ASoC: fsl: Add S/PDIF CPU DAI driver
[deliverable/linux.git] / drivers / scsi / megaraid / megaraid_sas_base.c
1 /*
2 * Linux MegaRAID driver for SAS based RAID controllers
3 *
4 * Copyright (c) 2003-2012 LSI Corporation.
5 *
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License
8 * as published by the Free Software Foundation; either version 2
9 * of the License, or (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software
18 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
19 *
20 * FILE: megaraid_sas_base.c
21 * Version : 06.600.18.00-rc1
22 *
23 * Authors: LSI Corporation
24 * Sreenivas Bagalkote
25 * Sumant Patro
26 * Bo Yang
27 * Adam Radford <linuxraid@lsi.com>
28 *
29 * Send feedback to: <megaraidlinux@lsi.com>
30 *
31 * Mail to: LSI Corporation, 1621 Barber Lane, Milpitas, CA 95035
32 * ATTN: Linuxraid
33 */
34
35 #include <linux/kernel.h>
36 #include <linux/types.h>
37 #include <linux/pci.h>
38 #include <linux/list.h>
39 #include <linux/moduleparam.h>
40 #include <linux/module.h>
41 #include <linux/spinlock.h>
42 #include <linux/interrupt.h>
43 #include <linux/delay.h>
44 #include <linux/uio.h>
45 #include <linux/slab.h>
46 #include <asm/uaccess.h>
47 #include <linux/fs.h>
48 #include <linux/compat.h>
49 #include <linux/blkdev.h>
50 #include <linux/mutex.h>
51 #include <linux/poll.h>
52
53 #include <scsi/scsi.h>
54 #include <scsi/scsi_cmnd.h>
55 #include <scsi/scsi_device.h>
56 #include <scsi/scsi_host.h>
57 #include <scsi/scsi_tcq.h>
58 #include "megaraid_sas_fusion.h"
59 #include "megaraid_sas.h"
60
61 /*
62 * Number of sectors per IO command
63 * Will be set in megasas_init_mfi if user does not provide
64 */
65 static unsigned int max_sectors;
66 module_param_named(max_sectors, max_sectors, int, 0);
67 MODULE_PARM_DESC(max_sectors,
68 "Maximum number of sectors per IO command");
69
70 static int msix_disable;
71 module_param(msix_disable, int, S_IRUGO);
72 MODULE_PARM_DESC(msix_disable, "Disable MSI-X interrupt handling. Default: 0");
73
74 static unsigned int msix_vectors;
75 module_param(msix_vectors, int, S_IRUGO);
76 MODULE_PARM_DESC(msix_vectors, "MSI-X max vector count. Default: Set by FW");
77
78 static int throttlequeuedepth = MEGASAS_THROTTLE_QUEUE_DEPTH;
79 module_param(throttlequeuedepth, int, S_IRUGO);
80 MODULE_PARM_DESC(throttlequeuedepth,
81 "Adapter queue depth when throttled due to I/O timeout. Default: 16");
82
83 int resetwaittime = MEGASAS_RESET_WAIT_TIME;
84 module_param(resetwaittime, int, S_IRUGO);
85 MODULE_PARM_DESC(resetwaittime, "Wait time in seconds after I/O timeout "
86 "before resetting adapter. Default: 180");
87
88 MODULE_LICENSE("GPL");
89 MODULE_VERSION(MEGASAS_VERSION);
90 MODULE_AUTHOR("megaraidlinux@lsi.com");
91 MODULE_DESCRIPTION("LSI MegaRAID SAS Driver");
92
93 int megasas_transition_to_ready(struct megasas_instance *instance, int ocr);
94 static int megasas_get_pd_list(struct megasas_instance *instance);
95 static int megasas_issue_init_mfi(struct megasas_instance *instance);
96 static int megasas_register_aen(struct megasas_instance *instance,
97 u32 seq_num, u32 class_locale_word);
98 /*
99 * PCI ID table for all supported controllers
100 */
101 static struct pci_device_id megasas_pci_table[] = {
102
103 {PCI_DEVICE(PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_LSI_SAS1064R)},
104 /* xscale IOP */
105 {PCI_DEVICE(PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_LSI_SAS1078R)},
106 /* ppc IOP */
107 {PCI_DEVICE(PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_LSI_SAS1078DE)},
108 /* ppc IOP */
109 {PCI_DEVICE(PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_LSI_SAS1078GEN2)},
110 /* gen2*/
111 {PCI_DEVICE(PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_LSI_SAS0079GEN2)},
112 /* gen2*/
113 {PCI_DEVICE(PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_LSI_SAS0073SKINNY)},
114 /* skinny*/
115 {PCI_DEVICE(PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_LSI_SAS0071SKINNY)},
116 /* skinny*/
117 {PCI_DEVICE(PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_LSI_VERDE_ZCR)},
118 /* xscale IOP, vega */
119 {PCI_DEVICE(PCI_VENDOR_ID_DELL, PCI_DEVICE_ID_DELL_PERC5)},
120 /* xscale IOP */
121 {PCI_DEVICE(PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_LSI_FUSION)},
122 /* Fusion */
123 {PCI_DEVICE(PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_LSI_INVADER)},
124 /* Invader */
125 {PCI_DEVICE(PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_LSI_FURY)},
126 /* Fury */
127 {}
128 };
129
130 MODULE_DEVICE_TABLE(pci, megasas_pci_table);
131
132 static int megasas_mgmt_majorno;
133 static struct megasas_mgmt_info megasas_mgmt_info;
134 static struct fasync_struct *megasas_async_queue;
135 static DEFINE_MUTEX(megasas_async_queue_mutex);
136
137 static int megasas_poll_wait_aen;
138 static DECLARE_WAIT_QUEUE_HEAD(megasas_poll_wait);
139 static u32 support_poll_for_event;
140 u32 megasas_dbg_lvl;
141 static u32 support_device_change;
142
143 /* define lock for aen poll */
144 spinlock_t poll_aen_lock;
145
146 void
147 megasas_complete_cmd(struct megasas_instance *instance, struct megasas_cmd *cmd,
148 u8 alt_status);
149 static u32
150 megasas_read_fw_status_reg_gen2(struct megasas_register_set __iomem *regs);
151 static int
152 megasas_adp_reset_gen2(struct megasas_instance *instance,
153 struct megasas_register_set __iomem *reg_set);
154 static irqreturn_t megasas_isr(int irq, void *devp);
155 static u32
156 megasas_init_adapter_mfi(struct megasas_instance *instance);
157 u32
158 megasas_build_and_issue_cmd(struct megasas_instance *instance,
159 struct scsi_cmnd *scmd);
160 static void megasas_complete_cmd_dpc(unsigned long instance_addr);
161 void
162 megasas_release_fusion(struct megasas_instance *instance);
163 int
164 megasas_ioc_init_fusion(struct megasas_instance *instance);
165 void
166 megasas_free_cmds_fusion(struct megasas_instance *instance);
167 u8
168 megasas_get_map_info(struct megasas_instance *instance);
169 int
170 megasas_sync_map_info(struct megasas_instance *instance);
171 int
172 wait_and_poll(struct megasas_instance *instance, struct megasas_cmd *cmd);
173 void megasas_reset_reply_desc(struct megasas_instance *instance);
174 int megasas_reset_fusion(struct Scsi_Host *shost);
175 void megasas_fusion_ocr_wq(struct work_struct *work);
176
177 void
178 megasas_issue_dcmd(struct megasas_instance *instance, struct megasas_cmd *cmd)
179 {
180 instance->instancet->fire_cmd(instance,
181 cmd->frame_phys_addr, 0, instance->reg_set);
182 }
183
184 /**
185 * megasas_get_cmd - Get a command from the free pool
186 * @instance: Adapter soft state
187 *
188 * Returns a free command from the pool
189 */
190 struct megasas_cmd *megasas_get_cmd(struct megasas_instance
191 *instance)
192 {
193 unsigned long flags;
194 struct megasas_cmd *cmd = NULL;
195
196 spin_lock_irqsave(&instance->cmd_pool_lock, flags);
197
198 if (!list_empty(&instance->cmd_pool)) {
199 cmd = list_entry((&instance->cmd_pool)->next,
200 struct megasas_cmd, list);
201 list_del_init(&cmd->list);
202 } else {
203 printk(KERN_ERR "megasas: Command pool empty!\n");
204 }
205
206 spin_unlock_irqrestore(&instance->cmd_pool_lock, flags);
207 return cmd;
208 }
209
210 /**
211 * megasas_return_cmd - Return a cmd to free command pool
212 * @instance: Adapter soft state
213 * @cmd: Command packet to be returned to free command pool
214 */
215 inline void
216 megasas_return_cmd(struct megasas_instance *instance, struct megasas_cmd *cmd)
217 {
218 unsigned long flags;
219
220 spin_lock_irqsave(&instance->cmd_pool_lock, flags);
221
222 cmd->scmd = NULL;
223 cmd->frame_count = 0;
224 if ((instance->pdev->device != PCI_DEVICE_ID_LSI_FUSION) &&
225 (instance->pdev->device != PCI_DEVICE_ID_LSI_INVADER) &&
226 (instance->pdev->device != PCI_DEVICE_ID_LSI_FURY) &&
227 (reset_devices))
228 cmd->frame->hdr.cmd = MFI_CMD_INVALID;
229 list_add_tail(&cmd->list, &instance->cmd_pool);
230
231 spin_unlock_irqrestore(&instance->cmd_pool_lock, flags);
232 }
233
234
235 /**
236 * The following functions are defined for xscale
237 * (deviceid : 1064R, PERC5) controllers
238 */
239
240 /**
241 * megasas_enable_intr_xscale - Enables interrupts
242 * @regs: MFI register set
243 */
244 static inline void
245 megasas_enable_intr_xscale(struct megasas_instance *instance)
246 {
247 struct megasas_register_set __iomem *regs;
248 regs = instance->reg_set;
249 writel(0, &(regs)->outbound_intr_mask);
250
251 /* Dummy readl to force pci flush */
252 readl(&regs->outbound_intr_mask);
253 }
254
255 /**
256 * megasas_disable_intr_xscale -Disables interrupt
257 * @regs: MFI register set
258 */
259 static inline void
260 megasas_disable_intr_xscale(struct megasas_instance *instance)
261 {
262 struct megasas_register_set __iomem *regs;
263 u32 mask = 0x1f;
264 regs = instance->reg_set;
265 writel(mask, &regs->outbound_intr_mask);
266 /* Dummy readl to force pci flush */
267 readl(&regs->outbound_intr_mask);
268 }
269
270 /**
271 * megasas_read_fw_status_reg_xscale - returns the current FW status value
272 * @regs: MFI register set
273 */
274 static u32
275 megasas_read_fw_status_reg_xscale(struct megasas_register_set __iomem * regs)
276 {
277 return readl(&(regs)->outbound_msg_0);
278 }
279 /**
280 * megasas_clear_interrupt_xscale - Check & clear interrupt
281 * @regs: MFI register set
282 */
283 static int
284 megasas_clear_intr_xscale(struct megasas_register_set __iomem * regs)
285 {
286 u32 status;
287 u32 mfiStatus = 0;
288 /*
289 * Check if it is our interrupt
290 */
291 status = readl(&regs->outbound_intr_status);
292
293 if (status & MFI_OB_INTR_STATUS_MASK)
294 mfiStatus = MFI_INTR_FLAG_REPLY_MESSAGE;
295 if (status & MFI_XSCALE_OMR0_CHANGE_INTERRUPT)
296 mfiStatus |= MFI_INTR_FLAG_FIRMWARE_STATE_CHANGE;
297
298 /*
299 * Clear the interrupt by writing back the same value
300 */
301 if (mfiStatus)
302 writel(status, &regs->outbound_intr_status);
303
304 /* Dummy readl to force pci flush */
305 readl(&regs->outbound_intr_status);
306
307 return mfiStatus;
308 }
309
310 /**
311 * megasas_fire_cmd_xscale - Sends command to the FW
312 * @frame_phys_addr : Physical address of cmd
313 * @frame_count : Number of frames for the command
314 * @regs : MFI register set
315 */
316 static inline void
317 megasas_fire_cmd_xscale(struct megasas_instance *instance,
318 dma_addr_t frame_phys_addr,
319 u32 frame_count,
320 struct megasas_register_set __iomem *regs)
321 {
322 unsigned long flags;
323 spin_lock_irqsave(&instance->hba_lock, flags);
324 writel((frame_phys_addr >> 3)|(frame_count),
325 &(regs)->inbound_queue_port);
326 spin_unlock_irqrestore(&instance->hba_lock, flags);
327 }
328
329 /**
330 * megasas_adp_reset_xscale - For controller reset
331 * @regs: MFI register set
332 */
333 static int
334 megasas_adp_reset_xscale(struct megasas_instance *instance,
335 struct megasas_register_set __iomem *regs)
336 {
337 u32 i;
338 u32 pcidata;
339 writel(MFI_ADP_RESET, &regs->inbound_doorbell);
340
341 for (i = 0; i < 3; i++)
342 msleep(1000); /* sleep for 3 secs */
343 pcidata = 0;
344 pci_read_config_dword(instance->pdev, MFI_1068_PCSR_OFFSET, &pcidata);
345 printk(KERN_NOTICE "pcidata = %x\n", pcidata);
346 if (pcidata & 0x2) {
347 printk(KERN_NOTICE "mfi 1068 offset read=%x\n", pcidata);
348 pcidata &= ~0x2;
349 pci_write_config_dword(instance->pdev,
350 MFI_1068_PCSR_OFFSET, pcidata);
351
352 for (i = 0; i < 2; i++)
353 msleep(1000); /* need to wait 2 secs again */
354
355 pcidata = 0;
356 pci_read_config_dword(instance->pdev,
357 MFI_1068_FW_HANDSHAKE_OFFSET, &pcidata);
358 printk(KERN_NOTICE "1068 offset handshake read=%x\n", pcidata);
359 if ((pcidata & 0xffff0000) == MFI_1068_FW_READY) {
360 printk(KERN_NOTICE "1068 offset pcidt=%x\n", pcidata);
361 pcidata = 0;
362 pci_write_config_dword(instance->pdev,
363 MFI_1068_FW_HANDSHAKE_OFFSET, pcidata);
364 }
365 }
366 return 0;
367 }
368
369 /**
370 * megasas_check_reset_xscale - For controller reset check
371 * @regs: MFI register set
372 */
373 static int
374 megasas_check_reset_xscale(struct megasas_instance *instance,
375 struct megasas_register_set __iomem *regs)
376 {
377 u32 consumer;
378 consumer = *instance->consumer;
379
380 if ((instance->adprecovery != MEGASAS_HBA_OPERATIONAL) &&
381 (*instance->consumer == MEGASAS_ADPRESET_INPROG_SIGN)) {
382 return 1;
383 }
384 return 0;
385 }
386
387 static struct megasas_instance_template megasas_instance_template_xscale = {
388
389 .fire_cmd = megasas_fire_cmd_xscale,
390 .enable_intr = megasas_enable_intr_xscale,
391 .disable_intr = megasas_disable_intr_xscale,
392 .clear_intr = megasas_clear_intr_xscale,
393 .read_fw_status_reg = megasas_read_fw_status_reg_xscale,
394 .adp_reset = megasas_adp_reset_xscale,
395 .check_reset = megasas_check_reset_xscale,
396 .service_isr = megasas_isr,
397 .tasklet = megasas_complete_cmd_dpc,
398 .init_adapter = megasas_init_adapter_mfi,
399 .build_and_issue_cmd = megasas_build_and_issue_cmd,
400 .issue_dcmd = megasas_issue_dcmd,
401 };
402
403 /**
404 * This is the end of set of functions & definitions specific
405 * to xscale (deviceid : 1064R, PERC5) controllers
406 */
407
408 /**
409 * The following functions are defined for ppc (deviceid : 0x60)
410 * controllers
411 */
412
413 /**
414 * megasas_enable_intr_ppc - Enables interrupts
415 * @regs: MFI register set
416 */
417 static inline void
418 megasas_enable_intr_ppc(struct megasas_instance *instance)
419 {
420 struct megasas_register_set __iomem *regs;
421 regs = instance->reg_set;
422 writel(0xFFFFFFFF, &(regs)->outbound_doorbell_clear);
423
424 writel(~0x80000000, &(regs)->outbound_intr_mask);
425
426 /* Dummy readl to force pci flush */
427 readl(&regs->outbound_intr_mask);
428 }
429
430 /**
431 * megasas_disable_intr_ppc - Disable interrupt
432 * @regs: MFI register set
433 */
434 static inline void
435 megasas_disable_intr_ppc(struct megasas_instance *instance)
436 {
437 struct megasas_register_set __iomem *regs;
438 u32 mask = 0xFFFFFFFF;
439 regs = instance->reg_set;
440 writel(mask, &regs->outbound_intr_mask);
441 /* Dummy readl to force pci flush */
442 readl(&regs->outbound_intr_mask);
443 }
444
445 /**
446 * megasas_read_fw_status_reg_ppc - returns the current FW status value
447 * @regs: MFI register set
448 */
449 static u32
450 megasas_read_fw_status_reg_ppc(struct megasas_register_set __iomem * regs)
451 {
452 return readl(&(regs)->outbound_scratch_pad);
453 }
454
455 /**
456 * megasas_clear_interrupt_ppc - Check & clear interrupt
457 * @regs: MFI register set
458 */
459 static int
460 megasas_clear_intr_ppc(struct megasas_register_set __iomem * regs)
461 {
462 u32 status, mfiStatus = 0;
463
464 /*
465 * Check if it is our interrupt
466 */
467 status = readl(&regs->outbound_intr_status);
468
469 if (status & MFI_REPLY_1078_MESSAGE_INTERRUPT)
470 mfiStatus = MFI_INTR_FLAG_REPLY_MESSAGE;
471
472 if (status & MFI_G2_OUTBOUND_DOORBELL_CHANGE_INTERRUPT)
473 mfiStatus |= MFI_INTR_FLAG_FIRMWARE_STATE_CHANGE;
474
475 /*
476 * Clear the interrupt by writing back the same value
477 */
478 writel(status, &regs->outbound_doorbell_clear);
479
480 /* Dummy readl to force pci flush */
481 readl(&regs->outbound_doorbell_clear);
482
483 return mfiStatus;
484 }
485
486 /**
487 * megasas_fire_cmd_ppc - Sends command to the FW
488 * @frame_phys_addr : Physical address of cmd
489 * @frame_count : Number of frames for the command
490 * @regs : MFI register set
491 */
492 static inline void
493 megasas_fire_cmd_ppc(struct megasas_instance *instance,
494 dma_addr_t frame_phys_addr,
495 u32 frame_count,
496 struct megasas_register_set __iomem *regs)
497 {
498 unsigned long flags;
499 spin_lock_irqsave(&instance->hba_lock, flags);
500 writel((frame_phys_addr | (frame_count<<1))|1,
501 &(regs)->inbound_queue_port);
502 spin_unlock_irqrestore(&instance->hba_lock, flags);
503 }
504
505 /**
506 * megasas_check_reset_ppc - For controller reset check
507 * @regs: MFI register set
508 */
509 static int
510 megasas_check_reset_ppc(struct megasas_instance *instance,
511 struct megasas_register_set __iomem *regs)
512 {
513 if (instance->adprecovery != MEGASAS_HBA_OPERATIONAL)
514 return 1;
515
516 return 0;
517 }
518
519 static struct megasas_instance_template megasas_instance_template_ppc = {
520
521 .fire_cmd = megasas_fire_cmd_ppc,
522 .enable_intr = megasas_enable_intr_ppc,
523 .disable_intr = megasas_disable_intr_ppc,
524 .clear_intr = megasas_clear_intr_ppc,
525 .read_fw_status_reg = megasas_read_fw_status_reg_ppc,
526 .adp_reset = megasas_adp_reset_xscale,
527 .check_reset = megasas_check_reset_ppc,
528 .service_isr = megasas_isr,
529 .tasklet = megasas_complete_cmd_dpc,
530 .init_adapter = megasas_init_adapter_mfi,
531 .build_and_issue_cmd = megasas_build_and_issue_cmd,
532 .issue_dcmd = megasas_issue_dcmd,
533 };
534
535 /**
536 * megasas_enable_intr_skinny - Enables interrupts
537 * @regs: MFI register set
538 */
539 static inline void
540 megasas_enable_intr_skinny(struct megasas_instance *instance)
541 {
542 struct megasas_register_set __iomem *regs;
543 regs = instance->reg_set;
544 writel(0xFFFFFFFF, &(regs)->outbound_intr_mask);
545
546 writel(~MFI_SKINNY_ENABLE_INTERRUPT_MASK, &(regs)->outbound_intr_mask);
547
548 /* Dummy readl to force pci flush */
549 readl(&regs->outbound_intr_mask);
550 }
551
552 /**
553 * megasas_disable_intr_skinny - Disables interrupt
554 * @regs: MFI register set
555 */
556 static inline void
557 megasas_disable_intr_skinny(struct megasas_instance *instance)
558 {
559 struct megasas_register_set __iomem *regs;
560 u32 mask = 0xFFFFFFFF;
561 regs = instance->reg_set;
562 writel(mask, &regs->outbound_intr_mask);
563 /* Dummy readl to force pci flush */
564 readl(&regs->outbound_intr_mask);
565 }
566
567 /**
568 * megasas_read_fw_status_reg_skinny - returns the current FW status value
569 * @regs: MFI register set
570 */
571 static u32
572 megasas_read_fw_status_reg_skinny(struct megasas_register_set __iomem *regs)
573 {
574 return readl(&(regs)->outbound_scratch_pad);
575 }
576
577 /**
578 * megasas_clear_interrupt_skinny - Check & clear interrupt
579 * @regs: MFI register set
580 */
581 static int
582 megasas_clear_intr_skinny(struct megasas_register_set __iomem *regs)
583 {
584 u32 status;
585 u32 mfiStatus = 0;
586
587 /*
588 * Check if it is our interrupt
589 */
590 status = readl(&regs->outbound_intr_status);
591
592 if (!(status & MFI_SKINNY_ENABLE_INTERRUPT_MASK)) {
593 return 0;
594 }
595
596 /*
597 * Check if it is our interrupt
598 */
599 if ((megasas_read_fw_status_reg_skinny(regs) & MFI_STATE_MASK) ==
600 MFI_STATE_FAULT) {
601 mfiStatus = MFI_INTR_FLAG_FIRMWARE_STATE_CHANGE;
602 } else
603 mfiStatus = MFI_INTR_FLAG_REPLY_MESSAGE;
604
605 /*
606 * Clear the interrupt by writing back the same value
607 */
608 writel(status, &regs->outbound_intr_status);
609
610 /*
611 * dummy read to flush PCI
612 */
613 readl(&regs->outbound_intr_status);
614
615 return mfiStatus;
616 }
617
618 /**
619 * megasas_fire_cmd_skinny - Sends command to the FW
620 * @frame_phys_addr : Physical address of cmd
621 * @frame_count : Number of frames for the command
622 * @regs : MFI register set
623 */
624 static inline void
625 megasas_fire_cmd_skinny(struct megasas_instance *instance,
626 dma_addr_t frame_phys_addr,
627 u32 frame_count,
628 struct megasas_register_set __iomem *regs)
629 {
630 unsigned long flags;
631 spin_lock_irqsave(&instance->hba_lock, flags);
632 writel(0, &(regs)->inbound_high_queue_port);
633 writel((frame_phys_addr | (frame_count<<1))|1,
634 &(regs)->inbound_low_queue_port);
635 spin_unlock_irqrestore(&instance->hba_lock, flags);
636 }
637
638 /**
639 * megasas_check_reset_skinny - For controller reset check
640 * @regs: MFI register set
641 */
642 static int
643 megasas_check_reset_skinny(struct megasas_instance *instance,
644 struct megasas_register_set __iomem *regs)
645 {
646 if (instance->adprecovery != MEGASAS_HBA_OPERATIONAL)
647 return 1;
648
649 return 0;
650 }
651
652 static struct megasas_instance_template megasas_instance_template_skinny = {
653
654 .fire_cmd = megasas_fire_cmd_skinny,
655 .enable_intr = megasas_enable_intr_skinny,
656 .disable_intr = megasas_disable_intr_skinny,
657 .clear_intr = megasas_clear_intr_skinny,
658 .read_fw_status_reg = megasas_read_fw_status_reg_skinny,
659 .adp_reset = megasas_adp_reset_gen2,
660 .check_reset = megasas_check_reset_skinny,
661 .service_isr = megasas_isr,
662 .tasklet = megasas_complete_cmd_dpc,
663 .init_adapter = megasas_init_adapter_mfi,
664 .build_and_issue_cmd = megasas_build_and_issue_cmd,
665 .issue_dcmd = megasas_issue_dcmd,
666 };
667
668
669 /**
670 * The following functions are defined for gen2 (deviceid : 0x78 0x79)
671 * controllers
672 */
673
674 /**
675 * megasas_enable_intr_gen2 - Enables interrupts
676 * @regs: MFI register set
677 */
678 static inline void
679 megasas_enable_intr_gen2(struct megasas_instance *instance)
680 {
681 struct megasas_register_set __iomem *regs;
682 regs = instance->reg_set;
683 writel(0xFFFFFFFF, &(regs)->outbound_doorbell_clear);
684
685 /* write ~0x00000005 (4 & 1) to the intr mask*/
686 writel(~MFI_GEN2_ENABLE_INTERRUPT_MASK, &(regs)->outbound_intr_mask);
687
688 /* Dummy readl to force pci flush */
689 readl(&regs->outbound_intr_mask);
690 }
691
692 /**
693 * megasas_disable_intr_gen2 - Disables interrupt
694 * @regs: MFI register set
695 */
696 static inline void
697 megasas_disable_intr_gen2(struct megasas_instance *instance)
698 {
699 struct megasas_register_set __iomem *regs;
700 u32 mask = 0xFFFFFFFF;
701 regs = instance->reg_set;
702 writel(mask, &regs->outbound_intr_mask);
703 /* Dummy readl to force pci flush */
704 readl(&regs->outbound_intr_mask);
705 }
706
707 /**
708 * megasas_read_fw_status_reg_gen2 - returns the current FW status value
709 * @regs: MFI register set
710 */
711 static u32
712 megasas_read_fw_status_reg_gen2(struct megasas_register_set __iomem *regs)
713 {
714 return readl(&(regs)->outbound_scratch_pad);
715 }
716
717 /**
718 * megasas_clear_interrupt_gen2 - Check & clear interrupt
719 * @regs: MFI register set
720 */
721 static int
722 megasas_clear_intr_gen2(struct megasas_register_set __iomem *regs)
723 {
724 u32 status;
725 u32 mfiStatus = 0;
726 /*
727 * Check if it is our interrupt
728 */
729 status = readl(&regs->outbound_intr_status);
730
731 if (status & MFI_INTR_FLAG_REPLY_MESSAGE) {
732 mfiStatus = MFI_INTR_FLAG_REPLY_MESSAGE;
733 }
734 if (status & MFI_G2_OUTBOUND_DOORBELL_CHANGE_INTERRUPT) {
735 mfiStatus |= MFI_INTR_FLAG_FIRMWARE_STATE_CHANGE;
736 }
737
738 /*
739 * Clear the interrupt by writing back the same value
740 */
741 if (mfiStatus)
742 writel(status, &regs->outbound_doorbell_clear);
743
744 /* Dummy readl to force pci flush */
745 readl(&regs->outbound_intr_status);
746
747 return mfiStatus;
748 }
749 /**
750 * megasas_fire_cmd_gen2 - Sends command to the FW
751 * @frame_phys_addr : Physical address of cmd
752 * @frame_count : Number of frames for the command
753 * @regs : MFI register set
754 */
755 static inline void
756 megasas_fire_cmd_gen2(struct megasas_instance *instance,
757 dma_addr_t frame_phys_addr,
758 u32 frame_count,
759 struct megasas_register_set __iomem *regs)
760 {
761 unsigned long flags;
762 spin_lock_irqsave(&instance->hba_lock, flags);
763 writel((frame_phys_addr | (frame_count<<1))|1,
764 &(regs)->inbound_queue_port);
765 spin_unlock_irqrestore(&instance->hba_lock, flags);
766 }
767
768 /**
769 * megasas_adp_reset_gen2 - For controller reset
770 * @regs: MFI register set
771 */
772 static int
773 megasas_adp_reset_gen2(struct megasas_instance *instance,
774 struct megasas_register_set __iomem *reg_set)
775 {
776 u32 retry = 0 ;
777 u32 HostDiag;
778 u32 *seq_offset = &reg_set->seq_offset;
779 u32 *hostdiag_offset = &reg_set->host_diag;
780
781 if (instance->instancet == &megasas_instance_template_skinny) {
782 seq_offset = &reg_set->fusion_seq_offset;
783 hostdiag_offset = &reg_set->fusion_host_diag;
784 }
785
786 writel(0, seq_offset);
787 writel(4, seq_offset);
788 writel(0xb, seq_offset);
789 writel(2, seq_offset);
790 writel(7, seq_offset);
791 writel(0xd, seq_offset);
792
793 msleep(1000);
794
795 HostDiag = (u32)readl(hostdiag_offset);
796
797 while ( !( HostDiag & DIAG_WRITE_ENABLE) ) {
798 msleep(100);
799 HostDiag = (u32)readl(hostdiag_offset);
800 printk(KERN_NOTICE "RESETGEN2: retry=%x, hostdiag=%x\n",
801 retry, HostDiag);
802
803 if (retry++ >= 100)
804 return 1;
805
806 }
807
808 printk(KERN_NOTICE "ADP_RESET_GEN2: HostDiag=%x\n", HostDiag);
809
810 writel((HostDiag | DIAG_RESET_ADAPTER), hostdiag_offset);
811
812 ssleep(10);
813
814 HostDiag = (u32)readl(hostdiag_offset);
815 while ( ( HostDiag & DIAG_RESET_ADAPTER) ) {
816 msleep(100);
817 HostDiag = (u32)readl(hostdiag_offset);
818 printk(KERN_NOTICE "RESET_GEN2: retry=%x, hostdiag=%x\n",
819 retry, HostDiag);
820
821 if (retry++ >= 1000)
822 return 1;
823
824 }
825 return 0;
826 }
827
828 /**
829 * megasas_check_reset_gen2 - For controller reset check
830 * @regs: MFI register set
831 */
832 static int
833 megasas_check_reset_gen2(struct megasas_instance *instance,
834 struct megasas_register_set __iomem *regs)
835 {
836 if (instance->adprecovery != MEGASAS_HBA_OPERATIONAL) {
837 return 1;
838 }
839
840 return 0;
841 }
842
843 static struct megasas_instance_template megasas_instance_template_gen2 = {
844
845 .fire_cmd = megasas_fire_cmd_gen2,
846 .enable_intr = megasas_enable_intr_gen2,
847 .disable_intr = megasas_disable_intr_gen2,
848 .clear_intr = megasas_clear_intr_gen2,
849 .read_fw_status_reg = megasas_read_fw_status_reg_gen2,
850 .adp_reset = megasas_adp_reset_gen2,
851 .check_reset = megasas_check_reset_gen2,
852 .service_isr = megasas_isr,
853 .tasklet = megasas_complete_cmd_dpc,
854 .init_adapter = megasas_init_adapter_mfi,
855 .build_and_issue_cmd = megasas_build_and_issue_cmd,
856 .issue_dcmd = megasas_issue_dcmd,
857 };
858
859 /**
860 * This is the end of set of functions & definitions
861 * specific to gen2 (deviceid : 0x78, 0x79) controllers
862 */
863
864 /*
865 * Template added for TB (Fusion)
866 */
867 extern struct megasas_instance_template megasas_instance_template_fusion;
868
869 /**
870 * megasas_issue_polled - Issues a polling command
871 * @instance: Adapter soft state
872 * @cmd: Command packet to be issued
873 *
874 * For polling, MFI requires the cmd_status to be set to 0xFF before posting.
875 */
876 int
877 megasas_issue_polled(struct megasas_instance *instance, struct megasas_cmd *cmd)
878 {
879
880 struct megasas_header *frame_hdr = &cmd->frame->hdr;
881
882 frame_hdr->cmd_status = 0xFF;
883 frame_hdr->flags |= MFI_FRAME_DONT_POST_IN_REPLY_QUEUE;
884
885 /*
886 * Issue the frame using inbound queue port
887 */
888 instance->instancet->issue_dcmd(instance, cmd);
889
890 /*
891 * Wait for cmd_status to change
892 */
893 return wait_and_poll(instance, cmd);
894 }
895
896 /**
897 * megasas_issue_blocked_cmd - Synchronous wrapper around regular FW cmds
898 * @instance: Adapter soft state
899 * @cmd: Command to be issued
900 *
901 * This function waits on an event for the command to be returned from ISR.
902 * Max wait time is MEGASAS_INTERNAL_CMD_WAIT_TIME secs
903 * Used to issue ioctl commands.
904 */
905 static int
906 megasas_issue_blocked_cmd(struct megasas_instance *instance,
907 struct megasas_cmd *cmd)
908 {
909 cmd->cmd_status = ENODATA;
910
911 instance->instancet->issue_dcmd(instance, cmd);
912
913 wait_event(instance->int_cmd_wait_q, cmd->cmd_status != ENODATA);
914
915 return 0;
916 }
917
918 /**
919 * megasas_issue_blocked_abort_cmd - Aborts previously issued cmd
920 * @instance: Adapter soft state
921 * @cmd_to_abort: Previously issued cmd to be aborted
922 *
923 * MFI firmware can abort previously issued AEN command (automatic event
924 * notification). The megasas_issue_blocked_abort_cmd() issues such abort
925 * cmd and waits for return status.
926 * Max wait time is MEGASAS_INTERNAL_CMD_WAIT_TIME secs
927 */
928 static int
929 megasas_issue_blocked_abort_cmd(struct megasas_instance *instance,
930 struct megasas_cmd *cmd_to_abort)
931 {
932 struct megasas_cmd *cmd;
933 struct megasas_abort_frame *abort_fr;
934
935 cmd = megasas_get_cmd(instance);
936
937 if (!cmd)
938 return -1;
939
940 abort_fr = &cmd->frame->abort;
941
942 /*
943 * Prepare and issue the abort frame
944 */
945 abort_fr->cmd = MFI_CMD_ABORT;
946 abort_fr->cmd_status = 0xFF;
947 abort_fr->flags = 0;
948 abort_fr->abort_context = cmd_to_abort->index;
949 abort_fr->abort_mfi_phys_addr_lo = cmd_to_abort->frame_phys_addr;
950 abort_fr->abort_mfi_phys_addr_hi = 0;
951
952 cmd->sync_cmd = 1;
953 cmd->cmd_status = 0xFF;
954
955 instance->instancet->issue_dcmd(instance, cmd);
956
957 /*
958 * Wait for this cmd to complete
959 */
960 wait_event(instance->abort_cmd_wait_q, cmd->cmd_status != 0xFF);
961 cmd->sync_cmd = 0;
962
963 megasas_return_cmd(instance, cmd);
964 return 0;
965 }
966
967 /**
968 * megasas_make_sgl32 - Prepares 32-bit SGL
969 * @instance: Adapter soft state
970 * @scp: SCSI command from the mid-layer
971 * @mfi_sgl: SGL to be filled in
972 *
973 * If successful, this function returns the number of SG elements. Otherwise,
974 * it returnes -1.
975 */
976 static int
977 megasas_make_sgl32(struct megasas_instance *instance, struct scsi_cmnd *scp,
978 union megasas_sgl *mfi_sgl)
979 {
980 int i;
981 int sge_count;
982 struct scatterlist *os_sgl;
983
984 sge_count = scsi_dma_map(scp);
985 BUG_ON(sge_count < 0);
986
987 if (sge_count) {
988 scsi_for_each_sg(scp, os_sgl, sge_count, i) {
989 mfi_sgl->sge32[i].length = sg_dma_len(os_sgl);
990 mfi_sgl->sge32[i].phys_addr = sg_dma_address(os_sgl);
991 }
992 }
993 return sge_count;
994 }
995
996 /**
997 * megasas_make_sgl64 - Prepares 64-bit SGL
998 * @instance: Adapter soft state
999 * @scp: SCSI command from the mid-layer
1000 * @mfi_sgl: SGL to be filled in
1001 *
1002 * If successful, this function returns the number of SG elements. Otherwise,
1003 * it returnes -1.
1004 */
1005 static int
1006 megasas_make_sgl64(struct megasas_instance *instance, struct scsi_cmnd *scp,
1007 union megasas_sgl *mfi_sgl)
1008 {
1009 int i;
1010 int sge_count;
1011 struct scatterlist *os_sgl;
1012
1013 sge_count = scsi_dma_map(scp);
1014 BUG_ON(sge_count < 0);
1015
1016 if (sge_count) {
1017 scsi_for_each_sg(scp, os_sgl, sge_count, i) {
1018 mfi_sgl->sge64[i].length = sg_dma_len(os_sgl);
1019 mfi_sgl->sge64[i].phys_addr = sg_dma_address(os_sgl);
1020 }
1021 }
1022 return sge_count;
1023 }
1024
1025 /**
1026 * megasas_make_sgl_skinny - Prepares IEEE SGL
1027 * @instance: Adapter soft state
1028 * @scp: SCSI command from the mid-layer
1029 * @mfi_sgl: SGL to be filled in
1030 *
1031 * If successful, this function returns the number of SG elements. Otherwise,
1032 * it returnes -1.
1033 */
1034 static int
1035 megasas_make_sgl_skinny(struct megasas_instance *instance,
1036 struct scsi_cmnd *scp, union megasas_sgl *mfi_sgl)
1037 {
1038 int i;
1039 int sge_count;
1040 struct scatterlist *os_sgl;
1041
1042 sge_count = scsi_dma_map(scp);
1043
1044 if (sge_count) {
1045 scsi_for_each_sg(scp, os_sgl, sge_count, i) {
1046 mfi_sgl->sge_skinny[i].length = sg_dma_len(os_sgl);
1047 mfi_sgl->sge_skinny[i].phys_addr =
1048 sg_dma_address(os_sgl);
1049 mfi_sgl->sge_skinny[i].flag = 0;
1050 }
1051 }
1052 return sge_count;
1053 }
1054
1055 /**
1056 * megasas_get_frame_count - Computes the number of frames
1057 * @frame_type : type of frame- io or pthru frame
1058 * @sge_count : number of sg elements
1059 *
1060 * Returns the number of frames required for numnber of sge's (sge_count)
1061 */
1062
1063 static u32 megasas_get_frame_count(struct megasas_instance *instance,
1064 u8 sge_count, u8 frame_type)
1065 {
1066 int num_cnt;
1067 int sge_bytes;
1068 u32 sge_sz;
1069 u32 frame_count=0;
1070
1071 sge_sz = (IS_DMA64) ? sizeof(struct megasas_sge64) :
1072 sizeof(struct megasas_sge32);
1073
1074 if (instance->flag_ieee) {
1075 sge_sz = sizeof(struct megasas_sge_skinny);
1076 }
1077
1078 /*
1079 * Main frame can contain 2 SGEs for 64-bit SGLs and
1080 * 3 SGEs for 32-bit SGLs for ldio &
1081 * 1 SGEs for 64-bit SGLs and
1082 * 2 SGEs for 32-bit SGLs for pthru frame
1083 */
1084 if (unlikely(frame_type == PTHRU_FRAME)) {
1085 if (instance->flag_ieee == 1) {
1086 num_cnt = sge_count - 1;
1087 } else if (IS_DMA64)
1088 num_cnt = sge_count - 1;
1089 else
1090 num_cnt = sge_count - 2;
1091 } else {
1092 if (instance->flag_ieee == 1) {
1093 num_cnt = sge_count - 1;
1094 } else if (IS_DMA64)
1095 num_cnt = sge_count - 2;
1096 else
1097 num_cnt = sge_count - 3;
1098 }
1099
1100 if(num_cnt>0){
1101 sge_bytes = sge_sz * num_cnt;
1102
1103 frame_count = (sge_bytes / MEGAMFI_FRAME_SIZE) +
1104 ((sge_bytes % MEGAMFI_FRAME_SIZE) ? 1 : 0) ;
1105 }
1106 /* Main frame */
1107 frame_count +=1;
1108
1109 if (frame_count > 7)
1110 frame_count = 8;
1111 return frame_count;
1112 }
1113
1114 /**
1115 * megasas_build_dcdb - Prepares a direct cdb (DCDB) command
1116 * @instance: Adapter soft state
1117 * @scp: SCSI command
1118 * @cmd: Command to be prepared in
1119 *
1120 * This function prepares CDB commands. These are typcially pass-through
1121 * commands to the devices.
1122 */
1123 static int
1124 megasas_build_dcdb(struct megasas_instance *instance, struct scsi_cmnd *scp,
1125 struct megasas_cmd *cmd)
1126 {
1127 u32 is_logical;
1128 u32 device_id;
1129 u16 flags = 0;
1130 struct megasas_pthru_frame *pthru;
1131
1132 is_logical = MEGASAS_IS_LOGICAL(scp);
1133 device_id = MEGASAS_DEV_INDEX(instance, scp);
1134 pthru = (struct megasas_pthru_frame *)cmd->frame;
1135
1136 if (scp->sc_data_direction == PCI_DMA_TODEVICE)
1137 flags = MFI_FRAME_DIR_WRITE;
1138 else if (scp->sc_data_direction == PCI_DMA_FROMDEVICE)
1139 flags = MFI_FRAME_DIR_READ;
1140 else if (scp->sc_data_direction == PCI_DMA_NONE)
1141 flags = MFI_FRAME_DIR_NONE;
1142
1143 if (instance->flag_ieee == 1) {
1144 flags |= MFI_FRAME_IEEE;
1145 }
1146
1147 /*
1148 * Prepare the DCDB frame
1149 */
1150 pthru->cmd = (is_logical) ? MFI_CMD_LD_SCSI_IO : MFI_CMD_PD_SCSI_IO;
1151 pthru->cmd_status = 0x0;
1152 pthru->scsi_status = 0x0;
1153 pthru->target_id = device_id;
1154 pthru->lun = scp->device->lun;
1155 pthru->cdb_len = scp->cmd_len;
1156 pthru->timeout = 0;
1157 pthru->pad_0 = 0;
1158 pthru->flags = flags;
1159 pthru->data_xfer_len = scsi_bufflen(scp);
1160
1161 memcpy(pthru->cdb, scp->cmnd, scp->cmd_len);
1162
1163 /*
1164 * If the command is for the tape device, set the
1165 * pthru timeout to the os layer timeout value.
1166 */
1167 if (scp->device->type == TYPE_TAPE) {
1168 if ((scp->request->timeout / HZ) > 0xFFFF)
1169 pthru->timeout = 0xFFFF;
1170 else
1171 pthru->timeout = scp->request->timeout / HZ;
1172 }
1173
1174 /*
1175 * Construct SGL
1176 */
1177 if (instance->flag_ieee == 1) {
1178 pthru->flags |= MFI_FRAME_SGL64;
1179 pthru->sge_count = megasas_make_sgl_skinny(instance, scp,
1180 &pthru->sgl);
1181 } else if (IS_DMA64) {
1182 pthru->flags |= MFI_FRAME_SGL64;
1183 pthru->sge_count = megasas_make_sgl64(instance, scp,
1184 &pthru->sgl);
1185 } else
1186 pthru->sge_count = megasas_make_sgl32(instance, scp,
1187 &pthru->sgl);
1188
1189 if (pthru->sge_count > instance->max_num_sge) {
1190 printk(KERN_ERR "megasas: DCDB two many SGE NUM=%x\n",
1191 pthru->sge_count);
1192 return 0;
1193 }
1194
1195 /*
1196 * Sense info specific
1197 */
1198 pthru->sense_len = SCSI_SENSE_BUFFERSIZE;
1199 pthru->sense_buf_phys_addr_hi = 0;
1200 pthru->sense_buf_phys_addr_lo = cmd->sense_phys_addr;
1201
1202 /*
1203 * Compute the total number of frames this command consumes. FW uses
1204 * this number to pull sufficient number of frames from host memory.
1205 */
1206 cmd->frame_count = megasas_get_frame_count(instance, pthru->sge_count,
1207 PTHRU_FRAME);
1208
1209 return cmd->frame_count;
1210 }
1211
1212 /**
1213 * megasas_build_ldio - Prepares IOs to logical devices
1214 * @instance: Adapter soft state
1215 * @scp: SCSI command
1216 * @cmd: Command to be prepared
1217 *
1218 * Frames (and accompanying SGLs) for regular SCSI IOs use this function.
1219 */
1220 static int
1221 megasas_build_ldio(struct megasas_instance *instance, struct scsi_cmnd *scp,
1222 struct megasas_cmd *cmd)
1223 {
1224 u32 device_id;
1225 u8 sc = scp->cmnd[0];
1226 u16 flags = 0;
1227 struct megasas_io_frame *ldio;
1228
1229 device_id = MEGASAS_DEV_INDEX(instance, scp);
1230 ldio = (struct megasas_io_frame *)cmd->frame;
1231
1232 if (scp->sc_data_direction == PCI_DMA_TODEVICE)
1233 flags = MFI_FRAME_DIR_WRITE;
1234 else if (scp->sc_data_direction == PCI_DMA_FROMDEVICE)
1235 flags = MFI_FRAME_DIR_READ;
1236
1237 if (instance->flag_ieee == 1) {
1238 flags |= MFI_FRAME_IEEE;
1239 }
1240
1241 /*
1242 * Prepare the Logical IO frame: 2nd bit is zero for all read cmds
1243 */
1244 ldio->cmd = (sc & 0x02) ? MFI_CMD_LD_WRITE : MFI_CMD_LD_READ;
1245 ldio->cmd_status = 0x0;
1246 ldio->scsi_status = 0x0;
1247 ldio->target_id = device_id;
1248 ldio->timeout = 0;
1249 ldio->reserved_0 = 0;
1250 ldio->pad_0 = 0;
1251 ldio->flags = flags;
1252 ldio->start_lba_hi = 0;
1253 ldio->access_byte = (scp->cmd_len != 6) ? scp->cmnd[1] : 0;
1254
1255 /*
1256 * 6-byte READ(0x08) or WRITE(0x0A) cdb
1257 */
1258 if (scp->cmd_len == 6) {
1259 ldio->lba_count = (u32) scp->cmnd[4];
1260 ldio->start_lba_lo = ((u32) scp->cmnd[1] << 16) |
1261 ((u32) scp->cmnd[2] << 8) | (u32) scp->cmnd[3];
1262
1263 ldio->start_lba_lo &= 0x1FFFFF;
1264 }
1265
1266 /*
1267 * 10-byte READ(0x28) or WRITE(0x2A) cdb
1268 */
1269 else if (scp->cmd_len == 10) {
1270 ldio->lba_count = (u32) scp->cmnd[8] |
1271 ((u32) scp->cmnd[7] << 8);
1272 ldio->start_lba_lo = ((u32) scp->cmnd[2] << 24) |
1273 ((u32) scp->cmnd[3] << 16) |
1274 ((u32) scp->cmnd[4] << 8) | (u32) scp->cmnd[5];
1275 }
1276
1277 /*
1278 * 12-byte READ(0xA8) or WRITE(0xAA) cdb
1279 */
1280 else if (scp->cmd_len == 12) {
1281 ldio->lba_count = ((u32) scp->cmnd[6] << 24) |
1282 ((u32) scp->cmnd[7] << 16) |
1283 ((u32) scp->cmnd[8] << 8) | (u32) scp->cmnd[9];
1284
1285 ldio->start_lba_lo = ((u32) scp->cmnd[2] << 24) |
1286 ((u32) scp->cmnd[3] << 16) |
1287 ((u32) scp->cmnd[4] << 8) | (u32) scp->cmnd[5];
1288 }
1289
1290 /*
1291 * 16-byte READ(0x88) or WRITE(0x8A) cdb
1292 */
1293 else if (scp->cmd_len == 16) {
1294 ldio->lba_count = ((u32) scp->cmnd[10] << 24) |
1295 ((u32) scp->cmnd[11] << 16) |
1296 ((u32) scp->cmnd[12] << 8) | (u32) scp->cmnd[13];
1297
1298 ldio->start_lba_lo = ((u32) scp->cmnd[6] << 24) |
1299 ((u32) scp->cmnd[7] << 16) |
1300 ((u32) scp->cmnd[8] << 8) | (u32) scp->cmnd[9];
1301
1302 ldio->start_lba_hi = ((u32) scp->cmnd[2] << 24) |
1303 ((u32) scp->cmnd[3] << 16) |
1304 ((u32) scp->cmnd[4] << 8) | (u32) scp->cmnd[5];
1305
1306 }
1307
1308 /*
1309 * Construct SGL
1310 */
1311 if (instance->flag_ieee) {
1312 ldio->flags |= MFI_FRAME_SGL64;
1313 ldio->sge_count = megasas_make_sgl_skinny(instance, scp,
1314 &ldio->sgl);
1315 } else if (IS_DMA64) {
1316 ldio->flags |= MFI_FRAME_SGL64;
1317 ldio->sge_count = megasas_make_sgl64(instance, scp, &ldio->sgl);
1318 } else
1319 ldio->sge_count = megasas_make_sgl32(instance, scp, &ldio->sgl);
1320
1321 if (ldio->sge_count > instance->max_num_sge) {
1322 printk(KERN_ERR "megasas: build_ld_io: sge_count = %x\n",
1323 ldio->sge_count);
1324 return 0;
1325 }
1326
1327 /*
1328 * Sense info specific
1329 */
1330 ldio->sense_len = SCSI_SENSE_BUFFERSIZE;
1331 ldio->sense_buf_phys_addr_hi = 0;
1332 ldio->sense_buf_phys_addr_lo = cmd->sense_phys_addr;
1333
1334 /*
1335 * Compute the total number of frames this command consumes. FW uses
1336 * this number to pull sufficient number of frames from host memory.
1337 */
1338 cmd->frame_count = megasas_get_frame_count(instance,
1339 ldio->sge_count, IO_FRAME);
1340
1341 return cmd->frame_count;
1342 }
1343
1344 /**
1345 * megasas_is_ldio - Checks if the cmd is for logical drive
1346 * @scmd: SCSI command
1347 *
1348 * Called by megasas_queue_command to find out if the command to be queued
1349 * is a logical drive command
1350 */
1351 inline int megasas_is_ldio(struct scsi_cmnd *cmd)
1352 {
1353 if (!MEGASAS_IS_LOGICAL(cmd))
1354 return 0;
1355 switch (cmd->cmnd[0]) {
1356 case READ_10:
1357 case WRITE_10:
1358 case READ_12:
1359 case WRITE_12:
1360 case READ_6:
1361 case WRITE_6:
1362 case READ_16:
1363 case WRITE_16:
1364 return 1;
1365 default:
1366 return 0;
1367 }
1368 }
1369
1370 /**
1371 * megasas_dump_pending_frames - Dumps the frame address of all pending cmds
1372 * in FW
1373 * @instance: Adapter soft state
1374 */
1375 static inline void
1376 megasas_dump_pending_frames(struct megasas_instance *instance)
1377 {
1378 struct megasas_cmd *cmd;
1379 int i,n;
1380 union megasas_sgl *mfi_sgl;
1381 struct megasas_io_frame *ldio;
1382 struct megasas_pthru_frame *pthru;
1383 u32 sgcount;
1384 u32 max_cmd = instance->max_fw_cmds;
1385
1386 printk(KERN_ERR "\nmegasas[%d]: Dumping Frame Phys Address of all pending cmds in FW\n",instance->host->host_no);
1387 printk(KERN_ERR "megasas[%d]: Total OS Pending cmds : %d\n",instance->host->host_no,atomic_read(&instance->fw_outstanding));
1388 if (IS_DMA64)
1389 printk(KERN_ERR "\nmegasas[%d]: 64 bit SGLs were sent to FW\n",instance->host->host_no);
1390 else
1391 printk(KERN_ERR "\nmegasas[%d]: 32 bit SGLs were sent to FW\n",instance->host->host_no);
1392
1393 printk(KERN_ERR "megasas[%d]: Pending OS cmds in FW : \n",instance->host->host_no);
1394 for (i = 0; i < max_cmd; i++) {
1395 cmd = instance->cmd_list[i];
1396 if(!cmd->scmd)
1397 continue;
1398 printk(KERN_ERR "megasas[%d]: Frame addr :0x%08lx : ",instance->host->host_no,(unsigned long)cmd->frame_phys_addr);
1399 if (megasas_is_ldio(cmd->scmd)){
1400 ldio = (struct megasas_io_frame *)cmd->frame;
1401 mfi_sgl = &ldio->sgl;
1402 sgcount = ldio->sge_count;
1403 printk(KERN_ERR "megasas[%d]: frame count : 0x%x, Cmd : 0x%x, Tgt id : 0x%x, lba lo : 0x%x, lba_hi : 0x%x, sense_buf addr : 0x%x,sge count : 0x%x\n",instance->host->host_no, cmd->frame_count,ldio->cmd,ldio->target_id, ldio->start_lba_lo,ldio->start_lba_hi,ldio->sense_buf_phys_addr_lo,sgcount);
1404 }
1405 else {
1406 pthru = (struct megasas_pthru_frame *) cmd->frame;
1407 mfi_sgl = &pthru->sgl;
1408 sgcount = pthru->sge_count;
1409 printk(KERN_ERR "megasas[%d]: frame count : 0x%x, Cmd : 0x%x, Tgt id : 0x%x, lun : 0x%x, cdb_len : 0x%x, data xfer len : 0x%x, sense_buf addr : 0x%x,sge count : 0x%x\n",instance->host->host_no,cmd->frame_count,pthru->cmd,pthru->target_id,pthru->lun,pthru->cdb_len , pthru->data_xfer_len,pthru->sense_buf_phys_addr_lo,sgcount);
1410 }
1411 if(megasas_dbg_lvl & MEGASAS_DBG_LVL){
1412 for (n = 0; n < sgcount; n++){
1413 if (IS_DMA64)
1414 printk(KERN_ERR "megasas: sgl len : 0x%x, sgl addr : 0x%08lx ",mfi_sgl->sge64[n].length , (unsigned long)mfi_sgl->sge64[n].phys_addr) ;
1415 else
1416 printk(KERN_ERR "megasas: sgl len : 0x%x, sgl addr : 0x%x ",mfi_sgl->sge32[n].length , mfi_sgl->sge32[n].phys_addr) ;
1417 }
1418 }
1419 printk(KERN_ERR "\n");
1420 } /*for max_cmd*/
1421 printk(KERN_ERR "\nmegasas[%d]: Pending Internal cmds in FW : \n",instance->host->host_no);
1422 for (i = 0; i < max_cmd; i++) {
1423
1424 cmd = instance->cmd_list[i];
1425
1426 if(cmd->sync_cmd == 1){
1427 printk(KERN_ERR "0x%08lx : ", (unsigned long)cmd->frame_phys_addr);
1428 }
1429 }
1430 printk(KERN_ERR "megasas[%d]: Dumping Done.\n\n",instance->host->host_no);
1431 }
1432
1433 u32
1434 megasas_build_and_issue_cmd(struct megasas_instance *instance,
1435 struct scsi_cmnd *scmd)
1436 {
1437 struct megasas_cmd *cmd;
1438 u32 frame_count;
1439
1440 cmd = megasas_get_cmd(instance);
1441 if (!cmd)
1442 return SCSI_MLQUEUE_HOST_BUSY;
1443
1444 /*
1445 * Logical drive command
1446 */
1447 if (megasas_is_ldio(scmd))
1448 frame_count = megasas_build_ldio(instance, scmd, cmd);
1449 else
1450 frame_count = megasas_build_dcdb(instance, scmd, cmd);
1451
1452 if (!frame_count)
1453 goto out_return_cmd;
1454
1455 cmd->scmd = scmd;
1456 scmd->SCp.ptr = (char *)cmd;
1457
1458 /*
1459 * Issue the command to the FW
1460 */
1461 atomic_inc(&instance->fw_outstanding);
1462
1463 instance->instancet->fire_cmd(instance, cmd->frame_phys_addr,
1464 cmd->frame_count-1, instance->reg_set);
1465
1466 return 0;
1467 out_return_cmd:
1468 megasas_return_cmd(instance, cmd);
1469 return 1;
1470 }
1471
1472
1473 /**
1474 * megasas_queue_command - Queue entry point
1475 * @scmd: SCSI command to be queued
1476 * @done: Callback entry point
1477 */
1478 static int
1479 megasas_queue_command_lck(struct scsi_cmnd *scmd, void (*done) (struct scsi_cmnd *))
1480 {
1481 struct megasas_instance *instance;
1482 unsigned long flags;
1483
1484 instance = (struct megasas_instance *)
1485 scmd->device->host->hostdata;
1486
1487 if (instance->issuepend_done == 0)
1488 return SCSI_MLQUEUE_HOST_BUSY;
1489
1490 spin_lock_irqsave(&instance->hba_lock, flags);
1491
1492 if (instance->adprecovery == MEGASAS_HW_CRITICAL_ERROR) {
1493 spin_unlock_irqrestore(&instance->hba_lock, flags);
1494 scmd->result = DID_ERROR << 16;
1495 done(scmd);
1496 return 0;
1497 }
1498
1499 if (instance->adprecovery != MEGASAS_HBA_OPERATIONAL) {
1500 spin_unlock_irqrestore(&instance->hba_lock, flags);
1501 return SCSI_MLQUEUE_HOST_BUSY;
1502 }
1503
1504 spin_unlock_irqrestore(&instance->hba_lock, flags);
1505
1506 scmd->scsi_done = done;
1507 scmd->result = 0;
1508
1509 if (MEGASAS_IS_LOGICAL(scmd) &&
1510 (scmd->device->id >= MEGASAS_MAX_LD || scmd->device->lun)) {
1511 scmd->result = DID_BAD_TARGET << 16;
1512 goto out_done;
1513 }
1514
1515 switch (scmd->cmnd[0]) {
1516 case SYNCHRONIZE_CACHE:
1517 /*
1518 * FW takes care of flush cache on its own
1519 * No need to send it down
1520 */
1521 scmd->result = DID_OK << 16;
1522 goto out_done;
1523 default:
1524 break;
1525 }
1526
1527 if (instance->instancet->build_and_issue_cmd(instance, scmd)) {
1528 printk(KERN_ERR "megasas: Err returned from build_and_issue_cmd\n");
1529 return SCSI_MLQUEUE_HOST_BUSY;
1530 }
1531
1532 return 0;
1533
1534 out_done:
1535 done(scmd);
1536 return 0;
1537 }
1538
1539 static DEF_SCSI_QCMD(megasas_queue_command)
1540
1541 static struct megasas_instance *megasas_lookup_instance(u16 host_no)
1542 {
1543 int i;
1544
1545 for (i = 0; i < megasas_mgmt_info.max_index; i++) {
1546
1547 if ((megasas_mgmt_info.instance[i]) &&
1548 (megasas_mgmt_info.instance[i]->host->host_no == host_no))
1549 return megasas_mgmt_info.instance[i];
1550 }
1551
1552 return NULL;
1553 }
1554
1555 static int megasas_slave_configure(struct scsi_device *sdev)
1556 {
1557 u16 pd_index = 0;
1558 struct megasas_instance *instance ;
1559
1560 instance = megasas_lookup_instance(sdev->host->host_no);
1561
1562 /*
1563 * Don't export physical disk devices to the disk driver.
1564 *
1565 * FIXME: Currently we don't export them to the midlayer at all.
1566 * That will be fixed once LSI engineers have audited the
1567 * firmware for possible issues.
1568 */
1569 if (sdev->channel < MEGASAS_MAX_PD_CHANNELS &&
1570 sdev->type == TYPE_DISK) {
1571 pd_index = (sdev->channel * MEGASAS_MAX_DEV_PER_CHANNEL) +
1572 sdev->id;
1573 if (instance->pd_list[pd_index].driveState ==
1574 MR_PD_STATE_SYSTEM) {
1575 blk_queue_rq_timeout(sdev->request_queue,
1576 MEGASAS_DEFAULT_CMD_TIMEOUT * HZ);
1577 return 0;
1578 }
1579 return -ENXIO;
1580 }
1581
1582 /*
1583 * The RAID firmware may require extended timeouts.
1584 */
1585 blk_queue_rq_timeout(sdev->request_queue,
1586 MEGASAS_DEFAULT_CMD_TIMEOUT * HZ);
1587 return 0;
1588 }
1589
1590 static int megasas_slave_alloc(struct scsi_device *sdev)
1591 {
1592 u16 pd_index = 0;
1593 struct megasas_instance *instance ;
1594 instance = megasas_lookup_instance(sdev->host->host_no);
1595 if ((sdev->channel < MEGASAS_MAX_PD_CHANNELS) &&
1596 (sdev->type == TYPE_DISK)) {
1597 /*
1598 * Open the OS scan to the SYSTEM PD
1599 */
1600 pd_index =
1601 (sdev->channel * MEGASAS_MAX_DEV_PER_CHANNEL) +
1602 sdev->id;
1603 if ((instance->pd_list[pd_index].driveState ==
1604 MR_PD_STATE_SYSTEM) &&
1605 (instance->pd_list[pd_index].driveType ==
1606 TYPE_DISK)) {
1607 return 0;
1608 }
1609 return -ENXIO;
1610 }
1611 return 0;
1612 }
1613
1614 void megaraid_sas_kill_hba(struct megasas_instance *instance)
1615 {
1616 if ((instance->pdev->device == PCI_DEVICE_ID_LSI_SAS0073SKINNY) ||
1617 (instance->pdev->device == PCI_DEVICE_ID_LSI_SAS0071SKINNY) ||
1618 (instance->pdev->device == PCI_DEVICE_ID_LSI_FUSION) ||
1619 (instance->pdev->device == PCI_DEVICE_ID_LSI_INVADER) ||
1620 (instance->pdev->device == PCI_DEVICE_ID_LSI_FURY)) {
1621 writel(MFI_STOP_ADP, &instance->reg_set->doorbell);
1622 } else {
1623 writel(MFI_STOP_ADP, &instance->reg_set->inbound_doorbell);
1624 }
1625 }
1626
1627 /**
1628 * megasas_check_and_restore_queue_depth - Check if queue depth needs to be
1629 * restored to max value
1630 * @instance: Adapter soft state
1631 *
1632 */
1633 void
1634 megasas_check_and_restore_queue_depth(struct megasas_instance *instance)
1635 {
1636 unsigned long flags;
1637 if (instance->flag & MEGASAS_FW_BUSY
1638 && time_after(jiffies, instance->last_time + 5 * HZ)
1639 && atomic_read(&instance->fw_outstanding) <
1640 instance->throttlequeuedepth + 1) {
1641
1642 spin_lock_irqsave(instance->host->host_lock, flags);
1643 instance->flag &= ~MEGASAS_FW_BUSY;
1644 if (instance->is_imr) {
1645 instance->host->can_queue =
1646 instance->max_fw_cmds - MEGASAS_SKINNY_INT_CMDS;
1647 } else
1648 instance->host->can_queue =
1649 instance->max_fw_cmds - MEGASAS_INT_CMDS;
1650
1651 spin_unlock_irqrestore(instance->host->host_lock, flags);
1652 }
1653 }
1654
1655 /**
1656 * megasas_complete_cmd_dpc - Returns FW's controller structure
1657 * @instance_addr: Address of adapter soft state
1658 *
1659 * Tasklet to complete cmds
1660 */
1661 static void megasas_complete_cmd_dpc(unsigned long instance_addr)
1662 {
1663 u32 producer;
1664 u32 consumer;
1665 u32 context;
1666 struct megasas_cmd *cmd;
1667 struct megasas_instance *instance =
1668 (struct megasas_instance *)instance_addr;
1669 unsigned long flags;
1670
1671 /* If we have already declared adapter dead, donot complete cmds */
1672 if (instance->adprecovery == MEGASAS_HW_CRITICAL_ERROR )
1673 return;
1674
1675 spin_lock_irqsave(&instance->completion_lock, flags);
1676
1677 producer = *instance->producer;
1678 consumer = *instance->consumer;
1679
1680 while (consumer != producer) {
1681 context = instance->reply_queue[consumer];
1682 if (context >= instance->max_fw_cmds) {
1683 printk(KERN_ERR "Unexpected context value %x\n",
1684 context);
1685 BUG();
1686 }
1687
1688 cmd = instance->cmd_list[context];
1689
1690 megasas_complete_cmd(instance, cmd, DID_OK);
1691
1692 consumer++;
1693 if (consumer == (instance->max_fw_cmds + 1)) {
1694 consumer = 0;
1695 }
1696 }
1697
1698 *instance->consumer = producer;
1699
1700 spin_unlock_irqrestore(&instance->completion_lock, flags);
1701
1702 /*
1703 * Check if we can restore can_queue
1704 */
1705 megasas_check_and_restore_queue_depth(instance);
1706 }
1707
1708 static void
1709 megasas_internal_reset_defer_cmds(struct megasas_instance *instance);
1710
1711 static void
1712 process_fw_state_change_wq(struct work_struct *work);
1713
1714 void megasas_do_ocr(struct megasas_instance *instance)
1715 {
1716 if ((instance->pdev->device == PCI_DEVICE_ID_LSI_SAS1064R) ||
1717 (instance->pdev->device == PCI_DEVICE_ID_DELL_PERC5) ||
1718 (instance->pdev->device == PCI_DEVICE_ID_LSI_VERDE_ZCR)) {
1719 *instance->consumer = MEGASAS_ADPRESET_INPROG_SIGN;
1720 }
1721 instance->instancet->disable_intr(instance);
1722 instance->adprecovery = MEGASAS_ADPRESET_SM_INFAULT;
1723 instance->issuepend_done = 0;
1724
1725 atomic_set(&instance->fw_outstanding, 0);
1726 megasas_internal_reset_defer_cmds(instance);
1727 process_fw_state_change_wq(&instance->work_init);
1728 }
1729
1730 /**
1731 * megasas_wait_for_outstanding - Wait for all outstanding cmds
1732 * @instance: Adapter soft state
1733 *
1734 * This function waits for up to MEGASAS_RESET_WAIT_TIME seconds for FW to
1735 * complete all its outstanding commands. Returns error if one or more IOs
1736 * are pending after this time period. It also marks the controller dead.
1737 */
1738 static int megasas_wait_for_outstanding(struct megasas_instance *instance)
1739 {
1740 int i;
1741 u32 reset_index;
1742 u32 wait_time = MEGASAS_RESET_WAIT_TIME;
1743 u8 adprecovery;
1744 unsigned long flags;
1745 struct list_head clist_local;
1746 struct megasas_cmd *reset_cmd;
1747 u32 fw_state;
1748 u8 kill_adapter_flag;
1749
1750 spin_lock_irqsave(&instance->hba_lock, flags);
1751 adprecovery = instance->adprecovery;
1752 spin_unlock_irqrestore(&instance->hba_lock, flags);
1753
1754 if (adprecovery != MEGASAS_HBA_OPERATIONAL) {
1755
1756 INIT_LIST_HEAD(&clist_local);
1757 spin_lock_irqsave(&instance->hba_lock, flags);
1758 list_splice_init(&instance->internal_reset_pending_q,
1759 &clist_local);
1760 spin_unlock_irqrestore(&instance->hba_lock, flags);
1761
1762 printk(KERN_NOTICE "megasas: HBA reset wait ...\n");
1763 for (i = 0; i < wait_time; i++) {
1764 msleep(1000);
1765 spin_lock_irqsave(&instance->hba_lock, flags);
1766 adprecovery = instance->adprecovery;
1767 spin_unlock_irqrestore(&instance->hba_lock, flags);
1768 if (adprecovery == MEGASAS_HBA_OPERATIONAL)
1769 break;
1770 }
1771
1772 if (adprecovery != MEGASAS_HBA_OPERATIONAL) {
1773 printk(KERN_NOTICE "megasas: reset: Stopping HBA.\n");
1774 spin_lock_irqsave(&instance->hba_lock, flags);
1775 instance->adprecovery = MEGASAS_HW_CRITICAL_ERROR;
1776 spin_unlock_irqrestore(&instance->hba_lock, flags);
1777 return FAILED;
1778 }
1779
1780 reset_index = 0;
1781 while (!list_empty(&clist_local)) {
1782 reset_cmd = list_entry((&clist_local)->next,
1783 struct megasas_cmd, list);
1784 list_del_init(&reset_cmd->list);
1785 if (reset_cmd->scmd) {
1786 reset_cmd->scmd->result = DID_RESET << 16;
1787 printk(KERN_NOTICE "%d:%p reset [%02x]\n",
1788 reset_index, reset_cmd,
1789 reset_cmd->scmd->cmnd[0]);
1790
1791 reset_cmd->scmd->scsi_done(reset_cmd->scmd);
1792 megasas_return_cmd(instance, reset_cmd);
1793 } else if (reset_cmd->sync_cmd) {
1794 printk(KERN_NOTICE "megasas:%p synch cmds"
1795 "reset queue\n",
1796 reset_cmd);
1797
1798 reset_cmd->cmd_status = ENODATA;
1799 instance->instancet->fire_cmd(instance,
1800 reset_cmd->frame_phys_addr,
1801 0, instance->reg_set);
1802 } else {
1803 printk(KERN_NOTICE "megasas: %p unexpected"
1804 "cmds lst\n",
1805 reset_cmd);
1806 }
1807 reset_index++;
1808 }
1809
1810 return SUCCESS;
1811 }
1812
1813 for (i = 0; i < resetwaittime; i++) {
1814
1815 int outstanding = atomic_read(&instance->fw_outstanding);
1816
1817 if (!outstanding)
1818 break;
1819
1820 if (!(i % MEGASAS_RESET_NOTICE_INTERVAL)) {
1821 printk(KERN_NOTICE "megasas: [%2d]waiting for %d "
1822 "commands to complete\n",i,outstanding);
1823 /*
1824 * Call cmd completion routine. Cmd to be
1825 * be completed directly without depending on isr.
1826 */
1827 megasas_complete_cmd_dpc((unsigned long)instance);
1828 }
1829
1830 msleep(1000);
1831 }
1832
1833 i = 0;
1834 kill_adapter_flag = 0;
1835 do {
1836 fw_state = instance->instancet->read_fw_status_reg(
1837 instance->reg_set) & MFI_STATE_MASK;
1838 if ((fw_state == MFI_STATE_FAULT) &&
1839 (instance->disableOnlineCtrlReset == 0)) {
1840 if (i == 3) {
1841 kill_adapter_flag = 2;
1842 break;
1843 }
1844 megasas_do_ocr(instance);
1845 kill_adapter_flag = 1;
1846
1847 /* wait for 1 secs to let FW finish the pending cmds */
1848 msleep(1000);
1849 }
1850 i++;
1851 } while (i <= 3);
1852
1853 if (atomic_read(&instance->fw_outstanding) &&
1854 !kill_adapter_flag) {
1855 if (instance->disableOnlineCtrlReset == 0) {
1856
1857 megasas_do_ocr(instance);
1858
1859 /* wait for 5 secs to let FW finish the pending cmds */
1860 for (i = 0; i < wait_time; i++) {
1861 int outstanding =
1862 atomic_read(&instance->fw_outstanding);
1863 if (!outstanding)
1864 return SUCCESS;
1865 msleep(1000);
1866 }
1867 }
1868 }
1869
1870 if (atomic_read(&instance->fw_outstanding) ||
1871 (kill_adapter_flag == 2)) {
1872 printk(KERN_NOTICE "megaraid_sas: pending cmds after reset\n");
1873 /*
1874 * Send signal to FW to stop processing any pending cmds.
1875 * The controller will be taken offline by the OS now.
1876 */
1877 if ((instance->pdev->device ==
1878 PCI_DEVICE_ID_LSI_SAS0073SKINNY) ||
1879 (instance->pdev->device ==
1880 PCI_DEVICE_ID_LSI_SAS0071SKINNY)) {
1881 writel(MFI_STOP_ADP,
1882 &instance->reg_set->doorbell);
1883 } else {
1884 writel(MFI_STOP_ADP,
1885 &instance->reg_set->inbound_doorbell);
1886 }
1887 megasas_dump_pending_frames(instance);
1888 spin_lock_irqsave(&instance->hba_lock, flags);
1889 instance->adprecovery = MEGASAS_HW_CRITICAL_ERROR;
1890 spin_unlock_irqrestore(&instance->hba_lock, flags);
1891 return FAILED;
1892 }
1893
1894 printk(KERN_NOTICE "megaraid_sas: no pending cmds after reset\n");
1895
1896 return SUCCESS;
1897 }
1898
1899 /**
1900 * megasas_generic_reset - Generic reset routine
1901 * @scmd: Mid-layer SCSI command
1902 *
1903 * This routine implements a generic reset handler for device, bus and host
1904 * reset requests. Device, bus and host specific reset handlers can use this
1905 * function after they do their specific tasks.
1906 */
1907 static int megasas_generic_reset(struct scsi_cmnd *scmd)
1908 {
1909 int ret_val;
1910 struct megasas_instance *instance;
1911
1912 instance = (struct megasas_instance *)scmd->device->host->hostdata;
1913
1914 scmd_printk(KERN_NOTICE, scmd, "megasas: RESET cmd=%x retries=%x\n",
1915 scmd->cmnd[0], scmd->retries);
1916
1917 if (instance->adprecovery == MEGASAS_HW_CRITICAL_ERROR) {
1918 printk(KERN_ERR "megasas: cannot recover from previous reset "
1919 "failures\n");
1920 return FAILED;
1921 }
1922
1923 ret_val = megasas_wait_for_outstanding(instance);
1924 if (ret_val == SUCCESS)
1925 printk(KERN_NOTICE "megasas: reset successful \n");
1926 else
1927 printk(KERN_ERR "megasas: failed to do reset\n");
1928
1929 return ret_val;
1930 }
1931
1932 /**
1933 * megasas_reset_timer - quiesce the adapter if required
1934 * @scmd: scsi cmnd
1935 *
1936 * Sets the FW busy flag and reduces the host->can_queue if the
1937 * cmd has not been completed within the timeout period.
1938 */
1939 static enum
1940 blk_eh_timer_return megasas_reset_timer(struct scsi_cmnd *scmd)
1941 {
1942 struct megasas_instance *instance;
1943 unsigned long flags;
1944
1945 if (time_after(jiffies, scmd->jiffies_at_alloc +
1946 (MEGASAS_DEFAULT_CMD_TIMEOUT * 2) * HZ)) {
1947 return BLK_EH_NOT_HANDLED;
1948 }
1949
1950 instance = (struct megasas_instance *)scmd->device->host->hostdata;
1951 if (!(instance->flag & MEGASAS_FW_BUSY)) {
1952 /* FW is busy, throttle IO */
1953 spin_lock_irqsave(instance->host->host_lock, flags);
1954
1955 instance->host->can_queue = instance->throttlequeuedepth;
1956 instance->last_time = jiffies;
1957 instance->flag |= MEGASAS_FW_BUSY;
1958
1959 spin_unlock_irqrestore(instance->host->host_lock, flags);
1960 }
1961 return BLK_EH_RESET_TIMER;
1962 }
1963
1964 /**
1965 * megasas_reset_device - Device reset handler entry point
1966 */
1967 static int megasas_reset_device(struct scsi_cmnd *scmd)
1968 {
1969 int ret;
1970
1971 /*
1972 * First wait for all commands to complete
1973 */
1974 ret = megasas_generic_reset(scmd);
1975
1976 return ret;
1977 }
1978
1979 /**
1980 * megasas_reset_bus_host - Bus & host reset handler entry point
1981 */
1982 static int megasas_reset_bus_host(struct scsi_cmnd *scmd)
1983 {
1984 int ret;
1985 struct megasas_instance *instance;
1986 instance = (struct megasas_instance *)scmd->device->host->hostdata;
1987
1988 /*
1989 * First wait for all commands to complete
1990 */
1991 if ((instance->pdev->device == PCI_DEVICE_ID_LSI_FUSION) ||
1992 (instance->pdev->device == PCI_DEVICE_ID_LSI_INVADER) ||
1993 (instance->pdev->device == PCI_DEVICE_ID_LSI_FURY))
1994 ret = megasas_reset_fusion(scmd->device->host);
1995 else
1996 ret = megasas_generic_reset(scmd);
1997
1998 return ret;
1999 }
2000
2001 /**
2002 * megasas_bios_param - Returns disk geometry for a disk
2003 * @sdev: device handle
2004 * @bdev: block device
2005 * @capacity: drive capacity
2006 * @geom: geometry parameters
2007 */
2008 static int
2009 megasas_bios_param(struct scsi_device *sdev, struct block_device *bdev,
2010 sector_t capacity, int geom[])
2011 {
2012 int heads;
2013 int sectors;
2014 sector_t cylinders;
2015 unsigned long tmp;
2016 /* Default heads (64) & sectors (32) */
2017 heads = 64;
2018 sectors = 32;
2019
2020 tmp = heads * sectors;
2021 cylinders = capacity;
2022
2023 sector_div(cylinders, tmp);
2024
2025 /*
2026 * Handle extended translation size for logical drives > 1Gb
2027 */
2028
2029 if (capacity >= 0x200000) {
2030 heads = 255;
2031 sectors = 63;
2032 tmp = heads*sectors;
2033 cylinders = capacity;
2034 sector_div(cylinders, tmp);
2035 }
2036
2037 geom[0] = heads;
2038 geom[1] = sectors;
2039 geom[2] = cylinders;
2040
2041 return 0;
2042 }
2043
2044 static void megasas_aen_polling(struct work_struct *work);
2045
2046 /**
2047 * megasas_service_aen - Processes an event notification
2048 * @instance: Adapter soft state
2049 * @cmd: AEN command completed by the ISR
2050 *
2051 * For AEN, driver sends a command down to FW that is held by the FW till an
2052 * event occurs. When an event of interest occurs, FW completes the command
2053 * that it was previously holding.
2054 *
2055 * This routines sends SIGIO signal to processes that have registered with the
2056 * driver for AEN.
2057 */
2058 static void
2059 megasas_service_aen(struct megasas_instance *instance, struct megasas_cmd *cmd)
2060 {
2061 unsigned long flags;
2062 /*
2063 * Don't signal app if it is just an aborted previously registered aen
2064 */
2065 if ((!cmd->abort_aen) && (instance->unload == 0)) {
2066 spin_lock_irqsave(&poll_aen_lock, flags);
2067 megasas_poll_wait_aen = 1;
2068 spin_unlock_irqrestore(&poll_aen_lock, flags);
2069 wake_up(&megasas_poll_wait);
2070 kill_fasync(&megasas_async_queue, SIGIO, POLL_IN);
2071 }
2072 else
2073 cmd->abort_aen = 0;
2074
2075 instance->aen_cmd = NULL;
2076 megasas_return_cmd(instance, cmd);
2077
2078 if ((instance->unload == 0) &&
2079 ((instance->issuepend_done == 1))) {
2080 struct megasas_aen_event *ev;
2081 ev = kzalloc(sizeof(*ev), GFP_ATOMIC);
2082 if (!ev) {
2083 printk(KERN_ERR "megasas_service_aen: out of memory\n");
2084 } else {
2085 ev->instance = instance;
2086 instance->ev = ev;
2087 INIT_DELAYED_WORK(&ev->hotplug_work,
2088 megasas_aen_polling);
2089 schedule_delayed_work(&ev->hotplug_work, 0);
2090 }
2091 }
2092 }
2093
2094 static int megasas_change_queue_depth(struct scsi_device *sdev,
2095 int queue_depth, int reason)
2096 {
2097 if (reason != SCSI_QDEPTH_DEFAULT)
2098 return -EOPNOTSUPP;
2099
2100 if (queue_depth > sdev->host->can_queue)
2101 queue_depth = sdev->host->can_queue;
2102 scsi_adjust_queue_depth(sdev, scsi_get_tag_type(sdev),
2103 queue_depth);
2104
2105 return queue_depth;
2106 }
2107
2108 /*
2109 * Scsi host template for megaraid_sas driver
2110 */
2111 static struct scsi_host_template megasas_template = {
2112
2113 .module = THIS_MODULE,
2114 .name = "LSI SAS based MegaRAID driver",
2115 .proc_name = "megaraid_sas",
2116 .slave_configure = megasas_slave_configure,
2117 .slave_alloc = megasas_slave_alloc,
2118 .queuecommand = megasas_queue_command,
2119 .eh_device_reset_handler = megasas_reset_device,
2120 .eh_bus_reset_handler = megasas_reset_bus_host,
2121 .eh_host_reset_handler = megasas_reset_bus_host,
2122 .eh_timed_out = megasas_reset_timer,
2123 .bios_param = megasas_bios_param,
2124 .use_clustering = ENABLE_CLUSTERING,
2125 .change_queue_depth = megasas_change_queue_depth,
2126 };
2127
2128 /**
2129 * megasas_complete_int_cmd - Completes an internal command
2130 * @instance: Adapter soft state
2131 * @cmd: Command to be completed
2132 *
2133 * The megasas_issue_blocked_cmd() function waits for a command to complete
2134 * after it issues a command. This function wakes up that waiting routine by
2135 * calling wake_up() on the wait queue.
2136 */
2137 static void
2138 megasas_complete_int_cmd(struct megasas_instance *instance,
2139 struct megasas_cmd *cmd)
2140 {
2141 cmd->cmd_status = cmd->frame->io.cmd_status;
2142
2143 if (cmd->cmd_status == ENODATA) {
2144 cmd->cmd_status = 0;
2145 }
2146 wake_up(&instance->int_cmd_wait_q);
2147 }
2148
2149 /**
2150 * megasas_complete_abort - Completes aborting a command
2151 * @instance: Adapter soft state
2152 * @cmd: Cmd that was issued to abort another cmd
2153 *
2154 * The megasas_issue_blocked_abort_cmd() function waits on abort_cmd_wait_q
2155 * after it issues an abort on a previously issued command. This function
2156 * wakes up all functions waiting on the same wait queue.
2157 */
2158 static void
2159 megasas_complete_abort(struct megasas_instance *instance,
2160 struct megasas_cmd *cmd)
2161 {
2162 if (cmd->sync_cmd) {
2163 cmd->sync_cmd = 0;
2164 cmd->cmd_status = 0;
2165 wake_up(&instance->abort_cmd_wait_q);
2166 }
2167
2168 return;
2169 }
2170
2171 /**
2172 * megasas_complete_cmd - Completes a command
2173 * @instance: Adapter soft state
2174 * @cmd: Command to be completed
2175 * @alt_status: If non-zero, use this value as status to
2176 * SCSI mid-layer instead of the value returned
2177 * by the FW. This should be used if caller wants
2178 * an alternate status (as in the case of aborted
2179 * commands)
2180 */
2181 void
2182 megasas_complete_cmd(struct megasas_instance *instance, struct megasas_cmd *cmd,
2183 u8 alt_status)
2184 {
2185 int exception = 0;
2186 struct megasas_header *hdr = &cmd->frame->hdr;
2187 unsigned long flags;
2188 struct fusion_context *fusion = instance->ctrl_context;
2189
2190 /* flag for the retry reset */
2191 cmd->retry_for_fw_reset = 0;
2192
2193 if (cmd->scmd)
2194 cmd->scmd->SCp.ptr = NULL;
2195
2196 switch (hdr->cmd) {
2197 case MFI_CMD_INVALID:
2198 /* Some older 1068 controller FW may keep a pended
2199 MR_DCMD_CTRL_EVENT_GET_INFO left over from the main kernel
2200 when booting the kdump kernel. Ignore this command to
2201 prevent a kernel panic on shutdown of the kdump kernel. */
2202 printk(KERN_WARNING "megaraid_sas: MFI_CMD_INVALID command "
2203 "completed.\n");
2204 printk(KERN_WARNING "megaraid_sas: If you have a controller "
2205 "other than PERC5, please upgrade your firmware.\n");
2206 break;
2207 case MFI_CMD_PD_SCSI_IO:
2208 case MFI_CMD_LD_SCSI_IO:
2209
2210 /*
2211 * MFI_CMD_PD_SCSI_IO and MFI_CMD_LD_SCSI_IO could have been
2212 * issued either through an IO path or an IOCTL path. If it
2213 * was via IOCTL, we will send it to internal completion.
2214 */
2215 if (cmd->sync_cmd) {
2216 cmd->sync_cmd = 0;
2217 megasas_complete_int_cmd(instance, cmd);
2218 break;
2219 }
2220
2221 case MFI_CMD_LD_READ:
2222 case MFI_CMD_LD_WRITE:
2223
2224 if (alt_status) {
2225 cmd->scmd->result = alt_status << 16;
2226 exception = 1;
2227 }
2228
2229 if (exception) {
2230
2231 atomic_dec(&instance->fw_outstanding);
2232
2233 scsi_dma_unmap(cmd->scmd);
2234 cmd->scmd->scsi_done(cmd->scmd);
2235 megasas_return_cmd(instance, cmd);
2236
2237 break;
2238 }
2239
2240 switch (hdr->cmd_status) {
2241
2242 case MFI_STAT_OK:
2243 cmd->scmd->result = DID_OK << 16;
2244 break;
2245
2246 case MFI_STAT_SCSI_IO_FAILED:
2247 case MFI_STAT_LD_INIT_IN_PROGRESS:
2248 cmd->scmd->result =
2249 (DID_ERROR << 16) | hdr->scsi_status;
2250 break;
2251
2252 case MFI_STAT_SCSI_DONE_WITH_ERROR:
2253
2254 cmd->scmd->result = (DID_OK << 16) | hdr->scsi_status;
2255
2256 if (hdr->scsi_status == SAM_STAT_CHECK_CONDITION) {
2257 memset(cmd->scmd->sense_buffer, 0,
2258 SCSI_SENSE_BUFFERSIZE);
2259 memcpy(cmd->scmd->sense_buffer, cmd->sense,
2260 hdr->sense_len);
2261
2262 cmd->scmd->result |= DRIVER_SENSE << 24;
2263 }
2264
2265 break;
2266
2267 case MFI_STAT_LD_OFFLINE:
2268 case MFI_STAT_DEVICE_NOT_FOUND:
2269 cmd->scmd->result = DID_BAD_TARGET << 16;
2270 break;
2271
2272 default:
2273 printk(KERN_DEBUG "megasas: MFI FW status %#x\n",
2274 hdr->cmd_status);
2275 cmd->scmd->result = DID_ERROR << 16;
2276 break;
2277 }
2278
2279 atomic_dec(&instance->fw_outstanding);
2280
2281 scsi_dma_unmap(cmd->scmd);
2282 cmd->scmd->scsi_done(cmd->scmd);
2283 megasas_return_cmd(instance, cmd);
2284
2285 break;
2286
2287 case MFI_CMD_SMP:
2288 case MFI_CMD_STP:
2289 case MFI_CMD_DCMD:
2290 /* Check for LD map update */
2291 if ((cmd->frame->dcmd.opcode == MR_DCMD_LD_MAP_GET_INFO) &&
2292 (cmd->frame->dcmd.mbox.b[1] == 1)) {
2293 fusion->fast_path_io = 0;
2294 spin_lock_irqsave(instance->host->host_lock, flags);
2295 if (cmd->frame->hdr.cmd_status != 0) {
2296 if (cmd->frame->hdr.cmd_status !=
2297 MFI_STAT_NOT_FOUND)
2298 printk(KERN_WARNING "megasas: map sync"
2299 "failed, status = 0x%x.\n",
2300 cmd->frame->hdr.cmd_status);
2301 else {
2302 megasas_return_cmd(instance, cmd);
2303 spin_unlock_irqrestore(
2304 instance->host->host_lock,
2305 flags);
2306 break;
2307 }
2308 } else
2309 instance->map_id++;
2310 megasas_return_cmd(instance, cmd);
2311
2312 /*
2313 * Set fast path IO to ZERO.
2314 * Validate Map will set proper value.
2315 * Meanwhile all IOs will go as LD IO.
2316 */
2317 if (MR_ValidateMapInfo(instance))
2318 fusion->fast_path_io = 1;
2319 else
2320 fusion->fast_path_io = 0;
2321 megasas_sync_map_info(instance);
2322 spin_unlock_irqrestore(instance->host->host_lock,
2323 flags);
2324 break;
2325 }
2326 if (cmd->frame->dcmd.opcode == MR_DCMD_CTRL_EVENT_GET_INFO ||
2327 cmd->frame->dcmd.opcode == MR_DCMD_CTRL_EVENT_GET) {
2328 spin_lock_irqsave(&poll_aen_lock, flags);
2329 megasas_poll_wait_aen = 0;
2330 spin_unlock_irqrestore(&poll_aen_lock, flags);
2331 }
2332
2333 /*
2334 * See if got an event notification
2335 */
2336 if (cmd->frame->dcmd.opcode == MR_DCMD_CTRL_EVENT_WAIT)
2337 megasas_service_aen(instance, cmd);
2338 else
2339 megasas_complete_int_cmd(instance, cmd);
2340
2341 break;
2342
2343 case MFI_CMD_ABORT:
2344 /*
2345 * Cmd issued to abort another cmd returned
2346 */
2347 megasas_complete_abort(instance, cmd);
2348 break;
2349
2350 default:
2351 printk("megasas: Unknown command completed! [0x%X]\n",
2352 hdr->cmd);
2353 break;
2354 }
2355 }
2356
2357 /**
2358 * megasas_issue_pending_cmds_again - issue all pending cmds
2359 * in FW again because of the fw reset
2360 * @instance: Adapter soft state
2361 */
2362 static inline void
2363 megasas_issue_pending_cmds_again(struct megasas_instance *instance)
2364 {
2365 struct megasas_cmd *cmd;
2366 struct list_head clist_local;
2367 union megasas_evt_class_locale class_locale;
2368 unsigned long flags;
2369 u32 seq_num;
2370
2371 INIT_LIST_HEAD(&clist_local);
2372 spin_lock_irqsave(&instance->hba_lock, flags);
2373 list_splice_init(&instance->internal_reset_pending_q, &clist_local);
2374 spin_unlock_irqrestore(&instance->hba_lock, flags);
2375
2376 while (!list_empty(&clist_local)) {
2377 cmd = list_entry((&clist_local)->next,
2378 struct megasas_cmd, list);
2379 list_del_init(&cmd->list);
2380
2381 if (cmd->sync_cmd || cmd->scmd) {
2382 printk(KERN_NOTICE "megaraid_sas: command %p, %p:%d"
2383 "detected to be pending while HBA reset.\n",
2384 cmd, cmd->scmd, cmd->sync_cmd);
2385
2386 cmd->retry_for_fw_reset++;
2387
2388 if (cmd->retry_for_fw_reset == 3) {
2389 printk(KERN_NOTICE "megaraid_sas: cmd %p, %p:%d"
2390 "was tried multiple times during reset."
2391 "Shutting down the HBA\n",
2392 cmd, cmd->scmd, cmd->sync_cmd);
2393 megaraid_sas_kill_hba(instance);
2394
2395 instance->adprecovery =
2396 MEGASAS_HW_CRITICAL_ERROR;
2397 return;
2398 }
2399 }
2400
2401 if (cmd->sync_cmd == 1) {
2402 if (cmd->scmd) {
2403 printk(KERN_NOTICE "megaraid_sas: unexpected"
2404 "cmd attached to internal command!\n");
2405 }
2406 printk(KERN_NOTICE "megasas: %p synchronous cmd"
2407 "on the internal reset queue,"
2408 "issue it again.\n", cmd);
2409 cmd->cmd_status = ENODATA;
2410 instance->instancet->fire_cmd(instance,
2411 cmd->frame_phys_addr ,
2412 0, instance->reg_set);
2413 } else if (cmd->scmd) {
2414 printk(KERN_NOTICE "megasas: %p scsi cmd [%02x]"
2415 "detected on the internal queue, issue again.\n",
2416 cmd, cmd->scmd->cmnd[0]);
2417
2418 atomic_inc(&instance->fw_outstanding);
2419 instance->instancet->fire_cmd(instance,
2420 cmd->frame_phys_addr,
2421 cmd->frame_count-1, instance->reg_set);
2422 } else {
2423 printk(KERN_NOTICE "megasas: %p unexpected cmd on the"
2424 "internal reset defer list while re-issue!!\n",
2425 cmd);
2426 }
2427 }
2428
2429 if (instance->aen_cmd) {
2430 printk(KERN_NOTICE "megaraid_sas: aen_cmd in def process\n");
2431 megasas_return_cmd(instance, instance->aen_cmd);
2432
2433 instance->aen_cmd = NULL;
2434 }
2435
2436 /*
2437 * Initiate AEN (Asynchronous Event Notification)
2438 */
2439 seq_num = instance->last_seq_num;
2440 class_locale.members.reserved = 0;
2441 class_locale.members.locale = MR_EVT_LOCALE_ALL;
2442 class_locale.members.class = MR_EVT_CLASS_DEBUG;
2443
2444 megasas_register_aen(instance, seq_num, class_locale.word);
2445 }
2446
2447 /**
2448 * Move the internal reset pending commands to a deferred queue.
2449 *
2450 * We move the commands pending at internal reset time to a
2451 * pending queue. This queue would be flushed after successful
2452 * completion of the internal reset sequence. if the internal reset
2453 * did not complete in time, the kernel reset handler would flush
2454 * these commands.
2455 **/
2456 static void
2457 megasas_internal_reset_defer_cmds(struct megasas_instance *instance)
2458 {
2459 struct megasas_cmd *cmd;
2460 int i;
2461 u32 max_cmd = instance->max_fw_cmds;
2462 u32 defer_index;
2463 unsigned long flags;
2464
2465 defer_index = 0;
2466 spin_lock_irqsave(&instance->cmd_pool_lock, flags);
2467 for (i = 0; i < max_cmd; i++) {
2468 cmd = instance->cmd_list[i];
2469 if (cmd->sync_cmd == 1 || cmd->scmd) {
2470 printk(KERN_NOTICE "megasas: moving cmd[%d]:%p:%d:%p"
2471 "on the defer queue as internal\n",
2472 defer_index, cmd, cmd->sync_cmd, cmd->scmd);
2473
2474 if (!list_empty(&cmd->list)) {
2475 printk(KERN_NOTICE "megaraid_sas: ERROR while"
2476 " moving this cmd:%p, %d %p, it was"
2477 "discovered on some list?\n",
2478 cmd, cmd->sync_cmd, cmd->scmd);
2479
2480 list_del_init(&cmd->list);
2481 }
2482 defer_index++;
2483 list_add_tail(&cmd->list,
2484 &instance->internal_reset_pending_q);
2485 }
2486 }
2487 spin_unlock_irqrestore(&instance->cmd_pool_lock, flags);
2488 }
2489
2490
2491 static void
2492 process_fw_state_change_wq(struct work_struct *work)
2493 {
2494 struct megasas_instance *instance =
2495 container_of(work, struct megasas_instance, work_init);
2496 u32 wait;
2497 unsigned long flags;
2498
2499 if (instance->adprecovery != MEGASAS_ADPRESET_SM_INFAULT) {
2500 printk(KERN_NOTICE "megaraid_sas: error, recovery st %x \n",
2501 instance->adprecovery);
2502 return ;
2503 }
2504
2505 if (instance->adprecovery == MEGASAS_ADPRESET_SM_INFAULT) {
2506 printk(KERN_NOTICE "megaraid_sas: FW detected to be in fault"
2507 "state, restarting it...\n");
2508
2509 instance->instancet->disable_intr(instance);
2510 atomic_set(&instance->fw_outstanding, 0);
2511
2512 atomic_set(&instance->fw_reset_no_pci_access, 1);
2513 instance->instancet->adp_reset(instance, instance->reg_set);
2514 atomic_set(&instance->fw_reset_no_pci_access, 0 );
2515
2516 printk(KERN_NOTICE "megaraid_sas: FW restarted successfully,"
2517 "initiating next stage...\n");
2518
2519 printk(KERN_NOTICE "megaraid_sas: HBA recovery state machine,"
2520 "state 2 starting...\n");
2521
2522 /*waitting for about 20 second before start the second init*/
2523 for (wait = 0; wait < 30; wait++) {
2524 msleep(1000);
2525 }
2526
2527 if (megasas_transition_to_ready(instance, 1)) {
2528 printk(KERN_NOTICE "megaraid_sas:adapter not ready\n");
2529
2530 megaraid_sas_kill_hba(instance);
2531 instance->adprecovery = MEGASAS_HW_CRITICAL_ERROR;
2532 return ;
2533 }
2534
2535 if ((instance->pdev->device == PCI_DEVICE_ID_LSI_SAS1064R) ||
2536 (instance->pdev->device == PCI_DEVICE_ID_DELL_PERC5) ||
2537 (instance->pdev->device == PCI_DEVICE_ID_LSI_VERDE_ZCR)
2538 ) {
2539 *instance->consumer = *instance->producer;
2540 } else {
2541 *instance->consumer = 0;
2542 *instance->producer = 0;
2543 }
2544
2545 megasas_issue_init_mfi(instance);
2546
2547 spin_lock_irqsave(&instance->hba_lock, flags);
2548 instance->adprecovery = MEGASAS_HBA_OPERATIONAL;
2549 spin_unlock_irqrestore(&instance->hba_lock, flags);
2550 instance->instancet->enable_intr(instance);
2551
2552 megasas_issue_pending_cmds_again(instance);
2553 instance->issuepend_done = 1;
2554 }
2555 return ;
2556 }
2557
2558 /**
2559 * megasas_deplete_reply_queue - Processes all completed commands
2560 * @instance: Adapter soft state
2561 * @alt_status: Alternate status to be returned to
2562 * SCSI mid-layer instead of the status
2563 * returned by the FW
2564 * Note: this must be called with hba lock held
2565 */
2566 static int
2567 megasas_deplete_reply_queue(struct megasas_instance *instance,
2568 u8 alt_status)
2569 {
2570 u32 mfiStatus;
2571 u32 fw_state;
2572
2573 if ((mfiStatus = instance->instancet->check_reset(instance,
2574 instance->reg_set)) == 1) {
2575 return IRQ_HANDLED;
2576 }
2577
2578 if ((mfiStatus = instance->instancet->clear_intr(
2579 instance->reg_set)
2580 ) == 0) {
2581 /* Hardware may not set outbound_intr_status in MSI-X mode */
2582 if (!instance->msix_vectors)
2583 return IRQ_NONE;
2584 }
2585
2586 instance->mfiStatus = mfiStatus;
2587
2588 if ((mfiStatus & MFI_INTR_FLAG_FIRMWARE_STATE_CHANGE)) {
2589 fw_state = instance->instancet->read_fw_status_reg(
2590 instance->reg_set) & MFI_STATE_MASK;
2591
2592 if (fw_state != MFI_STATE_FAULT) {
2593 printk(KERN_NOTICE "megaraid_sas: fw state:%x\n",
2594 fw_state);
2595 }
2596
2597 if ((fw_state == MFI_STATE_FAULT) &&
2598 (instance->disableOnlineCtrlReset == 0)) {
2599 printk(KERN_NOTICE "megaraid_sas: wait adp restart\n");
2600
2601 if ((instance->pdev->device ==
2602 PCI_DEVICE_ID_LSI_SAS1064R) ||
2603 (instance->pdev->device ==
2604 PCI_DEVICE_ID_DELL_PERC5) ||
2605 (instance->pdev->device ==
2606 PCI_DEVICE_ID_LSI_VERDE_ZCR)) {
2607
2608 *instance->consumer =
2609 MEGASAS_ADPRESET_INPROG_SIGN;
2610 }
2611
2612
2613 instance->instancet->disable_intr(instance);
2614 instance->adprecovery = MEGASAS_ADPRESET_SM_INFAULT;
2615 instance->issuepend_done = 0;
2616
2617 atomic_set(&instance->fw_outstanding, 0);
2618 megasas_internal_reset_defer_cmds(instance);
2619
2620 printk(KERN_NOTICE "megasas: fwState=%x, stage:%d\n",
2621 fw_state, instance->adprecovery);
2622
2623 schedule_work(&instance->work_init);
2624 return IRQ_HANDLED;
2625
2626 } else {
2627 printk(KERN_NOTICE "megasas: fwstate:%x, dis_OCR=%x\n",
2628 fw_state, instance->disableOnlineCtrlReset);
2629 }
2630 }
2631
2632 tasklet_schedule(&instance->isr_tasklet);
2633 return IRQ_HANDLED;
2634 }
2635 /**
2636 * megasas_isr - isr entry point
2637 */
2638 static irqreturn_t megasas_isr(int irq, void *devp)
2639 {
2640 struct megasas_irq_context *irq_context = devp;
2641 struct megasas_instance *instance = irq_context->instance;
2642 unsigned long flags;
2643 irqreturn_t rc;
2644
2645 if (atomic_read(&instance->fw_reset_no_pci_access))
2646 return IRQ_HANDLED;
2647
2648 spin_lock_irqsave(&instance->hba_lock, flags);
2649 rc = megasas_deplete_reply_queue(instance, DID_OK);
2650 spin_unlock_irqrestore(&instance->hba_lock, flags);
2651
2652 return rc;
2653 }
2654
2655 /**
2656 * megasas_transition_to_ready - Move the FW to READY state
2657 * @instance: Adapter soft state
2658 *
2659 * During the initialization, FW passes can potentially be in any one of
2660 * several possible states. If the FW in operational, waiting-for-handshake
2661 * states, driver must take steps to bring it to ready state. Otherwise, it
2662 * has to wait for the ready state.
2663 */
2664 int
2665 megasas_transition_to_ready(struct megasas_instance *instance, int ocr)
2666 {
2667 int i;
2668 u8 max_wait;
2669 u32 fw_state;
2670 u32 cur_state;
2671 u32 abs_state, curr_abs_state;
2672
2673 fw_state = instance->instancet->read_fw_status_reg(instance->reg_set) & MFI_STATE_MASK;
2674
2675 if (fw_state != MFI_STATE_READY)
2676 printk(KERN_INFO "megasas: Waiting for FW to come to ready"
2677 " state\n");
2678
2679 while (fw_state != MFI_STATE_READY) {
2680
2681 abs_state =
2682 instance->instancet->read_fw_status_reg(instance->reg_set);
2683
2684 switch (fw_state) {
2685
2686 case MFI_STATE_FAULT:
2687 printk(KERN_DEBUG "megasas: FW in FAULT state!!\n");
2688 if (ocr) {
2689 max_wait = MEGASAS_RESET_WAIT_TIME;
2690 cur_state = MFI_STATE_FAULT;
2691 break;
2692 } else
2693 return -ENODEV;
2694
2695 case MFI_STATE_WAIT_HANDSHAKE:
2696 /*
2697 * Set the CLR bit in inbound doorbell
2698 */
2699 if ((instance->pdev->device ==
2700 PCI_DEVICE_ID_LSI_SAS0073SKINNY) ||
2701 (instance->pdev->device ==
2702 PCI_DEVICE_ID_LSI_SAS0071SKINNY) ||
2703 (instance->pdev->device ==
2704 PCI_DEVICE_ID_LSI_FUSION) ||
2705 (instance->pdev->device ==
2706 PCI_DEVICE_ID_LSI_INVADER) ||
2707 (instance->pdev->device ==
2708 PCI_DEVICE_ID_LSI_FURY)) {
2709 writel(
2710 MFI_INIT_CLEAR_HANDSHAKE|MFI_INIT_HOTPLUG,
2711 &instance->reg_set->doorbell);
2712 } else {
2713 writel(
2714 MFI_INIT_CLEAR_HANDSHAKE|MFI_INIT_HOTPLUG,
2715 &instance->reg_set->inbound_doorbell);
2716 }
2717
2718 max_wait = MEGASAS_RESET_WAIT_TIME;
2719 cur_state = MFI_STATE_WAIT_HANDSHAKE;
2720 break;
2721
2722 case MFI_STATE_BOOT_MESSAGE_PENDING:
2723 if ((instance->pdev->device ==
2724 PCI_DEVICE_ID_LSI_SAS0073SKINNY) ||
2725 (instance->pdev->device ==
2726 PCI_DEVICE_ID_LSI_SAS0071SKINNY) ||
2727 (instance->pdev->device ==
2728 PCI_DEVICE_ID_LSI_FUSION) ||
2729 (instance->pdev->device ==
2730 PCI_DEVICE_ID_LSI_INVADER) ||
2731 (instance->pdev->device ==
2732 PCI_DEVICE_ID_LSI_FURY)) {
2733 writel(MFI_INIT_HOTPLUG,
2734 &instance->reg_set->doorbell);
2735 } else
2736 writel(MFI_INIT_HOTPLUG,
2737 &instance->reg_set->inbound_doorbell);
2738
2739 max_wait = MEGASAS_RESET_WAIT_TIME;
2740 cur_state = MFI_STATE_BOOT_MESSAGE_PENDING;
2741 break;
2742
2743 case MFI_STATE_OPERATIONAL:
2744 /*
2745 * Bring it to READY state; assuming max wait 10 secs
2746 */
2747 instance->instancet->disable_intr(instance);
2748 if ((instance->pdev->device ==
2749 PCI_DEVICE_ID_LSI_SAS0073SKINNY) ||
2750 (instance->pdev->device ==
2751 PCI_DEVICE_ID_LSI_SAS0071SKINNY) ||
2752 (instance->pdev->device
2753 == PCI_DEVICE_ID_LSI_FUSION) ||
2754 (instance->pdev->device
2755 == PCI_DEVICE_ID_LSI_INVADER) ||
2756 (instance->pdev->device
2757 == PCI_DEVICE_ID_LSI_FURY)) {
2758 writel(MFI_RESET_FLAGS,
2759 &instance->reg_set->doorbell);
2760 if ((instance->pdev->device ==
2761 PCI_DEVICE_ID_LSI_FUSION) ||
2762 (instance->pdev->device ==
2763 PCI_DEVICE_ID_LSI_INVADER) ||
2764 (instance->pdev->device ==
2765 PCI_DEVICE_ID_LSI_FURY)) {
2766 for (i = 0; i < (10 * 1000); i += 20) {
2767 if (readl(
2768 &instance->
2769 reg_set->
2770 doorbell) & 1)
2771 msleep(20);
2772 else
2773 break;
2774 }
2775 }
2776 } else
2777 writel(MFI_RESET_FLAGS,
2778 &instance->reg_set->inbound_doorbell);
2779
2780 max_wait = MEGASAS_RESET_WAIT_TIME;
2781 cur_state = MFI_STATE_OPERATIONAL;
2782 break;
2783
2784 case MFI_STATE_UNDEFINED:
2785 /*
2786 * This state should not last for more than 2 seconds
2787 */
2788 max_wait = MEGASAS_RESET_WAIT_TIME;
2789 cur_state = MFI_STATE_UNDEFINED;
2790 break;
2791
2792 case MFI_STATE_BB_INIT:
2793 max_wait = MEGASAS_RESET_WAIT_TIME;
2794 cur_state = MFI_STATE_BB_INIT;
2795 break;
2796
2797 case MFI_STATE_FW_INIT:
2798 max_wait = MEGASAS_RESET_WAIT_TIME;
2799 cur_state = MFI_STATE_FW_INIT;
2800 break;
2801
2802 case MFI_STATE_FW_INIT_2:
2803 max_wait = MEGASAS_RESET_WAIT_TIME;
2804 cur_state = MFI_STATE_FW_INIT_2;
2805 break;
2806
2807 case MFI_STATE_DEVICE_SCAN:
2808 max_wait = MEGASAS_RESET_WAIT_TIME;
2809 cur_state = MFI_STATE_DEVICE_SCAN;
2810 break;
2811
2812 case MFI_STATE_FLUSH_CACHE:
2813 max_wait = MEGASAS_RESET_WAIT_TIME;
2814 cur_state = MFI_STATE_FLUSH_CACHE;
2815 break;
2816
2817 default:
2818 printk(KERN_DEBUG "megasas: Unknown state 0x%x\n",
2819 fw_state);
2820 return -ENODEV;
2821 }
2822
2823 /*
2824 * The cur_state should not last for more than max_wait secs
2825 */
2826 for (i = 0; i < (max_wait * 1000); i++) {
2827 fw_state = instance->instancet->read_fw_status_reg(instance->reg_set) &
2828 MFI_STATE_MASK ;
2829 curr_abs_state =
2830 instance->instancet->read_fw_status_reg(instance->reg_set);
2831
2832 if (abs_state == curr_abs_state) {
2833 msleep(1);
2834 } else
2835 break;
2836 }
2837
2838 /*
2839 * Return error if fw_state hasn't changed after max_wait
2840 */
2841 if (curr_abs_state == abs_state) {
2842 printk(KERN_DEBUG "FW state [%d] hasn't changed "
2843 "in %d secs\n", fw_state, max_wait);
2844 return -ENODEV;
2845 }
2846 }
2847 printk(KERN_INFO "megasas: FW now in Ready state\n");
2848
2849 return 0;
2850 }
2851
2852 /**
2853 * megasas_teardown_frame_pool - Destroy the cmd frame DMA pool
2854 * @instance: Adapter soft state
2855 */
2856 static void megasas_teardown_frame_pool(struct megasas_instance *instance)
2857 {
2858 int i;
2859 u32 max_cmd = instance->max_mfi_cmds;
2860 struct megasas_cmd *cmd;
2861
2862 if (!instance->frame_dma_pool)
2863 return;
2864
2865 /*
2866 * Return all frames to pool
2867 */
2868 for (i = 0; i < max_cmd; i++) {
2869
2870 cmd = instance->cmd_list[i];
2871
2872 if (cmd->frame)
2873 pci_pool_free(instance->frame_dma_pool, cmd->frame,
2874 cmd->frame_phys_addr);
2875
2876 if (cmd->sense)
2877 pci_pool_free(instance->sense_dma_pool, cmd->sense,
2878 cmd->sense_phys_addr);
2879 }
2880
2881 /*
2882 * Now destroy the pool itself
2883 */
2884 pci_pool_destroy(instance->frame_dma_pool);
2885 pci_pool_destroy(instance->sense_dma_pool);
2886
2887 instance->frame_dma_pool = NULL;
2888 instance->sense_dma_pool = NULL;
2889 }
2890
2891 /**
2892 * megasas_create_frame_pool - Creates DMA pool for cmd frames
2893 * @instance: Adapter soft state
2894 *
2895 * Each command packet has an embedded DMA memory buffer that is used for
2896 * filling MFI frame and the SG list that immediately follows the frame. This
2897 * function creates those DMA memory buffers for each command packet by using
2898 * PCI pool facility.
2899 */
2900 static int megasas_create_frame_pool(struct megasas_instance *instance)
2901 {
2902 int i;
2903 u32 max_cmd;
2904 u32 sge_sz;
2905 u32 sgl_sz;
2906 u32 total_sz;
2907 u32 frame_count;
2908 struct megasas_cmd *cmd;
2909
2910 max_cmd = instance->max_mfi_cmds;
2911
2912 /*
2913 * Size of our frame is 64 bytes for MFI frame, followed by max SG
2914 * elements and finally SCSI_SENSE_BUFFERSIZE bytes for sense buffer
2915 */
2916 sge_sz = (IS_DMA64) ? sizeof(struct megasas_sge64) :
2917 sizeof(struct megasas_sge32);
2918
2919 if (instance->flag_ieee) {
2920 sge_sz = sizeof(struct megasas_sge_skinny);
2921 }
2922
2923 /*
2924 * Calculated the number of 64byte frames required for SGL
2925 */
2926 sgl_sz = sge_sz * instance->max_num_sge;
2927 frame_count = (sgl_sz + MEGAMFI_FRAME_SIZE - 1) / MEGAMFI_FRAME_SIZE;
2928 frame_count = 15;
2929
2930 /*
2931 * We need one extra frame for the MFI command
2932 */
2933 frame_count++;
2934
2935 total_sz = MEGAMFI_FRAME_SIZE * frame_count;
2936 /*
2937 * Use DMA pool facility provided by PCI layer
2938 */
2939 instance->frame_dma_pool = pci_pool_create("megasas frame pool",
2940 instance->pdev, total_sz, 64,
2941 0);
2942
2943 if (!instance->frame_dma_pool) {
2944 printk(KERN_DEBUG "megasas: failed to setup frame pool\n");
2945 return -ENOMEM;
2946 }
2947
2948 instance->sense_dma_pool = pci_pool_create("megasas sense pool",
2949 instance->pdev, 128, 4, 0);
2950
2951 if (!instance->sense_dma_pool) {
2952 printk(KERN_DEBUG "megasas: failed to setup sense pool\n");
2953
2954 pci_pool_destroy(instance->frame_dma_pool);
2955 instance->frame_dma_pool = NULL;
2956
2957 return -ENOMEM;
2958 }
2959
2960 /*
2961 * Allocate and attach a frame to each of the commands in cmd_list.
2962 * By making cmd->index as the context instead of the &cmd, we can
2963 * always use 32bit context regardless of the architecture
2964 */
2965 for (i = 0; i < max_cmd; i++) {
2966
2967 cmd = instance->cmd_list[i];
2968
2969 cmd->frame = pci_pool_alloc(instance->frame_dma_pool,
2970 GFP_KERNEL, &cmd->frame_phys_addr);
2971
2972 cmd->sense = pci_pool_alloc(instance->sense_dma_pool,
2973 GFP_KERNEL, &cmd->sense_phys_addr);
2974
2975 /*
2976 * megasas_teardown_frame_pool() takes care of freeing
2977 * whatever has been allocated
2978 */
2979 if (!cmd->frame || !cmd->sense) {
2980 printk(KERN_DEBUG "megasas: pci_pool_alloc failed \n");
2981 megasas_teardown_frame_pool(instance);
2982 return -ENOMEM;
2983 }
2984
2985 memset(cmd->frame, 0, total_sz);
2986 cmd->frame->io.context = cmd->index;
2987 cmd->frame->io.pad_0 = 0;
2988 if ((instance->pdev->device != PCI_DEVICE_ID_LSI_FUSION) &&
2989 (instance->pdev->device != PCI_DEVICE_ID_LSI_INVADER) &&
2990 (instance->pdev->device != PCI_DEVICE_ID_LSI_FURY) &&
2991 (reset_devices))
2992 cmd->frame->hdr.cmd = MFI_CMD_INVALID;
2993 }
2994
2995 return 0;
2996 }
2997
2998 /**
2999 * megasas_free_cmds - Free all the cmds in the free cmd pool
3000 * @instance: Adapter soft state
3001 */
3002 void megasas_free_cmds(struct megasas_instance *instance)
3003 {
3004 int i;
3005 /* First free the MFI frame pool */
3006 megasas_teardown_frame_pool(instance);
3007
3008 /* Free all the commands in the cmd_list */
3009 for (i = 0; i < instance->max_mfi_cmds; i++)
3010
3011 kfree(instance->cmd_list[i]);
3012
3013 /* Free the cmd_list buffer itself */
3014 kfree(instance->cmd_list);
3015 instance->cmd_list = NULL;
3016
3017 INIT_LIST_HEAD(&instance->cmd_pool);
3018 }
3019
3020 /**
3021 * megasas_alloc_cmds - Allocates the command packets
3022 * @instance: Adapter soft state
3023 *
3024 * Each command that is issued to the FW, whether IO commands from the OS or
3025 * internal commands like IOCTLs, are wrapped in local data structure called
3026 * megasas_cmd. The frame embedded in this megasas_cmd is actually issued to
3027 * the FW.
3028 *
3029 * Each frame has a 32-bit field called context (tag). This context is used
3030 * to get back the megasas_cmd from the frame when a frame gets completed in
3031 * the ISR. Typically the address of the megasas_cmd itself would be used as
3032 * the context. But we wanted to keep the differences between 32 and 64 bit
3033 * systems to the mininum. We always use 32 bit integers for the context. In
3034 * this driver, the 32 bit values are the indices into an array cmd_list.
3035 * This array is used only to look up the megasas_cmd given the context. The
3036 * free commands themselves are maintained in a linked list called cmd_pool.
3037 */
3038 int megasas_alloc_cmds(struct megasas_instance *instance)
3039 {
3040 int i;
3041 int j;
3042 u32 max_cmd;
3043 struct megasas_cmd *cmd;
3044
3045 max_cmd = instance->max_mfi_cmds;
3046
3047 /*
3048 * instance->cmd_list is an array of struct megasas_cmd pointers.
3049 * Allocate the dynamic array first and then allocate individual
3050 * commands.
3051 */
3052 instance->cmd_list = kcalloc(max_cmd, sizeof(struct megasas_cmd*), GFP_KERNEL);
3053
3054 if (!instance->cmd_list) {
3055 printk(KERN_DEBUG "megasas: out of memory\n");
3056 return -ENOMEM;
3057 }
3058
3059 memset(instance->cmd_list, 0, sizeof(struct megasas_cmd *) *max_cmd);
3060
3061 for (i = 0; i < max_cmd; i++) {
3062 instance->cmd_list[i] = kmalloc(sizeof(struct megasas_cmd),
3063 GFP_KERNEL);
3064
3065 if (!instance->cmd_list[i]) {
3066
3067 for (j = 0; j < i; j++)
3068 kfree(instance->cmd_list[j]);
3069
3070 kfree(instance->cmd_list);
3071 instance->cmd_list = NULL;
3072
3073 return -ENOMEM;
3074 }
3075 }
3076
3077 /*
3078 * Add all the commands to command pool (instance->cmd_pool)
3079 */
3080 for (i = 0; i < max_cmd; i++) {
3081 cmd = instance->cmd_list[i];
3082 memset(cmd, 0, sizeof(struct megasas_cmd));
3083 cmd->index = i;
3084 cmd->scmd = NULL;
3085 cmd->instance = instance;
3086
3087 list_add_tail(&cmd->list, &instance->cmd_pool);
3088 }
3089
3090 /*
3091 * Create a frame pool and assign one frame to each cmd
3092 */
3093 if (megasas_create_frame_pool(instance)) {
3094 printk(KERN_DEBUG "megasas: Error creating frame DMA pool\n");
3095 megasas_free_cmds(instance);
3096 }
3097
3098 return 0;
3099 }
3100
3101 /*
3102 * megasas_get_pd_list_info - Returns FW's pd_list structure
3103 * @instance: Adapter soft state
3104 * @pd_list: pd_list structure
3105 *
3106 * Issues an internal command (DCMD) to get the FW's controller PD
3107 * list structure. This information is mainly used to find out SYSTEM
3108 * supported by the FW.
3109 */
3110 static int
3111 megasas_get_pd_list(struct megasas_instance *instance)
3112 {
3113 int ret = 0, pd_index = 0;
3114 struct megasas_cmd *cmd;
3115 struct megasas_dcmd_frame *dcmd;
3116 struct MR_PD_LIST *ci;
3117 struct MR_PD_ADDRESS *pd_addr;
3118 dma_addr_t ci_h = 0;
3119
3120 cmd = megasas_get_cmd(instance);
3121
3122 if (!cmd) {
3123 printk(KERN_DEBUG "megasas (get_pd_list): Failed to get cmd\n");
3124 return -ENOMEM;
3125 }
3126
3127 dcmd = &cmd->frame->dcmd;
3128
3129 ci = pci_alloc_consistent(instance->pdev,
3130 MEGASAS_MAX_PD * sizeof(struct MR_PD_LIST), &ci_h);
3131
3132 if (!ci) {
3133 printk(KERN_DEBUG "Failed to alloc mem for pd_list\n");
3134 megasas_return_cmd(instance, cmd);
3135 return -ENOMEM;
3136 }
3137
3138 memset(ci, 0, sizeof(*ci));
3139 memset(dcmd->mbox.b, 0, MFI_MBOX_SIZE);
3140
3141 dcmd->mbox.b[0] = MR_PD_QUERY_TYPE_EXPOSED_TO_HOST;
3142 dcmd->mbox.b[1] = 0;
3143 dcmd->cmd = MFI_CMD_DCMD;
3144 dcmd->cmd_status = 0xFF;
3145 dcmd->sge_count = 1;
3146 dcmd->flags = MFI_FRAME_DIR_READ;
3147 dcmd->timeout = 0;
3148 dcmd->pad_0 = 0;
3149 dcmd->data_xfer_len = MEGASAS_MAX_PD * sizeof(struct MR_PD_LIST);
3150 dcmd->opcode = MR_DCMD_PD_LIST_QUERY;
3151 dcmd->sgl.sge32[0].phys_addr = ci_h;
3152 dcmd->sgl.sge32[0].length = MEGASAS_MAX_PD * sizeof(struct MR_PD_LIST);
3153
3154 if (!megasas_issue_polled(instance, cmd)) {
3155 ret = 0;
3156 } else {
3157 ret = -1;
3158 }
3159
3160 /*
3161 * the following function will get the instance PD LIST.
3162 */
3163
3164 pd_addr = ci->addr;
3165
3166 if ( ret == 0 &&
3167 (ci->count <
3168 (MEGASAS_MAX_PD_CHANNELS * MEGASAS_MAX_DEV_PER_CHANNEL))) {
3169
3170 memset(instance->pd_list, 0,
3171 MEGASAS_MAX_PD * sizeof(struct megasas_pd_list));
3172
3173 for (pd_index = 0; pd_index < ci->count; pd_index++) {
3174
3175 instance->pd_list[pd_addr->deviceId].tid =
3176 pd_addr->deviceId;
3177 instance->pd_list[pd_addr->deviceId].driveType =
3178 pd_addr->scsiDevType;
3179 instance->pd_list[pd_addr->deviceId].driveState =
3180 MR_PD_STATE_SYSTEM;
3181 pd_addr++;
3182 }
3183 }
3184
3185 pci_free_consistent(instance->pdev,
3186 MEGASAS_MAX_PD * sizeof(struct MR_PD_LIST),
3187 ci, ci_h);
3188 megasas_return_cmd(instance, cmd);
3189
3190 return ret;
3191 }
3192
3193 /*
3194 * megasas_get_ld_list_info - Returns FW's ld_list structure
3195 * @instance: Adapter soft state
3196 * @ld_list: ld_list structure
3197 *
3198 * Issues an internal command (DCMD) to get the FW's controller PD
3199 * list structure. This information is mainly used to find out SYSTEM
3200 * supported by the FW.
3201 */
3202 static int
3203 megasas_get_ld_list(struct megasas_instance *instance)
3204 {
3205 int ret = 0, ld_index = 0, ids = 0;
3206 struct megasas_cmd *cmd;
3207 struct megasas_dcmd_frame *dcmd;
3208 struct MR_LD_LIST *ci;
3209 dma_addr_t ci_h = 0;
3210
3211 cmd = megasas_get_cmd(instance);
3212
3213 if (!cmd) {
3214 printk(KERN_DEBUG "megasas_get_ld_list: Failed to get cmd\n");
3215 return -ENOMEM;
3216 }
3217
3218 dcmd = &cmd->frame->dcmd;
3219
3220 ci = pci_alloc_consistent(instance->pdev,
3221 sizeof(struct MR_LD_LIST),
3222 &ci_h);
3223
3224 if (!ci) {
3225 printk(KERN_DEBUG "Failed to alloc mem in get_ld_list\n");
3226 megasas_return_cmd(instance, cmd);
3227 return -ENOMEM;
3228 }
3229
3230 memset(ci, 0, sizeof(*ci));
3231 memset(dcmd->mbox.b, 0, MFI_MBOX_SIZE);
3232
3233 dcmd->cmd = MFI_CMD_DCMD;
3234 dcmd->cmd_status = 0xFF;
3235 dcmd->sge_count = 1;
3236 dcmd->flags = MFI_FRAME_DIR_READ;
3237 dcmd->timeout = 0;
3238 dcmd->data_xfer_len = sizeof(struct MR_LD_LIST);
3239 dcmd->opcode = MR_DCMD_LD_GET_LIST;
3240 dcmd->sgl.sge32[0].phys_addr = ci_h;
3241 dcmd->sgl.sge32[0].length = sizeof(struct MR_LD_LIST);
3242 dcmd->pad_0 = 0;
3243
3244 if (!megasas_issue_polled(instance, cmd)) {
3245 ret = 0;
3246 } else {
3247 ret = -1;
3248 }
3249
3250 /* the following function will get the instance PD LIST */
3251
3252 if ((ret == 0) && (ci->ldCount <= MAX_LOGICAL_DRIVES)) {
3253 memset(instance->ld_ids, 0xff, MEGASAS_MAX_LD_IDS);
3254
3255 for (ld_index = 0; ld_index < ci->ldCount; ld_index++) {
3256 if (ci->ldList[ld_index].state != 0) {
3257 ids = ci->ldList[ld_index].ref.targetId;
3258 instance->ld_ids[ids] =
3259 ci->ldList[ld_index].ref.targetId;
3260 }
3261 }
3262 }
3263
3264 pci_free_consistent(instance->pdev,
3265 sizeof(struct MR_LD_LIST),
3266 ci,
3267 ci_h);
3268
3269 megasas_return_cmd(instance, cmd);
3270 return ret;
3271 }
3272
3273 /**
3274 * megasas_get_controller_info - Returns FW's controller structure
3275 * @instance: Adapter soft state
3276 * @ctrl_info: Controller information structure
3277 *
3278 * Issues an internal command (DCMD) to get the FW's controller structure.
3279 * This information is mainly used to find out the maximum IO transfer per
3280 * command supported by the FW.
3281 */
3282 static int
3283 megasas_get_ctrl_info(struct megasas_instance *instance,
3284 struct megasas_ctrl_info *ctrl_info)
3285 {
3286 int ret = 0;
3287 struct megasas_cmd *cmd;
3288 struct megasas_dcmd_frame *dcmd;
3289 struct megasas_ctrl_info *ci;
3290 dma_addr_t ci_h = 0;
3291
3292 cmd = megasas_get_cmd(instance);
3293
3294 if (!cmd) {
3295 printk(KERN_DEBUG "megasas: Failed to get a free cmd\n");
3296 return -ENOMEM;
3297 }
3298
3299 dcmd = &cmd->frame->dcmd;
3300
3301 ci = pci_alloc_consistent(instance->pdev,
3302 sizeof(struct megasas_ctrl_info), &ci_h);
3303
3304 if (!ci) {
3305 printk(KERN_DEBUG "Failed to alloc mem for ctrl info\n");
3306 megasas_return_cmd(instance, cmd);
3307 return -ENOMEM;
3308 }
3309
3310 memset(ci, 0, sizeof(*ci));
3311 memset(dcmd->mbox.b, 0, MFI_MBOX_SIZE);
3312
3313 dcmd->cmd = MFI_CMD_DCMD;
3314 dcmd->cmd_status = 0xFF;
3315 dcmd->sge_count = 1;
3316 dcmd->flags = MFI_FRAME_DIR_READ;
3317 dcmd->timeout = 0;
3318 dcmd->pad_0 = 0;
3319 dcmd->data_xfer_len = sizeof(struct megasas_ctrl_info);
3320 dcmd->opcode = MR_DCMD_CTRL_GET_INFO;
3321 dcmd->sgl.sge32[0].phys_addr = ci_h;
3322 dcmd->sgl.sge32[0].length = sizeof(struct megasas_ctrl_info);
3323
3324 if (!megasas_issue_polled(instance, cmd)) {
3325 ret = 0;
3326 memcpy(ctrl_info, ci, sizeof(struct megasas_ctrl_info));
3327 } else {
3328 ret = -1;
3329 }
3330
3331 pci_free_consistent(instance->pdev, sizeof(struct megasas_ctrl_info),
3332 ci, ci_h);
3333
3334 megasas_return_cmd(instance, cmd);
3335 return ret;
3336 }
3337
3338 /**
3339 * megasas_issue_init_mfi - Initializes the FW
3340 * @instance: Adapter soft state
3341 *
3342 * Issues the INIT MFI cmd
3343 */
3344 static int
3345 megasas_issue_init_mfi(struct megasas_instance *instance)
3346 {
3347 u32 context;
3348
3349 struct megasas_cmd *cmd;
3350
3351 struct megasas_init_frame *init_frame;
3352 struct megasas_init_queue_info *initq_info;
3353 dma_addr_t init_frame_h;
3354 dma_addr_t initq_info_h;
3355
3356 /*
3357 * Prepare a init frame. Note the init frame points to queue info
3358 * structure. Each frame has SGL allocated after first 64 bytes. For
3359 * this frame - since we don't need any SGL - we use SGL's space as
3360 * queue info structure
3361 *
3362 * We will not get a NULL command below. We just created the pool.
3363 */
3364 cmd = megasas_get_cmd(instance);
3365
3366 init_frame = (struct megasas_init_frame *)cmd->frame;
3367 initq_info = (struct megasas_init_queue_info *)
3368 ((unsigned long)init_frame + 64);
3369
3370 init_frame_h = cmd->frame_phys_addr;
3371 initq_info_h = init_frame_h + 64;
3372
3373 context = init_frame->context;
3374 memset(init_frame, 0, MEGAMFI_FRAME_SIZE);
3375 memset(initq_info, 0, sizeof(struct megasas_init_queue_info));
3376 init_frame->context = context;
3377
3378 initq_info->reply_queue_entries = instance->max_fw_cmds + 1;
3379 initq_info->reply_queue_start_phys_addr_lo = instance->reply_queue_h;
3380
3381 initq_info->producer_index_phys_addr_lo = instance->producer_h;
3382 initq_info->consumer_index_phys_addr_lo = instance->consumer_h;
3383
3384 init_frame->cmd = MFI_CMD_INIT;
3385 init_frame->cmd_status = 0xFF;
3386 init_frame->queue_info_new_phys_addr_lo = initq_info_h;
3387
3388 init_frame->data_xfer_len = sizeof(struct megasas_init_queue_info);
3389
3390 /*
3391 * disable the intr before firing the init frame to FW
3392 */
3393 instance->instancet->disable_intr(instance);
3394
3395 /*
3396 * Issue the init frame in polled mode
3397 */
3398
3399 if (megasas_issue_polled(instance, cmd)) {
3400 printk(KERN_ERR "megasas: Failed to init firmware\n");
3401 megasas_return_cmd(instance, cmd);
3402 goto fail_fw_init;
3403 }
3404
3405 megasas_return_cmd(instance, cmd);
3406
3407 return 0;
3408
3409 fail_fw_init:
3410 return -EINVAL;
3411 }
3412
3413 static u32
3414 megasas_init_adapter_mfi(struct megasas_instance *instance)
3415 {
3416 struct megasas_register_set __iomem *reg_set;
3417 u32 context_sz;
3418 u32 reply_q_sz;
3419
3420 reg_set = instance->reg_set;
3421
3422 /*
3423 * Get various operational parameters from status register
3424 */
3425 instance->max_fw_cmds = instance->instancet->read_fw_status_reg(reg_set) & 0x00FFFF;
3426 /*
3427 * Reduce the max supported cmds by 1. This is to ensure that the
3428 * reply_q_sz (1 more than the max cmd that driver may send)
3429 * does not exceed max cmds that the FW can support
3430 */
3431 instance->max_fw_cmds = instance->max_fw_cmds-1;
3432 instance->max_mfi_cmds = instance->max_fw_cmds;
3433 instance->max_num_sge = (instance->instancet->read_fw_status_reg(reg_set) & 0xFF0000) >>
3434 0x10;
3435 /*
3436 * Create a pool of commands
3437 */
3438 if (megasas_alloc_cmds(instance))
3439 goto fail_alloc_cmds;
3440
3441 /*
3442 * Allocate memory for reply queue. Length of reply queue should
3443 * be _one_ more than the maximum commands handled by the firmware.
3444 *
3445 * Note: When FW completes commands, it places corresponding contex
3446 * values in this circular reply queue. This circular queue is a fairly
3447 * typical producer-consumer queue. FW is the producer (of completed
3448 * commands) and the driver is the consumer.
3449 */
3450 context_sz = sizeof(u32);
3451 reply_q_sz = context_sz * (instance->max_fw_cmds + 1);
3452
3453 instance->reply_queue = pci_alloc_consistent(instance->pdev,
3454 reply_q_sz,
3455 &instance->reply_queue_h);
3456
3457 if (!instance->reply_queue) {
3458 printk(KERN_DEBUG "megasas: Out of DMA mem for reply queue\n");
3459 goto fail_reply_queue;
3460 }
3461
3462 if (megasas_issue_init_mfi(instance))
3463 goto fail_fw_init;
3464
3465 instance->fw_support_ieee = 0;
3466 instance->fw_support_ieee =
3467 (instance->instancet->read_fw_status_reg(reg_set) &
3468 0x04000000);
3469
3470 printk(KERN_NOTICE "megasas_init_mfi: fw_support_ieee=%d",
3471 instance->fw_support_ieee);
3472
3473 if (instance->fw_support_ieee)
3474 instance->flag_ieee = 1;
3475
3476 return 0;
3477
3478 fail_fw_init:
3479
3480 pci_free_consistent(instance->pdev, reply_q_sz,
3481 instance->reply_queue, instance->reply_queue_h);
3482 fail_reply_queue:
3483 megasas_free_cmds(instance);
3484
3485 fail_alloc_cmds:
3486 return 1;
3487 }
3488
3489 /**
3490 * megasas_init_fw - Initializes the FW
3491 * @instance: Adapter soft state
3492 *
3493 * This is the main function for initializing firmware
3494 */
3495
3496 static int megasas_init_fw(struct megasas_instance *instance)
3497 {
3498 u32 max_sectors_1;
3499 u32 max_sectors_2;
3500 u32 tmp_sectors, msix_enable, scratch_pad_2;
3501 struct megasas_register_set __iomem *reg_set;
3502 struct megasas_ctrl_info *ctrl_info;
3503 unsigned long bar_list;
3504 int i, loop, fw_msix_count = 0;
3505
3506 /* Find first memory bar */
3507 bar_list = pci_select_bars(instance->pdev, IORESOURCE_MEM);
3508 instance->bar = find_first_bit(&bar_list, sizeof(unsigned long));
3509 instance->base_addr = pci_resource_start(instance->pdev, instance->bar);
3510 if (pci_request_selected_regions(instance->pdev, instance->bar,
3511 "megasas: LSI")) {
3512 printk(KERN_DEBUG "megasas: IO memory region busy!\n");
3513 return -EBUSY;
3514 }
3515
3516 instance->reg_set = ioremap_nocache(instance->base_addr, 8192);
3517
3518 if (!instance->reg_set) {
3519 printk(KERN_DEBUG "megasas: Failed to map IO mem\n");
3520 goto fail_ioremap;
3521 }
3522
3523 reg_set = instance->reg_set;
3524
3525 switch (instance->pdev->device) {
3526 case PCI_DEVICE_ID_LSI_FUSION:
3527 case PCI_DEVICE_ID_LSI_INVADER:
3528 case PCI_DEVICE_ID_LSI_FURY:
3529 instance->instancet = &megasas_instance_template_fusion;
3530 break;
3531 case PCI_DEVICE_ID_LSI_SAS1078R:
3532 case PCI_DEVICE_ID_LSI_SAS1078DE:
3533 instance->instancet = &megasas_instance_template_ppc;
3534 break;
3535 case PCI_DEVICE_ID_LSI_SAS1078GEN2:
3536 case PCI_DEVICE_ID_LSI_SAS0079GEN2:
3537 instance->instancet = &megasas_instance_template_gen2;
3538 break;
3539 case PCI_DEVICE_ID_LSI_SAS0073SKINNY:
3540 case PCI_DEVICE_ID_LSI_SAS0071SKINNY:
3541 instance->instancet = &megasas_instance_template_skinny;
3542 break;
3543 case PCI_DEVICE_ID_LSI_SAS1064R:
3544 case PCI_DEVICE_ID_DELL_PERC5:
3545 default:
3546 instance->instancet = &megasas_instance_template_xscale;
3547 break;
3548 }
3549
3550 /*
3551 * We expect the FW state to be READY
3552 */
3553 if (megasas_transition_to_ready(instance, 0))
3554 goto fail_ready_state;
3555
3556 /*
3557 * MSI-X host index 0 is common for all adapter.
3558 * It is used for all MPT based Adapters.
3559 */
3560 instance->reply_post_host_index_addr[0] =
3561 (u32 *)((u8 *)instance->reg_set +
3562 MPI2_REPLY_POST_HOST_INDEX_OFFSET);
3563
3564 /* Check if MSI-X is supported while in ready state */
3565 msix_enable = (instance->instancet->read_fw_status_reg(reg_set) &
3566 0x4000000) >> 0x1a;
3567 if (msix_enable && !msix_disable) {
3568 scratch_pad_2 = readl
3569 (&instance->reg_set->outbound_scratch_pad_2);
3570 /* Check max MSI-X vectors */
3571 if (instance->pdev->device == PCI_DEVICE_ID_LSI_FUSION) {
3572 instance->msix_vectors = (scratch_pad_2
3573 & MR_MAX_REPLY_QUEUES_OFFSET) + 1;
3574 fw_msix_count = instance->msix_vectors;
3575 if (msix_vectors)
3576 instance->msix_vectors =
3577 min(msix_vectors,
3578 instance->msix_vectors);
3579 } else if ((instance->pdev->device == PCI_DEVICE_ID_LSI_INVADER)
3580 || (instance->pdev->device == PCI_DEVICE_ID_LSI_FURY)) {
3581 /* Invader/Fury supports more than 8 MSI-X */
3582 instance->msix_vectors = ((scratch_pad_2
3583 & MR_MAX_REPLY_QUEUES_EXT_OFFSET)
3584 >> MR_MAX_REPLY_QUEUES_EXT_OFFSET_SHIFT) + 1;
3585 fw_msix_count = instance->msix_vectors;
3586 /* Save 1-15 reply post index address to local memory
3587 * Index 0 is already saved from reg offset
3588 * MPI2_REPLY_POST_HOST_INDEX_OFFSET
3589 */
3590 for (loop = 1; loop < MR_MAX_MSIX_REG_ARRAY; loop++) {
3591 instance->reply_post_host_index_addr[loop] =
3592 (u32 *)((u8 *)instance->reg_set +
3593 MPI2_SUP_REPLY_POST_HOST_INDEX_OFFSET
3594 + (loop * 0x10));
3595 }
3596 if (msix_vectors)
3597 instance->msix_vectors = min(msix_vectors,
3598 instance->msix_vectors);
3599 } else
3600 instance->msix_vectors = 1;
3601 /* Don't bother allocating more MSI-X vectors than cpus */
3602 instance->msix_vectors = min(instance->msix_vectors,
3603 (unsigned int)num_online_cpus());
3604 for (i = 0; i < instance->msix_vectors; i++)
3605 instance->msixentry[i].entry = i;
3606 i = pci_enable_msix(instance->pdev, instance->msixentry,
3607 instance->msix_vectors);
3608 if (i >= 0) {
3609 if (i) {
3610 if (!pci_enable_msix(instance->pdev,
3611 instance->msixentry, i))
3612 instance->msix_vectors = i;
3613 else
3614 instance->msix_vectors = 0;
3615 }
3616 } else
3617 instance->msix_vectors = 0;
3618
3619 dev_info(&instance->pdev->dev, "[scsi%d]: FW supports"
3620 "<%d> MSIX vector,Online CPUs: <%d>,"
3621 "Current MSIX <%d>\n", instance->host->host_no,
3622 fw_msix_count, (unsigned int)num_online_cpus(),
3623 instance->msix_vectors);
3624 }
3625
3626 /* Get operational params, sge flags, send init cmd to controller */
3627 if (instance->instancet->init_adapter(instance))
3628 goto fail_init_adapter;
3629
3630 printk(KERN_ERR "megasas: INIT adapter done\n");
3631
3632 /** for passthrough
3633 * the following function will get the PD LIST.
3634 */
3635
3636 memset(instance->pd_list, 0 ,
3637 (MEGASAS_MAX_PD * sizeof(struct megasas_pd_list)));
3638 megasas_get_pd_list(instance);
3639
3640 memset(instance->ld_ids, 0xff, MEGASAS_MAX_LD_IDS);
3641 megasas_get_ld_list(instance);
3642
3643 ctrl_info = kmalloc(sizeof(struct megasas_ctrl_info), GFP_KERNEL);
3644
3645 /*
3646 * Compute the max allowed sectors per IO: The controller info has two
3647 * limits on max sectors. Driver should use the minimum of these two.
3648 *
3649 * 1 << stripe_sz_ops.min = max sectors per strip
3650 *
3651 * Note that older firmwares ( < FW ver 30) didn't report information
3652 * to calculate max_sectors_1. So the number ended up as zero always.
3653 */
3654 tmp_sectors = 0;
3655 if (ctrl_info && !megasas_get_ctrl_info(instance, ctrl_info)) {
3656
3657 max_sectors_1 = (1 << ctrl_info->stripe_sz_ops.min) *
3658 ctrl_info->max_strips_per_io;
3659 max_sectors_2 = ctrl_info->max_request_size;
3660
3661 tmp_sectors = min_t(u32, max_sectors_1 , max_sectors_2);
3662
3663 /*Check whether controller is iMR or MR */
3664 if (ctrl_info->memory_size) {
3665 instance->is_imr = 0;
3666 dev_info(&instance->pdev->dev, "Controller type: MR,"
3667 "Memory size is: %dMB\n",
3668 ctrl_info->memory_size);
3669 } else {
3670 instance->is_imr = 1;
3671 dev_info(&instance->pdev->dev,
3672 "Controller type: iMR\n");
3673 }
3674 instance->disableOnlineCtrlReset =
3675 ctrl_info->properties.OnOffProperties.disableOnlineCtrlReset;
3676 instance->UnevenSpanSupport =
3677 ctrl_info->adapterOperations2.supportUnevenSpans;
3678 if (instance->UnevenSpanSupport) {
3679 struct fusion_context *fusion = instance->ctrl_context;
3680 dev_info(&instance->pdev->dev, "FW supports: "
3681 "UnevenSpanSupport=%x\n", instance->UnevenSpanSupport);
3682 if (MR_ValidateMapInfo(instance))
3683 fusion->fast_path_io = 1;
3684 else
3685 fusion->fast_path_io = 0;
3686
3687 }
3688 }
3689
3690 instance->max_sectors_per_req = instance->max_num_sge *
3691 PAGE_SIZE / 512;
3692 if (tmp_sectors && (instance->max_sectors_per_req > tmp_sectors))
3693 instance->max_sectors_per_req = tmp_sectors;
3694
3695 kfree(ctrl_info);
3696
3697 /* Check for valid throttlequeuedepth module parameter */
3698 if (instance->is_imr) {
3699 if (throttlequeuedepth > (instance->max_fw_cmds -
3700 MEGASAS_SKINNY_INT_CMDS))
3701 instance->throttlequeuedepth =
3702 MEGASAS_THROTTLE_QUEUE_DEPTH;
3703 else
3704 instance->throttlequeuedepth = throttlequeuedepth;
3705 } else {
3706 if (throttlequeuedepth > (instance->max_fw_cmds -
3707 MEGASAS_INT_CMDS))
3708 instance->throttlequeuedepth =
3709 MEGASAS_THROTTLE_QUEUE_DEPTH;
3710 else
3711 instance->throttlequeuedepth = throttlequeuedepth;
3712 }
3713
3714 /*
3715 * Setup tasklet for cmd completion
3716 */
3717
3718 tasklet_init(&instance->isr_tasklet, instance->instancet->tasklet,
3719 (unsigned long)instance);
3720
3721 return 0;
3722
3723 fail_init_adapter:
3724 fail_ready_state:
3725 iounmap(instance->reg_set);
3726
3727 fail_ioremap:
3728 pci_release_selected_regions(instance->pdev, instance->bar);
3729
3730 return -EINVAL;
3731 }
3732
3733 /**
3734 * megasas_release_mfi - Reverses the FW initialization
3735 * @intance: Adapter soft state
3736 */
3737 static void megasas_release_mfi(struct megasas_instance *instance)
3738 {
3739 u32 reply_q_sz = sizeof(u32) *(instance->max_mfi_cmds + 1);
3740
3741 if (instance->reply_queue)
3742 pci_free_consistent(instance->pdev, reply_q_sz,
3743 instance->reply_queue, instance->reply_queue_h);
3744
3745 megasas_free_cmds(instance);
3746
3747 iounmap(instance->reg_set);
3748
3749 pci_release_selected_regions(instance->pdev, instance->bar);
3750 }
3751
3752 /**
3753 * megasas_get_seq_num - Gets latest event sequence numbers
3754 * @instance: Adapter soft state
3755 * @eli: FW event log sequence numbers information
3756 *
3757 * FW maintains a log of all events in a non-volatile area. Upper layers would
3758 * usually find out the latest sequence number of the events, the seq number at
3759 * the boot etc. They would "read" all the events below the latest seq number
3760 * by issuing a direct fw cmd (DCMD). For the future events (beyond latest seq
3761 * number), they would subsribe to AEN (asynchronous event notification) and
3762 * wait for the events to happen.
3763 */
3764 static int
3765 megasas_get_seq_num(struct megasas_instance *instance,
3766 struct megasas_evt_log_info *eli)
3767 {
3768 struct megasas_cmd *cmd;
3769 struct megasas_dcmd_frame *dcmd;
3770 struct megasas_evt_log_info *el_info;
3771 dma_addr_t el_info_h = 0;
3772
3773 cmd = megasas_get_cmd(instance);
3774
3775 if (!cmd) {
3776 return -ENOMEM;
3777 }
3778
3779 dcmd = &cmd->frame->dcmd;
3780 el_info = pci_alloc_consistent(instance->pdev,
3781 sizeof(struct megasas_evt_log_info),
3782 &el_info_h);
3783
3784 if (!el_info) {
3785 megasas_return_cmd(instance, cmd);
3786 return -ENOMEM;
3787 }
3788
3789 memset(el_info, 0, sizeof(*el_info));
3790 memset(dcmd->mbox.b, 0, MFI_MBOX_SIZE);
3791
3792 dcmd->cmd = MFI_CMD_DCMD;
3793 dcmd->cmd_status = 0x0;
3794 dcmd->sge_count = 1;
3795 dcmd->flags = MFI_FRAME_DIR_READ;
3796 dcmd->timeout = 0;
3797 dcmd->pad_0 = 0;
3798 dcmd->data_xfer_len = sizeof(struct megasas_evt_log_info);
3799 dcmd->opcode = MR_DCMD_CTRL_EVENT_GET_INFO;
3800 dcmd->sgl.sge32[0].phys_addr = el_info_h;
3801 dcmd->sgl.sge32[0].length = sizeof(struct megasas_evt_log_info);
3802
3803 megasas_issue_blocked_cmd(instance, cmd);
3804
3805 /*
3806 * Copy the data back into callers buffer
3807 */
3808 memcpy(eli, el_info, sizeof(struct megasas_evt_log_info));
3809
3810 pci_free_consistent(instance->pdev, sizeof(struct megasas_evt_log_info),
3811 el_info, el_info_h);
3812
3813 megasas_return_cmd(instance, cmd);
3814
3815 return 0;
3816 }
3817
3818 /**
3819 * megasas_register_aen - Registers for asynchronous event notification
3820 * @instance: Adapter soft state
3821 * @seq_num: The starting sequence number
3822 * @class_locale: Class of the event
3823 *
3824 * This function subscribes for AEN for events beyond the @seq_num. It requests
3825 * to be notified if and only if the event is of type @class_locale
3826 */
3827 static int
3828 megasas_register_aen(struct megasas_instance *instance, u32 seq_num,
3829 u32 class_locale_word)
3830 {
3831 int ret_val;
3832 struct megasas_cmd *cmd;
3833 struct megasas_dcmd_frame *dcmd;
3834 union megasas_evt_class_locale curr_aen;
3835 union megasas_evt_class_locale prev_aen;
3836
3837 /*
3838 * If there an AEN pending already (aen_cmd), check if the
3839 * class_locale of that pending AEN is inclusive of the new
3840 * AEN request we currently have. If it is, then we don't have
3841 * to do anything. In other words, whichever events the current
3842 * AEN request is subscribing to, have already been subscribed
3843 * to.
3844 *
3845 * If the old_cmd is _not_ inclusive, then we have to abort
3846 * that command, form a class_locale that is superset of both
3847 * old and current and re-issue to the FW
3848 */
3849
3850 curr_aen.word = class_locale_word;
3851
3852 if (instance->aen_cmd) {
3853
3854 prev_aen.word = instance->aen_cmd->frame->dcmd.mbox.w[1];
3855
3856 /*
3857 * A class whose enum value is smaller is inclusive of all
3858 * higher values. If a PROGRESS (= -1) was previously
3859 * registered, then a new registration requests for higher
3860 * classes need not be sent to FW. They are automatically
3861 * included.
3862 *
3863 * Locale numbers don't have such hierarchy. They are bitmap
3864 * values
3865 */
3866 if ((prev_aen.members.class <= curr_aen.members.class) &&
3867 !((prev_aen.members.locale & curr_aen.members.locale) ^
3868 curr_aen.members.locale)) {
3869 /*
3870 * Previously issued event registration includes
3871 * current request. Nothing to do.
3872 */
3873 return 0;
3874 } else {
3875 curr_aen.members.locale |= prev_aen.members.locale;
3876
3877 if (prev_aen.members.class < curr_aen.members.class)
3878 curr_aen.members.class = prev_aen.members.class;
3879
3880 instance->aen_cmd->abort_aen = 1;
3881 ret_val = megasas_issue_blocked_abort_cmd(instance,
3882 instance->
3883 aen_cmd);
3884
3885 if (ret_val) {
3886 printk(KERN_DEBUG "megasas: Failed to abort "
3887 "previous AEN command\n");
3888 return ret_val;
3889 }
3890 }
3891 }
3892
3893 cmd = megasas_get_cmd(instance);
3894
3895 if (!cmd)
3896 return -ENOMEM;
3897
3898 dcmd = &cmd->frame->dcmd;
3899
3900 memset(instance->evt_detail, 0, sizeof(struct megasas_evt_detail));
3901
3902 /*
3903 * Prepare DCMD for aen registration
3904 */
3905 memset(dcmd->mbox.b, 0, MFI_MBOX_SIZE);
3906
3907 dcmd->cmd = MFI_CMD_DCMD;
3908 dcmd->cmd_status = 0x0;
3909 dcmd->sge_count = 1;
3910 dcmd->flags = MFI_FRAME_DIR_READ;
3911 dcmd->timeout = 0;
3912 dcmd->pad_0 = 0;
3913 instance->last_seq_num = seq_num;
3914 dcmd->data_xfer_len = sizeof(struct megasas_evt_detail);
3915 dcmd->opcode = MR_DCMD_CTRL_EVENT_WAIT;
3916 dcmd->mbox.w[0] = seq_num;
3917 dcmd->mbox.w[1] = curr_aen.word;
3918 dcmd->sgl.sge32[0].phys_addr = (u32) instance->evt_detail_h;
3919 dcmd->sgl.sge32[0].length = sizeof(struct megasas_evt_detail);
3920
3921 if (instance->aen_cmd != NULL) {
3922 megasas_return_cmd(instance, cmd);
3923 return 0;
3924 }
3925
3926 /*
3927 * Store reference to the cmd used to register for AEN. When an
3928 * application wants us to register for AEN, we have to abort this
3929 * cmd and re-register with a new EVENT LOCALE supplied by that app
3930 */
3931 instance->aen_cmd = cmd;
3932
3933 /*
3934 * Issue the aen registration frame
3935 */
3936 instance->instancet->issue_dcmd(instance, cmd);
3937
3938 return 0;
3939 }
3940
3941 /**
3942 * megasas_start_aen - Subscribes to AEN during driver load time
3943 * @instance: Adapter soft state
3944 */
3945 static int megasas_start_aen(struct megasas_instance *instance)
3946 {
3947 struct megasas_evt_log_info eli;
3948 union megasas_evt_class_locale class_locale;
3949
3950 /*
3951 * Get the latest sequence number from FW
3952 */
3953 memset(&eli, 0, sizeof(eli));
3954
3955 if (megasas_get_seq_num(instance, &eli))
3956 return -1;
3957
3958 /*
3959 * Register AEN with FW for latest sequence number plus 1
3960 */
3961 class_locale.members.reserved = 0;
3962 class_locale.members.locale = MR_EVT_LOCALE_ALL;
3963 class_locale.members.class = MR_EVT_CLASS_DEBUG;
3964
3965 return megasas_register_aen(instance, eli.newest_seq_num + 1,
3966 class_locale.word);
3967 }
3968
3969 /**
3970 * megasas_io_attach - Attaches this driver to SCSI mid-layer
3971 * @instance: Adapter soft state
3972 */
3973 static int megasas_io_attach(struct megasas_instance *instance)
3974 {
3975 struct Scsi_Host *host = instance->host;
3976
3977 /*
3978 * Export parameters required by SCSI mid-layer
3979 */
3980 host->irq = instance->pdev->irq;
3981 host->unique_id = instance->unique_id;
3982 if (instance->is_imr) {
3983 host->can_queue =
3984 instance->max_fw_cmds - MEGASAS_SKINNY_INT_CMDS;
3985 } else
3986 host->can_queue =
3987 instance->max_fw_cmds - MEGASAS_INT_CMDS;
3988 host->this_id = instance->init_id;
3989 host->sg_tablesize = instance->max_num_sge;
3990
3991 if (instance->fw_support_ieee)
3992 instance->max_sectors_per_req = MEGASAS_MAX_SECTORS_IEEE;
3993
3994 /*
3995 * Check if the module parameter value for max_sectors can be used
3996 */
3997 if (max_sectors && max_sectors < instance->max_sectors_per_req)
3998 instance->max_sectors_per_req = max_sectors;
3999 else {
4000 if (max_sectors) {
4001 if (((instance->pdev->device ==
4002 PCI_DEVICE_ID_LSI_SAS1078GEN2) ||
4003 (instance->pdev->device ==
4004 PCI_DEVICE_ID_LSI_SAS0079GEN2)) &&
4005 (max_sectors <= MEGASAS_MAX_SECTORS)) {
4006 instance->max_sectors_per_req = max_sectors;
4007 } else {
4008 printk(KERN_INFO "megasas: max_sectors should be > 0"
4009 "and <= %d (or < 1MB for GEN2 controller)\n",
4010 instance->max_sectors_per_req);
4011 }
4012 }
4013 }
4014
4015 host->max_sectors = instance->max_sectors_per_req;
4016 host->cmd_per_lun = MEGASAS_DEFAULT_CMD_PER_LUN;
4017 host->max_channel = MEGASAS_MAX_CHANNELS - 1;
4018 host->max_id = MEGASAS_MAX_DEV_PER_CHANNEL;
4019 host->max_lun = MEGASAS_MAX_LUN;
4020 host->max_cmd_len = 16;
4021
4022 /* Fusion only supports host reset */
4023 if ((instance->pdev->device == PCI_DEVICE_ID_LSI_FUSION) ||
4024 (instance->pdev->device == PCI_DEVICE_ID_LSI_INVADER) ||
4025 (instance->pdev->device == PCI_DEVICE_ID_LSI_FURY)) {
4026 host->hostt->eh_device_reset_handler = NULL;
4027 host->hostt->eh_bus_reset_handler = NULL;
4028 }
4029
4030 /*
4031 * Notify the mid-layer about the new controller
4032 */
4033 if (scsi_add_host(host, &instance->pdev->dev)) {
4034 printk(KERN_DEBUG "megasas: scsi_add_host failed\n");
4035 return -ENODEV;
4036 }
4037
4038 /*
4039 * Trigger SCSI to scan our drives
4040 */
4041 scsi_scan_host(host);
4042 return 0;
4043 }
4044
4045 static int
4046 megasas_set_dma_mask(struct pci_dev *pdev)
4047 {
4048 /*
4049 * All our contollers are capable of performing 64-bit DMA
4050 */
4051 if (IS_DMA64) {
4052 if (pci_set_dma_mask(pdev, DMA_BIT_MASK(64)) != 0) {
4053
4054 if (pci_set_dma_mask(pdev, DMA_BIT_MASK(32)) != 0)
4055 goto fail_set_dma_mask;
4056 }
4057 } else {
4058 if (pci_set_dma_mask(pdev, DMA_BIT_MASK(32)) != 0)
4059 goto fail_set_dma_mask;
4060 }
4061 return 0;
4062
4063 fail_set_dma_mask:
4064 return 1;
4065 }
4066
4067 /**
4068 * megasas_probe_one - PCI hotplug entry point
4069 * @pdev: PCI device structure
4070 * @id: PCI ids of supported hotplugged adapter
4071 */
4072 static int megasas_probe_one(struct pci_dev *pdev,
4073 const struct pci_device_id *id)
4074 {
4075 int rval, pos, i, j;
4076 struct Scsi_Host *host;
4077 struct megasas_instance *instance;
4078 u16 control = 0;
4079
4080 /* Reset MSI-X in the kdump kernel */
4081 if (reset_devices) {
4082 pos = pci_find_capability(pdev, PCI_CAP_ID_MSIX);
4083 if (pos) {
4084 pci_read_config_word(pdev, pos + PCI_MSIX_FLAGS,
4085 &control);
4086 if (control & PCI_MSIX_FLAGS_ENABLE) {
4087 dev_info(&pdev->dev, "resetting MSI-X\n");
4088 pci_write_config_word(pdev,
4089 pos + PCI_MSIX_FLAGS,
4090 control &
4091 ~PCI_MSIX_FLAGS_ENABLE);
4092 }
4093 }
4094 }
4095
4096 /*
4097 * Announce PCI information
4098 */
4099 printk(KERN_INFO "megasas: %#4.04x:%#4.04x:%#4.04x:%#4.04x: ",
4100 pdev->vendor, pdev->device, pdev->subsystem_vendor,
4101 pdev->subsystem_device);
4102
4103 printk("bus %d:slot %d:func %d\n",
4104 pdev->bus->number, PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn));
4105
4106 /*
4107 * PCI prepping: enable device set bus mastering and dma mask
4108 */
4109 rval = pci_enable_device_mem(pdev);
4110
4111 if (rval) {
4112 return rval;
4113 }
4114
4115 pci_set_master(pdev);
4116
4117 if (megasas_set_dma_mask(pdev))
4118 goto fail_set_dma_mask;
4119
4120 host = scsi_host_alloc(&megasas_template,
4121 sizeof(struct megasas_instance));
4122
4123 if (!host) {
4124 printk(KERN_DEBUG "megasas: scsi_host_alloc failed\n");
4125 goto fail_alloc_instance;
4126 }
4127
4128 instance = (struct megasas_instance *)host->hostdata;
4129 memset(instance, 0, sizeof(*instance));
4130 atomic_set( &instance->fw_reset_no_pci_access, 0 );
4131 instance->pdev = pdev;
4132
4133 switch (instance->pdev->device) {
4134 case PCI_DEVICE_ID_LSI_FUSION:
4135 case PCI_DEVICE_ID_LSI_INVADER:
4136 case PCI_DEVICE_ID_LSI_FURY:
4137 {
4138 struct fusion_context *fusion;
4139
4140 instance->ctrl_context =
4141 kzalloc(sizeof(struct fusion_context), GFP_KERNEL);
4142 if (!instance->ctrl_context) {
4143 printk(KERN_DEBUG "megasas: Failed to allocate "
4144 "memory for Fusion context info\n");
4145 goto fail_alloc_dma_buf;
4146 }
4147 fusion = instance->ctrl_context;
4148 INIT_LIST_HEAD(&fusion->cmd_pool);
4149 spin_lock_init(&fusion->cmd_pool_lock);
4150 }
4151 break;
4152 default: /* For all other supported controllers */
4153
4154 instance->producer =
4155 pci_alloc_consistent(pdev, sizeof(u32),
4156 &instance->producer_h);
4157 instance->consumer =
4158 pci_alloc_consistent(pdev, sizeof(u32),
4159 &instance->consumer_h);
4160
4161 if (!instance->producer || !instance->consumer) {
4162 printk(KERN_DEBUG "megasas: Failed to allocate"
4163 "memory for producer, consumer\n");
4164 goto fail_alloc_dma_buf;
4165 }
4166
4167 *instance->producer = 0;
4168 *instance->consumer = 0;
4169 break;
4170 }
4171
4172 megasas_poll_wait_aen = 0;
4173 instance->flag_ieee = 0;
4174 instance->ev = NULL;
4175 instance->issuepend_done = 1;
4176 instance->adprecovery = MEGASAS_HBA_OPERATIONAL;
4177 instance->is_imr = 0;
4178 megasas_poll_wait_aen = 0;
4179
4180 instance->evt_detail = pci_alloc_consistent(pdev,
4181 sizeof(struct
4182 megasas_evt_detail),
4183 &instance->evt_detail_h);
4184
4185 if (!instance->evt_detail) {
4186 printk(KERN_DEBUG "megasas: Failed to allocate memory for "
4187 "event detail structure\n");
4188 goto fail_alloc_dma_buf;
4189 }
4190
4191 /*
4192 * Initialize locks and queues
4193 */
4194 INIT_LIST_HEAD(&instance->cmd_pool);
4195 INIT_LIST_HEAD(&instance->internal_reset_pending_q);
4196
4197 atomic_set(&instance->fw_outstanding,0);
4198
4199 init_waitqueue_head(&instance->int_cmd_wait_q);
4200 init_waitqueue_head(&instance->abort_cmd_wait_q);
4201
4202 spin_lock_init(&instance->cmd_pool_lock);
4203 spin_lock_init(&instance->hba_lock);
4204 spin_lock_init(&instance->completion_lock);
4205
4206 mutex_init(&instance->aen_mutex);
4207 mutex_init(&instance->reset_mutex);
4208
4209 /*
4210 * Initialize PCI related and misc parameters
4211 */
4212 instance->host = host;
4213 instance->unique_id = pdev->bus->number << 8 | pdev->devfn;
4214 instance->init_id = MEGASAS_DEFAULT_INIT_ID;
4215
4216 if ((instance->pdev->device == PCI_DEVICE_ID_LSI_SAS0073SKINNY) ||
4217 (instance->pdev->device == PCI_DEVICE_ID_LSI_SAS0071SKINNY)) {
4218 instance->flag_ieee = 1;
4219 sema_init(&instance->ioctl_sem, MEGASAS_SKINNY_INT_CMDS);
4220 } else
4221 sema_init(&instance->ioctl_sem, MEGASAS_INT_CMDS);
4222
4223 megasas_dbg_lvl = 0;
4224 instance->flag = 0;
4225 instance->unload = 1;
4226 instance->last_time = 0;
4227 instance->disableOnlineCtrlReset = 1;
4228 instance->UnevenSpanSupport = 0;
4229
4230 if ((instance->pdev->device == PCI_DEVICE_ID_LSI_FUSION) ||
4231 (instance->pdev->device == PCI_DEVICE_ID_LSI_INVADER) ||
4232 (instance->pdev->device == PCI_DEVICE_ID_LSI_FURY))
4233 INIT_WORK(&instance->work_init, megasas_fusion_ocr_wq);
4234 else
4235 INIT_WORK(&instance->work_init, process_fw_state_change_wq);
4236
4237 /*
4238 * Initialize MFI Firmware
4239 */
4240 if (megasas_init_fw(instance))
4241 goto fail_init_mfi;
4242
4243 retry_irq_register:
4244 /*
4245 * Register IRQ
4246 */
4247 if (instance->msix_vectors) {
4248 for (i = 0 ; i < instance->msix_vectors; i++) {
4249 instance->irq_context[i].instance = instance;
4250 instance->irq_context[i].MSIxIndex = i;
4251 if (request_irq(instance->msixentry[i].vector,
4252 instance->instancet->service_isr, 0,
4253 "megasas",
4254 &instance->irq_context[i])) {
4255 printk(KERN_DEBUG "megasas: Failed to "
4256 "register IRQ for vector %d.\n", i);
4257 for (j = 0 ; j < i ; j++)
4258 free_irq(
4259 instance->msixentry[j].vector,
4260 &instance->irq_context[j]);
4261 /* Retry irq register for IO_APIC */
4262 instance->msix_vectors = 0;
4263 goto retry_irq_register;
4264 }
4265 }
4266 } else {
4267 instance->irq_context[0].instance = instance;
4268 instance->irq_context[0].MSIxIndex = 0;
4269 if (request_irq(pdev->irq, instance->instancet->service_isr,
4270 IRQF_SHARED, "megasas",
4271 &instance->irq_context[0])) {
4272 printk(KERN_DEBUG "megasas: Failed to register IRQ\n");
4273 goto fail_irq;
4274 }
4275 }
4276
4277 instance->instancet->enable_intr(instance);
4278
4279 /*
4280 * Store instance in PCI softstate
4281 */
4282 pci_set_drvdata(pdev, instance);
4283
4284 /*
4285 * Add this controller to megasas_mgmt_info structure so that it
4286 * can be exported to management applications
4287 */
4288 megasas_mgmt_info.count++;
4289 megasas_mgmt_info.instance[megasas_mgmt_info.max_index] = instance;
4290 megasas_mgmt_info.max_index++;
4291
4292 /*
4293 * Register with SCSI mid-layer
4294 */
4295 if (megasas_io_attach(instance))
4296 goto fail_io_attach;
4297
4298 instance->unload = 0;
4299
4300 /*
4301 * Initiate AEN (Asynchronous Event Notification)
4302 */
4303 if (megasas_start_aen(instance)) {
4304 printk(KERN_DEBUG "megasas: start aen failed\n");
4305 goto fail_start_aen;
4306 }
4307
4308 return 0;
4309
4310 fail_start_aen:
4311 fail_io_attach:
4312 megasas_mgmt_info.count--;
4313 megasas_mgmt_info.instance[megasas_mgmt_info.max_index] = NULL;
4314 megasas_mgmt_info.max_index--;
4315
4316 pci_set_drvdata(pdev, NULL);
4317 instance->instancet->disable_intr(instance);
4318 if (instance->msix_vectors)
4319 for (i = 0 ; i < instance->msix_vectors; i++)
4320 free_irq(instance->msixentry[i].vector,
4321 &instance->irq_context[i]);
4322 else
4323 free_irq(instance->pdev->irq, &instance->irq_context[0]);
4324 fail_irq:
4325 if ((instance->pdev->device == PCI_DEVICE_ID_LSI_FUSION) ||
4326 (instance->pdev->device == PCI_DEVICE_ID_LSI_INVADER) ||
4327 (instance->pdev->device == PCI_DEVICE_ID_LSI_FURY))
4328 megasas_release_fusion(instance);
4329 else
4330 megasas_release_mfi(instance);
4331 fail_init_mfi:
4332 if (instance->msix_vectors)
4333 pci_disable_msix(instance->pdev);
4334 fail_alloc_dma_buf:
4335 if (instance->evt_detail)
4336 pci_free_consistent(pdev, sizeof(struct megasas_evt_detail),
4337 instance->evt_detail,
4338 instance->evt_detail_h);
4339
4340 if (instance->producer)
4341 pci_free_consistent(pdev, sizeof(u32), instance->producer,
4342 instance->producer_h);
4343 if (instance->consumer)
4344 pci_free_consistent(pdev, sizeof(u32), instance->consumer,
4345 instance->consumer_h);
4346 scsi_host_put(host);
4347
4348 fail_alloc_instance:
4349 fail_set_dma_mask:
4350 pci_disable_device(pdev);
4351
4352 return -ENODEV;
4353 }
4354
4355 /**
4356 * megasas_flush_cache - Requests FW to flush all its caches
4357 * @instance: Adapter soft state
4358 */
4359 static void megasas_flush_cache(struct megasas_instance *instance)
4360 {
4361 struct megasas_cmd *cmd;
4362 struct megasas_dcmd_frame *dcmd;
4363
4364 if (instance->adprecovery == MEGASAS_HW_CRITICAL_ERROR)
4365 return;
4366
4367 cmd = megasas_get_cmd(instance);
4368
4369 if (!cmd)
4370 return;
4371
4372 dcmd = &cmd->frame->dcmd;
4373
4374 memset(dcmd->mbox.b, 0, MFI_MBOX_SIZE);
4375
4376 dcmd->cmd = MFI_CMD_DCMD;
4377 dcmd->cmd_status = 0x0;
4378 dcmd->sge_count = 0;
4379 dcmd->flags = MFI_FRAME_DIR_NONE;
4380 dcmd->timeout = 0;
4381 dcmd->pad_0 = 0;
4382 dcmd->data_xfer_len = 0;
4383 dcmd->opcode = MR_DCMD_CTRL_CACHE_FLUSH;
4384 dcmd->mbox.b[0] = MR_FLUSH_CTRL_CACHE | MR_FLUSH_DISK_CACHE;
4385
4386 megasas_issue_blocked_cmd(instance, cmd);
4387
4388 megasas_return_cmd(instance, cmd);
4389
4390 return;
4391 }
4392
4393 /**
4394 * megasas_shutdown_controller - Instructs FW to shutdown the controller
4395 * @instance: Adapter soft state
4396 * @opcode: Shutdown/Hibernate
4397 */
4398 static void megasas_shutdown_controller(struct megasas_instance *instance,
4399 u32 opcode)
4400 {
4401 struct megasas_cmd *cmd;
4402 struct megasas_dcmd_frame *dcmd;
4403
4404 if (instance->adprecovery == MEGASAS_HW_CRITICAL_ERROR)
4405 return;
4406
4407 cmd = megasas_get_cmd(instance);
4408
4409 if (!cmd)
4410 return;
4411
4412 if (instance->aen_cmd)
4413 megasas_issue_blocked_abort_cmd(instance, instance->aen_cmd);
4414 if (instance->map_update_cmd)
4415 megasas_issue_blocked_abort_cmd(instance,
4416 instance->map_update_cmd);
4417 dcmd = &cmd->frame->dcmd;
4418
4419 memset(dcmd->mbox.b, 0, MFI_MBOX_SIZE);
4420
4421 dcmd->cmd = MFI_CMD_DCMD;
4422 dcmd->cmd_status = 0x0;
4423 dcmd->sge_count = 0;
4424 dcmd->flags = MFI_FRAME_DIR_NONE;
4425 dcmd->timeout = 0;
4426 dcmd->pad_0 = 0;
4427 dcmd->data_xfer_len = 0;
4428 dcmd->opcode = opcode;
4429
4430 megasas_issue_blocked_cmd(instance, cmd);
4431
4432 megasas_return_cmd(instance, cmd);
4433
4434 return;
4435 }
4436
4437 #ifdef CONFIG_PM
4438 /**
4439 * megasas_suspend - driver suspend entry point
4440 * @pdev: PCI device structure
4441 * @state: PCI power state to suspend routine
4442 */
4443 static int
4444 megasas_suspend(struct pci_dev *pdev, pm_message_t state)
4445 {
4446 struct Scsi_Host *host;
4447 struct megasas_instance *instance;
4448 int i;
4449
4450 instance = pci_get_drvdata(pdev);
4451 host = instance->host;
4452 instance->unload = 1;
4453
4454 megasas_flush_cache(instance);
4455 megasas_shutdown_controller(instance, MR_DCMD_HIBERNATE_SHUTDOWN);
4456
4457 /* cancel the delayed work if this work still in queue */
4458 if (instance->ev != NULL) {
4459 struct megasas_aen_event *ev = instance->ev;
4460 cancel_delayed_work_sync(&ev->hotplug_work);
4461 instance->ev = NULL;
4462 }
4463
4464 tasklet_kill(&instance->isr_tasklet);
4465
4466 pci_set_drvdata(instance->pdev, instance);
4467 instance->instancet->disable_intr(instance);
4468
4469 if (instance->msix_vectors)
4470 for (i = 0 ; i < instance->msix_vectors; i++)
4471 free_irq(instance->msixentry[i].vector,
4472 &instance->irq_context[i]);
4473 else
4474 free_irq(instance->pdev->irq, &instance->irq_context[0]);
4475 if (instance->msix_vectors)
4476 pci_disable_msix(instance->pdev);
4477
4478 pci_save_state(pdev);
4479 pci_disable_device(pdev);
4480
4481 pci_set_power_state(pdev, pci_choose_state(pdev, state));
4482
4483 return 0;
4484 }
4485
4486 /**
4487 * megasas_resume- driver resume entry point
4488 * @pdev: PCI device structure
4489 */
4490 static int
4491 megasas_resume(struct pci_dev *pdev)
4492 {
4493 int rval, i, j;
4494 struct Scsi_Host *host;
4495 struct megasas_instance *instance;
4496
4497 instance = pci_get_drvdata(pdev);
4498 host = instance->host;
4499 pci_set_power_state(pdev, PCI_D0);
4500 pci_enable_wake(pdev, PCI_D0, 0);
4501 pci_restore_state(pdev);
4502
4503 /*
4504 * PCI prepping: enable device set bus mastering and dma mask
4505 */
4506 rval = pci_enable_device_mem(pdev);
4507
4508 if (rval) {
4509 printk(KERN_ERR "megasas: Enable device failed\n");
4510 return rval;
4511 }
4512
4513 pci_set_master(pdev);
4514
4515 if (megasas_set_dma_mask(pdev))
4516 goto fail_set_dma_mask;
4517
4518 /*
4519 * Initialize MFI Firmware
4520 */
4521
4522 atomic_set(&instance->fw_outstanding, 0);
4523
4524 /*
4525 * We expect the FW state to be READY
4526 */
4527 if (megasas_transition_to_ready(instance, 0))
4528 goto fail_ready_state;
4529
4530 /* Now re-enable MSI-X */
4531 if (instance->msix_vectors)
4532 pci_enable_msix(instance->pdev, instance->msixentry,
4533 instance->msix_vectors);
4534
4535 switch (instance->pdev->device) {
4536 case PCI_DEVICE_ID_LSI_FUSION:
4537 case PCI_DEVICE_ID_LSI_INVADER:
4538 case PCI_DEVICE_ID_LSI_FURY:
4539 {
4540 megasas_reset_reply_desc(instance);
4541 if (megasas_ioc_init_fusion(instance)) {
4542 megasas_free_cmds(instance);
4543 megasas_free_cmds_fusion(instance);
4544 goto fail_init_mfi;
4545 }
4546 if (!megasas_get_map_info(instance))
4547 megasas_sync_map_info(instance);
4548 }
4549 break;
4550 default:
4551 *instance->producer = 0;
4552 *instance->consumer = 0;
4553 if (megasas_issue_init_mfi(instance))
4554 goto fail_init_mfi;
4555 break;
4556 }
4557
4558 tasklet_init(&instance->isr_tasklet, instance->instancet->tasklet,
4559 (unsigned long)instance);
4560
4561 /*
4562 * Register IRQ
4563 */
4564 if (instance->msix_vectors) {
4565 for (i = 0 ; i < instance->msix_vectors; i++) {
4566 instance->irq_context[i].instance = instance;
4567 instance->irq_context[i].MSIxIndex = i;
4568 if (request_irq(instance->msixentry[i].vector,
4569 instance->instancet->service_isr, 0,
4570 "megasas",
4571 &instance->irq_context[i])) {
4572 printk(KERN_DEBUG "megasas: Failed to "
4573 "register IRQ for vector %d.\n", i);
4574 for (j = 0 ; j < i ; j++)
4575 free_irq(
4576 instance->msixentry[j].vector,
4577 &instance->irq_context[j]);
4578 goto fail_irq;
4579 }
4580 }
4581 } else {
4582 instance->irq_context[0].instance = instance;
4583 instance->irq_context[0].MSIxIndex = 0;
4584 if (request_irq(pdev->irq, instance->instancet->service_isr,
4585 IRQF_SHARED, "megasas",
4586 &instance->irq_context[0])) {
4587 printk(KERN_DEBUG "megasas: Failed to register IRQ\n");
4588 goto fail_irq;
4589 }
4590 }
4591
4592 instance->instancet->enable_intr(instance);
4593 instance->unload = 0;
4594
4595 /*
4596 * Initiate AEN (Asynchronous Event Notification)
4597 */
4598 if (megasas_start_aen(instance))
4599 printk(KERN_ERR "megasas: Start AEN failed\n");
4600
4601 return 0;
4602
4603 fail_irq:
4604 fail_init_mfi:
4605 if (instance->evt_detail)
4606 pci_free_consistent(pdev, sizeof(struct megasas_evt_detail),
4607 instance->evt_detail,
4608 instance->evt_detail_h);
4609
4610 if (instance->producer)
4611 pci_free_consistent(pdev, sizeof(u32), instance->producer,
4612 instance->producer_h);
4613 if (instance->consumer)
4614 pci_free_consistent(pdev, sizeof(u32), instance->consumer,
4615 instance->consumer_h);
4616 scsi_host_put(host);
4617
4618 fail_set_dma_mask:
4619 fail_ready_state:
4620
4621 pci_disable_device(pdev);
4622
4623 return -ENODEV;
4624 }
4625 #else
4626 #define megasas_suspend NULL
4627 #define megasas_resume NULL
4628 #endif
4629
4630 /**
4631 * megasas_detach_one - PCI hot"un"plug entry point
4632 * @pdev: PCI device structure
4633 */
4634 static void megasas_detach_one(struct pci_dev *pdev)
4635 {
4636 int i;
4637 struct Scsi_Host *host;
4638 struct megasas_instance *instance;
4639 struct fusion_context *fusion;
4640
4641 instance = pci_get_drvdata(pdev);
4642 instance->unload = 1;
4643 host = instance->host;
4644 fusion = instance->ctrl_context;
4645
4646 scsi_remove_host(instance->host);
4647 megasas_flush_cache(instance);
4648 megasas_shutdown_controller(instance, MR_DCMD_CTRL_SHUTDOWN);
4649
4650 /* cancel the delayed work if this work still in queue*/
4651 if (instance->ev != NULL) {
4652 struct megasas_aen_event *ev = instance->ev;
4653 cancel_delayed_work_sync(&ev->hotplug_work);
4654 instance->ev = NULL;
4655 }
4656
4657 tasklet_kill(&instance->isr_tasklet);
4658
4659 /*
4660 * Take the instance off the instance array. Note that we will not
4661 * decrement the max_index. We let this array be sparse array
4662 */
4663 for (i = 0; i < megasas_mgmt_info.max_index; i++) {
4664 if (megasas_mgmt_info.instance[i] == instance) {
4665 megasas_mgmt_info.count--;
4666 megasas_mgmt_info.instance[i] = NULL;
4667
4668 break;
4669 }
4670 }
4671
4672 pci_set_drvdata(instance->pdev, NULL);
4673
4674 instance->instancet->disable_intr(instance);
4675
4676 if (instance->msix_vectors)
4677 for (i = 0 ; i < instance->msix_vectors; i++)
4678 free_irq(instance->msixentry[i].vector,
4679 &instance->irq_context[i]);
4680 else
4681 free_irq(instance->pdev->irq, &instance->irq_context[0]);
4682 if (instance->msix_vectors)
4683 pci_disable_msix(instance->pdev);
4684
4685 switch (instance->pdev->device) {
4686 case PCI_DEVICE_ID_LSI_FUSION:
4687 case PCI_DEVICE_ID_LSI_INVADER:
4688 case PCI_DEVICE_ID_LSI_FURY:
4689 megasas_release_fusion(instance);
4690 for (i = 0; i < 2 ; i++)
4691 if (fusion->ld_map[i])
4692 dma_free_coherent(&instance->pdev->dev,
4693 fusion->map_sz,
4694 fusion->ld_map[i],
4695 fusion->
4696 ld_map_phys[i]);
4697 kfree(instance->ctrl_context);
4698 break;
4699 default:
4700 megasas_release_mfi(instance);
4701 pci_free_consistent(pdev, sizeof(u32),
4702 instance->producer,
4703 instance->producer_h);
4704 pci_free_consistent(pdev, sizeof(u32),
4705 instance->consumer,
4706 instance->consumer_h);
4707 break;
4708 }
4709
4710 if (instance->evt_detail)
4711 pci_free_consistent(pdev, sizeof(struct megasas_evt_detail),
4712 instance->evt_detail, instance->evt_detail_h);
4713 scsi_host_put(host);
4714
4715 pci_set_drvdata(pdev, NULL);
4716
4717 pci_disable_device(pdev);
4718
4719 return;
4720 }
4721
4722 /**
4723 * megasas_shutdown - Shutdown entry point
4724 * @device: Generic device structure
4725 */
4726 static void megasas_shutdown(struct pci_dev *pdev)
4727 {
4728 int i;
4729 struct megasas_instance *instance = pci_get_drvdata(pdev);
4730
4731 instance->unload = 1;
4732 megasas_flush_cache(instance);
4733 megasas_shutdown_controller(instance, MR_DCMD_CTRL_SHUTDOWN);
4734 instance->instancet->disable_intr(instance);
4735 if (instance->msix_vectors)
4736 for (i = 0 ; i < instance->msix_vectors; i++)
4737 free_irq(instance->msixentry[i].vector,
4738 &instance->irq_context[i]);
4739 else
4740 free_irq(instance->pdev->irq, &instance->irq_context[0]);
4741 if (instance->msix_vectors)
4742 pci_disable_msix(instance->pdev);
4743 }
4744
4745 /**
4746 * megasas_mgmt_open - char node "open" entry point
4747 */
4748 static int megasas_mgmt_open(struct inode *inode, struct file *filep)
4749 {
4750 /*
4751 * Allow only those users with admin rights
4752 */
4753 if (!capable(CAP_SYS_ADMIN))
4754 return -EACCES;
4755
4756 return 0;
4757 }
4758
4759 /**
4760 * megasas_mgmt_fasync - Async notifier registration from applications
4761 *
4762 * This function adds the calling process to a driver global queue. When an
4763 * event occurs, SIGIO will be sent to all processes in this queue.
4764 */
4765 static int megasas_mgmt_fasync(int fd, struct file *filep, int mode)
4766 {
4767 int rc;
4768
4769 mutex_lock(&megasas_async_queue_mutex);
4770
4771 rc = fasync_helper(fd, filep, mode, &megasas_async_queue);
4772
4773 mutex_unlock(&megasas_async_queue_mutex);
4774
4775 if (rc >= 0) {
4776 /* For sanity check when we get ioctl */
4777 filep->private_data = filep;
4778 return 0;
4779 }
4780
4781 printk(KERN_DEBUG "megasas: fasync_helper failed [%d]\n", rc);
4782
4783 return rc;
4784 }
4785
4786 /**
4787 * megasas_mgmt_poll - char node "poll" entry point
4788 * */
4789 static unsigned int megasas_mgmt_poll(struct file *file, poll_table *wait)
4790 {
4791 unsigned int mask;
4792 unsigned long flags;
4793 poll_wait(file, &megasas_poll_wait, wait);
4794 spin_lock_irqsave(&poll_aen_lock, flags);
4795 if (megasas_poll_wait_aen)
4796 mask = (POLLIN | POLLRDNORM);
4797 else
4798 mask = 0;
4799 spin_unlock_irqrestore(&poll_aen_lock, flags);
4800 return mask;
4801 }
4802
4803 /**
4804 * megasas_mgmt_fw_ioctl - Issues management ioctls to FW
4805 * @instance: Adapter soft state
4806 * @argp: User's ioctl packet
4807 */
4808 static int
4809 megasas_mgmt_fw_ioctl(struct megasas_instance *instance,
4810 struct megasas_iocpacket __user * user_ioc,
4811 struct megasas_iocpacket *ioc)
4812 {
4813 struct megasas_sge32 *kern_sge32;
4814 struct megasas_cmd *cmd;
4815 void *kbuff_arr[MAX_IOCTL_SGE];
4816 dma_addr_t buf_handle = 0;
4817 int error = 0, i;
4818 void *sense = NULL;
4819 dma_addr_t sense_handle;
4820 unsigned long *sense_ptr;
4821
4822 memset(kbuff_arr, 0, sizeof(kbuff_arr));
4823
4824 if (ioc->sge_count > MAX_IOCTL_SGE) {
4825 printk(KERN_DEBUG "megasas: SGE count [%d] > max limit [%d]\n",
4826 ioc->sge_count, MAX_IOCTL_SGE);
4827 return -EINVAL;
4828 }
4829
4830 cmd = megasas_get_cmd(instance);
4831 if (!cmd) {
4832 printk(KERN_DEBUG "megasas: Failed to get a cmd packet\n");
4833 return -ENOMEM;
4834 }
4835
4836 /*
4837 * User's IOCTL packet has 2 frames (maximum). Copy those two
4838 * frames into our cmd's frames. cmd->frame's context will get
4839 * overwritten when we copy from user's frames. So set that value
4840 * alone separately
4841 */
4842 memcpy(cmd->frame, ioc->frame.raw, 2 * MEGAMFI_FRAME_SIZE);
4843 cmd->frame->hdr.context = cmd->index;
4844 cmd->frame->hdr.pad_0 = 0;
4845 cmd->frame->hdr.flags &= ~(MFI_FRAME_IEEE | MFI_FRAME_SGL64 |
4846 MFI_FRAME_SENSE64);
4847
4848 /*
4849 * The management interface between applications and the fw uses
4850 * MFI frames. E.g, RAID configuration changes, LD property changes
4851 * etc are accomplishes through different kinds of MFI frames. The
4852 * driver needs to care only about substituting user buffers with
4853 * kernel buffers in SGLs. The location of SGL is embedded in the
4854 * struct iocpacket itself.
4855 */
4856 kern_sge32 = (struct megasas_sge32 *)
4857 ((unsigned long)cmd->frame + ioc->sgl_off);
4858
4859 /*
4860 * For each user buffer, create a mirror buffer and copy in
4861 */
4862 for (i = 0; i < ioc->sge_count; i++) {
4863 if (!ioc->sgl[i].iov_len)
4864 continue;
4865
4866 kbuff_arr[i] = dma_alloc_coherent(&instance->pdev->dev,
4867 ioc->sgl[i].iov_len,
4868 &buf_handle, GFP_KERNEL);
4869 if (!kbuff_arr[i]) {
4870 printk(KERN_DEBUG "megasas: Failed to alloc "
4871 "kernel SGL buffer for IOCTL \n");
4872 error = -ENOMEM;
4873 goto out;
4874 }
4875
4876 /*
4877 * We don't change the dma_coherent_mask, so
4878 * pci_alloc_consistent only returns 32bit addresses
4879 */
4880 kern_sge32[i].phys_addr = (u32) buf_handle;
4881 kern_sge32[i].length = ioc->sgl[i].iov_len;
4882
4883 /*
4884 * We created a kernel buffer corresponding to the
4885 * user buffer. Now copy in from the user buffer
4886 */
4887 if (copy_from_user(kbuff_arr[i], ioc->sgl[i].iov_base,
4888 (u32) (ioc->sgl[i].iov_len))) {
4889 error = -EFAULT;
4890 goto out;
4891 }
4892 }
4893
4894 if (ioc->sense_len) {
4895 sense = dma_alloc_coherent(&instance->pdev->dev, ioc->sense_len,
4896 &sense_handle, GFP_KERNEL);
4897 if (!sense) {
4898 error = -ENOMEM;
4899 goto out;
4900 }
4901
4902 sense_ptr =
4903 (unsigned long *) ((unsigned long)cmd->frame + ioc->sense_off);
4904 *sense_ptr = sense_handle;
4905 }
4906
4907 /*
4908 * Set the sync_cmd flag so that the ISR knows not to complete this
4909 * cmd to the SCSI mid-layer
4910 */
4911 cmd->sync_cmd = 1;
4912 megasas_issue_blocked_cmd(instance, cmd);
4913 cmd->sync_cmd = 0;
4914
4915 /*
4916 * copy out the kernel buffers to user buffers
4917 */
4918 for (i = 0; i < ioc->sge_count; i++) {
4919 if (copy_to_user(ioc->sgl[i].iov_base, kbuff_arr[i],
4920 ioc->sgl[i].iov_len)) {
4921 error = -EFAULT;
4922 goto out;
4923 }
4924 }
4925
4926 /*
4927 * copy out the sense
4928 */
4929 if (ioc->sense_len) {
4930 /*
4931 * sense_ptr points to the location that has the user
4932 * sense buffer address
4933 */
4934 sense_ptr = (unsigned long *) ((unsigned long)ioc->frame.raw +
4935 ioc->sense_off);
4936
4937 if (copy_to_user((void __user *)((unsigned long)(*sense_ptr)),
4938 sense, ioc->sense_len)) {
4939 printk(KERN_ERR "megasas: Failed to copy out to user "
4940 "sense data\n");
4941 error = -EFAULT;
4942 goto out;
4943 }
4944 }
4945
4946 /*
4947 * copy the status codes returned by the fw
4948 */
4949 if (copy_to_user(&user_ioc->frame.hdr.cmd_status,
4950 &cmd->frame->hdr.cmd_status, sizeof(u8))) {
4951 printk(KERN_DEBUG "megasas: Error copying out cmd_status\n");
4952 error = -EFAULT;
4953 }
4954
4955 out:
4956 if (sense) {
4957 dma_free_coherent(&instance->pdev->dev, ioc->sense_len,
4958 sense, sense_handle);
4959 }
4960
4961 for (i = 0; i < ioc->sge_count; i++) {
4962 if (kbuff_arr[i])
4963 dma_free_coherent(&instance->pdev->dev,
4964 kern_sge32[i].length,
4965 kbuff_arr[i],
4966 kern_sge32[i].phys_addr);
4967 }
4968
4969 megasas_return_cmd(instance, cmd);
4970 return error;
4971 }
4972
4973 static int megasas_mgmt_ioctl_fw(struct file *file, unsigned long arg)
4974 {
4975 struct megasas_iocpacket __user *user_ioc =
4976 (struct megasas_iocpacket __user *)arg;
4977 struct megasas_iocpacket *ioc;
4978 struct megasas_instance *instance;
4979 int error;
4980 int i;
4981 unsigned long flags;
4982 u32 wait_time = MEGASAS_RESET_WAIT_TIME;
4983
4984 ioc = kmalloc(sizeof(*ioc), GFP_KERNEL);
4985 if (!ioc)
4986 return -ENOMEM;
4987
4988 if (copy_from_user(ioc, user_ioc, sizeof(*ioc))) {
4989 error = -EFAULT;
4990 goto out_kfree_ioc;
4991 }
4992
4993 instance = megasas_lookup_instance(ioc->host_no);
4994 if (!instance) {
4995 error = -ENODEV;
4996 goto out_kfree_ioc;
4997 }
4998
4999 if (instance->adprecovery == MEGASAS_HW_CRITICAL_ERROR) {
5000 printk(KERN_ERR "Controller in crit error\n");
5001 error = -ENODEV;
5002 goto out_kfree_ioc;
5003 }
5004
5005 if (instance->unload == 1) {
5006 error = -ENODEV;
5007 goto out_kfree_ioc;
5008 }
5009
5010 /*
5011 * We will allow only MEGASAS_INT_CMDS number of parallel ioctl cmds
5012 */
5013 if (down_interruptible(&instance->ioctl_sem)) {
5014 error = -ERESTARTSYS;
5015 goto out_kfree_ioc;
5016 }
5017
5018 for (i = 0; i < wait_time; i++) {
5019
5020 spin_lock_irqsave(&instance->hba_lock, flags);
5021 if (instance->adprecovery == MEGASAS_HBA_OPERATIONAL) {
5022 spin_unlock_irqrestore(&instance->hba_lock, flags);
5023 break;
5024 }
5025 spin_unlock_irqrestore(&instance->hba_lock, flags);
5026
5027 if (!(i % MEGASAS_RESET_NOTICE_INTERVAL)) {
5028 printk(KERN_NOTICE "megasas: waiting"
5029 "for controller reset to finish\n");
5030 }
5031
5032 msleep(1000);
5033 }
5034
5035 spin_lock_irqsave(&instance->hba_lock, flags);
5036 if (instance->adprecovery != MEGASAS_HBA_OPERATIONAL) {
5037 spin_unlock_irqrestore(&instance->hba_lock, flags);
5038
5039 printk(KERN_ERR "megaraid_sas: timed out while"
5040 "waiting for HBA to recover\n");
5041 error = -ENODEV;
5042 goto out_up;
5043 }
5044 spin_unlock_irqrestore(&instance->hba_lock, flags);
5045
5046 error = megasas_mgmt_fw_ioctl(instance, user_ioc, ioc);
5047 out_up:
5048 up(&instance->ioctl_sem);
5049
5050 out_kfree_ioc:
5051 kfree(ioc);
5052 return error;
5053 }
5054
5055 static int megasas_mgmt_ioctl_aen(struct file *file, unsigned long arg)
5056 {
5057 struct megasas_instance *instance;
5058 struct megasas_aen aen;
5059 int error;
5060 int i;
5061 unsigned long flags;
5062 u32 wait_time = MEGASAS_RESET_WAIT_TIME;
5063
5064 if (file->private_data != file) {
5065 printk(KERN_DEBUG "megasas: fasync_helper was not "
5066 "called first\n");
5067 return -EINVAL;
5068 }
5069
5070 if (copy_from_user(&aen, (void __user *)arg, sizeof(aen)))
5071 return -EFAULT;
5072
5073 instance = megasas_lookup_instance(aen.host_no);
5074
5075 if (!instance)
5076 return -ENODEV;
5077
5078 if (instance->adprecovery == MEGASAS_HW_CRITICAL_ERROR) {
5079 return -ENODEV;
5080 }
5081
5082 if (instance->unload == 1) {
5083 return -ENODEV;
5084 }
5085
5086 for (i = 0; i < wait_time; i++) {
5087
5088 spin_lock_irqsave(&instance->hba_lock, flags);
5089 if (instance->adprecovery == MEGASAS_HBA_OPERATIONAL) {
5090 spin_unlock_irqrestore(&instance->hba_lock,
5091 flags);
5092 break;
5093 }
5094
5095 spin_unlock_irqrestore(&instance->hba_lock, flags);
5096
5097 if (!(i % MEGASAS_RESET_NOTICE_INTERVAL)) {
5098 printk(KERN_NOTICE "megasas: waiting for"
5099 "controller reset to finish\n");
5100 }
5101
5102 msleep(1000);
5103 }
5104
5105 spin_lock_irqsave(&instance->hba_lock, flags);
5106 if (instance->adprecovery != MEGASAS_HBA_OPERATIONAL) {
5107 spin_unlock_irqrestore(&instance->hba_lock, flags);
5108 printk(KERN_ERR "megaraid_sas: timed out while waiting"
5109 "for HBA to recover.\n");
5110 return -ENODEV;
5111 }
5112 spin_unlock_irqrestore(&instance->hba_lock, flags);
5113
5114 mutex_lock(&instance->aen_mutex);
5115 error = megasas_register_aen(instance, aen.seq_num,
5116 aen.class_locale_word);
5117 mutex_unlock(&instance->aen_mutex);
5118 return error;
5119 }
5120
5121 /**
5122 * megasas_mgmt_ioctl - char node ioctl entry point
5123 */
5124 static long
5125 megasas_mgmt_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
5126 {
5127 switch (cmd) {
5128 case MEGASAS_IOC_FIRMWARE:
5129 return megasas_mgmt_ioctl_fw(file, arg);
5130
5131 case MEGASAS_IOC_GET_AEN:
5132 return megasas_mgmt_ioctl_aen(file, arg);
5133 }
5134
5135 return -ENOTTY;
5136 }
5137
5138 #ifdef CONFIG_COMPAT
5139 static int megasas_mgmt_compat_ioctl_fw(struct file *file, unsigned long arg)
5140 {
5141 struct compat_megasas_iocpacket __user *cioc =
5142 (struct compat_megasas_iocpacket __user *)arg;
5143 struct megasas_iocpacket __user *ioc =
5144 compat_alloc_user_space(sizeof(struct megasas_iocpacket));
5145 int i;
5146 int error = 0;
5147 compat_uptr_t ptr;
5148
5149 if (clear_user(ioc, sizeof(*ioc)))
5150 return -EFAULT;
5151
5152 if (copy_in_user(&ioc->host_no, &cioc->host_no, sizeof(u16)) ||
5153 copy_in_user(&ioc->sgl_off, &cioc->sgl_off, sizeof(u32)) ||
5154 copy_in_user(&ioc->sense_off, &cioc->sense_off, sizeof(u32)) ||
5155 copy_in_user(&ioc->sense_len, &cioc->sense_len, sizeof(u32)) ||
5156 copy_in_user(ioc->frame.raw, cioc->frame.raw, 128) ||
5157 copy_in_user(&ioc->sge_count, &cioc->sge_count, sizeof(u32)))
5158 return -EFAULT;
5159
5160 /*
5161 * The sense_ptr is used in megasas_mgmt_fw_ioctl only when
5162 * sense_len is not null, so prepare the 64bit value under
5163 * the same condition.
5164 */
5165 if (ioc->sense_len) {
5166 void __user **sense_ioc_ptr =
5167 (void __user **)(ioc->frame.raw + ioc->sense_off);
5168 compat_uptr_t *sense_cioc_ptr =
5169 (compat_uptr_t *)(cioc->frame.raw + cioc->sense_off);
5170 if (get_user(ptr, sense_cioc_ptr) ||
5171 put_user(compat_ptr(ptr), sense_ioc_ptr))
5172 return -EFAULT;
5173 }
5174
5175 for (i = 0; i < MAX_IOCTL_SGE; i++) {
5176 if (get_user(ptr, &cioc->sgl[i].iov_base) ||
5177 put_user(compat_ptr(ptr), &ioc->sgl[i].iov_base) ||
5178 copy_in_user(&ioc->sgl[i].iov_len,
5179 &cioc->sgl[i].iov_len, sizeof(compat_size_t)))
5180 return -EFAULT;
5181 }
5182
5183 error = megasas_mgmt_ioctl_fw(file, (unsigned long)ioc);
5184
5185 if (copy_in_user(&cioc->frame.hdr.cmd_status,
5186 &ioc->frame.hdr.cmd_status, sizeof(u8))) {
5187 printk(KERN_DEBUG "megasas: error copy_in_user cmd_status\n");
5188 return -EFAULT;
5189 }
5190 return error;
5191 }
5192
5193 static long
5194 megasas_mgmt_compat_ioctl(struct file *file, unsigned int cmd,
5195 unsigned long arg)
5196 {
5197 switch (cmd) {
5198 case MEGASAS_IOC_FIRMWARE32:
5199 return megasas_mgmt_compat_ioctl_fw(file, arg);
5200 case MEGASAS_IOC_GET_AEN:
5201 return megasas_mgmt_ioctl_aen(file, arg);
5202 }
5203
5204 return -ENOTTY;
5205 }
5206 #endif
5207
5208 /*
5209 * File operations structure for management interface
5210 */
5211 static const struct file_operations megasas_mgmt_fops = {
5212 .owner = THIS_MODULE,
5213 .open = megasas_mgmt_open,
5214 .fasync = megasas_mgmt_fasync,
5215 .unlocked_ioctl = megasas_mgmt_ioctl,
5216 .poll = megasas_mgmt_poll,
5217 #ifdef CONFIG_COMPAT
5218 .compat_ioctl = megasas_mgmt_compat_ioctl,
5219 #endif
5220 .llseek = noop_llseek,
5221 };
5222
5223 /*
5224 * PCI hotplug support registration structure
5225 */
5226 static struct pci_driver megasas_pci_driver = {
5227
5228 .name = "megaraid_sas",
5229 .id_table = megasas_pci_table,
5230 .probe = megasas_probe_one,
5231 .remove = megasas_detach_one,
5232 .suspend = megasas_suspend,
5233 .resume = megasas_resume,
5234 .shutdown = megasas_shutdown,
5235 };
5236
5237 /*
5238 * Sysfs driver attributes
5239 */
5240 static ssize_t megasas_sysfs_show_version(struct device_driver *dd, char *buf)
5241 {
5242 return snprintf(buf, strlen(MEGASAS_VERSION) + 2, "%s\n",
5243 MEGASAS_VERSION);
5244 }
5245
5246 static DRIVER_ATTR(version, S_IRUGO, megasas_sysfs_show_version, NULL);
5247
5248 static ssize_t
5249 megasas_sysfs_show_release_date(struct device_driver *dd, char *buf)
5250 {
5251 return snprintf(buf, strlen(MEGASAS_RELDATE) + 2, "%s\n",
5252 MEGASAS_RELDATE);
5253 }
5254
5255 static DRIVER_ATTR(release_date, S_IRUGO, megasas_sysfs_show_release_date,
5256 NULL);
5257
5258 static ssize_t
5259 megasas_sysfs_show_support_poll_for_event(struct device_driver *dd, char *buf)
5260 {
5261 return sprintf(buf, "%u\n", support_poll_for_event);
5262 }
5263
5264 static DRIVER_ATTR(support_poll_for_event, S_IRUGO,
5265 megasas_sysfs_show_support_poll_for_event, NULL);
5266
5267 static ssize_t
5268 megasas_sysfs_show_support_device_change(struct device_driver *dd, char *buf)
5269 {
5270 return sprintf(buf, "%u\n", support_device_change);
5271 }
5272
5273 static DRIVER_ATTR(support_device_change, S_IRUGO,
5274 megasas_sysfs_show_support_device_change, NULL);
5275
5276 static ssize_t
5277 megasas_sysfs_show_dbg_lvl(struct device_driver *dd, char *buf)
5278 {
5279 return sprintf(buf, "%u\n", megasas_dbg_lvl);
5280 }
5281
5282 static ssize_t
5283 megasas_sysfs_set_dbg_lvl(struct device_driver *dd, const char *buf, size_t count)
5284 {
5285 int retval = count;
5286 if(sscanf(buf,"%u",&megasas_dbg_lvl)<1){
5287 printk(KERN_ERR "megasas: could not set dbg_lvl\n");
5288 retval = -EINVAL;
5289 }
5290 return retval;
5291 }
5292
5293 static DRIVER_ATTR(dbg_lvl, S_IRUGO|S_IWUSR, megasas_sysfs_show_dbg_lvl,
5294 megasas_sysfs_set_dbg_lvl);
5295
5296 static void
5297 megasas_aen_polling(struct work_struct *work)
5298 {
5299 struct megasas_aen_event *ev =
5300 container_of(work, struct megasas_aen_event, hotplug_work.work);
5301 struct megasas_instance *instance = ev->instance;
5302 union megasas_evt_class_locale class_locale;
5303 struct Scsi_Host *host;
5304 struct scsi_device *sdev1;
5305 u16 pd_index = 0;
5306 u16 ld_index = 0;
5307 int i, j, doscan = 0;
5308 u32 seq_num;
5309 int error;
5310
5311 if (!instance) {
5312 printk(KERN_ERR "invalid instance!\n");
5313 kfree(ev);
5314 return;
5315 }
5316 instance->ev = NULL;
5317 host = instance->host;
5318 if (instance->evt_detail) {
5319
5320 switch (instance->evt_detail->code) {
5321 case MR_EVT_PD_INSERTED:
5322 if (megasas_get_pd_list(instance) == 0) {
5323 for (i = 0; i < MEGASAS_MAX_PD_CHANNELS; i++) {
5324 for (j = 0;
5325 j < MEGASAS_MAX_DEV_PER_CHANNEL;
5326 j++) {
5327
5328 pd_index =
5329 (i * MEGASAS_MAX_DEV_PER_CHANNEL) + j;
5330
5331 sdev1 =
5332 scsi_device_lookup(host, i, j, 0);
5333
5334 if (instance->pd_list[pd_index].driveState
5335 == MR_PD_STATE_SYSTEM) {
5336 if (!sdev1) {
5337 scsi_add_device(host, i, j, 0);
5338 }
5339
5340 if (sdev1)
5341 scsi_device_put(sdev1);
5342 }
5343 }
5344 }
5345 }
5346 doscan = 0;
5347 break;
5348
5349 case MR_EVT_PD_REMOVED:
5350 if (megasas_get_pd_list(instance) == 0) {
5351 for (i = 0; i < MEGASAS_MAX_PD_CHANNELS; i++) {
5352 for (j = 0;
5353 j < MEGASAS_MAX_DEV_PER_CHANNEL;
5354 j++) {
5355
5356 pd_index =
5357 (i * MEGASAS_MAX_DEV_PER_CHANNEL) + j;
5358
5359 sdev1 =
5360 scsi_device_lookup(host, i, j, 0);
5361
5362 if (instance->pd_list[pd_index].driveState
5363 == MR_PD_STATE_SYSTEM) {
5364 if (sdev1) {
5365 scsi_device_put(sdev1);
5366 }
5367 } else {
5368 if (sdev1) {
5369 scsi_remove_device(sdev1);
5370 scsi_device_put(sdev1);
5371 }
5372 }
5373 }
5374 }
5375 }
5376 doscan = 0;
5377 break;
5378
5379 case MR_EVT_LD_OFFLINE:
5380 case MR_EVT_CFG_CLEARED:
5381 case MR_EVT_LD_DELETED:
5382 megasas_get_ld_list(instance);
5383 for (i = 0; i < MEGASAS_MAX_LD_CHANNELS; i++) {
5384 for (j = 0;
5385 j < MEGASAS_MAX_DEV_PER_CHANNEL;
5386 j++) {
5387
5388 ld_index =
5389 (i * MEGASAS_MAX_DEV_PER_CHANNEL) + j;
5390
5391 sdev1 = scsi_device_lookup(host,
5392 i + MEGASAS_MAX_LD_CHANNELS,
5393 j,
5394 0);
5395
5396 if (instance->ld_ids[ld_index] != 0xff) {
5397 if (sdev1) {
5398 scsi_device_put(sdev1);
5399 }
5400 } else {
5401 if (sdev1) {
5402 scsi_remove_device(sdev1);
5403 scsi_device_put(sdev1);
5404 }
5405 }
5406 }
5407 }
5408 doscan = 0;
5409 break;
5410 case MR_EVT_LD_CREATED:
5411 megasas_get_ld_list(instance);
5412 for (i = 0; i < MEGASAS_MAX_LD_CHANNELS; i++) {
5413 for (j = 0;
5414 j < MEGASAS_MAX_DEV_PER_CHANNEL;
5415 j++) {
5416 ld_index =
5417 (i * MEGASAS_MAX_DEV_PER_CHANNEL) + j;
5418
5419 sdev1 = scsi_device_lookup(host,
5420 i+MEGASAS_MAX_LD_CHANNELS,
5421 j, 0);
5422
5423 if (instance->ld_ids[ld_index] !=
5424 0xff) {
5425 if (!sdev1) {
5426 scsi_add_device(host,
5427 i + 2,
5428 j, 0);
5429 }
5430 }
5431 if (sdev1) {
5432 scsi_device_put(sdev1);
5433 }
5434 }
5435 }
5436 doscan = 0;
5437 break;
5438 case MR_EVT_CTRL_HOST_BUS_SCAN_REQUESTED:
5439 case MR_EVT_FOREIGN_CFG_IMPORTED:
5440 case MR_EVT_LD_STATE_CHANGE:
5441 doscan = 1;
5442 break;
5443 default:
5444 doscan = 0;
5445 break;
5446 }
5447 } else {
5448 printk(KERN_ERR "invalid evt_detail!\n");
5449 kfree(ev);
5450 return;
5451 }
5452
5453 if (doscan) {
5454 printk(KERN_INFO "scanning ...\n");
5455 megasas_get_pd_list(instance);
5456 for (i = 0; i < MEGASAS_MAX_PD_CHANNELS; i++) {
5457 for (j = 0; j < MEGASAS_MAX_DEV_PER_CHANNEL; j++) {
5458 pd_index = i*MEGASAS_MAX_DEV_PER_CHANNEL + j;
5459 sdev1 = scsi_device_lookup(host, i, j, 0);
5460 if (instance->pd_list[pd_index].driveState ==
5461 MR_PD_STATE_SYSTEM) {
5462 if (!sdev1) {
5463 scsi_add_device(host, i, j, 0);
5464 }
5465 if (sdev1)
5466 scsi_device_put(sdev1);
5467 } else {
5468 if (sdev1) {
5469 scsi_remove_device(sdev1);
5470 scsi_device_put(sdev1);
5471 }
5472 }
5473 }
5474 }
5475
5476 megasas_get_ld_list(instance);
5477 for (i = 0; i < MEGASAS_MAX_LD_CHANNELS; i++) {
5478 for (j = 0; j < MEGASAS_MAX_DEV_PER_CHANNEL; j++) {
5479 ld_index =
5480 (i * MEGASAS_MAX_DEV_PER_CHANNEL) + j;
5481
5482 sdev1 = scsi_device_lookup(host,
5483 i+MEGASAS_MAX_LD_CHANNELS, j, 0);
5484 if (instance->ld_ids[ld_index] != 0xff) {
5485 if (!sdev1) {
5486 scsi_add_device(host,
5487 i+2,
5488 j, 0);
5489 } else {
5490 scsi_device_put(sdev1);
5491 }
5492 } else {
5493 if (sdev1) {
5494 scsi_remove_device(sdev1);
5495 scsi_device_put(sdev1);
5496 }
5497 }
5498 }
5499 }
5500 }
5501
5502 if ( instance->aen_cmd != NULL ) {
5503 kfree(ev);
5504 return ;
5505 }
5506
5507 seq_num = instance->evt_detail->seq_num + 1;
5508
5509 /* Register AEN with FW for latest sequence number plus 1 */
5510 class_locale.members.reserved = 0;
5511 class_locale.members.locale = MR_EVT_LOCALE_ALL;
5512 class_locale.members.class = MR_EVT_CLASS_DEBUG;
5513 mutex_lock(&instance->aen_mutex);
5514 error = megasas_register_aen(instance, seq_num,
5515 class_locale.word);
5516 mutex_unlock(&instance->aen_mutex);
5517
5518 if (error)
5519 printk(KERN_ERR "register aen failed error %x\n", error);
5520
5521 kfree(ev);
5522 }
5523
5524 /**
5525 * megasas_init - Driver load entry point
5526 */
5527 static int __init megasas_init(void)
5528 {
5529 int rval;
5530
5531 /*
5532 * Announce driver version and other information
5533 */
5534 printk(KERN_INFO "megasas: %s %s\n", MEGASAS_VERSION,
5535 MEGASAS_EXT_VERSION);
5536
5537 spin_lock_init(&poll_aen_lock);
5538
5539 support_poll_for_event = 2;
5540 support_device_change = 1;
5541
5542 memset(&megasas_mgmt_info, 0, sizeof(megasas_mgmt_info));
5543
5544 /*
5545 * Register character device node
5546 */
5547 rval = register_chrdev(0, "megaraid_sas_ioctl", &megasas_mgmt_fops);
5548
5549 if (rval < 0) {
5550 printk(KERN_DEBUG "megasas: failed to open device node\n");
5551 return rval;
5552 }
5553
5554 megasas_mgmt_majorno = rval;
5555
5556 /*
5557 * Register ourselves as PCI hotplug module
5558 */
5559 rval = pci_register_driver(&megasas_pci_driver);
5560
5561 if (rval) {
5562 printk(KERN_DEBUG "megasas: PCI hotplug regisration failed \n");
5563 goto err_pcidrv;
5564 }
5565
5566 rval = driver_create_file(&megasas_pci_driver.driver,
5567 &driver_attr_version);
5568 if (rval)
5569 goto err_dcf_attr_ver;
5570 rval = driver_create_file(&megasas_pci_driver.driver,
5571 &driver_attr_release_date);
5572 if (rval)
5573 goto err_dcf_rel_date;
5574
5575 rval = driver_create_file(&megasas_pci_driver.driver,
5576 &driver_attr_support_poll_for_event);
5577 if (rval)
5578 goto err_dcf_support_poll_for_event;
5579
5580 rval = driver_create_file(&megasas_pci_driver.driver,
5581 &driver_attr_dbg_lvl);
5582 if (rval)
5583 goto err_dcf_dbg_lvl;
5584 rval = driver_create_file(&megasas_pci_driver.driver,
5585 &driver_attr_support_device_change);
5586 if (rval)
5587 goto err_dcf_support_device_change;
5588
5589 return rval;
5590
5591 err_dcf_support_device_change:
5592 driver_remove_file(&megasas_pci_driver.driver,
5593 &driver_attr_dbg_lvl);
5594 err_dcf_dbg_lvl:
5595 driver_remove_file(&megasas_pci_driver.driver,
5596 &driver_attr_support_poll_for_event);
5597
5598 err_dcf_support_poll_for_event:
5599 driver_remove_file(&megasas_pci_driver.driver,
5600 &driver_attr_release_date);
5601
5602 err_dcf_rel_date:
5603 driver_remove_file(&megasas_pci_driver.driver, &driver_attr_version);
5604 err_dcf_attr_ver:
5605 pci_unregister_driver(&megasas_pci_driver);
5606 err_pcidrv:
5607 unregister_chrdev(megasas_mgmt_majorno, "megaraid_sas_ioctl");
5608 return rval;
5609 }
5610
5611 /**
5612 * megasas_exit - Driver unload entry point
5613 */
5614 static void __exit megasas_exit(void)
5615 {
5616 driver_remove_file(&megasas_pci_driver.driver,
5617 &driver_attr_dbg_lvl);
5618 driver_remove_file(&megasas_pci_driver.driver,
5619 &driver_attr_support_poll_for_event);
5620 driver_remove_file(&megasas_pci_driver.driver,
5621 &driver_attr_support_device_change);
5622 driver_remove_file(&megasas_pci_driver.driver,
5623 &driver_attr_release_date);
5624 driver_remove_file(&megasas_pci_driver.driver, &driver_attr_version);
5625
5626 pci_unregister_driver(&megasas_pci_driver);
5627 unregister_chrdev(megasas_mgmt_majorno, "megaraid_sas_ioctl");
5628 }
5629
5630 module_init(megasas_init);
5631 module_exit(megasas_exit);
This page took 0.148756 seconds and 5 git commands to generate.