_start = rsrc_id;
5323 if ((type == LPFC_RSC_TYPE_FCOE_XRI) && (j == 0))
5324 phba->sli4_hba.scsi_xri_start = rsrc_start +
5325 lpfc_sli4_get_els_iocb_cnt(phba);
5326
5327 while (rsrc_id < (rsrc_start + rsrc_size)) {
5328 ids[j] = rsrc_id;
5329 rsrc_id++;
5330 j++;
5331 }
5332 /* Entire word processed. Get next word.*/
5333 if ((i % 2) == 1)
5334 k++;
5335 }
5336 err_exit:
5337 lpfc_sli4_mbox_cmd_free(phba, mbox);
5338 return rc;
5339 }
5340
5341 /**
5342 * lpfc_sli4_dealloc_extent - Deallocate an SLI4 resource extent.
5343 * @phba: Pointer to HBA context object.
5344 * @type: the extent's type.
5345 *
5346 * This function deallocates all extents of a particular resource type.
5347 * SLI4 does not allow for deallocating a particular extent range. It
5348 * is the caller's responsibility to release all kernel memory resources.
5349 **/
5350 static int
5351 lpfc_sli4_dealloc_extent(struct lpfc_hba *phba, uint16_t type)
5352 {
5353 int rc;
5354 uint32_t length, mbox_tmo = 0;
5355 LPFC_MBOXQ_t *mbox;
5356 struct lpfc_mbx_dealloc_rsrc_extents *dealloc_rsrc;
5357 struct lpfc_rsrc_blks *rsrc_blk, *rsrc_blk_next;
5358
5359 mbox = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
5360 if (!mbox)
5361 return -ENOMEM;
5362
5363 /*
5364 * This function sends an embedded mailbox because it only sends the
5365 * the resource type. All extents of this type are released by the
5366 * port.
5367 */
5368 length = (sizeof(struct lpfc_mbx_dealloc_rsrc_extents) -
5369 sizeof(struct lpfc_sli4_cfg_mhdr));
5370 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
5371 LPFC_MBOX_OPCODE_DEALLOC_RSRC_EXTENT,
5372 length, LPFC_SLI4_MBX_EMBED);
5373
5374 /* Send an extents count of 0 - the dealloc doesn't use it. */
5375 rc = lpfc_sli4_mbox_rsrc_extent(phba, mbox, 0, type,
5376 LPFC_SLI4_MBX_EMBED);
5377 if (unlikely(rc)) {
5378 rc = -EIO;
5379 goto out_free_mbox;
5380 }
5381 if (!phba->sli4_hba.intr_enable)
5382 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
5383 else {
5384 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox);
5385 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo);
5386 }
5387 if (unlikely(rc)) {
5388 rc = -EIO;
5389 goto out_free_mbox;
5390 }
5391
5392 dealloc_rsrc = &mbox->u.mqe.un.dealloc_rsrc_extents;
5393 if (bf_get(lpfc_mbox_hdr_status,
5394 &dealloc_rsrc->header.cfg_shdr.response)) {
5395 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_INIT,
5396 "2919 Failed to release resource extents "
5397 "for type %d - Status 0x%x Add'l Status 0x%x. "
5398 "Resource memory not released.\n",
5399 type,
5400 bf_get(lpfc_mbox_hdr_status,
5401 &dealloc_rsrc->header.cfg_shdr.response),
5402 bf_get(lpfc_mbox_hdr_add_status,
5403 &dealloc_rsrc->header.cfg_shdr.response));
5404 rc = -EIO;
5405 goto out_free_mbox;
5406 }
5407
5408 /* Release kernel memory resources for the specific type. */
5409 switch (type) {
5410 case LPFC_RSC_TYPE_FCOE_VPI:
5411 kfree(phba->vpi_bmask);
5412 kfree(phba->vpi_ids);
5413 bf_set(lpfc_vpi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0);
5414 list_for_each_entry_safe(rsrc_blk, rsrc_blk_next,
5415 &phba->lpfc_vpi_blk_list, list) {
5416 list_del_init(&rsrc_blk->list);
5417 kfree(rsrc_blk);
5418 }
5419 break;
5420 case LPFC_RSC_TYPE_FCOE_XRI:
5421 kfree(phba->sli4_hba.xri_bmask);
5422 kfree(phba->sli4_hba.xri_ids);
5423 bf_set(lpfc_xri_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0);
5424 list_for_each_entry_safe(rsrc_blk, rsrc_blk_next,
5425 &phba->sli4_hba.lpfc_xri_blk_list, list) {
5426 list_del_init(&rsrc_blk->list);
5427 kfree(rsrc_blk);
5428 }
5429 break;
5430 case LPFC_RSC_TYPE_FCOE_VFI:
5431 kfree(phba->sli4_hba.vfi_bmask);
5432 kfree(phba->sli4_hba.vfi_ids);
5433 bf_set(lpfc_vfi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0);
5434 list_for_each_entry_safe(rsrc_blk, rsrc_blk_next,
5435 &phba->sli4_hba.lpfc_vfi_blk_list, list) {
5436 list_del_init(&rsrc_blk->list);
5437 kfree(rsrc_blk);
5438 }
5439 break;
5440 case LPFC_RSC_TYPE_FCOE_RPI:
5441 /* RPI bitmask and physical id array are cleaned up earlier. */
5442 list_for_each_entry_safe(rsrc_blk, rsrc_blk_next,
5443 &phba->sli4_hba.lpfc_rpi_blk_list, list) {
5444 list_del_init(&rsrc_blk->list);
5445 kfree(rsrc_blk);
5446 }
5447 break;
5448 default:
5449 break;
5450 }
5451
5452 bf_set(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0);
5453
5454 out_free_mbox:
5455 mempool_free(mbox, phba->mbox_mem_pool);
5456 return rc;
5457 }
5458
5459 /**
5460 * lpfc_sli4_alloc_resource_identifiers - Allocate all SLI4 resource extents.
5461 * @phba: Pointer to HBA context object.
5462 *
5463 * This function allocates all SLI4 resource identifiers.
5464 **/
5465 int
5466 lpfc_sli4_alloc_resource_identifiers(struct lpfc_hba *phba)
5467 {
5468 int i, rc, error = 0;
5469 uint16_t count, base;
5470 unsigned long longs;
5471
5472 if (!phba->sli4_hba.rpi_hdrs_in_use)
5473 phba->sli4_hba.next_rpi = phba->sli4_hba.max_cfg_param.max_rpi;
5474 if (phba->sli4_hba.extents_in_use) {
5475 /*
5476 * The port supports resource extents. The XRI, VPI, VFI, RPI
5477 * resource extent count must be read and allocated before
5478 * provisioning the resource id arrays.
5479 */
5480 if (bf_get(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags) ==
5481 LPFC_IDX_RSRC_RDY) {
5482 /*
5483 * Extent-based resources are set - the driver could
5484 * be in a port reset. Figure out if any corrective
5485 * actions need to be taken.
5486 */
5487 rc = lpfc_sli4_chk_avail_extnt_rsrc(phba,
5488 LPFC_RSC_TYPE_FCOE_VFI);
5489 if (rc != 0)
5490 error++;
5491 rc = lpfc_sli4_chk_avail_extnt_rsrc(phba,
5492 LPFC_RSC_TYPE_FCOE_VPI);
5493 if (rc != 0)
5494 error++;
5495 rc = lpfc_sli4_chk_avail_extnt_rsrc(phba,
5496 LPFC_RSC_TYPE_FCOE_XRI);
5497 if (rc != 0)
5498 error++;
5499 rc = lpfc_sli4_chk_avail_extnt_rsrc(phba,
5500 LPFC_RSC_TYPE_FCOE_RPI);
5501 if (rc != 0)
5502 error++;
5503
5504 /*
5505 * It's possible that the number of resources
5506 * provided to this port instance changed between
5507 * resets. Detect this condition and reallocate
5508 * resources. Otherwise, there is no action.
5509 */
5510 if (error) {
5511 lpfc_printf_log(phba, KERN_INFO,
5512 LOG_MBOX | LOG_INIT,
5513 "2931 Detected extent resource "
5514 "change. Reallocating all "
5515 "extents.\n");
5516 rc = lpfc_sli4_dealloc_extent(phba,
5517 LPFC_RSC_TYPE_FCOE_VFI);
5518 rc = lpfc_sli4_dealloc_extent(phba,
5519 LPFC_RSC_TYPE_FCOE_VPI);
5520 rc = lpfc_sli4_dealloc_extent(phba,
5521 LPFC_RSC_TYPE_FCOE_XRI);
5522 rc = lpfc_sli4_dealloc_extent(phba,
5523 LPFC_RSC_TYPE_FCOE_RPI);
5524 } else
5525 return 0;
5526 }
5527
5528 rc = lpfc_sli4_alloc_extent(phba, LPFC_RSC_TYPE_FCOE_VFI);
5529 if (unlikely(rc))
5530 goto err_exit;
5531
5532 rc = lpfc_sli4_alloc_extent(phba, LPFC_RSC_TYPE_FCOE_VPI);
5533 if (unlikely(rc))
5534 goto err_exit;
5535
5536 rc = lpfc_sli4_alloc_extent(phba, LPFC_RSC_TYPE_FCOE_RPI);
5537 if (unlikely(rc))
5538 goto err_exit;
5539
5540 rc = lpfc_sli4_alloc_extent(phba, LPFC_RSC_TYPE_FCOE_XRI);
5541 if (unlikely(rc))
5542 goto err_exit;
5543 bf_set(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags,
5544 LPFC_IDX_RSRC_RDY);
5545 return rc;
5546 } else {
5547 /*
5548 * The port does not support resource extents. The XRI, VPI,
5549 * VFI, RPI resource ids were determined from READ_CONFIG.
5550 * Just allocate the bitmasks and provision the resource id
5551 * arrays. If a port reset is active, the resources don't
5552 * need any action - just exit.
5553 */
5554 if (bf_get(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags) ==
5555 LPFC_IDX_RSRC_RDY) {
5556 lpfc_sli4_dealloc_resource_identifiers(phba);
5557 lpfc_sli4_remove_rpis(phba);
5558 }
5559 /* RPIs. */
5560 count = phba->sli4_hba.max_cfg_param.max_rpi;
5561 base = phba->sli4_hba.max_cfg_param.rpi_base;
5562 longs = (count + BITS_PER_LONG - 1) / BITS_PER_LONG;
5563 phba->sli4_hba.rpi_bmask = kzalloc(longs *
5564 sizeof(unsigned long),
5565 GFP_KERNEL);
5566 if (unlikely(!phba->sli4_hba.rpi_bmask)) {
5567 rc = -ENOMEM;
5568 goto err_exit;
5569 }
5570 phba->sli4_hba.rpi_ids = kzalloc(count *
5571 sizeof(uint16_t),
5572 GFP_KERNEL);
5573 if (unlikely(!phba->sli4_hba.rpi_ids)) {
5574 rc = -ENOMEM;
5575 goto free_rpi_bmask;
5576 }
5577
5578 for (i = 0; i < count; i++)
5579 phba->sli4_hba.rpi_ids[i] = base + i;
5580
5581 /* VPIs. */
5582 count = phba->sli4_hba.max_cfg_param.max_vpi;
5583 base = phba->sli4_hba.max_cfg_param.vpi_base;
5584 longs = (count + BITS_PER_LONG - 1) / BITS_PER_LONG;
5585 phba->vpi_bmask = kzalloc(longs *
5586 sizeof(unsigned long),
5587 GFP_KERNEL);
5588 if (unlikely(!phba->vpi_bmask)) {
5589 rc = -ENOMEM;
5590 goto free_rpi_ids;
5591 }
5592 phba->vpi_ids = kzalloc(count *
5593 sizeof(uint16_t),
5594 GFP_KERNEL);
5595 if (unlikely(!phba->vpi_ids)) {
5596 rc = -ENOMEM;
5597 goto free_vpi_bmask;
5598 }
5599
5600 for (i = 0; i < count; i++)
5601 phba->vpi_ids[i] = base + i;
5602
5603 /* XRIs. */
5604 count = phba->sli4_hba.max_cfg_param.max_xri;
5605 base = phba->sli4_hba.max_cfg_param.xri_base;
5606 longs = (count + BITS_PER_LONG - 1) / BITS_PER_LONG;
5607 phba->sli4_hba.xri_bmask = kzalloc(longs *
5608 sizeof(unsigned long),
5609 GFP_KERNEL);
5610 if (unlikely(!phba->sli4_hba.xri_bmask)) {
5611 rc = -ENOMEM;
5612 goto free_vpi_ids;
5613 }
5614 phba->sli4_hba.max_cfg_param.xri_used = 0;
5615 phba->sli4_hba.xri_count = 0;
5616 phba->sli4_hba.xri_ids = kzalloc(count *
5617 sizeof(uint16_t),
5618 GFP_KERNEL);
5619 if (unlikely(!phba->sli4_hba.xri_ids)) {
5620 rc = -ENOMEM;
5621 goto free_xri_bmask;
5622 }
5623
5624 for (i = 0; i < count; i++)
5625 phba->sli4_hba.xri_ids[i] = base + i;
5626
5627 /* VFIs. */
5628 count = phba->sli4_hba.max_cfg_param.max_vfi;
5629 base = phba->sli4_hba.max_cfg_param.vfi_base;
5630 longs = (count + BITS_PER_LONG - 1) / BITS_PER_LONG;
5631 phba->sli4_hba.vfi_bmask = kzalloc(longs *
5632 sizeof(unsigned long),
5633 GFP_KERNEL);
5634 if (unlikely(!phba->sli4_hba.vfi_bmask)) {
5635 rc = -ENOMEM;
5636 goto free_xri_ids;
5637 }
5638 phba->sli4_hba.vfi_ids = kzalloc(count *
5639 sizeof(uint16_t),
5640 GFP_KERNEL);
5641 if (unlikely(!phba->sli4_hba.vfi_ids)) {
5642 rc = -ENOMEM;
5643 goto free_vfi_bmask;
5644 }
5645
5646 for (i = 0; i < count; i++)
5647 phba->sli4_hba.vfi_ids[i] = base + i;
5648
5649 /*
5650 * Mark all resources ready. An HBA reset doesn't need
5651 * to reset the initialization.
5652 */
5653 bf_set(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags,
5654 LPFC_IDX_RSRC_RDY);
5655 return 0;
5656 }
5657
5658 free_vfi_bmask:
5659 kfree(phba->sli4_hba.vfi_bmask);
5660 free_xri_ids:
5661 kfree(phba->sli4_hba.xri_ids);
5662 free_xri_bmask:
5663 kfree(phba->sli4_hba.xri_bmask);
5664 free_vpi_ids:
5665 kfree(phba->vpi_ids);
5666 free_vpi_bmask:
5667 kfree(phba->vpi_bmask);
5668 free_rpi_ids:
5669 kfree(phba->sli4_hba.rpi_ids);
5670 free_rpi_bmask:
5671 kfree(phba->sli4_hba.rpi_bmask);
5672 err_exit:
5673 return rc;
5674 }
5675
5676 /**
5677 * lpfc_sli4_dealloc_resource_identifiers - Deallocate all SLI4 resource extents.
5678 * @phba: Pointer to HBA context object.
5679 *
5680 * This function allocates the number of elements for the specified
5681 * resource type.
5682 **/
5683 int
5684 lpfc_sli4_dealloc_resource_identifiers(struct lpfc_hba *phba)
5685 {
5686 if (phba->sli4_hba.extents_in_use) {
5687 lpfc_sli4_dealloc_extent(phba, LPFC_RSC_TYPE_FCOE_VPI);
5688 lpfc_sli4_dealloc_extent(phba, LPFC_RSC_TYPE_FCOE_RPI);
5689 lpfc_sli4_dealloc_extent(phba, LPFC_RSC_TYPE_FCOE_XRI);
5690 lpfc_sli4_dealloc_extent(phba, LPFC_RSC_TYPE_FCOE_VFI);
5691 } else {
5692 kfree(phba->vpi_bmask);
5693 kfree(phba->vpi_ids);
5694 bf_set(lpfc_vpi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0);
5695 kfree(phba->sli4_hba.xri_bmask);
5696 kfree(phba->sli4_hba.xri_ids);
5697 bf_set(lpfc_xri_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0);
5698 kfree(phba->sli4_hba.vfi_bmask);
5699 kfree(phba->sli4_hba.vfi_ids);
5700 bf_set(lpfc_vfi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0);
5701 bf_set(lpfc_idx_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0);
5702 }
5703
5704 return 0;
5705 }
5706
5707 /**
5708 * lpfc_sli4_get_allocated_extnts - Get the port's allocated extents.
5709 * @phba: Pointer to HBA context object.
5710 * @type: The resource extent type.
5711 * @extnt_count: buffer to hold port extent count response
5712 * @extnt_size: buffer to hold port extent size response.
5713 *
5714 * This function calls the port to read the host allocated extents
5715 * for a particular type.
5716 **/
5717 int
5718 lpfc_sli4_get_allocated_extnts(struct lpfc_hba *phba, uint16_t type,
5719 uint16_t *extnt_cnt, uint16_t *extnt_size)
5720 {
5721 bool emb;
5722 int rc = 0;
5723 uint16_t curr_blks = 0;
5724 uint32_t req_len, emb_len;
5725 uint32_t alloc_len, mbox_tmo;
5726 struct list_head *blk_list_head;
5727 struct lpfc_rsrc_blks *rsrc_blk;
5728 LPFC_MBOXQ_t *mbox;
5729 void *virtaddr = NULL;
5730 struct lpfc_mbx_nembed_rsrc_extent *n_rsrc;
5731 struct lpfc_mbx_alloc_rsrc_extents *rsrc_ext;
5732 union lpfc_sli4_cfg_shdr *shdr;
5733
5734 switch (type) {
5735 case LPFC_RSC_TYPE_FCOE_VPI:
5736 blk_list_head = &phba->lpfc_vpi_blk_list;
5737 break;
5738 case LPFC_RSC_TYPE_FCOE_XRI:
5739 blk_list_head = &phba->sli4_hba.lpfc_xri_blk_list;
5740 break;
5741 case LPFC_RSC_TYPE_FCOE_VFI:
5742 blk_list_head = &phba->sli4_hba.lpfc_vfi_blk_list;
5743 break;
5744 case LPFC_RSC_TYPE_FCOE_RPI:
5745 blk_list_head = &phba->sli4_hba.lpfc_rpi_blk_list;
5746 break;
5747 default:
5748 return -EIO;
5749 }
5750
5751 /* Count the number of extents currently allocatd for this type. */
5752 list_for_each_entry(rsrc_blk, blk_list_head, list) {
5753 if (curr_blks == 0) {
5754 /*
5755 * The GET_ALLOCATED mailbox does not return the size,
5756 * just the count. The size should be just the size
5757 * stored in the current allocated block and all sizes
5758 * for an extent type are the same so set the return
5759 * value now.
5760 */
5761 *extnt_size = rsrc_blk->rsrc_size;
5762 }
5763 curr_blks++;
5764 }
5765
5766 /* Calculate the total requested length of the dma memory. */
5767 req_len = curr_blks * sizeof(uint16_t);
5768
5769 /*
5770 * Calculate the size of an embedded mailbox. The uint32_t
5771 * accounts for extents-specific word.
5772 */
5773 emb_len = sizeof(MAILBOX_t) - sizeof(struct mbox_header) -
5774 sizeof(uint32_t);
5775
5776 /*
5777 * Presume the allocation and response will fit into an embedded
5778 * mailbox. If not true, reconfigure to a non-embedded mailbox.
5779 */
5780 emb = LPFC_SLI4_MBX_EMBED;
5781 req_len = emb_len;
5782 if (req_len > emb_len) {
5783 req_len = curr_blks * sizeof(uint16_t) +
5784 sizeof(union lpfc_sli4_cfg_shdr) +
5785 sizeof(uint32_t);
5786 emb = LPFC_SLI4_MBX_NEMBED;
5787 }
5788
5789 mbox = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
5790 if (!mbox)
5791 return -ENOMEM;
5792 memset(mbox, 0, sizeof(LPFC_MBOXQ_t));
5793
5794 alloc_len = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
5795 LPFC_MBOX_OPCODE_GET_ALLOC_RSRC_EXTENT,
5796 req_len, emb);
5797 if (alloc_len < req_len) {
5798 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
5799 "2983 Allocated DMA memory size (x%x) is "
5800 "less than the requested DMA memory "
5801 "size (x%x)\n", alloc_len, req_len);
5802 rc = -ENOMEM;
5803 goto err_exit;
5804 }
5805 rc = lpfc_sli4_mbox_rsrc_extent(phba, mbox, curr_blks, type, emb);
5806 if (unlikely(rc)) {
5807 rc = -EIO;
5808 goto err_exit;
5809 }
5810
5811 if (!phba->sli4_hba.intr_enable)
5812 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
5813 else {
5814 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox);
5815 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo);
5816 }
5817
5818 if (unlikely(rc)) {
5819 rc = -EIO;
5820 goto err_exit;
5821 }
5822
5823 /*
5824 * Figure out where the response is located. Then get local pointers
5825 * to the response data. The port does not guarantee to respond to
5826 * all extents counts request so update the local variable with the
5827 * allocated count from the port.
5828 */
5829 if (emb == LPFC_SLI4_MBX_EMBED) {
5830 rsrc_ext = &mbox->u.mqe.un.alloc_rsrc_extents;
5831 shdr = &rsrc_ext->header.cfg_shdr;
5832 *extnt_cnt = bf_get(lpfc_mbx_rsrc_cnt, &rsrc_ext->u.rsp);
5833 } else {
5834 virtaddr = mbox->sge_array->addr[0];
5835 n_rsrc = (struct lpfc_mbx_nembed_rsrc_extent *) virtaddr;
5836 shdr = &n_rsrc->cfg_shdr;
5837 *extnt_cnt = bf_get(lpfc_mbx_rsrc_cnt, n_rsrc);
5838 }
5839
5840 if (bf_get(lpfc_mbox_hdr_status, &shdr->response)) {
5841 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_INIT,
5842 "2984 Failed to read allocated resources "
5843 "for type %d - Status 0x%x Add'l Status 0x%x.\n",
5844 type,
5845 bf_get(lpfc_mbox_hdr_status, &shdr->response),
5846 bf_get(lpfc_mbox_hdr_add_status, &shdr->response));
5847 rc = -EIO;
5848 goto err_exit;
5849 }
5850 err_exit:
5851 lpfc_sli4_mbox_cmd_free(phba, mbox);
5852 return rc;
5853 }
5854
5855 /**
5856 * lpfc_sli4_hba_setup - SLI4 device intialization PCI function
5857 * @phba: Pointer to HBA context object.
5858 *
5859 * This function is the main SLI4 device intialization PCI function. This
5860 * function is called by the HBA intialization code, HBA reset code and
5861 * HBA error attention handler code. Caller is not required to hold any
5862 * locks.
5863 **/
5864 int
5865 lpfc_sli4_hba_setup(struct lpfc_hba *phba)
5866 {
5867 int rc;
5868 LPFC_MBOXQ_t *mboxq;
5869 struct lpfc_mqe *mqe;
5870 uint8_t *vpd;
5871 uint32_t vpd_size;
5872 uint32_t ftr_rsp = 0;
5873 struct Scsi_Host *shost = lpfc_shost_from_vport(phba->pport);
5874 struct lpfc_vport *vport = phba->pport;
5875 struct lpfc_dmabuf *mp;
5876
5877 /* Perform a PCI function reset to start from clean */
5878 rc = lpfc_pci_function_reset(phba);
5879 if (unlikely(rc))
5880 return -ENODEV;
5881
5882 /* Check the HBA Host Status Register for readyness */
5883 rc = lpfc_sli4_post_status_check(phba);
5884 if (unlikely(rc))
5885 return -ENODEV;
5886 else {
5887 spin_lock_irq(&phba->hbalock);
5888 phba->sli.sli_flag |= LPFC_SLI_ACTIVE;
5889 spin_unlock_irq(&phba->hbalock);
5890 }
5891
5892 /*
5893 * Allocate a single mailbox container for initializing the
5894 * port.
5895 */
5896 mboxq = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
5897 if (!mboxq)
5898 return -ENOMEM;
5899
5900 /* Issue READ_REV to collect vpd and FW information. */
5901 vpd_size = SLI4_PAGE_SIZE;
5902 vpd = kzalloc(vpd_size, GFP_KERNEL);
5903 if (!vpd) {
5904 rc = -ENOMEM;
5905 goto out_free_mbox;
5906 }
5907
5908 rc = lpfc_sli4_read_rev(phba, mboxq, vpd, &vpd_size);
5909 if (unlikely(rc)) {
5910 kfree(vpd);
5911 goto out_free_mbox;
5912 }
5913 mqe = &mboxq->u.mqe;
5914 phba->sli_rev = bf_get(lpfc_mbx_rd_rev_sli_lvl, &mqe->un.read_rev);
5915 if (bf_get(lpfc_mbx_rd_rev_fcoe, &mqe->un.read_rev))
5916 phba->hba_flag |= HBA_FCOE_MODE;
5917 else
5918 phba->hba_flag &= ~HBA_FCOE_MODE;
5919
5920 if (bf_get(lpfc_mbx_rd_rev_cee_ver, &mqe->un.read_rev) ==
5921 LPFC_DCBX_CEE_MODE)
5922 phba->hba_flag |= HBA_FIP_SUPPORT;
5923 else
5924 phba->hba_flag &= ~HBA_FIP_SUPPORT;
5925
5926 if (phba->sli_rev != LPFC_SLI_REV4) {
5927 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
5928 "0376 READ_REV Error. SLI Level %d "
5929 "FCoE enabled %d\n",
5930 phba->sli_rev, phba->hba_flag & HBA_FCOE_MODE);
5931 rc = -EIO;
5932 kfree(vpd);
5933 goto out_free_mbox;
5934 }
5935
5936 /*
5937 * Continue initialization with default values even if driver failed
5938 * to read FCoE param config regions, only read parameters if the
5939 * board is FCoE
5940 */
5941 if (phba->hba_flag & HBA_FCOE_MODE &&
5942 lpfc_sli4_read_fcoe_params(phba))
5943 lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_INIT,
5944 "2570 Failed to read FCoE parameters\n");
5945
5946 /*
5947 * Retrieve sli4 device physical port name, failure of doing it
5948 * is considered as non-fatal.
5949 */
5950 rc = lpfc_sli4_retrieve_pport_name(phba);
5951 if (!rc)
5952 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI,
5953 "3080 Successful retrieving SLI4 device "
5954 "physical port name: %s.\n", phba->Port);
5955
5956 /*
5957 * Evaluate the read rev and vpd data. Populate the driver
5958 * state with the results. If this routine fails, the failure
5959 * is not fatal as the driver will use generic values.
5960 */
5961 rc = lpfc_parse_vpd(phba, vpd, vpd_size);
5962 if (unlikely(!rc)) {
5963 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
5964 "0377 Error %d parsing vpd. "
5965 "Using defaults.\n", rc);
5966 rc = 0;
5967 }
5968 kfree(vpd);
5969
5970 /* Save information as VPD data */
5971 phba->vpd.rev.biuRev = mqe->un.read_rev.first_hw_rev;
5972 phba->vpd.rev.smRev = mqe->un.read_rev.second_hw_rev;
5973 phba->vpd.rev.endecRev = mqe->un.read_rev.third_hw_rev;
5974 phba->vpd.rev.fcphHigh = bf_get(lpfc_mbx_rd_rev_fcph_high,
5975 &mqe->un.read_rev);
5976 phba->vpd.rev.fcphLow = bf_get(lpfc_mbx_rd_rev_fcph_low,
5977 &mqe->un.read_rev);
5978 phba->vpd.rev.feaLevelHigh = bf_get(lpfc_mbx_rd_rev_ftr_lvl_high,
5979 &mqe->un.read_rev);
5980 phba->vpd.rev.feaLevelLow = bf_get(lpfc_mbx_rd_rev_ftr_lvl_low,
5981 &mqe->un.read_rev);
5982 phba->vpd.rev.sli1FwRev = mqe->un.read_rev.fw_id_rev;
5983 memcpy(phba->vpd.rev.sli1FwName, mqe->un.read_rev.fw_name, 16);
5984 phba->vpd.rev.sli2FwRev = mqe->un.read_rev.ulp_fw_id_rev;
5985 memcpy(phba->vpd.rev.sli2FwName, mqe->un.read_rev.ulp_fw_name, 16);
5986 phba->vpd.rev.opFwRev = mqe->un.read_rev.fw_id_rev;
5987 memcpy(phba->vpd.rev.opFwName, mqe->un.read_rev.fw_name, 16);
5988 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI,
5989 "(%d):0380 READ_REV Status x%x "
5990 "fw_rev:%s fcphHi:%x fcphLo:%x flHi:%x flLo:%x\n",
5991 mboxq->vport ? mboxq->vport->vpi : 0,
5992 bf_get(lpfc_mqe_status, mqe),
5993 phba->vpd.rev.opFwName,
5994 phba->vpd.rev.fcphHigh, phba->vpd.rev.fcphLow,
5995 phba->vpd.rev.feaLevelHigh, phba->vpd.rev.feaLevelLow);
5996
5997 /*
5998 * Discover the port's supported feature set and match it against the
5999 * hosts requests.
6000 */
6001 lpfc_request_features(phba, mboxq);
6002 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
6003 if (unlikely(rc)) {
6004 rc = -EIO;
6005 goto out_free_mbox;
6006 }
6007
6008 /*
6009 * The port must support FCP initiator mode as this is the
6010 * only mode running in the host.
6011 */
6012 if (!(bf_get(lpfc_mbx_rq_ftr_rsp_fcpi, &mqe->un.req_ftrs))) {
6013 lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI,
6014 "0378 No support for fcpi mode.\n");
6015 ftr_rsp++;
6016 }
6017 if (bf_get(lpfc_mbx_rq_ftr_rsp_perfh, &mqe->un.req_ftrs))
6018 phba->sli3_options |= LPFC_SLI4_PERFH_ENABLED;
6019 else
6020 phba->sli3_options &= ~LPFC_SLI4_PERFH_ENABLED;
6021 /*
6022 * If the port cannot support the host's requested features
6023 * then turn off the global config parameters to disable the
6024 * feature in the driver. This is not a fatal error.
6025 */
6026 phba->sli3_options &= ~LPFC_SLI3_BG_ENABLED;
6027 if (phba->cfg_enable_bg) {
6028 if (bf_get(lpfc_mbx_rq_ftr_rsp_dif, &mqe->un.req_ftrs))
6029 phba->sli3_options |= LPFC_SLI3_BG_ENABLED;
6030 else
6031 ftr_rsp++;
6032 }
6033
6034 if (phba->max_vpi && phba->cfg_enable_npiv &&
6035 !(bf_get(lpfc_mbx_rq_ftr_rsp_npiv, &mqe->un.req_ftrs)))
6036 ftr_rsp++;
6037
6038 if (ftr_rsp) {
6039 lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI,
6040 "0379 Feature Mismatch Data: x%08x %08x "
6041 "x%x x%x x%x\n", mqe->un.req_ftrs.word2,
6042 mqe->un.req_ftrs.word3, phba->cfg_enable_bg,
6043 phba->cfg_enable_npiv, phba->max_vpi);
6044 if (!(bf_get(lpfc_mbx_rq_ftr_rsp_dif, &mqe->un.req_ftrs)))
6045 phba->cfg_enable_bg = 0;
6046 if (!(bf_get(lpfc_mbx_rq_ftr_rsp_npiv, &mqe->un.req_ftrs)))
6047 phba->cfg_enable_npiv = 0;
6048 }
6049
6050 /* These SLI3 features are assumed in SLI4 */
6051 spin_lock_irq(&phba->hbalock);
6052 phba->sli3_options |= (LPFC_SLI3_NPIV_ENABLED | LPFC_SLI3_HBQ_ENABLED);
6053 spin_unlock_irq(&phba->hbalock);
6054
6055 /*
6056 * Allocate all resources (xri,rpi,vpi,vfi) now. Subsequent
6057 * calls depends on these resources to complete port setup.
6058 */
6059 rc = lpfc_sli4_alloc_resource_identifiers(phba);
6060 if (rc) {
6061 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
6062 "2920 Failed to alloc Resource IDs "
6063 "rc = x%x\n", rc);
6064 goto out_free_mbox;
6065 }
6066 /* update physical xri mappings in the scsi buffers */
6067 lpfc_scsi_buf_update(phba);
6068
6069 /* Read the port's service parameters. */
6070 rc = lpfc_read_sparam(phba, mboxq, vport->vpi);
6071 if (rc) {
6072 phba->link_state = LPFC_HBA_ERROR;
6073 rc = -ENOMEM;
6074 goto out_free_mbox;
6075 }
6076
6077 mboxq->vport = vport;
6078 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
6079 mp = (struct lpfc_dmabuf *) mboxq->context1;
6080 if (rc == MBX_SUCCESS) {
6081 memcpy(&vport->fc_sparam, mp->virt, sizeof(struct serv_parm));
6082 rc = 0;
6083 }
6084
6085 /*
6086 * This memory was allocated by the lpfc_read_sparam routine. Release
6087 * it to the mbuf pool.
6088 */
6089 lpfc_mbuf_free(phba, mp->virt, mp->phys);
6090 kfree(mp);
6091 mboxq->context1 = NULL;
6092 if (unlikely(rc)) {
6093 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
6094 "0382 READ_SPARAM command failed "
6095 "status %d, mbxStatus x%x\n",
6096 rc, bf_get(lpfc_mqe_status, mqe));
6097 phba->link_state = LPFC_HBA_ERROR;
6098 rc = -EIO;
6099 goto out_free_mbox;
6100 }
6101
6102 lpfc_update_vport_wwn(vport);
6103
6104 /* Update the fc_host data structures with new wwn. */
6105 fc_host_node_name(shost) = wwn_to_u64(vport->fc_nodename.u.wwn);
6106 fc_host_port_name(shost) = wwn_to_u64(vport->fc_portname.u.wwn);
6107
6108 /* Register SGL pool to the device using non-embedded mailbox command */
6109 if (!phba->sli4_hba.extents_in_use) {
6110 rc = lpfc_sli4_post_els_sgl_list(phba);
6111 if (unlikely(rc)) {
6112 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
6113 "0582 Error %d during els sgl post "
6114 "operation\n", rc);
6115 rc = -ENODEV;
6116 goto out_free_mbox;
6117 }
6118 } else {
6119 rc = lpfc_sli4_post_els_sgl_list_ext(phba);
6120 if (unlikely(rc)) {
6121 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
6122 "2560 Error %d during els sgl post "
6123 "operation\n", rc);
6124 rc = -ENODEV;
6125 goto out_free_mbox;
6126 }
6127 }
6128
6129 /* Register SCSI SGL pool to the device */
6130 rc = lpfc_sli4_repost_scsi_sgl_list(phba);
6131 if (unlikely(rc)) {
6132 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
6133 "0383 Error %d during scsi sgl post "
6134 "operation\n", rc);
6135 /* Some Scsi buffers were moved to the abort scsi list */
6136 /* A pci function reset will repost them */
6137 rc = -ENODEV;
6138 goto out_free_mbox;
6139 }
6140
6141 /* Post the rpi header region to the device. */
6142 rc = lpfc_sli4_post_all_rpi_hdrs(phba);
6143 if (unlikely(rc)) {
6144 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
6145 "0393 Error %d during rpi post operation\n",
6146 rc);
6147 rc = -ENODEV;
6148 goto out_free_mbox;
6149 }
6150 lpfc_sli4_node_prep(phba);
6151
6152 /* Create all the SLI4 queues */
6153 rc = lpfc_sli4_queue_create(phba);
6154 if (rc) {
6155 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
6156 "3089 Failed to allocate queues\n");
6157 rc = -ENODEV;
6158 goto out_stop_timers;
6159 }
6160 /* Set up all the queues to the device */
6161 rc = lpfc_sli4_queue_setup(phba);
6162 if (unlikely(rc)) {
6163 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
6164 "0381 Error %d during queue setup.\n ", rc);
6165 goto out_destroy_queue;
6166 }
6167
6168 /* Arm the CQs and then EQs on device */
6169 lpfc_sli4_arm_cqeq_intr(phba);
6170
6171 /* Indicate device interrupt mode */
6172 phba->sli4_hba.intr_enable = 1;
6173
6174 /* Allow asynchronous mailbox command to go through */
6175 spin_lock_irq(&phba->hbalock);
6176 phba->sli.sli_flag &= ~LPFC_SLI_ASYNC_MBX_BLK;
6177 spin_unlock_irq(&phba->hbalock);
6178
6179 /* Post receive buffers to the device */
6180 lpfc_sli4_rb_setup(phba);
6181
6182 /* Reset HBA FCF states after HBA reset */
6183 phba->fcf.fcf_flag = 0;
6184 phba->fcf.current_rec.flag = 0;
6185
6186 /* Start the ELS watchdog timer */
6187 mod_timer(&vport->els_tmofunc,
6188 jiffies + HZ * (phba->fc_ratov * 2));
6189
6190 /* Start heart beat timer */
6191 mod_timer(&phba->hb_tmofunc,
6192 jiffies + HZ * LPFC_HB_MBOX_INTERVAL);
6193 phba->hb_outstanding = 0;
6194 phba->last_completion_time = jiffies;
6195
6196 /* Start error attention (ERATT) polling timer */
6197 mod_timer(&phba->eratt_poll, jiffies + HZ * LPFC_ERATT_POLL_INTERVAL);
6198
6199 /* Enable PCIe device Advanced Error Reporting (AER) if configured */
6200 if (phba->cfg_aer_support == 1 && !(phba->hba_flag & HBA_AER_ENABLED)) {
6201 rc = pci_enable_pcie_error_reporting(phba->pcidev);
6202 if (!rc) {
6203 lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
6204 "2829 This device supports "
6205 "Advanced Error Reporting (AER)\n");
6206 spin_lock_irq(&phba->hbalock);
6207 phba->hba_flag |= HBA_AER_ENABLED;
6208 spin_unlock_irq(&phba->hbalock);
6209 } else {
6210 lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
6211 "2830 This device does not support "
6212 "Advanced Error Reporting (AER)\n");
6213 phba->cfg_aer_support = 0;
6214 }
6215 rc = 0;
6216 }
6217
6218 if (!(phba->hba_flag & HBA_FCOE_MODE)) {
6219 /*
6220 * The FC Port needs to register FCFI (index 0)
6221 */
6222 lpfc_reg_fcfi(phba, mboxq);
6223 mboxq->vport = phba->pport;
6224 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
6225 if (rc != MBX_SUCCESS)
6226 goto out_unset_queue;
6227 rc = 0;
6228 phba->fcf.fcfi = bf_get(lpfc_reg_fcfi_fcfi,
6229 &mboxq->u.mqe.un.reg_fcfi);
6230
6231 /* Check if the port is configured to be disabled */
6232 lpfc_sli_read_link_ste(phba);
6233 }
6234
6235 /*
6236 * The port is ready, set the host's link state to LINK_DOWN
6237 * in preparation for link interrupts.
6238 */
6239 spin_lock_irq(&phba->hbalock);
6240 phba->link_state = LPFC_LINK_DOWN;
6241 spin_unlock_irq(&phba->hbalock);
6242 if (!(phba->hba_flag & HBA_FCOE_MODE) &&
6243 (phba->hba_flag & LINK_DISABLED)) {
6244 lpfc_printf_log(phba, KERN_ERR, LOG_INIT | LOG_SLI,
6245 "3103 Adapter Link is disabled.\n");
6246 lpfc_down_link(phba, mboxq);
6247 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
6248 if (rc != MBX_SUCCESS) {
6249 lpfc_printf_log(phba, KERN_ERR, LOG_INIT | LOG_SLI,
6250 "3104 Adapter failed to issue "
6251 "DOWN_LINK mbox cmd, rc:x%x\n", rc);
6252 goto out_unset_queue;
6253 }
6254 } else if (phba->cfg_suppress_link_up == LPFC_INITIALIZE_LINK) {
6255 /* don't perform init_link on SLI4 FC port loopback test */
6256 if (!(phba->link_flag & LS_LOOPBACK_MODE)) {
6257 rc = phba->lpfc_hba_init_link(phba, MBX_NOWAIT);
6258 if (rc)
6259 goto out_unset_queue;
6260 }
6261 }
6262 mempool_free(mboxq, phba->mbox_mem_pool);
6263 return rc;
6264 out_unset_queue:
6265 /* Unset all the queues set up in this routine when error out */
6266 lpfc_sli4_queue_unset(phba);
6267 out_destroy_queue:
6268 lpfc_sli4_queue_destroy(phba);
6269 out_stop_timers:
6270 lpfc_stop_hba_timers(phba);
6271 out_free_mbox:
6272 mempool_free(mboxq, phba->mbox_mem_pool);
6273 return rc;
6274 }
6275
6276 /**
6277 * lpfc_mbox_timeout - Timeout call back function for mbox timer
6278 * @ptr: context object - pointer to hba structure.
6279 *
6280 * This is the callback function for mailbox timer. The mailbox
6281 * timer is armed when a new mailbox command is issued and the timer
6282 * is deleted when the mailbox complete. The function is called by
6283 * the kernel timer code when a mailbox does not complete within
6284 * expected time. This function wakes up the worker thread to
6285 * process the mailbox timeout and returns. All the processing is
6286 * done by the worker thread function lpfc_mbox_timeout_handler.
6287 **/
6288 void
6289 lpfc_mbox_timeout(unsigned long ptr)
6290 {
6291 struct lpfc_hba *phba = (struct lpfc_hba *) ptr;
6292 unsigned long iflag;
6293 uint32_t tmo_posted;
6294
6295 spin_lock_irqsave(&phba->pport->work_port_lock, iflag);
6296 tmo_posted = phba->pport->work_port_events & WORKER_MBOX_TMO;
6297 if (!tmo_posted)
6298 phba->pport->work_port_events |= WORKER_MBOX_TMO;
6299 spin_unlock_irqrestore(&phba->pport->work_port_lock, iflag);
6300
6301 if (!tmo_posted)
6302 lpfc_worker_wake_up(phba);
6303 return;
6304 }
6305
6306
6307 /**
6308 * lpfc_mbox_timeout_handler - Worker thread function to handle mailbox timeout
6309 * @phba: Pointer to HBA context object.
6310 *
6311 * This function is called from worker thread when a mailbox command times out.
6312 * The caller is not required to hold any locks. This function will reset the
6313 * HBA and recover all the pending commands.
6314 **/
6315 void
6316 lpfc_mbox_timeout_handler(struct lpfc_hba *phba)
6317 {
6318 LPFC_MBOXQ_t *pmbox = phba->sli.mbox_active;
6319 MAILBOX_t *mb = &pmbox->u.mb;
6320 struct lpfc_sli *psli = &phba->sli;
6321 struct lpfc_sli_ring *pring;
6322
6323 /* Check the pmbox pointer first. There is a race condition
6324 * between the mbox timeout handler getting executed in the
6325 * worklist and the mailbox actually completing. When this
6326 * race condition occurs, the mbox_active will be NULL.
6327 */
6328 spin_lock_irq(&phba->hbalock);
6329 if (pmbox == NULL) {
6330 lpfc_printf_log(phba, KERN_WARNING,
6331 LOG_MBOX | LOG_SLI,
6332 "0353 Active Mailbox cleared - mailbox timeout "
6333 "exiting\n");
6334 spin_unlock_irq(&phba->hbalock);
6335 return;
6336 }
6337
6338 /* Mbox cmd <mbxCommand> timeout */
6339 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
6340 "0310 Mailbox command x%x timeout Data: x%x x%x x%p\n",
6341 mb->mbxCommand,
6342 phba->pport->port_state,
6343 phba->sli.sli_flag,
6344 phba->sli.mbox_active);
6345 spin_unlock_irq(&phba->hbalock);
6346
6347 /* Setting state unknown so lpfc_sli_abort_iocb_ring
6348 * would get IOCB_ERROR from lpfc_sli_issue_iocb, allowing
6349 * it to fail all outstanding SCSI IO.
6350 */
6351 spin_lock_irq(&phba->pport->work_port_lock);
6352 phba->pport->work_port_events &= ~WORKER_MBOX_TMO;
6353 spin_unlock_irq(&phba->pport->work_port_lock);
6354 spin_lock_irq(&phba->hbalock);
6355 phba->link_state = LPFC_LINK_UNKNOWN;
6356 psli->sli_flag &= ~LPFC_SLI_ACTIVE;
6357 spin_unlock_irq(&phba->hbalock);
6358
6359 pring = &psli->ring[psli->fcp_ring];
6360 lpfc_sli_abort_iocb_ring(phba, pring);
6361
6362 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
6363 "0345 Resetting board due to mailbox timeout\n");
6364
6365 /* Reset the HBA device */
6366 lpfc_reset_hba(phba);
6367 }
6368
6369 /**
6370 * lpfc_sli_issue_mbox_s3 - Issue an SLI3 mailbox command to firmware
6371 * @phba: Pointer to HBA context object.
6372 * @pmbox: Pointer to mailbox object.
6373 * @flag: Flag indicating how the mailbox need to be processed.
6374 *
6375 * This function is called by discovery code and HBA management code
6376 * to submit a mailbox command to firmware with SLI-3 interface spec. This
6377 * function gets the hbalock to protect the data structures.
6378 * The mailbox command can be submitted in polling mode, in which case
6379 * this function will wait in a polling loop for the completion of the
6380 * mailbox.
6381 * If the mailbox is submitted in no_wait mode (not polling) the
6382 * function will submit the command and returns immediately without waiting
6383 * for the mailbox completion. The no_wait is supported only when HBA
6384 * is in SLI2/SLI3 mode - interrupts are enabled.
6385 * The SLI interface allows only one mailbox pending at a time. If the
6386 * mailbox is issued in polling mode and there is already a mailbox
6387 * pending, then the function will return an error. If the mailbox is issued
6388 * in NO_WAIT mode and there is a mailbox pending already, the function
6389 * will return MBX_BUSY after queuing the mailbox into mailbox queue.
6390 * The sli layer owns the mailbox object until the completion of mailbox
6391 * command if this function return MBX_BUSY or MBX_SUCCESS. For all other
6392 * return codes the caller owns the mailbox command after the return of
6393 * the function.
6394 **/
6395 static int
6396 lpfc_sli_issue_mbox_s3(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmbox,
6397 uint32_t flag)
6398 {
6399 MAILBOX_t *mb;
6400 struct lpfc_sli *psli = &phba->sli;
6401 uint32_t status, evtctr;
6402 uint32_t ha_copy, hc_copy;
6403 int i;
6404 unsigned long timeout;
6405 unsigned long drvr_flag = 0;
6406 uint32_t word0, ldata;
6407 void __iomem *to_slim;
6408 int processing_queue = 0;
6409
6410 spin_lock_irqsave(&phba->hbalock, drvr_flag);
6411 if (!pmbox) {
6412 phba->sli.sli_flag &= ~LPFC_SLI_MBOX_ACTIVE;
6413 /* processing mbox queue from intr_handler */
6414 if (unlikely(psli->sli_flag & LPFC_SLI_ASYNC_MBX_BLK)) {
6415 spin_unlock_irqrestore(&phba->hbalock, drvr_flag);
6416 return MBX_SUCCESS;
6417 }
6418 processing_queue = 1;
6419 pmbox = lpfc_mbox_get(phba);
6420 if (!pmbox) {
6421 spin_unlock_irqrestore(&phba->hbalock, drvr_flag);
6422 return MBX_SUCCESS;
6423 }
6424 }
6425
6426 if (pmbox->mbox_cmpl && pmbox->mbox_cmpl != lpfc_sli_def_mbox_cmpl &&
6427 pmbox->mbox_cmpl != lpfc_sli_wake_mbox_wait) {
6428 if(!pmbox->vport) {
6429 spin_unlock_irqrestore(&phba->hbalock, drvr_flag);
6430 lpfc_printf_log(phba, KERN_ERR,
6431 LOG_MBOX | LOG_VPORT,
6432 "1806 Mbox x%x failed. No vport\n",
6433 pmbox->u.mb.mbxCommand);
6434 dump_stack();
6435 goto out_not_finished;
6436 }
6437 }
6438
6439 /* If the PCI channel is in offline state, do not post mbox. */
6440 if (unlikely(pci_channel_offline(phba->pcidev))) {
6441 spin_unlock_irqrestore(&phba->hbalock, drvr_flag);
6442 goto out_not_finished;
6443 }
6444
6445 /* If HBA has a deferred error attention, fail the iocb. */
6446 if (unlikely(phba->hba_flag & DEFER_ERATT)) {
6447 spin_unlock_irqrestore(&phba->hbalock, drvr_flag);
6448 goto out_not_finished;
6449 }
6450
6451 psli = &phba->sli;
6452
6453 mb = &pmbox->u.mb;
6454 status = MBX_SUCCESS;
6455
6456 if (phba->link_state == LPFC_HBA_ERROR) {
6457 spin_unlock_irqrestore(&phba->hbalock, drvr_flag);
6458
6459 /* Mbox command <mbxCommand> cannot issue */
6460 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
6461 "(%d):0311 Mailbox command x%x cannot "
6462 "issue Data: x%x x%x\n",
6463 pmbox->vport ? pmbox->vport->vpi : 0,
6464 pmbox->u.mb.mbxCommand, psli->sli_flag, flag);
6465 goto out_not_finished;
6466 }
6467
6468 if (mb->mbxCommand != MBX_KILL_BOARD && flag & MBX_NOWAIT) {
6469 if (lpfc_readl(phba->HCregaddr, &hc_copy) ||
6470 !(hc_copy & HC_MBINT_ENA)) {
6471 spin_unlock_irqrestore(&phba->hbalock, drvr_flag);
6472 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
6473 "(%d):2528 Mailbox command x%x cannot "
6474 "issue Data: x%x x%x\n",
6475 pmbox->vport ? pmbox->vport->vpi : 0,
6476 pmbox->u.mb.mbxCommand, psli->sli_flag, flag);
6477 goto out_not_finished;
6478 }
6479 }
6480
6481 if (psli->sli_flag & LPFC_SLI_MBOX_ACTIVE) {
6482 /* Polling for a mbox command when another one is already active
6483 * is not allowed in SLI. Also, the driver must have established
6484 * SLI2 mode to queue and process multiple mbox commands.
6485 */
6486
6487 if (flag & MBX_POLL) {
6488 spin_unlock_irqrestore(&phba->hbalock, drvr_flag);
6489
6490 /* Mbox command <mbxCommand> cannot issue */
6491 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
6492 "(%d):2529 Mailbox command x%x "
6493 "cannot issue Data: x%x x%x\n",
6494 pmbox->vport ? pmbox->vport->vpi : 0,
6495 pmbox->u.mb.mbxCommand,
6496 psli->sli_flag, flag);
6497 goto out_not_finished;
6498 }
6499
6500 if (!(psli->sli_flag & LPFC_SLI_ACTIVE)) {
6501 spin_unlock_irqrestore(&phba->hbalock, drvr_flag);
6502 /* Mbox command <mbxCommand> cannot issue */
6503 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
6504 "(%d):2530 Mailbox command x%x "
6505 "cannot issue Data: x%x x%x\n",
6506 pmbox->vport ? pmbox->vport->vpi : 0,
6507 pmbox->u.mb.mbxCommand,
6508 psli->sli_flag, flag);
6509 goto out_not_finished;
6510 }
6511
6512 /* Another mailbox command is still being processed, queue this
6513 * command to be processed later.
6514 */
6515 lpfc_mbox_put(phba, pmbox);
6516
6517 /* Mbox cmd issue - BUSY */
6518 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI,
6519 "(%d):0308 Mbox cmd issue - BUSY Data: "
6520 "x%x x%x x%x x%x\n",
6521 pmbox->vport ? pmbox->vport->vpi : 0xffffff,
6522 mb->mbxCommand, phba->pport->port_state,
6523 psli->sli_flag, flag);
6524
6525 psli->slistat.mbox_busy++;
6526 spin_unlock_irqrestore(&phba->hbalock, drvr_flag);
6527
6528 if (pmbox->vport) {
6529 lpfc_debugfs_disc_trc(pmbox->vport,
6530 LPFC_DISC_TRC_MBOX_VPORT,
6531 "MBOX Bsy vport: cmd:x%x mb:x%x x%x",
6532 (uint32_t)mb->mbxCommand,
6533 mb->un.varWords[0], mb->un.varWords[1]);
6534 }
6535 else {
6536 lpfc_debugfs_disc_trc(phba->pport,
6537 LPFC_DISC_TRC_MBOX,
6538 "MBOX Bsy: cmd:x%x mb:x%x x%x",
6539 (uint32_t)mb->mbxCommand,
6540 mb->un.varWords[0], mb->un.varWords[1]);
6541 }
6542
6543 return MBX_BUSY;
6544 }
6545
6546 psli->sli_flag |= LPFC_SLI_MBOX_ACTIVE;
6547
6548 /* If we are not polling, we MUST be in SLI2 mode */
6549 if (flag != MBX_POLL) {
6550 if (!(psli->sli_flag & LPFC_SLI_ACTIVE) &&
6551 (mb->mbxCommand != MBX_KILL_BOARD)) {
6552 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE;
6553 spin_unlock_irqrestore(&phba->hbalock, drvr_flag);
6554 /* Mbox command <mbxCommand> cannot issue */
6555 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
6556 "(%d):2531 Mailbox command x%x "
6557 "cannot issue Data: x%x x%x\n",
6558 pmbox->vport ? pmbox->vport->vpi : 0,
6559 pmbox->u.mb.mbxCommand,
6560 psli->sli_flag, flag);
6561 goto out_not_finished;
6562 }
6563 /* timeout active mbox command */
6564 mod_timer(&psli->mbox_tmo, (jiffies +
6565 (HZ * lpfc_mbox_tmo_val(phba, pmbox))));
6566 }
6567
6568 /* Mailbox cmd <cmd> issue */
6569 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI,
6570 "(%d):0309 Mailbox cmd x%x issue Data: x%x x%x "
6571 "x%x\n",
6572 pmbox->vport ? pmbox->vport->vpi : 0,
6573 mb->mbxCommand, phba->pport->port_state,
6574 psli->sli_flag, flag);
6575
6576 if (mb->mbxCommand != MBX_HEARTBEAT) {
6577 if (pmbox->vport) {
6578 lpfc_debugfs_disc_trc(pmbox->vport,
6579 LPFC_DISC_TRC_MBOX_VPORT,
6580 "MBOX Send vport: cmd:x%x mb:x%x x%x",
6581 (uint32_t)mb->mbxCommand,
6582 mb->un.varWords[0], mb->un.varWords[1]);
6583 }
6584 else {
6585 lpfc_debugfs_disc_trc(phba->pport,
6586 LPFC_DISC_TRC_MBOX,
6587 "MBOX Send: cmd:x%x mb:x%x x%x",
6588 (uint32_t)mb->mbxCommand,
6589 mb->un.varWords[0], mb->un.varWords[1]);
6590 }
6591 }
6592
6593 psli->slistat.mbox_cmd++;
6594 evtctr = psli->slistat.mbox_event;
6595
6596 /* next set own bit for the adapter and copy over command word */
6597 mb->mbxOwner = OWN_CHIP;
6598
6599 if (psli->sli_flag & LPFC_SLI_ACTIVE) {
6600 /* Populate mbox extension offset word. */
6601 if (pmbox->in_ext_byte_len || pmbox->out_ext_byte_len) {
6602 *(((uint32_t *)mb) + pmbox->mbox_offset_word)
6603 = (uint8_t *)phba->mbox_ext
6604 - (uint8_t *)phba->mbox;
6605 }
6606
6607 /* Copy the mailbox extension data */
6608 if (pmbox->in_ext_byte_len && pmbox->context2) {
6609 lpfc_sli_pcimem_bcopy(pmbox->context2,
6610 (uint8_t *)phba->mbox_ext,
6611 pmbox->in_ext_byte_len);
6612 }
6613 /* Copy command data to host SLIM area */
6614 lpfc_sli_pcimem_bcopy(mb, phba->mbox, MAILBOX_CMD_SIZE);
6615 } else {
6616 /* Populate mbox extension offset word. */
6617 if (pmbox->in_ext_byte_len || pmbox->out_ext_byte_len)
6618 *(((uint32_t *)mb) + pmbox->mbox_offset_word)
6619 = MAILBOX_HBA_EXT_OFFSET;
6620
6621 /* Copy the mailbox extension data */
6622 if (pmbox->in_ext_byte_len && pmbox->context2) {
6623 lpfc_memcpy_to_slim(phba->MBslimaddr +
6624 MAILBOX_HBA_EXT_OFFSET,
6625 pmbox->context2, pmbox->in_ext_byte_len);
6626
6627 }
6628 if (mb->mbxCommand == MBX_CONFIG_PORT) {
6629 /* copy command data into host mbox for cmpl */
6630 lpfc_sli_pcimem_bcopy(mb, phba->mbox, MAILBOX_CMD_SIZE);
6631 }
6632
6633 /* First copy mbox command data to HBA SLIM, skip past first
6634 word */
6635 to_slim = phba->MBslimaddr + sizeof (uint32_t);
6636 lpfc_memcpy_to_slim(to_slim, &mb->un.varWords[0],
6637 MAILBOX_CMD_SIZE - sizeof (uint32_t));
6638
6639 /* Next copy over first word, with mbxOwner set */
6640 ldata = *((uint32_t *)mb);
6641 to_slim = phba->MBslimaddr;
6642 writel(ldata, to_slim);
6643 readl(to_slim); /* flush */
6644
6645 if (mb->mbxCommand == MBX_CONFIG_PORT) {
6646 /* switch over to host mailbox */
6647 psli->sli_flag |= LPFC_SLI_ACTIVE;
6648 }
6649 }
6650
6651 wmb();
6652
6653 switch (flag) {
6654 case MBX_NOWAIT:
6655 /* Set up reference to mailbox command */
6656 psli->mbox_active = pmbox;
6657 /* Interrupt board to do it */
6658 writel(CA_MBATT, phba->CAregaddr);
6659 readl(phba->CAregaddr); /* flush */
6660 /* Don't wait for it to finish, just return */
6661 break;
6662
6663 case MBX_POLL:
6664 /* Set up null reference to mailbox command */
6665 psli->mbox_active = NULL;
6666 /* Interrupt board to do it */
6667 writel(CA_MBATT, phba->CAregaddr);
6668 readl(phba->CAregaddr); /* flush */
6669
6670 if (psli->sli_flag & LPFC_SLI_ACTIVE) {
6671 /* First read mbox status word */
6672 word0 = *((uint32_t *)phba->mbox);
6673 word0 = le32_to_cpu(word0);
6674 } else {
6675 /* First read mbox status word */
6676 if (lpfc_readl(phba->MBslimaddr, &word0)) {
6677 spin_unlock_irqrestore(&phba->hbalock,
6678 drvr_flag);
6679 goto out_not_finished;
6680 }
6681 }
6682
6683 /* Read the HBA Host Attention Register */
6684 if (lpfc_readl(phba->HAregaddr, &ha_copy)) {
6685 spin_unlock_irqrestore(&phba->hbalock,
6686 drvr_flag);
6687 goto out_not_finished;
6688 }
6689 timeout = msecs_to_jiffies(lpfc_mbox_tmo_val(phba, pmbox) *
6690 1000) + jiffies;
6691 i = 0;
6692 /* Wait for command to complete */
6693 while (((word0 & OWN_CHIP) == OWN_CHIP) ||
6694 (!(ha_copy & HA_MBATT) &&
6695 (phba->link_state > LPFC_WARM_START))) {
6696 if (time_after(jiffies, timeout)) {
6697 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE;
6698 spin_unlock_irqrestore(&phba->hbalock,
6699 drvr_flag);
6700 goto out_not_finished;
6701 }
6702
6703 /* Check if we took a mbox interrupt while we were
6704 polling */
6705 if (((word0 & OWN_CHIP) != OWN_CHIP)
6706 && (evtctr != psli->slistat.mbox_event))
6707 break;
6708
6709 if (i++ > 10) {
6710 spin_unlock_irqrestore(&phba->hbalock,
6711 drvr_flag);
6712 msleep(1);
6713 spin_lock_irqsave(&phba->hbalock, drvr_flag);
6714 }
6715
6716 if (psli->sli_flag & LPFC_SLI_ACTIVE) {
6717 /* First copy command data */
6718 word0 = *((uint32_t *)phba->mbox);
6719 word0 = le32_to_cpu(word0);
6720 if (mb->mbxCommand == MBX_CONFIG_PORT) {
6721 MAILBOX_t *slimmb;
6722 uint32_t slimword0;
6723 /* Check real SLIM for any errors */
6724 slimword0 = readl(phba->MBslimaddr);
6725 slimmb = (MAILBOX_t *) & slimword0;
6726 if (((slimword0 & OWN_CHIP) != OWN_CHIP)
6727 && slimmb->mbxStatus) {
6728 psli->sli_flag &=
6729 ~LPFC_SLI_ACTIVE;
6730 word0 = slimword0;
6731 }
6732 }
6733 } else {
6734 /* First copy command data */
6735 word0 = readl(phba->MBslimaddr);
6736 }
6737 /* Read the HBA Host Attention Register */
6738 if (lpfc_readl(phba->HAregaddr, &ha_copy)) {
6739 spin_unlock_irqrestore(&phba->hbalock,
6740 drvr_flag);
6741 goto out_not_finished;
6742 }
6743 }
6744
6745 if (psli->sli_flag & LPFC_SLI_ACTIVE) {
6746 /* copy results back to user */
6747 lpfc_sli_pcimem_bcopy(phba->mbox, mb, MAILBOX_CMD_SIZE);
6748 /* Copy the mailbox extension data */
6749 if (pmbox->out_ext_byte_len && pmbox->context2) {
6750 lpfc_sli_pcimem_bcopy(phba->mbox_ext,
6751 pmbox->context2,
6752 pmbox->out_ext_byte_len);
6753 }
6754 } else {
6755 /* First copy command data */
6756 lpfc_memcpy_from_slim(mb, phba->MBslimaddr,
6757 MAILBOX_CMD_SIZE);
6758 /* Copy the mailbox extension data */
6759 if (pmbox->out_ext_byte_len && pmbox->context2) {
6760 lpfc_memcpy_from_slim(pmbox->context2,
6761 phba->MBslimaddr +
6762 MAILBOX_HBA_EXT_OFFSET,
6763 pmbox->out_ext_byte_len);
6764 }
6765 }
6766
6767 writel(HA_MBATT, phba->HAregaddr);
6768 readl(phba->HAregaddr); /* flush */
6769
6770 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE;
6771 status = mb->mbxStatus;
6772 }
6773
6774 spin_unlock_irqrestore(&phba->hbalock, drvr_flag);
6775 return status;
6776
6777 out_not_finished:
6778 if (processing_queue) {
6779 pmbox->u.mb.mbxStatus = MBX_NOT_FINISHED;
6780 lpfc_mbox_cmpl_put(phba, pmbox);
6781 }
6782 return MBX_NOT_FINISHED;
6783 }
6784
6785 /**
6786 * lpfc_sli4_async_mbox_block - Block posting SLI4 asynchronous mailbox command
6787 * @phba: Pointer to HBA context object.
6788 *
6789 * The function blocks the posting of SLI4 asynchronous mailbox commands from
6790 * the driver internal pending mailbox queue. It will then try to wait out the
6791 * possible outstanding mailbox command before return.
6792 *
6793 * Returns:
6794 * 0 - the outstanding mailbox command completed; otherwise, the wait for
6795 * the outstanding mailbox command timed out.
6796 **/
6797 static int
6798 lpfc_sli4_async_mbox_block(struct lpfc_hba *phba)
6799 {
6800 struct lpfc_sli *psli = &phba->sli;
6801 int rc = 0;
6802 unsigned long timeout = 0;
6803
6804 /* Mark the asynchronous mailbox command posting as blocked */
6805 spin_lock_irq(&phba->hbalock);
6806 psli->sli_flag |= LPFC_SLI_ASYNC_MBX_BLK;
6807 /* Determine how long we might wait for the active mailbox
6808 * command to be gracefully completed by firmware.
6809 */
6810 if (phba->sli.mbox_active)
6811 timeout = msecs_to_jiffies(lpfc_mbox_tmo_val(phba,
6812 phba->sli.mbox_active) *
6813 1000) + jiffies;
6814 spin_unlock_irq(&phba->hbalock);
6815
6816 /* Wait for the outstnading mailbox command to complete */
6817 while (phba->sli.mbox_active) {
6818 /* Check active mailbox complete status every 2ms */
6819 msleep(2);
6820 if (time_after(jiffies, timeout)) {
6821 /* Timeout, marked the outstanding cmd not complete */
6822 rc = 1;
6823 break;
6824 }
6825 }
6826
6827 /* Can not cleanly block async mailbox command, fails it */
6828 if (rc) {
6829 spin_lock_irq(&phba->hbalock);
6830 psli->sli_flag &= ~LPFC_SLI_ASYNC_MBX_BLK;
6831 spin_unlock_irq(&phba->hbalock);
6832 }
6833 return rc;
6834 }
6835
6836 /**
6837 * lpfc_sli4_async_mbox_unblock - Block posting SLI4 async mailbox command
6838 * @phba: Pointer to HBA context object.
6839 *
6840 * The function unblocks and resume posting of SLI4 asynchronous mailbox
6841 * commands from the driver internal pending mailbox queue. It makes sure
6842 * that there is no outstanding mailbox command before resuming posting
6843 * asynchronous mailbox commands. If, for any reason, there is outstanding
6844 * mailbox command, it will try to wait it out before resuming asynchronous
6845 * mailbox command posting.
6846 **/
6847 static void
6848 lpfc_sli4_async_mbox_unblock(struct lpfc_hba *phba)
6849 {
6850 struct lpfc_sli *psli = &phba->sli;
6851
6852 spin_lock_irq(&phba->hbalock);
6853 if (!(psli->sli_flag & LPFC_SLI_ASYNC_MBX_BLK)) {
6854 /* Asynchronous mailbox posting is not blocked, do nothing */
6855 spin_unlock_irq(&phba->hbalock);
6856 return;
6857 }
6858
6859 /* Outstanding synchronous mailbox command is guaranteed to be done,
6860 * successful or timeout, after timing-out the outstanding mailbox
6861 * command shall always be removed, so just unblock posting async
6862 * mailbox command and resume
6863 */
6864 psli->sli_flag &= ~LPFC_SLI_ASYNC_MBX_BLK;
6865 spin_unlock_irq(&phba->hbalock);
6866
6867 /* wake up worker thread to post asynchronlous mailbox command */
6868 lpfc_worker_wake_up(phba);
6869 }
6870
6871 /**
6872 * lpfc_sli4_post_sync_mbox - Post an SLI4 mailbox to the bootstrap mailbox
6873 * @phba: Pointer to HBA context object.
6874 * @mboxq: Pointer to mailbox object.
6875 *
6876 * The function posts a mailbox to the port. The mailbox is expected
6877 * to be comletely filled in and ready for the port to operate on it.
6878 * This routine executes a synchronous completion operation on the
6879 * mailbox by polling for its completion.
6880 *
6881 * The caller must not be holding any locks when calling this routine.
6882 *
6883 * Returns:
6884 * MBX_SUCCESS - mailbox posted successfully
6885 * Any of the MBX error values.
6886 **/
6887 static int
6888 lpfc_sli4_post_sync_mbox(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq)
6889 {
6890 int rc = MBX_SUCCESS;
6891 unsigned long iflag;
6892 uint32_t db_ready;
6893 uint32_t mcqe_status;
6894 uint32_t mbx_cmnd;
6895 unsigned long timeout;
6896 struct lpfc_sli *psli = &phba->sli;
6897 struct lpfc_mqe *mb = &mboxq->u.mqe;
6898 struct lpfc_bmbx_create *mbox_rgn;
6899 struct dma_address *dma_address;
6900 struct lpfc_register bmbx_reg;
6901
6902 /*
6903 * Only one mailbox can be active to the bootstrap mailbox region
6904 * at a time and there is no queueing provided.
6905 */
6906 spin_lock_irqsave(&phba->hbalock, iflag);
6907 if (psli->sli_flag & LPFC_SLI_MBOX_ACTIVE) {
6908 spin_unlock_irqrestore(&phba->hbalock, iflag);
6909 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
6910 "(%d):2532 Mailbox command x%x (x%x/x%x) "
6911 "cannot issue Data: x%x x%x\n",
6912 mboxq->vport ? mboxq->vport->vpi : 0,
6913 mboxq->u.mb.mbxCommand,
6914 lpfc_sli_config_mbox_subsys_get(phba, mboxq),
6915 lpfc_sli_config_mbox_opcode_get(phba, mboxq),
6916 psli->sli_flag, MBX_POLL);
6917 return MBXERR_ERROR;
6918 }
6919 /* The server grabs the token and owns it until release */
6920 psli->sli_flag |= LPFC_SLI_MBOX_ACTIVE;
6921 phba->sli.mbox_active = mboxq;
6922 spin_unlock_irqrestore(&phba->hbalock, iflag);
6923
6924 /*
6925 * Initialize the bootstrap memory region to avoid stale data areas
6926 * in the mailbox post. Then copy the caller's mailbox contents to
6927 * the bmbx mailbox region.
6928 */
6929 mbx_cmnd = bf_get(lpfc_mqe_command, mb);
6930 memset(phba->sli4_hba.bmbx.avirt, 0, sizeof(struct lpfc_bmbx_create));
6931 lpfc_sli_pcimem_bcopy(mb, phba->sli4_hba.bmbx.avirt,
6932 sizeof(struct lpfc_mqe));
6933
6934 /* Post the high mailbox dma address to the port and wait for ready. */
6935 dma_address = &phba->sli4_hba.bmbx.dma_address;
6936 writel(dma_address->addr_hi, phba->sli4_hba.BMBXregaddr);
6937
6938 timeout = msecs_to_jiffies(lpfc_mbox_tmo_val(phba, mboxq)
6939 * 1000) + jiffies;
6940 do {
6941 bmbx_reg.word0 = readl(phba->sli4_hba.BMBXregaddr);
6942 db_ready = bf_get(lpfc_bmbx_rdy, &bmbx_reg);
6943 if (!db_ready)
6944 msleep(2);
6945
6946 if (time_after(jiffies, timeout)) {
6947 rc = MBXERR_ERROR;
6948 goto exit;
6949 }
6950 } while (!db_ready);
6951
6952 /* Post the low mailbox dma address to the port. */
6953 writel(dma_address->addr_lo, phba->sli4_hba.BMBXregaddr);
6954 timeout = msecs_to_jiffies(lpfc_mbox_tmo_val(phba, mboxq)
6955 * 1000) + jiffies;
6956 do {
6957 bmbx_reg.word0 = readl(phba->sli4_hba.BMBXregaddr);
6958 db_ready = bf_get(lpfc_bmbx_rdy, &bmbx_reg);
6959 if (!db_ready)
6960 msleep(2);
6961
6962 if (time_after(jiffies, timeout)) {
6963 rc = MBXERR_ERROR;
6964 goto exit;
6965 }
6966 } while (!db_ready);
6967
6968 /*
6969 * Read the CQ to ensure the mailbox has completed.
6970 * If so, update the mailbox status so that the upper layers
6971 * can complete the request normally.
6972 */
6973 lpfc_sli_pcimem_bcopy(phba->sli4_hba.bmbx.avirt, mb,
6974 sizeof(struct lpfc_mqe));
6975 mbox_rgn = (struct lpfc_bmbx_create *) phba->sli4_hba.bmbx.avirt;
6976 lpfc_sli_pcimem_bcopy(&mbox_rgn->mcqe, &mboxq->mcqe,
6977 sizeof(struct lpfc_mcqe));
6978 mcqe_status = bf_get(lpfc_mcqe_status, &mbox_rgn->mcqe);
6979 /*
6980 * When the CQE status indicates a failure and the mailbox status
6981 * indicates success then copy the CQE status into the mailbox status
6982 * (and prefix it with x4000).
6983 */
6984 if (mcqe_status != MB_CQE_STATUS_SUCCESS) {
6985 if (bf_get(lpfc_mqe_status, mb) == MBX_SUCCESS)
6986 bf_set(lpfc_mqe_status, mb,
6987 (LPFC_MBX_ERROR_RANGE | mcqe_status));
6988 rc = MBXERR_ERROR;
6989 } else
6990 lpfc_sli4_swap_str(phba, mboxq);
6991
6992 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI,
6993 "(%d):0356 Mailbox cmd x%x (x%x/x%x) Status x%x "
6994 "Data: x%x x%x x%x x%x x%x x%x x%x x%x x%x x%x x%x"
6995 " x%x x%x CQ: x%x x%x x%x x%x\n",
6996 mboxq->vport ? mboxq->vport->vpi : 0, mbx_cmnd,
6997 lpfc_sli_config_mbox_subsys_get(phba, mboxq),
6998 lpfc_sli_config_mbox_opcode_get(phba, mboxq),
6999 bf_get(lpfc_mqe_status, mb),
7000 mb->un.mb_words[0], mb->un.mb_words[1],
7001 mb->un.mb_words[2], mb->un.mb_words[3],
7002 mb->un.mb_words[4], mb->un.mb_words[5],
7003 mb->un.mb_words[6], mb->un.mb_words[7],
7004 mb->un.mb_words[8], mb->un.mb_words[9],
7005 mb->un.mb_words[10], mb->un.mb_words[11],
7006 mb->un.mb_words[12], mboxq->mcqe.word0,
7007 mboxq->mcqe.mcqe_tag0, mboxq->mcqe.mcqe_tag1,
7008 mboxq->mcqe.trailer);
7009 exit:
7010 /* We are holding the token, no needed for lock when release */
7011 spin_lock_irqsave(&phba->hbalock, iflag);
7012 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE;
7013 phba->sli.mbox_active = NULL;
7014 spin_unlock_irqrestore(&phba->hbalock, iflag);
7015 return rc;
7016 }
7017
7018 /**
7019 * lpfc_sli_issue_mbox_s4 - Issue an SLI4 mailbox command to firmware
7020 * @phba: Pointer to HBA context object.
7021 * @pmbox: Pointer to mailbox object.
7022 * @flag: Flag indicating how the mailbox need to be processed.
7023 *
7024 * This function is called by discovery code and HBA management code to submit
7025 * a mailbox command to firmware with SLI-4 interface spec.
7026 *
7027 * Return codes the caller owns the mailbox command after the return of the
7028 * function.
7029 **/
7030 static int
7031 lpfc_sli_issue_mbox_s4(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq,
7032 uint32_t flag)
7033 {
7034 struct lpfc_sli *psli = &phba->sli;
7035 unsigned long iflags;
7036 int rc;
7037
7038 /* dump from issue mailbox command if setup */
7039 lpfc_idiag_mbxacc_dump_issue_mbox(phba, &mboxq->u.mb);
7040
7041 rc = lpfc_mbox_dev_check(phba);
7042 if (unlikely(rc)) {
7043 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
7044 "(%d):2544 Mailbox command x%x (x%x/x%x) "
7045 "cannot issue Data: x%x x%x\n",
7046 mboxq->vport ? mboxq->vport->vpi : 0,
7047 mboxq->u.mb.mbxCommand,
7048 lpfc_sli_config_mbox_subsys_get(phba, mboxq),
7049 lpfc_sli_config_mbox_opcode_get(phba, mboxq),
7050 psli->sli_flag, flag);
7051 goto out_not_finished;
7052 }
7053
7054 /* Detect polling mode and jump to a handler */
7055 if (!phba->sli4_hba.intr_enable) {
7056 if (flag == MBX_POLL)
7057 rc = lpfc_sli4_post_sync_mbox(phba, mboxq);
7058 else
7059 rc = -EIO;
7060 if (rc != MBX_SUCCESS)
7061 lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI,
7062 "(%d):2541 Mailbox command x%x "
7063 "(x%x/x%x) cannot issue Data: "
7064 "x%x x%x\n",
7065 mboxq->vport ? mboxq->vport->vpi : 0,
7066 mboxq->u.mb.mbxCommand,
7067 lpfc_sli_config_mbox_subsys_get(phba,
7068 mboxq),
7069 lpfc_sli_config_mbox_opcode_get(phba,
7070 mboxq),
7071 psli->sli_flag, flag);
7072 return rc;
7073 } else if (flag == MBX_POLL) {
7074 lpfc_printf_log(phba, KERN_WARNING, LOG_MBOX | LOG_SLI,
7075 "(%d):2542 Try to issue mailbox command "
7076 "x%x (x%x/x%x) synchronously ahead of async"
7077 "mailbox command queue: x%x x%x\n",
7078 mboxq->vport ? mboxq->vport->vpi : 0,
7079 mboxq->u.mb.mbxCommand,
7080 lpfc_sli_config_mbox_subsys_get(phba, mboxq),
7081 lpfc_sli_config_mbox_opcode_get(phba, mboxq),
7082 psli->sli_flag, flag);
7083 /* Try to block the asynchronous mailbox posting */
7084 rc = lpfc_sli4_async_mbox_block(phba);
7085 if (!rc) {
7086 /* Successfully blocked, now issue sync mbox cmd */
7087 rc = lpfc_sli4_post_sync_mbox(phba, mboxq);
7088 if (rc != MBX_SUCCESS)
7089 lpfc_printf_log(phba, KERN_ERR,
7090 LOG_MBOX | LOG_SLI,
7091 "(%d):2597 Mailbox command "
7092 "x%x (x%x/x%x) cannot issue "
7093 "Data: x%x x%x\n",
7094 mboxq->vport ?
7095 mboxq->vport->vpi : 0,
7096 mboxq->u.mb.mbxCommand,
7097 lpfc_sli_config_mbox_subsys_get(phba,
7098 mboxq),
7099 lpfc_sli_config_mbox_opcode_get(phba,
7100 mboxq),
7101 psli->sli_flag, flag);
7102 /* Unblock the async mailbox posting afterward */
7103 lpfc_sli4_async_mbox_unblock(phba);
7104 }
7105 return rc;
7106 }
7107
7108 /* Now, interrupt mode asynchrous mailbox command */
7109 rc = lpfc_mbox_cmd_check(phba, mboxq);
7110 if (rc) {
7111 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
7112 "(%d):2543 Mailbox command x%x (x%x/x%x) "
7113 "cannot issue Data: x%x x%x\n",
7114 mboxq->vport ? mboxq->vport->vpi : 0,
7115 mboxq->u.mb.mbxCommand,
7116 lpfc_sli_config_mbox_subsys_get(phba, mboxq),
7117 lpfc_sli_config_mbox_opcode_get(phba, mboxq),
7118 psli->sli_flag, flag);
7119 goto out_not_finished;
7120 }
7121
7122 /* Put the mailbox command to the driver internal FIFO */
7123 psli->slistat.mbox_busy++;
7124 spin_lock_irqsave(&phba->hbalock, iflags);
7125 lpfc_mbox_put(phba, mboxq);
7126 spin_unlock_irqrestore(&phba->hbalock, iflags);
7127 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI,
7128 "(%d):0354 Mbox cmd issue - Enqueue Data: "
7129 "x%x (x%x/x%x) x%x x%x x%x\n",
7130 mboxq->vport ? mboxq->vport->vpi : 0xffffff,
7131 bf_get(lpfc_mqe_command, &mboxq->u.mqe),
7132 lpfc_sli_config_mbox_subsys_get(phba, mboxq),
7133 lpfc_sli_config_mbox_opcode_get(phba, mboxq),
7134 phba->pport->port_state,
7135 psli->sli_flag, MBX_NOWAIT);
7136 /* Wake up worker thread to transport mailbox command from head */
7137 lpfc_worker_wake_up(phba);
7138
7139 return MBX_BUSY;
7140
7141 out_not_finished:
7142 return MBX_NOT_FINISHED;
7143 }
7144
7145 /**
7146 * lpfc_sli4_post_async_mbox - Post an SLI4 mailbox command to device
7147 * @phba: Pointer to HBA context object.
7148 *
7149 * This function is called by worker thread to send a mailbox command to
7150 * SLI4 HBA firmware.
7151 *
7152 **/
7153 int
7154 lpfc_sli4_post_async_mbox(struct lpfc_hba *phba)
7155 {
7156 struct lpfc_sli *psli = &phba->sli;
7157 LPFC_MBOXQ_t *mboxq;
7158 int rc = MBX_SUCCESS;
7159 unsigned long iflags;
7160 struct lpfc_mqe *mqe;
7161 uint32_t mbx_cmnd;
7162
7163 /* Check interrupt mode before post async mailbox command */
7164 if (unlikely(!phba->sli4_hba.intr_enable))
7165 return MBX_NOT_FINISHED;
7166
7167 /* Check for mailbox command service token */
7168 spin_lock_irqsave(&phba->hbalock, iflags);
7169 if (unlikely(psli->sli_flag & LPFC_SLI_ASYNC_MBX_BLK)) {
7170 spin_unlock_irqrestore(&phba->hbalock, iflags);
7171 return MBX_NOT_FINISHED;
7172 }
7173 if (psli->sli_flag & LPFC_SLI_MBOX_ACTIVE) {
7174 spin_unlock_irqrestore(&phba->hbalock, iflags);
7175 return MBX_NOT_FINISHED;
7176 }
7177 if (unlikely(phba->sli.mbox_active)) {
7178 spin_unlock_irqrestore(&phba->hbalock, iflags);
7179 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
7180 "0384 There is pending active mailbox cmd\n");
7181 return MBX_NOT_FINISHED;
7182 }
7183 /* Take the mailbox command service token */
7184 psli->sli_flag |= LPFC_SLI_MBOX_ACTIVE;
7185
7186 /* Get the next mailbox command from head of queue */
7187 mboxq = lpfc_mbox_get(phba);
7188
7189 /* If no more mailbox command waiting for post, we're done */
7190 if (!mboxq) {
7191 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE;
7192 spin_unlock_irqrestore(&phba->hbalock, iflags);
7193 return MBX_SUCCESS;
7194 }
7195 phba->sli.mbox_active = mboxq;
7196 spin_unlock_irqrestore(&phba->hbalock, iflags);
7197
7198 /* Check device readiness for posting mailbox command */
7199 rc = lpfc_mbox_dev_check(phba);
7200 if (unlikely(rc))
7201 /* Driver clean routine will clean up pending mailbox */
7202 goto out_not_finished;
7203
7204 /* Prepare the mbox command to be posted */
7205 mqe = &mboxq->u.mqe;
7206 mbx_cmnd = bf_get(lpfc_mqe_command, mqe);
7207
7208 /* Start timer for the mbox_tmo and log some mailbox post messages */
7209 mod_timer(&psli->mbox_tmo, (jiffies +
7210 (HZ * lpfc_mbox_tmo_val(phba, mboxq))));
7211
7212 lpfc_printf_log(phba, KERN_INFO, LOG_MBOX | LOG_SLI,
7213 "(%d):0355 Mailbox cmd x%x (x%x/x%x) issue Data: "
7214 "x%x x%x\n",
7215 mboxq->vport ? mboxq->vport->vpi : 0, mbx_cmnd,
7216 lpfc_sli_config_mbox_subsys_get(phba, mboxq),
7217 lpfc_sli_config_mbox_opcode_get(phba, mboxq),
7218 phba->pport->port_state, psli->sli_flag);
7219
7220 if (mbx_cmnd != MBX_HEARTBEAT) {
7221 if (mboxq->vport) {
7222 lpfc_debugfs_disc_trc(mboxq->vport,
7223 LPFC_DISC_TRC_MBOX_VPORT,
7224 "MBOX Send vport: cmd:x%x mb:x%x x%x",
7225 mbx_cmnd, mqe->un.mb_words[0],
7226 mqe->un.mb_words[1]);
7227 } else {
7228 lpfc_debugfs_disc_trc(phba->pport,
7229 LPFC_DISC_TRC_MBOX,
7230 "MBOX Send: cmd:x%x mb:x%x x%x",
7231 mbx_cmnd, mqe->un.mb_words[0],
7232 mqe->un.mb_words[1]);
7233 }
7234 }
7235 psli->slistat.mbox_cmd++;
7236
7237 /* Post the mailbox command to the port */
7238 rc = lpfc_sli4_mq_put(phba->sli4_hba.mbx_wq, mqe);
7239 if (rc != MBX_SUCCESS) {
7240 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX | LOG_SLI,
7241 "(%d):2533 Mailbox command x%x (x%x/x%x) "
7242 "cannot issue Data: x%x x%x\n",
7243 mboxq->vport ? mboxq->vport->vpi : 0,
7244 mboxq->u.mb.mbxCommand,
7245 lpfc_sli_config_mbox_subsys_get(phba, mboxq),
7246 lpfc_sli_config_mbox_opcode_get(phba, mboxq),
7247 psli->sli_flag, MBX_NOWAIT);
7248 goto out_not_finished;
7249 }
7250
7251 return rc;
7252
7253 out_not_finished:
7254 spin_lock_irqsave(&phba->hbalock, iflags);
7255 mboxq->u.mb.mbxStatus = MBX_NOT_FINISHED;
7256 __lpfc_mbox_cmpl_put(phba, mboxq);
7257 /* Release the token */
7258 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE;
7259 phba->sli.mbox_active = NULL;
7260 spin_unlock_irqrestore(&phba->hbalock, iflags);
7261
7262 return MBX_NOT_FINISHED;
7263 }
7264
7265 /**
7266 * lpfc_sli_issue_mbox - Wrapper func for issuing mailbox command
7267 * @phba: Pointer to HBA context object.
7268 * @pmbox: Pointer to mailbox object.
7269 * @flag: Flag indicating how the mailbox need to be processed.
7270 *
7271 * This routine wraps the actual SLI3 or SLI4 mailbox issuing routine from
7272 * the API jump table function pointer from the lpfc_hba struct.
7273 *
7274 * Return codes the caller owns the mailbox command after the return of the
7275 * function.
7276 **/
7277 int
7278 lpfc_sli_issue_mbox(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmbox, uint32_t flag)
7279 {
7280 return phba->lpfc_sli_issue_mbox(phba, pmbox, flag);
7281 }
7282
7283 /**
7284 * lpfc_mbox_api_table_setup - Set up mbox api function jump table
7285 * @phba: The hba struct for which this call is being executed.
7286 * @dev_grp: The HBA PCI-Device group number.
7287 *
7288 * This routine sets up the mbox interface API function jump table in @phba
7289 * struct.
7290 * Returns: 0 - success, -ENODEV - failure.
7291 **/
7292 int
7293 lpfc_mbox_api_table_setup(struct lpfc_hba *phba, uint8_t dev_grp)
7294 {
7295
7296 switch (dev_grp) {
7297 case LPFC_PCI_DEV_LP:
7298 phba->lpfc_sli_issue_mbox = lpfc_sli_issue_mbox_s3;
7299 phba->lpfc_sli_handle_slow_ring_event =
7300 lpfc_sli_handle_slow_ring_event_s3;
7301 phba->lpfc_sli_hbq_to_firmware = lpfc_sli_hbq_to_firmware_s3;
7302 phba->lpfc_sli_brdrestart = lpfc_sli_brdrestart_s3;
7303 phba->lpfc_sli_brdready = lpfc_sli_brdready_s3;
7304 break;
7305 case LPFC_PCI_DEV_OC:
7306 phba->lpfc_sli_issue_mbox = lpfc_sli_issue_mbox_s4;
7307 phba->lpfc_sli_handle_slow_ring_event =
7308 lpfc_sli_handle_slow_ring_event_s4;
7309 phba->lpfc_sli_hbq_to_firmware = lpfc_sli_hbq_to_firmware_s4;
7310 phba->lpfc_sli_brdrestart = lpfc_sli_brdrestart_s4;
7311 phba->lpfc_sli_brdready = lpfc_sli_brdready_s4;
7312 break;
7313 default:
7314 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
7315 "1420 Invalid HBA PCI-device group: 0x%x\n",
7316 dev_grp);
7317 return -ENODEV;
7318 break;
7319 }
7320 return 0;
7321 }
7322
7323 /**
7324 * __lpfc_sli_ringtx_put - Add an iocb to the txq
7325 * @phba: Pointer to HBA context object.
7326 * @pring: Pointer to driver SLI ring object.
7327 * @piocb: Pointer to address of newly added command iocb.
7328 *
7329 * This function is called with hbalock held to add a command
7330 * iocb to the txq when SLI layer cannot submit the command iocb
7331 * to the ring.
7332 **/
7333 void
7334 __lpfc_sli_ringtx_put(struct lpfc_hba *phba, struct lpfc_sli_ring *pring,
7335 struct lpfc_iocbq *piocb)
7336 {
7337 /* Insert the caller's iocb in the txq tail for later processing. */
7338 list_add_tail(&piocb->list, &pring->txq);
7339 pring->txq_cnt++;
7340 }
7341
7342 /**
7343 * lpfc_sli_next_iocb - Get the next iocb in the txq
7344 * @phba: Pointer to HBA context object.
7345 * @pring: Pointer to driver SLI ring object.
7346 * @piocb: Pointer to address of newly added command iocb.
7347 *
7348 * This function is called with hbalock held before a new
7349 * iocb is submitted to the firmware. This function checks
7350 * txq to flush the iocbs in txq to Firmware before
7351 * submitting new iocbs to the Firmware.
7352 * If there are iocbs in the txq which need to be submitted
7353 * to firmware, lpfc_sli_next_iocb returns the first element
7354 * of the txq after dequeuing it from txq.
7355 * If there is no iocb in the txq then the function will return
7356 * *piocb and *piocb is set to NULL. Caller needs to check
7357 * *piocb to find if there are more commands in the txq.
7358 **/
7359 static struct lpfc_iocbq *
7360 lpfc_sli_next_iocb(struct lpfc_hba *phba, struct lpfc_sli_ring *pring,
7361 struct lpfc_iocbq **piocb)
7362 {
7363 struct lpfc_iocbq * nextiocb;
7364
7365 nextiocb = lpfc_sli_ringtx_get(phba, pring);
7366 if (!nextiocb) {
7367 nextiocb = *piocb;
7368 *piocb = NULL;
7369 }
7370
7371 return nextiocb;
7372 }
7373
7374 /**
7375 * __lpfc_sli_issue_iocb_s3 - SLI3 device lockless ver of lpfc_sli_issue_iocb
7376 * @phba: Pointer to HBA context object.
7377 * @ring_number: SLI ring number to issue iocb on.
7378 * @piocb: Pointer to command iocb.
7379 * @flag: Flag indicating if this command can be put into txq.
7380 *
7381 * __lpfc_sli_issue_iocb_s3 is used by other functions in the driver to issue
7382 * an iocb command to an HBA with SLI-3 interface spec. If the PCI slot is
7383 * recovering from error state, if HBA is resetting or if LPFC_STOP_IOCB_EVENT
7384 * flag is turned on, the function returns IOCB_ERROR. When the link is down,
7385 * this function allows only iocbs for posting buffers. This function finds
7386 * next available slot in the command ring and posts the command to the
7387 * available slot and writes the port attention register to request HBA start
7388 * processing new iocb. If there is no slot available in the ring and
7389 * flag & SLI_IOCB_RET_IOCB is set, the new iocb is added to the txq, otherwise
7390 * the function returns IOCB_BUSY.
7391 *
7392 * This function is called with hbalock held. The function will return success
7393 * after it successfully submit the iocb to firmware or after adding to the
7394 * txq.
7395 **/
7396 static int
7397 __lpfc_sli_issue_iocb_s3(struct lpfc_hba *phba, uint32_t ring_number,
7398 struct lpfc_iocbq *piocb, uint32_t flag)
7399 {
7400 struct lpfc_iocbq *nextiocb;
7401 IOCB_t *iocb;
7402 struct lpfc_sli_ring *pring = &phba->sli.ring[ring_number];
7403
7404 if (piocb->iocb_cmpl && (!piocb->vport) &&
7405 (piocb->iocb.ulpCommand != CMD_ABORT_XRI_CN) &&
7406 (piocb->iocb.ulpCommand != CMD_CLOSE_XRI_CN)) {
7407 lpfc_printf_log(phba, KERN_ERR,
7408 LOG_SLI | LOG_VPORT,
7409 "1807 IOCB x%x failed. No vport\n",
7410 piocb->iocb.ulpCommand);
7411 dump_stack();
7412 return IOCB_ERROR;
7413 }
7414
7415
7416 /* If the PCI channel is in offline state, do not post iocbs. */
7417 if (unlikely(pci_channel_offline(phba->pcidev)))
7418 return IOCB_ERROR;
7419
7420 /* If HBA has a deferred error attention, fail the iocb. */
7421 if (unlikely(phba->hba_flag & DEFER_ERATT))
7422 return IOCB_ERROR;
7423
7424 /*
7425 * We should never get an IOCB if we are in a < LINK_DOWN state
7426 */
7427 if (unlikely(phba->link_state < LPFC_LINK_DOWN))
7428 return IOCB_ERROR;
7429
7430 /*
7431 * Check to see if we are blocking IOCB processing because of a
7432 * outstanding event.
7433 */
7434 if (unlikely(pring->flag & LPFC_STOP_IOCB_EVENT))
7435 goto iocb_busy;
7436
7437 if (unlikely(phba->link_state == LPFC_LINK_DOWN)) {
7438 /*
7439 * Only CREATE_XRI, CLOSE_XRI, and QUE_RING_BUF
7440 * can be issued if the link is not up.
7441 */
7442 switch (piocb->iocb.ulpCommand) {
7443 case CMD_GEN_REQUEST64_CR:
7444 case CMD_GEN_REQUEST64_CX:
7445 if (!(phba->sli.sli_flag & LPFC_MENLO_MAINT) ||
7446 (piocb->iocb.un.genreq64.w5.hcsw.Rctl !=
7447 FC_RCTL_DD_UNSOL_CMD) ||
7448 (piocb->iocb.un.genreq64.w5.hcsw.Type !=
7449 MENLO_TRANSPORT_TYPE))
7450
7451 goto iocb_busy;
7452 break;
7453 case CMD_QUE_RING_BUF_CN:
7454 case CMD_QUE_RING_BUF64_CN:
7455 /*
7456 * For IOCBs, like QUE_RING_BUF, that have no rsp ring
7457 * completion, iocb_cmpl MUST be 0.
7458 */
7459 if (piocb->iocb_cmpl)
7460 piocb->iocb_cmpl = NULL;
7461 /*FALLTHROUGH*/
7462 case CMD_CREATE_XRI_CR:
7463 case CMD_CLOSE_XRI_CN:
7464 case CMD_CLOSE_XRI_CX:
7465 break;
7466 default:
7467 goto iocb_busy;
7468 }
7469
7470 /*
7471 * For FCP commands, we must be in a state where we can process link
7472 * attention events.
7473 */
7474 } else if (unlikely(pring->ringno == phba->sli.fcp_ring &&
7475 !(phba->sli.sli_flag & LPFC_PROCESS_LA))) {
7476 goto iocb_busy;
7477 }
7478
7479 while ((iocb = lpfc_sli_next_iocb_slot(phba, pring)) &&
7480 (nextiocb = lpfc_sli_next_iocb(phba, pring, &piocb)))
7481 lpfc_sli_submit_iocb(phba, pring, iocb, nextiocb);
7482
7483 if (iocb)
7484 lpfc_sli_update_ring(phba, pring);
7485 else
7486 lpfc_sli_update_full_ring(phba, pring);
7487
7488 if (!piocb)
7489 return IOCB_SUCCESS;
7490
7491 goto out_busy;
7492
7493 iocb_busy:
7494 pring->stats.iocb_cmd_delay++;
7495
7496 out_busy:
7497
7498 if (!(flag & SLI_IOCB_RET_IOCB)) {
7499 __lpfc_sli_ringtx_put(phba, pring, piocb);
7500 return IOCB_SUCCESS;
7501 }
7502
7503 return IOCB_BUSY;
7504 }
7505
7506 /**
7507 * lpfc_sli4_bpl2sgl - Convert the bpl/bde to a sgl.
7508 * @phba: Pointer to HBA context object.
7509 * @piocb: Pointer to command iocb.
7510 * @sglq: Pointer to the scatter gather queue object.
7511 *
7512 * This routine converts the bpl or bde that is in the IOCB
7513 * to a sgl list for the sli4 hardware. The physical address
7514 * of the bpl/bde is converted back to a virtual address.
7515 * If the IOCB contains a BPL then the list of BDE's is
7516 * converted to sli4_sge's. If the IOCB contains a single
7517 * BDE then it is converted to a single sli_sge.
7518 * The IOCB is still in cpu endianess so the contents of
7519 * the bpl can be used without byte swapping.
7520 *
7521 * Returns valid XRI = Success, NO_XRI = Failure.
7522 **/
7523 static uint16_t
7524 lpfc_sli4_bpl2sgl(struct lpfc_hba *phba, struct lpfc_iocbq *piocbq,
7525 struct lpfc_sglq *sglq)
7526 {
7527 uint16_t xritag = NO_XRI;
7528 struct ulp_bde64 *bpl = NULL;
7529 struct ulp_bde64 bde;
7530 struct sli4_sge *sgl = NULL;
7531 struct lpfc_dmabuf *dmabuf;
7532 IOCB_t *icmd;
7533 int numBdes = 0;
7534 int i = 0;
7535 uint32_t offset = 0; /* accumulated offset in the sg request list */
7536 int inbound = 0; /* number of sg reply entries inbound from firmware */
7537
7538 if (!piocbq || !sglq)
7539 return xritag;
7540
7541 sgl = (struct sli4_sge *)sglq->sgl;
7542 icmd = &piocbq->iocb;
7543 if (icmd->ulpCommand == CMD_XMIT_BLS_RSP64_CX)
7544 return sglq->sli4_xritag;
7545 if (icmd->un.genreq64.bdl.bdeFlags == BUFF_TYPE_BLP_64) {
7546 numBdes = icmd->un.genreq64.bdl.bdeSize /
7547 sizeof(struct ulp_bde64);
7548 /* The addrHigh and addrLow fields within the IOCB
7549 * have not been byteswapped yet so there is no
7550 * need to swap them back.
7551 */
7552 if (piocbq->context3)
7553 dmabuf = (struct lpfc_dmabuf *)piocbq->context3;
7554 else
7555 return xritag;
7556
7557 bpl = (struct ulp_bde64 *)dmabuf->virt;
7558 if (!bpl)
7559 return xritag;
7560
7561 for (i = 0; i < numBdes; i++) {
7562 /* Should already be byte swapped. */
7563 sgl->addr_hi = bpl->addrHigh;
7564 sgl->addr_lo = bpl->addrLow;
7565
7566 sgl->word2 = le32_to_cpu(sgl->word2);
7567 if ((i+1) == numBdes)
7568 bf_set(lpfc_sli4_sge_last, sgl, 1);
7569 else
7570 bf_set(lpfc_sli4_sge_last, sgl, 0);
7571 /* swap the size field back to the cpu so we
7572 * can assign it to the sgl.
7573 */
7574 bde.tus.w = le32_to_cpu(bpl->tus.w);
7575 sgl->sge_len = cpu_to_le32(bde.tus.f.bdeSize);
7576 /* The offsets in the sgl need to be accumulated
7577 * separately for the request and reply lists.
7578 * The request is always first, the reply follows.
7579 */
7580 if (piocbq->iocb.ulpCommand == CMD_GEN_REQUEST64_CR) {
7581 /* add up the reply sg entries */
7582 if (bpl->tus.f.bdeFlags == BUFF_TYPE_BDE_64I)
7583 inbound++;
7584 /* first inbound? reset the offset */
7585 if (inbound == 1)
7586 offset = 0;
7587 bf_set(lpfc_sli4_sge_offset, sgl, offset);
7588 bf_set(lpfc_sli4_sge_type, sgl,
7589 LPFC_SGE_TYPE_DATA);
7590 offset += bde.tus.f.bdeSize;
7591 }
7592 sgl->word2 = cpu_to_le32(sgl->word2);
7593 bpl++;
7594 sgl++;
7595 }
7596 } else if (icmd->un.genreq64.bdl.bdeFlags == BUFF_TYPE_BDE_64) {
7597 /* The addrHigh and addrLow fields of the BDE have not
7598 * been byteswapped yet so they need to be swapped
7599 * before putting them in the sgl.
7600 */
7601 sgl->addr_hi =
7602 cpu_to_le32(icmd->un.genreq64.bdl.addrHigh);
7603 sgl->addr_lo =
7604 cpu_to_le32(icmd->un.genreq64.bdl.addrLow);
7605 sgl->word2 = le32_to_cpu(sgl->word2);
7606 bf_set(lpfc_sli4_sge_last, sgl, 1);
7607 sgl->word2 = cpu_to_le32(sgl->word2);
7608 sgl->sge_len =
7609 cpu_to_le32(icmd->un.genreq64.bdl.bdeSize);
7610 }
7611 return sglq->sli4_xritag;
7612 }
7613
7614 /**
7615 * lpfc_sli4_scmd_to_wqidx_distr - scsi command to SLI4 WQ index distribution
7616 * @phba: Pointer to HBA context object.
7617 *
7618 * This routine performs a roundrobin SCSI command to SLI4 FCP WQ index
7619 * distribution. This is called by __lpfc_sli_issue_iocb_s4() with the hbalock
7620 * held.
7621 *
7622 * Return: index into SLI4 fast-path FCP queue index.
7623 **/
7624 static uint32_t
7625 lpfc_sli4_scmd_to_wqidx_distr(struct lpfc_hba *phba)
7626 {
7627 ++phba->fcp_qidx;
7628 if (phba->fcp_qidx >= phba->cfg_fcp_wq_count)
7629 phba->fcp_qidx = 0;
7630
7631 return phba->fcp_qidx;
7632 }
7633
7634 /**
7635 * lpfc_sli_iocb2wqe - Convert the IOCB to a work queue entry.
7636 * @phba: Pointer to HBA context object.
7637 * @piocb: Pointer to command iocb.
7638 * @wqe: Pointer to the work queue entry.
7639 *
7640 * This routine converts the iocb command to its Work Queue Entry
7641 * equivalent. The wqe pointer should not have any fields set when
7642 * this routine is called because it will memcpy over them.
7643 * This routine does not set the CQ_ID or the WQEC bits in the
7644 * wqe.
7645 *
7646 * Returns: 0 = Success, IOCB_ERROR = Failure.
7647 **/
7648 static int
7649 lpfc_sli4_iocb2wqe(struct lpfc_hba *phba, struct lpfc_iocbq *iocbq,
7650 union lpfc_wqe *wqe)
7651 {
7652 uint32_t xmit_len = 0, total_len = 0;
7653 uint8_t ct = 0;
7654 uint32_t fip;
7655 uint32_t abort_tag;
7656 uint8_t command_type = ELS_COMMAND_NON_FIP;
7657 uint8_t cmnd;
7658 uint16_t xritag;
7659 uint16_t abrt_iotag;
7660 struct lpfc_iocbq *abrtiocbq;
7661 struct ulp_bde64 *bpl = NULL;
7662 uint32_t els_id = LPFC_ELS_ID_DEFAULT;
7663 int numBdes, i;
7664 struct ulp_bde64 bde;
7665 struct lpfc_nodelist *ndlp;
7666 uint32_t *pcmd;
7667 uint32_t if_type;
7668
7669 fip = phba->hba_flag & HBA_FIP_SUPPORT;
7670 /* The fcp commands will set command type */
7671 if (iocbq->iocb_flag & LPFC_IO_FCP)
7672 command_type = FCP_COMMAND;
7673 else if (fip && (iocbq->iocb_flag & LPFC_FIP_ELS_ID_MASK))
7674 command_type = ELS_COMMAND_FIP;
7675 else
7676 command_type = ELS_COMMAND_NON_FIP;
7677
7678 /* Some of the fields are in the right position already */
7679 memcpy(wqe, &iocbq->iocb, sizeof(union lpfc_wqe));
7680 abort_tag = (uint32_t) iocbq->iotag;
7681 xritag = iocbq->sli4_xritag;
7682 wqe->generic.wqe_com.word7 = 0; /* The ct field has moved so reset */
7683 /* words0-2 bpl convert bde */
7684 if (iocbq->iocb.un.genreq64.bdl.bdeFlags == BUFF_TYPE_BLP_64) {
7685 numBdes = iocbq->iocb.un.genreq64.bdl.bdeSize /
7686 sizeof(struct ulp_bde64);
7687 bpl = (struct ulp_bde64 *)
7688 ((struct lpfc_dmabuf *)iocbq->context3)->virt;
7689 if (!bpl)
7690 return IOCB_ERROR;
7691
7692 /* Should already be byte swapped. */
7693 wqe->generic.bde.addrHigh = le32_to_cpu(bpl->addrHigh);
7694 wqe->generic.bde.addrLow = le32_to_cpu(bpl->addrLow);
7695 /* swap the size field back to the cpu so we
7696 * can assign it to the sgl.
7697 */
7698 wqe->generic.bde.tus.w = le32_to_cpu(bpl->tus.w);
7699 xmit_len = wqe->generic.bde.tus.f.bdeSize;
7700 total_len = 0;
7701 for (i = 0; i < numBdes; i++) {
7702 bde.tus.w = le32_to_cpu(bpl[i].tus.w);
7703 total_len += bde.tus.f.bdeSize;
7704 }
7705 } else
7706 xmit_len = iocbq->iocb.un.fcpi64.bdl.bdeSize;
7707
7708 iocbq->iocb.ulpIoTag = iocbq->iotag;
7709 cmnd = iocbq->iocb.ulpCommand;
7710
7711 switch (iocbq->iocb.ulpCommand) {
7712 case CMD_ELS_REQUEST64_CR:
7713 ndlp = (struct lpfc_nodelist *)iocbq->context1;
7714 if (!iocbq->iocb.ulpLe) {
7715 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
7716 "2007 Only Limited Edition cmd Format"
7717 " supported 0x%x\n",
7718 iocbq->iocb.ulpCommand);
7719 return IOCB_ERROR;
7720 }
7721
7722 wqe->els_req.payload_len = xmit_len;
7723 /* Els_reguest64 has a TMO */
7724 bf_set(wqe_tmo, &wqe->els_req.wqe_com,
7725 iocbq->iocb.ulpTimeout);
7726 /* Need a VF for word 4 set the vf bit*/
7727 bf_set(els_req64_vf, &wqe->els_req, 0);
7728 /* And a VFID for word 12 */
7729 bf_set(els_req64_vfid, &wqe->els_req, 0);
7730 ct = ((iocbq->iocb.ulpCt_h << 1) | iocbq->iocb.ulpCt_l);
7731 bf_set(wqe_ctxt_tag, &wqe->els_req.wqe_com,
7732 iocbq->iocb.ulpContext);
7733 bf_set(wqe_ct, &wqe->els_req.wqe_com, ct);
7734 bf_set(wqe_pu, &wqe->els_req.wqe_com, 0);
7735 /* CCP CCPE PV PRI in word10 were set in the memcpy */
7736 if (command_type == ELS_COMMAND_FIP)
7737 els_id = ((iocbq->iocb_flag & LPFC_FIP_ELS_ID_MASK)
7738 >> LPFC_FIP_ELS_ID_SHIFT);
7739 pcmd = (uint32_t *) (((struct lpfc_dmabuf *)
7740 iocbq->context2)->virt);
7741 if_type = bf_get(lpfc_sli_intf_if_type,
7742 &phba->sli4_hba.sli_intf);
7743 if (if_type == LPFC_SLI_INTF_IF_TYPE_2) {
7744 if (pcmd && (*pcmd == ELS_CMD_FLOGI ||
7745 *pcmd == ELS_CMD_SCR ||
7746 *pcmd == ELS_CMD_FDISC ||
7747 *pcmd == ELS_CMD_LOGO ||
7748 *pcmd == ELS_CMD_PLOGI)) {
7749 bf_set(els_req64_sp, &wqe->els_req, 1);
7750 bf_set(els_req64_sid, &wqe->els_req,
7751 iocbq->vport->fc_myDID);
7752 bf_set(wqe_ct, &wqe->els_req.wqe_com, 1);
7753 bf_set(wqe_ctxt_tag, &wqe->els_req.wqe_com,
7754 phba->vpi_ids[phba->pport->vpi]);
7755 } else if (pcmd && iocbq->context1) {
7756 bf_set(wqe_ct, &wqe->els_req.wqe_com, 0);
7757 bf_set(wqe_ctxt_tag, &wqe->els_req.wqe_com,
7758 phba->sli4_hba.rpi_ids[ndlp->nlp_rpi]);
7759 }
7760 }
7761 bf_set(wqe_temp_rpi, &wqe->els_req.wqe_com,
7762 phba->sli4_hba.rpi_ids[ndlp->nlp_rpi]);
7763 bf_set(wqe_els_id, &wqe->els_req.wqe_com, els_id);
7764 bf_set(wqe_dbde, &wqe->els_req.wqe_com, 1);
7765 bf_set(wqe_iod, &wqe->els_req.wqe_com, LPFC_WQE_IOD_READ);
7766 bf_set(wqe_qosd, &wqe->els_req.wqe_com, 1);
7767 bf_set(wqe_lenloc, &wqe->els_req.wqe_com, LPFC_WQE_LENLOC_NONE);
7768 bf_set(wqe_ebde_cnt, &wqe->els_req.wqe_com, 0);
7769 break;
7770 case CMD_XMIT_SEQUENCE64_CX:
7771 bf_set(wqe_ctxt_tag, &wqe->xmit_sequence.wqe_com,
7772 iocbq->iocb.un.ulpWord[3]);
7773 bf_set(wqe_rcvoxid, &wqe->xmit_sequence.wqe_com,
7774 iocbq->iocb.unsli3.rcvsli3.ox_id);
7775 /* The entire sequence is transmitted for this IOCB */
7776 xmit_len = total_len;
7777 cmnd = CMD_XMIT_SEQUENCE64_CR;
7778 if (phba->link_flag & LS_LOOPBACK_MODE)
7779 bf_set(wqe_xo, &wqe->xmit_sequence.wge_ctl, 1);
7780 case CMD_XMIT_SEQUENCE64_CR:
7781 /* word3 iocb=io_tag32 wqe=reserved */
7782 wqe->xmit_sequence.rsvd3 = 0;
7783 /* word4 relative_offset memcpy */
7784 /* word5 r_ctl/df_ctl memcpy */
7785 bf_set(wqe_pu, &wqe->xmit_sequence.wqe_com, 0);
7786 bf_set(wqe_dbde, &wqe->xmit_sequence.wqe_com, 1);
7787 bf_set(wqe_iod, &wqe->xmit_sequence.wqe_com,
7788 LPFC_WQE_IOD_WRITE);
7789 bf_set(wqe_lenloc, &wqe->xmit_sequence.wqe_com,
7790 LPFC_WQE_LENLOC_WORD12);
7791 bf_set(wqe_ebde_cnt, &wqe->xmit_sequence.wqe_com, 0);
7792 wqe->xmit_sequence.xmit_len = xmit_len;
7793 command_type = OTHER_COMMAND;
7794 break;
7795 case CMD_XMIT_BCAST64_CN:
7796 /* word3 iocb=iotag32 wqe=seq_payload_len */
7797 wqe->xmit_bcast64.seq_payload_len = xmit_len;
7798 /* word4 iocb=rsvd wqe=rsvd */
7799 /* word5 iocb=rctl/type/df_ctl wqe=rctl/type/df_ctl memcpy */
7800 /* word6 iocb=ctxt_tag/io_tag wqe=ctxt_tag/xri */
7801 bf_set(wqe_ct, &wqe->xmit_bcast64.wqe_com,
7802 ((iocbq->iocb.ulpCt_h << 1) | iocbq->iocb.ulpCt_l));
7803 bf_set(wqe_dbde, &wqe->xmit_bcast64.wqe_com, 1);
7804 bf_set(wqe_iod, &wqe->xmit_bcast64.wqe_com, LPFC_WQE_IOD_WRITE);
7805 bf_set(wqe_lenloc, &wqe->xmit_bcast64.wqe_com,
7806 LPFC_WQE_LENLOC_WORD3);
7807 bf_set(wqe_ebde_cnt, &wqe->xmit_bcast64.wqe_com, 0);
7808 break;
7809 case CMD_FCP_IWRITE64_CR:
7810 command_type = FCP_COMMAND_DATA_OUT;
7811 /* word3 iocb=iotag wqe=payload_offset_len */
7812 /* Add the FCP_CMD and FCP_RSP sizes to get the offset */
7813 wqe->fcp_iwrite.payload_offset_len =
7814 xmit_len + sizeof(struct fcp_rsp);
7815 /* word4 iocb=parameter wqe=total_xfer_length memcpy */
7816 /* word5 iocb=initial_xfer_len wqe=initial_xfer_len memcpy */
7817 bf_set(wqe_erp, &wqe->fcp_iwrite.wqe_com,
7818 iocbq->iocb.ulpFCP2Rcvy);
7819 bf_set(wqe_lnk, &wqe->fcp_iwrite.wqe_com, iocbq->iocb.ulpXS);
7820 /* Always open the exchange */
7821 bf_set(wqe_xc, &wqe->fcp_iwrite.wqe_com, 0);
7822 bf_set(wqe_iod, &wqe->fcp_iwrite.wqe_com, LPFC_WQE_IOD_WRITE);
7823 bf_set(wqe_lenloc, &wqe->fcp_iwrite.wqe_com,
7824 LPFC_WQE_LENLOC_WORD4);
7825 bf_set(wqe_ebde_cnt, &wqe->fcp_iwrite.wqe_com, 0);
7826 bf_set(wqe_pu, &wqe->fcp_iwrite.wqe_com, iocbq->iocb.ulpPU);
7827 if (iocbq->iocb_flag & LPFC_IO_DIF) {
7828 iocbq->iocb_flag &= ~LPFC_IO_DIF;
7829 bf_set(wqe_dif, &wqe->generic.wqe_com, 1);
7830 }
7831 bf_set(wqe_dbde, &wqe->fcp_iwrite.wqe_com, 1);
7832 break;
7833 case CMD_FCP_IREAD64_CR:
7834 /* word3 iocb=iotag wqe=payload_offset_len */
7835 /* Add the FCP_CMD and FCP_RSP sizes to get the offset */
7836 wqe->fcp_iread.payload_offset_len =
7837 xmit_len + sizeof(struct fcp_rsp);
7838 /* word4 iocb=parameter wqe=total_xfer_length memcpy */
7839 /* word5 iocb=initial_xfer_len wqe=initial_xfer_len memcpy */
7840 bf_set(wqe_erp, &wqe->fcp_iread.wqe_com,
7841 iocbq->iocb.ulpFCP2Rcvy);
7842 bf_set(wqe_lnk, &wqe->fcp_iread.wqe_com, iocbq->iocb.ulpXS);
7843 /* Always open the exchange */
7844 bf_set(wqe_xc, &wqe->fcp_iread.wqe_com, 0);
7845 bf_set(wqe_iod, &wqe->fcp_iread.wqe_com, LPFC_WQE_IOD_READ);
7846 bf_set(wqe_lenloc, &wqe->fcp_iread.wqe_com,
7847 LPFC_WQE_LENLOC_WORD4);
7848 bf_set(wqe_ebde_cnt, &wqe->fcp_iread.wqe_com, 0);
7849 bf_set(wqe_pu, &wqe->fcp_iread.wqe_com, iocbq->iocb.ulpPU);
7850 if (iocbq->iocb_flag & LPFC_IO_DIF) {
7851 iocbq->iocb_flag &= ~LPFC_IO_DIF;
7852 bf_set(wqe_dif, &wqe->generic.wqe_com, 1);
7853 }
7854 bf_set(wqe_dbde, &wqe->fcp_iread.wqe_com, 1);
7855 break;
7856 case CMD_FCP_ICMND64_CR:
7857 /* word3 iocb=IO_TAG wqe=reserved */
7858 wqe->fcp_icmd.rsrvd3 = 0;
7859 bf_set(wqe_pu, &wqe->fcp_icmd.wqe_com, 0);
7860 /* Always open the exchange */
7861 bf_set(wqe_xc, &wqe->fcp_icmd.wqe_com, 0);
7862 bf_set(wqe_dbde, &wqe->fcp_icmd.wqe_com, 1);
7863 bf_set(wqe_iod, &wqe->fcp_icmd.wqe_com, LPFC_WQE_IOD_WRITE);
7864 bf_set(wqe_qosd, &wqe->fcp_icmd.wqe_com, 1);
7865 bf_set(wqe_lenloc, &wqe->fcp_icmd.wqe_com,
7866 LPFC_WQE_LENLOC_NONE);
7867 bf_set(wqe_ebde_cnt, &wqe->fcp_icmd.wqe_com, 0);
7868 break;
7869 case CMD_GEN_REQUEST64_CR:
7870 /* For this command calculate the xmit length of the
7871 * request bde.
7872 */
7873 xmit_len = 0;
7874 numBdes = iocbq->iocb.un.genreq64.bdl.bdeSize /
7875 sizeof(struct ulp_bde64);
7876 for (i = 0; i < numBdes; i++) {
7877 bde.tus.w = le32_to_cpu(bpl[i].tus.w);
7878 if (bde.tus.f.bdeFlags != BUFF_TYPE_BDE_64)
7879 break;
7880 xmit_len += bde.tus.f.bdeSize;
7881 }
7882 /* word3 iocb=IO_TAG wqe=request_payload_len */
7883 wqe->gen_req.request_payload_len = xmit_len;
7884 /* word4 iocb=parameter wqe=relative_offset memcpy */
7885 /* word5 [rctl, type, df_ctl, la] copied in memcpy */
7886 /* word6 context tag copied in memcpy */
7887 if (iocbq->iocb.ulpCt_h || iocbq->iocb.ulpCt_l) {
7888 ct = ((iocbq->iocb.ulpCt_h << 1) | iocbq->iocb.ulpCt_l);
7889 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
7890 "2015 Invalid CT %x command 0x%x\n",
7891 ct, iocbq->iocb.ulpCommand);
7892 return IOCB_ERROR;
7893 }
7894 bf_set(wqe_ct, &wqe->gen_req.wqe_com, 0);
7895 bf_set(wqe_tmo, &wqe->gen_req.wqe_com, iocbq->iocb.ulpTimeout);
7896 bf_set(wqe_pu, &wqe->gen_req.wqe_com, iocbq->iocb.ulpPU);
7897 bf_set(wqe_dbde, &wqe->gen_req.wqe_com, 1);
7898 bf_set(wqe_iod, &wqe->gen_req.wqe_com, LPFC_WQE_IOD_READ);
7899 bf_set(wqe_qosd, &wqe->gen_req.wqe_com, 1);
7900 bf_set(wqe_lenloc, &wqe->gen_req.wqe_com, LPFC_WQE_LENLOC_NONE);
7901 bf_set(wqe_ebde_cnt, &wqe->gen_req.wqe_com, 0);
7902 command_type = OTHER_COMMAND;
7903 break;
7904 case CMD_XMIT_ELS_RSP64_CX:
7905 ndlp = (struct lpfc_nodelist *)iocbq->context1;
7906 /* words0-2 BDE memcpy */
7907 /* word3 iocb=iotag32 wqe=response_payload_len */
7908 wqe->xmit_els_rsp.response_payload_len = xmit_len;
7909 /* word4 iocb=did wge=rsvd. */
7910 wqe->xmit_els_rsp.rsvd4 = 0;
7911 /* word5 iocb=rsvd wge=did */
7912 bf_set(wqe_els_did, &wqe->xmit_els_rsp.wqe_dest,
7913 iocbq->iocb.un.elsreq64.remoteID);
7914 bf_set(wqe_ct, &wqe->xmit_els_rsp.wqe_com,
7915 ((iocbq->iocb.ulpCt_h << 1) | iocbq->iocb.ulpCt_l));
7916 bf_set(wqe_pu, &wqe->xmit_els_rsp.wqe_com, iocbq->iocb.ulpPU);
7917 bf_set(wqe_rcvoxid, &wqe->xmit_els_rsp.wqe_com,
7918 iocbq->iocb.unsli3.rcvsli3.ox_id);
7919 if (!iocbq->iocb.ulpCt_h && iocbq->iocb.ulpCt_l)
7920 bf_set(wqe_ctxt_tag, &wqe->xmit_els_rsp.wqe_com,
7921 phba->vpi_ids[iocbq->vport->vpi]);
7922 bf_set(wqe_dbde, &wqe->xmit_els_rsp.wqe_com, 1);
7923 bf_set(wqe_iod, &wqe->xmit_els_rsp.wqe_com, LPFC_WQE_IOD_WRITE);
7924 bf_set(wqe_qosd, &wqe->xmit_els_rsp.wqe_com, 1);
7925 bf_set(wqe_lenloc, &wqe->xmit_els_rsp.wqe_com,
7926 LPFC_WQE_LENLOC_WORD3);
7927 bf_set(wqe_ebde_cnt, &wqe->xmit_els_rsp.wqe_com, 0);
7928 bf_set(wqe_rsp_temp_rpi, &wqe->xmit_els_rsp,
7929 phba->sli4_hba.rpi_ids[ndlp->nlp_rpi]);
7930 pcmd = (uint32_t *) (((struct lpfc_dmabuf *)
7931 iocbq->context2)->virt);
7932 if (phba->fc_topology == LPFC_TOPOLOGY_LOOP) {
7933 bf_set(els_req64_sp, &wqe->els_req, 1);
7934 bf_set(els_req64_sid, &wqe->els_req,
7935 iocbq->vport->fc_myDID);
7936 bf_set(wqe_ct, &wqe->els_req.wqe_com, 1);
7937 bf_set(wqe_ctxt_tag, &wqe->els_req.wqe_com,
7938 phba->vpi_ids[phba->pport->vpi]);
7939 }
7940 command_type = OTHER_COMMAND;
7941 break;
7942 case CMD_CLOSE_XRI_CN:
7943 case CMD_ABORT_XRI_CN:
7944 case CMD_ABORT_XRI_CX:
7945 /* words 0-2 memcpy should be 0 rserved */
7946 /* port will send abts */
7947 abrt_iotag = iocbq->iocb.un.acxri.abortContextTag;
7948 if (abrt_iotag != 0 && abrt_iotag <= phba->sli.last_iotag) {
7949 abrtiocbq = phba->sli.iocbq_lookup[abrt_iotag];
7950 fip = abrtiocbq->iocb_flag & LPFC_FIP_ELS_ID_MASK;
7951 } else
7952 fip = 0;
7953
7954 if ((iocbq->iocb.ulpCommand == CMD_CLOSE_XRI_CN) || fip)
7955 /*
7956 * The link is down, or the command was ELS_FIP
7957 * so the fw does not need to send abts
7958 * on the wire.
7959 */
7960 bf_set(abort_cmd_ia, &wqe->abort_cmd, 1);
7961 else
7962 bf_set(abort_cmd_ia, &wqe->abort_cmd, 0);
7963 bf_set(abort_cmd_criteria, &wqe->abort_cmd, T_XRI_TAG);
7964 /* word5 iocb=CONTEXT_TAG|IO_TAG wqe=reserved */
7965 wqe->abort_cmd.rsrvd5 = 0;
7966 bf_set(wqe_ct, &wqe->abort_cmd.wqe_com,
7967 ((iocbq->iocb.ulpCt_h << 1) | iocbq->iocb.ulpCt_l));
7968 abort_tag = iocbq->iocb.un.acxri.abortIoTag;
7969 /*
7970 * The abort handler will send us CMD_ABORT_XRI_CN or
7971 * CMD_CLOSE_XRI_CN and the fw only accepts CMD_ABORT_XRI_CX
7972 */
7973 bf_set(wqe_cmnd, &wqe->abort_cmd.wqe_com, CMD_ABORT_XRI_CX);
7974 bf_set(wqe_qosd, &wqe->abort_cmd.wqe_com, 1);
7975 bf_set(wqe_lenloc, &wqe->abort_cmd.wqe_com,
7976 LPFC_WQE_LENLOC_NONE);
7977 cmnd = CMD_ABORT_XRI_CX;
7978 command_type = OTHER_COMMAND;
7979 xritag = 0;
7980 break;
7981 case CMD_XMIT_BLS_RSP64_CX:
7982 ndlp = (struct lpfc_nodelist *)iocbq->context1;
7983 /* As BLS ABTS RSP WQE is very different from other WQEs,
7984 * we re-construct this WQE here based on information in
7985 * iocbq from scratch.
7986 */
7987 memset(wqe, 0, sizeof(union lpfc_wqe));
7988 /* OX_ID is invariable to who sent ABTS to CT exchange */
7989 bf_set(xmit_bls_rsp64_oxid, &wqe->xmit_bls_rsp,
7990 bf_get(lpfc_abts_oxid, &iocbq->iocb.un.bls_rsp));
7991 if (bf_get(lpfc_abts_orig, &iocbq->iocb.un.bls_rsp) ==
7992 LPFC_ABTS_UNSOL_INT) {
7993 /* ABTS sent by initiator to CT exchange, the
7994 * RX_ID field will be filled with the newly
7995 * allocated responder XRI.
7996 */
7997 bf_set(xmit_bls_rsp64_rxid, &wqe->xmit_bls_rsp,
7998 iocbq->sli4_xritag);
7999 } else {
8000 /* ABTS sent by responder to CT exchange, the
8001 * RX_ID field will be filled with the responder
8002 * RX_ID from ABTS.
8003 */
8004 bf_set(xmit_bls_rsp64_rxid, &wqe->xmit_bls_rsp,
8005 bf_get(lpfc_abts_rxid, &iocbq->iocb.un.bls_rsp));
8006 }
8007 bf_set(xmit_bls_rsp64_seqcnthi, &wqe->xmit_bls_rsp, 0xffff);
8008 bf_set(wqe_xmit_bls_pt, &wqe->xmit_bls_rsp.wqe_dest, 0x1);
8009
8010 /* Use CT=VPI */
8011 bf_set(wqe_els_did, &wqe->xmit_bls_rsp.wqe_dest,
8012 ndlp->nlp_DID);
8013 bf_set(xmit_bls_rsp64_temprpi, &wqe->xmit_bls_rsp,
8014 iocbq->iocb.ulpContext);
8015 bf_set(wqe_ct, &wqe->xmit_bls_rsp.wqe_com, 1);
8016 bf_set(wqe_ctxt_tag, &wqe->xmit_bls_rsp.wqe_com,
8017 phba->vpi_ids[phba->pport->vpi]);
8018 bf_set(wqe_qosd, &wqe->xmit_bls_rsp.wqe_com, 1);
8019 bf_set(wqe_lenloc, &wqe->xmit_bls_rsp.wqe_com,
8020 LPFC_WQE_LENLOC_NONE);
8021 /* Overwrite the pre-set comnd type with OTHER_COMMAND */
8022 command_type = OTHER_COMMAND;
8023 if (iocbq->iocb.un.xseq64.w5.hcsw.Rctl == FC_RCTL_BA_RJT) {
8024 bf_set(xmit_bls_rsp64_rjt_vspec, &wqe->xmit_bls_rsp,
8025 bf_get(lpfc_vndr_code, &iocbq->iocb.un.bls_rsp));
8026 bf_set(xmit_bls_rsp64_rjt_expc, &wqe->xmit_bls_rsp,
8027 bf_get(lpfc_rsn_expln, &iocbq->iocb.un.bls_rsp));
8028 bf_set(xmit_bls_rsp64_rjt_rsnc, &wqe->xmit_bls_rsp,
8029 bf_get(lpfc_rsn_code, &iocbq->iocb.un.bls_rsp));
8030 }
8031
8032 break;
8033 case CMD_XRI_ABORTED_CX:
8034 case CMD_CREATE_XRI_CR: /* Do we expect to use this? */
8035 case CMD_IOCB_FCP_IBIDIR64_CR: /* bidirectional xfer */
8036 case CMD_FCP_TSEND64_CX: /* Target mode send xfer-ready */
8037 case CMD_FCP_TRSP64_CX: /* Target mode rcv */
8038 case CMD_FCP_AUTO_TRSP_CX: /* Auto target rsp */
8039 default:
8040 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
8041 "2014 Invalid command 0x%x\n",
8042 iocbq->iocb.ulpCommand);
8043 return IOCB_ERROR;
8044 break;
8045 }
8046
8047 bf_set(wqe_xri_tag, &wqe->generic.wqe_com, xritag);
8048 bf_set(wqe_reqtag, &wqe->generic.wqe_com, iocbq->iotag);
8049 wqe->generic.wqe_com.abort_tag = abort_tag;
8050 bf_set(wqe_cmd_type, &wqe->generic.wqe_com, command_type);
8051 bf_set(wqe_cmnd, &wqe->generic.wqe_com, cmnd);
8052 bf_set(wqe_class, &wqe->generic.wqe_com, iocbq->iocb.ulpClass);
8053 bf_set(wqe_cqid, &wqe->generic.wqe_com, LPFC_WQE_CQ_ID_DEFAULT);
8054 return 0;
8055 }
8056
8057 /**
8058 * __lpfc_sli_issue_iocb_s4 - SLI4 device lockless ver of lpfc_sli_issue_iocb
8059 * @phba: Pointer to HBA context object.
8060 * @ring_number: SLI ring number to issue iocb on.
8061 * @piocb: Pointer to command iocb.
8062 * @flag: Flag indicating if this command can be put into txq.
8063 *
8064 * __lpfc_sli_issue_iocb_s4 is used by other functions in the driver to issue
8065 * an iocb command to an HBA with SLI-4 interface spec.
8066 *
8067 * This function is called with hbalock held. The function will return success
8068 * after it successfully submit the iocb to firmware or after adding to the
8069 * txq.
8070 **/
8071 static int
8072 __lpfc_sli_issue_iocb_s4(struct lpfc_hba *phba, uint32_t ring_number,
8073 struct lpfc_iocbq *piocb, uint32_t flag)
8074 {
8075 struct lpfc_sglq *sglq;
8076 union lpfc_wqe wqe;
8077 struct lpfc_sli_ring *pring = &phba->sli.ring[ring_number];
8078
8079 if (piocb->sli4_xritag == NO_XRI) {
8080 if (piocb->iocb.ulpCommand == CMD_ABORT_XRI_CN ||
8081 piocb->iocb.ulpCommand == CMD_CLOSE_XRI_CN)
8082 sglq = NULL;
8083 else {
8084 if (pring->txq_cnt) {
8085 if (!(flag & SLI_IOCB_RET_IOCB)) {
8086 __lpfc_sli_ringtx_put(phba,
8087 pring, piocb);
8088 return IOCB_SUCCESS;
8089 } else {
8090 return IOCB_BUSY;
8091 }
8092 } else {
8093 sglq = __lpfc_sli_get_sglq(phba, piocb);
8094 if (!sglq) {
8095 if (!(flag & SLI_IOCB_RET_IOCB)) {
8096 __lpfc_sli_ringtx_put(phba,
8097 pring,
8098 piocb);
8099 return IOCB_SUCCESS;
8100 } else
8101 return IOCB_BUSY;
8102 }
8103 }
8104 }
8105 } else if (piocb->iocb_flag & LPFC_IO_FCP) {
8106 /* These IO's already have an XRI and a mapped sgl. */
8107 sglq = NULL;
8108 } else {
8109 /*
8110 * This is a continuation of a commandi,(CX) so this
8111 * sglq is on the active list
8112 */
8113 sglq = __lpfc_get_active_sglq(phba, piocb->sli4_xritag);
8114 if (!sglq)
8115 return IOCB_ERROR;
8116 }
8117
8118 if (sglq) {
8119 piocb->sli4_lxritag = sglq->sli4_lxritag;
8120 piocb->sli4_xritag = sglq->sli4_xritag;
8121 if (NO_XRI == lpfc_sli4_bpl2sgl(phba, piocb, sglq))
8122 return IOCB_ERROR;
8123 }
8124
8125 if (lpfc_sli4_iocb2wqe(phba, piocb, &wqe))
8126 return IOCB_ERROR;
8127
8128 if ((piocb->iocb_flag & LPFC_IO_FCP) ||
8129 (piocb->iocb_flag & LPFC_USE_FCPWQIDX)) {
8130 /*
8131 * For FCP command IOCB, get a new WQ index to distribute
8132 * WQE across the WQsr. On the other hand, for abort IOCB,
8133 * it carries the same WQ index to the original command
8134 * IOCB.
8135 */
8136 if (piocb->iocb_flag & LPFC_IO_FCP)
8137 piocb->fcp_wqidx = lpfc_sli4_scmd_to_wqidx_distr(phba);
8138 if (unlikely(!phba->sli4_hba.fcp_wq))
8139 return IOCB_ERROR;
8140 if (lpfc_sli4_wq_put(phba->sli4_hba.fcp_wq[piocb->fcp_wqidx],
8141 &wqe))
8142 return IOCB_ERROR;
8143 } else {
8144 if (lpfc_sli4_wq_put(phba->sli4_hba.els_wq, &wqe))
8145 return IOCB_ERROR;
8146 }
8147 lpfc_sli_ringtxcmpl_put(phba, pring, piocb);
8148
8149 return 0;
8150 }
8151
8152 /**
8153 * __lpfc_sli_issue_iocb - Wrapper func of lockless version for issuing iocb
8154 *
8155 * This routine wraps the actual lockless version for issusing IOCB function
8156 * pointer from the lpfc_hba struct.
8157 *
8158 * Return codes:
8159 * IOCB_ERROR - Error
8160 * IOCB_SUCCESS - Success
8161 * IOCB_BUSY - Busy
8162 **/
8163 int
8164 __lpfc_sli_issue_iocb(struct lpfc_hba *phba, uint32_t ring_number,
8165 struct lpfc_iocbq *piocb, uint32_t flag)
8166 {
8167 return phba->__lpfc_sli_issue_iocb(phba, ring_number, piocb, flag);
8168 }
8169
8170 /**
8171 * lpfc_sli_api_table_setup - Set up sli api function jump table
8172 * @phba: The hba struct for which this call is being executed.
8173 * @dev_grp: The HBA PCI-Device group number.
8174 *
8175 * This routine sets up the SLI interface API function jump table in @phba
8176 * struct.
8177 * Returns: 0 - success, -ENODEV - failure.
8178 **/
8179 int
8180 lpfc_sli_api_table_setup(struct lpfc_hba *phba, uint8_t dev_grp)
8181 {
8182
8183 switch (dev_grp) {
8184 case LPFC_PCI_DEV_LP:
8185 phba->__lpfc_sli_issue_iocb = __lpfc_sli_issue_iocb_s3;
8186 phba->__lpfc_sli_release_iocbq = __lpfc_sli_release_iocbq_s3;
8187 break;
8188 case LPFC_PCI_DEV_OC:
8189 phba->__lpfc_sli_issue_iocb = __lpfc_sli_issue_iocb_s4;
8190 phba->__lpfc_sli_release_iocbq = __lpfc_sli_release_iocbq_s4;
8191 break;
8192 default:
8193 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
8194 "1419 Invalid HBA PCI-device group: 0x%x\n",
8195 dev_grp);
8196 return -ENODEV;
8197 break;
8198 }
8199 phba->lpfc_get_iocb_from_iocbq = lpfc_get_iocb_from_iocbq;
8200 return 0;
8201 }
8202
8203 /**
8204 * lpfc_sli_issue_iocb - Wrapper function for __lpfc_sli_issue_iocb
8205 * @phba: Pointer to HBA context object.
8206 * @pring: Pointer to driver SLI ring object.
8207 * @piocb: Pointer to command iocb.
8208 * @flag: Flag indicating if this command can be put into txq.
8209 *
8210 * lpfc_sli_issue_iocb is a wrapper around __lpfc_sli_issue_iocb
8211 * function. This function gets the hbalock and calls
8212 * __lpfc_sli_issue_iocb function and will return the error returned
8213 * by __lpfc_sli_issue_iocb function. This wrapper is used by
8214 * functions which do not hold hbalock.
8215 **/
8216 int
8217 lpfc_sli_issue_iocb(struct lpfc_hba *phba, uint32_t ring_number,
8218 struct lpfc_iocbq *piocb, uint32_t flag)
8219 {
8220 unsigned long iflags;
8221 int rc;
8222
8223 spin_lock_irqsave(&phba->hbalock, iflags);
8224 rc = __lpfc_sli_issue_iocb(phba, ring_number, piocb, flag);
8225 spin_unlock_irqrestore(&phba->hbalock, iflags);
8226
8227 return rc;
8228 }
8229
8230 /**
8231 * lpfc_extra_ring_setup - Extra ring setup function
8232 * @phba: Pointer to HBA context object.
8233 *
8234 * This function is called while driver attaches with the
8235 * HBA to setup the extra ring. The extra ring is used
8236 * only when driver needs to support target mode functionality
8237 * or IP over FC functionalities.
8238 *
8239 * This function is called with no lock held.
8240 **/
8241 static int
8242 lpfc_extra_ring_setup( struct lpfc_hba *phba)
8243 {
8244 struct lpfc_sli *psli;
8245 struct lpfc_sli_ring *pring;
8246
8247 psli = &phba->sli;
8248
8249 /* Adjust cmd/rsp ring iocb entries more evenly */
8250
8251 /* Take some away from the FCP ring */
8252 pring = &psli->ring[psli->fcp_ring];
8253 pring->numCiocb -= SLI2_IOCB_CMD_R1XTRA_ENTRIES;
8254 pring->numRiocb -= SLI2_IOCB_RSP_R1XTRA_ENTRIES;
8255 pring->numCiocb -= SLI2_IOCB_CMD_R3XTRA_ENTRIES;
8256 pring->numRiocb -= SLI2_IOCB_RSP_R3XTRA_ENTRIES;
8257
8258 /* and give them to the extra ring */
8259 pring = &psli->ring[psli->extra_ring];
8260
8261 pring->numCiocb += SLI2_IOCB_CMD_R1XTRA_ENTRIES;
8262 pring->numRiocb += SLI2_IOCB_RSP_R1XTRA_ENTRIES;
8263 pring->numCiocb += SLI2_IOCB_CMD_R3XTRA_ENTRIES;
8264 pring->numRiocb += SLI2_IOCB_RSP_R3XTRA_ENTRIES;
8265
8266 /* Setup default profile for this ring */
8267 pring->iotag_max = 4096;
8268 pring->num_mask = 1;
8269 pring->prt[0].profile = 0; /* Mask 0 */
8270 pring->prt[0].rctl = phba->cfg_multi_ring_rctl;
8271 pring->prt[0].type = phba->cfg_multi_ring_type;
8272 pring->prt[0].lpfc_sli_rcv_unsol_event = NULL;
8273 return 0;
8274 }
8275
8276 /* lpfc_sli_abts_recover_port - Recover a port that failed an ABTS.
8277 * @vport: pointer to virtual port object.
8278 * @ndlp: nodelist pointer for the impacted rport.
8279 *
8280 * The driver calls this routine in response to a XRI ABORT CQE
8281 * event from the port. In this event, the driver is required to
8282 * recover its login to the rport even though its login may be valid
8283 * from the driver's perspective. The failed ABTS notice from the
8284 * port indicates the rport is not responding.
8285 */
8286 static void
8287 lpfc_sli_abts_recover_port(struct lpfc_vport *vport,
8288 struct lpfc_nodelist *ndlp)
8289 {
8290 struct Scsi_Host *shost;
8291 struct lpfc_hba *phba;
8292 unsigned long flags = 0;
8293
8294 shost = lpfc_shost_from_vport(vport);
8295 phba = vport->phba;
8296 if (ndlp->nlp_state != NLP_STE_MAPPED_NODE) {
8297 lpfc_printf_log(phba, KERN_INFO,
8298 LOG_SLI, "3093 No rport recovery needed. "
8299 "rport in state 0x%x\n",
8300 ndlp->nlp_state);
8301 return;
8302 }
8303 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
8304 "3094 Start rport recovery on shost id 0x%x "
8305 "fc_id 0x%06x vpi 0x%x rpi 0x%x state 0x%x "
8306 "flags 0x%x\n",
8307 shost->host_no, ndlp->nlp_DID,
8308 vport->vpi, ndlp->nlp_rpi, ndlp->nlp_state,
8309 ndlp->nlp_flag);
8310 /*
8311 * The rport is not responding. Don't attempt ADISC recovery.
8312 * Remove the FCP-2 flag to force a PLOGI.
8313 */
8314 spin_lock_irqsave(shost->host_lock, flags);
8315 ndlp->nlp_fcp_info &= ~NLP_FCP_2_DEVICE;
8316 spin_unlock_irqrestore(shost->host_lock, flags);
8317 lpfc_disc_state_machine(vport, ndlp, NULL,
8318 NLP_EVT_DEVICE_RECOVERY);
8319 lpfc_cancel_retry_delay_tmo(vport, ndlp);
8320 spin_lock_irqsave(shost->host_lock, flags);
8321 ndlp->nlp_flag |= NLP_NPR_2B_DISC;
8322 spin_unlock_irqrestore(shost->host_lock, flags);
8323 lpfc_disc_start(vport);
8324 }
8325
8326 /* lpfc_sli_abts_err_handler - handle a failed ABTS request from an SLI3 port.
8327 * @phba: Pointer to HBA context object.
8328 * @iocbq: Pointer to iocb object.
8329 *
8330 * The async_event handler calls this routine when it receives
8331 * an ASYNC_STATUS_CN event from the port. The port generates
8332 * this event when an Abort Sequence request to an rport fails
8333 * twice in succession. The abort could be originated by the
8334 * driver or by the port. The ABTS could have been for an ELS
8335 * or FCP IO. The port only generates this event when an ABTS
8336 * fails to complete after one retry.
8337 */
8338 static void
8339 lpfc_sli_abts_err_handler(struct lpfc_hba *phba,
8340 struct lpfc_iocbq *iocbq)
8341 {
8342 struct lpfc_nodelist *ndlp = NULL;
8343 uint16_t rpi = 0, vpi = 0;
8344 struct lpfc_vport *vport = NULL;
8345
8346 /* The rpi in the ulpContext is vport-sensitive. */
8347 vpi = iocbq->iocb.un.asyncstat.sub_ctxt_tag;
8348 rpi = iocbq->iocb.ulpContext;
8349
8350 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
8351 "3092 Port generated ABTS async event "
8352 "on vpi %d rpi %d status 0x%x\n",
8353 vpi, rpi, iocbq->iocb.ulpStatus);
8354
8355 vport = lpfc_find_vport_by_vpid(phba, vpi);
8356 if (!vport)
8357 goto err_exit;
8358 ndlp = lpfc_findnode_rpi(vport, rpi);
8359 if (!ndlp || !NLP_CHK_NODE_ACT(ndlp))
8360 goto err_exit;
8361
8362 if (iocbq->iocb.ulpStatus == IOSTAT_LOCAL_REJECT)
8363 lpfc_sli_abts_recover_port(vport, ndlp);
8364 return;
8365
8366 err_exit:
8367 lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
8368 "3095 Event Context not found, no "
8369 "action on vpi %d rpi %d status 0x%x, reason 0x%x\n",
8370 iocbq->iocb.ulpContext, iocbq->iocb.ulpStatus,
8371 vpi, rpi);
8372 }
8373
8374 /* lpfc_sli4_abts_err_handler - handle a failed ABTS request from an SLI4 port.
8375 * @phba: pointer to HBA context object.
8376 * @ndlp: nodelist pointer for the impacted rport.
8377 * @axri: pointer to the wcqe containing the failed exchange.
8378 *
8379 * The driver calls this routine when it receives an ABORT_XRI_FCP CQE from the
8380 * port. The port generates this event when an abort exchange request to an
8381 * rport fails twice in succession with no reply. The abort could be originated
8382 * by the driver or by the port. The ABTS could have been for an ELS or FCP IO.
8383 */
8384 void
8385 lpfc_sli4_abts_err_handler(struct lpfc_hba *phba,
8386 struct lpfc_nodelist *ndlp,
8387 struct sli4_wcqe_xri_aborted *axri)
8388 {
8389 struct lpfc_vport *vport;
8390 uint32_t ext_status = 0;
8391
8392 if (!ndlp || !NLP_CHK_NODE_ACT(ndlp)) {
8393 lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
8394 "3115 Node Context not found, driver "
8395 "ignoring abts err event\n");
8396 return;
8397 }
8398
8399 vport = ndlp->vport;
8400 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
8401 "3116 Port generated FCP XRI ABORT event on "
8402 "vpi %d rpi %d xri x%x status 0x%x parameter x%x\n",
8403 ndlp->vport->vpi, ndlp->nlp_rpi,
8404 bf_get(lpfc_wcqe_xa_xri, axri),
8405 bf_get(lpfc_wcqe_xa_status, axri),
8406 axri->parameter);
8407
8408 /*
8409 * Catch the ABTS protocol failure case. Older OCe FW releases returned
8410 * LOCAL_REJECT and 0 for a failed ABTS exchange and later OCe and
8411 * LPe FW releases returned LOCAL_REJECT and SEQUENCE_TIMEOUT.
8412 */
8413 ext_status = axri->parameter & WCQE_PARAM_MASK;
8414 if ((bf_get(lpfc_wcqe_xa_status, axri) == IOSTAT_LOCAL_REJECT) &&
8415 ((ext_status == IOERR_SEQUENCE_TIMEOUT) || (ext_status == 0)))
8416 lpfc_sli_abts_recover_port(vport, ndlp);
8417 }
8418
8419 /**
8420 * lpfc_sli_async_event_handler - ASYNC iocb handler function
8421 * @phba: Pointer to HBA context object.
8422 * @pring: Pointer to driver SLI ring object.
8423 * @iocbq: Pointer to iocb object.
8424 *
8425 * This function is called by the slow ring event handler
8426 * function when there is an ASYNC event iocb in the ring.
8427 * This function is called with no lock held.
8428 * Currently this function handles only temperature related
8429 * ASYNC events. The function decodes the temperature sensor
8430 * event message and posts events for the management applications.
8431 **/
8432 static void
8433 lpfc_sli_async_event_handler(struct lpfc_hba * phba,
8434 struct lpfc_sli_ring * pring, struct lpfc_iocbq * iocbq)
8435 {
8436 IOCB_t *icmd;
8437 uint16_t evt_code;
8438 struct temp_event temp_event_data;
8439 struct Scsi_Host *shost;
8440 uint32_t *iocb_w;
8441
8442 icmd = &iocbq->iocb;
8443 evt_code = icmd->un.asyncstat.evt_code;
8444
8445 switch (evt_code) {
8446 case ASYNC_TEMP_WARN:
8447 case ASYNC_TEMP_SAFE:
8448 temp_event_data.data = (uint32_t) icmd->ulpContext;
8449 temp_event_data.event_type = FC_REG_TEMPERATURE_EVENT;
8450 if (evt_code == ASYNC_TEMP_WARN) {
8451 temp_event_data.event_code = LPFC_THRESHOLD_TEMP;
8452 lpfc_printf_log(phba, KERN_ERR, LOG_TEMP,
8453 "0347 Adapter is very hot, please take "
8454 "corrective action. temperature : %d Celsius\n",
8455 (uint32_t) icmd->ulpContext);
8456 } else {
8457 temp_event_data.event_code = LPFC_NORMAL_TEMP;
8458 lpfc_printf_log(phba, KERN_ERR, LOG_TEMP,
8459 "0340 Adapter temperature is OK now. "
8460 "temperature : %d Celsius\n",
8461 (uint32_t) icmd->ulpContext);
8462 }
8463
8464 /* Send temperature change event to applications */
8465 shost = lpfc_shost_from_vport(phba->pport);
8466 fc_host_post_vendor_event(shost, fc_get_event_number(),
8467 sizeof(temp_event_data), (char *) &temp_event_data,
8468 LPFC_NL_VENDOR_ID);
8469 break;
8470 case ASYNC_STATUS_CN:
8471 lpfc_sli_abts_err_handler(phba, iocbq);
8472 break;
8473 default:
8474 iocb_w = (uint32_t *) icmd;
8475 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
8476 "0346 Ring %d handler: unexpected ASYNC_STATUS"
8477 " evt_code 0x%x\n"
8478 "W0 0x%08x W1 0x%08x W2 0x%08x W3 0x%08x\n"
8479 "W4 0x%08x W5 0x%08x W6 0x%08x W7 0x%08x\n"
8480 "W8 0x%08x W9 0x%08x W10 0x%08x W11 0x%08x\n"
8481 "W12 0x%08x W13 0x%08x W14 0x%08x W15 0x%08x\n",
8482 pring->ringno, icmd->un.asyncstat.evt_code,
8483 iocb_w[0], iocb_w[1], iocb_w[2], iocb_w[3],
8484 iocb_w[4], iocb_w[5], iocb_w[6], iocb_w[7],
8485 iocb_w[8], iocb_w[9], iocb_w[10], iocb_w[11],
8486 iocb_w[12], iocb_w[13], iocb_w[14], iocb_w[15]);
8487
8488 break;
8489 }
8490 }
8491
8492
8493 /**
8494 * lpfc_sli_setup - SLI ring setup function
8495 * @phba: Pointer to HBA context object.
8496 *
8497 * lpfc_sli_setup sets up rings of the SLI interface with
8498 * number of iocbs per ring and iotags. This function is
8499 * called while driver attach to the HBA and before the
8500 * interrupts are enabled. So there is no need for locking.
8501 *
8502 * This function always returns 0.
8503 **/
8504 int
8505 lpfc_sli_setup(struct lpfc_hba *phba)
8506 {
8507 int i, totiocbsize = 0;
8508 struct lpfc_sli *psli = &phba->sli;
8509 struct lpfc_sli_ring *pring;
8510
8511 psli->num_rings = MAX_CONFIGURED_RINGS;
8512 psli->sli_flag = 0;
8513 psli->fcp_ring = LPFC_FCP_RING;
8514 psli->next_ring = LPFC_FCP_NEXT_RING;
8515 psli->extra_ring = LPFC_EXTRA_RING;
8516
8517 psli->iocbq_lookup = NULL;
8518 psli->iocbq_lookup_len = 0;
8519 psli->last_iotag = 0;
8520
8521 for (i = 0; i < psli->num_rings; i++) {
8522 pring = &psli->ring[i];
8523 switch (i) {
8524 case LPFC_FCP_RING: /* ring 0 - FCP */
8525 /* numCiocb and numRiocb are used in config_port */
8526 pring->numCiocb = SLI2_IOCB_CMD_R0_ENTRIES;
8527 pring->numRiocb = SLI2_IOCB_RSP_R0_ENTRIES;
8528 pring->numCiocb += SLI2_IOCB_CMD_R1XTRA_ENTRIES;
8529 pring->numRiocb += SLI2_IOCB_RSP_R1XTRA_ENTRIES;
8530 pring->numCiocb += SLI2_IOCB_CMD_R3XTRA_ENTRIES;
8531 pring->numRiocb += SLI2_IOCB_RSP_R3XTRA_ENTRIES;
8532 pring->sizeCiocb = (phba->sli_rev == 3) ?
8533 SLI3_IOCB_CMD_SIZE :
8534 SLI2_IOCB_CMD_SIZE;
8535 pring->sizeRiocb = (phba->sli_rev == 3) ?
8536 SLI3_IOCB_RSP_SIZE :
8537 SLI2_IOCB_RSP_SIZE;
8538 pring->iotag_ctr = 0;
8539 pring->iotag_max =
8540 (phba->cfg_hba_queue_depth * 2);
8541 pring->fast_iotag = pring->iotag_max;
8542 pring->num_mask = 0;
8543 break;
8544 case LPFC_EXTRA_RING: /* ring 1 - EXTRA */
8545 /* numCiocb and numRiocb are used in config_port */
8546 pring->numCiocb = SLI2_IOCB_CMD_R1_ENTRIES;
8547 pring->numRiocb = SLI2_IOCB_RSP_R1_ENTRIES;
8548 pring->sizeCiocb = (phba->sli_rev == 3) ?
8549 SLI3_IOCB_CMD_SIZE :
8550 SLI2_IOCB_CMD_SIZE;
8551 pring->sizeRiocb = (phba->sli_rev == 3) ?
8552 SLI3_IOCB_RSP_SIZE :
8553 SLI2_IOCB_RSP_SIZE;
8554 pring->iotag_max = phba->cfg_hba_queue_depth;
8555 pring->num_mask = 0;
8556 break;
8557 case LPFC_ELS_RING: /* ring 2 - ELS / CT */
8558 /* numCiocb and numRiocb are used in config_port */
8559 pring->numCiocb = SLI2_IOCB_CMD_R2_ENTRIES;
8560 pring->numRiocb = SLI2_IOCB_RSP_R2_ENTRIES;
8561 pring->sizeCiocb = (phba->sli_rev == 3) ?
8562 SLI3_IOCB_CMD_SIZE :
8563 SLI2_IOCB_CMD_SIZE;
8564 pring->sizeRiocb = (phba->sli_rev == 3) ?
8565 SLI3_IOCB_RSP_SIZE :
8566 SLI2_IOCB_RSP_SIZE;
8567 pring->fast_iotag = 0;
8568 pring->iotag_ctr = 0;
8569 pring->iotag_max = 4096;
8570 pring->lpfc_sli_rcv_async_status =
8571 lpfc_sli_async_event_handler;
8572 pring->num_mask = LPFC_MAX_RING_MASK;
8573 pring->prt[0].profile = 0; /* Mask 0 */
8574 pring->prt[0].rctl = FC_RCTL_ELS_REQ;
8575 pring->prt[0].type = FC_TYPE_ELS;
8576 pring->prt[0].lpfc_sli_rcv_unsol_event =
8577 lpfc_els_unsol_event;
8578 pring->prt[1].profile = 0; /* Mask 1 */
8579 pring->prt[1].rctl = FC_RCTL_ELS_REP;
8580 pring->prt[1].type = FC_TYPE_ELS;
8581 pring->prt[1].lpfc_sli_rcv_unsol_event =
8582 lpfc_els_unsol_event;
8583 pring->prt[2].profile = 0; /* Mask 2 */
8584 /* NameServer Inquiry */
8585 pring->prt[2].rctl = FC_RCTL_DD_UNSOL_CTL;
8586 /* NameServer */
8587 pring->prt[2].type = FC_TYPE_CT;
8588 pring->prt[2].lpfc_sli_rcv_unsol_event =
8589 lpfc_ct_unsol_event;
8590 pring->prt[3].profile = 0; /* Mask 3 */
8591 /* NameServer response */
8592 pring->prt[3].rctl = FC_RCTL_DD_SOL_CTL;
8593 /* NameServer */
8594 pring->prt[3].type = FC_TYPE_CT;
8595 pring->prt[3].lpfc_sli_rcv_unsol_event =
8596 lpfc_ct_unsol_event;
8597 /* abort unsolicited sequence */
8598 pring->prt[4].profile = 0; /* Mask 4 */
8599 pring->prt[4].rctl = FC_RCTL_BA_ABTS;
8600 pring->prt[4].type = FC_TYPE_BLS;
8601 pring->prt[4].lpfc_sli_rcv_unsol_event =
8602 lpfc_sli4_ct_abort_unsol_event;
8603 break;
8604 }
8605 totiocbsize += (pring->numCiocb * pring->sizeCiocb) +
8606 (pring->numRiocb * pring->sizeRiocb);
8607 }
8608 if (totiocbsize > MAX_SLIM_IOCB_SIZE) {
8609 /* Too many cmd / rsp ring entries in SLI2 SLIM */
8610 printk(KERN_ERR "%d:0462 Too many cmd / rsp ring entries in "
8611 "SLI2 SLIM Data: x%x x%lx\n",
8612 phba->brd_no, totiocbsize,
8613 (unsigned long) MAX_SLIM_IOCB_SIZE);
8614 }
8615 if (phba->cfg_multi_ring_support == 2)
8616 lpfc_extra_ring_setup(phba);
8617
8618 return 0;
8619 }
8620
8621 /**
8622 * lpfc_sli_queue_setup - Queue initialization function
8623 * @phba: Pointer to HBA context object.
8624 *
8625 * lpfc_sli_queue_setup sets up mailbox queues and iocb queues for each
8626 * ring. This function also initializes ring indices of each ring.
8627 * This function is called during the initialization of the SLI
8628 * interface of an HBA.
8629 * This function is called with no lock held and always returns
8630 * 1.
8631 **/
8632 int
8633 lpfc_sli_queue_setup(struct lpfc_hba *phba)
8634 {
8635 struct lpfc_sli *psli;
8636 struct lpfc_sli_ring *pring;
8637 int i;
8638
8639 psli = &phba->sli;
8640 spin_lock_irq(&phba->hbalock);
8641 INIT_LIST_HEAD(&psli->mboxq);
8642 INIT_LIST_HEAD(&psli->mboxq_cmpl);
8643 /* Initialize list headers for txq and txcmplq as double linked lists */
8644 for (i = 0; i < psli->num_rings; i++) {
8645 pring = &psli->ring[i];
8646 pring->ringno = i;
8647 pring->next_cmdidx = 0;
8648 pring->local_getidx = 0;
8649 pring->cmdidx = 0;
8650 INIT_LIST_HEAD(&pring->txq);
8651 INIT_LIST_HEAD(&pring->txcmplq);
8652 INIT_LIST_HEAD(&pring->iocb_continueq);
8653 INIT_LIST_HEAD(&pring->iocb_continue_saveq);
8654 INIT_LIST_HEAD(&pring->postbufq);
8655 }
8656 spin_unlock_irq(&phba->hbalock);
8657 return 1;
8658 }
8659
8660 /**
8661 * lpfc_sli_mbox_sys_flush - Flush mailbox command sub-system
8662 * @phba: Pointer to HBA context object.
8663 *
8664 * This routine flushes the mailbox command subsystem. It will unconditionally
8665 * flush all the mailbox commands in the three possible stages in the mailbox
8666 * command sub-system: pending mailbox command queue; the outstanding mailbox
8667 * command; and completed mailbox command queue. It is caller's responsibility
8668 * to make sure that the driver is in the proper state to flush the mailbox
8669 * command sub-system. Namely, the posting of mailbox commands into the
8670 * pending mailbox command queue from the various clients must be stopped;
8671 * either the HBA is in a state that it will never works on the outstanding
8672 * mailbox command (such as in EEH or ERATT conditions) or the outstanding
8673 * mailbox command has been completed.
8674 **/
8675 static void
8676 lpfc_sli_mbox_sys_flush(struct lpfc_hba *phba)
8677 {
8678 LIST_HEAD(completions);
8679 struct lpfc_sli *psli = &phba->sli;
8680 LPFC_MBOXQ_t *pmb;
8681 unsigned long iflag;
8682
8683 /* Flush all the mailbox commands in the mbox system */
8684 spin_lock_irqsave(&phba->hbalock, iflag);
8685 /* The pending mailbox command queue */
8686 list_splice_init(&phba->sli.mboxq, &completions);
8687 /* The outstanding active mailbox command */
8688 if (psli->mbox_active) {
8689 list_add_tail(&psli->mbox_active->list, &completions);
8690 psli->mbox_active = NULL;
8691 psli->sli_flag &= ~LPFC_SLI_MBOX_ACTIVE;
8692 }
8693 /* The completed mailbox command queue */
8694 list_splice_init(&phba->sli.mboxq_cmpl, &completions);
8695 spin_unlock_irqrestore(&phba->hbalock, iflag);
8696
8697 /* Return all flushed mailbox commands with MBX_NOT_FINISHED status */
8698 while (!list_empty(&completions)) {
8699 list_remove_head(&completions, pmb, LPFC_MBOXQ_t, list);
8700 pmb->u.mb.mbxStatus = MBX_NOT_FINISHED;
8701 if (pmb->mbox_cmpl)
8702 pmb->mbox_cmpl(phba, pmb);
8703 }
8704 }
8705
8706 /**
8707 * lpfc_sli_host_down - Vport cleanup function
8708 * @vport: Pointer to virtual port object.
8709 *
8710 * lpfc_sli_host_down is called to clean up the resources
8711 * associated with a vport before destroying virtual
8712 * port data structures.
8713 * This function does following operations:
8714 * - Free discovery resources associated with this virtual
8715 * port.
8716 * - Free iocbs associated with this virtual port in
8717 * the txq.
8718 * - Send abort for all iocb commands associated with this
8719 * vport in txcmplq.
8720 *
8721 * This function is called with no lock held and always returns 1.
8722 **/
8723 int
8724 lpfc_sli_host_down(struct lpfc_vport *vport)
8725 {
8726 LIST_HEAD(completions);
8727 struct lpfc_hba *phba = vport->phba;
8728 struct lpfc_sli *psli = &phba->sli;
8729 struct lpfc_sli_ring *pring;
8730 struct lpfc_iocbq *iocb, *next_iocb;
8731 int i;
8732 unsigned long flags = 0;
8733 uint16_t prev_pring_flag;
8734
8735 lpfc_cleanup_discovery_resources(vport);
8736
8737 spin_lock_irqsave(&phba->hbalock, flags);
8738 for (i = 0; i < psli->num_rings; i++) {
8739 pring = &psli->ring[i];
8740 prev_pring_flag = pring->flag;
8741 /* Only slow rings */
8742 if (pring->ringno == LPFC_ELS_RING) {
8743 pring->flag |= LPFC_DEFERRED_RING_EVENT;
8744 /* Set the lpfc data pending flag */
8745 set_bit(LPFC_DATA_READY, &phba->data_flags);
8746 }
8747 /*
8748 * Error everything on the txq since these iocbs have not been
8749 * given to the FW yet.
8750 */
8751 list_for_each_entry_safe(iocb, next_iocb, &pring->txq, list) {
8752 if (iocb->vport != vport)
8753 continue;
8754 list_move_tail(&iocb->list, &completions);
8755 pring->txq_cnt--;
8756 }
8757
8758 /* Next issue ABTS for everything on the txcmplq */
8759 list_for_each_entry_safe(iocb, next_iocb, &pring->txcmplq,
8760 list) {
8761 if (iocb->vport != vport)
8762 continue;
8763 lpfc_sli_issue_abort_iotag(phba, pring, iocb);
8764 }
8765
8766 pring->flag = prev_pring_flag;
8767 }
8768
8769 spin_unlock_irqrestore(&phba->hbalock, flags);
8770
8771 /* Cancel all the IOCBs from the completions list */
8772 lpfc_sli_cancel_iocbs(phba, &completions, IOSTAT_LOCAL_REJECT,
8773 IOERR_SLI_DOWN);
8774 return 1;
8775 }
8776
8777 /**
8778 * lpfc_sli_hba_down - Resource cleanup function for the HBA
8779 * @phba: Pointer to HBA context object.
8780 *
8781 * This function cleans up all iocb, buffers, mailbox commands
8782 * while shutting down the HBA. This function is called with no
8783 * lock held and always returns 1.
8784 * This function does the following to cleanup driver resources:
8785 * - Free discovery resources for each virtual port
8786 * - Cleanup any pending fabric iocbs
8787 * - Iterate through the iocb txq and free each entry
8788 * in the list.
8789 * - Free up any buffer posted to the HBA
8790 * - Free mailbox commands in the mailbox queue.
8791 **/
8792 int
8793 lpfc_sli_hba_down(struct lpfc_hba *phba)
8794 {
8795 LIST_HEAD(completions);
8796 struct lpfc_sli *psli = &phba->sli;
8797 struct lpfc_sli_ring *pring;
8798 struct lpfc_dmabuf *buf_ptr;
8799 unsigned long flags = 0;
8800 int i;
8801
8802 /* Shutdown the mailbox command sub-system */
8803 lpfc_sli_mbox_sys_shutdown(phba);
8804
8805 lpfc_hba_down_prep(phba);
8806
8807 lpfc_fabric_abort_hba(phba);
8808
8809 spin_lock_irqsave(&phba->hbalock, flags);
8810 for (i = 0; i < psli->num_rings; i++) {
8811 pring = &psli->ring[i];
8812 /* Only slow rings */
8813 if (pring->ringno == LPFC_ELS_RING) {
8814 pring->flag |= LPFC_DEFERRED_RING_EVENT;
8815 /* Set the lpfc data pending flag */
8816 set_bit(LPFC_DATA_READY, &phba->data_flags);
8817 }
8818
8819 /*
8820 * Error everything on the txq since these iocbs have not been
8821 * given to the FW yet.
8822 */
8823 list_splice_init(&pring->txq, &completions);
8824 pring->txq_cnt = 0;
8825
8826 }
8827 spin_unlock_irqrestore(&phba->hbalock, flags);
8828
8829 /* Cancel all the IOCBs from the completions list */
8830 lpfc_sli_cancel_iocbs(phba, &completions, IOSTAT_LOCAL_REJECT,
8831 IOERR_SLI_DOWN);
8832
8833 spin_lock_irqsave(&phba->hbalock, flags);
8834 list_splice_init(&phba->elsbuf, &completions);
8835 phba->elsbuf_cnt = 0;
8836 phba->elsbuf_prev_cnt = 0;
8837 spin_unlock_irqrestore(&phba->hbalock, flags);
8838
8839 while (!list_empty(&completions)) {
8840 list_remove_head(&completions, buf_ptr,
8841 struct lpfc_dmabuf, list);
8842 lpfc_mbuf_free(phba, buf_ptr->virt, buf_ptr->phys);
8843 kfree(buf_ptr);
8844 }
8845
8846 /* Return any active mbox cmds */
8847 del_timer_sync(&psli->mbox_tmo);
8848
8849 spin_lock_irqsave(&phba->pport->work_port_lock, flags);
8850 phba->pport->work_port_events &= ~WORKER_MBOX_TMO;
8851 spin_unlock_irqrestore(&phba->pport->work_port_lock, flags);
8852
8853 return 1;
8854 }
8855
8856 /**
8857 * lpfc_sli_pcimem_bcopy - SLI memory copy function
8858 * @srcp: Source memory pointer.
8859 * @destp: Destination memory pointer.
8860 * @cnt: Number of words required to be copied.
8861 *
8862 * This function is used for copying data between driver memory
8863 * and the SLI memory. This function also changes the endianness
8864 * of each word if native endianness is different from SLI
8865 * endianness. This function can be called with or without
8866 * lock.
8867 **/
8868 void
8869 lpfc_sli_pcimem_bcopy(void *srcp, void *destp, uint32_t cnt)
8870 {
8871 uint32_t *src = srcp;
8872 uint32_t *dest = destp;
8873 uint32_t ldata;
8874 int i;
8875
8876 for (i = 0; i < (int)cnt; i += sizeof (uint32_t)) {
8877 ldata = *src;
8878 ldata = le32_to_cpu(ldata);
8879 *dest = ldata;
8880 src++;
8881 dest++;
8882 }
8883 }
8884
8885
8886 /**
8887 * lpfc_sli_bemem_bcopy - SLI memory copy function
8888 * @srcp: Source memory pointer.
8889 * @destp: Destination memory pointer.
8890 * @cnt: Number of words required to be copied.
8891 *
8892 * This function is used for copying data between a data structure
8893 * with big endian representation to local endianness.
8894 * This function can be called with or without lock.
8895 **/
8896 void
8897 lpfc_sli_bemem_bcopy(void *srcp, void *destp, uint32_t cnt)
8898 {
8899 uint32_t *src = srcp;
8900 uint32_t *dest = destp;
8901 uint32_t ldata;
8902 int i;
8903
8904 for (i = 0; i < (int)cnt; i += sizeof(uint32_t)) {
8905 ldata = *src;
8906 ldata = be32_to_cpu(ldata);
8907 *dest = ldata;
8908 src++;
8909 dest++;
8910 }
8911 }
8912
8913 /**
8914 * lpfc_sli_ringpostbuf_put - Function to add a buffer to postbufq
8915 * @phba: Pointer to HBA context object.
8916 * @pring: Pointer to driver SLI ring object.
8917 * @mp: Pointer to driver buffer object.
8918 *
8919 * This function is called with no lock held.
8920 * It always return zero after adding the buffer to the postbufq
8921 * buffer list.
8922 **/
8923 int
8924 lpfc_sli_ringpostbuf_put(struct lpfc_hba *phba, struct lpfc_sli_ring *pring,
8925 struct lpfc_dmabuf *mp)
8926 {
8927 /* Stick struct lpfc_dmabuf at end of postbufq so driver can look it up
8928 later */
8929 spin_lock_irq(&phba->hbalock);
8930 list_add_tail(&mp->list, &pring->postbufq);
8931 pring->postbufq_cnt++;
8932 spin_unlock_irq(&phba->hbalock);
8933 return 0;
8934 }
8935
8936 /**
8937 * lpfc_sli_get_buffer_tag - allocates a tag for a CMD_QUE_XRI64_CX buffer
8938 * @phba: Pointer to HBA context object.
8939 *
8940 * When HBQ is enabled, buffers are searched based on tags. This function
8941 * allocates a tag for buffer posted using CMD_QUE_XRI64_CX iocb. The
8942 * tag is bit wise or-ed with QUE_BUFTAG_BIT to make sure that the tag
8943 * does not conflict with tags of buffer posted for unsolicited events.
8944 * The function returns the allocated tag. The function is called with
8945 * no locks held.
8946 **/
8947 uint32_t
8948 lpfc_sli_get_buffer_tag(struct lpfc_hba *phba)
8949 {
8950 spin_lock_irq(&phba->hbalock);
8951 phba->buffer_tag_count++;
8952 /*
8953 * Always set the QUE_BUFTAG_BIT to distiguish between
8954 * a tag assigned by HBQ.
8955 */
8956 phba->buffer_tag_count |= QUE_BUFTAG_BIT;
8957 spin_unlock_irq(&phba->hbalock);
8958 return phba->buffer_tag_count;
8959 }
8960
8961 /**
8962 * lpfc_sli_ring_taggedbuf_get - find HBQ buffer associated with given tag
8963 * @phba: Pointer to HBA context object.
8964 * @pring: Pointer to driver SLI ring object.
8965 * @tag: Buffer tag.
8966 *
8967 * Buffers posted using CMD_QUE_XRI64_CX iocb are in pring->postbufq
8968 * list. After HBA DMA data to these buffers, CMD_IOCB_RET_XRI64_CX
8969 * iocb is posted to the response ring with the tag of the buffer.
8970 * This function searches the pring->postbufq list using the tag
8971 * to find buffer associated with CMD_IOCB_RET_XRI64_CX
8972 * iocb. If the buffer is found then lpfc_dmabuf object of the
8973 * buffer is returned to the caller else NULL is returned.
8974 * This function is called with no lock held.
8975 **/
8976 struct lpfc_dmabuf *
8977 lpfc_sli_ring_taggedbuf_get(struct lpfc_hba *phba, struct lpfc_sli_ring *pring,
8978 uint32_t tag)
8979 {
8980 struct lpfc_dmabuf *mp, *next_mp;
8981 struct list_head *slp = &pring->postbufq;
8982
8983 /* Search postbufq, from the beginning, looking for a match on tag */
8984 spin_lock_irq(&phba->hbalock);
8985 list_for_each_entry_safe(mp, next_mp, &pring->postbufq, list) {
8986 if (mp->buffer_tag == tag) {
8987 list_del_init(&mp->list);
8988 pring->postbufq_cnt--;
8989 spin_unlock_irq(&phba->hbalock);
8990 return mp;
8991 }
8992 }
8993
8994 spin_unlock_irq(&phba->hbalock);
8995 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
8996 "0402 Cannot find virtual addr for buffer tag on "
8997 "ring %d Data x%lx x%p x%p x%x\n",
8998 pring->ringno, (unsigned long) tag,
8999 slp->next, slp->prev, pring->postbufq_cnt);
9000
9001 return NULL;
9002 }
9003
9004 /**
9005 * lpfc_sli_ringpostbuf_get - search buffers for unsolicited CT and ELS events
9006 * @phba: Pointer to HBA context object.
9007 * @pring: Pointer to driver SLI ring object.
9008 * @phys: DMA address of the buffer.
9009 *
9010 * This function searches the buffer list using the dma_address
9011 * of unsolicited event to find the driver's lpfc_dmabuf object
9012 * corresponding to the dma_address. The function returns the
9013 * lpfc_dmabuf object if a buffer is found else it returns NULL.
9014 * This function is called by the ct and els unsolicited event
9015 * handlers to get the buffer associated with the unsolicited
9016 * event.
9017 *
9018 * This function is called with no lock held.
9019 **/
9020 struct lpfc_dmabuf *
9021 lpfc_sli_ringpostbuf_get(struct lpfc_hba *phba, struct lpfc_sli_ring *pring,
9022 dma_addr_t phys)
9023 {
9024 struct lpfc_dmabuf *mp, *next_mp;
9025 struct list_head *slp = &pring->postbufq;
9026
9027 /* Search postbufq, from the beginning, looking for a match on phys */
9028 spin_lock_irq(&phba->hbalock);
9029 list_for_each_entry_safe(mp, next_mp, &pring->postbufq, list) {
9030 if (mp->phys == phys) {
9031 list_del_init(&mp->list);
9032 pring->postbufq_cnt--;
9033 spin_unlock_irq(&phba->hbalock);
9034 return mp;
9035 }
9036 }
9037
9038 spin_unlock_irq(&phba->hbalock);
9039 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
9040 "0410 Cannot find virtual addr for mapped buf on "
9041 "ring %d Data x%llx x%p x%p x%x\n",
9042 pring->ringno, (unsigned long long)phys,
9043 slp->next, slp->prev, pring->postbufq_cnt);
9044 return NULL;
9045 }
9046
9047 /**
9048 * lpfc_sli_abort_els_cmpl - Completion handler for the els abort iocbs
9049 * @phba: Pointer to HBA context object.
9050 * @cmdiocb: Pointer to driver command iocb object.
9051 * @rspiocb: Pointer to driver response iocb object.
9052 *
9053 * This function is the completion handler for the abort iocbs for
9054 * ELS commands. This function is called from the ELS ring event
9055 * handler with no lock held. This function frees memory resources
9056 * associated with the abort iocb.
9057 **/
9058 static void
9059 lpfc_sli_abort_els_cmpl(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocb,
9060 struct lpfc_iocbq *rspiocb)
9061 {
9062 IOCB_t *irsp = &rspiocb->iocb;
9063 uint16_t abort_iotag, abort_context;
9064 struct lpfc_iocbq *abort_iocb = NULL;
9065
9066 if (irsp->ulpStatus) {
9067
9068 /*
9069 * Assume that the port already completed and returned, or
9070 * will return the iocb. Just Log the message.
9071 */
9072 abort_context = cmdiocb->iocb.un.acxri.abortContextTag;
9073 abort_iotag = cmdiocb->iocb.un.acxri.abortIoTag;
9074
9075 spin_lock_irq(&phba->hbalock);
9076 if (phba->sli_rev < LPFC_SLI_REV4) {
9077 if (abort_iotag != 0 &&
9078 abort_iotag <= phba->sli.last_iotag)
9079 abort_iocb =
9080 phba->sli.iocbq_lookup[abort_iotag];
9081 } else
9082 /* For sli4 the abort_tag is the XRI,
9083 * so the abort routine puts the iotag of the iocb
9084 * being aborted in the context field of the abort
9085 * IOCB.
9086 */
9087 abort_iocb = phba->sli.iocbq_lookup[abort_context];
9088
9089 lpfc_printf_log(phba, KERN_WARNING, LOG_ELS | LOG_SLI,
9090 "0327 Cannot abort els iocb %p "
9091 "with tag %x context %x, abort status %x, "
9092 "abort code %x\n",
9093 abort_iocb, abort_iotag, abort_context,
9094 irsp->ulpStatus, irsp->un.ulpWord[4]);
9095
9096 spin_unlock_irq(&phba->hbalock);
9097 }
9098 lpfc_sli_release_iocbq(phba, cmdiocb);
9099 return;
9100 }
9101
9102 /**
9103 * lpfc_ignore_els_cmpl - Completion handler for aborted ELS command
9104 * @phba: Pointer to HBA context object.
9105 * @cmdiocb: Pointer to driver command iocb object.
9106 * @rspiocb: Pointer to driver response iocb object.
9107 *
9108 * The function is called from SLI ring event handler with no
9109 * lock held. This function is the completion handler for ELS commands
9110 * which are aborted. The function frees memory resources used for
9111 * the aborted ELS commands.
9112 **/
9113 static void
9114 lpfc_ignore_els_cmpl(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocb,
9115 struct lpfc_iocbq *rspiocb)
9116 {
9117 IOCB_t *irsp = &rspiocb->iocb;
9118
9119 /* ELS cmd tag <ulpIoTag> completes */
9120 lpfc_printf_log(phba, KERN_INFO, LOG_ELS,
9121 "0139 Ignoring ELS cmd tag x%x completion Data: "
9122 "x%x x%x x%x\n",
9123 irsp->ulpIoTag, irsp->ulpStatus,
9124 irsp->un.ulpWord[4], irsp->ulpTimeout);
9125 if (cmdiocb->iocb.ulpCommand == CMD_GEN_REQUEST64_CR)
9126 lpfc_ct_free_iocb(phba, cmdiocb);
9127 else
9128 lpfc_els_free_iocb(phba, cmdiocb);
9129 return;
9130 }
9131
9132 /**
9133 * lpfc_sli_abort_iotag_issue - Issue abort for a command iocb
9134 * @phba: Pointer to HBA context object.
9135 * @pring: Pointer to driver SLI ring object.
9136 * @cmdiocb: Pointer to driver command iocb object.
9137 *
9138 * This function issues an abort iocb for the provided command iocb down to
9139 * the port. Other than the case the outstanding command iocb is an abort
9140 * request, this function issues abort out unconditionally. This function is
9141 * called with hbalock held. The function returns 0 when it fails due to
9142 * memory allocation failure or when the command iocb is an abort request.
9143 **/
9144 static int
9145 lpfc_sli_abort_iotag_issue(struct lpfc_hba *phba, struct lpfc_sli_ring *pring,
9146 struct lpfc_iocbq *cmdiocb)
9147 {
9148 struct lpfc_vport *vport = cmdiocb->vport;
9149 struct lpfc_iocbq *abtsiocbp;
9150 IOCB_t *icmd = NULL;
9151 IOCB_t *iabt = NULL;
9152 int retval;
9153
9154 /*
9155 * There are certain command types we don't want to abort. And we
9156 * don't want to abort commands that are already in the process of
9157 * being aborted.
9158 */
9159 icmd = &cmdiocb->iocb;
9160 if (icmd->ulpCommand == CMD_ABORT_XRI_CN ||
9161 icmd->ulpCommand == CMD_CLOSE_XRI_CN ||
9162 (cmdiocb->iocb_flag & LPFC_DRIVER_ABORTED) != 0)
9163 return 0;
9164
9165 /* issue ABTS for this IOCB based on iotag */
9166 abtsiocbp = __lpfc_sli_get_iocbq(phba);
9167 if (abtsiocbp == NULL)
9168 return 0;
9169
9170 /* This signals the response to set the correct status
9171 * before calling the completion handler
9172 */
9173 cmdiocb->iocb_flag |= LPFC_DRIVER_ABORTED;
9174
9175 iabt = &abtsiocbp->iocb;
9176 iabt->un.acxri.abortType = ABORT_TYPE_ABTS;
9177 iabt->un.acxri.abortContextTag = icmd->ulpContext;
9178 if (phba->sli_rev == LPFC_SLI_REV4) {
9179 iabt->un.acxri.abortIoTag = cmdiocb->sli4_xritag;
9180 iabt->un.acxri.abortContextTag = cmdiocb->iotag;
9181 }
9182 else
9183 iabt->un.acxri.abortIoTag = icmd->ulpIoTag;
9184 iabt->ulpLe = 1;
9185 iabt->ulpClass = icmd->ulpClass;
9186
9187 /* ABTS WQE must go to the same WQ as the WQE to be aborted */
9188 abtsiocbp->fcp_wqidx = cmdiocb->fcp_wqidx;
9189 if (cmdiocb->iocb_flag & LPFC_IO_FCP)
9190 abtsiocbp->iocb_flag |= LPFC_USE_FCPWQIDX;
9191
9192 if (phba->link_state >= LPFC_LINK_UP)
9193 iabt->ulpCommand = CMD_ABORT_XRI_CN;
9194 else
9195 iabt->ulpCommand = CMD_CLOSE_XRI_CN;
9196
9197 abtsiocbp->iocb_cmpl = lpfc_sli_abort_els_cmpl;
9198
9199 lpfc_printf_vlog(vport, KERN_INFO, LOG_SLI,
9200 "0339 Abort xri x%x, original iotag x%x, "
9201 "abort cmd iotag x%x\n",
9202 iabt->un.acxri.abortIoTag,
9203 iabt->un.acxri.abortContextTag,
9204 abtsiocbp->iotag);
9205 retval = __lpfc_sli_issue_iocb(phba, pring->ringno, abtsiocbp, 0);
9206
9207 if (retval)
9208 __lpfc_sli_release_iocbq(phba, abtsiocbp);
9209
9210 /*
9211 * Caller to this routine should check for IOCB_ERROR
9212 * and handle it properly. This routine no longer removes
9213 * iocb off txcmplq and call compl in case of IOCB_ERROR.
9214 */
9215 return retval;
9216 }
9217
9218 /**
9219 * lpfc_sli_issue_abort_iotag - Abort function for a command iocb
9220 * @phba: Pointer to HBA context object.
9221 * @pring: Pointer to driver SLI ring object.
9222 * @cmdiocb: Pointer to driver command iocb object.
9223 *
9224 * This function issues an abort iocb for the provided command iocb. In case
9225 * of unloading, the abort iocb will not be issued to commands on the ELS
9226 * ring. Instead, the callback function shall be changed to those commands
9227 * so that nothing happens when them finishes. This function is called with
9228 * hbalock held. The function returns 0 when the command iocb is an abort
9229 * request.
9230 **/
9231 int
9232 lpfc_sli_issue_abort_iotag(struct lpfc_hba *phba, struct lpfc_sli_ring *pring,
9233 struct lpfc_iocbq *cmdiocb)
9234 {
9235 struct lpfc_vport *vport = cmdiocb->vport;
9236 int retval = IOCB_ERROR;
9237 IOCB_t *icmd = NULL;
9238
9239 /*
9240 * There are certain command types we don't want to abort. And we
9241 * don't want to abort commands that are already in the process of
9242 * being aborted.
9243 */
9244 icmd = &cmdiocb->iocb;
9245 if (icmd->ulpCommand == CMD_ABORT_XRI_CN ||
9246 icmd->ulpCommand == CMD_CLOSE_XRI_CN ||
9247 (cmdiocb->iocb_flag & LPFC_DRIVER_ABORTED) != 0)
9248 return 0;
9249
9250 /*
9251 * If we're unloading, don't abort iocb on the ELS ring, but change
9252 * the callback so that nothing happens when it finishes.
9253 */
9254 if ((vport->load_flag & FC_UNLOADING) &&
9255 (pring->ringno == LPFC_ELS_RING)) {
9256 if (cmdiocb->iocb_flag & LPFC_IO_FABRIC)
9257 cmdiocb->fabric_iocb_cmpl = lpfc_ignore_els_cmpl;
9258 else
9259 cmdiocb->iocb_cmpl = lpfc_ignore_els_cmpl;
9260 goto abort_iotag_exit;
9261 }
9262
9263 /* Now, we try to issue the abort to the cmdiocb out */
9264 retval = lpfc_sli_abort_iotag_issue(phba, pring, cmdiocb);
9265
9266 abort_iotag_exit:
9267 /*
9268 * Caller to this routine should check for IOCB_ERROR
9269 * and handle it properly. This routine no longer removes
9270 * iocb off txcmplq and call compl in case of IOCB_ERROR.
9271 */
9272 return retval;
9273 }
9274
9275 /**
9276 * lpfc_sli_iocb_ring_abort - Unconditionally abort all iocbs on an iocb ring
9277 * @phba: Pointer to HBA context object.
9278 * @pring: Pointer to driver SLI ring object.
9279 *
9280 * This function aborts all iocbs in the given ring and frees all the iocb
9281 * objects in txq. This function issues abort iocbs unconditionally for all
9282 * the iocb commands in txcmplq. The iocbs in the txcmplq is not guaranteed
9283 * to complete before the return of this function. The caller is not required
9284 * to hold any locks.
9285 **/
9286 static void
9287 lpfc_sli_iocb_ring_abort(struct lpfc_hba *phba, struct lpfc_sli_ring *pring)
9288 {
9289 LIST_HEAD(completions);
9290 struct lpfc_iocbq *iocb, *next_iocb;
9291
9292 if (pring->ringno == LPFC_ELS_RING)
9293 lpfc_fabric_abort_hba(phba);
9294
9295 spin_lock_irq(&phba->hbalock);
9296
9297 /* Take off all the iocbs on txq for cancelling */
9298 list_splice_init(&pring->txq, &completions);
9299 pring->txq_cnt = 0;
9300
9301 /* Next issue ABTS for everything on the txcmplq */
9302 list_for_each_entry_safe(iocb, next_iocb, &pring->txcmplq, list)
9303 lpfc_sli_abort_iotag_issue(phba, pring, iocb);
9304
9305 spin_unlock_irq(&phba->hbalock);
9306
9307 /* Cancel all the IOCBs from the completions list */
9308 lpfc_sli_cancel_iocbs(phba, &completions, IOSTAT_LOCAL_REJECT,
9309 IOERR_SLI_ABORTED);
9310 }
9311
9312 /**
9313 * lpfc_sli_hba_iocb_abort - Abort all iocbs to an hba.
9314 * @phba: pointer to lpfc HBA data structure.
9315 *
9316 * This routine will abort all pending and outstanding iocbs to an HBA.
9317 **/
9318 void
9319 lpfc_sli_hba_iocb_abort(struct lpfc_hba *phba)
9320 {
9321 struct lpfc_sli *psli = &phba->sli;
9322 struct lpfc_sli_ring *pring;
9323 int i;
9324
9325 for (i = 0; i < psli->num_rings; i++) {
9326 pring = &psli->ring[i];
9327 lpfc_sli_iocb_ring_abort(phba, pring);
9328 }
9329 }
9330
9331 /**
9332 * lpfc_sli_validate_fcp_iocb - find commands associated with a vport or LUN
9333 * @iocbq: Pointer to driver iocb object.
9334 * @vport: Pointer to driver virtual port object.
9335 * @tgt_id: SCSI ID of the target.
9336 * @lun_id: LUN ID of the scsi device.
9337 * @ctx_cmd: LPFC_CTX_LUN/LPFC_CTX_TGT/LPFC_CTX_HOST
9338 *
9339 * This function acts as an iocb filter for functions which abort or count
9340 * all FCP iocbs pending on a lun/SCSI target/SCSI host. It will return
9341 * 0 if the filtering criteria is met for the given iocb and will return
9342 * 1 if the filtering criteria is not met.
9343 * If ctx_cmd == LPFC_CTX_LUN, the function returns 0 only if the
9344 * given iocb is for the SCSI device specified by vport, tgt_id and
9345 * lun_id parameter.
9346 * If ctx_cmd == LPFC_CTX_TGT, the function returns 0 only if the
9347 * given iocb is for the SCSI target specified by vport and tgt_id
9348 * parameters.
9349 * If ctx_cmd == LPFC_CTX_HOST, the function returns 0 only if the
9350 * given iocb is for the SCSI host associated with the given vport.
9351 * This function is called with no locks held.
9352 **/
9353 static int
9354 lpfc_sli_validate_fcp_iocb(struct lpfc_iocbq *iocbq, struct lpfc_vport *vport,
9355 uint16_t tgt_id, uint64_t lun_id,
9356 lpfc_ctx_cmd ctx_cmd)
9357 {
9358 struct lpfc_scsi_buf *lpfc_cmd;
9359 int rc = 1;
9360
9361 if (!(iocbq->iocb_flag & LPFC_IO_FCP))
9362 return rc;
9363
9364 if (iocbq->vport != vport)
9365 return rc;
9366
9367 lpfc_cmd = container_of(iocbq, struct lpfc_scsi_buf, cur_iocbq);
9368
9369 if (lpfc_cmd->pCmd == NULL)
9370 return rc;
9371
9372 switch (ctx_cmd) {
9373 case LPFC_CTX_LUN:
9374 if ((lpfc_cmd->rdata->pnode) &&
9375 (lpfc_cmd->rdata->pnode->nlp_sid == tgt_id) &&
9376 (scsilun_to_int(&lpfc_cmd->fcp_cmnd->fcp_lun) == lun_id))
9377 rc = 0;
9378 break;
9379 case LPFC_CTX_TGT:
9380 if ((lpfc_cmd->rdata->pnode) &&
9381 (lpfc_cmd->rdata->pnode->nlp_sid == tgt_id))
9382 rc = 0;
9383 break;
9384 case LPFC_CTX_HOST:
9385 rc = 0;
9386 break;
9387 default:
9388 printk(KERN_ERR "%s: Unknown context cmd type, value %d\n",
9389 __func__, ctx_cmd);
9390 break;
9391 }
9392
9393 return rc;
9394 }
9395
9396 /**
9397 * lpfc_sli_sum_iocb - Function to count the number of FCP iocbs pending
9398 * @vport: Pointer to virtual port.
9399 * @tgt_id: SCSI ID of the target.
9400 * @lun_id: LUN ID of the scsi device.
9401 * @ctx_cmd: LPFC_CTX_LUN/LPFC_CTX_TGT/LPFC_CTX_HOST.
9402 *
9403 * This function returns number of FCP commands pending for the vport.
9404 * When ctx_cmd == LPFC_CTX_LUN, the function returns number of FCP
9405 * commands pending on the vport associated with SCSI device specified
9406 * by tgt_id and lun_id parameters.
9407 * When ctx_cmd == LPFC_CTX_TGT, the function returns number of FCP
9408 * commands pending on the vport associated with SCSI target specified
9409 * by tgt_id parameter.
9410 * When ctx_cmd == LPFC_CTX_HOST, the function returns number of FCP
9411 * commands pending on the vport.
9412 * This function returns the number of iocbs which satisfy the filter.
9413 * This function is called without any lock held.
9414 **/
9415 int
9416 lpfc_sli_sum_iocb(struct lpfc_vport *vport, uint16_t tgt_id, uint64_t lun_id,
9417 lpfc_ctx_cmd ctx_cmd)
9418 {
9419 struct lpfc_hba *phba = vport->phba;
9420 struct lpfc_iocbq *iocbq;
9421 int sum, i;
9422
9423 for (i = 1, sum = 0; i <= phba->sli.last_iotag; i++) {
9424 iocbq = phba->sli.iocbq_lookup[i];
9425
9426 if (lpfc_sli_validate_fcp_iocb (iocbq, vport, tgt_id, lun_id,
9427 ctx_cmd) == 0)
9428 sum++;
9429 }
9430
9431 return sum;
9432 }
9433
9434 /**
9435 * lpfc_sli_abort_fcp_cmpl - Completion handler function for aborted FCP IOCBs
9436 * @phba: Pointer to HBA context object
9437 * @cmdiocb: Pointer to command iocb object.
9438 * @rspiocb: Pointer to response iocb object.
9439 *
9440 * This function is called when an aborted FCP iocb completes. This
9441 * function is called by the ring event handler with no lock held.
9442 * This function frees the iocb.
9443 **/
9444 void
9445 lpfc_sli_abort_fcp_cmpl(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocb,
9446 struct lpfc_iocbq *rspiocb)
9447 {
9448 lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
9449 "3096 ABORT_XRI_CN completing on xri x%x "
9450 "original iotag x%x, abort cmd iotag x%x "
9451 "status 0x%x, reason 0x%x\n",
9452 cmdiocb->iocb.un.acxri.abortContextTag,
9453 cmdiocb->iocb.un.acxri.abortIoTag,
9454 cmdiocb->iotag, rspiocb->iocb.ulpStatus,
9455 rspiocb->iocb.un.ulpWord[4]);
9456 lpfc_sli_release_iocbq(phba, cmdiocb);
9457 return;
9458 }
9459
9460 /**
9461 * lpfc_sli_abort_iocb - issue abort for all commands on a host/target/LUN
9462 * @vport: Pointer to virtual port.
9463 * @pring: Pointer to driver SLI ring object.
9464 * @tgt_id: SCSI ID of the target.
9465 * @lun_id: LUN ID of the scsi device.
9466 * @abort_cmd: LPFC_CTX_LUN/LPFC_CTX_TGT/LPFC_CTX_HOST.
9467 *
9468 * This function sends an abort command for every SCSI command
9469 * associated with the given virtual port pending on the ring
9470 * filtered by lpfc_sli_validate_fcp_iocb function.
9471 * When abort_cmd == LPFC_CTX_LUN, the function sends abort only to the
9472 * FCP iocbs associated with lun specified by tgt_id and lun_id
9473 * parameters
9474 * When abort_cmd == LPFC_CTX_TGT, the function sends abort only to the
9475 * FCP iocbs associated with SCSI target specified by tgt_id parameter.
9476 * When abort_cmd == LPFC_CTX_HOST, the function sends abort to all
9477 * FCP iocbs associated with virtual port.
9478 * This function returns number of iocbs it failed to abort.
9479 * This function is called with no locks held.
9480 **/
9481 int
9482 lpfc_sli_abort_iocb(struct lpfc_vport *vport, struct lpfc_sli_ring *pring,
9483 uint16_t tgt_id, uint64_t lun_id, lpfc_ctx_cmd abort_cmd)
9484 {
9485 struct lpfc_hba *phba = vport->phba;
9486 struct lpfc_iocbq *iocbq;
9487 struct lpfc_iocbq *abtsiocb;
9488 IOCB_t *cmd = NULL;
9489 int errcnt = 0, ret_val = 0;
9490 int i;
9491
9492 for (i = 1; i <= phba->sli.last_iotag; i++) {
9493 iocbq = phba->sli.iocbq_lookup[i];
9494
9495 if (lpfc_sli_validate_fcp_iocb(iocbq, vport, tgt_id, lun_id,
9496 abort_cmd) != 0)
9497 continue;
9498
9499 /* issue ABTS for this IOCB based on iotag */
9500 abtsiocb = lpfc_sli_get_iocbq(phba);
9501 if (abtsiocb == NULL) {
9502 errcnt++;
9503 continue;
9504 }
9505
9506 cmd = &iocbq->iocb;
9507 abtsiocb->iocb.un.acxri.abortType = ABORT_TYPE_ABTS;
9508 abtsiocb->iocb.un.acxri.abortContextTag = cmd->ulpContext;
9509 if (phba->sli_rev == LPFC_SLI_REV4)
9510 abtsiocb->iocb.un.acxri.abortIoTag = iocbq->sli4_xritag;
9511 else
9512 abtsiocb->iocb.un.acxri.abortIoTag = cmd->ulpIoTag;
9513 abtsiocb->iocb.ulpLe = 1;
9514 abtsiocb->iocb.ulpClass = cmd->ulpClass;
9515 abtsiocb->vport = phba->pport;
9516
9517 /* ABTS WQE must go to the same WQ as the WQE to be aborted */
9518 abtsiocb->fcp_wqidx = iocbq->fcp_wqidx;
9519 if (iocbq->iocb_flag & LPFC_IO_FCP)
9520 abtsiocb->iocb_flag |= LPFC_USE_FCPWQIDX;
9521
9522 if (lpfc_is_link_up(phba))
9523 abtsiocb->iocb.ulpCommand = CMD_ABORT_XRI_CN;
9524 else
9525 abtsiocb->iocb.ulpCommand = CMD_CLOSE_XRI_CN;
9526
9527 /* Setup callback routine and issue the command. */
9528 abtsiocb->iocb_cmpl = lpfc_sli_abort_fcp_cmpl;
9529 ret_val = lpfc_sli_issue_iocb(phba, pring->ringno,
9530 abtsiocb, 0);
9531 if (ret_val == IOCB_ERROR) {
9532 lpfc_sli_release_iocbq(phba, abtsiocb);
9533 errcnt++;
9534 continue;
9535 }
9536 }
9537
9538 return errcnt;
9539 }
9540
9541 /**
9542 * lpfc_sli_wake_iocb_wait - lpfc_sli_issue_iocb_wait's completion handler
9543 * @phba: Pointer to HBA context object.
9544 * @cmdiocbq: Pointer to command iocb.
9545 * @rspiocbq: Pointer to response iocb.
9546 *
9547 * This function is the completion handler for iocbs issued using
9548 * lpfc_sli_issue_iocb_wait function. This function is called by the
9549 * ring event handler function without any lock held. This function
9550 * can be called from both worker thread context and interrupt
9551 * context. This function also can be called from other thread which
9552 * cleans up the SLI layer objects.
9553 * This function copy the contents of the response iocb to the
9554 * response iocb memory object provided by the caller of
9555 * lpfc_sli_issue_iocb_wait and then wakes up the thread which
9556 * sleeps for the iocb completion.
9557 **/
9558 static void
9559 lpfc_sli_wake_iocb_wait(struct lpfc_hba *phba,
9560 struct lpfc_iocbq *cmdiocbq,
9561 struct lpfc_iocbq *rspiocbq)
9562 {
9563 wait_queue_head_t *pdone_q;
9564 unsigned long iflags;
9565 struct lpfc_scsi_buf *lpfc_cmd;
9566
9567 spin_lock_irqsave(&phba->hbalock, iflags);
9568 cmdiocbq->iocb_flag |= LPFC_IO_WAKE;
9569 if (cmdiocbq->context2 && rspiocbq)
9570 memcpy(&((struct lpfc_iocbq *)cmdiocbq->context2)->iocb,
9571 &rspiocbq->iocb, sizeof(IOCB_t));
9572
9573 /* Set the exchange busy flag for task management commands */
9574 if ((cmdiocbq->iocb_flag & LPFC_IO_FCP) &&
9575 !(cmdiocbq->iocb_flag & LPFC_IO_LIBDFC)) {
9576 lpfc_cmd = container_of(cmdiocbq, struct lpfc_scsi_buf,
9577 cur_iocbq);
9578 lpfc_cmd->exch_busy = rspiocbq->iocb_flag & LPFC_EXCHANGE_BUSY;
9579 }
9580
9581 pdone_q = cmdiocbq->context_un.wait_queue;
9582 if (pdone_q)
9583 wake_up(pdone_q);
9584 spin_unlock_irqrestore(&phba->hbalock, iflags);
9585 return;
9586 }
9587
9588 /**
9589 * lpfc_chk_iocb_flg - Test IOCB flag with lock held.
9590 * @phba: Pointer to HBA context object..
9591 * @piocbq: Pointer to command iocb.
9592 * @flag: Flag to test.
9593 *
9594 * This routine grabs the hbalock and then test the iocb_flag to
9595 * see if the passed in flag is set.
9596 * Returns:
9597 * 1 if flag is set.
9598 * 0 if flag is not set.
9599 **/
9600 static int
9601 lpfc_chk_iocb_flg(struct lpfc_hba *phba,
9602 struct lpfc_iocbq *piocbq, uint32_t flag)
9603 {
9604 unsigned long iflags;
9605 int ret;
9606
9607 spin_lock_irqsave(&phba->hbalock, iflags);
9608 ret = piocbq->iocb_flag & flag;
9609 spin_unlock_irqrestore(&phba->hbalock, iflags);
9610 return ret;
9611
9612 }
9613
9614 /**
9615 * lpfc_sli_issue_iocb_wait - Synchronous function to issue iocb commands
9616 * @phba: Pointer to HBA context object..
9617 * @pring: Pointer to sli ring.
9618 * @piocb: Pointer to command iocb.
9619 * @prspiocbq: Pointer to response iocb.
9620 * @timeout: Timeout in number of seconds.
9621 *
9622 * This function issues the iocb to firmware and waits for the
9623 * iocb to complete. If the iocb command is not
9624 * completed within timeout seconds, it returns IOCB_TIMEDOUT.
9625 * Caller should not free the iocb resources if this function
9626 * returns IOCB_TIMEDOUT.
9627 * The function waits for the iocb completion using an
9628 * non-interruptible wait.
9629 * This function will sleep while waiting for iocb completion.
9630 * So, this function should not be called from any context which
9631 * does not allow sleeping. Due to the same reason, this function
9632 * cannot be called with interrupt disabled.
9633 * This function assumes that the iocb completions occur while
9634 * this function sleep. So, this function cannot be called from
9635 * the thread which process iocb completion for this ring.
9636 * This function clears the iocb_flag of the iocb object before
9637 * issuing the iocb and the iocb completion handler sets this
9638 * flag and wakes this thread when the iocb completes.
9639 * The contents of the response iocb will be copied to prspiocbq
9640 * by the completion handler when the command completes.
9641 * This function returns IOCB_SUCCESS when success.
9642 * This function is called with no lock held.
9643 **/
9644 int
9645 lpfc_sli_issue_iocb_wait(struct lpfc_hba *phba,
9646 uint32_t ring_number,
9647 struct lpfc_iocbq *piocb,
9648 struct lpfc_iocbq *prspiocbq,
9649 uint32_t timeout)
9650 {
9651 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(done_q);
9652 long timeleft, timeout_req = 0;
9653 int retval = IOCB_SUCCESS;
9654 uint32_t creg_val;
9655 struct lpfc_sli_ring *pring = &phba->sli.ring[LPFC_ELS_RING];
9656 /*
9657 * If the caller has provided a response iocbq buffer, then context2
9658 * is NULL or its an error.
9659 */
9660 if (prspiocbq) {
9661 if (piocb->context2)
9662 return IOCB_ERROR;
9663 piocb->context2 = prspiocbq;
9664 }
9665
9666 piocb->iocb_cmpl = lpfc_sli_wake_iocb_wait;
9667 piocb->context_un.wait_queue = &done_q;
9668 piocb->iocb_flag &= ~LPFC_IO_WAKE;
9669
9670 if (phba->cfg_poll & DISABLE_FCP_RING_INT) {
9671 if (lpfc_readl(phba->HCregaddr, &creg_val))
9672 return IOCB_ERROR;
9673 creg_val |= (HC_R0INT_ENA << LPFC_FCP_RING);
9674 writel(creg_val, phba->HCregaddr);
9675 readl(phba->HCregaddr); /* flush */
9676 }
9677
9678 retval = lpfc_sli_issue_iocb(phba, ring_number, piocb,
9679 SLI_IOCB_RET_IOCB);
9680 if (retval == IOCB_SUCCESS) {
9681 timeout_req = timeout * HZ;
9682 timeleft = wait_event_timeout(done_q,
9683 lpfc_chk_iocb_flg(phba, piocb, LPFC_IO_WAKE),
9684 timeout_req);
9685
9686 if (piocb->iocb_flag & LPFC_IO_WAKE) {
9687 lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
9688 "0331 IOCB wake signaled\n");
9689 } else if (timeleft == 0) {
9690 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
9691 "0338 IOCB wait timeout error - no "
9692 "wake response Data x%x\n", timeout);
9693 retval = IOCB_TIMEDOUT;
9694 } else {
9695 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
9696 "0330 IOCB wake NOT set, "
9697 "Data x%x x%lx\n",
9698 timeout, (timeleft / jiffies));
9699 retval = IOCB_TIMEDOUT;
9700 }
9701 } else if (retval == IOCB_BUSY) {
9702 lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
9703 "2818 Max IOCBs %d txq cnt %d txcmplq cnt %d\n",
9704 phba->iocb_cnt, pring->txq_cnt, pring->txcmplq_cnt);
9705 return retval;
9706 } else {
9707 lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
9708 "0332 IOCB wait issue failed, Data x%x\n",
9709 retval);
9710 retval = IOCB_ERROR;
9711 }
9712
9713 if (phba->cfg_poll & DISABLE_FCP_RING_INT) {
9714 if (lpfc_readl(phba->HCregaddr, &creg_val))
9715 return IOCB_ERROR;
9716 creg_val &= ~(HC_R0INT_ENA << LPFC_FCP_RING);
9717 writel(creg_val, phba->HCregaddr);
9718 readl(phba->HCregaddr); /* flush */
9719 }
9720
9721 if (prspiocbq)
9722 piocb->context2 = NULL;
9723
9724 piocb->context_un.wait_queue = NULL;
9725 piocb->iocb_cmpl = NULL;
9726 return retval;
9727 }
9728
9729 /**
9730 * lpfc_sli_issue_mbox_wait - Synchronous function to issue mailbox
9731 * @phba: Pointer to HBA context object.
9732 * @pmboxq: Pointer to driver mailbox object.
9733 * @timeout: Timeout in number of seconds.
9734 *
9735 * This function issues the mailbox to firmware and waits for the
9736 * mailbox command to complete. If the mailbox command is not
9737 * completed within timeout seconds, it returns MBX_TIMEOUT.
9738 * The function waits for the mailbox completion using an
9739 * interruptible wait. If the thread is woken up due to a
9740 * signal, MBX_TIMEOUT error is returned to the caller. Caller
9741 * should not free the mailbox resources, if this function returns
9742 * MBX_TIMEOUT.
9743 * This function will sleep while waiting for mailbox completion.
9744 * So, this function should not be called from any context which
9745 * does not allow sleeping. Due to the same reason, this function
9746 * cannot be called with interrupt disabled.
9747 * This function assumes that the mailbox completion occurs while
9748 * this function sleep. So, this function cannot be called from
9749 * the worker thread which processes mailbox completion.
9750 * This function is called in the context of HBA management
9751 * applications.
9752 * This function returns MBX_SUCCESS when successful.
9753 * This function is called with no lock held.
9754 **/
9755 int
9756 lpfc_sli_issue_mbox_wait(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmboxq,
9757 uint32_t timeout)
9758 {
9759 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(done_q);
9760 int retval;
9761 unsigned long flag;
9762
9763 /* The caller must leave context1 empty. */
9764 if (pmboxq->context1)
9765 return MBX_NOT_FINISHED;
9766
9767 pmboxq->mbox_flag &= ~LPFC_MBX_WAKE;
9768 /* setup wake call as IOCB callback */
9769 pmboxq->mbox_cmpl = lpfc_sli_wake_mbox_wait;
9770 /* setup context field to pass wait_queue pointer to wake function */
9771 pmboxq->context1 = &done_q;
9772
9773 /* now issue the command */
9774 retval = lpfc_sli_issue_mbox(phba, pmboxq, MBX_NOWAIT);
9775 if (retval == MBX_BUSY || retval == MBX_SUCCESS) {
9776 wait_event_interruptible_timeout(done_q,
9777 pmboxq->mbox_flag & LPFC_MBX_WAKE,
9778 timeout * HZ);
9779
9780 spin_lock_irqsave(&phba->hbalock, flag);
9781 pmboxq->context1 = NULL;
9782 /*
9783 * if LPFC_MBX_WAKE flag is set the mailbox is completed
9784 * else do not free the resources.
9785 */
9786 if (pmboxq->mbox_flag & LPFC_MBX_WAKE) {
9787 retval = MBX_SUCCESS;
9788 lpfc_sli4_swap_str(phba, pmboxq);
9789 } else {
9790 retval = MBX_TIMEOUT;
9791 pmboxq->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
9792 }
9793 spin_unlock_irqrestore(&phba->hbalock, flag);
9794 }
9795
9796 return retval;
9797 }
9798
9799 /**
9800 * lpfc_sli_mbox_sys_shutdown - shutdown mailbox command sub-system
9801 * @phba: Pointer to HBA context.
9802 *
9803 * This function is called to shutdown the driver's mailbox sub-system.
9804 * It first marks the mailbox sub-system is in a block state to prevent
9805 * the asynchronous mailbox command from issued off the pending mailbox
9806 * command queue. If the mailbox command sub-system shutdown is due to
9807 * HBA error conditions such as EEH or ERATT, this routine shall invoke
9808 * the mailbox sub-system flush routine to forcefully bring down the
9809 * mailbox sub-system. Otherwise, if it is due to normal condition (such
9810 * as with offline or HBA function reset), this routine will wait for the
9811 * outstanding mailbox command to complete before invoking the mailbox
9812 * sub-system flush routine to gracefully bring down mailbox sub-system.
9813 **/
9814 void
9815 lpfc_sli_mbox_sys_shutdown(struct lpfc_hba *phba)
9816 {
9817 struct lpfc_sli *psli = &phba->sli;
9818 unsigned long timeout;
9819
9820 timeout = msecs_to_jiffies(LPFC_MBOX_TMO * 1000) + jiffies;
9821 spin_lock_irq(&phba->hbalock);
9822 psli->sli_flag |= LPFC_SLI_ASYNC_MBX_BLK;
9823 spin_unlock_irq(&phba->hbalock);
9824
9825 if (psli->sli_flag & LPFC_SLI_ACTIVE) {
9826 spin_lock_irq(&phba->hbalock);
9827 /* Determine how long we might wait for the active mailbox
9828 * command to be gracefully completed by firmware.
9829 */
9830 if (phba->sli.mbox_active)
9831 timeout = msecs_to_jiffies(lpfc_mbox_tmo_val(phba,
9832 phba->sli.mbox_active) *
9833 1000) + jiffies;
9834 spin_unlock_irq(&phba->hbalock);
9835
9836 while (phba->sli.mbox_active) {
9837 /* Check active mailbox complete status every 2ms */
9838 msleep(2);
9839 if (time_after(jiffies, timeout))
9840 /* Timeout, let the mailbox flush routine to
9841 * forcefully release active mailbox command
9842 */
9843 break;
9844 }
9845 }
9846 lpfc_sli_mbox_sys_flush(phba);
9847 }
9848
9849 /**
9850 * lpfc_sli_eratt_read - read sli-3 error attention events
9851 * @phba: Pointer to HBA context.
9852 *
9853 * This function is called to read the SLI3 device error attention registers
9854 * for possible error attention events. The caller must hold the hostlock
9855 * with spin_lock_irq().
9856 *
9857 * This function returns 1 when there is Error Attention in the Host Attention
9858 * Register and returns 0 otherwise.
9859 **/
9860 static int
9861 lpfc_sli_eratt_read(struct lpfc_hba *phba)
9862 {
9863 uint32_t ha_copy;
9864
9865 /* Read chip Host Attention (HA) register */
9866 if (lpfc_readl(phba->HAregaddr, &ha_copy))
9867 goto unplug_err;
9868
9869 if (ha_copy & HA_ERATT) {
9870 /* Read host status register to retrieve error event */
9871 if (lpfc_sli_read_hs(phba))
9872 goto unplug_err;
9873
9874 /* Check if there is a deferred error condition is active */
9875 if ((HS_FFER1 & phba->work_hs) &&
9876 ((HS_FFER2 | HS_FFER3 | HS_FFER4 | HS_FFER5 |
9877 HS_FFER6 | HS_FFER7 | HS_FFER8) & phba->work_hs)) {
9878 phba->hba_flag |= DEFER_ERATT;
9879 /* Clear all interrupt enable conditions */
9880 writel(0, phba->HCregaddr);
9881 readl(phba->HCregaddr);
9882 }
9883
9884 /* Set the driver HA work bitmap */
9885 phba->work_ha |= HA_ERATT;
9886 /* Indicate polling handles this ERATT */
9887 phba->hba_flag |= HBA_ERATT_HANDLED;
9888 return 1;
9889 }
9890 return 0;
9891
9892 unplug_err:
9893 /* Set the driver HS work bitmap */
9894 phba->work_hs |= UNPLUG_ERR;
9895 /* Set the driver HA work bitmap */
9896 phba->work_ha |= HA_ERATT;
9897 /* Indicate polling handles this ERATT */
9898 phba->hba_flag |= HBA_ERATT_HANDLED;
9899 return 1;
9900 }
9901
9902 /**
9903 * lpfc_sli4_eratt_read - read sli-4 error attention events
9904 * @phba: Pointer to HBA context.
9905 *
9906 * This function is called to read the SLI4 device error attention registers
9907 * for possible error attention events. The caller must hold the hostlock
9908 * with spin_lock_irq().
9909 *
9910 * This function returns 1 when there is Error Attention in the Host Attention
9911 * Register and returns 0 otherwise.
9912 **/
9913 static int
9914 lpfc_sli4_eratt_read(struct lpfc_hba *phba)
9915 {
9916 uint32_t uerr_sta_hi, uerr_sta_lo;
9917 uint32_t if_type, portsmphr;
9918 struct lpfc_register portstat_reg;
9919
9920 /*
9921 * For now, use the SLI4 device internal unrecoverable error
9922 * registers for error attention. This can be changed later.
9923 */
9924 if_type = bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf);
9925 switch (if_type) {
9926 case LPFC_SLI_INTF_IF_TYPE_0:
9927 if (lpfc_readl(phba->sli4_hba.u.if_type0.UERRLOregaddr,
9928 &uerr_sta_lo) ||
9929 lpfc_readl(phba->sli4_hba.u.if_type0.UERRHIregaddr,
9930 &uerr_sta_hi)) {
9931 phba->work_hs |= UNPLUG_ERR;
9932 phba->work_ha |= HA_ERATT;
9933 phba->hba_flag |= HBA_ERATT_HANDLED;
9934 return 1;
9935 }
9936 if ((~phba->sli4_hba.ue_mask_lo & uerr_sta_lo) ||
9937 (~phba->sli4_hba.ue_mask_hi & uerr_sta_hi)) {
9938 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
9939 "1423 HBA Unrecoverable error: "
9940 "uerr_lo_reg=0x%x, uerr_hi_reg=0x%x, "
9941 "ue_mask_lo_reg=0x%x, "
9942 "ue_mask_hi_reg=0x%x\n",
9943 uerr_sta_lo, uerr_sta_hi,
9944 phba->sli4_hba.ue_mask_lo,
9945 phba->sli4_hba.ue_mask_hi);
9946 phba->work_status[0] = uerr_sta_lo;
9947 phba->work_status[1] = uerr_sta_hi;
9948 phba->work_ha |= HA_ERATT;
9949 phba->hba_flag |= HBA_ERATT_HANDLED;
9950 return 1;
9951 }
9952 break;
9953 case LPFC_SLI_INTF_IF_TYPE_2:
9954 if (lpfc_readl(phba->sli4_hba.u.if_type2.STATUSregaddr,
9955 &portstat_reg.word0) ||
9956 lpfc_readl(phba->sli4_hba.PSMPHRregaddr,
9957 &portsmphr)){
9958 phba->work_hs |= UNPLUG_ERR;
9959 phba->work_ha |= HA_ERATT;
9960 phba->hba_flag |= HBA_ERATT_HANDLED;
9961 return 1;
9962 }
9963 if (bf_get(lpfc_sliport_status_err, &portstat_reg)) {
9964 phba->work_status[0] =
9965 readl(phba->sli4_hba.u.if_type2.ERR1regaddr);
9966 phba->work_status[1] =
9967 readl(phba->sli4_hba.u.if_type2.ERR2regaddr);
9968 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
9969 "2885 Port Status Event: "
9970 "port status reg 0x%x, "
9971 "port smphr reg 0x%x, "
9972 "error 1=0x%x, error 2=0x%x\n",
9973 portstat_reg.word0,
9974 portsmphr,
9975 phba->work_status[0],
9976 phba->work_status[1]);
9977 phba->work_ha |= HA_ERATT;
9978 phba->hba_flag |= HBA_ERATT_HANDLED;
9979 return 1;
9980 }
9981 break;
9982 case LPFC_SLI_INTF_IF_TYPE_1:
9983 default:
9984 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
9985 "2886 HBA Error Attention on unsupported "
9986 "if type %d.", if_type);
9987 return 1;
9988 }
9989
9990 return 0;
9991 }
9992
9993 /**
9994 * lpfc_sli_check_eratt - check error attention events
9995 * @phba: Pointer to HBA context.
9996 *
9997 * This function is called from timer soft interrupt context to check HBA's
9998 * error attention register bit for error attention events.
9999 *
10000 * This function returns 1 when there is Error Attention in the Host Attention
10001 * Register and returns 0 otherwise.
10002 **/
10003 int
10004 lpfc_sli_check_eratt(struct lpfc_hba *phba)
10005 {
10006 uint32_t ha_copy;
10007
10008 /* If somebody is waiting to handle an eratt, don't process it
10009 * here. The brdkill function will do this.
10010 */
10011 if (phba->link_flag & LS_IGNORE_ERATT)
10012 return 0;
10013
10014 /* Check if interrupt handler handles this ERATT */
10015 spin_lock_irq(&phba->hbalock);
10016 if (phba->hba_flag & HBA_ERATT_HANDLED) {
10017 /* Interrupt handler has handled ERATT */
10018 spin_unlock_irq(&phba->hbalock);
10019 return 0;
10020 }
10021
10022 /*
10023 * If there is deferred error attention, do not check for error
10024 * attention
10025 */
10026 if (unlikely(phba->hba_flag & DEFER_ERATT)) {
10027 spin_unlock_irq(&phba->hbalock);
10028 return 0;
10029 }
10030
10031 /* If PCI channel is offline, don't process it */
10032 if (unlikely(pci_channel_offline(phba->pcidev))) {
10033 spin_unlock_irq(&phba->hbalock);
10034 return 0;
10035 }
10036
10037 switch (phba->sli_rev) {
10038 case LPFC_SLI_REV2:
10039 case LPFC_SLI_REV3:
10040 /* Read chip Host Attention (HA) register */
10041 ha_copy = lpfc_sli_eratt_read(phba);
10042 break;
10043 case LPFC_SLI_REV4:
10044 /* Read device Uncoverable Error (UERR) registers */
10045 ha_copy = lpfc_sli4_eratt_read(phba);
10046 break;
10047 default:
10048 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
10049 "0299 Invalid SLI revision (%d)\n",
10050 phba->sli_rev);
10051 ha_copy = 0;
10052 break;
10053 }
10054 spin_unlock_irq(&phba->hbalock);
10055
10056 return ha_copy;
10057 }
10058
10059 /**
10060 * lpfc_intr_state_check - Check device state for interrupt handling
10061 * @phba: Pointer to HBA context.
10062 *
10063 * This inline routine checks whether a device or its PCI slot is in a state
10064 * that the interrupt should be handled.
10065 *
10066 * This function returns 0 if the device or the PCI slot is in a state that
10067 * interrupt should be handled, otherwise -EIO.
10068 */
10069 static inline int
10070 lpfc_intr_state_check(struct lpfc_hba *phba)
10071 {
10072 /* If the pci channel is offline, ignore all the interrupts */
10073 if (unlikely(pci_channel_offline(phba->pcidev)))
10074 return -EIO;
10075
10076 /* Update device level interrupt statistics */
10077 phba->sli.slistat.sli_intr++;
10078
10079 /* Ignore all interrupts during initialization. */
10080 if (unlikely(phba->link_state < LPFC_LINK_DOWN))
10081 return -EIO;
10082
10083 return 0;
10084 }
10085
10086 /**
10087 * lpfc_sli_sp_intr_handler - Slow-path interrupt handler to SLI-3 device
10088 * @irq: Interrupt number.
10089 * @dev_id: The device context pointer.
10090 *
10091 * This function is directly called from the PCI layer as an interrupt
10092 * service routine when device with SLI-3 interface spec is enabled with
10093 * MSI-X multi-message interrupt mode and there are slow-path events in
10094 * the HBA. However, when the device is enabled with either MSI or Pin-IRQ
10095 * interrupt mode, this function is called as part of the device-level
10096 * interrupt handler. When the PCI slot is in error recovery or the HBA
10097 * is undergoing initialization, the interrupt handler will not process
10098 * the interrupt. The link attention and ELS ring attention events are
10099 * handled by the worker thread. The interrupt handler signals the worker
10100 * thread and returns for these events. This function is called without
10101 * any lock held. It gets the hbalock to access and update SLI data
10102 * structures.
10103 *
10104 * This function returns IRQ_HANDLED when interrupt is handled else it
10105 * returns IRQ_NONE.
10106 **/
10107 irqreturn_t
10108 lpfc_sli_sp_intr_handler(int irq, void *dev_id)
10109 {
10110 struct lpfc_hba *phba;
10111 uint32_t ha_copy, hc_copy;
10112 uint32_t work_ha_copy;
10113 unsigned long status;
10114 unsigned long iflag;
10115 uint32_t control;
10116
10117 MAILBOX_t *mbox, *pmbox;
10118 struct lpfc_vport *vport;
10119 struct lpfc_nodelist *ndlp;
10120 struct lpfc_dmabuf *mp;
10121 LPFC_MBOXQ_t *pmb;
10122 int rc;
10123
10124 /*
10125 * Get the driver's phba structure from the dev_id and
10126 * assume the HBA is not interrupting.
10127 */
10128 phba = (struct lpfc_hba *)dev_id;
10129
10130 if (unlikely(!phba))
10131 return IRQ_NONE;
10132
10133 /*
10134 * Stuff needs to be attented to when this function is invoked as an
10135 * individual interrupt handler in MSI-X multi-message interrupt mode
10136 */
10137 if (phba->intr_type == MSIX) {
10138 /* Check device state for handling interrupt */
10139 if (lpfc_intr_state_check(phba))
10140 return IRQ_NONE;
10141 /* Need to read HA REG for slow-path events */
10142 spin_lock_irqsave(&phba->hbalock, iflag);
10143 if (lpfc_readl(phba->HAregaddr, &ha_copy))
10144 goto unplug_error;
10145 /* If somebody is waiting to handle an eratt don't process it
10146 * here. The brdkill function will do this.
10147 */
10148 if (phba->link_flag & LS_IGNORE_ERATT)
10149 ha_copy &= ~HA_ERATT;
10150 /* Check the need for handling ERATT in interrupt handler */
10151 if (ha_copy & HA_ERATT) {
10152 if (phba->hba_flag & HBA_ERATT_HANDLED)
10153 /* ERATT polling has handled ERATT */
10154 ha_copy &= ~HA_ERATT;
10155 else
10156 /* Indicate interrupt handler handles ERATT */
10157 phba->hba_flag |= HBA_ERATT_HANDLED;
10158 }
10159
10160 /*
10161 * If there is deferred error attention, do not check for any
10162 * interrupt.
10163 */
10164 if (unlikely(phba->hba_flag & DEFER_ERATT)) {
10165 spin_unlock_irqrestore(&phba->hbalock, iflag);
10166 return IRQ_NONE;
10167 }
10168
10169 /* Clear up only attention source related to slow-path */
10170 if (lpfc_readl(phba->HCregaddr, &hc_copy))
10171 goto unplug_error;
10172
10173 writel(hc_copy & ~(HC_MBINT_ENA | HC_R2INT_ENA |
10174 HC_LAINT_ENA | HC_ERINT_ENA),
10175 phba->HCregaddr);
10176 writel((ha_copy & (HA_MBATT | HA_R2_CLR_MSK)),
10177 phba->HAregaddr);
10178 writel(hc_copy, phba->HCregaddr);
10179 readl(phba->HAregaddr); /* flush */
10180 spin_unlock_irqrestore(&phba->hbalock, iflag);
10181 } else
10182 ha_copy = phba->ha_copy;
10183
10184 work_ha_copy = ha_copy & phba->work_ha_mask;
10185
10186 if (work_ha_copy) {
10187 if (work_ha_copy & HA_LATT) {
10188 if (phba->sli.sli_flag & LPFC_PROCESS_LA) {
10189 /*
10190 * Turn off Link Attention interrupts
10191 * until CLEAR_LA done
10192 */
10193 spin_lock_irqsave(&phba->hbalock, iflag);
10194 phba->sli.sli_flag &= ~LPFC_PROCESS_LA;
10195 if (lpfc_readl(phba->HCregaddr, &control))
10196 goto unplug_error;
10197 control &= ~HC_LAINT_ENA;
10198 writel(control, phba->HCregaddr);
10199 readl(phba->HCregaddr); /* flush */
10200 spin_unlock_irqrestore(&phba->hbalock, iflag);
10201 }
10202 else
10203 work_ha_copy &= ~HA_LATT;
10204 }
10205
10206 if (work_ha_copy & ~(HA_ERATT | HA_MBATT | HA_LATT)) {
10207 /*
10208 * Turn off Slow Rings interrupts, LPFC_ELS_RING is
10209 * the only slow ring.
10210 */
10211 status = (work_ha_copy &
10212 (HA_RXMASK << (4*LPFC_ELS_RING)));
10213 status >>= (4*LPFC_ELS_RING);
10214 if (status & HA_RXMASK) {
10215 spin_lock_irqsave(&phba->hbalock, iflag);
10216 if (lpfc_readl(phba->HCregaddr, &control))
10217 goto unplug_error;
10218
10219 lpfc_debugfs_slow_ring_trc(phba,
10220 "ISR slow ring: ctl:x%x stat:x%x isrcnt:x%x",
10221 control, status,
10222 (uint32_t)phba->sli.slistat.sli_intr);
10223
10224 if (control & (HC_R0INT_ENA << LPFC_ELS_RING)) {
10225 lpfc_debugfs_slow_ring_trc(phba,
10226 "ISR Disable ring:"
10227 "pwork:x%x hawork:x%x wait:x%x",
10228 phba->work_ha, work_ha_copy,
10229 (uint32_t)((unsigned long)
10230 &phba->work_waitq));
10231
10232 control &=
10233 ~(HC_R0INT_ENA << LPFC_ELS_RING);
10234 writel(control, phba->HCregaddr);
10235 readl(phba->HCregaddr); /* flush */
10236 }
10237 else {
10238 lpfc_debugfs_slow_ring_trc(phba,
10239 "ISR slow ring: pwork:"
10240 "x%x hawork:x%x wait:x%x",
10241 phba->work_ha, work_ha_copy,
10242 (uint32_t)((unsigned long)
10243 &phba->work_waitq));
10244 }
10245 spin_unlock_irqrestore(&phba->hbalock, iflag);
10246 }
10247 }
10248 spin_lock_irqsave(&phba->hbalock, iflag);
10249 if (work_ha_copy & HA_ERATT) {
10250 if (lpfc_sli_read_hs(phba))
10251 goto unplug_error;
10252 /*
10253 * Check if there is a deferred error condition
10254 * is active
10255 */
10256 if ((HS_FFER1 & phba->work_hs) &&
10257 ((HS_FFER2 | HS_FFER3 | HS_FFER4 | HS_FFER5 |
10258 HS_FFER6 | HS_FFER7 | HS_FFER8) &
10259 phba->work_hs)) {
10260 phba->hba_flag |= DEFER_ERATT;
10261 /* Clear all interrupt enable conditions */
10262 writel(0, phba->HCregaddr);
10263 readl(phba->HCregaddr);
10264 }
10265 }
10266
10267 if ((work_ha_copy & HA_MBATT) && (phba->sli.mbox_active)) {
10268 pmb = phba->sli.mbox_active;
10269 pmbox = &pmb->u.mb;
10270 mbox = phba->mbox;
10271 vport = pmb->vport;
10272
10273 /* First check out the status word */
10274 lpfc_sli_pcimem_bcopy(mbox, pmbox, sizeof(uint32_t));
10275 if (pmbox->mbxOwner != OWN_HOST) {
10276 spin_unlock_irqrestore(&phba->hbalock, iflag);
10277 /*
10278 * Stray Mailbox Interrupt, mbxCommand <cmd>
10279 * mbxStatus <status>
10280 */
10281 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX |
10282 LOG_SLI,
10283 "(%d):0304 Stray Mailbox "
10284 "Interrupt mbxCommand x%x "
10285 "mbxStatus x%x\n",
10286 (vport ? vport->vpi : 0),
10287 pmbox->mbxCommand,
10288 pmbox->mbxStatus);
10289 /* clear mailbox attention bit */
10290 work_ha_copy &= ~HA_MBATT;
10291 } else {
10292 phba->sli.mbox_active = NULL;
10293 spin_unlock_irqrestore(&phba->hbalock, iflag);
10294 phba->last_completion_time = jiffies;
10295 del_timer(&phba->sli.mbox_tmo);
10296 if (pmb->mbox_cmpl) {
10297 lpfc_sli_pcimem_bcopy(mbox, pmbox,
10298 MAILBOX_CMD_SIZE);
10299 if (pmb->out_ext_byte_len &&
10300 pmb->context2)
10301 lpfc_sli_pcimem_bcopy(
10302 phba->mbox_ext,
10303 pmb->context2,
10304 pmb->out_ext_byte_len);
10305 }
10306 if (pmb->mbox_flag & LPFC_MBX_IMED_UNREG) {
10307 pmb->mbox_flag &= ~LPFC_MBX_IMED_UNREG;
10308
10309 lpfc_debugfs_disc_trc(vport,
10310 LPFC_DISC_TRC_MBOX_VPORT,
10311 "MBOX dflt rpi: : "
10312 "status:x%x rpi:x%x",
10313 (uint32_t)pmbox->mbxStatus,
10314 pmbox->un.varWords[0], 0);
10315
10316 if (!pmbox->mbxStatus) {
10317 mp = (struct lpfc_dmabuf *)
10318 (pmb->context1);
10319 ndlp = (struct lpfc_nodelist *)
10320 pmb->context2;
10321
10322 /* Reg_LOGIN of dflt RPI was
10323 * successful. new lets get
10324 * rid of the RPI using the
10325 * same mbox buffer.
10326 */
10327 lpfc_unreg_login(phba,
10328 vport->vpi,
10329 pmbox->un.varWords[0],
10330 pmb);
10331 pmb->mbox_cmpl =
10332 lpfc_mbx_cmpl_dflt_rpi;
10333 pmb->context1 = mp;
10334 pmb->context2 = ndlp;
10335 pmb->vport = vport;
10336 rc = lpfc_sli_issue_mbox(phba,
10337 pmb,
10338 MBX_NOWAIT);
10339 if (rc != MBX_BUSY)
10340 lpfc_printf_log(phba,
10341 KERN_ERR,
10342 LOG_MBOX | LOG_SLI,
10343 "0350 rc should have"
10344 "been MBX_BUSY\n");
10345 if (rc != MBX_NOT_FINISHED)
10346 goto send_current_mbox;
10347 }
10348 }
10349 spin_lock_irqsave(
10350 &phba->pport->work_port_lock,
10351 iflag);
10352 phba->pport->work_port_events &=
10353 ~WORKER_MBOX_TMO;
10354 spin_unlock_irqrestore(
10355 &phba->pport->work_port_lock,
10356 iflag);
10357 lpfc_mbox_cmpl_put(phba, pmb);
10358 }
10359 } else
10360 spin_unlock_irqrestore(&phba->hbalock, iflag);
10361
10362 if ((work_ha_copy & HA_MBATT) &&
10363 (phba->sli.mbox_active == NULL)) {
10364 send_current_mbox:
10365 /* Process next mailbox command if there is one */
10366 do {
10367 rc = lpfc_sli_issue_mbox(phba, NULL,
10368 MBX_NOWAIT);
10369 } while (rc == MBX_NOT_FINISHED);
10370 if (rc != MBX_SUCCESS)
10371 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX |
10372 LOG_SLI, "0349 rc should be "
10373 "MBX_SUCCESS\n");
10374 }
10375
10376 spin_lock_irqsave(&phba->hbalock, iflag);
10377 phba->work_ha |= work_ha_copy;
10378 spin_unlock_irqrestore(&phba->hbalock, iflag);
10379 lpfc_worker_wake_up(phba);
10380 }
10381 return IRQ_HANDLED;
10382 unplug_error:
10383 spin_unlock_irqrestore(&phba->hbalock, iflag);
10384 return IRQ_HANDLED;
10385
10386 } /* lpfc_sli_sp_intr_handler */
10387
10388 /**
10389 * lpfc_sli_fp_intr_handler - Fast-path interrupt handler to SLI-3 device.
10390 * @irq: Interrupt number.
10391 * @dev_id: The device context pointer.
10392 *
10393 * This function is directly called from the PCI layer as an interrupt
10394 * service routine when device with SLI-3 interface spec is enabled with
10395 * MSI-X multi-message interrupt mode and there is a fast-path FCP IOCB
10396 * ring event in the HBA. However, when the device is enabled with either
10397 * MSI or Pin-IRQ interrupt mode, this function is called as part of the
10398 * device-level interrupt handler. When the PCI slot is in error recovery
10399 * or the HBA is undergoing initialization, the interrupt handler will not
10400 * process the interrupt. The SCSI FCP fast-path ring event are handled in
10401 * the intrrupt context. This function is called without any lock held.
10402 * It gets the hbalock to access and update SLI data structures.
10403 *
10404 * This function returns IRQ_HANDLED when interrupt is handled else it
10405 * returns IRQ_NONE.
10406 **/
10407 irqreturn_t
10408 lpfc_sli_fp_intr_handler(int irq, void *dev_id)
10409 {
10410 struct lpfc_hba *phba;
10411 uint32_t ha_copy;
10412 unsigned long status;
10413 unsigned long iflag;
10414
10415 /* Get the driver's phba structure from the dev_id and
10416 * assume the HBA is not interrupting.
10417 */
10418 phba = (struct lpfc_hba *) dev_id;
10419
10420 if (unlikely(!phba))
10421 return IRQ_NONE;
10422
10423 /*
10424 * Stuff needs to be attented to when this function is invoked as an
10425 * individual interrupt handler in MSI-X multi-message interrupt mode
10426 */
10427 if (phba->intr_type == MSIX) {
10428 /* Check device state for handling interrupt */
10429 if (lpfc_intr_state_check(phba))
10430 return IRQ_NONE;
10431 /* Need to read HA REG for FCP ring and other ring events */
10432 if (lpfc_readl(phba->HAregaddr, &ha_copy))
10433 return IRQ_HANDLED;
10434 /* Clear up only attention source related to fast-path */
10435 spin_lock_irqsave(&phba->hbalock, iflag);
10436 /*
10437 * If there is deferred error attention, do not check for
10438 * any interrupt.
10439 */
10440 if (unlikely(phba->hba_flag & DEFER_ERATT)) {
10441 spin_unlock_irqrestore(&phba->hbalock, iflag);
10442 return IRQ_NONE;
10443 }
10444 writel((ha_copy & (HA_R0_CLR_MSK | HA_R1_CLR_MSK)),
10445 phba->HAregaddr);
10446 readl(phba->HAregaddr); /* flush */
10447 spin_unlock_irqrestore(&phba->hbalock, iflag);
10448 } else
10449 ha_copy = phba->ha_copy;
10450
10451 /*
10452 * Process all events on FCP ring. Take the optimized path for FCP IO.
10453 */
10454 ha_copy &= ~(phba->work_ha_mask);
10455
10456 status = (ha_copy & (HA_RXMASK << (4*LPFC_FCP_RING)));
10457 status >>= (4*LPFC_FCP_RING);
10458 if (status & HA_RXMASK)
10459 lpfc_sli_handle_fast_ring_event(phba,
10460 &phba->sli.ring[LPFC_FCP_RING],
10461 status);
10462
10463 if (phba->cfg_multi_ring_support == 2) {
10464 /*
10465 * Process all events on extra ring. Take the optimized path
10466 * for extra ring IO.
10467 */
10468 status = (ha_copy & (HA_RXMASK << (4*LPFC_EXTRA_RING)));
10469 status >>= (4*LPFC_EXTRA_RING);
10470 if (status & HA_RXMASK) {
10471 lpfc_sli_handle_fast_ring_event(phba,
10472 &phba->sli.ring[LPFC_EXTRA_RING],
10473 status);
10474 }
10475 }
10476 return IRQ_HANDLED;
10477 } /* lpfc_sli_fp_intr_handler */
10478
10479 /**
10480 * lpfc_sli_intr_handler - Device-level interrupt handler to SLI-3 device
10481 * @irq: Interrupt number.
10482 * @dev_id: The device context pointer.
10483 *
10484 * This function is the HBA device-level interrupt handler to device with
10485 * SLI-3 interface spec, called from the PCI layer when either MSI or
10486 * Pin-IRQ interrupt mode is enabled and there is an event in the HBA which
10487 * requires driver attention. This function invokes the slow-path interrupt
10488 * attention handling function and fast-path interrupt attention handling
10489 * function in turn to process the relevant HBA attention events. This
10490 * function is called without any lock held. It gets the hbalock to access
10491 * and update SLI data structures.
10492 *
10493 * This function returns IRQ_HANDLED when interrupt is handled, else it
10494 * returns IRQ_NONE.
10495 **/
10496 irqreturn_t
10497 lpfc_sli_intr_handler(int irq, void *dev_id)
10498 {
10499 struct lpfc_hba *phba;
10500 irqreturn_t sp_irq_rc, fp_irq_rc;
10501 unsigned long status1, status2;
10502 uint32_t hc_copy;
10503
10504 /*
10505 * Get the driver's phba structure from the dev_id and
10506 * assume the HBA is not interrupting.
10507 */
10508 phba = (struct lpfc_hba *) dev_id;
10509
10510 if (unlikely(!phba))
10511 return IRQ_NONE;
10512
10513 /* Check device state for handling interrupt */
10514 if (lpfc_intr_state_check(phba))
10515 return IRQ_NONE;
10516
10517 spin_lock(&phba->hbalock);
10518 if (lpfc_readl(phba->HAregaddr, &phba->ha_copy)) {
10519 spin_unlock(&phba->hbalock);
10520 return IRQ_HANDLED;
10521 }
10522
10523 if (unlikely(!phba->ha_copy)) {
10524 spin_unlock(&phba->hbalock);
10525 return IRQ_NONE;
10526 } else if (phba->ha_copy & HA_ERATT) {
10527 if (phba->hba_flag & HBA_ERATT_HANDLED)
10528 /* ERATT polling has handled ERATT */
10529 phba->ha_copy &= ~HA_ERATT;
10530 else
10531 /* Indicate interrupt handler handles ERATT */
10532 phba->hba_flag |= HBA_ERATT_HANDLED;
10533 }
10534
10535 /*
10536 * If there is deferred error attention, do not check for any interrupt.
10537 */
10538 if (unlikely(phba->hba_flag & DEFER_ERATT)) {
10539 spin_unlock(&phba->hbalock);
10540 return IRQ_NONE;
10541 }
10542
10543 /* Clear attention sources except link and error attentions */
10544 if (lpfc_readl(phba->HCregaddr, &hc_copy)) {
10545 spin_unlock(&phba->hbalock);
10546 return IRQ_HANDLED;
10547 }
10548 writel(hc_copy & ~(HC_MBINT_ENA | HC_R0INT_ENA | HC_R1INT_ENA
10549 | HC_R2INT_ENA | HC_LAINT_ENA | HC_ERINT_ENA),
10550 phba->HCregaddr);
10551 writel((phba->ha_copy & ~(HA_LATT | HA_ERATT)), phba->HAregaddr);
10552 writel(hc_copy, phba->HCregaddr);
10553 readl(phba->HAregaddr); /* flush */
10554 spin_unlock(&phba->hbalock);
10555
10556 /*
10557 * Invokes slow-path host attention interrupt handling as appropriate.
10558 */
10559
10560 /* status of events with mailbox and link attention */
10561 status1 = phba->ha_copy & (HA_MBATT | HA_LATT | HA_ERATT);
10562
10563 /* status of events with ELS ring */
10564 status2 = (phba->ha_copy & (HA_RXMASK << (4*LPFC_ELS_RING)));
10565 status2 >>= (4*LPFC_ELS_RING);
10566
10567 if (status1 || (status2 & HA_RXMASK))
10568 sp_irq_rc = lpfc_sli_sp_intr_handler(irq, dev_id);
10569 else
10570 sp_irq_rc = IRQ_NONE;
10571
10572 /*
10573 * Invoke fast-path host attention interrupt handling as appropriate.
10574 */
10575
10576 /* status of events with FCP ring */
10577 status1 = (phba->ha_copy & (HA_RXMASK << (4*LPFC_FCP_RING)));
10578 status1 >>= (4*LPFC_FCP_RING);
10579
10580 /* status of events with extra ring */
10581 if (phba->cfg_multi_ring_support == 2) {
10582 status2 = (phba->ha_copy & (HA_RXMASK << (4*LPFC_EXTRA_RING)));
10583 status2 >>= (4*LPFC_EXTRA_RING);
10584 } else
10585 status2 = 0;
10586
10587 if ((status1 & HA_RXMASK) || (status2 & HA_RXMASK))
10588 fp_irq_rc = lpfc_sli_fp_intr_handler(irq, dev_id);
10589 else
10590 fp_irq_rc = IRQ_NONE;
10591
10592 /* Return device-level interrupt handling status */
10593 return (sp_irq_rc == IRQ_HANDLED) ? sp_irq_rc : fp_irq_rc;
10594 } /* lpfc_sli_intr_handler */
10595
10596 /**
10597 * lpfc_sli4_fcp_xri_abort_event_proc - Process fcp xri abort event
10598 * @phba: pointer to lpfc hba data structure.
10599 *
10600 * This routine is invoked by the worker thread to process all the pending
10601 * SLI4 FCP abort XRI events.
10602 **/
10603 void lpfc_sli4_fcp_xri_abort_event_proc(struct lpfc_hba *phba)
10604 {
10605 struct lpfc_cq_event *cq_event;
10606
10607 /* First, declare the fcp xri abort event has been handled */
10608 spin_lock_irq(&phba->hbalock);
10609 phba->hba_flag &= ~FCP_XRI_ABORT_EVENT;
10610 spin_unlock_irq(&phba->hbalock);
10611 /* Now, handle all the fcp xri abort events */
10612 while (!list_empty(&phba->sli4_hba.sp_fcp_xri_aborted_work_queue)) {
10613 /* Get the first event from the head of the event queue */
10614 spin_lock_irq(&phba->hbalock);
10615 list_remove_head(&phba->sli4_hba.sp_fcp_xri_aborted_work_queue,
10616 cq_event, struct lpfc_cq_event, list);
10617 spin_unlock_irq(&phba->hbalock);
10618 /* Notify aborted XRI for FCP work queue */
10619 lpfc_sli4_fcp_xri_aborted(phba, &cq_event->cqe.wcqe_axri);
10620 /* Free the event processed back to the free pool */
10621 lpfc_sli4_cq_event_release(phba, cq_event);
10622 }
10623 }
10624
10625 /**
10626 * lpfc_sli4_els_xri_abort_event_proc - Process els xri abort event
10627 * @phba: pointer to lpfc hba data structure.
10628 *
10629 * This routine is invoked by the worker thread to process all the pending
10630 * SLI4 els abort xri events.
10631 **/
10632 void lpfc_sli4_els_xri_abort_event_proc(struct lpfc_hba *phba)
10633 {
10634 struct lpfc_cq_event *cq_event;
10635
10636 /* First, declare the els xri abort event has been handled */
10637 spin_lock_irq(&phba->hbalock);
10638 phba->hba_flag &= ~ELS_XRI_ABORT_EVENT;
10639 spin_unlock_irq(&phba->hbalock);
10640 /* Now, handle all the els xri abort events */
10641 while (!list_empty(&phba->sli4_hba.sp_els_xri_aborted_work_queue)) {
10642 /* Get the first event from the head of the event queue */
10643 spin_lock_irq(&phba->hbalock);
10644 list_remove_head(&phba->sli4_hba.sp_els_xri_aborted_work_queue,
10645 cq_event, struct lpfc_cq_event, list);
10646 spin_unlock_irq(&phba->hbalock);
10647 /* Notify aborted XRI for ELS work queue */
10648 lpfc_sli4_els_xri_aborted(phba, &cq_event->cqe.wcqe_axri);
10649 /* Free the event processed back to the free pool */
10650 lpfc_sli4_cq_event_release(phba, cq_event);
10651 }
10652 }
10653
10654 /**
10655 * lpfc_sli4_iocb_param_transfer - Transfer pIocbOut and cmpl status to pIocbIn
10656 * @phba: pointer to lpfc hba data structure
10657 * @pIocbIn: pointer to the rspiocbq
10658 * @pIocbOut: pointer to the cmdiocbq
10659 * @wcqe: pointer to the complete wcqe
10660 *
10661 * This routine transfers the fields of a command iocbq to a response iocbq
10662 * by copying all the IOCB fields from command iocbq and transferring the
10663 * completion status information from the complete wcqe.
10664 **/
10665 static void
10666 lpfc_sli4_iocb_param_transfer(struct lpfc_hba *phba,
10667 struct lpfc_iocbq *pIocbIn,
10668 struct lpfc_iocbq *pIocbOut,
10669 struct lpfc_wcqe_complete *wcqe)
10670 {
10671 unsigned long iflags;
10672 uint32_t status;
10673 size_t offset = offsetof(struct lpfc_iocbq, iocb);
10674
10675 memcpy((char *)pIocbIn + offset, (char *)pIocbOut + offset,
10676 sizeof(struct lpfc_iocbq) - offset);
10677 /* Map WCQE parameters into irspiocb parameters */
10678 status = bf_get(lpfc_wcqe_c_status, wcqe);
10679 pIocbIn->iocb.ulpStatus = (status & LPFC_IOCB_STATUS_MASK);
10680 if (pIocbOut->iocb_flag & LPFC_IO_FCP)
10681 if (pIocbIn->iocb.ulpStatus == IOSTAT_FCP_RSP_ERROR)
10682 pIocbIn->iocb.un.fcpi.fcpi_parm =
10683 pIocbOut->iocb.un.fcpi.fcpi_parm -
10684 wcqe->total_data_placed;
10685 else
10686 pIocbIn->iocb.un.ulpWord[4] = wcqe->parameter;
10687 else {
10688 pIocbIn->iocb.un.ulpWord[4] = wcqe->parameter;
10689 pIocbIn->iocb.un.genreq64.bdl.bdeSize = wcqe->total_data_placed;
10690 }
10691
10692 /* Convert BG errors for completion status */
10693 if (status == CQE_STATUS_DI_ERROR) {
10694 pIocbIn->iocb.ulpStatus = IOSTAT_LOCAL_REJECT;
10695
10696 if (bf_get(lpfc_wcqe_c_bg_edir, wcqe))
10697 pIocbIn->iocb.un.ulpWord[4] = IOERR_RX_DMA_FAILED;
10698 else
10699 pIocbIn->iocb.un.ulpWord[4] = IOERR_TX_DMA_FAILED;
10700
10701 pIocbIn->iocb.unsli3.sli3_bg.bgstat = 0;
10702 if (bf_get(lpfc_wcqe_c_bg_ge, wcqe)) /* Guard Check failed */
10703 pIocbIn->iocb.unsli3.sli3_bg.bgstat |=
10704 BGS_GUARD_ERR_MASK;
10705 if (bf_get(lpfc_wcqe_c_bg_ae, wcqe)) /* App Tag Check failed */
10706 pIocbIn->iocb.unsli3.sli3_bg.bgstat |=
10707 BGS_APPTAG_ERR_MASK;
10708 if (bf_get(lpfc_wcqe_c_bg_re, wcqe)) /* Ref Tag Check failed */
10709 pIocbIn->iocb.unsli3.sli3_bg.bgstat |=
10710 BGS_REFTAG_ERR_MASK;
10711
10712 /* Check to see if there was any good data before the error */
10713 if (bf_get(lpfc_wcqe_c_bg_tdpv, wcqe)) {
10714 pIocbIn->iocb.unsli3.sli3_bg.bgstat |=
10715 BGS_HI_WATER_MARK_PRESENT_MASK;
10716 pIocbIn->iocb.unsli3.sli3_bg.bghm =
10717 wcqe->total_data_placed;
10718 }
10719
10720 /*
10721 * Set ALL the error bits to indicate we don't know what
10722 * type of error it is.
10723 */
10724 if (!pIocbIn->iocb.unsli3.sli3_bg.bgstat)
10725 pIocbIn->iocb.unsli3.sli3_bg.bgstat |=
10726 (BGS_REFTAG_ERR_MASK | BGS_APPTAG_ERR_MASK |
10727 BGS_GUARD_ERR_MASK);
10728 }
10729
10730 /* Pick up HBA exchange busy condition */
10731 if (bf_get(lpfc_wcqe_c_xb, wcqe)) {
10732 spin_lock_irqsave(&phba->hbalock, iflags);
10733 pIocbIn->iocb_flag |= LPFC_EXCHANGE_BUSY;
10734 spin_unlock_irqrestore(&phba->hbalock, iflags);
10735 }
10736 }
10737
10738 /**
10739 * lpfc_sli4_els_wcqe_to_rspiocbq - Get response iocbq from els wcqe
10740 * @phba: Pointer to HBA context object.
10741 * @wcqe: Pointer to work-queue completion queue entry.
10742 *
10743 * This routine handles an ELS work-queue completion event and construct
10744 * a pseudo response ELS IODBQ from the SLI4 ELS WCQE for the common
10745 * discovery engine to handle.
10746 *
10747 * Return: Pointer to the receive IOCBQ, NULL otherwise.
10748 **/
10749 static struct lpfc_iocbq *
10750 lpfc_sli4_els_wcqe_to_rspiocbq(struct lpfc_hba *phba,
10751 struct lpfc_iocbq *irspiocbq)
10752 {
10753 struct lpfc_sli_ring *pring = &phba->sli.ring[LPFC_ELS_RING];
10754 struct lpfc_iocbq *cmdiocbq;
10755 struct lpfc_wcqe_complete *wcqe;
10756 unsigned long iflags;
10757
10758 wcqe = &irspiocbq->cq_event.cqe.wcqe_cmpl;
10759 spin_lock_irqsave(&phba->hbalock, iflags);
10760 pring->stats.iocb_event++;
10761 /* Look up the ELS command IOCB and create pseudo response IOCB */
10762 cmdiocbq = lpfc_sli_iocbq_lookup_by_tag(phba, pring,
10763 bf_get(lpfc_wcqe_c_request_tag, wcqe));
10764 spin_unlock_irqrestore(&phba->hbalock, iflags);
10765
10766 if (unlikely(!cmdiocbq)) {
10767 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
10768 "0386 ELS complete with no corresponding "
10769 "cmdiocb: iotag (%d)\n",
10770 bf_get(lpfc_wcqe_c_request_tag, wcqe));
10771 lpfc_sli_release_iocbq(phba, irspiocbq);
10772 return NULL;
10773 }
10774
10775 /* Fake the irspiocbq and copy necessary response information */
10776 lpfc_sli4_iocb_param_transfer(phba, irspiocbq, cmdiocbq, wcqe);
10777
10778 return irspiocbq;
10779 }
10780
10781 /**
10782 * lpfc_sli4_sp_handle_async_event - Handle an asynchroous event
10783 * @phba: Pointer to HBA context object.
10784 * @cqe: Pointer to mailbox completion queue entry.
10785 *
10786 * This routine process a mailbox completion queue entry with asynchrous
10787 * event.
10788 *
10789 * Return: true if work posted to worker thread, otherwise false.
10790 **/
10791 static bool
10792 lpfc_sli4_sp_handle_async_event(struct lpfc_hba *phba, struct lpfc_mcqe *mcqe)
10793 {
10794 struct lpfc_cq_event *cq_event;
10795 unsigned long iflags;
10796
10797 lpfc_printf_log(phba, KERN_INFO, LOG_SLI,
10798 "0392 Async Event: word0:x%x, word1:x%x, "
10799 "word2:x%x, word3:x%x\n", mcqe->word0,
10800 mcqe->mcqe_tag0, mcqe->mcqe_tag1, mcqe->trailer);
10801
10802 /* Allocate a new internal CQ_EVENT entry */
10803 cq_event = lpfc_sli4_cq_event_alloc(phba);
10804 if (!cq_event) {
10805 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
10806 "0394 Failed to allocate CQ_EVENT entry\n");
10807 return false;
10808 }
10809
10810 /* Move the CQE into an asynchronous event entry */
10811 memcpy(&cq_event->cqe, mcqe, sizeof(struct lpfc_mcqe));
10812 spin_lock_irqsave(&phba->hbalock, iflags);
10813 list_add_tail(&cq_event->list, &phba->sli4_hba.sp_asynce_work_queue);
10814 /* Set the async event flag */
10815 phba->hba_flag |= ASYNC_EVENT;
10816 spin_unlock_irqrestore(&phba->hbalock, iflags);
10817
10818 return true;
10819 }
10820
10821 /**
10822 * lpfc_sli4_sp_handle_mbox_event - Handle a mailbox completion event
10823 * @phba: Pointer to HBA context object.
10824 * @cqe: Pointer to mailbox completion queue entry.
10825 *
10826 * This routine process a mailbox completion queue entry with mailbox
10827 * completion event.
10828 *
10829 * Return: true if work posted to worker thread, otherwise false.
10830 **/
10831 static bool
10832 lpfc_sli4_sp_handle_mbox_event(struct lpfc_hba *phba, struct lpfc_mcqe *mcqe)
10833 {
10834 uint32_t mcqe_status;
10835 MAILBOX_t *mbox, *pmbox;
10836 struct lpfc_mqe *mqe;
10837 struct lpfc_vport *vport;
10838 struct lpfc_nodelist *ndlp;
10839 struct lpfc_dmabuf *mp;
10840 unsigned long iflags;
10841 LPFC_MBOXQ_t *pmb;
10842 bool workposted = false;
10843 int rc;
10844
10845 /* If not a mailbox complete MCQE, out by checking mailbox consume */
10846 if (!bf_get(lpfc_trailer_completed, mcqe))
10847 goto out_no_mqe_complete;
10848
10849 /* Get the reference to the active mbox command */
10850 spin_lock_irqsave(&phba->hbalock, iflags);
10851 pmb = phba->sli.mbox_active;
10852 if (unlikely(!pmb)) {
10853 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX,
10854 "1832 No pending MBOX command to handle\n");
10855 spin_unlock_irqrestore(&phba->hbalock, iflags);
10856 goto out_no_mqe_complete;
10857 }
10858 spin_unlock_irqrestore(&phba->hbalock, iflags);
10859 mqe = &pmb->u.mqe;
10860 pmbox = (MAILBOX_t *)&pmb->u.mqe;
10861 mbox = phba->mbox;
10862 vport = pmb->vport;
10863
10864 /* Reset heartbeat timer */
10865 phba->last_completion_time = jiffies;
10866 del_timer(&phba->sli.mbox_tmo);
10867
10868 /* Move mbox data to caller's mailbox region, do endian swapping */
10869 if (pmb->mbox_cmpl && mbox)
10870 lpfc_sli_pcimem_bcopy(mbox, mqe, sizeof(struct lpfc_mqe));
10871
10872 /*
10873 * For mcqe errors, conditionally move a modified error code to
10874 * the mbox so that the error will not be missed.
10875 */
10876 mcqe_status = bf_get(lpfc_mcqe_status, mcqe);
10877 if (mcqe_status != MB_CQE_STATUS_SUCCESS) {
10878 if (bf_get(lpfc_mqe_status, mqe) == MBX_SUCCESS)
10879 bf_set(lpfc_mqe_status, mqe,
10880 (LPFC_MBX_ERROR_RANGE | mcqe_status));
10881 }
10882 if (pmb->mbox_flag & LPFC_MBX_IMED_UNREG) {
10883 pmb->mbox_flag &= ~LPFC_MBX_IMED_UNREG;
10884 lpfc_debugfs_disc_trc(vport, LPFC_DISC_TRC_MBOX_VPORT,
10885 "MBOX dflt rpi: status:x%x rpi:x%x",
10886 mcqe_status,
10887 pmbox->un.varWords[0], 0);
10888 if (mcqe_status == MB_CQE_STATUS_SUCCESS) {
10889 mp = (struct lpfc_dmabuf *)(pmb->context1);
10890 ndlp = (struct lpfc_nodelist *)pmb->context2;
10891 /* Reg_LOGIN of dflt RPI was successful. Now lets get
10892 * RID of the PPI using the same mbox buffer.
10893 */
10894 lpfc_unreg_login(phba, vport->vpi,
10895 pmbox->un.varWords[0], pmb);
10896 pmb->mbox_cmpl = lpfc_mbx_cmpl_dflt_rpi;
10897 pmb->context1 = mp;
10898 pmb->context2 = ndlp;
10899 pmb->vport = vport;
10900 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_NOWAIT);
10901 if (rc != MBX_BUSY)
10902 lpfc_printf_log(phba, KERN_ERR, LOG_MBOX |
10903 LOG_SLI, "0385 rc should "
10904 "have been MBX_BUSY\n");
10905 if (rc != MBX_NOT_FINISHED)
10906 goto send_current_mbox;
10907 }
10908 }
10909 spin_lock_irqsave(&phba->pport->work_port_lock, iflags);
10910 phba->pport->work_port_events &= ~WORKER_MBOX_TMO;
10911 spin_unlock_irqrestore(&phba->pport->work_port_lock, iflags);
10912
10913 /* There is mailbox completion work to do */
10914 spin_lock_irqsave(&phba->hbalock, iflags);
10915 __lpfc_mbox_cmpl_put(phba, pmb);
10916 phba->work_ha |= HA_MBATT;
10917 spin_unlock_irqrestore(&phba->hbalock, iflags);
10918 workposted = true;
10919
10920 send_current_mbox:
10921 spin_lock_irqsave(&phba->hbalock, iflags);
10922 /* Release the mailbox command posting token */
10923 phba->sli.sli_flag &= ~LPFC_SLI_MBOX_ACTIVE;
10924 /* Setting active mailbox pointer need to be in sync to flag clear */
10925 phba->sli.mbox_active = NULL;
10926 spin_unlock_irqrestore(&phba->hbalock, iflags);
10927 /* Wake up worker thread to post the next pending mailbox command */
10928 lpfc_worker_wake_up(phba);
10929 out_no_mqe_complete:
10930 if (bf_get(lpfc_trailer_consumed, mcqe))
10931 lpfc_sli4_mq_release(phba->sli4_hba.mbx_wq);
10932 return workposted;
10933 }
10934
10935 /**
10936 * lpfc_sli4_sp_handle_mcqe - Process a mailbox completion queue entry
10937 * @phba: Pointer to HBA context object.
10938 * @cqe: Pointer to mailbox completion queue entry.
10939 *
10940 * This routine process a mailbox completion queue entry, it invokes the
10941 * proper mailbox complete handling or asynchrous event handling routine
10942 * according to the MCQE's async bit.
10943 *
10944 * Return: true if work posted to worker thread, otherwise false.
10945 **/
10946 static bool
10947 lpfc_sli4_sp_handle_mcqe(struct lpfc_hba *phba, struct lpfc_cqe *cqe)
10948 {
10949 struct lpfc_mcqe mcqe;
10950 bool workposted;
10951
10952 /* Copy the mailbox MCQE and convert endian order as needed */
10953 lpfc_sli_pcimem_bcopy(cqe, &mcqe, sizeof(struct lpfc_mcqe));
10954
10955 /* Invoke the proper event handling routine */
10956 if (!bf_get(lpfc_trailer_async, &mcqe))
10957 workposted = lpfc_sli4_sp_handle_mbox_event(phba, &mcqe);
10958 else
10959 workposted = lpfc_sli4_sp_handle_async_event(phba, &mcqe);
10960 return workposted;
10961 }
10962
10963 /**
10964 * lpfc_sli4_sp_handle_els_wcqe - Handle els work-queue completion event
10965 * @phba: Pointer to HBA context object.
10966 * @wcqe: Pointer to work-queue completion queue entry.
10967 *
10968 * This routine handles an ELS work-queue completion event.
10969 *
10970 * Return: true if work posted to worker thread, otherwise false.
10971 **/
10972 static bool
10973 lpfc_sli4_sp_handle_els_wcqe(struct lpfc_hba *phba,
10974 struct lpfc_wcqe_complete *wcqe)
10975 {
10976 struct lpfc_iocbq *irspiocbq;
10977 unsigned long iflags;
10978 struct lpfc_sli_ring *pring = &phba->sli.ring[LPFC_FCP_RING];
10979
10980 /* Get an irspiocbq for later ELS response processing use */
10981 irspiocbq = lpfc_sli_get_iocbq(phba);
10982 if (!irspiocbq) {
10983 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
10984 "0387 NO IOCBQ data: txq_cnt=%d iocb_cnt=%d "
10985 "fcp_txcmplq_cnt=%d, els_txcmplq_cnt=%d\n",
10986 pring->txq_cnt, phba->iocb_cnt,
10987 phba->sli.ring[LPFC_FCP_RING].txcmplq_cnt,
10988 phba->sli.ring[LPFC_ELS_RING].txcmplq_cnt);
10989 return false;
10990 }
10991
10992 /* Save off the slow-path queue event for work thread to process */
10993 memcpy(&irspiocbq->cq_event.cqe.wcqe_cmpl, wcqe, sizeof(*wcqe));
10994 spin_lock_irqsave(&phba->hbalock, iflags);
10995 list_add_tail(&irspiocbq->cq_event.list,
10996 &phba->sli4_hba.sp_queue_event);
10997 phba->hba_flag |= HBA_SP_QUEUE_EVT;
10998 spin_unlock_irqrestore(&phba->hbalock, iflags);
10999
11000 return true;
11001 }
11002
11003 /**
11004 * lpfc_sli4_sp_handle_rel_wcqe - Handle slow-path WQ entry consumed event
11005 * @phba: Pointer to HBA context object.
11006 * @wcqe: Pointer to work-queue completion queue entry.
11007 *
11008 * This routine handles slow-path WQ entry comsumed event by invoking the
11009 * proper WQ release routine to the slow-path WQ.
11010 **/
11011 static void
11012 lpfc_sli4_sp_handle_rel_wcqe(struct lpfc_hba *phba,
11013 struct lpfc_wcqe_release *wcqe)
11014 {
11015 /* sanity check on queue memory */
11016 if (unlikely(!phba->sli4_hba.els_wq))
11017 return;
11018 /* Check for the slow-path ELS work queue */
11019 if (bf_get(lpfc_wcqe_r_wq_id, wcqe) == phba->sli4_hba.els_wq->queue_id)
11020 lpfc_sli4_wq_release(phba->sli4_hba.els_wq,
11021 bf_get(lpfc_wcqe_r_wqe_index, wcqe));
11022 else
11023 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
11024 "2579 Slow-path wqe consume event carries "
11025 "miss-matched qid: wcqe-qid=x%x, sp-qid=x%x\n",
11026 bf_get(lpfc_wcqe_r_wqe_index, wcqe),
11027 phba->sli4_hba.els_wq->queue_id);
11028 }
11029
11030 /**
11031 * lpfc_sli4_sp_handle_abort_xri_wcqe - Handle a xri abort event
11032 * @phba: Pointer to HBA context object.
11033 * @cq: Pointer to a WQ completion queue.
11034 * @wcqe: Pointer to work-queue completion queue entry.
11035 *
11036 * This routine handles an XRI abort event.
11037 *
11038 * Return: true if work posted to worker thread, otherwise false.
11039 **/
11040 static bool
11041 lpfc_sli4_sp_handle_abort_xri_wcqe(struct lpfc_hba *phba,
11042 struct lpfc_queue *cq,
11043 struct sli4_wcqe_xri_aborted *wcqe)
11044 {
11045 bool workposted = false;
11046 struct lpfc_cq_event *cq_event;
11047 unsigned long iflags;
11048
11049 /* Allocate a new internal CQ_EVENT entry */
11050 cq_event = lpfc_sli4_cq_event_alloc(phba);
11051 if (!cq_event) {
11052 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
11053 "0602 Failed to allocate CQ_EVENT entry\n");
11054 return false;
11055 }
11056
11057 /* Move the CQE into the proper xri abort event list */
11058 memcpy(&cq_event->cqe, wcqe, sizeof(struct sli4_wcqe_xri_aborted));
11059 switch (cq->subtype) {
11060 case LPFC_FCP:
11061 spin_lock_irqsave(&phba->hbalock, iflags);
11062 list_add_tail(&cq_event->list,
11063 &phba->sli4_hba.sp_fcp_xri_aborted_work_queue);
11064 /* Set the fcp xri abort event flag */
11065 phba->hba_flag |= FCP_XRI_ABORT_EVENT;
11066 spin_unlock_irqrestore(&phba->hbalock, iflags);
11067 workposted = true;
11068 break;
11069 case LPFC_ELS:
11070 spin_lock_irqsave(&phba->hbalock, iflags);
11071 list_add_tail(&cq_event->list,
11072 &phba->sli4_hba.sp_els_xri_aborted_work_queue);
11073 /* Set the els xri abort event flag */
11074 phba->hba_flag |= ELS_XRI_ABORT_EVENT;
11075 spin_unlock_irqrestore(&phba->hbalock, iflags);
11076 workposted = true;
11077 break;
11078 default:
11079 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
11080 "0603 Invalid work queue CQE subtype (x%x)\n",
11081 cq->subtype);
11082 workposted = false;
11083 break;
11084 }
11085 return workposted;
11086 }
11087
11088 /**
11089 * lpfc_sli4_sp_handle_rcqe - Process a receive-queue completion queue entry
11090 * @phba: Pointer to HBA context object.
11091 * @rcqe: Pointer to receive-queue completion queue entry.
11092 *
11093 * This routine process a receive-queue completion queue entry.
11094 *
11095 * Return: true if work posted to worker thread, otherwise false.
11096 **/
11097 static bool
11098 lpfc_sli4_sp_handle_rcqe(struct lpfc_hba *phba, struct lpfc_rcqe *rcqe)
11099 {
11100 bool workposted = false;
11101 struct lpfc_queue *hrq = phba->sli4_hba.hdr_rq;
11102 struct lpfc_queue *drq = phba->sli4_hba.dat_rq;
11103 struct hbq_dmabuf *dma_buf;
11104 uint32_t status, rq_id;
11105 unsigned long iflags;
11106
11107 /* sanity check on queue memory */
11108 if (unlikely(!hrq) || unlikely(!drq))
11109 return workposted;
11110
11111 if (bf_get(lpfc_cqe_code, rcqe) == CQE_CODE_RECEIVE_V1)
11112 rq_id = bf_get(lpfc_rcqe_rq_id_v1, rcqe);
11113 else
11114 rq_id = bf_get(lpfc_rcqe_rq_id, rcqe);
11115 if (rq_id != hrq->queue_id)
11116 goto out;
11117
11118 status = bf_get(lpfc_rcqe_status, rcqe);
11119 switch (status) {
11120 case FC_STATUS_RQ_BUF_LEN_EXCEEDED:
11121 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
11122 "2537 Receive Frame Truncated!!\n");
11123 case FC_STATUS_RQ_SUCCESS:
11124 lpfc_sli4_rq_release(hrq, drq);
11125 spin_lock_irqsave(&phba->hbalock, iflags);
11126 dma_buf = lpfc_sli_hbqbuf_get(&phba->hbqs[0].hbq_buffer_list);
11127 if (!dma_buf) {
11128 spin_unlock_irqrestore(&phba->hbalock, iflags);
11129 goto out;
11130 }
11131 memcpy(&dma_buf->cq_event.cqe.rcqe_cmpl, rcqe, sizeof(*rcqe));
11132 /* save off the frame for the word thread to process */
11133 list_add_tail(&dma_buf->cq_event.list,
11134 &phba->sli4_hba.sp_queue_event);
11135 /* Frame received */
11136 phba->hba_flag |= HBA_SP_QUEUE_EVT;
11137 spin_unlock_irqrestore(&phba->hbalock, iflags);
11138 workposted = true;
11139 break;
11140 case FC_STATUS_INSUFF_BUF_NEED_BUF:
11141 case FC_STATUS_INSUFF_BUF_FRM_DISC:
11142 /* Post more buffers if possible */
11143 spin_lock_irqsave(&phba->hbalock, iflags);
11144 phba->hba_flag |= HBA_POST_RECEIVE_BUFFER;
11145 spin_unlock_irqrestore(&phba->hbalock, iflags);
11146 workposted = true;
11147 break;
11148 }
11149 out:
11150 return workposted;
11151 }
11152
11153 /**
11154 * lpfc_sli4_sp_handle_cqe - Process a slow path completion queue entry
11155 * @phba: Pointer to HBA context object.
11156 * @cq: Pointer to the completion queue.
11157 * @wcqe: Pointer to a completion queue entry.
11158 *
11159 * This routine process a slow-path work-queue or receive queue completion queue
11160 * entry.
11161 *
11162 * Return: true if work posted to worker thread, otherwise false.
11163 **/
11164 static bool
11165 lpfc_sli4_sp_handle_cqe(struct lpfc_hba *phba, struct lpfc_queue *cq,
11166 struct lpfc_cqe *cqe)
11167 {
11168 struct lpfc_cqe cqevt;
11169 bool workposted = false;
11170
11171 /* Copy the work queue CQE and convert endian order if needed */
11172 lpfc_sli_pcimem_bcopy(cqe, &cqevt, sizeof(struct lpfc_cqe));
11173
11174 /* Check and process for different type of WCQE and dispatch */
11175 switch (bf_get(lpfc_cqe_code, &cqevt)) {
11176 case CQE_CODE_COMPL_WQE:
11177 /* Process the WQ/RQ complete event */
11178 phba->last_completion_time = jiffies;
11179 workposted = lpfc_sli4_sp_handle_els_wcqe(phba,
11180 (struct lpfc_wcqe_complete *)&cqevt);
11181 break;
11182 case CQE_CODE_RELEASE_WQE:
11183 /* Process the WQ release event */
11184 lpfc_sli4_sp_handle_rel_wcqe(phba,
11185 (struct lpfc_wcqe_release *)&cqevt);
11186 break;
11187 case CQE_CODE_XRI_ABORTED:
11188 /* Process the WQ XRI abort event */
11189 phba->last_completion_time = jiffies;
11190 workposted = lpfc_sli4_sp_handle_abort_xri_wcqe(phba, cq,
11191 (struct sli4_wcqe_xri_aborted *)&cqevt);
11192 break;
11193 case CQE_CODE_RECEIVE:
11194 case CQE_CODE_RECEIVE_V1:
11195 /* Process the RQ event */
11196 phba->last_completion_time = jiffies;
11197 workposted = lpfc_sli4_sp_handle_rcqe(phba,
11198 (struct lpfc_rcqe *)&cqevt);
11199 break;
11200 default:
11201 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
11202 "0388 Not a valid WCQE code: x%x\n",
11203 bf_get(lpfc_cqe_code, &cqevt));
11204 break;
11205 }
11206 return workposted;
11207 }
11208
11209 /**
11210 * lpfc_sli4_sp_handle_eqe - Process a slow-path event queue entry
11211 * @phba: Pointer to HBA context object.
11212 * @eqe: Pointer to fast-path event queue entry.
11213 *
11214 * This routine process a event queue entry from the slow-path event queue.
11215 * It will check the MajorCode and MinorCode to determine this is for a
11216 * completion event on a completion queue, if not, an error shall be logged
11217 * and just return. Otherwise, it will get to the corresponding completion
11218 * queue and process all the entries on that completion queue, rearm the
11219 * completion queue, and then return.
11220 *
11221 **/
11222 static void
11223 lpfc_sli4_sp_handle_eqe(struct lpfc_hba *phba, struct lpfc_eqe *eqe)
11224 {
11225 struct lpfc_queue *cq = NULL, *childq, *speq;
11226 struct lpfc_cqe *cqe;
11227 bool workposted = false;
11228 int ecount = 0;
11229 uint16_t cqid;
11230
11231 if (bf_get_le32(lpfc_eqe_major_code, eqe) != 0) {
11232 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
11233 "0359 Not a valid slow-path completion "
11234 "event: majorcode=x%x, minorcode=x%x\n",
11235 bf_get_le32(lpfc_eqe_major_code, eqe),
11236 bf_get_le32(lpfc_eqe_minor_code, eqe));
11237 return;
11238 }
11239
11240 /* Get the reference to the corresponding CQ */
11241 cqid = bf_get_le32(lpfc_eqe_resource_id, eqe);
11242
11243 /* Search for completion queue pointer matching this cqid */
11244 speq = phba->sli4_hba.sp_eq;
11245 /* sanity check on queue memory */
11246 if (unlikely(!speq))
11247 return;
11248 list_for_each_entry(childq, &speq->child_list, list) {
11249 if (childq->queue_id == cqid) {
11250 cq = childq;
11251 break;
11252 }
11253 }
11254 if (unlikely(!cq)) {
11255 if (phba->sli.sli_flag & LPFC_SLI_ACTIVE)
11256 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
11257 "0365 Slow-path CQ identifier "
11258 "(%d) does not exist\n", cqid);
11259 return;
11260 }
11261
11262 /* Process all the entries to the CQ */
11263 switch (cq->type) {
11264 case LPFC_MCQ:
11265 while ((cqe = lpfc_sli4_cq_get(cq))) {
11266 workposted |= lpfc_sli4_sp_handle_mcqe(phba, cqe);
11267 if (!(++ecount % cq->entry_repost))
11268 lpfc_sli4_cq_release(cq, LPFC_QUEUE_NOARM);
11269 }
11270 break;
11271 case LPFC_WCQ:
11272 while ((cqe = lpfc_sli4_cq_get(cq))) {
11273 if (cq->subtype == LPFC_FCP)
11274 workposted |= lpfc_sli4_fp_handle_wcqe(phba, cq,
11275 cqe);
11276 else
11277 workposted |= lpfc_sli4_sp_handle_cqe(phba, cq,
11278 cqe);
11279 if (!(++ecount % cq->entry_repost))
11280 lpfc_sli4_cq_release(cq, LPFC_QUEUE_NOARM);
11281 }
11282 break;
11283 default:
11284 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
11285 "0370 Invalid completion queue type (%d)\n",
11286 cq->type);
11287 return;
11288 }
11289
11290 /* Catch the no cq entry condition, log an error */
11291 if (unlikely(ecount == 0))
11292 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
11293 "0371 No entry from the CQ: identifier "
11294 "(x%x), type (%d)\n", cq->queue_id, cq->type);
11295
11296 /* In any case, flash and re-arm the RCQ */
11297 lpfc_sli4_cq_release(cq, LPFC_QUEUE_REARM);
11298
11299 /* wake up worker thread if there are works to be done */
11300 if (workposted)
11301 lpfc_worker_wake_up(phba);
11302 }
11303
11304 /**
11305 * lpfc_sli4_fp_handle_fcp_wcqe - Process fast-path work queue completion entry
11306 * @eqe: Pointer to fast-path completion queue entry.
11307 *
11308 * This routine process a fast-path work queue completion entry from fast-path
11309 * event queue for FCP command response completion.
11310 **/
11311 static void
11312 lpfc_sli4_fp_handle_fcp_wcqe(struct lpfc_hba *phba,
11313 struct lpfc_wcqe_complete *wcqe)
11314 {
11315 struct lpfc_sli_ring *pring = &phba->sli.ring[LPFC_FCP_RING];
11316 struct lpfc_iocbq *cmdiocbq;
11317 struct lpfc_iocbq irspiocbq;
11318 unsigned long iflags;
11319
11320 spin_lock_irqsave(&phba->hbalock, iflags);
11321 pring->stats.iocb_event++;
11322 spin_unlock_irqrestore(&phba->hbalock, iflags);
11323
11324 /* Check for response status */
11325 if (unlikely(bf_get(lpfc_wcqe_c_status, wcqe))) {
11326 /* If resource errors reported from HBA, reduce queue
11327 * depth of the SCSI device.
11328 */
11329 if ((bf_get(lpfc_wcqe_c_status, wcqe) ==
11330 IOSTAT_LOCAL_REJECT) &&
11331 (wcqe->parameter == IOERR_NO_RESOURCES)) {
11332 phba->lpfc_rampdown_queue_depth(phba);
11333 }
11334 /* Log the error status */
11335 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
11336 "0373 FCP complete error: status=x%x, "
11337 "hw_status=x%x, total_data_specified=%d, "
11338 "parameter=x%x, word3=x%x\n",
11339 bf_get(lpfc_wcqe_c_status, wcqe),
11340 bf_get(lpfc_wcqe_c_hw_status, wcqe),
11341 wcqe->total_data_placed, wcqe->parameter,
11342 wcqe->word3);
11343 }
11344
11345 /* Look up the FCP command IOCB and create pseudo response IOCB */
11346 spin_lock_irqsave(&phba->hbalock, iflags);
11347 cmdiocbq = lpfc_sli_iocbq_lookup_by_tag(phba, pring,
11348 bf_get(lpfc_wcqe_c_request_tag, wcqe));
11349 spin_unlock_irqrestore(&phba->hbalock, iflags);
11350 if (unlikely(!cmdiocbq)) {
11351 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
11352 "0374 FCP complete with no corresponding "
11353 "cmdiocb: iotag (%d)\n",
11354 bf_get(lpfc_wcqe_c_request_tag, wcqe));
11355 return;
11356 }
11357 if (unlikely(!cmdiocbq->iocb_cmpl)) {
11358 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
11359 "0375 FCP cmdiocb not callback function "
11360 "iotag: (%d)\n",
11361 bf_get(lpfc_wcqe_c_request_tag, wcqe));
11362 return;
11363 }
11364
11365 /* Fake the irspiocb and copy necessary response information */
11366 lpfc_sli4_iocb_param_transfer(phba, &irspiocbq, cmdiocbq, wcqe);
11367
11368 if (cmdiocbq->iocb_flag & LPFC_DRIVER_ABORTED) {
11369 spin_lock_irqsave(&phba->hbalock, iflags);
11370 cmdiocbq->iocb_flag &= ~LPFC_DRIVER_ABORTED;
11371 spin_unlock_irqrestore(&phba->hbalock, iflags);
11372 }
11373
11374 /* Pass the cmd_iocb and the rsp state to the upper layer */
11375 (cmdiocbq->iocb_cmpl)(phba, cmdiocbq, &irspiocbq);
11376 }
11377
11378 /**
11379 * lpfc_sli4_fp_handle_rel_wcqe - Handle fast-path WQ entry consumed event
11380 * @phba: Pointer to HBA context object.
11381 * @cq: Pointer to completion queue.
11382 * @wcqe: Pointer to work-queue completion queue entry.
11383 *
11384 * This routine handles an fast-path WQ entry comsumed event by invoking the
11385 * proper WQ release routine to the slow-path WQ.
11386 **/
11387 static void
11388 lpfc_sli4_fp_handle_rel_wcqe(struct lpfc_hba *phba, struct lpfc_queue *cq,
11389 struct lpfc_wcqe_release *wcqe)
11390 {
11391 struct lpfc_queue *childwq;
11392 bool wqid_matched = false;
11393 uint16_t fcp_wqid;
11394
11395 /* Check for fast-path FCP work queue release */
11396 fcp_wqid = bf_get(lpfc_wcqe_r_wq_id, wcqe);
11397 list_for_each_entry(childwq, &cq->child_list, list) {
11398 if (childwq->queue_id == fcp_wqid) {
11399 lpfc_sli4_wq_release(childwq,
11400 bf_get(lpfc_wcqe_r_wqe_index, wcqe));
11401 wqid_matched = true;
11402 break;
11403 }
11404 }
11405 /* Report warning log message if no match found */
11406 if (wqid_matched != true)
11407 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
11408 "2580 Fast-path wqe consume event carries "
11409 "miss-matched qid: wcqe-qid=x%x\n", fcp_wqid);
11410 }
11411
11412 /**
11413 * lpfc_sli4_fp_handle_wcqe - Process fast-path work queue completion entry
11414 * @cq: Pointer to the completion queue.
11415 * @eqe: Pointer to fast-path completion queue entry.
11416 *
11417 * This routine process a fast-path work queue completion entry from fast-path
11418 * event queue for FCP command response completion.
11419 **/
11420 static int
11421 lpfc_sli4_fp_handle_wcqe(struct lpfc_hba *phba, struct lpfc_queue *cq,
11422 struct lpfc_cqe *cqe)
11423 {
11424 struct lpfc_wcqe_release wcqe;
11425 bool workposted = false;
11426
11427 /* Copy the work queue CQE and convert endian order if needed */
11428 lpfc_sli_pcimem_bcopy(cqe, &wcqe, sizeof(struct lpfc_cqe));
11429
11430 /* Check and process for different type of WCQE and dispatch */
11431 switch (bf_get(lpfc_wcqe_c_code, &wcqe)) {
11432 case CQE_CODE_COMPL_WQE:
11433 /* Process the WQ complete event */
11434 phba->last_completion_time = jiffies;
11435 lpfc_sli4_fp_handle_fcp_wcqe(phba,
11436 (struct lpfc_wcqe_complete *)&wcqe);
11437 break;
11438 case CQE_CODE_RELEASE_WQE:
11439 /* Process the WQ release event */
11440 lpfc_sli4_fp_handle_rel_wcqe(phba, cq,
11441 (struct lpfc_wcqe_release *)&wcqe);
11442 break;
11443 case CQE_CODE_XRI_ABORTED:
11444 /* Process the WQ XRI abort event */
11445 phba->last_completion_time = jiffies;
11446 workposted = lpfc_sli4_sp_handle_abort_xri_wcqe(phba, cq,
11447 (struct sli4_wcqe_xri_aborted *)&wcqe);
11448 break;
11449 default:
11450 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
11451 "0144 Not a valid WCQE code: x%x\n",
11452 bf_get(lpfc_wcqe_c_code, &wcqe));
11453 break;
11454 }
11455 return workposted;
11456 }
11457
11458 /**
11459 * lpfc_sli4_fp_handle_eqe - Process a fast-path event queue entry
11460 * @phba: Pointer to HBA context object.
11461 * @eqe: Pointer to fast-path event queue entry.
11462 *
11463 * This routine process a event queue entry from the fast-path event queue.
11464 * It will check the MajorCode and MinorCode to determine this is for a
11465 * completion event on a completion queue, if not, an error shall be logged
11466 * and just return. Otherwise, it will get to the corresponding completion
11467 * queue and process all the entries on the completion queue, rearm the
11468 * completion queue, and then return.
11469 **/
11470 static void
11471 lpfc_sli4_fp_handle_eqe(struct lpfc_hba *phba, struct lpfc_eqe *eqe,
11472 uint32_t fcp_cqidx)
11473 {
11474 struct lpfc_queue *cq;
11475 struct lpfc_cqe *cqe;
11476 bool workposted = false;
11477 uint16_t cqid;
11478 int ecount = 0;
11479
11480 if (unlikely(bf_get_le32(lpfc_eqe_major_code, eqe) != 0)) {
11481 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
11482 "0366 Not a valid fast-path completion "
11483 "event: majorcode=x%x, minorcode=x%x\n",
11484 bf_get_le32(lpfc_eqe_major_code, eqe),
11485 bf_get_le32(lpfc_eqe_minor_code, eqe));
11486 return;
11487 }
11488
11489 if (unlikely(!phba->sli4_hba.fcp_cq)) {
11490 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
11491 "3146 Fast-path completion queues "
11492 "does not exist\n");
11493 return;
11494 }
11495 cq = phba->sli4_hba.fcp_cq[fcp_cqidx];
11496 if (unlikely(!cq)) {
11497 if (phba->sli.sli_flag & LPFC_SLI_ACTIVE)
11498 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
11499 "0367 Fast-path completion queue "
11500 "(%d) does not exist\n", fcp_cqidx);
11501 return;
11502 }
11503
11504 /* Get the reference to the corresponding CQ */
11505 cqid = bf_get_le32(lpfc_eqe_resource_id, eqe);
11506 if (unlikely(cqid != cq->queue_id)) {
11507 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
11508 "0368 Miss-matched fast-path completion "
11509 "queue identifier: eqcqid=%d, fcpcqid=%d\n",
11510 cqid, cq->queue_id);
11511 return;
11512 }
11513
11514 /* Process all the entries to the CQ */
11515 while ((cqe = lpfc_sli4_cq_get(cq))) {
11516 workposted |= lpfc_sli4_fp_handle_wcqe(phba, cq, cqe);
11517 if (!(++ecount % cq->entry_repost))
11518 lpfc_sli4_cq_release(cq, LPFC_QUEUE_NOARM);
11519 }
11520
11521 /* Catch the no cq entry condition */
11522 if (unlikely(ecount == 0))
11523 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
11524 "0369 No entry from fast-path completion "
11525 "queue fcpcqid=%d\n", cq->queue_id);
11526
11527 /* In any case, flash and re-arm the CQ */
11528 lpfc_sli4_cq_release(cq, LPFC_QUEUE_REARM);
11529
11530 /* wake up worker thread if there are works to be done */
11531 if (workposted)
11532 lpfc_worker_wake_up(phba);
11533 }
11534
11535 static void
11536 lpfc_sli4_eq_flush(struct lpfc_hba *phba, struct lpfc_queue *eq)
11537 {
11538 struct lpfc_eqe *eqe;
11539
11540 /* walk all the EQ entries and drop on the floor */
11541 while ((eqe = lpfc_sli4_eq_get(eq)))
11542 ;
11543
11544 /* Clear and re-arm the EQ */
11545 lpfc_sli4_eq_release(eq, LPFC_QUEUE_REARM);
11546 }
11547
11548 /**
11549 * lpfc_sli4_sp_intr_handler - Slow-path interrupt handler to SLI-4 device
11550 * @irq: Interrupt number.
11551 * @dev_id: The device context pointer.
11552 *
11553 * This function is directly called from the PCI layer as an interrupt
11554 * service routine when device with SLI-4 interface spec is enabled with
11555 * MSI-X multi-message interrupt mode and there are slow-path events in
11556 * the HBA. However, when the device is enabled with either MSI or Pin-IRQ
11557 * interrupt mode, this function is called as part of the device-level
11558 * interrupt handler. When the PCI slot is in error recovery or the HBA is
11559 * undergoing initialization, the interrupt handler will not process the
11560 * interrupt. The link attention and ELS ring attention events are handled
11561 * by the worker thread. The interrupt handler signals the worker thread
11562 * and returns for these events. This function is called without any lock
11563 * held. It gets the hbalock to access and update SLI data structures.
11564 *
11565 * This function returns IRQ_HANDLED when interrupt is handled else it
11566 * returns IRQ_NONE.
11567 **/
11568 irqreturn_t
11569 lpfc_sli4_sp_intr_handler(int irq, void *dev_id)
11570 {
11571 struct lpfc_hba *phba;
11572 struct lpfc_queue *speq;
11573 struct lpfc_eqe *eqe;
11574 unsigned long iflag;
11575 int ecount = 0;
11576
11577 /*
11578 * Get the driver's phba structure from the dev_id
11579 */
11580 phba = (struct lpfc_hba *)dev_id;
11581
11582 if (unlikely(!phba))
11583 return IRQ_NONE;
11584
11585 /* Get to the EQ struct associated with this vector */
11586 speq = phba->sli4_hba.sp_eq;
11587 if (unlikely(!speq))
11588 return IRQ_NONE;
11589
11590 /* Check device state for handling interrupt */
11591 if (unlikely(lpfc_intr_state_check(phba))) {
11592 /* Check again for link_state with lock held */
11593 spin_lock_irqsave(&phba->hbalock, iflag);
11594 if (phba->link_state < LPFC_LINK_DOWN)
11595 /* Flush, clear interrupt, and rearm the EQ */
11596 lpfc_sli4_eq_flush(phba, speq);
11597 spin_unlock_irqrestore(&phba->hbalock, iflag);
11598 return IRQ_NONE;
11599 }
11600
11601 /*
11602 * Process all the event on FCP slow-path EQ
11603 */
11604 while ((eqe = lpfc_sli4_eq_get(speq))) {
11605 lpfc_sli4_sp_handle_eqe(phba, eqe);
11606 if (!(++ecount % speq->entry_repost))
11607 lpfc_sli4_eq_release(speq, LPFC_QUEUE_NOARM);
11608 }
11609
11610 /* Always clear and re-arm the slow-path EQ */
11611 lpfc_sli4_eq_release(speq, LPFC_QUEUE_REARM);
11612
11613 /* Catch the no cq entry condition */
11614 if (unlikely(ecount == 0)) {
11615 if (phba->intr_type == MSIX)
11616 /* MSI-X treated interrupt served as no EQ share INT */
11617 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
11618 "0357 MSI-X interrupt with no EQE\n");
11619 else
11620 /* Non MSI-X treated on interrupt as EQ share INT */
11621 return IRQ_NONE;
11622 }
11623
11624 return IRQ_HANDLED;
11625 } /* lpfc_sli4_sp_intr_handler */
11626
11627 /**
11628 * lpfc_sli4_fp_intr_handler - Fast-path interrupt handler to SLI-4 device
11629 * @irq: Interrupt number.
11630 * @dev_id: The device context pointer.
11631 *
11632 * This function is directly called from the PCI layer as an interrupt
11633 * service routine when device with SLI-4 interface spec is enabled with
11634 * MSI-X multi-message interrupt mode and there is a fast-path FCP IOCB
11635 * ring event in the HBA. However, when the device is enabled with either
11636 * MSI or Pin-IRQ interrupt mode, this function is called as part of the
11637 * device-level interrupt handler. When the PCI slot is in error recovery
11638 * or the HBA is undergoing initialization, the interrupt handler will not
11639 * process the interrupt. The SCSI FCP fast-path ring event are handled in
11640 * the intrrupt context. This function is called without any lock held.
11641 * It gets the hbalock to access and update SLI data structures. Note that,
11642 * the FCP EQ to FCP CQ are one-to-one map such that the FCP EQ index is
11643 * equal to that of FCP CQ index.
11644 *
11645 * This function returns IRQ_HANDLED when interrupt is handled else it
11646 * returns IRQ_NONE.
11647 **/
11648 irqreturn_t
11649 lpfc_sli4_fp_intr_handler(int irq, void *dev_id)
11650 {
11651 struct lpfc_hba *phba;
11652 struct lpfc_fcp_eq_hdl *fcp_eq_hdl;
11653 struct lpfc_queue *fpeq;
11654 struct lpfc_eqe *eqe;
11655 unsigned long iflag;
11656 int ecount = 0;
11657 uint32_t fcp_eqidx;
11658
11659 /* Get the driver's phba structure from the dev_id */
11660 fcp_eq_hdl = (struct lpfc_fcp_eq_hdl *)dev_id;
11661 phba = fcp_eq_hdl->phba;
11662 fcp_eqidx = fcp_eq_hdl->idx;
11663
11664 if (unlikely(!phba))
11665 return IRQ_NONE;
11666 if (unlikely(!phba->sli4_hba.fp_eq))
11667 return IRQ_NONE;
11668
11669 /* Get to the EQ struct associated with this vector */
11670 fpeq = phba->sli4_hba.fp_eq[fcp_eqidx];
11671 if (unlikely(!fpeq))
11672 return IRQ_NONE;
11673
11674 /* Check device state for handling interrupt */
11675 if (unlikely(lpfc_intr_state_check(phba))) {
11676 /* Check again for link_state with lock held */
11677 spin_lock_irqsave(&phba->hbalock, iflag);
11678 if (phba->link_state < LPFC_LINK_DOWN)
11679 /* Flush, clear interrupt, and rearm the EQ */
11680 lpfc_sli4_eq_flush(phba, fpeq);
11681 spin_unlock_irqrestore(&phba->hbalock, iflag);
11682 return IRQ_NONE;
11683 }
11684
11685 /*
11686 * Process all the event on FCP fast-path EQ
11687 */
11688 while ((eqe = lpfc_sli4_eq_get(fpeq))) {
11689 lpfc_sli4_fp_handle_eqe(phba, eqe, fcp_eqidx);
11690 if (!(++ecount % fpeq->entry_repost))
11691 lpfc_sli4_eq_release(fpeq, LPFC_QUEUE_NOARM);
11692 }
11693
11694 /* Always clear and re-arm the fast-path EQ */
11695 lpfc_sli4_eq_release(fpeq, LPFC_QUEUE_REARM);
11696
11697 if (unlikely(ecount == 0)) {
11698 if (phba->intr_type == MSIX)
11699 /* MSI-X treated interrupt served as no EQ share INT */
11700 lpfc_printf_log(phba, KERN_WARNING, LOG_SLI,
11701 "0358 MSI-X interrupt with no EQE\n");
11702 else
11703 /* Non MSI-X treated on interrupt as EQ share INT */
11704 return IRQ_NONE;
11705 }
11706
11707 return IRQ_HANDLED;
11708 } /* lpfc_sli4_fp_intr_handler */
11709
11710 /**
11711 * lpfc_sli4_intr_handler - Device-level interrupt handler for SLI-4 device
11712 * @irq: Interrupt number.
11713 * @dev_id: The device context pointer.
11714 *
11715 * This function is the device-level interrupt handler to device with SLI-4
11716 * interface spec, called from the PCI layer when either MSI or Pin-IRQ
11717 * interrupt mode is enabled and there is an event in the HBA which requires
11718 * driver attention. This function invokes the slow-path interrupt attention
11719 * handling function and fast-path interrupt attention handling function in
11720 * turn to process the relevant HBA attention events. This function is called
11721 * without any lock held. It gets the hbalock to access and update SLI data
11722 * structures.
11723 *
11724 * This function returns IRQ_HANDLED when interrupt is handled, else it
11725 * returns IRQ_NONE.
11726 **/
11727 irqreturn_t
11728 lpfc_sli4_intr_handler(int irq, void *dev_id)
11729 {
11730 struct lpfc_hba *phba;
11731 irqreturn_t sp_irq_rc, fp_irq_rc;
11732 bool fp_handled = false;
11733 uint32_t fcp_eqidx;
11734
11735 /* Get the driver's phba structure from the dev_id */
11736 phba = (struct lpfc_hba *)dev_id;
11737
11738 if (unlikely(!phba))
11739 return IRQ_NONE;
11740
11741 /*
11742 * Invokes slow-path host attention interrupt handling as appropriate.
11743 */
11744 sp_irq_rc = lpfc_sli4_sp_intr_handler(irq, dev_id);
11745
11746 /*
11747 * Invoke fast-path host attention interrupt handling as appropriate.
11748 */
11749 for (fcp_eqidx = 0; fcp_eqidx < phba->cfg_fcp_eq_count; fcp_eqidx++) {
11750 fp_irq_rc = lpfc_sli4_fp_intr_handler(irq,
11751 &phba->sli4_hba.fcp_eq_hdl[fcp_eqidx]);
11752 if (fp_irq_rc == IRQ_HANDLED)
11753 fp_handled |= true;
11754 }
11755
11756 return (fp_handled == true) ? IRQ_HANDLED : sp_irq_rc;
11757 } /* lpfc_sli4_intr_handler */
11758
11759 /**
11760 * lpfc_sli4_queue_free - free a queue structure and associated memory
11761 * @queue: The queue structure to free.
11762 *
11763 * This function frees a queue structure and the DMAable memory used for
11764 * the host resident queue. This function must be called after destroying the
11765 * queue on the HBA.
11766 **/
11767 void
11768 lpfc_sli4_queue_free(struct lpfc_queue *queue)
11769 {
11770 struct lpfc_dmabuf *dmabuf;
11771
11772 if (!queue)
11773 return;
11774
11775 while (!list_empty(&queue->page_list)) {
11776 list_remove_head(&queue->page_list, dmabuf, struct lpfc_dmabuf,
11777 list);
11778 dma_free_coherent(&queue->phba->pcidev->dev, SLI4_PAGE_SIZE,
11779 dmabuf->virt, dmabuf->phys);
11780 kfree(dmabuf);
11781 }
11782 kfree(queue);
11783 return;
11784 }
11785
11786 /**
11787 * lpfc_sli4_queue_alloc - Allocate and initialize a queue structure
11788 * @phba: The HBA that this queue is being created on.
11789 * @entry_size: The size of each queue entry for this queue.
11790 * @entry count: The number of entries that this queue will handle.
11791 *
11792 * This function allocates a queue structure and the DMAable memory used for
11793 * the host resident queue. This function must be called before creating the
11794 * queue on the HBA.
11795 **/
11796 struct lpfc_queue *
11797 lpfc_sli4_queue_alloc(struct lpfc_hba *phba, uint32_t entry_size,
11798 uint32_t entry_count)
11799 {
11800 struct lpfc_queue *queue;
11801 struct lpfc_dmabuf *dmabuf;
11802 int x, total_qe_count;
11803 void *dma_pointer;
11804 uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz;
11805
11806 if (!phba->sli4_hba.pc_sli4_params.supported)
11807 hw_page_size = SLI4_PAGE_SIZE;
11808
11809 queue = kzalloc(sizeof(struct lpfc_queue) +
11810 (sizeof(union sli4_qe) * entry_count), GFP_KERNEL);
11811 if (!queue)
11812 return NULL;
11813 queue->page_count = (ALIGN(entry_size * entry_count,
11814 hw_page_size))/hw_page_size;
11815 INIT_LIST_HEAD(&queue->list);
11816 INIT_LIST_HEAD(&queue->page_list);
11817 INIT_LIST_HEAD(&queue->child_list);
11818 for (x = 0, total_qe_count = 0; x < queue->page_count; x++) {
11819 dmabuf = kzalloc(sizeof(struct lpfc_dmabuf), GFP_KERNEL);
11820 if (!dmabuf)
11821 goto out_fail;
11822 dmabuf->virt = dma_alloc_coherent(&phba->pcidev->dev,
11823 hw_page_size, &dmabuf->phys,
11824 GFP_KERNEL);
11825 if (!dmabuf->virt) {
11826 kfree(dmabuf);
11827 goto out_fail;
11828 }
11829 memset(dmabuf->virt, 0, hw_page_size);
11830 dmabuf->buffer_tag = x;
11831 list_add_tail(&dmabuf->list, &queue->page_list);
11832 /* initialize queue's entry array */
11833 dma_pointer = dmabuf->virt;
11834 for (; total_qe_count < entry_count &&
11835 dma_pointer < (hw_page_size + dmabuf->virt);
11836 total_qe_count++, dma_pointer += entry_size) {
11837 queue->qe[total_qe_count].address = dma_pointer;
11838 }
11839 }
11840 queue->entry_size = entry_size;
11841 queue->entry_count = entry_count;
11842
11843 /*
11844 * entry_repost is calculated based on the number of entries in the
11845 * queue. This works out except for RQs. If buffers are NOT initially
11846 * posted for every RQE, entry_repost should be adjusted accordingly.
11847 */
11848 queue->entry_repost = (entry_count >> 3);
11849 if (queue->entry_repost < LPFC_QUEUE_MIN_REPOST)
11850 queue->entry_repost = LPFC_QUEUE_MIN_REPOST;
11851 queue->phba = phba;
11852
11853 return queue;
11854 out_fail:
11855 lpfc_sli4_queue_free(queue);
11856 return NULL;
11857 }
11858
11859 /**
11860 * lpfc_eq_create - Create an Event Queue on the HBA
11861 * @phba: HBA structure that indicates port to create a queue on.
11862 * @eq: The queue structure to use to create the event queue.
11863 * @imax: The maximum interrupt per second limit.
11864 *
11865 * This function creates an event queue, as detailed in @eq, on a port,
11866 * described by @phba by sending an EQ_CREATE mailbox command to the HBA.
11867 *
11868 * The @phba struct is used to send mailbox command to HBA. The @eq struct
11869 * is used to get the entry count and entry size that are necessary to
11870 * determine the number of pages to allocate and use for this queue. This
11871 * function will send the EQ_CREATE mailbox command to the HBA to setup the
11872 * event queue. This function is asynchronous and will wait for the mailbox
11873 * command to finish before continuing.
11874 *
11875 * On success this function will return a zero. If unable to allocate enough
11876 * memory this function will return -ENOMEM. If the queue create mailbox command
11877 * fails this function will return -ENXIO.
11878 **/
11879 uint32_t
11880 lpfc_eq_create(struct lpfc_hba *phba, struct lpfc_queue *eq, uint16_t imax)
11881 {
11882 struct lpfc_mbx_eq_create *eq_create;
11883 LPFC_MBOXQ_t *mbox;
11884 int rc, length, status = 0;
11885 struct lpfc_dmabuf *dmabuf;
11886 uint32_t shdr_status, shdr_add_status;
11887 union lpfc_sli4_cfg_shdr *shdr;
11888 uint16_t dmult;
11889 uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz;
11890
11891 /* sanity check on queue memory */
11892 if (!eq)
11893 return -ENODEV;
11894 if (!phba->sli4_hba.pc_sli4_params.supported)
11895 hw_page_size = SLI4_PAGE_SIZE;
11896
11897 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
11898 if (!mbox)
11899 return -ENOMEM;
11900 length = (sizeof(struct lpfc_mbx_eq_create) -
11901 sizeof(struct lpfc_sli4_cfg_mhdr));
11902 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
11903 LPFC_MBOX_OPCODE_EQ_CREATE,
11904 length, LPFC_SLI4_MBX_EMBED);
11905 eq_create = &mbox->u.mqe.un.eq_create;
11906 bf_set(lpfc_mbx_eq_create_num_pages, &eq_create->u.request,
11907 eq->page_count);
11908 bf_set(lpfc_eq_context_size, &eq_create->u.request.context,
11909 LPFC_EQE_SIZE);
11910 bf_set(lpfc_eq_context_valid, &eq_create->u.request.context, 1);
11911 /* Calculate delay multiper from maximum interrupt per second */
11912 dmult = LPFC_DMULT_CONST/imax - 1;
11913 bf_set(lpfc_eq_context_delay_multi, &eq_create->u.request.context,
11914 dmult);
11915 switch (eq->entry_count) {
11916 default:
11917 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
11918 "0360 Unsupported EQ count. (%d)\n",
11919 eq->entry_count);
11920 if (eq->entry_count < 256)
11921 return -EINVAL;
11922 /* otherwise default to smallest count (drop through) */
11923 case 256:
11924 bf_set(lpfc_eq_context_count, &eq_create->u.request.context,
11925 LPFC_EQ_CNT_256);
11926 break;
11927 case 512:
11928 bf_set(lpfc_eq_context_count, &eq_create->u.request.context,
11929 LPFC_EQ_CNT_512);
11930 break;
11931 case 1024:
11932 bf_set(lpfc_eq_context_count, &eq_create->u.request.context,
11933 LPFC_EQ_CNT_1024);
11934 break;
11935 case 2048:
11936 bf_set(lpfc_eq_context_count, &eq_create->u.request.context,
11937 LPFC_EQ_CNT_2048);
11938 break;
11939 case 4096:
11940 bf_set(lpfc_eq_context_count, &eq_create->u.request.context,
11941 LPFC_EQ_CNT_4096);
11942 break;
11943 }
11944 list_for_each_entry(dmabuf, &eq->page_list, list) {
11945 memset(dmabuf->virt, 0, hw_page_size);
11946 eq_create->u.request.page[dmabuf->buffer_tag].addr_lo =
11947 putPaddrLow(dmabuf->phys);
11948 eq_create->u.request.page[dmabuf->buffer_tag].addr_hi =
11949 putPaddrHigh(dmabuf->phys);
11950 }
11951 mbox->vport = phba->pport;
11952 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
11953 mbox->context1 = NULL;
11954 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
11955 shdr = (union lpfc_sli4_cfg_shdr *) &eq_create->header.cfg_shdr;
11956 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
11957 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
11958 if (shdr_status || shdr_add_status || rc) {
11959 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
11960 "2500 EQ_CREATE mailbox failed with "
11961 "status x%x add_status x%x, mbx status x%x\n",
11962 shdr_status, shdr_add_status, rc);
11963 status = -ENXIO;
11964 }
11965 eq->type = LPFC_EQ;
11966 eq->subtype = LPFC_NONE;
11967 eq->queue_id = bf_get(lpfc_mbx_eq_create_q_id, &eq_create->u.response);
11968 if (eq->queue_id == 0xFFFF)
11969 status = -ENXIO;
11970 eq->host_index = 0;
11971 eq->hba_index = 0;
11972
11973 mempool_free(mbox, phba->mbox_mem_pool);
11974 return status;
11975 }
11976
11977 /**
11978 * lpfc_cq_create - Create a Completion Queue on the HBA
11979 * @phba: HBA structure that indicates port to create a queue on.
11980 * @cq: The queue structure to use to create the completion queue.
11981 * @eq: The event queue to bind this completion queue to.
11982 *
11983 * This function creates a completion queue, as detailed in @wq, on a port,
11984 * described by @phba by sending a CQ_CREATE mailbox command to the HBA.
11985 *
11986 * The @phba struct is used to send mailbox command to HBA. The @cq struct
11987 * is used to get the entry count and entry size that are necessary to
11988 * determine the number of pages to allocate and use for this queue. The @eq
11989 * is used to indicate which event queue to bind this completion queue to. This
11990 * function will send the CQ_CREATE mailbox command to the HBA to setup the
11991 * completion queue. This function is asynchronous and will wait for the mailbox
11992 * command to finish before continuing.
11993 *
11994 * On success this function will return a zero. If unable to allocate enough
11995 * memory this function will return -ENOMEM. If the queue create mailbox command
11996 * fails this function will return -ENXIO.
11997 **/
11998 uint32_t
11999 lpfc_cq_create(struct lpfc_hba *phba, struct lpfc_queue *cq,
12000 struct lpfc_queue *eq, uint32_t type, uint32_t subtype)
12001 {
12002 struct lpfc_mbx_cq_create *cq_create;
12003 struct lpfc_dmabuf *dmabuf;
12004 LPFC_MBOXQ_t *mbox;
12005 int rc, length, status = 0;
12006 uint32_t shdr_status, shdr_add_status;
12007 union lpfc_sli4_cfg_shdr *shdr;
12008 uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz;
12009
12010 /* sanity check on queue memory */
12011 if (!cq || !eq)
12012 return -ENODEV;
12013 if (!phba->sli4_hba.pc_sli4_params.supported)
12014 hw_page_size = SLI4_PAGE_SIZE;
12015
12016 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
12017 if (!mbox)
12018 return -ENOMEM;
12019 length = (sizeof(struct lpfc_mbx_cq_create) -
12020 sizeof(struct lpfc_sli4_cfg_mhdr));
12021 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
12022 LPFC_MBOX_OPCODE_CQ_CREATE,
12023 length, LPFC_SLI4_MBX_EMBED);
12024 cq_create = &mbox->u.mqe.un.cq_create;
12025 shdr = (union lpfc_sli4_cfg_shdr *) &cq_create->header.cfg_shdr;
12026 bf_set(lpfc_mbx_cq_create_num_pages, &cq_create->u.request,
12027 cq->page_count);
12028 bf_set(lpfc_cq_context_event, &cq_create->u.request.context, 1);
12029 bf_set(lpfc_cq_context_valid, &cq_create->u.request.context, 1);
12030 bf_set(lpfc_mbox_hdr_version, &shdr->request,
12031 phba->sli4_hba.pc_sli4_params.cqv);
12032 if (phba->sli4_hba.pc_sli4_params.cqv == LPFC_Q_CREATE_VERSION_2) {
12033 /* FW only supports 1. Should be PAGE_SIZE/SLI4_PAGE_SIZE */
12034 bf_set(lpfc_mbx_cq_create_page_size, &cq_create->u.request, 1);
12035 bf_set(lpfc_cq_eq_id_2, &cq_create->u.request.context,
12036 eq->queue_id);
12037 } else {
12038 bf_set(lpfc_cq_eq_id, &cq_create->u.request.context,
12039 eq->queue_id);
12040 }
12041 switch (cq->entry_count) {
12042 default:
12043 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
12044 "0361 Unsupported CQ count. (%d)\n",
12045 cq->entry_count);
12046 if (cq->entry_count < 256)
12047 return -EINVAL;
12048 /* otherwise default to smallest count (drop through) */
12049 case 256:
12050 bf_set(lpfc_cq_context_count, &cq_create->u.request.context,
12051 LPFC_CQ_CNT_256);
12052 break;
12053 case 512:
12054 bf_set(lpfc_cq_context_count, &cq_create->u.request.context,
12055 LPFC_CQ_CNT_512);
12056 break;
12057 case 1024:
12058 bf_set(lpfc_cq_context_count, &cq_create->u.request.context,
12059 LPFC_CQ_CNT_1024);
12060 break;
12061 }
12062 list_for_each_entry(dmabuf, &cq->page_list, list) {
12063 memset(dmabuf->virt, 0, hw_page_size);
12064 cq_create->u.request.page[dmabuf->buffer_tag].addr_lo =
12065 putPaddrLow(dmabuf->phys);
12066 cq_create->u.request.page[dmabuf->buffer_tag].addr_hi =
12067 putPaddrHigh(dmabuf->phys);
12068 }
12069 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
12070
12071 /* The IOCTL status is embedded in the mailbox subheader. */
12072 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
12073 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
12074 if (shdr_status || shdr_add_status || rc) {
12075 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
12076 "2501 CQ_CREATE mailbox failed with "
12077 "status x%x add_status x%x, mbx status x%x\n",
12078 shdr_status, shdr_add_status, rc);
12079 status = -ENXIO;
12080 goto out;
12081 }
12082 cq->queue_id = bf_get(lpfc_mbx_cq_create_q_id, &cq_create->u.response);
12083 if (cq->queue_id == 0xFFFF) {
12084 status = -ENXIO;
12085 goto out;
12086 }
12087 /* link the cq onto the parent eq child list */
12088 list_add_tail(&cq->list, &eq->child_list);
12089 /* Set up completion queue's type and subtype */
12090 cq->type = type;
12091 cq->subtype = subtype;
12092 cq->queue_id = bf_get(lpfc_mbx_cq_create_q_id, &cq_create->u.response);
12093 cq->assoc_qid = eq->queue_id;
12094 cq->host_index = 0;
12095 cq->hba_index = 0;
12096
12097 out:
12098 mempool_free(mbox, phba->mbox_mem_pool);
12099 return status;
12100 }
12101
12102 /**
12103 * lpfc_mq_create_fb_init - Send MCC_CREATE without async events registration
12104 * @phba: HBA structure that indicates port to create a queue on.
12105 * @mq: The queue structure to use to create the mailbox queue.
12106 * @mbox: An allocated pointer to type LPFC_MBOXQ_t
12107 * @cq: The completion queue to associate with this cq.
12108 *
12109 * This function provides failback (fb) functionality when the
12110 * mq_create_ext fails on older FW generations. It's purpose is identical
12111 * to mq_create_ext otherwise.
12112 *
12113 * This routine cannot fail as all attributes were previously accessed and
12114 * initialized in mq_create_ext.
12115 **/
12116 static void
12117 lpfc_mq_create_fb_init(struct lpfc_hba *phba, struct lpfc_queue *mq,
12118 LPFC_MBOXQ_t *mbox, struct lpfc_queue *cq)
12119 {
12120 struct lpfc_mbx_mq_create *mq_create;
12121 struct lpfc_dmabuf *dmabuf;
12122 int length;
12123
12124 length = (sizeof(struct lpfc_mbx_mq_create) -
12125 sizeof(struct lpfc_sli4_cfg_mhdr));
12126 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
12127 LPFC_MBOX_OPCODE_MQ_CREATE,
12128 length, LPFC_SLI4_MBX_EMBED);
12129 mq_create = &mbox->u.mqe.un.mq_create;
12130 bf_set(lpfc_mbx_mq_create_num_pages, &mq_create->u.request,
12131 mq->page_count);
12132 bf_set(lpfc_mq_context_cq_id, &mq_create->u.request.context,
12133 cq->queue_id);
12134 bf_set(lpfc_mq_context_valid, &mq_create->u.request.context, 1);
12135 switch (mq->entry_count) {
12136 case 16:
12137 bf_set(lpfc_mq_context_ring_size, &mq_create->u.request.context,
12138 LPFC_MQ_RING_SIZE_16);
12139 break;
12140 case 32:
12141 bf_set(lpfc_mq_context_ring_size, &mq_create->u.request.context,
12142 LPFC_MQ_RING_SIZE_32);
12143 break;
12144 case 64:
12145 bf_set(lpfc_mq_context_ring_size, &mq_create->u.request.context,
12146 LPFC_MQ_RING_SIZE_64);
12147 break;
12148 case 128:
12149 bf_set(lpfc_mq_context_ring_size, &mq_create->u.request.context,
12150 LPFC_MQ_RING_SIZE_128);
12151 break;
12152 }
12153 list_for_each_entry(dmabuf, &mq->page_list, list) {
12154 mq_create->u.request.page[dmabuf->buffer_tag].addr_lo =
12155 putPaddrLow(dmabuf->phys);
12156 mq_create->u.request.page[dmabuf->buffer_tag].addr_hi =
12157 putPaddrHigh(dmabuf->phys);
12158 }
12159 }
12160
12161 /**
12162 * lpfc_mq_create - Create a mailbox Queue on the HBA
12163 * @phba: HBA structure that indicates port to create a queue on.
12164 * @mq: The queue structure to use to create the mailbox queue.
12165 * @cq: The completion queue to associate with this cq.
12166 * @subtype: The queue's subtype.
12167 *
12168 * This function creates a mailbox queue, as detailed in @mq, on a port,
12169 * described by @phba by sending a MQ_CREATE mailbox command to the HBA.
12170 *
12171 * The @phba struct is used to send mailbox command to HBA. The @cq struct
12172 * is used to get the entry count and entry size that are necessary to
12173 * determine the number of pages to allocate and use for this queue. This
12174 * function will send the MQ_CREATE mailbox command to the HBA to setup the
12175 * mailbox queue. This function is asynchronous and will wait for the mailbox
12176 * command to finish before continuing.
12177 *
12178 * On success this function will return a zero. If unable to allocate enough
12179 * memory this function will return -ENOMEM. If the queue create mailbox command
12180 * fails this function will return -ENXIO.
12181 **/
12182 int32_t
12183 lpfc_mq_create(struct lpfc_hba *phba, struct lpfc_queue *mq,
12184 struct lpfc_queue *cq, uint32_t subtype)
12185 {
12186 struct lpfc_mbx_mq_create *mq_create;
12187 struct lpfc_mbx_mq_create_ext *mq_create_ext;
12188 struct lpfc_dmabuf *dmabuf;
12189 LPFC_MBOXQ_t *mbox;
12190 int rc, length, status = 0;
12191 uint32_t shdr_status, shdr_add_status;
12192 union lpfc_sli4_cfg_shdr *shdr;
12193 uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz;
12194
12195 /* sanity check on queue memory */
12196 if (!mq || !cq)
12197 return -ENODEV;
12198 if (!phba->sli4_hba.pc_sli4_params.supported)
12199 hw_page_size = SLI4_PAGE_SIZE;
12200
12201 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
12202 if (!mbox)
12203 return -ENOMEM;
12204 length = (sizeof(struct lpfc_mbx_mq_create_ext) -
12205 sizeof(struct lpfc_sli4_cfg_mhdr));
12206 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
12207 LPFC_MBOX_OPCODE_MQ_CREATE_EXT,
12208 length, LPFC_SLI4_MBX_EMBED);
12209
12210 mq_create_ext = &mbox->u.mqe.un.mq_create_ext;
12211 shdr = (union lpfc_sli4_cfg_shdr *) &mq_create_ext->header.cfg_shdr;
12212 bf_set(lpfc_mbx_mq_create_ext_num_pages,
12213 &mq_create_ext->u.request, mq->page_count);
12214 bf_set(lpfc_mbx_mq_create_ext_async_evt_link,
12215 &mq_create_ext->u.request, 1);
12216 bf_set(lpfc_mbx_mq_create_ext_async_evt_fip,
12217 &mq_create_ext->u.request, 1);
12218 bf_set(lpfc_mbx_mq_create_ext_async_evt_group5,
12219 &mq_create_ext->u.request, 1);
12220 bf_set(lpfc_mbx_mq_create_ext_async_evt_fc,
12221 &mq_create_ext->u.request, 1);
12222 bf_set(lpfc_mbx_mq_create_ext_async_evt_sli,
12223 &mq_create_ext->u.request, 1);
12224 bf_set(lpfc_mq_context_valid, &mq_create_ext->u.request.context, 1);
12225 bf_set(lpfc_mbox_hdr_version, &shdr->request,
12226 phba->sli4_hba.pc_sli4_params.mqv);
12227 if (phba->sli4_hba.pc_sli4_params.mqv == LPFC_Q_CREATE_VERSION_1)
12228 bf_set(lpfc_mbx_mq_create_ext_cq_id, &mq_create_ext->u.request,
12229 cq->queue_id);
12230 else
12231 bf_set(lpfc_mq_context_cq_id, &mq_create_ext->u.request.context,
12232 cq->queue_id);
12233 switch (mq->entry_count) {
12234 default:
12235 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
12236 "0362 Unsupported MQ count. (%d)\n",
12237 mq->entry_count);
12238 if (mq->entry_count < 16)
12239 return -EINVAL;
12240 /* otherwise default to smallest count (drop through) */
12241 case 16:
12242 bf_set(lpfc_mq_context_ring_size,
12243 &mq_create_ext->u.request.context,
12244 LPFC_MQ_RING_SIZE_16);
12245 break;
12246 case 32:
12247 bf_set(lpfc_mq_context_ring_size,
12248 &mq_create_ext->u.request.context,
12249 LPFC_MQ_RING_SIZE_32);
12250 break;
12251 case 64:
12252 bf_set(lpfc_mq_context_ring_size,
12253 &mq_create_ext->u.request.context,
12254 LPFC_MQ_RING_SIZE_64);
12255 break;
12256 case 128:
12257 bf_set(lpfc_mq_context_ring_size,
12258 &mq_create_ext->u.request.context,
12259 LPFC_MQ_RING_SIZE_128);
12260 break;
12261 }
12262 list_for_each_entry(dmabuf, &mq->page_list, list) {
12263 memset(dmabuf->virt, 0, hw_page_size);
12264 mq_create_ext->u.request.page[dmabuf->buffer_tag].addr_lo =
12265 putPaddrLow(dmabuf->phys);
12266 mq_create_ext->u.request.page[dmabuf->buffer_tag].addr_hi =
12267 putPaddrHigh(dmabuf->phys);
12268 }
12269 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
12270 mq->queue_id = bf_get(lpfc_mbx_mq_create_q_id,
12271 &mq_create_ext->u.response);
12272 if (rc != MBX_SUCCESS) {
12273 lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
12274 "2795 MQ_CREATE_EXT failed with "
12275 "status x%x. Failback to MQ_CREATE.\n",
12276 rc);
12277 lpfc_mq_create_fb_init(phba, mq, mbox, cq);
12278 mq_create = &mbox->u.mqe.un.mq_create;
12279 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
12280 shdr = (union lpfc_sli4_cfg_shdr *) &mq_create->header.cfg_shdr;
12281 mq->queue_id = bf_get(lpfc_mbx_mq_create_q_id,
12282 &mq_create->u.response);
12283 }
12284
12285 /* The IOCTL status is embedded in the mailbox subheader. */
12286 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
12287 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
12288 if (shdr_status || shdr_add_status || rc) {
12289 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
12290 "2502 MQ_CREATE mailbox failed with "
12291 "status x%x add_status x%x, mbx status x%x\n",
12292 shdr_status, shdr_add_status, rc);
12293 status = -ENXIO;
12294 goto out;
12295 }
12296 if (mq->queue_id == 0xFFFF) {
12297 status = -ENXIO;
12298 goto out;
12299 }
12300 mq->type = LPFC_MQ;
12301 mq->assoc_qid = cq->queue_id;
12302 mq->subtype = subtype;
12303 mq->host_index = 0;
12304 mq->hba_index = 0;
12305
12306 /* link the mq onto the parent cq child list */
12307 list_add_tail(&mq->list, &cq->child_list);
12308 out:
12309 mempool_free(mbox, phba->mbox_mem_pool);
12310 return status;
12311 }
12312
12313 /**
12314 * lpfc_wq_create - Create a Work Queue on the HBA
12315 * @phba: HBA structure that indicates port to create a queue on.
12316 * @wq: The queue structure to use to create the work queue.
12317 * @cq: The completion queue to bind this work queue to.
12318 * @subtype: The subtype of the work queue indicating its functionality.
12319 *
12320 * This function creates a work queue, as detailed in @wq, on a port, described
12321 * by @phba by sending a WQ_CREATE mailbox command to the HBA.
12322 *
12323 * The @phba struct is used to send mailbox command to HBA. The @wq struct
12324 * is used to get the entry count and entry size that are necessary to
12325 * determine the number of pages to allocate and use for this queue. The @cq
12326 * is used to indicate which completion queue to bind this work queue to. This
12327 * function will send the WQ_CREATE mailbox command to the HBA to setup the
12328 * work queue. This function is asynchronous and will wait for the mailbox
12329 * command to finish before continuing.
12330 *
12331 * On success this function will return a zero. If unable to allocate enough
12332 * memory this function will return -ENOMEM. If the queue create mailbox command
12333 * fails this function will return -ENXIO.
12334 **/
12335 uint32_t
12336 lpfc_wq_create(struct lpfc_hba *phba, struct lpfc_queue *wq,
12337 struct lpfc_queue *cq, uint32_t subtype)
12338 {
12339 struct lpfc_mbx_wq_create *wq_create;
12340 struct lpfc_dmabuf *dmabuf;
12341 LPFC_MBOXQ_t *mbox;
12342 int rc, length, status = 0;
12343 uint32_t shdr_status, shdr_add_status;
12344 union lpfc_sli4_cfg_shdr *shdr;
12345 uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz;
12346 struct dma_address *page;
12347
12348 /* sanity check on queue memory */
12349 if (!wq || !cq)
12350 return -ENODEV;
12351 if (!phba->sli4_hba.pc_sli4_params.supported)
12352 hw_page_size = SLI4_PAGE_SIZE;
12353
12354 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
12355 if (!mbox)
12356 return -ENOMEM;
12357 length = (sizeof(struct lpfc_mbx_wq_create) -
12358 sizeof(struct lpfc_sli4_cfg_mhdr));
12359 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE,
12360 LPFC_MBOX_OPCODE_FCOE_WQ_CREATE,
12361 length, LPFC_SLI4_MBX_EMBED);
12362 wq_create = &mbox->u.mqe.un.wq_create;
12363 shdr = (union lpfc_sli4_cfg_shdr *) &wq_create->header.cfg_shdr;
12364 bf_set(lpfc_mbx_wq_create_num_pages, &wq_create->u.request,
12365 wq->page_count);
12366 bf_set(lpfc_mbx_wq_create_cq_id, &wq_create->u.request,
12367 cq->queue_id);
12368 bf_set(lpfc_mbox_hdr_version, &shdr->request,
12369 phba->sli4_hba.pc_sli4_params.wqv);
12370 if (phba->sli4_hba.pc_sli4_params.wqv == LPFC_Q_CREATE_VERSION_1) {
12371 bf_set(lpfc_mbx_wq_create_wqe_count, &wq_create->u.request_1,
12372 wq->entry_count);
12373 switch (wq->entry_size) {
12374 default:
12375 case 64:
12376 bf_set(lpfc_mbx_wq_create_wqe_size,
12377 &wq_create->u.request_1,
12378 LPFC_WQ_WQE_SIZE_64);
12379 break;
12380 case 128:
12381 bf_set(lpfc_mbx_wq_create_wqe_size,
12382 &wq_create->u.request_1,
12383 LPFC_WQ_WQE_SIZE_128);
12384 break;
12385 }
12386 bf_set(lpfc_mbx_wq_create_page_size, &wq_create->u.request_1,
12387 (PAGE_SIZE/SLI4_PAGE_SIZE));
12388 page = wq_create->u.request_1.page;
12389 } else {
12390 page = wq_create->u.request.page;
12391 }
12392 list_for_each_entry(dmabuf, &wq->page_list, list) {
12393 memset(dmabuf->virt, 0, hw_page_size);
12394 page[dmabuf->buffer_tag].addr_lo = putPaddrLow(dmabuf->phys);
12395 page[dmabuf->buffer_tag].addr_hi = putPaddrHigh(dmabuf->phys);
12396 }
12397 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
12398 /* The IOCTL status is embedded in the mailbox subheader. */
12399 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
12400 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
12401 if (shdr_status || shdr_add_status || rc) {
12402 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
12403 "2503 WQ_CREATE mailbox failed with "
12404 "status x%x add_status x%x, mbx status x%x\n",
12405 shdr_status, shdr_add_status, rc);
12406 status = -ENXIO;
12407 goto out;
12408 }
12409 wq->queue_id = bf_get(lpfc_mbx_wq_create_q_id, &wq_create->u.response);
12410 if (wq->queue_id == 0xFFFF) {
12411 status = -ENXIO;
12412 goto out;
12413 }
12414 wq->type = LPFC_WQ;
12415 wq->assoc_qid = cq->queue_id;
12416 wq->subtype = subtype;
12417 wq->host_index = 0;
12418 wq->hba_index = 0;
12419 wq->entry_repost = LPFC_RELEASE_NOTIFICATION_INTERVAL;
12420
12421 /* link the wq onto the parent cq child list */
12422 list_add_tail(&wq->list, &cq->child_list);
12423 out:
12424 mempool_free(mbox, phba->mbox_mem_pool);
12425 return status;
12426 }
12427
12428 /**
12429 * lpfc_rq_adjust_repost - Adjust entry_repost for an RQ
12430 * @phba: HBA structure that indicates port to create a queue on.
12431 * @rq: The queue structure to use for the receive queue.
12432 * @qno: The associated HBQ number
12433 *
12434 *
12435 * For SLI4 we need to adjust the RQ repost value based on
12436 * the number of buffers that are initially posted to the RQ.
12437 */
12438 void
12439 lpfc_rq_adjust_repost(struct lpfc_hba *phba, struct lpfc_queue *rq, int qno)
12440 {
12441 uint32_t cnt;
12442
12443 /* sanity check on queue memory */
12444 if (!rq)
12445 return;
12446 cnt = lpfc_hbq_defs[qno]->entry_count;
12447
12448 /* Recalc repost for RQs based on buffers initially posted */
12449 cnt = (cnt >> 3);
12450 if (cnt < LPFC_QUEUE_MIN_REPOST)
12451 cnt = LPFC_QUEUE_MIN_REPOST;
12452
12453 rq->entry_repost = cnt;
12454 }
12455
12456 /**
12457 * lpfc_rq_create - Create a Receive Queue on the HBA
12458 * @phba: HBA structure that indicates port to create a queue on.
12459 * @hrq: The queue structure to use to create the header receive queue.
12460 * @drq: The queue structure to use to create the data receive queue.
12461 * @cq: The completion queue to bind this work queue to.
12462 *
12463 * This function creates a receive buffer queue pair , as detailed in @hrq and
12464 * @drq, on a port, described by @phba by sending a RQ_CREATE mailbox command
12465 * to the HBA.
12466 *
12467 * The @phba struct is used to send mailbox command to HBA. The @drq and @hrq
12468 * struct is used to get the entry count that is necessary to determine the
12469 * number of pages to use for this queue. The @cq is used to indicate which
12470 * completion queue to bind received buffers that are posted to these queues to.
12471 * This function will send the RQ_CREATE mailbox command to the HBA to setup the
12472 * receive queue pair. This function is asynchronous and will wait for the
12473 * mailbox command to finish before continuing.
12474 *
12475 * On success this function will return a zero. If unable to allocate enough
12476 * memory this function will return -ENOMEM. If the queue create mailbox command
12477 * fails this function will return -ENXIO.
12478 **/
12479 uint32_t
12480 lpfc_rq_create(struct lpfc_hba *phba, struct lpfc_queue *hrq,
12481 struct lpfc_queue *drq, struct lpfc_queue *cq, uint32_t subtype)
12482 {
12483 struct lpfc_mbx_rq_create *rq_create;
12484 struct lpfc_dmabuf *dmabuf;
12485 LPFC_MBOXQ_t *mbox;
12486 int rc, length, status = 0;
12487 uint32_t shdr_status, shdr_add_status;
12488 union lpfc_sli4_cfg_shdr *shdr;
12489 uint32_t hw_page_size = phba->sli4_hba.pc_sli4_params.if_page_sz;
12490
12491 /* sanity check on queue memory */
12492 if (!hrq || !drq || !cq)
12493 return -ENODEV;
12494 if (!phba->sli4_hba.pc_sli4_params.supported)
12495 hw_page_size = SLI4_PAGE_SIZE;
12496
12497 if (hrq->entry_count != drq->entry_count)
12498 return -EINVAL;
12499 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
12500 if (!mbox)
12501 return -ENOMEM;
12502 length = (sizeof(struct lpfc_mbx_rq_create) -
12503 sizeof(struct lpfc_sli4_cfg_mhdr));
12504 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE,
12505 LPFC_MBOX_OPCODE_FCOE_RQ_CREATE,
12506 length, LPFC_SLI4_MBX_EMBED);
12507 rq_create = &mbox->u.mqe.un.rq_create;
12508 shdr = (union lpfc_sli4_cfg_shdr *) &rq_create->header.cfg_shdr;
12509 bf_set(lpfc_mbox_hdr_version, &shdr->request,
12510 phba->sli4_hba.pc_sli4_params.rqv);
12511 if (phba->sli4_hba.pc_sli4_params.rqv == LPFC_Q_CREATE_VERSION_1) {
12512 bf_set(lpfc_rq_context_rqe_count_1,
12513 &rq_create->u.request.context,
12514 hrq->entry_count);
12515 rq_create->u.request.context.buffer_size = LPFC_HDR_BUF_SIZE;
12516 bf_set(lpfc_rq_context_rqe_size,
12517 &rq_create->u.request.context,
12518 LPFC_RQE_SIZE_8);
12519 bf_set(lpfc_rq_context_page_size,
12520 &rq_create->u.request.context,
12521 (PAGE_SIZE/SLI4_PAGE_SIZE));
12522 } else {
12523 switch (hrq->entry_count) {
12524 default:
12525 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
12526 "2535 Unsupported RQ count. (%d)\n",
12527 hrq->entry_count);
12528 if (hrq->entry_count < 512)
12529 return -EINVAL;
12530 /* otherwise default to smallest count (drop through) */
12531 case 512:
12532 bf_set(lpfc_rq_context_rqe_count,
12533 &rq_create->u.request.context,
12534 LPFC_RQ_RING_SIZE_512);
12535 break;
12536 case 1024:
12537 bf_set(lpfc_rq_context_rqe_count,
12538 &rq_create->u.request.context,
12539 LPFC_RQ_RING_SIZE_1024);
12540 break;
12541 case 2048:
12542 bf_set(lpfc_rq_context_rqe_count,
12543 &rq_create->u.request.context,
12544 LPFC_RQ_RING_SIZE_2048);
12545 break;
12546 case 4096:
12547 bf_set(lpfc_rq_context_rqe_count,
12548 &rq_create->u.request.context,
12549 LPFC_RQ_RING_SIZE_4096);
12550 break;
12551 }
12552 bf_set(lpfc_rq_context_buf_size, &rq_create->u.request.context,
12553 LPFC_HDR_BUF_SIZE);
12554 }
12555 bf_set(lpfc_rq_context_cq_id, &rq_create->u.request.context,
12556 cq->queue_id);
12557 bf_set(lpfc_mbx_rq_create_num_pages, &rq_create->u.request,
12558 hrq->page_count);
12559 list_for_each_entry(dmabuf, &hrq->page_list, list) {
12560 memset(dmabuf->virt, 0, hw_page_size);
12561 rq_create->u.request.page[dmabuf->buffer_tag].addr_lo =
12562 putPaddrLow(dmabuf->phys);
12563 rq_create->u.request.page[dmabuf->buffer_tag].addr_hi =
12564 putPaddrHigh(dmabuf->phys);
12565 }
12566 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
12567 /* The IOCTL status is embedded in the mailbox subheader. */
12568 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
12569 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
12570 if (shdr_status || shdr_add_status || rc) {
12571 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
12572 "2504 RQ_CREATE mailbox failed with "
12573 "status x%x add_status x%x, mbx status x%x\n",
12574 shdr_status, shdr_add_status, rc);
12575 status = -ENXIO;
12576 goto out;
12577 }
12578 hrq->queue_id = bf_get(lpfc_mbx_rq_create_q_id, &rq_create->u.response);
12579 if (hrq->queue_id == 0xFFFF) {
12580 status = -ENXIO;
12581 goto out;
12582 }
12583 hrq->type = LPFC_HRQ;
12584 hrq->assoc_qid = cq->queue_id;
12585 hrq->subtype = subtype;
12586 hrq->host_index = 0;
12587 hrq->hba_index = 0;
12588
12589 /* now create the data queue */
12590 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE,
12591 LPFC_MBOX_OPCODE_FCOE_RQ_CREATE,
12592 length, LPFC_SLI4_MBX_EMBED);
12593 bf_set(lpfc_mbox_hdr_version, &shdr->request,
12594 phba->sli4_hba.pc_sli4_params.rqv);
12595 if (phba->sli4_hba.pc_sli4_params.rqv == LPFC_Q_CREATE_VERSION_1) {
12596 bf_set(lpfc_rq_context_rqe_count_1,
12597 &rq_create->u.request.context, hrq->entry_count);
12598 rq_create->u.request.context.buffer_size = LPFC_DATA_BUF_SIZE;
12599 bf_set(lpfc_rq_context_rqe_size, &rq_create->u.request.context,
12600 LPFC_RQE_SIZE_8);
12601 bf_set(lpfc_rq_context_page_size, &rq_create->u.request.context,
12602 (PAGE_SIZE/SLI4_PAGE_SIZE));
12603 } else {
12604 switch (drq->entry_count) {
12605 default:
12606 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
12607 "2536 Unsupported RQ count. (%d)\n",
12608 drq->entry_count);
12609 if (drq->entry_count < 512)
12610 return -EINVAL;
12611 /* otherwise default to smallest count (drop through) */
12612 case 512:
12613 bf_set(lpfc_rq_context_rqe_count,
12614 &rq_create->u.request.context,
12615 LPFC_RQ_RING_SIZE_512);
12616 break;
12617 case 1024:
12618 bf_set(lpfc_rq_context_rqe_count,
12619 &rq_create->u.request.context,
12620 LPFC_RQ_RING_SIZE_1024);
12621 break;
12622 case 2048:
12623 bf_set(lpfc_rq_context_rqe_count,
12624 &rq_create->u.request.context,
12625 LPFC_RQ_RING_SIZE_2048);
12626 break;
12627 case 4096:
12628 bf_set(lpfc_rq_context_rqe_count,
12629 &rq_create->u.request.context,
12630 LPFC_RQ_RING_SIZE_4096);
12631 break;
12632 }
12633 bf_set(lpfc_rq_context_buf_size, &rq_create->u.request.context,
12634 LPFC_DATA_BUF_SIZE);
12635 }
12636 bf_set(lpfc_rq_context_cq_id, &rq_create->u.request.context,
12637 cq->queue_id);
12638 bf_set(lpfc_mbx_rq_create_num_pages, &rq_create->u.request,
12639 drq->page_count);
12640 list_for_each_entry(dmabuf, &drq->page_list, list) {
12641 rq_create->u.request.page[dmabuf->buffer_tag].addr_lo =
12642 putPaddrLow(dmabuf->phys);
12643 rq_create->u.request.page[dmabuf->buffer_tag].addr_hi =
12644 putPaddrHigh(dmabuf->phys);
12645 }
12646 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
12647 /* The IOCTL status is embedded in the mailbox subheader. */
12648 shdr = (union lpfc_sli4_cfg_shdr *) &rq_create->header.cfg_shdr;
12649 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
12650 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
12651 if (shdr_status || shdr_add_status || rc) {
12652 status = -ENXIO;
12653 goto out;
12654 }
12655 drq->queue_id = bf_get(lpfc_mbx_rq_create_q_id, &rq_create->u.response);
12656 if (drq->queue_id == 0xFFFF) {
12657 status = -ENXIO;
12658 goto out;
12659 }
12660 drq->type = LPFC_DRQ;
12661 drq->assoc_qid = cq->queue_id;
12662 drq->subtype = subtype;
12663 drq->host_index = 0;
12664 drq->hba_index = 0;
12665
12666 /* link the header and data RQs onto the parent cq child list */
12667 list_add_tail(&hrq->list, &cq->child_list);
12668 list_add_tail(&drq->list, &cq->child_list);
12669
12670 out:
12671 mempool_free(mbox, phba->mbox_mem_pool);
12672 return status;
12673 }
12674
12675 /**
12676 * lpfc_eq_destroy - Destroy an event Queue on the HBA
12677 * @eq: The queue structure associated with the queue to destroy.
12678 *
12679 * This function destroys a queue, as detailed in @eq by sending an mailbox
12680 * command, specific to the type of queue, to the HBA.
12681 *
12682 * The @eq struct is used to get the queue ID of the queue to destroy.
12683 *
12684 * On success this function will return a zero. If the queue destroy mailbox
12685 * command fails this function will return -ENXIO.
12686 **/
12687 uint32_t
12688 lpfc_eq_destroy(struct lpfc_hba *phba, struct lpfc_queue *eq)
12689 {
12690 LPFC_MBOXQ_t *mbox;
12691 int rc, length, status = 0;
12692 uint32_t shdr_status, shdr_add_status;
12693 union lpfc_sli4_cfg_shdr *shdr;
12694
12695 /* sanity check on queue memory */
12696 if (!eq)
12697 return -ENODEV;
12698 mbox = mempool_alloc(eq->phba->mbox_mem_pool, GFP_KERNEL);
12699 if (!mbox)
12700 return -ENOMEM;
12701 length = (sizeof(struct lpfc_mbx_eq_destroy) -
12702 sizeof(struct lpfc_sli4_cfg_mhdr));
12703 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
12704 LPFC_MBOX_OPCODE_EQ_DESTROY,
12705 length, LPFC_SLI4_MBX_EMBED);
12706 bf_set(lpfc_mbx_eq_destroy_q_id, &mbox->u.mqe.un.eq_destroy.u.request,
12707 eq->queue_id);
12708 mbox->vport = eq->phba->pport;
12709 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
12710
12711 rc = lpfc_sli_issue_mbox(eq->phba, mbox, MBX_POLL);
12712 /* The IOCTL status is embedded in the mailbox subheader. */
12713 shdr = (union lpfc_sli4_cfg_shdr *)
12714 &mbox->u.mqe.un.eq_destroy.header.cfg_shdr;
12715 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
12716 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
12717 if (shdr_status || shdr_add_status || rc) {
12718 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
12719 "2505 EQ_DESTROY mailbox failed with "
12720 "status x%x add_status x%x, mbx status x%x\n",
12721 shdr_status, shdr_add_status, rc);
12722 status = -ENXIO;
12723 }
12724
12725 /* Remove eq from any list */
12726 list_del_init(&eq->list);
12727 mempool_free(mbox, eq->phba->mbox_mem_pool);
12728 return status;
12729 }
12730
12731 /**
12732 * lpfc_cq_destroy - Destroy a Completion Queue on the HBA
12733 * @cq: The queue structure associated with the queue to destroy.
12734 *
12735 * This function destroys a queue, as detailed in @cq by sending an mailbox
12736 * command, specific to the type of queue, to the HBA.
12737 *
12738 * The @cq struct is used to get the queue ID of the queue to destroy.
12739 *
12740 * On success this function will return a zero. If the queue destroy mailbox
12741 * command fails this function will return -ENXIO.
12742 **/
12743 uint32_t
12744 lpfc_cq_destroy(struct lpfc_hba *phba, struct lpfc_queue *cq)
12745 {
12746 LPFC_MBOXQ_t *mbox;
12747 int rc, length, status = 0;
12748 uint32_t shdr_status, shdr_add_status;
12749 union lpfc_sli4_cfg_shdr *shdr;
12750
12751 /* sanity check on queue memory */
12752 if (!cq)
12753 return -ENODEV;
12754 mbox = mempool_alloc(cq->phba->mbox_mem_pool, GFP_KERNEL);
12755 if (!mbox)
12756 return -ENOMEM;
12757 length = (sizeof(struct lpfc_mbx_cq_destroy) -
12758 sizeof(struct lpfc_sli4_cfg_mhdr));
12759 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
12760 LPFC_MBOX_OPCODE_CQ_DESTROY,
12761 length, LPFC_SLI4_MBX_EMBED);
12762 bf_set(lpfc_mbx_cq_destroy_q_id, &mbox->u.mqe.un.cq_destroy.u.request,
12763 cq->queue_id);
12764 mbox->vport = cq->phba->pport;
12765 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
12766 rc = lpfc_sli_issue_mbox(cq->phba, mbox, MBX_POLL);
12767 /* The IOCTL status is embedded in the mailbox subheader. */
12768 shdr = (union lpfc_sli4_cfg_shdr *)
12769 &mbox->u.mqe.un.wq_create.header.cfg_shdr;
12770 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
12771 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
12772 if (shdr_status || shdr_add_status || rc) {
12773 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
12774 "2506 CQ_DESTROY mailbox failed with "
12775 "status x%x add_status x%x, mbx status x%x\n",
12776 shdr_status, shdr_add_status, rc);
12777 status = -ENXIO;
12778 }
12779 /* Remove cq from any list */
12780 list_del_init(&cq->list);
12781 mempool_free(mbox, cq->phba->mbox_mem_pool);
12782 return status;
12783 }
12784
12785 /**
12786 * lpfc_mq_destroy - Destroy a Mailbox Queue on the HBA
12787 * @qm: The queue structure associated with the queue to destroy.
12788 *
12789 * This function destroys a queue, as detailed in @mq by sending an mailbox
12790 * command, specific to the type of queue, to the HBA.
12791 *
12792 * The @mq struct is used to get the queue ID of the queue to destroy.
12793 *
12794 * On success this function will return a zero. If the queue destroy mailbox
12795 * command fails this function will return -ENXIO.
12796 **/
12797 uint32_t
12798 lpfc_mq_destroy(struct lpfc_hba *phba, struct lpfc_queue *mq)
12799 {
12800 LPFC_MBOXQ_t *mbox;
12801 int rc, length, status = 0;
12802 uint32_t shdr_status, shdr_add_status;
12803 union lpfc_sli4_cfg_shdr *shdr;
12804
12805 /* sanity check on queue memory */
12806 if (!mq)
12807 return -ENODEV;
12808 mbox = mempool_alloc(mq->phba->mbox_mem_pool, GFP_KERNEL);
12809 if (!mbox)
12810 return -ENOMEM;
12811 length = (sizeof(struct lpfc_mbx_mq_destroy) -
12812 sizeof(struct lpfc_sli4_cfg_mhdr));
12813 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
12814 LPFC_MBOX_OPCODE_MQ_DESTROY,
12815 length, LPFC_SLI4_MBX_EMBED);
12816 bf_set(lpfc_mbx_mq_destroy_q_id, &mbox->u.mqe.un.mq_destroy.u.request,
12817 mq->queue_id);
12818 mbox->vport = mq->phba->pport;
12819 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
12820 rc = lpfc_sli_issue_mbox(mq->phba, mbox, MBX_POLL);
12821 /* The IOCTL status is embedded in the mailbox subheader. */
12822 shdr = (union lpfc_sli4_cfg_shdr *)
12823 &mbox->u.mqe.un.mq_destroy.header.cfg_shdr;
12824 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
12825 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
12826 if (shdr_status || shdr_add_status || rc) {
12827 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
12828 "2507 MQ_DESTROY mailbox failed with "
12829 "status x%x add_status x%x, mbx status x%x\n",
12830 shdr_status, shdr_add_status, rc);
12831 status = -ENXIO;
12832 }
12833 /* Remove mq from any list */
12834 list_del_init(&mq->list);
12835 mempool_free(mbox, mq->phba->mbox_mem_pool);
12836 return status;
12837 }
12838
12839 /**
12840 * lpfc_wq_destroy - Destroy a Work Queue on the HBA
12841 * @wq: The queue structure associated with the queue to destroy.
12842 *
12843 * This function destroys a queue, as detailed in @wq by sending an mailbox
12844 * command, specific to the type of queue, to the HBA.
12845 *
12846 * The @wq struct is used to get the queue ID of the queue to destroy.
12847 *
12848 * On success this function will return a zero. If the queue destroy mailbox
12849 * command fails this function will return -ENXIO.
12850 **/
12851 uint32_t
12852 lpfc_wq_destroy(struct lpfc_hba *phba, struct lpfc_queue *wq)
12853 {
12854 LPFC_MBOXQ_t *mbox;
12855 int rc, length, status = 0;
12856 uint32_t shdr_status, shdr_add_status;
12857 union lpfc_sli4_cfg_shdr *shdr;
12858
12859 /* sanity check on queue memory */
12860 if (!wq)
12861 return -ENODEV;
12862 mbox = mempool_alloc(wq->phba->mbox_mem_pool, GFP_KERNEL);
12863 if (!mbox)
12864 return -ENOMEM;
12865 length = (sizeof(struct lpfc_mbx_wq_destroy) -
12866 sizeof(struct lpfc_sli4_cfg_mhdr));
12867 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE,
12868 LPFC_MBOX_OPCODE_FCOE_WQ_DESTROY,
12869 length, LPFC_SLI4_MBX_EMBED);
12870 bf_set(lpfc_mbx_wq_destroy_q_id, &mbox->u.mqe.un.wq_destroy.u.request,
12871 wq->queue_id);
12872 mbox->vport = wq->phba->pport;
12873 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
12874 rc = lpfc_sli_issue_mbox(wq->phba, mbox, MBX_POLL);
12875 shdr = (union lpfc_sli4_cfg_shdr *)
12876 &mbox->u.mqe.un.wq_destroy.header.cfg_shdr;
12877 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
12878 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
12879 if (shdr_status || shdr_add_status || rc) {
12880 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
12881 "2508 WQ_DESTROY mailbox failed with "
12882 "status x%x add_status x%x, mbx status x%x\n",
12883 shdr_status, shdr_add_status, rc);
12884 status = -ENXIO;
12885 }
12886 /* Remove wq from any list */
12887 list_del_init(&wq->list);
12888 mempool_free(mbox, wq->phba->mbox_mem_pool);
12889 return status;
12890 }
12891
12892 /**
12893 * lpfc_rq_destroy - Destroy a Receive Queue on the HBA
12894 * @rq: The queue structure associated with the queue to destroy.
12895 *
12896 * This function destroys a queue, as detailed in @rq by sending an mailbox
12897 * command, specific to the type of queue, to the HBA.
12898 *
12899 * The @rq struct is used to get the queue ID of the queue to destroy.
12900 *
12901 * On success this function will return a zero. If the queue destroy mailbox
12902 * command fails this function will return -ENXIO.
12903 **/
12904 uint32_t
12905 lpfc_rq_destroy(struct lpfc_hba *phba, struct lpfc_queue *hrq,
12906 struct lpfc_queue *drq)
12907 {
12908 LPFC_MBOXQ_t *mbox;
12909 int rc, length, status = 0;
12910 uint32_t shdr_status, shdr_add_status;
12911 union lpfc_sli4_cfg_shdr *shdr;
12912
12913 /* sanity check on queue memory */
12914 if (!hrq || !drq)
12915 return -ENODEV;
12916 mbox = mempool_alloc(hrq->phba->mbox_mem_pool, GFP_KERNEL);
12917 if (!mbox)
12918 return -ENOMEM;
12919 length = (sizeof(struct lpfc_mbx_rq_destroy) -
12920 sizeof(struct lpfc_sli4_cfg_mhdr));
12921 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE,
12922 LPFC_MBOX_OPCODE_FCOE_RQ_DESTROY,
12923 length, LPFC_SLI4_MBX_EMBED);
12924 bf_set(lpfc_mbx_rq_destroy_q_id, &mbox->u.mqe.un.rq_destroy.u.request,
12925 hrq->queue_id);
12926 mbox->vport = hrq->phba->pport;
12927 mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
12928 rc = lpfc_sli_issue_mbox(hrq->phba, mbox, MBX_POLL);
12929 /* The IOCTL status is embedded in the mailbox subheader. */
12930 shdr = (union lpfc_sli4_cfg_shdr *)
12931 &mbox->u.mqe.un.rq_destroy.header.cfg_shdr;
12932 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
12933 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
12934 if (shdr_status || shdr_add_status || rc) {
12935 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
12936 "2509 RQ_DESTROY mailbox failed with "
12937 "status x%x add_status x%x, mbx status x%x\n",
12938 shdr_status, shdr_add_status, rc);
12939 if (rc != MBX_TIMEOUT)
12940 mempool_free(mbox, hrq->phba->mbox_mem_pool);
12941 return -ENXIO;
12942 }
12943 bf_set(lpfc_mbx_rq_destroy_q_id, &mbox->u.mqe.un.rq_destroy.u.request,
12944 drq->queue_id);
12945 rc = lpfc_sli_issue_mbox(drq->phba, mbox, MBX_POLL);
12946 shdr = (union lpfc_sli4_cfg_shdr *)
12947 &mbox->u.mqe.un.rq_destroy.header.cfg_shdr;
12948 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
12949 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
12950 if (shdr_status || shdr_add_status || rc) {
12951 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
12952 "2510 RQ_DESTROY mailbox failed with "
12953 "status x%x add_status x%x, mbx status x%x\n",
12954 shdr_status, shdr_add_status, rc);
12955 status = -ENXIO;
12956 }
12957 list_del_init(&hrq->list);
12958 list_del_init(&drq->list);
12959 mempool_free(mbox, hrq->phba->mbox_mem_pool);
12960 return status;
12961 }
12962
12963 /**
12964 * lpfc_sli4_post_sgl - Post scatter gather list for an XRI to HBA
12965 * @phba: The virtual port for which this call being executed.
12966 * @pdma_phys_addr0: Physical address of the 1st SGL page.
12967 * @pdma_phys_addr1: Physical address of the 2nd SGL page.
12968 * @xritag: the xritag that ties this io to the SGL pages.
12969 *
12970 * This routine will post the sgl pages for the IO that has the xritag
12971 * that is in the iocbq structure. The xritag is assigned during iocbq
12972 * creation and persists for as long as the driver is loaded.
12973 * if the caller has fewer than 256 scatter gather segments to map then
12974 * pdma_phys_addr1 should be 0.
12975 * If the caller needs to map more than 256 scatter gather segment then
12976 * pdma_phys_addr1 should be a valid physical address.
12977 * physical address for SGLs must be 64 byte aligned.
12978 * If you are going to map 2 SGL's then the first one must have 256 entries
12979 * the second sgl can have between 1 and 256 entries.
12980 *
12981 * Return codes:
12982 * 0 - Success
12983 * -ENXIO, -ENOMEM - Failure
12984 **/
12985 int
12986 lpfc_sli4_post_sgl(struct lpfc_hba *phba,
12987 dma_addr_t pdma_phys_addr0,
12988 dma_addr_t pdma_phys_addr1,
12989 uint16_t xritag)
12990 {
12991 struct lpfc_mbx_post_sgl_pages *post_sgl_pages;
12992 LPFC_MBOXQ_t *mbox;
12993 int rc;
12994 uint32_t shdr_status, shdr_add_status;
12995 uint32_t mbox_tmo;
12996 union lpfc_sli4_cfg_shdr *shdr;
12997
12998 if (xritag == NO_XRI) {
12999 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
13000 "0364 Invalid param:\n");
13001 return -EINVAL;
13002 }
13003
13004 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
13005 if (!mbox)
13006 return -ENOMEM;
13007
13008 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE,
13009 LPFC_MBOX_OPCODE_FCOE_POST_SGL_PAGES,
13010 sizeof(struct lpfc_mbx_post_sgl_pages) -
13011 sizeof(struct lpfc_sli4_cfg_mhdr), LPFC_SLI4_MBX_EMBED);
13012
13013 post_sgl_pages = (struct lpfc_mbx_post_sgl_pages *)
13014 &mbox->u.mqe.un.post_sgl_pages;
13015 bf_set(lpfc_post_sgl_pages_xri, post_sgl_pages, xritag);
13016 bf_set(lpfc_post_sgl_pages_xricnt, post_sgl_pages, 1);
13017
13018 post_sgl_pages->sgl_pg_pairs[0].sgl_pg0_addr_lo =
13019 cpu_to_le32(putPaddrLow(pdma_phys_addr0));
13020 post_sgl_pages->sgl_pg_pairs[0].sgl_pg0_addr_hi =
13021 cpu_to_le32(putPaddrHigh(pdma_phys_addr0));
13022
13023 post_sgl_pages->sgl_pg_pairs[0].sgl_pg1_addr_lo =
13024 cpu_to_le32(putPaddrLow(pdma_phys_addr1));
13025 post_sgl_pages->sgl_pg_pairs[0].sgl_pg1_addr_hi =
13026 cpu_to_le32(putPaddrHigh(pdma_phys_addr1));
13027 if (!phba->sli4_hba.intr_enable)
13028 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
13029 else {
13030 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox);
13031 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo);
13032 }
13033 /* The IOCTL status is embedded in the mailbox subheader. */
13034 shdr = (union lpfc_sli4_cfg_shdr *) &post_sgl_pages->header.cfg_shdr;
13035 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
13036 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
13037 if (rc != MBX_TIMEOUT)
13038 mempool_free(mbox, phba->mbox_mem_pool);
13039 if (shdr_status || shdr_add_status || rc) {
13040 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
13041 "2511 POST_SGL mailbox failed with "
13042 "status x%x add_status x%x, mbx status x%x\n",
13043 shdr_status, shdr_add_status, rc);
13044 rc = -ENXIO;
13045 }
13046 return 0;
13047 }
13048
13049 /**
13050 * lpfc_sli4_alloc_xri - Get an available rpi in the device's range
13051 * @phba: pointer to lpfc hba data structure.
13052 *
13053 * This routine is invoked to post rpi header templates to the
13054 * HBA consistent with the SLI-4 interface spec. This routine
13055 * posts a SLI4_PAGE_SIZE memory region to the port to hold up to
13056 * SLI4_PAGE_SIZE modulo 64 rpi context headers.
13057 *
13058 * Returns
13059 * A nonzero rpi defined as rpi_base <= rpi < max_rpi if successful
13060 * LPFC_RPI_ALLOC_ERROR if no rpis are available.
13061 **/
13062 uint16_t
13063 lpfc_sli4_alloc_xri(struct lpfc_hba *phba)
13064 {
13065 unsigned long xri;
13066
13067 /*
13068 * Fetch the next logical xri. Because this index is logical,
13069 * the driver starts at 0 each time.
13070 */
13071 spin_lock_irq(&phba->hbalock);
13072 xri = find_next_zero_bit(phba->sli4_hba.xri_bmask,
13073 phba->sli4_hba.max_cfg_param.max_xri, 0);
13074 if (xri >= phba->sli4_hba.max_cfg_param.max_xri) {
13075 spin_unlock_irq(&phba->hbalock);
13076 return NO_XRI;
13077 } else {
13078 set_bit(xri, phba->sli4_hba.xri_bmask);
13079 phba->sli4_hba.max_cfg_param.xri_used++;
13080 phba->sli4_hba.xri_count++;
13081 }
13082
13083 spin_unlock_irq(&phba->hbalock);
13084 return xri;
13085 }
13086
13087 /**
13088 * lpfc_sli4_free_xri - Release an xri for reuse.
13089 * @phba: pointer to lpfc hba data structure.
13090 *
13091 * This routine is invoked to release an xri to the pool of
13092 * available rpis maintained by the driver.
13093 **/
13094 void
13095 __lpfc_sli4_free_xri(struct lpfc_hba *phba, int xri)
13096 {
13097 if (test_and_clear_bit(xri, phba->sli4_hba.xri_bmask)) {
13098 phba->sli4_hba.xri_count--;
13099 phba->sli4_hba.max_cfg_param.xri_used--;
13100 }
13101 }
13102
13103 /**
13104 * lpfc_sli4_free_xri - Release an xri for reuse.
13105 * @phba: pointer to lpfc hba data structure.
13106 *
13107 * This routine is invoked to release an xri to the pool of
13108 * available rpis maintained by the driver.
13109 **/
13110 void
13111 lpfc_sli4_free_xri(struct lpfc_hba *phba, int xri)
13112 {
13113 spin_lock_irq(&phba->hbalock);
13114 __lpfc_sli4_free_xri(phba, xri);
13115 spin_unlock_irq(&phba->hbalock);
13116 }
13117
13118 /**
13119 * lpfc_sli4_next_xritag - Get an xritag for the io
13120 * @phba: Pointer to HBA context object.
13121 *
13122 * This function gets an xritag for the iocb. If there is no unused xritag
13123 * it will return 0xffff.
13124 * The function returns the allocated xritag if successful, else returns zero.
13125 * Zero is not a valid xritag.
13126 * The caller is not required to hold any lock.
13127 **/
13128 uint16_t
13129 lpfc_sli4_next_xritag(struct lpfc_hba *phba)
13130 {
13131 uint16_t xri_index;
13132
13133 xri_index = lpfc_sli4_alloc_xri(phba);
13134 if (xri_index != NO_XRI)
13135 return xri_index;
13136
13137 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
13138 "2004 Failed to allocate XRI.last XRITAG is %d"
13139 " Max XRI is %d, Used XRI is %d\n",
13140 xri_index,
13141 phba->sli4_hba.max_cfg_param.max_xri,
13142 phba->sli4_hba.max_cfg_param.xri_used);
13143 return NO_XRI;
13144 }
13145
13146 /**
13147 * lpfc_sli4_post_els_sgl_list - post a block of ELS sgls to the port.
13148 * @phba: pointer to lpfc hba data structure.
13149 *
13150 * This routine is invoked to post a block of driver's sgl pages to the
13151 * HBA using non-embedded mailbox command. No Lock is held. This routine
13152 * is only called when the driver is loading and after all IO has been
13153 * stopped.
13154 **/
13155 int
13156 lpfc_sli4_post_els_sgl_list(struct lpfc_hba *phba)
13157 {
13158 struct lpfc_sglq *sglq_entry;
13159 struct lpfc_mbx_post_uembed_sgl_page1 *sgl;
13160 struct sgl_page_pairs *sgl_pg_pairs;
13161 void *viraddr;
13162 LPFC_MBOXQ_t *mbox;
13163 uint32_t reqlen, alloclen, pg_pairs;
13164 uint32_t mbox_tmo;
13165 uint16_t xritag_start = 0, lxri = 0;
13166 int els_xri_cnt, rc = 0;
13167 uint32_t shdr_status, shdr_add_status;
13168 union lpfc_sli4_cfg_shdr *shdr;
13169
13170 /* The number of sgls to be posted */
13171 els_xri_cnt = lpfc_sli4_get_els_iocb_cnt(phba);
13172
13173 reqlen = els_xri_cnt * sizeof(struct sgl_page_pairs) +
13174 sizeof(union lpfc_sli4_cfg_shdr) + sizeof(uint32_t);
13175 if (reqlen > SLI4_PAGE_SIZE) {
13176 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
13177 "2559 Block sgl registration required DMA "
13178 "size (%d) great than a page\n", reqlen);
13179 return -ENOMEM;
13180 }
13181 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
13182 if (!mbox)
13183 return -ENOMEM;
13184
13185 /* Allocate DMA memory and set up the non-embedded mailbox command */
13186 alloclen = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE,
13187 LPFC_MBOX_OPCODE_FCOE_POST_SGL_PAGES, reqlen,
13188 LPFC_SLI4_MBX_NEMBED);
13189
13190 if (alloclen < reqlen) {
13191 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
13192 "0285 Allocated DMA memory size (%d) is "
13193 "less than the requested DMA memory "
13194 "size (%d)\n", alloclen, reqlen);
13195 lpfc_sli4_mbox_cmd_free(phba, mbox);
13196 return -ENOMEM;
13197 }
13198 /* Set up the SGL pages in the non-embedded DMA pages */
13199 viraddr = mbox->sge_array->addr[0];
13200 sgl = (struct lpfc_mbx_post_uembed_sgl_page1 *)viraddr;
13201 sgl_pg_pairs = &sgl->sgl_pg_pairs;
13202
13203 for (pg_pairs = 0; pg_pairs < els_xri_cnt; pg_pairs++) {
13204 sglq_entry = phba->sli4_hba.lpfc_els_sgl_array[pg_pairs];
13205
13206 /*
13207 * Assign the sglq a physical xri only if the driver has not
13208 * initialized those resources. A port reset only needs
13209 * the sglq's posted.
13210 */
13211 if (bf_get(lpfc_xri_rsrc_rdy, &phba->sli4_hba.sli4_flags) !=
13212 LPFC_XRI_RSRC_RDY) {
13213 lxri = lpfc_sli4_next_xritag(phba);
13214 if (lxri == NO_XRI) {
13215 lpfc_sli4_mbox_cmd_free(phba, mbox);
13216 return -ENOMEM;
13217 }
13218 sglq_entry->sli4_lxritag = lxri;
13219 sglq_entry->sli4_xritag = phba->sli4_hba.xri_ids[lxri];
13220 }
13221
13222 /* Set up the sge entry */
13223 sgl_pg_pairs->sgl_pg0_addr_lo =
13224 cpu_to_le32(putPaddrLow(sglq_entry->phys));
13225 sgl_pg_pairs->sgl_pg0_addr_hi =
13226 cpu_to_le32(putPaddrHigh(sglq_entry->phys));
13227 sgl_pg_pairs->sgl_pg1_addr_lo =
13228 cpu_to_le32(putPaddrLow(0));
13229 sgl_pg_pairs->sgl_pg1_addr_hi =
13230 cpu_to_le32(putPaddrHigh(0));
13231
13232 /* Keep the first xritag on the list */
13233 if (pg_pairs == 0)
13234 xritag_start = sglq_entry->sli4_xritag;
13235 sgl_pg_pairs++;
13236 }
13237
13238 /* Complete initialization and perform endian conversion. */
13239 bf_set(lpfc_post_sgl_pages_xri, sgl, xritag_start);
13240 bf_set(lpfc_post_sgl_pages_xricnt, sgl, els_xri_cnt);
13241 sgl->word0 = cpu_to_le32(sgl->word0);
13242 if (!phba->sli4_hba.intr_enable)
13243 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
13244 else {
13245 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox);
13246 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo);
13247 }
13248 shdr = (union lpfc_sli4_cfg_shdr *) &sgl->cfg_shdr;
13249 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
13250 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
13251 if (rc != MBX_TIMEOUT)
13252 lpfc_sli4_mbox_cmd_free(phba, mbox);
13253 if (shdr_status || shdr_add_status || rc) {
13254 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
13255 "2513 POST_SGL_BLOCK mailbox command failed "
13256 "status x%x add_status x%x mbx status x%x\n",
13257 shdr_status, shdr_add_status, rc);
13258 rc = -ENXIO;
13259 }
13260
13261 if (rc == 0)
13262 bf_set(lpfc_xri_rsrc_rdy, &phba->sli4_hba.sli4_flags,
13263 LPFC_XRI_RSRC_RDY);
13264 return rc;
13265 }
13266
13267 /**
13268 * lpfc_sli4_post_els_sgl_list_ext - post a block of ELS sgls to the port.
13269 * @phba: pointer to lpfc hba data structure.
13270 *
13271 * This routine is invoked to post a block of driver's sgl pages to the
13272 * HBA using non-embedded mailbox command. No Lock is held. This routine
13273 * is only called when the driver is loading and after all IO has been
13274 * stopped.
13275 **/
13276 int
13277 lpfc_sli4_post_els_sgl_list_ext(struct lpfc_hba *phba)
13278 {
13279 struct lpfc_sglq *sglq_entry;
13280 struct lpfc_mbx_post_uembed_sgl_page1 *sgl;
13281 struct sgl_page_pairs *sgl_pg_pairs;
13282 void *viraddr;
13283 LPFC_MBOXQ_t *mbox;
13284 uint32_t reqlen, alloclen, index;
13285 uint32_t mbox_tmo;
13286 uint16_t rsrc_start, rsrc_size, els_xri_cnt;
13287 uint16_t xritag_start = 0, lxri = 0;
13288 struct lpfc_rsrc_blks *rsrc_blk;
13289 int cnt, ttl_cnt, rc = 0;
13290 int loop_cnt;
13291 uint32_t shdr_status, shdr_add_status;
13292 union lpfc_sli4_cfg_shdr *shdr;
13293
13294 /* The number of sgls to be posted */
13295 els_xri_cnt = lpfc_sli4_get_els_iocb_cnt(phba);
13296
13297 reqlen = els_xri_cnt * sizeof(struct sgl_page_pairs) +
13298 sizeof(union lpfc_sli4_cfg_shdr) + sizeof(uint32_t);
13299 if (reqlen > SLI4_PAGE_SIZE) {
13300 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
13301 "2989 Block sgl registration required DMA "
13302 "size (%d) great than a page\n", reqlen);
13303 return -ENOMEM;
13304 }
13305
13306 cnt = 0;
13307 ttl_cnt = 0;
13308 list_for_each_entry(rsrc_blk, &phba->sli4_hba.lpfc_xri_blk_list,
13309 list) {
13310 rsrc_start = rsrc_blk->rsrc_start;
13311 rsrc_size = rsrc_blk->rsrc_size;
13312
13313 lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
13314 "3014 Working ELS Extent start %d, cnt %d\n",
13315 rsrc_start, rsrc_size);
13316
13317 loop_cnt = min(els_xri_cnt, rsrc_size);
13318 if (ttl_cnt + loop_cnt >= els_xri_cnt) {
13319 loop_cnt = els_xri_cnt - ttl_cnt;
13320 ttl_cnt = els_xri_cnt;
13321 }
13322
13323 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
13324 if (!mbox)
13325 return -ENOMEM;
13326 /*
13327 * Allocate DMA memory and set up the non-embedded mailbox
13328 * command.
13329 */
13330 alloclen = lpfc_sli4_config(phba, mbox,
13331 LPFC_MBOX_SUBSYSTEM_FCOE,
13332 LPFC_MBOX_OPCODE_FCOE_POST_SGL_PAGES,
13333 reqlen, LPFC_SLI4_MBX_NEMBED);
13334 if (alloclen < reqlen) {
13335 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
13336 "2987 Allocated DMA memory size (%d) "
13337 "is less than the requested DMA memory "
13338 "size (%d)\n", alloclen, reqlen);
13339 lpfc_sli4_mbox_cmd_free(phba, mbox);
13340 return -ENOMEM;
13341 }
13342
13343 /* Set up the SGL pages in the non-embedded DMA pages */
13344 viraddr = mbox->sge_array->addr[0];
13345 sgl = (struct lpfc_mbx_post_uembed_sgl_page1 *)viraddr;
13346 sgl_pg_pairs = &sgl->sgl_pg_pairs;
13347
13348 /*
13349 * The starting resource may not begin at zero. Control
13350 * the loop variants via the block resource parameters,
13351 * but handle the sge pointers with a zero-based index
13352 * that doesn't get reset per loop pass.
13353 */
13354 for (index = rsrc_start;
13355 index < rsrc_start + loop_cnt;
13356 index++) {
13357 sglq_entry = phba->sli4_hba.lpfc_els_sgl_array[cnt];
13358
13359 /*
13360 * Assign the sglq a physical xri only if the driver
13361 * has not initialized those resources. A port reset
13362 * only needs the sglq's posted.
13363 */
13364 if (bf_get(lpfc_xri_rsrc_rdy,
13365 &phba->sli4_hba.sli4_flags) !=
13366 LPFC_XRI_RSRC_RDY) {
13367 lxri = lpfc_sli4_next_xritag(phba);
13368 if (lxri == NO_XRI) {
13369 lpfc_sli4_mbox_cmd_free(phba, mbox);
13370 rc = -ENOMEM;
13371 goto err_exit;
13372 }
13373 sglq_entry->sli4_lxritag = lxri;
13374 sglq_entry->sli4_xritag =
13375 phba->sli4_hba.xri_ids[lxri];
13376 }
13377
13378 /* Set up the sge entry */
13379 sgl_pg_pairs->sgl_pg0_addr_lo =
13380 cpu_to_le32(putPaddrLow(sglq_entry->phys));
13381 sgl_pg_pairs->sgl_pg0_addr_hi =
13382 cpu_to_le32(putPaddrHigh(sglq_entry->phys));
13383 sgl_pg_pairs->sgl_pg1_addr_lo =
13384 cpu_to_le32(putPaddrLow(0));
13385 sgl_pg_pairs->sgl_pg1_addr_hi =
13386 cpu_to_le32(putPaddrHigh(0));
13387
13388 /* Track the starting physical XRI for the mailbox. */
13389 if (index == rsrc_start)
13390 xritag_start = sglq_entry->sli4_xritag;
13391 sgl_pg_pairs++;
13392 cnt++;
13393 }
13394
13395 /* Complete initialization and perform endian conversion. */
13396 rsrc_blk->rsrc_used += loop_cnt;
13397 bf_set(lpfc_post_sgl_pages_xri, sgl, xritag_start);
13398 bf_set(lpfc_post_sgl_pages_xricnt, sgl, loop_cnt);
13399 sgl->word0 = cpu_to_le32(sgl->word0);
13400
13401 lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
13402 "3015 Post ELS Extent SGL, start %d, "
13403 "cnt %d, used %d\n",
13404 xritag_start, loop_cnt, rsrc_blk->rsrc_used);
13405 if (!phba->sli4_hba.intr_enable)
13406 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
13407 else {
13408 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox);
13409 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo);
13410 }
13411 shdr = (union lpfc_sli4_cfg_shdr *) &sgl->cfg_shdr;
13412 shdr_status = bf_get(lpfc_mbox_hdr_status,
13413 &shdr->response);
13414 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status,
13415 &shdr->response);
13416 if (rc != MBX_TIMEOUT)
13417 lpfc_sli4_mbox_cmd_free(phba, mbox);
13418 if (shdr_status || shdr_add_status || rc) {
13419 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
13420 "2988 POST_SGL_BLOCK mailbox "
13421 "command failed status x%x "
13422 "add_status x%x mbx status x%x\n",
13423 shdr_status, shdr_add_status, rc);
13424 rc = -ENXIO;
13425 goto err_exit;
13426 }
13427 if (ttl_cnt >= els_xri_cnt)
13428 break;
13429 }
13430
13431 err_exit:
13432 if (rc == 0)
13433 bf_set(lpfc_xri_rsrc_rdy, &phba->sli4_hba.sli4_flags,
13434 LPFC_XRI_RSRC_RDY);
13435 return rc;
13436 }
13437
13438 /**
13439 * lpfc_sli4_post_scsi_sgl_block - post a block of scsi sgl list to firmware
13440 * @phba: pointer to lpfc hba data structure.
13441 * @sblist: pointer to scsi buffer list.
13442 * @count: number of scsi buffers on the list.
13443 *
13444 * This routine is invoked to post a block of @count scsi sgl pages from a
13445 * SCSI buffer list @sblist to the HBA using non-embedded mailbox command.
13446 * No Lock is held.
13447 *
13448 **/
13449 int
13450 lpfc_sli4_post_scsi_sgl_block(struct lpfc_hba *phba, struct list_head *sblist,
13451 int cnt)
13452 {
13453 struct lpfc_scsi_buf *psb;
13454 struct lpfc_mbx_post_uembed_sgl_page1 *sgl;
13455 struct sgl_page_pairs *sgl_pg_pairs;
13456 void *viraddr;
13457 LPFC_MBOXQ_t *mbox;
13458 uint32_t reqlen, alloclen, pg_pairs;
13459 uint32_t mbox_tmo;
13460 uint16_t xritag_start = 0;
13461 int rc = 0;
13462 uint32_t shdr_status, shdr_add_status;
13463 dma_addr_t pdma_phys_bpl1;
13464 union lpfc_sli4_cfg_shdr *shdr;
13465
13466 /* Calculate the requested length of the dma memory */
13467 reqlen = cnt * sizeof(struct sgl_page_pairs) +
13468 sizeof(union lpfc_sli4_cfg_shdr) + sizeof(uint32_t);
13469 if (reqlen > SLI4_PAGE_SIZE) {
13470 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
13471 "0217 Block sgl registration required DMA "
13472 "size (%d) great than a page\n", reqlen);
13473 return -ENOMEM;
13474 }
13475 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
13476 if (!mbox) {
13477 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
13478 "0283 Failed to allocate mbox cmd memory\n");
13479 return -ENOMEM;
13480 }
13481
13482 /* Allocate DMA memory and set up the non-embedded mailbox command */
13483 alloclen = lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE,
13484 LPFC_MBOX_OPCODE_FCOE_POST_SGL_PAGES, reqlen,
13485 LPFC_SLI4_MBX_NEMBED);
13486
13487 if (alloclen < reqlen) {
13488 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
13489 "2561 Allocated DMA memory size (%d) is "
13490 "less than the requested DMA memory "
13491 "size (%d)\n", alloclen, reqlen);
13492 lpfc_sli4_mbox_cmd_free(phba, mbox);
13493 return -ENOMEM;
13494 }
13495
13496 /* Get the first SGE entry from the non-embedded DMA memory */
13497 viraddr = mbox->sge_array->addr[0];
13498
13499 /* Set up the SGL pages in the non-embedded DMA pages */
13500 sgl = (struct lpfc_mbx_post_uembed_sgl_page1 *)viraddr;
13501 sgl_pg_pairs = &sgl->sgl_pg_pairs;
13502
13503 pg_pairs = 0;
13504 list_for_each_entry(psb, sblist, list) {
13505 /* Set up the sge entry */
13506 sgl_pg_pairs->sgl_pg0_addr_lo =
13507 cpu_to_le32(putPaddrLow(psb->dma_phys_bpl));
13508 sgl_pg_pairs->sgl_pg0_addr_hi =
13509 cpu_to_le32(putPaddrHigh(psb->dma_phys_bpl));
13510 if (phba->cfg_sg_dma_buf_size > SGL_PAGE_SIZE)
13511 pdma_phys_bpl1 = psb->dma_phys_bpl + SGL_PAGE_SIZE;
13512 else
13513 pdma_phys_bpl1 = 0;
13514 sgl_pg_pairs->sgl_pg1_addr_lo =
13515 cpu_to_le32(putPaddrLow(pdma_phys_bpl1));
13516 sgl_pg_pairs->sgl_pg1_addr_hi =
13517 cpu_to_le32(putPaddrHigh(pdma_phys_bpl1));
13518 /* Keep the first xritag on the list */
13519 if (pg_pairs == 0)
13520 xritag_start = psb->cur_iocbq.sli4_xritag;
13521 sgl_pg_pairs++;
13522 pg_pairs++;
13523 }
13524 bf_set(lpfc_post_sgl_pages_xri, sgl, xritag_start);
13525 bf_set(lpfc_post_sgl_pages_xricnt, sgl, pg_pairs);
13526 /* Perform endian conversion if necessary */
13527 sgl->word0 = cpu_to_le32(sgl->word0);
13528
13529 if (!phba->sli4_hba.intr_enable)
13530 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
13531 else {
13532 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox);
13533 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo);
13534 }
13535 shdr = (union lpfc_sli4_cfg_shdr *) &sgl->cfg_shdr;
13536 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
13537 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
13538 if (rc != MBX_TIMEOUT)
13539 lpfc_sli4_mbox_cmd_free(phba, mbox);
13540 if (shdr_status || shdr_add_status || rc) {
13541 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
13542 "2564 POST_SGL_BLOCK mailbox command failed "
13543 "status x%x add_status x%x mbx status x%x\n",
13544 shdr_status, shdr_add_status, rc);
13545 rc = -ENXIO;
13546 }
13547 return rc;
13548 }
13549
13550 /**
13551 * lpfc_sli4_post_scsi_sgl_blk_ext - post a block of scsi sgls to the port.
13552 * @phba: pointer to lpfc hba data structure.
13553 * @sblist: pointer to scsi buffer list.
13554 * @count: number of scsi buffers on the list.
13555 *
13556 * This routine is invoked to post a block of @count scsi sgl pages from a
13557 * SCSI buffer list @sblist to the HBA using non-embedded mailbox command.
13558 * No Lock is held.
13559 *
13560 **/
13561 int
13562 lpfc_sli4_post_scsi_sgl_blk_ext(struct lpfc_hba *phba, struct list_head *sblist,
13563 int cnt)
13564 {
13565 struct lpfc_scsi_buf *psb = NULL;
13566 struct lpfc_mbx_post_uembed_sgl_page1 *sgl;
13567 struct sgl_page_pairs *sgl_pg_pairs;
13568 void *viraddr;
13569 LPFC_MBOXQ_t *mbox;
13570 uint32_t reqlen, alloclen, pg_pairs;
13571 uint32_t mbox_tmo;
13572 uint16_t xri_start = 0, scsi_xri_start;
13573 uint16_t rsrc_range;
13574 int rc = 0, avail_cnt;
13575 uint32_t shdr_status, shdr_add_status;
13576 dma_addr_t pdma_phys_bpl1;
13577 union lpfc_sli4_cfg_shdr *shdr;
13578 struct lpfc_rsrc_blks *rsrc_blk;
13579 uint32_t xri_cnt = 0;
13580
13581 /* Calculate the total requested length of the dma memory */
13582 reqlen = cnt * sizeof(struct sgl_page_pairs) +
13583 sizeof(union lpfc_sli4_cfg_shdr) + sizeof(uint32_t);
13584 if (reqlen > SLI4_PAGE_SIZE) {
13585 lpfc_printf_log(phba, KERN_WARNING, LOG_INIT,
13586 "2932 Block sgl registration required DMA "
13587 "size (%d) great than a page\n", reqlen);
13588 return -ENOMEM;
13589 }
13590
13591 /*
13592 * The use of extents requires the driver to post the sgl headers
13593 * in multiple postings to meet the contiguous resource assignment.
13594 */
13595 psb = list_prepare_entry(psb, sblist, list);
13596 scsi_xri_start = phba->sli4_hba.scsi_xri_start;
13597 list_for_each_entry(rsrc_blk, &phba->sli4_hba.lpfc_xri_blk_list,
13598 list) {
13599 rsrc_range = rsrc_blk->rsrc_start + rsrc_blk->rsrc_size;
13600 if (rsrc_range < scsi_xri_start)
13601 continue;
13602 else if (rsrc_blk->rsrc_used >= rsrc_blk->rsrc_size)
13603 continue;
13604 else
13605 avail_cnt = rsrc_blk->rsrc_size - rsrc_blk->rsrc_used;
13606
13607 reqlen = (avail_cnt * sizeof(struct sgl_page_pairs)) +
13608 sizeof(union lpfc_sli4_cfg_shdr) + sizeof(uint32_t);
13609 /*
13610 * Allocate DMA memory and set up the non-embedded mailbox
13611 * command. The mbox is used to post an SGL page per loop
13612 * but the DMA memory has a use-once semantic so the mailbox
13613 * is used and freed per loop pass.
13614 */
13615 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
13616 if (!mbox) {
13617 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
13618 "2933 Failed to allocate mbox cmd "
13619 "memory\n");
13620 return -ENOMEM;
13621 }
13622 alloclen = lpfc_sli4_config(phba, mbox,
13623 LPFC_MBOX_SUBSYSTEM_FCOE,
13624 LPFC_MBOX_OPCODE_FCOE_POST_SGL_PAGES,
13625 reqlen,
13626 LPFC_SLI4_MBX_NEMBED);
13627 if (alloclen < reqlen) {
13628 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
13629 "2934 Allocated DMA memory size (%d) "
13630 "is less than the requested DMA memory "
13631 "size (%d)\n", alloclen, reqlen);
13632 lpfc_sli4_mbox_cmd_free(phba, mbox);
13633 return -ENOMEM;
13634 }
13635
13636 /* Get the first SGE entry from the non-embedded DMA memory */
13637 viraddr = mbox->sge_array->addr[0];
13638
13639 /* Set up the SGL pages in the non-embedded DMA pages */
13640 sgl = (struct lpfc_mbx_post_uembed_sgl_page1 *)viraddr;
13641 sgl_pg_pairs = &sgl->sgl_pg_pairs;
13642
13643 /* pg_pairs tracks posted SGEs per loop iteration. */
13644 pg_pairs = 0;
13645 list_for_each_entry_continue(psb, sblist, list) {
13646 /* Set up the sge entry */
13647 sgl_pg_pairs->sgl_pg0_addr_lo =
13648 cpu_to_le32(putPaddrLow(psb->dma_phys_bpl));
13649 sgl_pg_pairs->sgl_pg0_addr_hi =
13650 cpu_to_le32(putPaddrHigh(psb->dma_phys_bpl));
13651 if (phba->cfg_sg_dma_buf_size > SGL_PAGE_SIZE)
13652 pdma_phys_bpl1 = psb->dma_phys_bpl +
13653 SGL_PAGE_SIZE;
13654 else
13655 pdma_phys_bpl1 = 0;
13656 sgl_pg_pairs->sgl_pg1_addr_lo =
13657 cpu_to_le32(putPaddrLow(pdma_phys_bpl1));
13658 sgl_pg_pairs->sgl_pg1_addr_hi =
13659 cpu_to_le32(putPaddrHigh(pdma_phys_bpl1));
13660 /* Keep the first xri for this extent. */
13661 if (pg_pairs == 0)
13662 xri_start = psb->cur_iocbq.sli4_xritag;
13663 sgl_pg_pairs++;
13664 pg_pairs++;
13665 xri_cnt++;
13666
13667 /*
13668 * Track two exit conditions - the loop has constructed
13669 * all of the caller's SGE pairs or all available
13670 * resource IDs in this extent are consumed.
13671 */
13672 if ((xri_cnt == cnt) || (pg_pairs >= avail_cnt))
13673 break;
13674 }
13675 rsrc_blk->rsrc_used += pg_pairs;
13676 bf_set(lpfc_post_sgl_pages_xri, sgl, xri_start);
13677 bf_set(lpfc_post_sgl_pages_xricnt, sgl, pg_pairs);
13678
13679 lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
13680 "3016 Post SCSI Extent SGL, start %d, cnt %d "
13681 "blk use %d\n",
13682 xri_start, pg_pairs, rsrc_blk->rsrc_used);
13683 /* Perform endian conversion if necessary */
13684 sgl->word0 = cpu_to_le32(sgl->word0);
13685 if (!phba->sli4_hba.intr_enable)
13686 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
13687 else {
13688 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox);
13689 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo);
13690 }
13691 shdr = (union lpfc_sli4_cfg_shdr *) &sgl->cfg_shdr;
13692 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
13693 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status,
13694 &shdr->response);
13695 if (rc != MBX_TIMEOUT)
13696 lpfc_sli4_mbox_cmd_free(phba, mbox);
13697 if (shdr_status || shdr_add_status || rc) {
13698 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
13699 "2935 POST_SGL_BLOCK mailbox command "
13700 "failed status x%x add_status x%x "
13701 "mbx status x%x\n",
13702 shdr_status, shdr_add_status, rc);
13703 return -ENXIO;
13704 }
13705
13706 /* Post only what is requested. */
13707 if (xri_cnt >= cnt)
13708 break;
13709 }
13710 return rc;
13711 }
13712
13713 /**
13714 * lpfc_fc_frame_check - Check that this frame is a valid frame to handle
13715 * @phba: pointer to lpfc_hba struct that the frame was received on
13716 * @fc_hdr: A pointer to the FC Header data (In Big Endian Format)
13717 *
13718 * This function checks the fields in the @fc_hdr to see if the FC frame is a
13719 * valid type of frame that the LPFC driver will handle. This function will
13720 * return a zero if the frame is a valid frame or a non zero value when the
13721 * frame does not pass the check.
13722 **/
13723 static int
13724 lpfc_fc_frame_check(struct lpfc_hba *phba, struct fc_frame_header *fc_hdr)
13725 {
13726 /* make rctl_names static to save stack space */
13727 static char *rctl_names[] = FC_RCTL_NAMES_INIT;
13728 char *type_names[] = FC_TYPE_NAMES_INIT;
13729 struct fc_vft_header *fc_vft_hdr;
13730 uint32_t *header = (uint32_t *) fc_hdr;
13731
13732 switch (fc_hdr->fh_r_ctl) {
13733 case FC_RCTL_DD_UNCAT: /* uncategorized information */
13734 case FC_RCTL_DD_SOL_DATA: /* solicited data */
13735 case FC_RCTL_DD_UNSOL_CTL: /* unsolicited control */
13736 case FC_RCTL_DD_SOL_CTL: /* solicited control or reply */
13737 case FC_RCTL_DD_UNSOL_DATA: /* unsolicited data */
13738 case FC_RCTL_DD_DATA_DESC: /* data descriptor */
13739 case FC_RCTL_DD_UNSOL_CMD: /* unsolicited command */
13740 case FC_RCTL_DD_CMD_STATUS: /* command status */
13741 case FC_RCTL_ELS_REQ: /* extended link services request */
13742 case FC_RCTL_ELS_REP: /* extended link services reply */
13743 case FC_RCTL_ELS4_REQ: /* FC-4 ELS request */
13744 case FC_RCTL_ELS4_REP: /* FC-4 ELS reply */
13745 case FC_RCTL_BA_NOP: /* basic link service NOP */
13746 case FC_RCTL_BA_ABTS: /* basic link service abort */
13747 case FC_RCTL_BA_RMC: /* remove connection */
13748 case FC_RCTL_BA_ACC: /* basic accept */
13749 case FC_RCTL_BA_RJT: /* basic reject */
13750 case FC_RCTL_BA_PRMT:
13751 case FC_RCTL_ACK_1: /* acknowledge_1 */
13752 case FC_RCTL_ACK_0: /* acknowledge_0 */
13753 case FC_RCTL_P_RJT: /* port reject */
13754 case FC_RCTL_F_RJT: /* fabric reject */
13755 case FC_RCTL_P_BSY: /* port busy */
13756 case FC_RCTL_F_BSY: /* fabric busy to data frame */
13757 case FC_RCTL_F_BSYL: /* fabric busy to link control frame */
13758 case FC_RCTL_LCR: /* link credit reset */
13759 case FC_RCTL_END: /* end */
13760 break;
13761 case FC_RCTL_VFTH: /* Virtual Fabric tagging Header */
13762 fc_vft_hdr = (struct fc_vft_header *)fc_hdr;
13763 fc_hdr = &((struct fc_frame_header *)fc_vft_hdr)[1];
13764 return lpfc_fc_frame_check(phba, fc_hdr);
13765 default:
13766 goto drop;
13767 }
13768 switch (fc_hdr->fh_type) {
13769 case FC_TYPE_BLS:
13770 case FC_TYPE_ELS:
13771 case FC_TYPE_FCP:
13772 case FC_TYPE_CT:
13773 break;
13774 case FC_TYPE_IP:
13775 case FC_TYPE_ILS:
13776 default:
13777 goto drop;
13778 }
13779
13780 lpfc_printf_log(phba, KERN_INFO, LOG_ELS,
13781 "2538 Received frame rctl:%s type:%s "
13782 "Frame Data:%08x %08x %08x %08x %08x %08x\n",
13783 rctl_names[fc_hdr->fh_r_ctl],
13784 type_names[fc_hdr->fh_type],
13785 be32_to_cpu(header[0]), be32_to_cpu(header[1]),
13786 be32_to_cpu(header[2]), be32_to_cpu(header[3]),
13787 be32_to_cpu(header[4]), be32_to_cpu(header[5]));
13788 return 0;
13789 drop:
13790 lpfc_printf_log(phba, KERN_WARNING, LOG_ELS,
13791 "2539 Dropped frame rctl:%s type:%s\n",
13792 rctl_names[fc_hdr->fh_r_ctl],
13793 type_names[fc_hdr->fh_type]);
13794 return 1;
13795 }
13796
13797 /**
13798 * lpfc_fc_hdr_get_vfi - Get the VFI from an FC frame
13799 * @fc_hdr: A pointer to the FC Header data (In Big Endian Format)
13800 *
13801 * This function processes the FC header to retrieve the VFI from the VF
13802 * header, if one exists. This function will return the VFI if one exists
13803 * or 0 if no VSAN Header exists.
13804 **/
13805 static uint32_t
13806 lpfc_fc_hdr_get_vfi(struct fc_frame_header *fc_hdr)
13807 {
13808 struct fc_vft_header *fc_vft_hdr = (struct fc_vft_header *)fc_hdr;
13809
13810 if (fc_hdr->fh_r_ctl != FC_RCTL_VFTH)
13811 return 0;
13812 return bf_get(fc_vft_hdr_vf_id, fc_vft_hdr);
13813 }
13814
13815 /**
13816 * lpfc_fc_frame_to_vport - Finds the vport that a frame is destined to
13817 * @phba: Pointer to the HBA structure to search for the vport on
13818 * @fc_hdr: A pointer to the FC Header data (In Big Endian Format)
13819 * @fcfi: The FC Fabric ID that the frame came from
13820 *
13821 * This function searches the @phba for a vport that matches the content of the
13822 * @fc_hdr passed in and the @fcfi. This function uses the @fc_hdr to fetch the
13823 * VFI, if the Virtual Fabric Tagging Header exists, and the DID. This function
13824 * returns the matching vport pointer or NULL if unable to match frame to a
13825 * vport.
13826 **/
13827 static struct lpfc_vport *
13828 lpfc_fc_frame_to_vport(struct lpfc_hba *phba, struct fc_frame_header *fc_hdr,
13829 uint16_t fcfi)
13830 {
13831 struct lpfc_vport **vports;
13832 struct lpfc_vport *vport = NULL;
13833 int i;
13834 uint32_t did = (fc_hdr->fh_d_id[0] << 16 |
13835 fc_hdr->fh_d_id[1] << 8 |
13836 fc_hdr->fh_d_id[2]);
13837 if (did == Fabric_DID)
13838 return phba->pport;
13839 vports = lpfc_create_vport_work_array(phba);
13840 if (vports != NULL)
13841 for (i = 0; i <= phba->max_vpi && vports[i] != NULL; i++) {
13842 if (phba->fcf.fcfi == fcfi &&
13843 vports[i]->vfi == lpfc_fc_hdr_get_vfi(fc_hdr) &&
13844 vports[i]->fc_myDID == did) {
13845 vport = vports[i];
13846 break;
13847 }
13848 }
13849 lpfc_destroy_vport_work_array(phba, vports);
13850 return vport;
13851 }
13852
13853 /**
13854 * lpfc_update_rcv_time_stamp - Update vport's rcv seq time stamp
13855 * @vport: The vport to work on.
13856 *
13857 * This function updates the receive sequence time stamp for this vport. The
13858 * receive sequence time stamp indicates the time that the last frame of the
13859 * the sequence that has been idle for the longest amount of time was received.
13860 * the driver uses this time stamp to indicate if any received sequences have
13861 * timed out.
13862 **/
13863 void
13864 lpfc_update_rcv_time_stamp(struct lpfc_vport *vport)
13865 {
13866 struct lpfc_dmabuf *h_buf;
13867 struct hbq_dmabuf *dmabuf = NULL;
13868
13869 /* get the oldest sequence on the rcv list */
13870 h_buf = list_get_first(&vport->rcv_buffer_list,
13871 struct lpfc_dmabuf, list);
13872 if (!h_buf)
13873 return;
13874 dmabuf = container_of(h_buf, struct hbq_dmabuf, hbuf);
13875 vport->rcv_buffer_time_stamp = dmabuf->time_stamp;
13876 }
13877
13878 /**
13879 * lpfc_cleanup_rcv_buffers - Cleans up all outstanding receive sequences.
13880 * @vport: The vport that the received sequences were sent to.
13881 *
13882 * This function cleans up all outstanding received sequences. This is called
13883 * by the driver when a link event or user action invalidates all the received
13884 * sequences.
13885 **/
13886 void
13887 lpfc_cleanup_rcv_buffers(struct lpfc_vport *vport)
13888 {
13889 struct lpfc_dmabuf *h_buf, *hnext;
13890 struct lpfc_dmabuf *d_buf, *dnext;
13891 struct hbq_dmabuf *dmabuf = NULL;
13892
13893 /* start with the oldest sequence on the rcv list */
13894 list_for_each_entry_safe(h_buf, hnext, &vport->rcv_buffer_list, list) {
13895 dmabuf = container_of(h_buf, struct hbq_dmabuf, hbuf);
13896 list_del_init(&dmabuf->hbuf.list);
13897 list_for_each_entry_safe(d_buf, dnext,
13898 &dmabuf->dbuf.list, list) {
13899 list_del_init(&d_buf->list);
13900 lpfc_in_buf_free(vport->phba, d_buf);
13901 }
13902 lpfc_in_buf_free(vport->phba, &dmabuf->dbuf);
13903 }
13904 }
13905
13906 /**
13907 * lpfc_rcv_seq_check_edtov - Cleans up timed out receive sequences.
13908 * @vport: The vport that the received sequences were sent to.
13909 *
13910 * This function determines whether any received sequences have timed out by
13911 * first checking the vport's rcv_buffer_time_stamp. If this time_stamp
13912 * indicates that there is at least one timed out sequence this routine will
13913 * go through the received sequences one at a time from most inactive to most
13914 * active to determine which ones need to be cleaned up. Once it has determined
13915 * that a sequence needs to be cleaned up it will simply free up the resources
13916 * without sending an abort.
13917 **/
13918 void
13919 lpfc_rcv_seq_check_edtov(struct lpfc_vport *vport)
13920 {
13921 struct lpfc_dmabuf *h_buf, *hnext;
13922 struct lpfc_dmabuf *d_buf, *dnext;
13923 struct hbq_dmabuf *dmabuf = NULL;
13924 unsigned long timeout;
13925 int abort_count = 0;
13926
13927 timeout = (msecs_to_jiffies(vport->phba->fc_edtov) +
13928 vport->rcv_buffer_time_stamp);
13929 if (list_empty(&vport->rcv_buffer_list) ||
13930 time_before(jiffies, timeout))
13931 return;
13932 /* start with the oldest sequence on the rcv list */
13933 list_for_each_entry_safe(h_buf, hnext, &vport->rcv_buffer_list, list) {
13934 dmabuf = container_of(h_buf, struct hbq_dmabuf, hbuf);
13935 timeout = (msecs_to_jiffies(vport->phba->fc_edtov) +
13936 dmabuf->time_stamp);
13937 if (time_before(jiffies, timeout))
13938 break;
13939 abort_count++;
13940 list_del_init(&dmabuf->hbuf.list);
13941 list_for_each_entry_safe(d_buf, dnext,
13942 &dmabuf->dbuf.list, list) {
13943 list_del_init(&d_buf->list);
13944 lpfc_in_buf_free(vport->phba, d_buf);
13945 }
13946 lpfc_in_buf_free(vport->phba, &dmabuf->dbuf);
13947 }
13948 if (abort_count)
13949 lpfc_update_rcv_time_stamp(vport);
13950 }
13951
13952 /**
13953 * lpfc_fc_frame_add - Adds a frame to the vport's list of received sequences
13954 * @dmabuf: pointer to a dmabuf that describes the hdr and data of the FC frame
13955 *
13956 * This function searches through the existing incomplete sequences that have
13957 * been sent to this @vport. If the frame matches one of the incomplete
13958 * sequences then the dbuf in the @dmabuf is added to the list of frames that
13959 * make up that sequence. If no sequence is found that matches this frame then
13960 * the function will add the hbuf in the @dmabuf to the @vport's rcv_buffer_list
13961 * This function returns a pointer to the first dmabuf in the sequence list that
13962 * the frame was linked to.
13963 **/
13964 static struct hbq_dmabuf *
13965 lpfc_fc_frame_add(struct lpfc_vport *vport, struct hbq_dmabuf *dmabuf)
13966 {
13967 struct fc_frame_header *new_hdr;
13968 struct fc_frame_header *temp_hdr;
13969 struct lpfc_dmabuf *d_buf;
13970 struct lpfc_dmabuf *h_buf;
13971 struct hbq_dmabuf *seq_dmabuf = NULL;
13972 struct hbq_dmabuf *temp_dmabuf = NULL;
13973
13974 INIT_LIST_HEAD(&dmabuf->dbuf.list);
13975 dmabuf->time_stamp = jiffies;
13976 new_hdr = (struct fc_frame_header *)dmabuf->hbuf.virt;
13977 /* Use the hdr_buf to find the sequence that this frame belongs to */
13978 list_for_each_entry(h_buf, &vport->rcv_buffer_list, list) {
13979 temp_hdr = (struct fc_frame_header *)h_buf->virt;
13980 if ((temp_hdr->fh_seq_id != new_hdr->fh_seq_id) ||
13981 (temp_hdr->fh_ox_id != new_hdr->fh_ox_id) ||
13982 (memcmp(&temp_hdr->fh_s_id, &new_hdr->fh_s_id, 3)))
13983 continue;
13984 /* found a pending sequence that matches this frame */
13985 seq_dmabuf = container_of(h_buf, struct hbq_dmabuf, hbuf);
13986 break;
13987 }
13988 if (!seq_dmabuf) {
13989 /*
13990 * This indicates first frame received for this sequence.
13991 * Queue the buffer on the vport's rcv_buffer_list.
13992 */
13993 list_add_tail(&dmabuf->hbuf.list, &vport->rcv_buffer_list);
13994 lpfc_update_rcv_time_stamp(vport);
13995 return dmabuf;
13996 }
13997 temp_hdr = seq_dmabuf->hbuf.virt;
13998 if (be16_to_cpu(new_hdr->fh_seq_cnt) <
13999 be16_to_cpu(temp_hdr->fh_seq_cnt)) {
14000 list_del_init(&seq_dmabuf->hbuf.list);
14001 list_add_tail(&dmabuf->hbuf.list, &vport->rcv_buffer_list);
14002 list_add_tail(&dmabuf->dbuf.list, &seq_dmabuf->dbuf.list);
14003 lpfc_update_rcv_time_stamp(vport);
14004 return dmabuf;
14005 }
14006 /* move this sequence to the tail to indicate a young sequence */
14007 list_move_tail(&seq_dmabuf->hbuf.list, &vport->rcv_buffer_list);
14008 seq_dmabuf->time_stamp = jiffies;
14009 lpfc_update_rcv_time_stamp(vport);
14010 if (list_empty(&seq_dmabuf->dbuf.list)) {
14011 temp_hdr = dmabuf->hbuf.virt;
14012 list_add_tail(&dmabuf->dbuf.list, &seq_dmabuf->dbuf.list);
14013 return seq_dmabuf;
14014 }
14015 /* find the correct place in the sequence to insert this frame */
14016 list_for_each_entry_reverse(d_buf, &seq_dmabuf->dbuf.list, list) {
14017 temp_dmabuf = container_of(d_buf, struct hbq_dmabuf, dbuf);
14018 temp_hdr = (struct fc_frame_header *)temp_dmabuf->hbuf.virt;
14019 /*
14020 * If the frame's sequence count is greater than the frame on
14021 * the list then insert the frame right after this frame
14022 */
14023 if (be16_to_cpu(new_hdr->fh_seq_cnt) >
14024 be16_to_cpu(temp_hdr->fh_seq_cnt)) {
14025 list_add(&dmabuf->dbuf.list, &temp_dmabuf->dbuf.list);
14026 return seq_dmabuf;
14027 }
14028 }
14029 return NULL;
14030 }
14031
14032 /**
14033 * lpfc_sli4_abort_partial_seq - Abort partially assembled unsol sequence
14034 * @vport: pointer to a vitural port
14035 * @dmabuf: pointer to a dmabuf that describes the FC sequence
14036 *
14037 * This function tries to abort from the partially assembed sequence, described
14038 * by the information from basic abbort @dmabuf. It checks to see whether such
14039 * partially assembled sequence held by the driver. If so, it shall free up all
14040 * the frames from the partially assembled sequence.
14041 *
14042 * Return
14043 * true -- if there is matching partially assembled sequence present and all
14044 * the frames freed with the sequence;
14045 * false -- if there is no matching partially assembled sequence present so
14046 * nothing got aborted in the lower layer driver
14047 **/
14048 static bool
14049 lpfc_sli4_abort_partial_seq(struct lpfc_vport *vport,
14050 struct hbq_dmabuf *dmabuf)
14051 {
14052 struct fc_frame_header *new_hdr;
14053 struct fc_frame_header *temp_hdr;
14054 struct lpfc_dmabuf *d_buf, *n_buf, *h_buf;
14055 struct hbq_dmabuf *seq_dmabuf = NULL;
14056
14057 /* Use the hdr_buf to find the sequence that matches this frame */
14058 INIT_LIST_HEAD(&dmabuf->dbuf.list);
14059 INIT_LIST_HEAD(&dmabuf->hbuf.list);
14060 new_hdr = (struct fc_frame_header *)dmabuf->hbuf.virt;
14061 list_for_each_entry(h_buf, &vport->rcv_buffer_list, list) {
14062 temp_hdr = (struct fc_frame_header *)h_buf->virt;
14063 if ((temp_hdr->fh_seq_id != new_hdr->fh_seq_id) ||
14064 (temp_hdr->fh_ox_id != new_hdr->fh_ox_id) ||
14065 (memcmp(&temp_hdr->fh_s_id, &new_hdr->fh_s_id, 3)))
14066 continue;
14067 /* found a pending sequence that matches this frame */
14068 seq_dmabuf = container_of(h_buf, struct hbq_dmabuf, hbuf);
14069 break;
14070 }
14071
14072 /* Free up all the frames from the partially assembled sequence */
14073 if (seq_dmabuf) {
14074 list_for_each_entry_safe(d_buf, n_buf,
14075 &seq_dmabuf->dbuf.list, list) {
14076 list_del_init(&d_buf->list);
14077 lpfc_in_buf_free(vport->phba, d_buf);
14078 }
14079 return true;
14080 }
14081 return false;
14082 }
14083
14084 /**
14085 * lpfc_sli4_seq_abort_rsp_cmpl - BLS ABORT RSP seq abort iocb complete handler
14086 * @phba: Pointer to HBA context object.
14087 * @cmd_iocbq: pointer to the command iocbq structure.
14088 * @rsp_iocbq: pointer to the response iocbq structure.
14089 *
14090 * This function handles the sequence abort response iocb command complete
14091 * event. It properly releases the memory allocated to the sequence abort
14092 * accept iocb.
14093 **/
14094 static void
14095 lpfc_sli4_seq_abort_rsp_cmpl(struct lpfc_hba *phba,
14096 struct lpfc_iocbq *cmd_iocbq,
14097 struct lpfc_iocbq *rsp_iocbq)
14098 {
14099 if (cmd_iocbq)
14100 lpfc_sli_release_iocbq(phba, cmd_iocbq);
14101
14102 /* Failure means BLS ABORT RSP did not get delivered to remote node*/
14103 if (rsp_iocbq && rsp_iocbq->iocb.ulpStatus)
14104 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
14105 "3154 BLS ABORT RSP failed, data: x%x/x%x\n",
14106 rsp_iocbq->iocb.ulpStatus,
14107 rsp_iocbq->iocb.un.ulpWord[4]);
14108 }
14109
14110 /**
14111 * lpfc_sli4_xri_inrange - check xri is in range of xris owned by driver.
14112 * @phba: Pointer to HBA context object.
14113 * @xri: xri id in transaction.
14114 *
14115 * This function validates the xri maps to the known range of XRIs allocated an
14116 * used by the driver.
14117 **/
14118 uint16_t
14119 lpfc_sli4_xri_inrange(struct lpfc_hba *phba,
14120 uint16_t xri)
14121 {
14122 int i;
14123
14124 for (i = 0; i < phba->sli4_hba.max_cfg_param.max_xri; i++) {
14125 if (xri == phba->sli4_hba.xri_ids[i])
14126 return i;
14127 }
14128 return NO_XRI;
14129 }
14130
14131
14132 /**
14133 * lpfc_sli4_seq_abort_rsp - bls rsp to sequence abort
14134 * @phba: Pointer to HBA context object.
14135 * @fc_hdr: pointer to a FC frame header.
14136 *
14137 * This function sends a basic response to a previous unsol sequence abort
14138 * event after aborting the sequence handling.
14139 **/
14140 static void
14141 lpfc_sli4_seq_abort_rsp(struct lpfc_hba *phba,
14142 struct fc_frame_header *fc_hdr)
14143 {
14144 struct lpfc_iocbq *ctiocb = NULL;
14145 struct lpfc_nodelist *ndlp;
14146 uint16_t oxid, rxid;
14147 uint32_t sid, fctl;
14148 IOCB_t *icmd;
14149 int rc;
14150
14151 if (!lpfc_is_link_up(phba))
14152 return;
14153
14154 sid = sli4_sid_from_fc_hdr(fc_hdr);
14155 oxid = be16_to_cpu(fc_hdr->fh_ox_id);
14156 rxid = be16_to_cpu(fc_hdr->fh_rx_id);
14157
14158 ndlp = lpfc_findnode_did(phba->pport, sid);
14159 if (!ndlp) {
14160 lpfc_printf_log(phba, KERN_WARNING, LOG_ELS,
14161 "1268 Find ndlp returned NULL for oxid:x%x "
14162 "SID:x%x\n", oxid, sid);
14163 return;
14164 }
14165 if (lpfc_sli4_xri_inrange(phba, rxid))
14166 lpfc_set_rrq_active(phba, ndlp, rxid, oxid, 0);
14167
14168 /* Allocate buffer for rsp iocb */
14169 ctiocb = lpfc_sli_get_iocbq(phba);
14170 if (!ctiocb)
14171 return;
14172
14173 /* Extract the F_CTL field from FC_HDR */
14174 fctl = sli4_fctl_from_fc_hdr(fc_hdr);
14175
14176 icmd = &ctiocb->iocb;
14177 icmd->un.xseq64.bdl.bdeSize = 0;
14178 icmd->un.xseq64.bdl.ulpIoTag32 = 0;
14179 icmd->un.xseq64.w5.hcsw.Dfctl = 0;
14180 icmd->un.xseq64.w5.hcsw.Rctl = FC_RCTL_BA_ACC;
14181 icmd->un.xseq64.w5.hcsw.Type = FC_TYPE_BLS;
14182
14183 /* Fill in the rest of iocb fields */
14184 icmd->ulpCommand = CMD_XMIT_BLS_RSP64_CX;
14185 icmd->ulpBdeCount = 0;
14186 icmd->ulpLe = 1;
14187 icmd->ulpClass = CLASS3;
14188 icmd->ulpContext = phba->sli4_hba.rpi_ids[ndlp->nlp_rpi];
14189 ctiocb->context1 = ndlp;
14190
14191 ctiocb->iocb_cmpl = NULL;
14192 ctiocb->vport = phba->pport;
14193 ctiocb->iocb_cmpl = lpfc_sli4_seq_abort_rsp_cmpl;
14194 ctiocb->sli4_lxritag = NO_XRI;
14195 ctiocb->sli4_xritag = NO_XRI;
14196
14197 /* If the oxid maps to the FCP XRI range or if it is out of range,
14198 * send a BLS_RJT. The driver no longer has that exchange.
14199 * Override the IOCB for a BA_RJT.
14200 */
14201 if (oxid > (phba->sli4_hba.max_cfg_param.max_xri +
14202 phba->sli4_hba.max_cfg_param.xri_base) ||
14203 oxid > (lpfc_sli4_get_els_iocb_cnt(phba) +
14204 phba->sli4_hba.max_cfg_param.xri_base)) {
14205 icmd->un.xseq64.w5.hcsw.Rctl = FC_RCTL_BA_RJT;
14206 bf_set(lpfc_vndr_code, &icmd->un.bls_rsp, 0);
14207 bf_set(lpfc_rsn_expln, &icmd->un.bls_rsp, FC_BA_RJT_INV_XID);
14208 bf_set(lpfc_rsn_code, &icmd->un.bls_rsp, FC_BA_RJT_UNABLE);
14209 }
14210
14211 if (fctl & FC_FC_EX_CTX) {
14212 /* ABTS sent by responder to CT exchange, construction
14213 * of BA_ACC will use OX_ID from ABTS for the XRI_TAG
14214 * field and RX_ID from ABTS for RX_ID field.
14215 */
14216 bf_set(lpfc_abts_orig, &icmd->un.bls_rsp, LPFC_ABTS_UNSOL_RSP);
14217 } else {
14218 /* ABTS sent by initiator to CT exchange, construction
14219 * of BA_ACC will need to allocate a new XRI as for the
14220 * XRI_TAG field.
14221 */
14222 bf_set(lpfc_abts_orig, &icmd->un.bls_rsp, LPFC_ABTS_UNSOL_INT);
14223 }
14224 bf_set(lpfc_abts_rxid, &icmd->un.bls_rsp, rxid);
14225 bf_set(lpfc_abts_oxid, &icmd->un.bls_rsp, oxid);
14226
14227 /* Xmit CT abts response on exchange <xid> */
14228 lpfc_printf_log(phba, KERN_INFO, LOG_ELS,
14229 "1200 Send BLS cmd x%x on oxid x%x Data: x%x\n",
14230 icmd->un.xseq64.w5.hcsw.Rctl, oxid, phba->link_state);
14231
14232 rc = lpfc_sli_issue_iocb(phba, LPFC_ELS_RING, ctiocb, 0);
14233 if (rc == IOCB_ERROR) {
14234 lpfc_printf_log(phba, KERN_ERR, LOG_ELS,
14235 "2925 Failed to issue CT ABTS RSP x%x on "
14236 "xri x%x, Data x%x\n",
14237 icmd->un.xseq64.w5.hcsw.Rctl, oxid,
14238 phba->link_state);
14239 lpfc_sli_release_iocbq(phba, ctiocb);
14240 }
14241 }
14242
14243 /**
14244 * lpfc_sli4_handle_unsol_abort - Handle sli-4 unsolicited abort event
14245 * @vport: Pointer to the vport on which this sequence was received
14246 * @dmabuf: pointer to a dmabuf that describes the FC sequence
14247 *
14248 * This function handles an SLI-4 unsolicited abort event. If the unsolicited
14249 * receive sequence is only partially assembed by the driver, it shall abort
14250 * the partially assembled frames for the sequence. Otherwise, if the
14251 * unsolicited receive sequence has been completely assembled and passed to
14252 * the Upper Layer Protocol (UPL), it then mark the per oxid status for the
14253 * unsolicited sequence has been aborted. After that, it will issue a basic
14254 * accept to accept the abort.
14255 **/
14256 void
14257 lpfc_sli4_handle_unsol_abort(struct lpfc_vport *vport,
14258 struct hbq_dmabuf *dmabuf)
14259 {
14260 struct lpfc_hba *phba = vport->phba;
14261 struct fc_frame_header fc_hdr;
14262 uint32_t fctl;
14263 bool abts_par;
14264
14265 /* Make a copy of fc_hdr before the dmabuf being released */
14266 memcpy(&fc_hdr, dmabuf->hbuf.virt, sizeof(struct fc_frame_header));
14267 fctl = sli4_fctl_from_fc_hdr(&fc_hdr);
14268
14269 if (fctl & FC_FC_EX_CTX) {
14270 /*
14271 * ABTS sent by responder to exchange, just free the buffer
14272 */
14273 lpfc_in_buf_free(phba, &dmabuf->dbuf);
14274 } else {
14275 /*
14276 * ABTS sent by initiator to exchange, need to do cleanup
14277 */
14278 /* Try to abort partially assembled seq */
14279 abts_par = lpfc_sli4_abort_partial_seq(vport, dmabuf);
14280
14281 /* Send abort to ULP if partially seq abort failed */
14282 if (abts_par == false)
14283 lpfc_sli4_send_seq_to_ulp(vport, dmabuf);
14284 else
14285 lpfc_in_buf_free(phba, &dmabuf->dbuf);
14286 }
14287 /* Send basic accept (BA_ACC) to the abort requester */
14288 lpfc_sli4_seq_abort_rsp(phba, &fc_hdr);
14289 }
14290
14291 /**
14292 * lpfc_seq_complete - Indicates if a sequence is complete
14293 * @dmabuf: pointer to a dmabuf that describes the FC sequence
14294 *
14295 * This function checks the sequence, starting with the frame described by
14296 * @dmabuf, to see if all the frames associated with this sequence are present.
14297 * the frames associated with this sequence are linked to the @dmabuf using the
14298 * dbuf list. This function looks for two major things. 1) That the first frame
14299 * has a sequence count of zero. 2) There is a frame with last frame of sequence
14300 * set. 3) That there are no holes in the sequence count. The function will
14301 * return 1 when the sequence is complete, otherwise it will return 0.
14302 **/
14303 static int
14304 lpfc_seq_complete(struct hbq_dmabuf *dmabuf)
14305 {
14306 struct fc_frame_header *hdr;
14307 struct lpfc_dmabuf *d_buf;
14308 struct hbq_dmabuf *seq_dmabuf;
14309 uint32_t fctl;
14310 int seq_count = 0;
14311
14312 hdr = (struct fc_frame_header *)dmabuf->hbuf.virt;
14313 /* make sure first fame of sequence has a sequence count of zero */
14314 if (hdr->fh_seq_cnt != seq_count)
14315 return 0;
14316 fctl = (hdr->fh_f_ctl[0] << 16 |
14317 hdr->fh_f_ctl[1] << 8 |
14318 hdr->fh_f_ctl[2]);
14319 /* If last frame of sequence we can return success. */
14320 if (fctl & FC_FC_END_SEQ)
14321 return 1;
14322 list_for_each_entry(d_buf, &dmabuf->dbuf.list, list) {
14323 seq_dmabuf = container_of(d_buf, struct hbq_dmabuf, dbuf);
14324 hdr = (struct fc_frame_header *)seq_dmabuf->hbuf.virt;
14325 /* If there is a hole in the sequence count then fail. */
14326 if (++seq_count != be16_to_cpu(hdr->fh_seq_cnt))
14327 return 0;
14328 fctl = (hdr->fh_f_ctl[0] << 16 |
14329 hdr->fh_f_ctl[1] << 8 |
14330 hdr->fh_f_ctl[2]);
14331 /* If last frame of sequence we can return success. */
14332 if (fctl & FC_FC_END_SEQ)
14333 return 1;
14334 }
14335 return 0;
14336 }
14337
14338 /**
14339 * lpfc_prep_seq - Prep sequence for ULP processing
14340 * @vport: Pointer to the vport on which this sequence was received
14341 * @dmabuf: pointer to a dmabuf that describes the FC sequence
14342 *
14343 * This function takes a sequence, described by a list of frames, and creates
14344 * a list of iocbq structures to describe the sequence. This iocbq list will be
14345 * used to issue to the generic unsolicited sequence handler. This routine
14346 * returns a pointer to the first iocbq in the list. If the function is unable
14347 * to allocate an iocbq then it throw out the received frames that were not
14348 * able to be described and return a pointer to the first iocbq. If unable to
14349 * allocate any iocbqs (including the first) this function will return NULL.
14350 **/
14351 static struct lpfc_iocbq *
14352 lpfc_prep_seq(struct lpfc_vport *vport, struct hbq_dmabuf *seq_dmabuf)
14353 {
14354 struct hbq_dmabuf *hbq_buf;
14355 struct lpfc_dmabuf *d_buf, *n_buf;
14356 struct lpfc_iocbq *first_iocbq, *iocbq;
14357 struct fc_frame_header *fc_hdr;
14358 uint32_t sid;
14359 uint32_t len, tot_len;
14360 struct ulp_bde64 *pbde;
14361
14362 fc_hdr = (struct fc_frame_header *)seq_dmabuf->hbuf.virt;
14363 /* remove from receive buffer list */
14364 list_del_init(&seq_dmabuf->hbuf.list);
14365 lpfc_update_rcv_time_stamp(vport);
14366 /* get the Remote Port's SID */
14367 sid = sli4_sid_from_fc_hdr(fc_hdr);
14368 tot_len = 0;
14369 /* Get an iocbq struct to fill in. */
14370 first_iocbq = lpfc_sli_get_iocbq(vport->phba);
14371 if (first_iocbq) {
14372 /* Initialize the first IOCB. */
14373 first_iocbq->iocb.unsli3.rcvsli3.acc_len = 0;
14374 first_iocbq->iocb.ulpStatus = IOSTAT_SUCCESS;
14375 first_iocbq->iocb.ulpCommand = CMD_IOCB_RCV_SEQ64_CX;
14376 first_iocbq->iocb.ulpContext = NO_XRI;
14377 first_iocbq->iocb.unsli3.rcvsli3.ox_id =
14378 be16_to_cpu(fc_hdr->fh_ox_id);
14379 /* iocbq is prepped for internal consumption. Physical vpi. */
14380 first_iocbq->iocb.unsli3.rcvsli3.vpi =
14381 vport->phba->vpi_ids[vport->vpi];
14382 /* put the first buffer into the first IOCBq */
14383 first_iocbq->context2 = &seq_dmabuf->dbuf;
14384 first_iocbq->context3 = NULL;
14385 first_iocbq->iocb.ulpBdeCount = 1;
14386 first_iocbq->iocb.un.cont64[0].tus.f.bdeSize =
14387 LPFC_DATA_BUF_SIZE;
14388 first_iocbq->iocb.un.rcvels.remoteID = sid;
14389 tot_len = bf_get(lpfc_rcqe_length,
14390 &seq_dmabuf->cq_event.cqe.rcqe_cmpl);
14391 first_iocbq->iocb.unsli3.rcvsli3.acc_len = tot_len;
14392 }
14393 iocbq = first_iocbq;
14394 /*
14395 * Each IOCBq can have two Buffers assigned, so go through the list
14396 * of buffers for this sequence and save two buffers in each IOCBq
14397 */
14398 list_for_each_entry_safe(d_buf, n_buf, &seq_dmabuf->dbuf.list, list) {
14399 if (!iocbq) {
14400 lpfc_in_buf_free(vport->phba, d_buf);
14401 continue;
14402 }
14403 if (!iocbq->context3) {
14404 iocbq->context3 = d_buf;
14405 iocbq->iocb.ulpBdeCount++;
14406 pbde = (struct ulp_bde64 *)
14407 &iocbq->iocb.unsli3.sli3Words[4];
14408 pbde->tus.f.bdeSize = LPFC_DATA_BUF_SIZE;
14409
14410 /* We need to get the size out of the right CQE */
14411 hbq_buf = container_of(d_buf, struct hbq_dmabuf, dbuf);
14412 len = bf_get(lpfc_rcqe_length,
14413 &hbq_buf->cq_event.cqe.rcqe_cmpl);
14414 iocbq->iocb.unsli3.rcvsli3.acc_len += len;
14415 tot_len += len;
14416 } else {
14417 iocbq = lpfc_sli_get_iocbq(vport->phba);
14418 if (!iocbq) {
14419 if (first_iocbq) {
14420 first_iocbq->iocb.ulpStatus =
14421 IOSTAT_FCP_RSP_ERROR;
14422 first_iocbq->iocb.un.ulpWord[4] =
14423 IOERR_NO_RESOURCES;
14424 }
14425 lpfc_in_buf_free(vport->phba, d_buf);
14426 continue;
14427 }
14428 iocbq->context2 = d_buf;
14429 iocbq->context3 = NULL;
14430 iocbq->iocb.ulpBdeCount = 1;
14431 iocbq->iocb.un.cont64[0].tus.f.bdeSize =
14432 LPFC_DATA_BUF_SIZE;
14433
14434 /* We need to get the size out of the right CQE */
14435 hbq_buf = container_of(d_buf, struct hbq_dmabuf, dbuf);
14436 len = bf_get(lpfc_rcqe_length,
14437 &hbq_buf->cq_event.cqe.rcqe_cmpl);
14438 tot_len += len;
14439 iocbq->iocb.unsli3.rcvsli3.acc_len = tot_len;
14440
14441 iocbq->iocb.un.rcvels.remoteID = sid;
14442 list_add_tail(&iocbq->list, &first_iocbq->list);
14443 }
14444 }
14445 return first_iocbq;
14446 }
14447
14448 static void
14449 lpfc_sli4_send_seq_to_ulp(struct lpfc_vport *vport,
14450 struct hbq_dmabuf *seq_dmabuf)
14451 {
14452 struct fc_frame_header *fc_hdr;
14453 struct lpfc_iocbq *iocbq, *curr_iocb, *next_iocb;
14454 struct lpfc_hba *phba = vport->phba;
14455
14456 fc_hdr = (struct fc_frame_header *)seq_dmabuf->hbuf.virt;
14457 iocbq = lpfc_prep_seq(vport, seq_dmabuf);
14458 if (!iocbq) {
14459 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
14460 "2707 Ring %d handler: Failed to allocate "
14461 "iocb Rctl x%x Type x%x received\n",
14462 LPFC_ELS_RING,
14463 fc_hdr->fh_r_ctl, fc_hdr->fh_type);
14464 return;
14465 }
14466 if (!lpfc_complete_unsol_iocb(phba,
14467 &phba->sli.ring[LPFC_ELS_RING],
14468 iocbq, fc_hdr->fh_r_ctl,
14469 fc_hdr->fh_type))
14470 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
14471 "2540 Ring %d handler: unexpected Rctl "
14472 "x%x Type x%x received\n",
14473 LPFC_ELS_RING,
14474 fc_hdr->fh_r_ctl, fc_hdr->fh_type);
14475
14476 /* Free iocb created in lpfc_prep_seq */
14477 list_for_each_entry_safe(curr_iocb, next_iocb,
14478 &iocbq->list, list) {
14479 list_del_init(&curr_iocb->list);
14480 lpfc_sli_release_iocbq(phba, curr_iocb);
14481 }
14482 lpfc_sli_release_iocbq(phba, iocbq);
14483 }
14484
14485 /**
14486 * lpfc_sli4_handle_received_buffer - Handle received buffers from firmware
14487 * @phba: Pointer to HBA context object.
14488 *
14489 * This function is called with no lock held. This function processes all
14490 * the received buffers and gives it to upper layers when a received buffer
14491 * indicates that it is the final frame in the sequence. The interrupt
14492 * service routine processes received buffers at interrupt contexts and adds
14493 * received dma buffers to the rb_pend_list queue and signals the worker thread.
14494 * Worker thread calls lpfc_sli4_handle_received_buffer, which will call the
14495 * appropriate receive function when the final frame in a sequence is received.
14496 **/
14497 void
14498 lpfc_sli4_handle_received_buffer(struct lpfc_hba *phba,
14499 struct hbq_dmabuf *dmabuf)
14500 {
14501 struct hbq_dmabuf *seq_dmabuf;
14502 struct fc_frame_header *fc_hdr;
14503 struct lpfc_vport *vport;
14504 uint32_t fcfi;
14505
14506 /* Process each received buffer */
14507 fc_hdr = (struct fc_frame_header *)dmabuf->hbuf.virt;
14508 /* check to see if this a valid type of frame */
14509 if (lpfc_fc_frame_check(phba, fc_hdr)) {
14510 lpfc_in_buf_free(phba, &dmabuf->dbuf);
14511 return;
14512 }
14513 if ((bf_get(lpfc_cqe_code,
14514 &dmabuf->cq_event.cqe.rcqe_cmpl) == CQE_CODE_RECEIVE_V1))
14515 fcfi = bf_get(lpfc_rcqe_fcf_id_v1,
14516 &dmabuf->cq_event.cqe.rcqe_cmpl);
14517 else
14518 fcfi = bf_get(lpfc_rcqe_fcf_id,
14519 &dmabuf->cq_event.cqe.rcqe_cmpl);
14520 vport = lpfc_fc_frame_to_vport(phba, fc_hdr, fcfi);
14521 if (!vport || !(vport->vpi_state & LPFC_VPI_REGISTERED)) {
14522 /* throw out the frame */
14523 lpfc_in_buf_free(phba, &dmabuf->dbuf);
14524 return;
14525 }
14526 /* Handle the basic abort sequence (BA_ABTS) event */
14527 if (fc_hdr->fh_r_ctl == FC_RCTL_BA_ABTS) {
14528 lpfc_sli4_handle_unsol_abort(vport, dmabuf);
14529 return;
14530 }
14531
14532 /* Link this frame */
14533 seq_dmabuf = lpfc_fc_frame_add(vport, dmabuf);
14534 if (!seq_dmabuf) {
14535 /* unable to add frame to vport - throw it out */
14536 lpfc_in_buf_free(phba, &dmabuf->dbuf);
14537 return;
14538 }
14539 /* If not last frame in sequence continue processing frames. */
14540 if (!lpfc_seq_complete(seq_dmabuf))
14541 return;
14542
14543 /* Send the complete sequence to the upper layer protocol */
14544 lpfc_sli4_send_seq_to_ulp(vport, seq_dmabuf);
14545 }
14546
14547 /**
14548 * lpfc_sli4_post_all_rpi_hdrs - Post the rpi header memory region to the port
14549 * @phba: pointer to lpfc hba data structure.
14550 *
14551 * This routine is invoked to post rpi header templates to the
14552 * HBA consistent with the SLI-4 interface spec. This routine
14553 * posts a SLI4_PAGE_SIZE memory region to the port to hold up to
14554 * SLI4_PAGE_SIZE modulo 64 rpi context headers.
14555 *
14556 * This routine does not require any locks. It's usage is expected
14557 * to be driver load or reset recovery when the driver is
14558 * sequential.
14559 *
14560 * Return codes
14561 * 0 - successful
14562 * -EIO - The mailbox failed to complete successfully.
14563 * When this error occurs, the driver is not guaranteed
14564 * to have any rpi regions posted to the device and
14565 * must either attempt to repost the regions or take a
14566 * fatal error.
14567 **/
14568 int
14569 lpfc_sli4_post_all_rpi_hdrs(struct lpfc_hba *phba)
14570 {
14571 struct lpfc_rpi_hdr *rpi_page;
14572 uint32_t rc = 0;
14573 uint16_t lrpi = 0;
14574
14575 /* SLI4 ports that support extents do not require RPI headers. */
14576 if (!phba->sli4_hba.rpi_hdrs_in_use)
14577 goto exit;
14578 if (phba->sli4_hba.extents_in_use)
14579 return -EIO;
14580
14581 list_for_each_entry(rpi_page, &phba->sli4_hba.lpfc_rpi_hdr_list, list) {
14582 /*
14583 * Assign the rpi headers a physical rpi only if the driver
14584 * has not initialized those resources. A port reset only
14585 * needs the headers posted.
14586 */
14587 if (bf_get(lpfc_rpi_rsrc_rdy, &phba->sli4_hba.sli4_flags) !=
14588 LPFC_RPI_RSRC_RDY)
14589 rpi_page->start_rpi = phba->sli4_hba.rpi_ids[lrpi];
14590
14591 rc = lpfc_sli4_post_rpi_hdr(phba, rpi_page);
14592 if (rc != MBX_SUCCESS) {
14593 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
14594 "2008 Error %d posting all rpi "
14595 "headers\n", rc);
14596 rc = -EIO;
14597 break;
14598 }
14599 }
14600
14601 exit:
14602 bf_set(lpfc_rpi_rsrc_rdy, &phba->sli4_hba.sli4_flags,
14603 LPFC_RPI_RSRC_RDY);
14604 return rc;
14605 }
14606
14607 /**
14608 * lpfc_sli4_post_rpi_hdr - Post an rpi header memory region to the port
14609 * @phba: pointer to lpfc hba data structure.
14610 * @rpi_page: pointer to the rpi memory region.
14611 *
14612 * This routine is invoked to post a single rpi header to the
14613 * HBA consistent with the SLI-4 interface spec. This memory region
14614 * maps up to 64 rpi context regions.
14615 *
14616 * Return codes
14617 * 0 - successful
14618 * -ENOMEM - No available memory
14619 * -EIO - The mailbox failed to complete successfully.
14620 **/
14621 int
14622 lpfc_sli4_post_rpi_hdr(struct lpfc_hba *phba, struct lpfc_rpi_hdr *rpi_page)
14623 {
14624 LPFC_MBOXQ_t *mboxq;
14625 struct lpfc_mbx_post_hdr_tmpl *hdr_tmpl;
14626 uint32_t rc = 0;
14627 uint32_t shdr_status, shdr_add_status;
14628 union lpfc_sli4_cfg_shdr *shdr;
14629
14630 /* SLI4 ports that support extents do not require RPI headers. */
14631 if (!phba->sli4_hba.rpi_hdrs_in_use)
14632 return rc;
14633 if (phba->sli4_hba.extents_in_use)
14634 return -EIO;
14635
14636 /* The port is notified of the header region via a mailbox command. */
14637 mboxq = (LPFC_MBOXQ_t *) mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
14638 if (!mboxq) {
14639 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
14640 "2001 Unable to allocate memory for issuing "
14641 "SLI_CONFIG_SPECIAL mailbox command\n");
14642 return -ENOMEM;
14643 }
14644
14645 /* Post all rpi memory regions to the port. */
14646 hdr_tmpl = &mboxq->u.mqe.un.hdr_tmpl;
14647 lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_FCOE,
14648 LPFC_MBOX_OPCODE_FCOE_POST_HDR_TEMPLATE,
14649 sizeof(struct lpfc_mbx_post_hdr_tmpl) -
14650 sizeof(struct lpfc_sli4_cfg_mhdr),
14651 LPFC_SLI4_MBX_EMBED);
14652
14653
14654 /* Post the physical rpi to the port for this rpi header. */
14655 bf_set(lpfc_mbx_post_hdr_tmpl_rpi_offset, hdr_tmpl,
14656 rpi_page->start_rpi);
14657 bf_set(lpfc_mbx_post_hdr_tmpl_page_cnt,
14658 hdr_tmpl, rpi_page->page_count);
14659
14660 hdr_tmpl->rpi_paddr_lo = putPaddrLow(rpi_page->dmabuf->phys);
14661 hdr_tmpl->rpi_paddr_hi = putPaddrHigh(rpi_page->dmabuf->phys);
14662 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
14663 shdr = (union lpfc_sli4_cfg_shdr *) &hdr_tmpl->header.cfg_shdr;
14664 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
14665 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
14666 if (rc != MBX_TIMEOUT)
14667 mempool_free(mboxq, phba->mbox_mem_pool);
14668 if (shdr_status || shdr_add_status || rc) {
14669 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
14670 "2514 POST_RPI_HDR mailbox failed with "
14671 "status x%x add_status x%x, mbx status x%x\n",
14672 shdr_status, shdr_add_status, rc);
14673 rc = -ENXIO;
14674 }
14675 return rc;
14676 }
14677
14678 /**
14679 * lpfc_sli4_alloc_rpi - Get an available rpi in the device's range
14680 * @phba: pointer to lpfc hba data structure.
14681 *
14682 * This routine is invoked to post rpi header templates to the
14683 * HBA consistent with the SLI-4 interface spec. This routine
14684 * posts a SLI4_PAGE_SIZE memory region to the port to hold up to
14685 * SLI4_PAGE_SIZE modulo 64 rpi context headers.
14686 *
14687 * Returns
14688 * A nonzero rpi defined as rpi_base <= rpi < max_rpi if successful
14689 * LPFC_RPI_ALLOC_ERROR if no rpis are available.
14690 **/
14691 int
14692 lpfc_sli4_alloc_rpi(struct lpfc_hba *phba)
14693 {
14694 unsigned long rpi;
14695 uint16_t max_rpi, rpi_limit;
14696 uint16_t rpi_remaining, lrpi = 0;
14697 struct lpfc_rpi_hdr *rpi_hdr;
14698
14699 max_rpi = phba->sli4_hba.max_cfg_param.max_rpi;
14700 rpi_limit = phba->sli4_hba.next_rpi;
14701
14702 /*
14703 * Fetch the next logical rpi. Because this index is logical,
14704 * the driver starts at 0 each time.
14705 */
14706 spin_lock_irq(&phba->hbalock);
14707 rpi = find_next_zero_bit(phba->sli4_hba.rpi_bmask, rpi_limit, 0);
14708 if (rpi >= rpi_limit)
14709 rpi = LPFC_RPI_ALLOC_ERROR;
14710 else {
14711 set_bit(rpi, phba->sli4_hba.rpi_bmask);
14712 phba->sli4_hba.max_cfg_param.rpi_used++;
14713 phba->sli4_hba.rpi_count++;
14714 }
14715
14716 /*
14717 * Don't try to allocate more rpi header regions if the device limit
14718 * has been exhausted.
14719 */
14720 if ((rpi == LPFC_RPI_ALLOC_ERROR) &&
14721 (phba->sli4_hba.rpi_count >= max_rpi)) {
14722 spin_unlock_irq(&phba->hbalock);
14723 return rpi;
14724 }
14725
14726 /*
14727 * RPI header postings are not required for SLI4 ports capable of
14728 * extents.
14729 */
14730 if (!phba->sli4_hba.rpi_hdrs_in_use) {
14731 spin_unlock_irq(&phba->hbalock);
14732 return rpi;
14733 }
14734
14735 /*
14736 * If the driver is running low on rpi resources, allocate another
14737 * page now. Note that the next_rpi value is used because
14738 * it represents how many are actually in use whereas max_rpi notes
14739 * how many are supported max by the device.
14740 */
14741 rpi_remaining = phba->sli4_hba.next_rpi - phba->sli4_hba.rpi_count;
14742 spin_unlock_irq(&phba->hbalock);
14743 if (rpi_remaining < LPFC_RPI_LOW_WATER_MARK) {
14744 rpi_hdr = lpfc_sli4_create_rpi_hdr(phba);
14745 if (!rpi_hdr) {
14746 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
14747 "2002 Error Could not grow rpi "
14748 "count\n");
14749 } else {
14750 lrpi = rpi_hdr->start_rpi;
14751 rpi_hdr->start_rpi = phba->sli4_hba.rpi_ids[lrpi];
14752 lpfc_sli4_post_rpi_hdr(phba, rpi_hdr);
14753 }
14754 }
14755
14756 return rpi;
14757 }
14758
14759 /**
14760 * lpfc_sli4_free_rpi - Release an rpi for reuse.
14761 * @phba: pointer to lpfc hba data structure.
14762 *
14763 * This routine is invoked to release an rpi to the pool of
14764 * available rpis maintained by the driver.
14765 **/
14766 void
14767 __lpfc_sli4_free_rpi(struct lpfc_hba *phba, int rpi)
14768 {
14769 if (test_and_clear_bit(rpi, phba->sli4_hba.rpi_bmask)) {
14770 phba->sli4_hba.rpi_count--;
14771 phba->sli4_hba.max_cfg_param.rpi_used--;
14772 }
14773 }
14774
14775 /**
14776 * lpfc_sli4_free_rpi - Release an rpi for reuse.
14777 * @phba: pointer to lpfc hba data structure.
14778 *
14779 * This routine is invoked to release an rpi to the pool of
14780 * available rpis maintained by the driver.
14781 **/
14782 void
14783 lpfc_sli4_free_rpi(struct lpfc_hba *phba, int rpi)
14784 {
14785 spin_lock_irq(&phba->hbalock);
14786 __lpfc_sli4_free_rpi(phba, rpi);
14787 spin_unlock_irq(&phba->hbalock);
14788 }
14789
14790 /**
14791 * lpfc_sli4_remove_rpis - Remove the rpi bitmask region
14792 * @phba: pointer to lpfc hba data structure.
14793 *
14794 * This routine is invoked to remove the memory region that
14795 * provided rpi via a bitmask.
14796 **/
14797 void
14798 lpfc_sli4_remove_rpis(struct lpfc_hba *phba)
14799 {
14800 kfree(phba->sli4_hba.rpi_bmask);
14801 kfree(phba->sli4_hba.rpi_ids);
14802 bf_set(lpfc_rpi_rsrc_rdy, &phba->sli4_hba.sli4_flags, 0);
14803 }
14804
14805 /**
14806 * lpfc_sli4_resume_rpi - Remove the rpi bitmask region
14807 * @phba: pointer to lpfc hba data structure.
14808 *
14809 * This routine is invoked to remove the memory region that
14810 * provided rpi via a bitmask.
14811 **/
14812 int
14813 lpfc_sli4_resume_rpi(struct lpfc_nodelist *ndlp,
14814 void (*cmpl)(struct lpfc_hba *, LPFC_MBOXQ_t *), void *arg)
14815 {
14816 LPFC_MBOXQ_t *mboxq;
14817 struct lpfc_hba *phba = ndlp->phba;
14818 int rc;
14819
14820 /* The port is notified of the header region via a mailbox command. */
14821 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
14822 if (!mboxq)
14823 return -ENOMEM;
14824
14825 /* Post all rpi memory regions to the port. */
14826 lpfc_resume_rpi(mboxq, ndlp);
14827 if (cmpl) {
14828 mboxq->mbox_cmpl = cmpl;
14829 mboxq->context1 = arg;
14830 mboxq->context2 = ndlp;
14831 } else
14832 mboxq->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
14833 mboxq->vport = ndlp->vport;
14834 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT);
14835 if (rc == MBX_NOT_FINISHED) {
14836 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
14837 "2010 Resume RPI Mailbox failed "
14838 "status %d, mbxStatus x%x\n", rc,
14839 bf_get(lpfc_mqe_status, &mboxq->u.mqe));
14840 mempool_free(mboxq, phba->mbox_mem_pool);
14841 return -EIO;
14842 }
14843 return 0;
14844 }
14845
14846 /**
14847 * lpfc_sli4_init_vpi - Initialize a vpi with the port
14848 * @vport: Pointer to the vport for which the vpi is being initialized
14849 *
14850 * This routine is invoked to activate a vpi with the port.
14851 *
14852 * Returns:
14853 * 0 success
14854 * -Evalue otherwise
14855 **/
14856 int
14857 lpfc_sli4_init_vpi(struct lpfc_vport *vport)
14858 {
14859 LPFC_MBOXQ_t *mboxq;
14860 int rc = 0;
14861 int retval = MBX_SUCCESS;
14862 uint32_t mbox_tmo;
14863 struct lpfc_hba *phba = vport->phba;
14864 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
14865 if (!mboxq)
14866 return -ENOMEM;
14867 lpfc_init_vpi(phba, mboxq, vport->vpi);
14868 mbox_tmo = lpfc_mbox_tmo_val(phba, mboxq);
14869 rc = lpfc_sli_issue_mbox_wait(phba, mboxq, mbox_tmo);
14870 if (rc != MBX_SUCCESS) {
14871 lpfc_printf_vlog(vport, KERN_ERR, LOG_SLI,
14872 "2022 INIT VPI Mailbox failed "
14873 "status %d, mbxStatus x%x\n", rc,
14874 bf_get(lpfc_mqe_status, &mboxq->u.mqe));
14875 retval = -EIO;
14876 }
14877 if (rc != MBX_TIMEOUT)
14878 mempool_free(mboxq, vport->phba->mbox_mem_pool);
14879
14880 return retval;
14881 }
14882
14883 /**
14884 * lpfc_mbx_cmpl_add_fcf_record - add fcf mbox completion handler.
14885 * @phba: pointer to lpfc hba data structure.
14886 * @mboxq: Pointer to mailbox object.
14887 *
14888 * This routine is invoked to manually add a single FCF record. The caller
14889 * must pass a completely initialized FCF_Record. This routine takes
14890 * care of the nonembedded mailbox operations.
14891 **/
14892 static void
14893 lpfc_mbx_cmpl_add_fcf_record(struct lpfc_hba *phba, LPFC_MBOXQ_t *mboxq)
14894 {
14895 void *virt_addr;
14896 union lpfc_sli4_cfg_shdr *shdr;
14897 uint32_t shdr_status, shdr_add_status;
14898
14899 virt_addr = mboxq->sge_array->addr[0];
14900 /* The IOCTL status is embedded in the mailbox subheader. */
14901 shdr = (union lpfc_sli4_cfg_shdr *) virt_addr;
14902 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
14903 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
14904
14905 if ((shdr_status || shdr_add_status) &&
14906 (shdr_status != STATUS_FCF_IN_USE))
14907 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
14908 "2558 ADD_FCF_RECORD mailbox failed with "
14909 "status x%x add_status x%x\n",
14910 shdr_status, shdr_add_status);
14911
14912 lpfc_sli4_mbox_cmd_free(phba, mboxq);
14913 }
14914
14915 /**
14916 * lpfc_sli4_add_fcf_record - Manually add an FCF Record.
14917 * @phba: pointer to lpfc hba data structure.
14918 * @fcf_record: pointer to the initialized fcf record to add.
14919 *
14920 * This routine is invoked to manually add a single FCF record. The caller
14921 * must pass a completely initialized FCF_Record. This routine takes
14922 * care of the nonembedded mailbox operations.
14923 **/
14924 int
14925 lpfc_sli4_add_fcf_record(struct lpfc_hba *phba, struct fcf_record *fcf_record)
14926 {
14927 int rc = 0;
14928 LPFC_MBOXQ_t *mboxq;
14929 uint8_t *bytep;
14930 void *virt_addr;
14931 dma_addr_t phys_addr;
14932 struct lpfc_mbx_sge sge;
14933 uint32_t alloc_len, req_len;
14934 uint32_t fcfindex;
14935
14936 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
14937 if (!mboxq) {
14938 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
14939 "2009 Failed to allocate mbox for ADD_FCF cmd\n");
14940 return -ENOMEM;
14941 }
14942
14943 req_len = sizeof(struct fcf_record) + sizeof(union lpfc_sli4_cfg_shdr) +
14944 sizeof(uint32_t);
14945
14946 /* Allocate DMA memory and set up the non-embedded mailbox command */
14947 alloc_len = lpfc_sli4_config(phba, mboxq, LPFC_MBOX_SUBSYSTEM_FCOE,
14948 LPFC_MBOX_OPCODE_FCOE_ADD_FCF,
14949 req_len, LPFC_SLI4_MBX_NEMBED);
14950 if (alloc_len < req_len) {
14951 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
14952 "2523 Allocated DMA memory size (x%x) is "
14953 "less than the requested DMA memory "
14954 "size (x%x)\n", alloc_len, req_len);
14955 lpfc_sli4_mbox_cmd_free(phba, mboxq);
14956 return -ENOMEM;
14957 }
14958
14959 /*
14960 * Get the first SGE entry from the non-embedded DMA memory. This
14961 * routine only uses a single SGE.
14962 */
14963 lpfc_sli4_mbx_sge_get(mboxq, 0, &sge);
14964 phys_addr = getPaddr(sge.pa_hi, sge.pa_lo);
14965 virt_addr = mboxq->sge_array->addr[0];
14966 /*
14967 * Configure the FCF record for FCFI 0. This is the driver's
14968 * hardcoded default and gets used in nonFIP mode.
14969 */
14970 fcfindex = bf_get(lpfc_fcf_record_fcf_index, fcf_record);
14971 bytep = virt_addr + sizeof(union lpfc_sli4_cfg_shdr);
14972 lpfc_sli_pcimem_bcopy(&fcfindex, bytep, sizeof(uint32_t));
14973
14974 /*
14975 * Copy the fcf_index and the FCF Record Data. The data starts after
14976 * the FCoE header plus word10. The data copy needs to be endian
14977 * correct.
14978 */
14979 bytep += sizeof(uint32_t);
14980 lpfc_sli_pcimem_bcopy(fcf_record, bytep, sizeof(struct fcf_record));
14981 mboxq->vport = phba->pport;
14982 mboxq->mbox_cmpl = lpfc_mbx_cmpl_add_fcf_record;
14983 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT);
14984 if (rc == MBX_NOT_FINISHED) {
14985 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
14986 "2515 ADD_FCF_RECORD mailbox failed with "
14987 "status 0x%x\n", rc);
14988 lpfc_sli4_mbox_cmd_free(phba, mboxq);
14989 rc = -EIO;
14990 } else
14991 rc = 0;
14992
14993 return rc;
14994 }
14995
14996 /**
14997 * lpfc_sli4_build_dflt_fcf_record - Build the driver's default FCF Record.
14998 * @phba: pointer to lpfc hba data structure.
14999 * @fcf_record: pointer to the fcf record to write the default data.
15000 * @fcf_index: FCF table entry index.
15001 *
15002 * This routine is invoked to build the driver's default FCF record. The
15003 * values used are hardcoded. This routine handles memory initialization.
15004 *
15005 **/
15006 void
15007 lpfc_sli4_build_dflt_fcf_record(struct lpfc_hba *phba,
15008 struct fcf_record *fcf_record,
15009 uint16_t fcf_index)
15010 {
15011 memset(fcf_record, 0, sizeof(struct fcf_record));
15012 fcf_record->max_rcv_size = LPFC_FCOE_MAX_RCV_SIZE;
15013 fcf_record->fka_adv_period = LPFC_FCOE_FKA_ADV_PER;
15014 fcf_record->fip_priority = LPFC_FCOE_FIP_PRIORITY;
15015 bf_set(lpfc_fcf_record_mac_0, fcf_record, phba->fc_map[0]);
15016 bf_set(lpfc_fcf_record_mac_1, fcf_record, phba->fc_map[1]);
15017 bf_set(lpfc_fcf_record_mac_2, fcf_record, phba->fc_map[2]);
15018 bf_set(lpfc_fcf_record_mac_3, fcf_record, LPFC_FCOE_FCF_MAC3);
15019 bf_set(lpfc_fcf_record_mac_4, fcf_record, LPFC_FCOE_FCF_MAC4);
15020 bf_set(lpfc_fcf_record_mac_5, fcf_record, LPFC_FCOE_FCF_MAC5);
15021 bf_set(lpfc_fcf_record_fc_map_0, fcf_record, phba->fc_map[0]);
15022 bf_set(lpfc_fcf_record_fc_map_1, fcf_record, phba->fc_map[1]);
15023 bf_set(lpfc_fcf_record_fc_map_2, fcf_record, phba->fc_map[2]);
15024 bf_set(lpfc_fcf_record_fcf_valid, fcf_record, 1);
15025 bf_set(lpfc_fcf_record_fcf_avail, fcf_record, 1);
15026 bf_set(lpfc_fcf_record_fcf_index, fcf_record, fcf_index);
15027 bf_set(lpfc_fcf_record_mac_addr_prov, fcf_record,
15028 LPFC_FCF_FPMA | LPFC_FCF_SPMA);
15029 /* Set the VLAN bit map */
15030 if (phba->valid_vlan) {
15031 fcf_record->vlan_bitmap[phba->vlan_id / 8]
15032 = 1 << (phba->vlan_id % 8);
15033 }
15034 }
15035
15036 /**
15037 * lpfc_sli4_fcf_scan_read_fcf_rec - Read hba fcf record for fcf scan.
15038 * @phba: pointer to lpfc hba data structure.
15039 * @fcf_index: FCF table entry offset.
15040 *
15041 * This routine is invoked to scan the entire FCF table by reading FCF
15042 * record and processing it one at a time starting from the @fcf_index
15043 * for initial FCF discovery or fast FCF failover rediscovery.
15044 *
15045 * Return 0 if the mailbox command is submitted successfully, none 0
15046 * otherwise.
15047 **/
15048 int
15049 lpfc_sli4_fcf_scan_read_fcf_rec(struct lpfc_hba *phba, uint16_t fcf_index)
15050 {
15051 int rc = 0, error;
15052 LPFC_MBOXQ_t *mboxq;
15053
15054 phba->fcoe_eventtag_at_fcf_scan = phba->fcoe_eventtag;
15055 phba->fcoe_cvl_eventtag_attn = phba->fcoe_cvl_eventtag;
15056 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
15057 if (!mboxq) {
15058 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
15059 "2000 Failed to allocate mbox for "
15060 "READ_FCF cmd\n");
15061 error = -ENOMEM;
15062 goto fail_fcf_scan;
15063 }
15064 /* Construct the read FCF record mailbox command */
15065 rc = lpfc_sli4_mbx_read_fcf_rec(phba, mboxq, fcf_index);
15066 if (rc) {
15067 error = -EINVAL;
15068 goto fail_fcf_scan;
15069 }
15070 /* Issue the mailbox command asynchronously */
15071 mboxq->vport = phba->pport;
15072 mboxq->mbox_cmpl = lpfc_mbx_cmpl_fcf_scan_read_fcf_rec;
15073
15074 spin_lock_irq(&phba->hbalock);
15075 phba->hba_flag |= FCF_TS_INPROG;
15076 spin_unlock_irq(&phba->hbalock);
15077
15078 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT);
15079 if (rc == MBX_NOT_FINISHED)
15080 error = -EIO;
15081 else {
15082 /* Reset eligible FCF count for new scan */
15083 if (fcf_index == LPFC_FCOE_FCF_GET_FIRST)
15084 phba->fcf.eligible_fcf_cnt = 0;
15085 error = 0;
15086 }
15087 fail_fcf_scan:
15088 if (error) {
15089 if (mboxq)
15090 lpfc_sli4_mbox_cmd_free(phba, mboxq);
15091 /* FCF scan failed, clear FCF_TS_INPROG flag */
15092 spin_lock_irq(&phba->hbalock);
15093 phba->hba_flag &= ~FCF_TS_INPROG;
15094 spin_unlock_irq(&phba->hbalock);
15095 }
15096 return error;
15097 }
15098
15099 /**
15100 * lpfc_sli4_fcf_rr_read_fcf_rec - Read hba fcf record for roundrobin fcf.
15101 * @phba: pointer to lpfc hba data structure.
15102 * @fcf_index: FCF table entry offset.
15103 *
15104 * This routine is invoked to read an FCF record indicated by @fcf_index
15105 * and to use it for FLOGI roundrobin FCF failover.
15106 *
15107 * Return 0 if the mailbox command is submitted successfully, none 0
15108 * otherwise.
15109 **/
15110 int
15111 lpfc_sli4_fcf_rr_read_fcf_rec(struct lpfc_hba *phba, uint16_t fcf_index)
15112 {
15113 int rc = 0, error;
15114 LPFC_MBOXQ_t *mboxq;
15115
15116 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
15117 if (!mboxq) {
15118 lpfc_printf_log(phba, KERN_ERR, LOG_FIP | LOG_INIT,
15119 "2763 Failed to allocate mbox for "
15120 "READ_FCF cmd\n");
15121 error = -ENOMEM;
15122 goto fail_fcf_read;
15123 }
15124 /* Construct the read FCF record mailbox command */
15125 rc = lpfc_sli4_mbx_read_fcf_rec(phba, mboxq, fcf_index);
15126 if (rc) {
15127 error = -EINVAL;
15128 goto fail_fcf_read;
15129 }
15130 /* Issue the mailbox command asynchronously */
15131 mboxq->vport = phba->pport;
15132 mboxq->mbox_cmpl = lpfc_mbx_cmpl_fcf_rr_read_fcf_rec;
15133 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT);
15134 if (rc == MBX_NOT_FINISHED)
15135 error = -EIO;
15136 else
15137 error = 0;
15138
15139 fail_fcf_read:
15140 if (error && mboxq)
15141 lpfc_sli4_mbox_cmd_free(phba, mboxq);
15142 return error;
15143 }
15144
15145 /**
15146 * lpfc_sli4_read_fcf_rec - Read hba fcf record for update eligible fcf bmask.
15147 * @phba: pointer to lpfc hba data structure.
15148 * @fcf_index: FCF table entry offset.
15149 *
15150 * This routine is invoked to read an FCF record indicated by @fcf_index to
15151 * determine whether it's eligible for FLOGI roundrobin failover list.
15152 *
15153 * Return 0 if the mailbox command is submitted successfully, none 0
15154 * otherwise.
15155 **/
15156 int
15157 lpfc_sli4_read_fcf_rec(struct lpfc_hba *phba, uint16_t fcf_index)
15158 {
15159 int rc = 0, error;
15160 LPFC_MBOXQ_t *mboxq;
15161
15162 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
15163 if (!mboxq) {
15164 lpfc_printf_log(phba, KERN_ERR, LOG_FIP | LOG_INIT,
15165 "2758 Failed to allocate mbox for "
15166 "READ_FCF cmd\n");
15167 error = -ENOMEM;
15168 goto fail_fcf_read;
15169 }
15170 /* Construct the read FCF record mailbox command */
15171 rc = lpfc_sli4_mbx_read_fcf_rec(phba, mboxq, fcf_index);
15172 if (rc) {
15173 error = -EINVAL;
15174 goto fail_fcf_read;
15175 }
15176 /* Issue the mailbox command asynchronously */
15177 mboxq->vport = phba->pport;
15178 mboxq->mbox_cmpl = lpfc_mbx_cmpl_read_fcf_rec;
15179 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_NOWAIT);
15180 if (rc == MBX_NOT_FINISHED)
15181 error = -EIO;
15182 else
15183 error = 0;
15184
15185 fail_fcf_read:
15186 if (error && mboxq)
15187 lpfc_sli4_mbox_cmd_free(phba, mboxq);
15188 return error;
15189 }
15190
15191 /**
15192 * lpfc_check_next_fcf_pri
15193 * phba pointer to the lpfc_hba struct for this port.
15194 * This routine is called from the lpfc_sli4_fcf_rr_next_index_get
15195 * routine when the rr_bmask is empty. The FCF indecies are put into the
15196 * rr_bmask based on their priority level. Starting from the highest priority
15197 * to the lowest. The most likely FCF candidate will be in the highest
15198 * priority group. When this routine is called it searches the fcf_pri list for
15199 * next lowest priority group and repopulates the rr_bmask with only those
15200 * fcf_indexes.
15201 * returns:
15202 * 1=success 0=failure
15203 **/
15204 int
15205 lpfc_check_next_fcf_pri_level(struct lpfc_hba *phba)
15206 {
15207 uint16_t next_fcf_pri;
15208 uint16_t last_index;
15209 struct lpfc_fcf_pri *fcf_pri;
15210 int rc;
15211 int ret = 0;
15212
15213 last_index = find_first_bit(phba->fcf.fcf_rr_bmask,
15214 LPFC_SLI4_FCF_TBL_INDX_MAX);
15215 lpfc_printf_log(phba, KERN_INFO, LOG_FIP,
15216 "3060 Last IDX %d\n", last_index);
15217 if (list_empty(&phba->fcf.fcf_pri_list)) {
15218 lpfc_printf_log(phba, KERN_ERR, LOG_FIP,
15219 "3061 Last IDX %d\n", last_index);
15220 return 0; /* Empty rr list */
15221 }
15222 next_fcf_pri = 0;
15223 /*
15224 * Clear the rr_bmask and set all of the bits that are at this
15225 * priority.
15226 */
15227 memset(phba->fcf.fcf_rr_bmask, 0,
15228 sizeof(*phba->fcf.fcf_rr_bmask));
15229 spin_lock_irq(&phba->hbalock);
15230 list_for_each_entry(fcf_pri, &phba->fcf.fcf_pri_list, list) {
15231 if (fcf_pri->fcf_rec.flag & LPFC_FCF_FLOGI_FAILED)
15232 continue;
15233 /*
15234 * the 1st priority that has not FLOGI failed
15235 * will be the highest.
15236 */
15237 if (!next_fcf_pri)
15238 next_fcf_pri = fcf_pri->fcf_rec.priority;
15239 spin_unlock_irq(&phba->hbalock);
15240 if (fcf_pri->fcf_rec.priority == next_fcf_pri) {
15241 rc = lpfc_sli4_fcf_rr_index_set(phba,
15242 fcf_pri->fcf_rec.fcf_index);
15243 if (rc)
15244 return 0;
15245 }
15246 spin_lock_irq(&phba->hbalock);
15247 }
15248 /*
15249 * if next_fcf_pri was not set above and the list is not empty then
15250 * we have failed flogis on all of them. So reset flogi failed
15251 * and start at the begining.
15252 */
15253 if (!next_fcf_pri && !list_empty(&phba->fcf.fcf_pri_list)) {
15254 list_for_each_entry(fcf_pri, &phba->fcf.fcf_pri_list, list) {
15255 fcf_pri->fcf_rec.flag &= ~LPFC_FCF_FLOGI_FAILED;
15256 /*
15257 * the 1st priority that has not FLOGI failed
15258 * will be the highest.
15259 */
15260 if (!next_fcf_pri)
15261 next_fcf_pri = fcf_pri->fcf_rec.priority;
15262 spin_unlock_irq(&phba->hbalock);
15263 if (fcf_pri->fcf_rec.priority == next_fcf_pri) {
15264 rc = lpfc_sli4_fcf_rr_index_set(phba,
15265 fcf_pri->fcf_rec.fcf_index);
15266 if (rc)
15267 return 0;
15268 }
15269 spin_lock_irq(&phba->hbalock);
15270 }
15271 } else
15272 ret = 1;
15273 spin_unlock_irq(&phba->hbalock);
15274
15275 return ret;
15276 }
15277 /**
15278 * lpfc_sli4_fcf_rr_next_index_get - Get next eligible fcf record index
15279 * @phba: pointer to lpfc hba data structure.
15280 *
15281 * This routine is to get the next eligible FCF record index in a round
15282 * robin fashion. If the next eligible FCF record index equals to the
15283 * initial roundrobin FCF record index, LPFC_FCOE_FCF_NEXT_NONE (0xFFFF)
15284 * shall be returned, otherwise, the next eligible FCF record's index
15285 * shall be returned.
15286 **/
15287 uint16_t
15288 lpfc_sli4_fcf_rr_next_index_get(struct lpfc_hba *phba)
15289 {
15290 uint16_t next_fcf_index;
15291
15292 /* Search start from next bit of currently registered FCF index */
15293 next_priority:
15294 next_fcf_index = (phba->fcf.current_rec.fcf_indx + 1) %
15295 LPFC_SLI4_FCF_TBL_INDX_MAX;
15296 next_fcf_index = find_next_bit(phba->fcf.fcf_rr_bmask,
15297 LPFC_SLI4_FCF_TBL_INDX_MAX,
15298 next_fcf_index);
15299
15300 /* Wrap around condition on phba->fcf.fcf_rr_bmask */
15301 if (next_fcf_index >= LPFC_SLI4_FCF_TBL_INDX_MAX) {
15302 /*
15303 * If we have wrapped then we need to clear the bits that
15304 * have been tested so that we can detect when we should
15305 * change the priority level.
15306 */
15307 next_fcf_index = find_next_bit(phba->fcf.fcf_rr_bmask,
15308 LPFC_SLI4_FCF_TBL_INDX_MAX, 0);
15309 }
15310
15311
15312 /* Check roundrobin failover list empty condition */
15313 if (next_fcf_index >= LPFC_SLI4_FCF_TBL_INDX_MAX ||
15314 next_fcf_index == phba->fcf.current_rec.fcf_indx) {
15315 /*
15316 * If next fcf index is not found check if there are lower
15317 * Priority level fcf's in the fcf_priority list.
15318 * Set up the rr_bmask with all of the avaiable fcf bits
15319 * at that level and continue the selection process.
15320 */
15321 if (lpfc_check_next_fcf_pri_level(phba))
15322 goto next_priority;
15323 lpfc_printf_log(phba, KERN_WARNING, LOG_FIP,
15324 "2844 No roundrobin failover FCF available\n");
15325 if (next_fcf_index >= LPFC_SLI4_FCF_TBL_INDX_MAX)
15326 return LPFC_FCOE_FCF_NEXT_NONE;
15327 else {
15328 lpfc_printf_log(phba, KERN_WARNING, LOG_FIP,
15329 "3063 Only FCF available idx %d, flag %x\n",
15330 next_fcf_index,
15331 phba->fcf.fcf_pri[next_fcf_index].fcf_rec.flag);
15332 return next_fcf_index;
15333 }
15334 }
15335
15336 if (next_fcf_index < LPFC_SLI4_FCF_TBL_INDX_MAX &&
15337 phba->fcf.fcf_pri[next_fcf_index].fcf_rec.flag &
15338 LPFC_FCF_FLOGI_FAILED)
15339 goto next_priority;
15340
15341 lpfc_printf_log(phba, KERN_INFO, LOG_FIP,
15342 "2845 Get next roundrobin failover FCF (x%x)\n",
15343 next_fcf_index);
15344
15345 return next_fcf_index;
15346 }
15347
15348 /**
15349 * lpfc_sli4_fcf_rr_index_set - Set bmask with eligible fcf record index
15350 * @phba: pointer to lpfc hba data structure.
15351 *
15352 * This routine sets the FCF record index in to the eligible bmask for
15353 * roundrobin failover search. It checks to make sure that the index
15354 * does not go beyond the range of the driver allocated bmask dimension
15355 * before setting the bit.
15356 *
15357 * Returns 0 if the index bit successfully set, otherwise, it returns
15358 * -EINVAL.
15359 **/
15360 int
15361 lpfc_sli4_fcf_rr_index_set(struct lpfc_hba *phba, uint16_t fcf_index)
15362 {
15363 if (fcf_index >= LPFC_SLI4_FCF_TBL_INDX_MAX) {
15364 lpfc_printf_log(phba, KERN_ERR, LOG_FIP,
15365 "2610 FCF (x%x) reached driver's book "
15366 "keeping dimension:x%x\n",
15367 fcf_index, LPFC_SLI4_FCF_TBL_INDX_MAX);
15368 return -EINVAL;
15369 }
15370 /* Set the eligible FCF record index bmask */
15371 set_bit(fcf_index, phba->fcf.fcf_rr_bmask);
15372
15373 lpfc_printf_log(phba, KERN_INFO, LOG_FIP,
15374 "2790 Set FCF (x%x) to roundrobin FCF failover "
15375 "bmask\n", fcf_index);
15376
15377 return 0;
15378 }
15379
15380 /**
15381 * lpfc_sli4_fcf_rr_index_clear - Clear bmask from eligible fcf record index
15382 * @phba: pointer to lpfc hba data structure.
15383 *
15384 * This routine clears the FCF record index from the eligible bmask for
15385 * roundrobin failover search. It checks to make sure that the index
15386 * does not go beyond the range of the driver allocated bmask dimension
15387 * before clearing the bit.
15388 **/
15389 void
15390 lpfc_sli4_fcf_rr_index_clear(struct lpfc_hba *phba, uint16_t fcf_index)
15391 {
15392 struct lpfc_fcf_pri *fcf_pri;
15393 if (fcf_index >= LPFC_SLI4_FCF_TBL_INDX_MAX) {
15394 lpfc_printf_log(phba, KERN_ERR, LOG_FIP,
15395 "2762 FCF (x%x) reached driver's book "
15396 "keeping dimension:x%x\n",
15397 fcf_index, LPFC_SLI4_FCF_TBL_INDX_MAX);
15398 return;
15399 }
15400 /* Clear the eligible FCF record index bmask */
15401 spin_lock_irq(&phba->hbalock);
15402 list_for_each_entry(fcf_pri, &phba->fcf.fcf_pri_list, list) {
15403 if (fcf_pri->fcf_rec.fcf_index == fcf_index) {
15404 list_del_init(&fcf_pri->list);
15405 break;
15406 }
15407 }
15408 spin_unlock_irq(&phba->hbalock);
15409 clear_bit(fcf_index, phba->fcf.fcf_rr_bmask);
15410
15411 lpfc_printf_log(phba, KERN_INFO, LOG_FIP,
15412 "2791 Clear FCF (x%x) from roundrobin failover "
15413 "bmask\n", fcf_index);
15414 }
15415
15416 /**
15417 * lpfc_mbx_cmpl_redisc_fcf_table - completion routine for rediscover FCF table
15418 * @phba: pointer to lpfc hba data structure.
15419 *
15420 * This routine is the completion routine for the rediscover FCF table mailbox
15421 * command. If the mailbox command returned failure, it will try to stop the
15422 * FCF rediscover wait timer.
15423 **/
15424 void
15425 lpfc_mbx_cmpl_redisc_fcf_table(struct lpfc_hba *phba, LPFC_MBOXQ_t *mbox)
15426 {
15427 struct lpfc_mbx_redisc_fcf_tbl *redisc_fcf;
15428 uint32_t shdr_status, shdr_add_status;
15429
15430 redisc_fcf = &mbox->u.mqe.un.redisc_fcf_tbl;
15431
15432 shdr_status = bf_get(lpfc_mbox_hdr_status,
15433 &redisc_fcf->header.cfg_shdr.response);
15434 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status,
15435 &redisc_fcf->header.cfg_shdr.response);
15436 if (shdr_status || shdr_add_status) {
15437 lpfc_printf_log(phba, KERN_ERR, LOG_FIP,
15438 "2746 Requesting for FCF rediscovery failed "
15439 "status x%x add_status x%x\n",
15440 shdr_status, shdr_add_status);
15441 if (phba->fcf.fcf_flag & FCF_ACVL_DISC) {
15442 spin_lock_irq(&phba->hbalock);
15443 phba->fcf.fcf_flag &= ~FCF_ACVL_DISC;
15444 spin_unlock_irq(&phba->hbalock);
15445 /*
15446 * CVL event triggered FCF rediscover request failed,
15447 * last resort to re-try current registered FCF entry.
15448 */
15449 lpfc_retry_pport_discovery(phba);
15450 } else {
15451 spin_lock_irq(&phba->hbalock);
15452 phba->fcf.fcf_flag &= ~FCF_DEAD_DISC;
15453 spin_unlock_irq(&phba->hbalock);
15454 /*
15455 * DEAD FCF event triggered FCF rediscover request
15456 * failed, last resort to fail over as a link down
15457 * to FCF registration.
15458 */
15459 lpfc_sli4_fcf_dead_failthrough(phba);
15460 }
15461 } else {
15462 lpfc_printf_log(phba, KERN_INFO, LOG_FIP,
15463 "2775 Start FCF rediscover quiescent timer\n");
15464 /*
15465 * Start FCF rediscovery wait timer for pending FCF
15466 * before rescan FCF record table.
15467 */
15468 lpfc_fcf_redisc_wait_start_timer(phba);
15469 }
15470
15471 mempool_free(mbox, phba->mbox_mem_pool);
15472 }
15473
15474 /**
15475 * lpfc_sli4_redisc_fcf_table - Request to rediscover entire FCF table by port.
15476 * @phba: pointer to lpfc hba data structure.
15477 *
15478 * This routine is invoked to request for rediscovery of the entire FCF table
15479 * by the port.
15480 **/
15481 int
15482 lpfc_sli4_redisc_fcf_table(struct lpfc_hba *phba)
15483 {
15484 LPFC_MBOXQ_t *mbox;
15485 struct lpfc_mbx_redisc_fcf_tbl *redisc_fcf;
15486 int rc, length;
15487
15488 /* Cancel retry delay timers to all vports before FCF rediscover */
15489 lpfc_cancel_all_vport_retry_delay_timer(phba);
15490
15491 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
15492 if (!mbox) {
15493 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
15494 "2745 Failed to allocate mbox for "
15495 "requesting FCF rediscover.\n");
15496 return -ENOMEM;
15497 }
15498
15499 length = (sizeof(struct lpfc_mbx_redisc_fcf_tbl) -
15500 sizeof(struct lpfc_sli4_cfg_mhdr));
15501 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_FCOE,
15502 LPFC_MBOX_OPCODE_FCOE_REDISCOVER_FCF,
15503 length, LPFC_SLI4_MBX_EMBED);
15504
15505 redisc_fcf = &mbox->u.mqe.un.redisc_fcf_tbl;
15506 /* Set count to 0 for invalidating the entire FCF database */
15507 bf_set(lpfc_mbx_redisc_fcf_count, redisc_fcf, 0);
15508
15509 /* Issue the mailbox command asynchronously */
15510 mbox->vport = phba->pport;
15511 mbox->mbox_cmpl = lpfc_mbx_cmpl_redisc_fcf_table;
15512 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_NOWAIT);
15513
15514 if (rc == MBX_NOT_FINISHED) {
15515 mempool_free(mbox, phba->mbox_mem_pool);
15516 return -EIO;
15517 }
15518 return 0;
15519 }
15520
15521 /**
15522 * lpfc_sli4_fcf_dead_failthrough - Failthrough routine to fcf dead event
15523 * @phba: pointer to lpfc hba data structure.
15524 *
15525 * This function is the failover routine as a last resort to the FCF DEAD
15526 * event when driver failed to perform fast FCF failover.
15527 **/
15528 void
15529 lpfc_sli4_fcf_dead_failthrough(struct lpfc_hba *phba)
15530 {
15531 uint32_t link_state;
15532
15533 /*
15534 * Last resort as FCF DEAD event failover will treat this as
15535 * a link down, but save the link state because we don't want
15536 * it to be changed to Link Down unless it is already down.
15537 */
15538 link_state = phba->link_state;
15539 lpfc_linkdown(phba);
15540 phba->link_state = link_state;
15541
15542 /* Unregister FCF if no devices connected to it */
15543 lpfc_unregister_unused_fcf(phba);
15544 }
15545
15546 /**
15547 * lpfc_sli_get_config_region23 - Get sli3 port region 23 data.
15548 * @phba: pointer to lpfc hba data structure.
15549 * @rgn23_data: pointer to configure region 23 data.
15550 *
15551 * This function gets SLI3 port configure region 23 data through memory dump
15552 * mailbox command. When it successfully retrieves data, the size of the data
15553 * will be returned, otherwise, 0 will be returned.
15554 **/
15555 static uint32_t
15556 lpfc_sli_get_config_region23(struct lpfc_hba *phba, char *rgn23_data)
15557 {
15558 LPFC_MBOXQ_t *pmb = NULL;
15559 MAILBOX_t *mb;
15560 uint32_t offset = 0;
15561 int rc;
15562
15563 if (!rgn23_data)
15564 return 0;
15565
15566 pmb = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
15567 if (!pmb) {
15568 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
15569 "2600 failed to allocate mailbox memory\n");
15570 return 0;
15571 }
15572 mb = &pmb->u.mb;
15573
15574 do {
15575 lpfc_dump_mem(phba, pmb, offset, DMP_REGION_23);
15576 rc = lpfc_sli_issue_mbox(phba, pmb, MBX_POLL);
15577
15578 if (rc != MBX_SUCCESS) {
15579 lpfc_printf_log(phba, KERN_INFO, LOG_INIT,
15580 "2601 failed to read config "
15581 "region 23, rc 0x%x Status 0x%x\n",
15582 rc, mb->mbxStatus);
15583 mb->un.varDmp.word_cnt = 0;
15584 }
15585 /*
15586 * dump mem may return a zero when finished or we got a
15587 * mailbox error, either way we are done.
15588 */
15589 if (mb->un.varDmp.word_cnt == 0)
15590 break;
15591 if (mb->un.varDmp.word_cnt > DMP_RGN23_SIZE - offset)
15592 mb->un.varDmp.word_cnt = DMP_RGN23_SIZE - offset;
15593
15594 lpfc_sli_pcimem_bcopy(((uint8_t *)mb) + DMP_RSP_OFFSET,
15595 rgn23_data + offset,
15596 mb->un.varDmp.word_cnt);
15597 offset += mb->un.varDmp.word_cnt;
15598 } while (mb->un.varDmp.word_cnt && offset < DMP_RGN23_SIZE);
15599
15600 mempool_free(pmb, phba->mbox_mem_pool);
15601 return offset;
15602 }
15603
15604 /**
15605 * lpfc_sli4_get_config_region23 - Get sli4 port region 23 data.
15606 * @phba: pointer to lpfc hba data structure.
15607 * @rgn23_data: pointer to configure region 23 data.
15608 *
15609 * This function gets SLI4 port configure region 23 data through memory dump
15610 * mailbox command. When it successfully retrieves data, the size of the data
15611 * will be returned, otherwise, 0 will be returned.
15612 **/
15613 static uint32_t
15614 lpfc_sli4_get_config_region23(struct lpfc_hba *phba, char *rgn23_data)
15615 {
15616 LPFC_MBOXQ_t *mboxq = NULL;
15617 struct lpfc_dmabuf *mp = NULL;
15618 struct lpfc_mqe *mqe;
15619 uint32_t data_length = 0;
15620 int rc;
15621
15622 if (!rgn23_data)
15623 return 0;
15624
15625 mboxq = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
15626 if (!mboxq) {
15627 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
15628 "3105 failed to allocate mailbox memory\n");
15629 return 0;
15630 }
15631
15632 if (lpfc_sli4_dump_cfg_rg23(phba, mboxq))
15633 goto out;
15634 mqe = &mboxq->u.mqe;
15635 mp = (struct lpfc_dmabuf *) mboxq->context1;
15636 rc = lpfc_sli_issue_mbox(phba, mboxq, MBX_POLL);
15637 if (rc)
15638 goto out;
15639 data_length = mqe->un.mb_words[5];
15640 if (data_length == 0)
15641 goto out;
15642 if (data_length > DMP_RGN23_SIZE) {
15643 data_length = 0;
15644 goto out;
15645 }
15646 lpfc_sli_pcimem_bcopy((char *)mp->virt, rgn23_data, data_length);
15647 out:
15648 mempool_free(mboxq, phba->mbox_mem_pool);
15649 if (mp) {
15650 lpfc_mbuf_free(phba, mp->virt, mp->phys);
15651 kfree(mp);
15652 }
15653 return data_length;
15654 }
15655
15656 /**
15657 * lpfc_sli_read_link_ste - Read region 23 to decide if link is disabled.
15658 * @phba: pointer to lpfc hba data structure.
15659 *
15660 * This function read region 23 and parse TLV for port status to
15661 * decide if the user disaled the port. If the TLV indicates the
15662 * port is disabled, the hba_flag is set accordingly.
15663 **/
15664 void
15665 lpfc_sli_read_link_ste(struct lpfc_hba *phba)
15666 {
15667 uint8_t *rgn23_data = NULL;
15668 uint32_t if_type, data_size, sub_tlv_len, tlv_offset;
15669 uint32_t offset = 0;
15670
15671 /* Get adapter Region 23 data */
15672 rgn23_data = kzalloc(DMP_RGN23_SIZE, GFP_KERNEL);
15673 if (!rgn23_data)
15674 goto out;
15675
15676 if (phba->sli_rev < LPFC_SLI_REV4)
15677 data_size = lpfc_sli_get_config_region23(phba, rgn23_data);
15678 else {
15679 if_type = bf_get(lpfc_sli_intf_if_type,
15680 &phba->sli4_hba.sli_intf);
15681 if (if_type == LPFC_SLI_INTF_IF_TYPE_0)
15682 goto out;
15683 data_size = lpfc_sli4_get_config_region23(phba, rgn23_data);
15684 }
15685
15686 if (!data_size)
15687 goto out;
15688
15689 /* Check the region signature first */
15690 if (memcmp(&rgn23_data[offset], LPFC_REGION23_SIGNATURE, 4)) {
15691 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
15692 "2619 Config region 23 has bad signature\n");
15693 goto out;
15694 }
15695 offset += 4;
15696
15697 /* Check the data structure version */
15698 if (rgn23_data[offset] != LPFC_REGION23_VERSION) {
15699 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
15700 "2620 Config region 23 has bad version\n");
15701 goto out;
15702 }
15703 offset += 4;
15704
15705 /* Parse TLV entries in the region */
15706 while (offset < data_size) {
15707 if (rgn23_data[offset] == LPFC_REGION23_LAST_REC)
15708 break;
15709 /*
15710 * If the TLV is not driver specific TLV or driver id is
15711 * not linux driver id, skip the record.
15712 */
15713 if ((rgn23_data[offset] != DRIVER_SPECIFIC_TYPE) ||
15714 (rgn23_data[offset + 2] != LINUX_DRIVER_ID) ||
15715 (rgn23_data[offset + 3] != 0)) {
15716 offset += rgn23_data[offset + 1] * 4 + 4;
15717 continue;
15718 }
15719
15720 /* Driver found a driver specific TLV in the config region */
15721 sub_tlv_len = rgn23_data[offset + 1] * 4;
15722 offset += 4;
15723 tlv_offset = 0;
15724
15725 /*
15726 * Search for configured port state sub-TLV.
15727 */
15728 while ((offset < data_size) &&
15729 (tlv_offset < sub_tlv_len)) {
15730 if (rgn23_data[offset] == LPFC_REGION23_LAST_REC) {
15731 offset += 4;
15732 tlv_offset += 4;
15733 break;
15734 }
15735 if (rgn23_data[offset] != PORT_STE_TYPE) {
15736 offset += rgn23_data[offset + 1] * 4 + 4;
15737 tlv_offset += rgn23_data[offset + 1] * 4 + 4;
15738 continue;
15739 }
15740
15741 /* This HBA contains PORT_STE configured */
15742 if (!rgn23_data[offset + 2])
15743 phba->hba_flag |= LINK_DISABLED;
15744
15745 goto out;
15746 }
15747 }
15748
15749 out:
15750 kfree(rgn23_data);
15751 return;
15752 }
15753
15754 /**
15755 * lpfc_wr_object - write an object to the firmware
15756 * @phba: HBA structure that indicates port to create a queue on.
15757 * @dmabuf_list: list of dmabufs to write to the port.
15758 * @size: the total byte value of the objects to write to the port.
15759 * @offset: the current offset to be used to start the transfer.
15760 *
15761 * This routine will create a wr_object mailbox command to send to the port.
15762 * the mailbox command will be constructed using the dma buffers described in
15763 * @dmabuf_list to create a list of BDEs. This routine will fill in as many
15764 * BDEs that the imbedded mailbox can support. The @offset variable will be
15765 * used to indicate the starting offset of the transfer and will also return
15766 * the offset after the write object mailbox has completed. @size is used to
15767 * determine the end of the object and whether the eof bit should be set.
15768 *
15769 * Return 0 is successful and offset will contain the the new offset to use
15770 * for the next write.
15771 * Return negative value for error cases.
15772 **/
15773 int
15774 lpfc_wr_object(struct lpfc_hba *phba, struct list_head *dmabuf_list,
15775 uint32_t size, uint32_t *offset)
15776 {
15777 struct lpfc_mbx_wr_object *wr_object;
15778 LPFC_MBOXQ_t *mbox;
15779 int rc = 0, i = 0;
15780 uint32_t shdr_status, shdr_add_status;
15781 uint32_t mbox_tmo;
15782 union lpfc_sli4_cfg_shdr *shdr;
15783 struct lpfc_dmabuf *dmabuf;
15784 uint32_t written = 0;
15785
15786 mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL);
15787 if (!mbox)
15788 return -ENOMEM;
15789
15790 lpfc_sli4_config(phba, mbox, LPFC_MBOX_SUBSYSTEM_COMMON,
15791 LPFC_MBOX_OPCODE_WRITE_OBJECT,
15792 sizeof(struct lpfc_mbx_wr_object) -
15793 sizeof(struct lpfc_sli4_cfg_mhdr), LPFC_SLI4_MBX_EMBED);
15794
15795 wr_object = (struct lpfc_mbx_wr_object *)&mbox->u.mqe.un.wr_object;
15796 wr_object->u.request.write_offset = *offset;
15797 sprintf((uint8_t *)wr_object->u.request.object_name, "/");
15798 wr_object->u.request.object_name[0] =
15799 cpu_to_le32(wr_object->u.request.object_name[0]);
15800 bf_set(lpfc_wr_object_eof, &wr_object->u.request, 0);
15801 list_for_each_entry(dmabuf, dmabuf_list, list) {
15802 if (i >= LPFC_MBX_WR_CONFIG_MAX_BDE || written >= size)
15803 break;
15804 wr_object->u.request.bde[i].addrLow = putPaddrLow(dmabuf->phys);
15805 wr_object->u.request.bde[i].addrHigh =
15806 putPaddrHigh(dmabuf->phys);
15807 if (written + SLI4_PAGE_SIZE >= size) {
15808 wr_object->u.request.bde[i].tus.f.bdeSize =
15809 (size - written);
15810 written += (size - written);
15811 bf_set(lpfc_wr_object_eof, &wr_object->u.request, 1);
15812 } else {
15813 wr_object->u.request.bde[i].tus.f.bdeSize =
15814 SLI4_PAGE_SIZE;
15815 written += SLI4_PAGE_SIZE;
15816 }
15817 i++;
15818 }
15819 wr_object->u.request.bde_count = i;
15820 bf_set(lpfc_wr_object_write_length, &wr_object->u.request, written);
15821 if (!phba->sli4_hba.intr_enable)
15822 rc = lpfc_sli_issue_mbox(phba, mbox, MBX_POLL);
15823 else {
15824 mbox_tmo = lpfc_mbox_tmo_val(phba, mbox);
15825 rc = lpfc_sli_issue_mbox_wait(phba, mbox, mbox_tmo);
15826 }
15827 /* The IOCTL status is embedded in the mailbox subheader. */
15828 shdr = (union lpfc_sli4_cfg_shdr *) &wr_object->header.cfg_shdr;
15829 shdr_status = bf_get(lpfc_mbox_hdr_status, &shdr->response);
15830 shdr_add_status = bf_get(lpfc_mbox_hdr_add_status, &shdr->response);
15831 if (rc != MBX_TIMEOUT)
15832 mempool_free(mbox, phba->mbox_mem_pool);
15833 if (shdr_status || shdr_add_status || rc) {
15834 lpfc_printf_log(phba, KERN_ERR, LOG_INIT,
15835 "3025 Write Object mailbox failed with "
15836 "status x%x add_status x%x, mbx status x%x\n",
15837 shdr_status, shdr_add_status, rc);
15838 rc = -ENXIO;
15839 } else
15840 *offset += wr_object->u.response.actual_write_length;
15841 return rc;
15842 }
15843
15844 /**
15845 * lpfc_cleanup_pending_mbox - Free up vport discovery mailbox commands.
15846 * @vport: pointer to vport data structure.
15847 *
15848 * This function iterate through the mailboxq and clean up all REG_LOGIN
15849 * and REG_VPI mailbox commands associated with the vport. This function
15850 * is called when driver want to restart discovery of the vport due to
15851 * a Clear Virtual Link event.
15852 **/
15853 void
15854 lpfc_cleanup_pending_mbox(struct lpfc_vport *vport)
15855 {
15856 struct lpfc_hba *phba = vport->phba;
15857 LPFC_MBOXQ_t *mb, *nextmb;
15858 struct lpfc_dmabuf *mp;
15859 struct lpfc_nodelist *ndlp;
15860 struct lpfc_nodelist *act_mbx_ndlp = NULL;
15861 struct Scsi_Host *shost = lpfc_shost_from_vport(vport);
15862 LIST_HEAD(mbox_cmd_list);
15863 uint8_t restart_loop;
15864
15865 /* Clean up internally queued mailbox commands with the vport */
15866 spin_lock_irq(&phba->hbalock);
15867 list_for_each_entry_safe(mb, nextmb, &phba->sli.mboxq, list) {
15868 if (mb->vport != vport)
15869 continue;
15870
15871 if ((mb->u.mb.mbxCommand != MBX_REG_LOGIN64) &&
15872 (mb->u.mb.mbxCommand != MBX_REG_VPI))
15873 continue;
15874
15875 list_del(&mb->list);
15876 list_add_tail(&mb->list, &mbox_cmd_list);
15877 }
15878 /* Clean up active mailbox command with the vport */
15879 mb = phba->sli.mbox_active;
15880 if (mb && (mb->vport == vport)) {
15881 if ((mb->u.mb.mbxCommand == MBX_REG_LOGIN64) ||
15882 (mb->u.mb.mbxCommand == MBX_REG_VPI))
15883 mb->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
15884 if (mb->u.mb.mbxCommand == MBX_REG_LOGIN64) {
15885 act_mbx_ndlp = (struct lpfc_nodelist *)mb->context2;
15886 /* Put reference count for delayed processing */
15887 act_mbx_ndlp = lpfc_nlp_get(act_mbx_ndlp);
15888 /* Unregister the RPI when mailbox complete */
15889 mb->mbox_flag |= LPFC_MBX_IMED_UNREG;
15890 }
15891 }
15892 /* Cleanup any mailbox completions which are not yet processed */
15893 do {
15894 restart_loop = 0;
15895 list_for_each_entry(mb, &phba->sli.mboxq_cmpl, list) {
15896 /*
15897 * If this mailox is already processed or it is
15898 * for another vport ignore it.
15899 */
15900 if ((mb->vport != vport) ||
15901 (mb->mbox_flag & LPFC_MBX_IMED_UNREG))
15902 continue;
15903
15904 if ((mb->u.mb.mbxCommand != MBX_REG_LOGIN64) &&
15905 (mb->u.mb.mbxCommand != MBX_REG_VPI))
15906 continue;
15907
15908 mb->mbox_cmpl = lpfc_sli_def_mbox_cmpl;
15909 if (mb->u.mb.mbxCommand == MBX_REG_LOGIN64) {
15910 ndlp = (struct lpfc_nodelist *)mb->context2;
15911 /* Unregister the RPI when mailbox complete */
15912 mb->mbox_flag |= LPFC_MBX_IMED_UNREG;
15913 restart_loop = 1;
15914 spin_unlock_irq(&phba->hbalock);
15915 spin_lock(shost->host_lock);
15916 ndlp->nlp_flag &= ~NLP_IGNR_REG_CMPL;
15917 spin_unlock(shost->host_lock);
15918 spin_lock_irq(&phba->hbalock);
15919 break;
15920 }
15921 }
15922 } while (restart_loop);
15923
15924 spin_unlock_irq(&phba->hbalock);
15925
15926 /* Release the cleaned-up mailbox commands */
15927 while (!list_empty(&mbox_cmd_list)) {
15928 list_remove_head(&mbox_cmd_list, mb, LPFC_MBOXQ_t, list);
15929 if (mb->u.mb.mbxCommand == MBX_REG_LOGIN64) {
15930 mp = (struct lpfc_dmabuf *) (mb->context1);
15931 if (mp) {
15932 __lpfc_mbuf_free(phba, mp->virt, mp->phys);
15933 kfree(mp);
15934 }
15935 ndlp = (struct lpfc_nodelist *) mb->context2;
15936 mb->context2 = NULL;
15937 if (ndlp) {
15938 spin_lock(shost->host_lock);
15939 ndlp->nlp_flag &= ~NLP_IGNR_REG_CMPL;
15940 spin_unlock(shost->host_lock);
15941 lpfc_nlp_put(ndlp);
15942 }
15943 }
15944 mempool_free(mb, phba->mbox_mem_pool);
15945 }
15946
15947 /* Release the ndlp with the cleaned-up active mailbox command */
15948 if (act_mbx_ndlp) {
15949 spin_lock(shost->host_lock);
15950 act_mbx_ndlp->nlp_flag &= ~NLP_IGNR_REG_CMPL;
15951 spin_unlock(shost->host_lock);
15952 lpfc_nlp_put(act_mbx_ndlp);
15953 }
15954 }
15955
15956 /**
15957 * lpfc_drain_txq - Drain the txq
15958 * @phba: Pointer to HBA context object.
15959 *
15960 * This function attempt to submit IOCBs on the txq
15961 * to the adapter. For SLI4 adapters, the txq contains
15962 * ELS IOCBs that have been deferred because the there
15963 * are no SGLs. This congestion can occur with large
15964 * vport counts during node discovery.
15965 **/
15966
15967 uint32_t
15968 lpfc_drain_txq(struct lpfc_hba *phba)
15969 {
15970 LIST_HEAD(completions);
15971 struct lpfc_sli_ring *pring = &phba->sli.ring[LPFC_ELS_RING];
15972 struct lpfc_iocbq *piocbq = 0;
15973 unsigned long iflags = 0;
15974 char *fail_msg = NULL;
15975 struct lpfc_sglq *sglq;
15976 union lpfc_wqe wqe;
15977
15978 spin_lock_irqsave(&phba->hbalock, iflags);
15979 if (pring->txq_cnt > pring->txq_max)
15980 pring->txq_max = pring->txq_cnt;
15981
15982 spin_unlock_irqrestore(&phba->hbalock, iflags);
15983
15984 while (pring->txq_cnt) {
15985 spin_lock_irqsave(&phba->hbalock, iflags);
15986
15987 piocbq = lpfc_sli_ringtx_get(phba, pring);
15988 sglq = __lpfc_sli_get_sglq(phba, piocbq);
15989 if (!sglq) {
15990 __lpfc_sli_ringtx_put(phba, pring, piocbq);
15991 spin_unlock_irqrestore(&phba->hbalock, iflags);
15992 break;
15993 } else {
15994 if (!piocbq) {
15995 /* The txq_cnt out of sync. This should
15996 * never happen
15997 */
15998 sglq = __lpfc_clear_active_sglq(phba,
15999 sglq->sli4_lxritag);
16000 spin_unlock_irqrestore(&phba->hbalock, iflags);
16001 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
16002 "2823 txq empty and txq_cnt is %d\n ",
16003 pring->txq_cnt);
16004 break;
16005 }
16006 }
16007
16008 /* The xri and iocb resources secured,
16009 * attempt to issue request
16010 */
16011 piocbq->sli4_lxritag = sglq->sli4_lxritag;
16012 piocbq->sli4_xritag = sglq->sli4_xritag;
16013 if (NO_XRI == lpfc_sli4_bpl2sgl(phba, piocbq, sglq))
16014 fail_msg = "to convert bpl to sgl";
16015 else if (lpfc_sli4_iocb2wqe(phba, piocbq, &wqe))
16016 fail_msg = "to convert iocb to wqe";
16017 else if (lpfc_sli4_wq_put(phba->sli4_hba.els_wq, &wqe))
16018 fail_msg = " - Wq is full";
16019 else
16020 lpfc_sli_ringtxcmpl_put(phba, pring, piocbq);
16021
16022 if (fail_msg) {
16023 /* Failed means we can't issue and need to cancel */
16024 lpfc_printf_log(phba, KERN_ERR, LOG_SLI,
16025 "2822 IOCB failed %s iotag 0x%x "
16026 "xri 0x%x\n",
16027 fail_msg,
16028 piocbq->iotag, piocbq->sli4_xritag);
16029 list_add_tail(&piocbq->list, &completions);
16030 }
16031 spin_unlock_irqrestore(&phba->hbalock, iflags);
16032 }
16033
16034 /* Cancel all the IOCBs that cannot be issued */
16035 lpfc_sli_cancel_iocbs(phba, &completions, IOSTAT_LOCAL_REJECT,
16036 IOERR_SLI_ABORTED);
16037
16038 return pring->txq_cnt;
16039 }
This page took 0.489365 seconds and 5 git commands to generate.