[SCSI] qla2xxx: Update copyright banner.
[deliverable/linux.git] / drivers / scsi / qla2xxx / qla_sup.c
1 /*
2 * QLogic Fibre Channel HBA Driver
3 * Copyright (c) 2003-2008 QLogic Corporation
4 *
5 * See LICENSE.qla2xxx for copyright and licensing details.
6 */
7 #include "qla_def.h"
8
9 #include <linux/delay.h>
10 #include <linux/vmalloc.h>
11 #include <asm/uaccess.h>
12
13 static uint16_t qla2x00_nvram_request(scsi_qla_host_t *, uint32_t);
14 static void qla2x00_nv_deselect(scsi_qla_host_t *);
15 static void qla2x00_nv_write(scsi_qla_host_t *, uint16_t);
16
17 /*
18 * NVRAM support routines
19 */
20
21 /**
22 * qla2x00_lock_nvram_access() -
23 * @ha: HA context
24 */
25 static void
26 qla2x00_lock_nvram_access(scsi_qla_host_t *ha)
27 {
28 uint16_t data;
29 struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
30
31 if (!IS_QLA2100(ha) && !IS_QLA2200(ha) && !IS_QLA2300(ha)) {
32 data = RD_REG_WORD(&reg->nvram);
33 while (data & NVR_BUSY) {
34 udelay(100);
35 data = RD_REG_WORD(&reg->nvram);
36 }
37
38 /* Lock resource */
39 WRT_REG_WORD(&reg->u.isp2300.host_semaphore, 0x1);
40 RD_REG_WORD(&reg->u.isp2300.host_semaphore);
41 udelay(5);
42 data = RD_REG_WORD(&reg->u.isp2300.host_semaphore);
43 while ((data & BIT_0) == 0) {
44 /* Lock failed */
45 udelay(100);
46 WRT_REG_WORD(&reg->u.isp2300.host_semaphore, 0x1);
47 RD_REG_WORD(&reg->u.isp2300.host_semaphore);
48 udelay(5);
49 data = RD_REG_WORD(&reg->u.isp2300.host_semaphore);
50 }
51 }
52 }
53
54 /**
55 * qla2x00_unlock_nvram_access() -
56 * @ha: HA context
57 */
58 static void
59 qla2x00_unlock_nvram_access(scsi_qla_host_t *ha)
60 {
61 struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
62
63 if (!IS_QLA2100(ha) && !IS_QLA2200(ha) && !IS_QLA2300(ha)) {
64 WRT_REG_WORD(&reg->u.isp2300.host_semaphore, 0);
65 RD_REG_WORD(&reg->u.isp2300.host_semaphore);
66 }
67 }
68
69 /**
70 * qla2x00_get_nvram_word() - Calculates word position in NVRAM and calls the
71 * request routine to get the word from NVRAM.
72 * @ha: HA context
73 * @addr: Address in NVRAM to read
74 *
75 * Returns the word read from nvram @addr.
76 */
77 static uint16_t
78 qla2x00_get_nvram_word(scsi_qla_host_t *ha, uint32_t addr)
79 {
80 uint16_t data;
81 uint32_t nv_cmd;
82
83 nv_cmd = addr << 16;
84 nv_cmd |= NV_READ_OP;
85 data = qla2x00_nvram_request(ha, nv_cmd);
86
87 return (data);
88 }
89
90 /**
91 * qla2x00_write_nvram_word() - Write NVRAM data.
92 * @ha: HA context
93 * @addr: Address in NVRAM to write
94 * @data: word to program
95 */
96 static void
97 qla2x00_write_nvram_word(scsi_qla_host_t *ha, uint32_t addr, uint16_t data)
98 {
99 int count;
100 uint16_t word;
101 uint32_t nv_cmd, wait_cnt;
102 struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
103
104 qla2x00_nv_write(ha, NVR_DATA_OUT);
105 qla2x00_nv_write(ha, 0);
106 qla2x00_nv_write(ha, 0);
107
108 for (word = 0; word < 8; word++)
109 qla2x00_nv_write(ha, NVR_DATA_OUT);
110
111 qla2x00_nv_deselect(ha);
112
113 /* Write data */
114 nv_cmd = (addr << 16) | NV_WRITE_OP;
115 nv_cmd |= data;
116 nv_cmd <<= 5;
117 for (count = 0; count < 27; count++) {
118 if (nv_cmd & BIT_31)
119 qla2x00_nv_write(ha, NVR_DATA_OUT);
120 else
121 qla2x00_nv_write(ha, 0);
122
123 nv_cmd <<= 1;
124 }
125
126 qla2x00_nv_deselect(ha);
127
128 /* Wait for NVRAM to become ready */
129 WRT_REG_WORD(&reg->nvram, NVR_SELECT);
130 RD_REG_WORD(&reg->nvram); /* PCI Posting. */
131 wait_cnt = NVR_WAIT_CNT;
132 do {
133 if (!--wait_cnt) {
134 DEBUG9_10(printk("%s(%ld): NVRAM didn't go ready...\n",
135 __func__, ha->host_no));
136 break;
137 }
138 NVRAM_DELAY();
139 word = RD_REG_WORD(&reg->nvram);
140 } while ((word & NVR_DATA_IN) == 0);
141
142 qla2x00_nv_deselect(ha);
143
144 /* Disable writes */
145 qla2x00_nv_write(ha, NVR_DATA_OUT);
146 for (count = 0; count < 10; count++)
147 qla2x00_nv_write(ha, 0);
148
149 qla2x00_nv_deselect(ha);
150 }
151
152 static int
153 qla2x00_write_nvram_word_tmo(scsi_qla_host_t *ha, uint32_t addr, uint16_t data,
154 uint32_t tmo)
155 {
156 int ret, count;
157 uint16_t word;
158 uint32_t nv_cmd;
159 struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
160
161 ret = QLA_SUCCESS;
162
163 qla2x00_nv_write(ha, NVR_DATA_OUT);
164 qla2x00_nv_write(ha, 0);
165 qla2x00_nv_write(ha, 0);
166
167 for (word = 0; word < 8; word++)
168 qla2x00_nv_write(ha, NVR_DATA_OUT);
169
170 qla2x00_nv_deselect(ha);
171
172 /* Write data */
173 nv_cmd = (addr << 16) | NV_WRITE_OP;
174 nv_cmd |= data;
175 nv_cmd <<= 5;
176 for (count = 0; count < 27; count++) {
177 if (nv_cmd & BIT_31)
178 qla2x00_nv_write(ha, NVR_DATA_OUT);
179 else
180 qla2x00_nv_write(ha, 0);
181
182 nv_cmd <<= 1;
183 }
184
185 qla2x00_nv_deselect(ha);
186
187 /* Wait for NVRAM to become ready */
188 WRT_REG_WORD(&reg->nvram, NVR_SELECT);
189 RD_REG_WORD(&reg->nvram); /* PCI Posting. */
190 do {
191 NVRAM_DELAY();
192 word = RD_REG_WORD(&reg->nvram);
193 if (!--tmo) {
194 ret = QLA_FUNCTION_FAILED;
195 break;
196 }
197 } while ((word & NVR_DATA_IN) == 0);
198
199 qla2x00_nv_deselect(ha);
200
201 /* Disable writes */
202 qla2x00_nv_write(ha, NVR_DATA_OUT);
203 for (count = 0; count < 10; count++)
204 qla2x00_nv_write(ha, 0);
205
206 qla2x00_nv_deselect(ha);
207
208 return ret;
209 }
210
211 /**
212 * qla2x00_nvram_request() - Sends read command to NVRAM and gets data from
213 * NVRAM.
214 * @ha: HA context
215 * @nv_cmd: NVRAM command
216 *
217 * Bit definitions for NVRAM command:
218 *
219 * Bit 26 = start bit
220 * Bit 25, 24 = opcode
221 * Bit 23-16 = address
222 * Bit 15-0 = write data
223 *
224 * Returns the word read from nvram @addr.
225 */
226 static uint16_t
227 qla2x00_nvram_request(scsi_qla_host_t *ha, uint32_t nv_cmd)
228 {
229 uint8_t cnt;
230 struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
231 uint16_t data = 0;
232 uint16_t reg_data;
233
234 /* Send command to NVRAM. */
235 nv_cmd <<= 5;
236 for (cnt = 0; cnt < 11; cnt++) {
237 if (nv_cmd & BIT_31)
238 qla2x00_nv_write(ha, NVR_DATA_OUT);
239 else
240 qla2x00_nv_write(ha, 0);
241 nv_cmd <<= 1;
242 }
243
244 /* Read data from NVRAM. */
245 for (cnt = 0; cnt < 16; cnt++) {
246 WRT_REG_WORD(&reg->nvram, NVR_SELECT | NVR_CLOCK);
247 RD_REG_WORD(&reg->nvram); /* PCI Posting. */
248 NVRAM_DELAY();
249 data <<= 1;
250 reg_data = RD_REG_WORD(&reg->nvram);
251 if (reg_data & NVR_DATA_IN)
252 data |= BIT_0;
253 WRT_REG_WORD(&reg->nvram, NVR_SELECT);
254 RD_REG_WORD(&reg->nvram); /* PCI Posting. */
255 NVRAM_DELAY();
256 }
257
258 /* Deselect chip. */
259 WRT_REG_WORD(&reg->nvram, NVR_DESELECT);
260 RD_REG_WORD(&reg->nvram); /* PCI Posting. */
261 NVRAM_DELAY();
262
263 return (data);
264 }
265
266 /**
267 * qla2x00_nv_write() - Clean NVRAM operations.
268 * @ha: HA context
269 */
270 static void
271 qla2x00_nv_deselect(scsi_qla_host_t *ha)
272 {
273 struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
274
275 WRT_REG_WORD(&reg->nvram, NVR_DESELECT);
276 RD_REG_WORD(&reg->nvram); /* PCI Posting. */
277 NVRAM_DELAY();
278 }
279
280 /**
281 * qla2x00_nv_write() - Prepare for NVRAM read/write operation.
282 * @ha: HA context
283 * @data: Serial interface selector
284 */
285 static void
286 qla2x00_nv_write(scsi_qla_host_t *ha, uint16_t data)
287 {
288 struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
289
290 WRT_REG_WORD(&reg->nvram, data | NVR_SELECT | NVR_WRT_ENABLE);
291 RD_REG_WORD(&reg->nvram); /* PCI Posting. */
292 NVRAM_DELAY();
293 WRT_REG_WORD(&reg->nvram, data | NVR_SELECT| NVR_CLOCK |
294 NVR_WRT_ENABLE);
295 RD_REG_WORD(&reg->nvram); /* PCI Posting. */
296 NVRAM_DELAY();
297 WRT_REG_WORD(&reg->nvram, data | NVR_SELECT | NVR_WRT_ENABLE);
298 RD_REG_WORD(&reg->nvram); /* PCI Posting. */
299 NVRAM_DELAY();
300 }
301
302 /**
303 * qla2x00_clear_nvram_protection() -
304 * @ha: HA context
305 */
306 static int
307 qla2x00_clear_nvram_protection(scsi_qla_host_t *ha)
308 {
309 int ret, stat;
310 struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
311 uint32_t word, wait_cnt;
312 uint16_t wprot, wprot_old;
313
314 /* Clear NVRAM write protection. */
315 ret = QLA_FUNCTION_FAILED;
316
317 wprot_old = cpu_to_le16(qla2x00_get_nvram_word(ha, ha->nvram_base));
318 stat = qla2x00_write_nvram_word_tmo(ha, ha->nvram_base,
319 __constant_cpu_to_le16(0x1234), 100000);
320 wprot = cpu_to_le16(qla2x00_get_nvram_word(ha, ha->nvram_base));
321 if (stat != QLA_SUCCESS || wprot != 0x1234) {
322 /* Write enable. */
323 qla2x00_nv_write(ha, NVR_DATA_OUT);
324 qla2x00_nv_write(ha, 0);
325 qla2x00_nv_write(ha, 0);
326 for (word = 0; word < 8; word++)
327 qla2x00_nv_write(ha, NVR_DATA_OUT);
328
329 qla2x00_nv_deselect(ha);
330
331 /* Enable protection register. */
332 qla2x00_nv_write(ha, NVR_PR_ENABLE | NVR_DATA_OUT);
333 qla2x00_nv_write(ha, NVR_PR_ENABLE);
334 qla2x00_nv_write(ha, NVR_PR_ENABLE);
335 for (word = 0; word < 8; word++)
336 qla2x00_nv_write(ha, NVR_DATA_OUT | NVR_PR_ENABLE);
337
338 qla2x00_nv_deselect(ha);
339
340 /* Clear protection register (ffff is cleared). */
341 qla2x00_nv_write(ha, NVR_PR_ENABLE | NVR_DATA_OUT);
342 qla2x00_nv_write(ha, NVR_PR_ENABLE | NVR_DATA_OUT);
343 qla2x00_nv_write(ha, NVR_PR_ENABLE | NVR_DATA_OUT);
344 for (word = 0; word < 8; word++)
345 qla2x00_nv_write(ha, NVR_DATA_OUT | NVR_PR_ENABLE);
346
347 qla2x00_nv_deselect(ha);
348
349 /* Wait for NVRAM to become ready. */
350 WRT_REG_WORD(&reg->nvram, NVR_SELECT);
351 RD_REG_WORD(&reg->nvram); /* PCI Posting. */
352 wait_cnt = NVR_WAIT_CNT;
353 do {
354 if (!--wait_cnt) {
355 DEBUG9_10(printk("%s(%ld): NVRAM didn't go "
356 "ready...\n", __func__,
357 ha->host_no));
358 break;
359 }
360 NVRAM_DELAY();
361 word = RD_REG_WORD(&reg->nvram);
362 } while ((word & NVR_DATA_IN) == 0);
363
364 if (wait_cnt)
365 ret = QLA_SUCCESS;
366 } else
367 qla2x00_write_nvram_word(ha, ha->nvram_base, wprot_old);
368
369 return ret;
370 }
371
372 static void
373 qla2x00_set_nvram_protection(scsi_qla_host_t *ha, int stat)
374 {
375 struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
376 uint32_t word, wait_cnt;
377
378 if (stat != QLA_SUCCESS)
379 return;
380
381 /* Set NVRAM write protection. */
382 /* Write enable. */
383 qla2x00_nv_write(ha, NVR_DATA_OUT);
384 qla2x00_nv_write(ha, 0);
385 qla2x00_nv_write(ha, 0);
386 for (word = 0; word < 8; word++)
387 qla2x00_nv_write(ha, NVR_DATA_OUT);
388
389 qla2x00_nv_deselect(ha);
390
391 /* Enable protection register. */
392 qla2x00_nv_write(ha, NVR_PR_ENABLE | NVR_DATA_OUT);
393 qla2x00_nv_write(ha, NVR_PR_ENABLE);
394 qla2x00_nv_write(ha, NVR_PR_ENABLE);
395 for (word = 0; word < 8; word++)
396 qla2x00_nv_write(ha, NVR_DATA_OUT | NVR_PR_ENABLE);
397
398 qla2x00_nv_deselect(ha);
399
400 /* Enable protection register. */
401 qla2x00_nv_write(ha, NVR_PR_ENABLE | NVR_DATA_OUT);
402 qla2x00_nv_write(ha, NVR_PR_ENABLE);
403 qla2x00_nv_write(ha, NVR_PR_ENABLE | NVR_DATA_OUT);
404 for (word = 0; word < 8; word++)
405 qla2x00_nv_write(ha, NVR_PR_ENABLE);
406
407 qla2x00_nv_deselect(ha);
408
409 /* Wait for NVRAM to become ready. */
410 WRT_REG_WORD(&reg->nvram, NVR_SELECT);
411 RD_REG_WORD(&reg->nvram); /* PCI Posting. */
412 wait_cnt = NVR_WAIT_CNT;
413 do {
414 if (!--wait_cnt) {
415 DEBUG9_10(printk("%s(%ld): NVRAM didn't go ready...\n",
416 __func__, ha->host_no));
417 break;
418 }
419 NVRAM_DELAY();
420 word = RD_REG_WORD(&reg->nvram);
421 } while ((word & NVR_DATA_IN) == 0);
422 }
423
424
425 /*****************************************************************************/
426 /* Flash Manipulation Routines */
427 /*****************************************************************************/
428
429 #define OPTROM_BURST_SIZE 0x1000
430 #define OPTROM_BURST_DWORDS (OPTROM_BURST_SIZE / 4)
431
432 static inline uint32_t
433 flash_conf_to_access_addr(uint32_t faddr)
434 {
435 return FARX_ACCESS_FLASH_CONF | faddr;
436 }
437
438 static inline uint32_t
439 flash_data_to_access_addr(uint32_t faddr)
440 {
441 return FARX_ACCESS_FLASH_DATA | faddr;
442 }
443
444 static inline uint32_t
445 nvram_conf_to_access_addr(uint32_t naddr)
446 {
447 return FARX_ACCESS_NVRAM_CONF | naddr;
448 }
449
450 static inline uint32_t
451 nvram_data_to_access_addr(uint32_t naddr)
452 {
453 return FARX_ACCESS_NVRAM_DATA | naddr;
454 }
455
456 static uint32_t
457 qla24xx_read_flash_dword(scsi_qla_host_t *ha, uint32_t addr)
458 {
459 int rval;
460 uint32_t cnt, data;
461 struct device_reg_24xx __iomem *reg = &ha->iobase->isp24;
462
463 WRT_REG_DWORD(&reg->flash_addr, addr & ~FARX_DATA_FLAG);
464 /* Wait for READ cycle to complete. */
465 rval = QLA_SUCCESS;
466 for (cnt = 3000;
467 (RD_REG_DWORD(&reg->flash_addr) & FARX_DATA_FLAG) == 0 &&
468 rval == QLA_SUCCESS; cnt--) {
469 if (cnt)
470 udelay(10);
471 else
472 rval = QLA_FUNCTION_TIMEOUT;
473 cond_resched();
474 }
475
476 /* TODO: What happens if we time out? */
477 data = 0xDEADDEAD;
478 if (rval == QLA_SUCCESS)
479 data = RD_REG_DWORD(&reg->flash_data);
480
481 return data;
482 }
483
484 uint32_t *
485 qla24xx_read_flash_data(scsi_qla_host_t *ha, uint32_t *dwptr, uint32_t faddr,
486 uint32_t dwords)
487 {
488 uint32_t i;
489
490 /* Dword reads to flash. */
491 for (i = 0; i < dwords; i++, faddr++)
492 dwptr[i] = cpu_to_le32(qla24xx_read_flash_dword(ha,
493 flash_data_to_access_addr(faddr)));
494
495 return dwptr;
496 }
497
498 static int
499 qla24xx_write_flash_dword(scsi_qla_host_t *ha, uint32_t addr, uint32_t data)
500 {
501 int rval;
502 uint32_t cnt;
503 struct device_reg_24xx __iomem *reg = &ha->iobase->isp24;
504
505 WRT_REG_DWORD(&reg->flash_data, data);
506 RD_REG_DWORD(&reg->flash_data); /* PCI Posting. */
507 WRT_REG_DWORD(&reg->flash_addr, addr | FARX_DATA_FLAG);
508 /* Wait for Write cycle to complete. */
509 rval = QLA_SUCCESS;
510 for (cnt = 500000; (RD_REG_DWORD(&reg->flash_addr) & FARX_DATA_FLAG) &&
511 rval == QLA_SUCCESS; cnt--) {
512 if (cnt)
513 udelay(10);
514 else
515 rval = QLA_FUNCTION_TIMEOUT;
516 cond_resched();
517 }
518 return rval;
519 }
520
521 static void
522 qla24xx_get_flash_manufacturer(scsi_qla_host_t *ha, uint8_t *man_id,
523 uint8_t *flash_id)
524 {
525 uint32_t ids;
526
527 ids = qla24xx_read_flash_dword(ha, flash_data_to_access_addr(0xd03ab));
528 *man_id = LSB(ids);
529 *flash_id = MSB(ids);
530
531 /* Check if man_id and flash_id are valid. */
532 if (ids != 0xDEADDEAD && (*man_id == 0 || *flash_id == 0)) {
533 /* Read information using 0x9f opcode
534 * Device ID, Mfg ID would be read in the format:
535 * <Ext Dev Info><Device ID Part2><Device ID Part 1><Mfg ID>
536 * Example: ATMEL 0x00 01 45 1F
537 * Extract MFG and Dev ID from last two bytes.
538 */
539 ids = qla24xx_read_flash_dword(ha,
540 flash_data_to_access_addr(0xd009f));
541 *man_id = LSB(ids);
542 *flash_id = MSB(ids);
543 }
544 }
545
546 static int
547 qla24xx_write_flash_data(scsi_qla_host_t *ha, uint32_t *dwptr, uint32_t faddr,
548 uint32_t dwords)
549 {
550 int ret;
551 uint32_t liter, miter;
552 uint32_t sec_mask, rest_addr, conf_addr;
553 uint32_t fdata, findex, cnt;
554 uint8_t man_id, flash_id;
555 struct device_reg_24xx __iomem *reg = &ha->iobase->isp24;
556 dma_addr_t optrom_dma;
557 void *optrom = NULL;
558 uint32_t *s, *d;
559
560 ret = QLA_SUCCESS;
561
562 /* Prepare burst-capable write on supported ISPs. */
563 if (IS_QLA25XX(ha) && !(faddr & 0xfff) &&
564 dwords > OPTROM_BURST_DWORDS) {
565 optrom = dma_alloc_coherent(&ha->pdev->dev, OPTROM_BURST_SIZE,
566 &optrom_dma, GFP_KERNEL);
567 if (!optrom) {
568 qla_printk(KERN_DEBUG, ha,
569 "Unable to allocate memory for optrom burst write "
570 "(%x KB).\n", OPTROM_BURST_SIZE / 1024);
571 }
572 }
573
574 qla24xx_get_flash_manufacturer(ha, &man_id, &flash_id);
575 DEBUG9(printk("%s(%ld): Flash man_id=%d flash_id=%d\n", __func__,
576 ha->host_no, man_id, flash_id));
577
578 conf_addr = flash_conf_to_access_addr(0x03d8);
579 switch (man_id) {
580 case 0xbf: /* STT flash. */
581 if (flash_id == 0x8e) {
582 rest_addr = 0x3fff;
583 sec_mask = 0x7c000;
584 } else {
585 rest_addr = 0x1fff;
586 sec_mask = 0x7e000;
587 }
588 if (flash_id == 0x80)
589 conf_addr = flash_conf_to_access_addr(0x0352);
590 break;
591 case 0x13: /* ST M25P80. */
592 rest_addr = 0x3fff;
593 sec_mask = 0x7c000;
594 break;
595 case 0x1f: // Atmel 26DF081A
596 rest_addr = 0x3fff;
597 sec_mask = 0x7c000;
598 conf_addr = flash_conf_to_access_addr(0x0320);
599 break;
600 default:
601 /* Default to 64 kb sector size. */
602 rest_addr = 0x3fff;
603 sec_mask = 0x7c000;
604 break;
605 }
606
607 /* Enable flash write. */
608 WRT_REG_DWORD(&reg->ctrl_status,
609 RD_REG_DWORD(&reg->ctrl_status) | CSRX_FLASH_ENABLE);
610 RD_REG_DWORD(&reg->ctrl_status); /* PCI Posting. */
611
612 /* Disable flash write-protection. */
613 qla24xx_write_flash_dword(ha, flash_conf_to_access_addr(0x101), 0);
614 /* Some flash parts need an additional zero-write to clear bits.*/
615 qla24xx_write_flash_dword(ha, flash_conf_to_access_addr(0x101), 0);
616
617 for (liter = 0; liter < dwords; liter++, faddr++, dwptr++) {
618 if (man_id == 0x1f) {
619 findex = faddr << 2;
620 fdata = findex & sec_mask;
621 } else {
622 findex = faddr;
623 fdata = (findex & sec_mask) << 2;
624 }
625
626 /* Are we at the beginning of a sector? */
627 if ((findex & rest_addr) == 0) {
628 /* Do sector unprotect at 4K boundry for Atmel part. */
629 if (man_id == 0x1f)
630 qla24xx_write_flash_dword(ha,
631 flash_conf_to_access_addr(0x0339),
632 (fdata & 0xff00) | ((fdata << 16) &
633 0xff0000) | ((fdata >> 16) & 0xff));
634 ret = qla24xx_write_flash_dword(ha, conf_addr,
635 (fdata & 0xff00) |((fdata << 16) &
636 0xff0000) | ((fdata >> 16) & 0xff));
637 if (ret != QLA_SUCCESS) {
638 DEBUG9(printk("%s(%ld) Unable to flash "
639 "sector: address=%x.\n", __func__,
640 ha->host_no, faddr));
641 break;
642 }
643 }
644
645 /* Go with burst-write. */
646 if (optrom && (liter + OPTROM_BURST_DWORDS) <= dwords) {
647 /* Copy data to DMA'ble buffer. */
648 for (miter = 0, s = optrom, d = dwptr;
649 miter < OPTROM_BURST_DWORDS; miter++, s++, d++)
650 *s = cpu_to_le32(*d);
651
652 ret = qla2x00_load_ram(ha, optrom_dma,
653 flash_data_to_access_addr(faddr),
654 OPTROM_BURST_DWORDS);
655 if (ret != QLA_SUCCESS) {
656 qla_printk(KERN_WARNING, ha,
657 "Unable to burst-write optrom segment "
658 "(%x/%x/%llx).\n", ret,
659 flash_data_to_access_addr(faddr),
660 (unsigned long long)optrom_dma);
661 qla_printk(KERN_WARNING, ha,
662 "Reverting to slow-write.\n");
663
664 dma_free_coherent(&ha->pdev->dev,
665 OPTROM_BURST_SIZE, optrom, optrom_dma);
666 optrom = NULL;
667 } else {
668 liter += OPTROM_BURST_DWORDS - 1;
669 faddr += OPTROM_BURST_DWORDS - 1;
670 dwptr += OPTROM_BURST_DWORDS - 1;
671 continue;
672 }
673 }
674
675 ret = qla24xx_write_flash_dword(ha,
676 flash_data_to_access_addr(faddr), cpu_to_le32(*dwptr));
677 if (ret != QLA_SUCCESS) {
678 DEBUG9(printk("%s(%ld) Unable to program flash "
679 "address=%x data=%x.\n", __func__,
680 ha->host_no, faddr, *dwptr));
681 break;
682 }
683
684 /* Do sector protect at 4K boundry for Atmel part. */
685 if (man_id == 0x1f &&
686 ((faddr & rest_addr) == rest_addr))
687 qla24xx_write_flash_dword(ha,
688 flash_conf_to_access_addr(0x0336),
689 (fdata & 0xff00) | ((fdata << 16) &
690 0xff0000) | ((fdata >> 16) & 0xff));
691 }
692
693 /* Enable flash write-protection and wait for completion. */
694 qla24xx_write_flash_dword(ha, flash_conf_to_access_addr(0x101), 0x9c);
695 for (cnt = 300; cnt &&
696 qla24xx_read_flash_dword(ha,
697 flash_conf_to_access_addr(0x005)) & BIT_0;
698 cnt--) {
699 udelay(10);
700 }
701
702 /* Disable flash write. */
703 WRT_REG_DWORD(&reg->ctrl_status,
704 RD_REG_DWORD(&reg->ctrl_status) & ~CSRX_FLASH_ENABLE);
705 RD_REG_DWORD(&reg->ctrl_status); /* PCI Posting. */
706
707 if (optrom)
708 dma_free_coherent(&ha->pdev->dev,
709 OPTROM_BURST_SIZE, optrom, optrom_dma);
710
711 return ret;
712 }
713
714 uint8_t *
715 qla2x00_read_nvram_data(scsi_qla_host_t *ha, uint8_t *buf, uint32_t naddr,
716 uint32_t bytes)
717 {
718 uint32_t i;
719 uint16_t *wptr;
720
721 /* Word reads to NVRAM via registers. */
722 wptr = (uint16_t *)buf;
723 qla2x00_lock_nvram_access(ha);
724 for (i = 0; i < bytes >> 1; i++, naddr++)
725 wptr[i] = cpu_to_le16(qla2x00_get_nvram_word(ha,
726 naddr));
727 qla2x00_unlock_nvram_access(ha);
728
729 return buf;
730 }
731
732 uint8_t *
733 qla24xx_read_nvram_data(scsi_qla_host_t *ha, uint8_t *buf, uint32_t naddr,
734 uint32_t bytes)
735 {
736 uint32_t i;
737 uint32_t *dwptr;
738
739 /* Dword reads to flash. */
740 dwptr = (uint32_t *)buf;
741 for (i = 0; i < bytes >> 2; i++, naddr++)
742 dwptr[i] = cpu_to_le32(qla24xx_read_flash_dword(ha,
743 nvram_data_to_access_addr(naddr)));
744
745 return buf;
746 }
747
748 int
749 qla2x00_write_nvram_data(scsi_qla_host_t *ha, uint8_t *buf, uint32_t naddr,
750 uint32_t bytes)
751 {
752 int ret, stat;
753 uint32_t i;
754 uint16_t *wptr;
755 unsigned long flags;
756
757 ret = QLA_SUCCESS;
758
759 spin_lock_irqsave(&ha->hardware_lock, flags);
760 qla2x00_lock_nvram_access(ha);
761
762 /* Disable NVRAM write-protection. */
763 stat = qla2x00_clear_nvram_protection(ha);
764
765 wptr = (uint16_t *)buf;
766 for (i = 0; i < bytes >> 1; i++, naddr++) {
767 qla2x00_write_nvram_word(ha, naddr,
768 cpu_to_le16(*wptr));
769 wptr++;
770 }
771
772 /* Enable NVRAM write-protection. */
773 qla2x00_set_nvram_protection(ha, stat);
774
775 qla2x00_unlock_nvram_access(ha);
776 spin_unlock_irqrestore(&ha->hardware_lock, flags);
777
778 return ret;
779 }
780
781 int
782 qla24xx_write_nvram_data(scsi_qla_host_t *ha, uint8_t *buf, uint32_t naddr,
783 uint32_t bytes)
784 {
785 int ret;
786 uint32_t i;
787 uint32_t *dwptr;
788 struct device_reg_24xx __iomem *reg = &ha->iobase->isp24;
789 unsigned long flags;
790
791 ret = QLA_SUCCESS;
792
793 spin_lock_irqsave(&ha->hardware_lock, flags);
794 /* Enable flash write. */
795 WRT_REG_DWORD(&reg->ctrl_status,
796 RD_REG_DWORD(&reg->ctrl_status) | CSRX_FLASH_ENABLE);
797 RD_REG_DWORD(&reg->ctrl_status); /* PCI Posting. */
798
799 /* Disable NVRAM write-protection. */
800 qla24xx_write_flash_dword(ha, nvram_conf_to_access_addr(0x101),
801 0);
802 qla24xx_write_flash_dword(ha, nvram_conf_to_access_addr(0x101),
803 0);
804
805 /* Dword writes to flash. */
806 dwptr = (uint32_t *)buf;
807 for (i = 0; i < bytes >> 2; i++, naddr++, dwptr++) {
808 ret = qla24xx_write_flash_dword(ha,
809 nvram_data_to_access_addr(naddr),
810 cpu_to_le32(*dwptr));
811 if (ret != QLA_SUCCESS) {
812 DEBUG9(printk("%s(%ld) Unable to program "
813 "nvram address=%x data=%x.\n", __func__,
814 ha->host_no, naddr, *dwptr));
815 break;
816 }
817 }
818
819 /* Enable NVRAM write-protection. */
820 qla24xx_write_flash_dword(ha, nvram_conf_to_access_addr(0x101),
821 0x8c);
822
823 /* Disable flash write. */
824 WRT_REG_DWORD(&reg->ctrl_status,
825 RD_REG_DWORD(&reg->ctrl_status) & ~CSRX_FLASH_ENABLE);
826 RD_REG_DWORD(&reg->ctrl_status); /* PCI Posting. */
827 spin_unlock_irqrestore(&ha->hardware_lock, flags);
828
829 return ret;
830 }
831
832 uint8_t *
833 qla25xx_read_nvram_data(scsi_qla_host_t *ha, uint8_t *buf, uint32_t naddr,
834 uint32_t bytes)
835 {
836 uint32_t i;
837 uint32_t *dwptr;
838
839 /* Dword reads to flash. */
840 dwptr = (uint32_t *)buf;
841 for (i = 0; i < bytes >> 2; i++, naddr++)
842 dwptr[i] = cpu_to_le32(qla24xx_read_flash_dword(ha,
843 flash_data_to_access_addr(FA_VPD_NVRAM_ADDR | naddr)));
844
845 return buf;
846 }
847
848 int
849 qla25xx_write_nvram_data(scsi_qla_host_t *ha, uint8_t *buf, uint32_t naddr,
850 uint32_t bytes)
851 {
852 #define RMW_BUFFER_SIZE (64 * 1024)
853 uint8_t *dbuf;
854
855 dbuf = vmalloc(RMW_BUFFER_SIZE);
856 if (!dbuf)
857 return QLA_MEMORY_ALLOC_FAILED;
858 ha->isp_ops->read_optrom(ha, dbuf, FA_VPD_NVRAM_ADDR << 2,
859 RMW_BUFFER_SIZE);
860 memcpy(dbuf + (naddr << 2), buf, bytes);
861 ha->isp_ops->write_optrom(ha, dbuf, FA_VPD_NVRAM_ADDR << 2,
862 RMW_BUFFER_SIZE);
863 vfree(dbuf);
864
865 return QLA_SUCCESS;
866 }
867
868 static inline void
869 qla2x00_flip_colors(scsi_qla_host_t *ha, uint16_t *pflags)
870 {
871 if (IS_QLA2322(ha)) {
872 /* Flip all colors. */
873 if (ha->beacon_color_state == QLA_LED_ALL_ON) {
874 /* Turn off. */
875 ha->beacon_color_state = 0;
876 *pflags = GPIO_LED_ALL_OFF;
877 } else {
878 /* Turn on. */
879 ha->beacon_color_state = QLA_LED_ALL_ON;
880 *pflags = GPIO_LED_RGA_ON;
881 }
882 } else {
883 /* Flip green led only. */
884 if (ha->beacon_color_state == QLA_LED_GRN_ON) {
885 /* Turn off. */
886 ha->beacon_color_state = 0;
887 *pflags = GPIO_LED_GREEN_OFF_AMBER_OFF;
888 } else {
889 /* Turn on. */
890 ha->beacon_color_state = QLA_LED_GRN_ON;
891 *pflags = GPIO_LED_GREEN_ON_AMBER_OFF;
892 }
893 }
894 }
895
896 #define PIO_REG(h, r) ((h)->pio_address + offsetof(struct device_reg_2xxx, r))
897
898 void
899 qla2x00_beacon_blink(struct scsi_qla_host *ha)
900 {
901 uint16_t gpio_enable;
902 uint16_t gpio_data;
903 uint16_t led_color = 0;
904 unsigned long flags;
905 struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
906
907 spin_lock_irqsave(&ha->hardware_lock, flags);
908
909 /* Save the Original GPIOE. */
910 if (ha->pio_address) {
911 gpio_enable = RD_REG_WORD_PIO(PIO_REG(ha, gpioe));
912 gpio_data = RD_REG_WORD_PIO(PIO_REG(ha, gpiod));
913 } else {
914 gpio_enable = RD_REG_WORD(&reg->gpioe);
915 gpio_data = RD_REG_WORD(&reg->gpiod);
916 }
917
918 /* Set the modified gpio_enable values */
919 gpio_enable |= GPIO_LED_MASK;
920
921 if (ha->pio_address) {
922 WRT_REG_WORD_PIO(PIO_REG(ha, gpioe), gpio_enable);
923 } else {
924 WRT_REG_WORD(&reg->gpioe, gpio_enable);
925 RD_REG_WORD(&reg->gpioe);
926 }
927
928 qla2x00_flip_colors(ha, &led_color);
929
930 /* Clear out any previously set LED color. */
931 gpio_data &= ~GPIO_LED_MASK;
932
933 /* Set the new input LED color to GPIOD. */
934 gpio_data |= led_color;
935
936 /* Set the modified gpio_data values */
937 if (ha->pio_address) {
938 WRT_REG_WORD_PIO(PIO_REG(ha, gpiod), gpio_data);
939 } else {
940 WRT_REG_WORD(&reg->gpiod, gpio_data);
941 RD_REG_WORD(&reg->gpiod);
942 }
943
944 spin_unlock_irqrestore(&ha->hardware_lock, flags);
945 }
946
947 int
948 qla2x00_beacon_on(struct scsi_qla_host *ha)
949 {
950 uint16_t gpio_enable;
951 uint16_t gpio_data;
952 unsigned long flags;
953 struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
954
955 ha->fw_options[1] &= ~FO1_SET_EMPHASIS_SWING;
956 ha->fw_options[1] |= FO1_DISABLE_GPIO6_7;
957
958 if (qla2x00_set_fw_options(ha, ha->fw_options) != QLA_SUCCESS) {
959 qla_printk(KERN_WARNING, ha,
960 "Unable to update fw options (beacon on).\n");
961 return QLA_FUNCTION_FAILED;
962 }
963
964 /* Turn off LEDs. */
965 spin_lock_irqsave(&ha->hardware_lock, flags);
966 if (ha->pio_address) {
967 gpio_enable = RD_REG_WORD_PIO(PIO_REG(ha, gpioe));
968 gpio_data = RD_REG_WORD_PIO(PIO_REG(ha, gpiod));
969 } else {
970 gpio_enable = RD_REG_WORD(&reg->gpioe);
971 gpio_data = RD_REG_WORD(&reg->gpiod);
972 }
973 gpio_enable |= GPIO_LED_MASK;
974
975 /* Set the modified gpio_enable values. */
976 if (ha->pio_address) {
977 WRT_REG_WORD_PIO(PIO_REG(ha, gpioe), gpio_enable);
978 } else {
979 WRT_REG_WORD(&reg->gpioe, gpio_enable);
980 RD_REG_WORD(&reg->gpioe);
981 }
982
983 /* Clear out previously set LED colour. */
984 gpio_data &= ~GPIO_LED_MASK;
985 if (ha->pio_address) {
986 WRT_REG_WORD_PIO(PIO_REG(ha, gpiod), gpio_data);
987 } else {
988 WRT_REG_WORD(&reg->gpiod, gpio_data);
989 RD_REG_WORD(&reg->gpiod);
990 }
991 spin_unlock_irqrestore(&ha->hardware_lock, flags);
992
993 /*
994 * Let the per HBA timer kick off the blinking process based on
995 * the following flags. No need to do anything else now.
996 */
997 ha->beacon_blink_led = 1;
998 ha->beacon_color_state = 0;
999
1000 return QLA_SUCCESS;
1001 }
1002
1003 int
1004 qla2x00_beacon_off(struct scsi_qla_host *ha)
1005 {
1006 int rval = QLA_SUCCESS;
1007
1008 ha->beacon_blink_led = 0;
1009
1010 /* Set the on flag so when it gets flipped it will be off. */
1011 if (IS_QLA2322(ha))
1012 ha->beacon_color_state = QLA_LED_ALL_ON;
1013 else
1014 ha->beacon_color_state = QLA_LED_GRN_ON;
1015
1016 ha->isp_ops->beacon_blink(ha); /* This turns green LED off */
1017
1018 ha->fw_options[1] &= ~FO1_SET_EMPHASIS_SWING;
1019 ha->fw_options[1] &= ~FO1_DISABLE_GPIO6_7;
1020
1021 rval = qla2x00_set_fw_options(ha, ha->fw_options);
1022 if (rval != QLA_SUCCESS)
1023 qla_printk(KERN_WARNING, ha,
1024 "Unable to update fw options (beacon off).\n");
1025 return rval;
1026 }
1027
1028
1029 static inline void
1030 qla24xx_flip_colors(scsi_qla_host_t *ha, uint16_t *pflags)
1031 {
1032 /* Flip all colors. */
1033 if (ha->beacon_color_state == QLA_LED_ALL_ON) {
1034 /* Turn off. */
1035 ha->beacon_color_state = 0;
1036 *pflags = 0;
1037 } else {
1038 /* Turn on. */
1039 ha->beacon_color_state = QLA_LED_ALL_ON;
1040 *pflags = GPDX_LED_YELLOW_ON | GPDX_LED_AMBER_ON;
1041 }
1042 }
1043
1044 void
1045 qla24xx_beacon_blink(struct scsi_qla_host *ha)
1046 {
1047 uint16_t led_color = 0;
1048 uint32_t gpio_data;
1049 unsigned long flags;
1050 struct device_reg_24xx __iomem *reg = &ha->iobase->isp24;
1051
1052 /* Save the Original GPIOD. */
1053 spin_lock_irqsave(&ha->hardware_lock, flags);
1054 gpio_data = RD_REG_DWORD(&reg->gpiod);
1055
1056 /* Enable the gpio_data reg for update. */
1057 gpio_data |= GPDX_LED_UPDATE_MASK;
1058
1059 WRT_REG_DWORD(&reg->gpiod, gpio_data);
1060 gpio_data = RD_REG_DWORD(&reg->gpiod);
1061
1062 /* Set the color bits. */
1063 qla24xx_flip_colors(ha, &led_color);
1064
1065 /* Clear out any previously set LED color. */
1066 gpio_data &= ~GPDX_LED_COLOR_MASK;
1067
1068 /* Set the new input LED color to GPIOD. */
1069 gpio_data |= led_color;
1070
1071 /* Set the modified gpio_data values. */
1072 WRT_REG_DWORD(&reg->gpiod, gpio_data);
1073 gpio_data = RD_REG_DWORD(&reg->gpiod);
1074 spin_unlock_irqrestore(&ha->hardware_lock, flags);
1075 }
1076
1077 int
1078 qla24xx_beacon_on(struct scsi_qla_host *ha)
1079 {
1080 uint32_t gpio_data;
1081 unsigned long flags;
1082 struct device_reg_24xx __iomem *reg = &ha->iobase->isp24;
1083
1084 if (ha->beacon_blink_led == 0) {
1085 /* Enable firmware for update */
1086 ha->fw_options[1] |= ADD_FO1_DISABLE_GPIO_LED_CTRL;
1087
1088 if (qla2x00_set_fw_options(ha, ha->fw_options) != QLA_SUCCESS)
1089 return QLA_FUNCTION_FAILED;
1090
1091 if (qla2x00_get_fw_options(ha, ha->fw_options) !=
1092 QLA_SUCCESS) {
1093 qla_printk(KERN_WARNING, ha,
1094 "Unable to update fw options (beacon on).\n");
1095 return QLA_FUNCTION_FAILED;
1096 }
1097
1098 spin_lock_irqsave(&ha->hardware_lock, flags);
1099 gpio_data = RD_REG_DWORD(&reg->gpiod);
1100
1101 /* Enable the gpio_data reg for update. */
1102 gpio_data |= GPDX_LED_UPDATE_MASK;
1103 WRT_REG_DWORD(&reg->gpiod, gpio_data);
1104 RD_REG_DWORD(&reg->gpiod);
1105
1106 spin_unlock_irqrestore(&ha->hardware_lock, flags);
1107 }
1108
1109 /* So all colors blink together. */
1110 ha->beacon_color_state = 0;
1111
1112 /* Let the per HBA timer kick off the blinking process. */
1113 ha->beacon_blink_led = 1;
1114
1115 return QLA_SUCCESS;
1116 }
1117
1118 int
1119 qla24xx_beacon_off(struct scsi_qla_host *ha)
1120 {
1121 uint32_t gpio_data;
1122 unsigned long flags;
1123 struct device_reg_24xx __iomem *reg = &ha->iobase->isp24;
1124
1125 ha->beacon_blink_led = 0;
1126 ha->beacon_color_state = QLA_LED_ALL_ON;
1127
1128 ha->isp_ops->beacon_blink(ha); /* Will flip to all off. */
1129
1130 /* Give control back to firmware. */
1131 spin_lock_irqsave(&ha->hardware_lock, flags);
1132 gpio_data = RD_REG_DWORD(&reg->gpiod);
1133
1134 /* Disable the gpio_data reg for update. */
1135 gpio_data &= ~GPDX_LED_UPDATE_MASK;
1136 WRT_REG_DWORD(&reg->gpiod, gpio_data);
1137 RD_REG_DWORD(&reg->gpiod);
1138 spin_unlock_irqrestore(&ha->hardware_lock, flags);
1139
1140 ha->fw_options[1] &= ~ADD_FO1_DISABLE_GPIO_LED_CTRL;
1141
1142 if (qla2x00_set_fw_options(ha, ha->fw_options) != QLA_SUCCESS) {
1143 qla_printk(KERN_WARNING, ha,
1144 "Unable to update fw options (beacon off).\n");
1145 return QLA_FUNCTION_FAILED;
1146 }
1147
1148 if (qla2x00_get_fw_options(ha, ha->fw_options) != QLA_SUCCESS) {
1149 qla_printk(KERN_WARNING, ha,
1150 "Unable to get fw options (beacon off).\n");
1151 return QLA_FUNCTION_FAILED;
1152 }
1153
1154 return QLA_SUCCESS;
1155 }
1156
1157
1158 /*
1159 * Flash support routines
1160 */
1161
1162 /**
1163 * qla2x00_flash_enable() - Setup flash for reading and writing.
1164 * @ha: HA context
1165 */
1166 static void
1167 qla2x00_flash_enable(scsi_qla_host_t *ha)
1168 {
1169 uint16_t data;
1170 struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
1171
1172 data = RD_REG_WORD(&reg->ctrl_status);
1173 data |= CSR_FLASH_ENABLE;
1174 WRT_REG_WORD(&reg->ctrl_status, data);
1175 RD_REG_WORD(&reg->ctrl_status); /* PCI Posting. */
1176 }
1177
1178 /**
1179 * qla2x00_flash_disable() - Disable flash and allow RISC to run.
1180 * @ha: HA context
1181 */
1182 static void
1183 qla2x00_flash_disable(scsi_qla_host_t *ha)
1184 {
1185 uint16_t data;
1186 struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
1187
1188 data = RD_REG_WORD(&reg->ctrl_status);
1189 data &= ~(CSR_FLASH_ENABLE);
1190 WRT_REG_WORD(&reg->ctrl_status, data);
1191 RD_REG_WORD(&reg->ctrl_status); /* PCI Posting. */
1192 }
1193
1194 /**
1195 * qla2x00_read_flash_byte() - Reads a byte from flash
1196 * @ha: HA context
1197 * @addr: Address in flash to read
1198 *
1199 * A word is read from the chip, but, only the lower byte is valid.
1200 *
1201 * Returns the byte read from flash @addr.
1202 */
1203 static uint8_t
1204 qla2x00_read_flash_byte(scsi_qla_host_t *ha, uint32_t addr)
1205 {
1206 uint16_t data;
1207 uint16_t bank_select;
1208 struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
1209
1210 bank_select = RD_REG_WORD(&reg->ctrl_status);
1211
1212 if (IS_QLA2322(ha) || IS_QLA6322(ha)) {
1213 /* Specify 64K address range: */
1214 /* clear out Module Select and Flash Address bits [19:16]. */
1215 bank_select &= ~0xf8;
1216 bank_select |= addr >> 12 & 0xf0;
1217 bank_select |= CSR_FLASH_64K_BANK;
1218 WRT_REG_WORD(&reg->ctrl_status, bank_select);
1219 RD_REG_WORD(&reg->ctrl_status); /* PCI Posting. */
1220
1221 WRT_REG_WORD(&reg->flash_address, (uint16_t)addr);
1222 data = RD_REG_WORD(&reg->flash_data);
1223
1224 return (uint8_t)data;
1225 }
1226
1227 /* Setup bit 16 of flash address. */
1228 if ((addr & BIT_16) && ((bank_select & CSR_FLASH_64K_BANK) == 0)) {
1229 bank_select |= CSR_FLASH_64K_BANK;
1230 WRT_REG_WORD(&reg->ctrl_status, bank_select);
1231 RD_REG_WORD(&reg->ctrl_status); /* PCI Posting. */
1232 } else if (((addr & BIT_16) == 0) &&
1233 (bank_select & CSR_FLASH_64K_BANK)) {
1234 bank_select &= ~(CSR_FLASH_64K_BANK);
1235 WRT_REG_WORD(&reg->ctrl_status, bank_select);
1236 RD_REG_WORD(&reg->ctrl_status); /* PCI Posting. */
1237 }
1238
1239 /* Always perform IO mapped accesses to the FLASH registers. */
1240 if (ha->pio_address) {
1241 uint16_t data2;
1242
1243 WRT_REG_WORD_PIO(PIO_REG(ha, flash_address), (uint16_t)addr);
1244 do {
1245 data = RD_REG_WORD_PIO(PIO_REG(ha, flash_data));
1246 barrier();
1247 cpu_relax();
1248 data2 = RD_REG_WORD_PIO(PIO_REG(ha, flash_data));
1249 } while (data != data2);
1250 } else {
1251 WRT_REG_WORD(&reg->flash_address, (uint16_t)addr);
1252 data = qla2x00_debounce_register(&reg->flash_data);
1253 }
1254
1255 return (uint8_t)data;
1256 }
1257
1258 /**
1259 * qla2x00_write_flash_byte() - Write a byte to flash
1260 * @ha: HA context
1261 * @addr: Address in flash to write
1262 * @data: Data to write
1263 */
1264 static void
1265 qla2x00_write_flash_byte(scsi_qla_host_t *ha, uint32_t addr, uint8_t data)
1266 {
1267 uint16_t bank_select;
1268 struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
1269
1270 bank_select = RD_REG_WORD(&reg->ctrl_status);
1271 if (IS_QLA2322(ha) || IS_QLA6322(ha)) {
1272 /* Specify 64K address range: */
1273 /* clear out Module Select and Flash Address bits [19:16]. */
1274 bank_select &= ~0xf8;
1275 bank_select |= addr >> 12 & 0xf0;
1276 bank_select |= CSR_FLASH_64K_BANK;
1277 WRT_REG_WORD(&reg->ctrl_status, bank_select);
1278 RD_REG_WORD(&reg->ctrl_status); /* PCI Posting. */
1279
1280 WRT_REG_WORD(&reg->flash_address, (uint16_t)addr);
1281 RD_REG_WORD(&reg->ctrl_status); /* PCI Posting. */
1282 WRT_REG_WORD(&reg->flash_data, (uint16_t)data);
1283 RD_REG_WORD(&reg->ctrl_status); /* PCI Posting. */
1284
1285 return;
1286 }
1287
1288 /* Setup bit 16 of flash address. */
1289 if ((addr & BIT_16) && ((bank_select & CSR_FLASH_64K_BANK) == 0)) {
1290 bank_select |= CSR_FLASH_64K_BANK;
1291 WRT_REG_WORD(&reg->ctrl_status, bank_select);
1292 RD_REG_WORD(&reg->ctrl_status); /* PCI Posting. */
1293 } else if (((addr & BIT_16) == 0) &&
1294 (bank_select & CSR_FLASH_64K_BANK)) {
1295 bank_select &= ~(CSR_FLASH_64K_BANK);
1296 WRT_REG_WORD(&reg->ctrl_status, bank_select);
1297 RD_REG_WORD(&reg->ctrl_status); /* PCI Posting. */
1298 }
1299
1300 /* Always perform IO mapped accesses to the FLASH registers. */
1301 if (ha->pio_address) {
1302 WRT_REG_WORD_PIO(PIO_REG(ha, flash_address), (uint16_t)addr);
1303 WRT_REG_WORD_PIO(PIO_REG(ha, flash_data), (uint16_t)data);
1304 } else {
1305 WRT_REG_WORD(&reg->flash_address, (uint16_t)addr);
1306 RD_REG_WORD(&reg->ctrl_status); /* PCI Posting. */
1307 WRT_REG_WORD(&reg->flash_data, (uint16_t)data);
1308 RD_REG_WORD(&reg->ctrl_status); /* PCI Posting. */
1309 }
1310 }
1311
1312 /**
1313 * qla2x00_poll_flash() - Polls flash for completion.
1314 * @ha: HA context
1315 * @addr: Address in flash to poll
1316 * @poll_data: Data to be polled
1317 * @man_id: Flash manufacturer ID
1318 * @flash_id: Flash ID
1319 *
1320 * This function polls the device until bit 7 of what is read matches data
1321 * bit 7 or until data bit 5 becomes a 1. If that hapens, the flash ROM timed
1322 * out (a fatal error). The flash book recommeds reading bit 7 again after
1323 * reading bit 5 as a 1.
1324 *
1325 * Returns 0 on success, else non-zero.
1326 */
1327 static int
1328 qla2x00_poll_flash(scsi_qla_host_t *ha, uint32_t addr, uint8_t poll_data,
1329 uint8_t man_id, uint8_t flash_id)
1330 {
1331 int status;
1332 uint8_t flash_data;
1333 uint32_t cnt;
1334
1335 status = 1;
1336
1337 /* Wait for 30 seconds for command to finish. */
1338 poll_data &= BIT_7;
1339 for (cnt = 3000000; cnt; cnt--) {
1340 flash_data = qla2x00_read_flash_byte(ha, addr);
1341 if ((flash_data & BIT_7) == poll_data) {
1342 status = 0;
1343 break;
1344 }
1345
1346 if (man_id != 0x40 && man_id != 0xda) {
1347 if ((flash_data & BIT_5) && cnt > 2)
1348 cnt = 2;
1349 }
1350 udelay(10);
1351 barrier();
1352 cond_resched();
1353 }
1354 return status;
1355 }
1356
1357 /**
1358 * qla2x00_program_flash_address() - Programs a flash address
1359 * @ha: HA context
1360 * @addr: Address in flash to program
1361 * @data: Data to be written in flash
1362 * @man_id: Flash manufacturer ID
1363 * @flash_id: Flash ID
1364 *
1365 * Returns 0 on success, else non-zero.
1366 */
1367 static int
1368 qla2x00_program_flash_address(scsi_qla_host_t *ha, uint32_t addr, uint8_t data,
1369 uint8_t man_id, uint8_t flash_id)
1370 {
1371 /* Write Program Command Sequence. */
1372 if (IS_OEM_001(ha)) {
1373 qla2x00_write_flash_byte(ha, 0xaaa, 0xaa);
1374 qla2x00_write_flash_byte(ha, 0x555, 0x55);
1375 qla2x00_write_flash_byte(ha, 0xaaa, 0xa0);
1376 qla2x00_write_flash_byte(ha, addr, data);
1377 } else {
1378 if (man_id == 0xda && flash_id == 0xc1) {
1379 qla2x00_write_flash_byte(ha, addr, data);
1380 if (addr & 0x7e)
1381 return 0;
1382 } else {
1383 qla2x00_write_flash_byte(ha, 0x5555, 0xaa);
1384 qla2x00_write_flash_byte(ha, 0x2aaa, 0x55);
1385 qla2x00_write_flash_byte(ha, 0x5555, 0xa0);
1386 qla2x00_write_flash_byte(ha, addr, data);
1387 }
1388 }
1389
1390 udelay(150);
1391
1392 /* Wait for write to complete. */
1393 return qla2x00_poll_flash(ha, addr, data, man_id, flash_id);
1394 }
1395
1396 /**
1397 * qla2x00_erase_flash() - Erase the flash.
1398 * @ha: HA context
1399 * @man_id: Flash manufacturer ID
1400 * @flash_id: Flash ID
1401 *
1402 * Returns 0 on success, else non-zero.
1403 */
1404 static int
1405 qla2x00_erase_flash(scsi_qla_host_t *ha, uint8_t man_id, uint8_t flash_id)
1406 {
1407 /* Individual Sector Erase Command Sequence */
1408 if (IS_OEM_001(ha)) {
1409 qla2x00_write_flash_byte(ha, 0xaaa, 0xaa);
1410 qla2x00_write_flash_byte(ha, 0x555, 0x55);
1411 qla2x00_write_flash_byte(ha, 0xaaa, 0x80);
1412 qla2x00_write_flash_byte(ha, 0xaaa, 0xaa);
1413 qla2x00_write_flash_byte(ha, 0x555, 0x55);
1414 qla2x00_write_flash_byte(ha, 0xaaa, 0x10);
1415 } else {
1416 qla2x00_write_flash_byte(ha, 0x5555, 0xaa);
1417 qla2x00_write_flash_byte(ha, 0x2aaa, 0x55);
1418 qla2x00_write_flash_byte(ha, 0x5555, 0x80);
1419 qla2x00_write_flash_byte(ha, 0x5555, 0xaa);
1420 qla2x00_write_flash_byte(ha, 0x2aaa, 0x55);
1421 qla2x00_write_flash_byte(ha, 0x5555, 0x10);
1422 }
1423
1424 udelay(150);
1425
1426 /* Wait for erase to complete. */
1427 return qla2x00_poll_flash(ha, 0x00, 0x80, man_id, flash_id);
1428 }
1429
1430 /**
1431 * qla2x00_erase_flash_sector() - Erase a flash sector.
1432 * @ha: HA context
1433 * @addr: Flash sector to erase
1434 * @sec_mask: Sector address mask
1435 * @man_id: Flash manufacturer ID
1436 * @flash_id: Flash ID
1437 *
1438 * Returns 0 on success, else non-zero.
1439 */
1440 static int
1441 qla2x00_erase_flash_sector(scsi_qla_host_t *ha, uint32_t addr,
1442 uint32_t sec_mask, uint8_t man_id, uint8_t flash_id)
1443 {
1444 /* Individual Sector Erase Command Sequence */
1445 qla2x00_write_flash_byte(ha, 0x5555, 0xaa);
1446 qla2x00_write_flash_byte(ha, 0x2aaa, 0x55);
1447 qla2x00_write_flash_byte(ha, 0x5555, 0x80);
1448 qla2x00_write_flash_byte(ha, 0x5555, 0xaa);
1449 qla2x00_write_flash_byte(ha, 0x2aaa, 0x55);
1450 if (man_id == 0x1f && flash_id == 0x13)
1451 qla2x00_write_flash_byte(ha, addr & sec_mask, 0x10);
1452 else
1453 qla2x00_write_flash_byte(ha, addr & sec_mask, 0x30);
1454
1455 udelay(150);
1456
1457 /* Wait for erase to complete. */
1458 return qla2x00_poll_flash(ha, addr, 0x80, man_id, flash_id);
1459 }
1460
1461 /**
1462 * qla2x00_get_flash_manufacturer() - Read manufacturer ID from flash chip.
1463 * @man_id: Flash manufacturer ID
1464 * @flash_id: Flash ID
1465 */
1466 static void
1467 qla2x00_get_flash_manufacturer(scsi_qla_host_t *ha, uint8_t *man_id,
1468 uint8_t *flash_id)
1469 {
1470 qla2x00_write_flash_byte(ha, 0x5555, 0xaa);
1471 qla2x00_write_flash_byte(ha, 0x2aaa, 0x55);
1472 qla2x00_write_flash_byte(ha, 0x5555, 0x90);
1473 *man_id = qla2x00_read_flash_byte(ha, 0x0000);
1474 *flash_id = qla2x00_read_flash_byte(ha, 0x0001);
1475 qla2x00_write_flash_byte(ha, 0x5555, 0xaa);
1476 qla2x00_write_flash_byte(ha, 0x2aaa, 0x55);
1477 qla2x00_write_flash_byte(ha, 0x5555, 0xf0);
1478 }
1479
1480 static void
1481 qla2x00_read_flash_data(scsi_qla_host_t *ha, uint8_t *tmp_buf, uint32_t saddr,
1482 uint32_t length)
1483 {
1484 struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
1485 uint32_t midpoint, ilength;
1486 uint8_t data;
1487
1488 midpoint = length / 2;
1489
1490 WRT_REG_WORD(&reg->nvram, 0);
1491 RD_REG_WORD(&reg->nvram);
1492 for (ilength = 0; ilength < length; saddr++, ilength++, tmp_buf++) {
1493 if (ilength == midpoint) {
1494 WRT_REG_WORD(&reg->nvram, NVR_SELECT);
1495 RD_REG_WORD(&reg->nvram);
1496 }
1497 data = qla2x00_read_flash_byte(ha, saddr);
1498 if (saddr % 100)
1499 udelay(10);
1500 *tmp_buf = data;
1501 cond_resched();
1502 }
1503 }
1504
1505 static inline void
1506 qla2x00_suspend_hba(struct scsi_qla_host *ha)
1507 {
1508 int cnt;
1509 unsigned long flags;
1510 struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
1511
1512 /* Suspend HBA. */
1513 scsi_block_requests(ha->host);
1514 ha->isp_ops->disable_intrs(ha);
1515 set_bit(MBX_UPDATE_FLASH_ACTIVE, &ha->mbx_cmd_flags);
1516
1517 /* Pause RISC. */
1518 spin_lock_irqsave(&ha->hardware_lock, flags);
1519 WRT_REG_WORD(&reg->hccr, HCCR_PAUSE_RISC);
1520 RD_REG_WORD(&reg->hccr);
1521 if (IS_QLA2100(ha) || IS_QLA2200(ha) || IS_QLA2300(ha)) {
1522 for (cnt = 0; cnt < 30000; cnt++) {
1523 if ((RD_REG_WORD(&reg->hccr) & HCCR_RISC_PAUSE) != 0)
1524 break;
1525 udelay(100);
1526 }
1527 } else {
1528 udelay(10);
1529 }
1530 spin_unlock_irqrestore(&ha->hardware_lock, flags);
1531 }
1532
1533 static inline void
1534 qla2x00_resume_hba(struct scsi_qla_host *ha)
1535 {
1536 /* Resume HBA. */
1537 clear_bit(MBX_UPDATE_FLASH_ACTIVE, &ha->mbx_cmd_flags);
1538 set_bit(ISP_ABORT_NEEDED, &ha->dpc_flags);
1539 qla2xxx_wake_dpc(ha);
1540 qla2x00_wait_for_hba_online(ha);
1541 scsi_unblock_requests(ha->host);
1542 }
1543
1544 uint8_t *
1545 qla2x00_read_optrom_data(struct scsi_qla_host *ha, uint8_t *buf,
1546 uint32_t offset, uint32_t length)
1547 {
1548 uint32_t addr, midpoint;
1549 uint8_t *data;
1550 struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
1551
1552 /* Suspend HBA. */
1553 qla2x00_suspend_hba(ha);
1554
1555 /* Go with read. */
1556 midpoint = ha->optrom_size / 2;
1557
1558 qla2x00_flash_enable(ha);
1559 WRT_REG_WORD(&reg->nvram, 0);
1560 RD_REG_WORD(&reg->nvram); /* PCI Posting. */
1561 for (addr = offset, data = buf; addr < length; addr++, data++) {
1562 if (addr == midpoint) {
1563 WRT_REG_WORD(&reg->nvram, NVR_SELECT);
1564 RD_REG_WORD(&reg->nvram); /* PCI Posting. */
1565 }
1566
1567 *data = qla2x00_read_flash_byte(ha, addr);
1568 }
1569 qla2x00_flash_disable(ha);
1570
1571 /* Resume HBA. */
1572 qla2x00_resume_hba(ha);
1573
1574 return buf;
1575 }
1576
1577 int
1578 qla2x00_write_optrom_data(struct scsi_qla_host *ha, uint8_t *buf,
1579 uint32_t offset, uint32_t length)
1580 {
1581
1582 int rval;
1583 uint8_t man_id, flash_id, sec_number, data;
1584 uint16_t wd;
1585 uint32_t addr, liter, sec_mask, rest_addr;
1586 struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
1587
1588 /* Suspend HBA. */
1589 qla2x00_suspend_hba(ha);
1590
1591 rval = QLA_SUCCESS;
1592 sec_number = 0;
1593
1594 /* Reset ISP chip. */
1595 WRT_REG_WORD(&reg->ctrl_status, CSR_ISP_SOFT_RESET);
1596 pci_read_config_word(ha->pdev, PCI_COMMAND, &wd);
1597
1598 /* Go with write. */
1599 qla2x00_flash_enable(ha);
1600 do { /* Loop once to provide quick error exit */
1601 /* Structure of flash memory based on manufacturer */
1602 if (IS_OEM_001(ha)) {
1603 /* OEM variant with special flash part. */
1604 man_id = flash_id = 0;
1605 rest_addr = 0xffff;
1606 sec_mask = 0x10000;
1607 goto update_flash;
1608 }
1609 qla2x00_get_flash_manufacturer(ha, &man_id, &flash_id);
1610 switch (man_id) {
1611 case 0x20: /* ST flash. */
1612 if (flash_id == 0xd2 || flash_id == 0xe3) {
1613 /*
1614 * ST m29w008at part - 64kb sector size with
1615 * 32kb,8kb,8kb,16kb sectors at memory address
1616 * 0xf0000.
1617 */
1618 rest_addr = 0xffff;
1619 sec_mask = 0x10000;
1620 break;
1621 }
1622 /*
1623 * ST m29w010b part - 16kb sector size
1624 * Default to 16kb sectors
1625 */
1626 rest_addr = 0x3fff;
1627 sec_mask = 0x1c000;
1628 break;
1629 case 0x40: /* Mostel flash. */
1630 /* Mostel v29c51001 part - 512 byte sector size. */
1631 rest_addr = 0x1ff;
1632 sec_mask = 0x1fe00;
1633 break;
1634 case 0xbf: /* SST flash. */
1635 /* SST39sf10 part - 4kb sector size. */
1636 rest_addr = 0xfff;
1637 sec_mask = 0x1f000;
1638 break;
1639 case 0xda: /* Winbond flash. */
1640 /* Winbond W29EE011 part - 256 byte sector size. */
1641 rest_addr = 0x7f;
1642 sec_mask = 0x1ff80;
1643 break;
1644 case 0xc2: /* Macronix flash. */
1645 /* 64k sector size. */
1646 if (flash_id == 0x38 || flash_id == 0x4f) {
1647 rest_addr = 0xffff;
1648 sec_mask = 0x10000;
1649 break;
1650 }
1651 /* Fall through... */
1652
1653 case 0x1f: /* Atmel flash. */
1654 /* 512k sector size. */
1655 if (flash_id == 0x13) {
1656 rest_addr = 0x7fffffff;
1657 sec_mask = 0x80000000;
1658 break;
1659 }
1660 /* Fall through... */
1661
1662 case 0x01: /* AMD flash. */
1663 if (flash_id == 0x38 || flash_id == 0x40 ||
1664 flash_id == 0x4f) {
1665 /* Am29LV081 part - 64kb sector size. */
1666 /* Am29LV002BT part - 64kb sector size. */
1667 rest_addr = 0xffff;
1668 sec_mask = 0x10000;
1669 break;
1670 } else if (flash_id == 0x3e) {
1671 /*
1672 * Am29LV008b part - 64kb sector size with
1673 * 32kb,8kb,8kb,16kb sector at memory address
1674 * h0xf0000.
1675 */
1676 rest_addr = 0xffff;
1677 sec_mask = 0x10000;
1678 break;
1679 } else if (flash_id == 0x20 || flash_id == 0x6e) {
1680 /*
1681 * Am29LV010 part or AM29f010 - 16kb sector
1682 * size.
1683 */
1684 rest_addr = 0x3fff;
1685 sec_mask = 0x1c000;
1686 break;
1687 } else if (flash_id == 0x6d) {
1688 /* Am29LV001 part - 8kb sector size. */
1689 rest_addr = 0x1fff;
1690 sec_mask = 0x1e000;
1691 break;
1692 }
1693 default:
1694 /* Default to 16 kb sector size. */
1695 rest_addr = 0x3fff;
1696 sec_mask = 0x1c000;
1697 break;
1698 }
1699
1700 update_flash:
1701 if (IS_QLA2322(ha) || IS_QLA6322(ha)) {
1702 if (qla2x00_erase_flash(ha, man_id, flash_id)) {
1703 rval = QLA_FUNCTION_FAILED;
1704 break;
1705 }
1706 }
1707
1708 for (addr = offset, liter = 0; liter < length; liter++,
1709 addr++) {
1710 data = buf[liter];
1711 /* Are we at the beginning of a sector? */
1712 if ((addr & rest_addr) == 0) {
1713 if (IS_QLA2322(ha) || IS_QLA6322(ha)) {
1714 if (addr >= 0x10000UL) {
1715 if (((addr >> 12) & 0xf0) &&
1716 ((man_id == 0x01 &&
1717 flash_id == 0x3e) ||
1718 (man_id == 0x20 &&
1719 flash_id == 0xd2))) {
1720 sec_number++;
1721 if (sec_number == 1) {
1722 rest_addr =
1723 0x7fff;
1724 sec_mask =
1725 0x18000;
1726 } else if (
1727 sec_number == 2 ||
1728 sec_number == 3) {
1729 rest_addr =
1730 0x1fff;
1731 sec_mask =
1732 0x1e000;
1733 } else if (
1734 sec_number == 4) {
1735 rest_addr =
1736 0x3fff;
1737 sec_mask =
1738 0x1c000;
1739 }
1740 }
1741 }
1742 } else if (addr == ha->optrom_size / 2) {
1743 WRT_REG_WORD(&reg->nvram, NVR_SELECT);
1744 RD_REG_WORD(&reg->nvram);
1745 }
1746
1747 if (flash_id == 0xda && man_id == 0xc1) {
1748 qla2x00_write_flash_byte(ha, 0x5555,
1749 0xaa);
1750 qla2x00_write_flash_byte(ha, 0x2aaa,
1751 0x55);
1752 qla2x00_write_flash_byte(ha, 0x5555,
1753 0xa0);
1754 } else if (!IS_QLA2322(ha) && !IS_QLA6322(ha)) {
1755 /* Then erase it */
1756 if (qla2x00_erase_flash_sector(ha,
1757 addr, sec_mask, man_id,
1758 flash_id)) {
1759 rval = QLA_FUNCTION_FAILED;
1760 break;
1761 }
1762 if (man_id == 0x01 && flash_id == 0x6d)
1763 sec_number++;
1764 }
1765 }
1766
1767 if (man_id == 0x01 && flash_id == 0x6d) {
1768 if (sec_number == 1 &&
1769 addr == (rest_addr - 1)) {
1770 rest_addr = 0x0fff;
1771 sec_mask = 0x1f000;
1772 } else if (sec_number == 3 && (addr & 0x7ffe)) {
1773 rest_addr = 0x3fff;
1774 sec_mask = 0x1c000;
1775 }
1776 }
1777
1778 if (qla2x00_program_flash_address(ha, addr, data,
1779 man_id, flash_id)) {
1780 rval = QLA_FUNCTION_FAILED;
1781 break;
1782 }
1783 cond_resched();
1784 }
1785 } while (0);
1786 qla2x00_flash_disable(ha);
1787
1788 /* Resume HBA. */
1789 qla2x00_resume_hba(ha);
1790
1791 return rval;
1792 }
1793
1794 uint8_t *
1795 qla24xx_read_optrom_data(struct scsi_qla_host *ha, uint8_t *buf,
1796 uint32_t offset, uint32_t length)
1797 {
1798 /* Suspend HBA. */
1799 scsi_block_requests(ha->host);
1800 set_bit(MBX_UPDATE_FLASH_ACTIVE, &ha->mbx_cmd_flags);
1801
1802 /* Go with read. */
1803 qla24xx_read_flash_data(ha, (uint32_t *)buf, offset >> 2, length >> 2);
1804
1805 /* Resume HBA. */
1806 clear_bit(MBX_UPDATE_FLASH_ACTIVE, &ha->mbx_cmd_flags);
1807 scsi_unblock_requests(ha->host);
1808
1809 return buf;
1810 }
1811
1812 int
1813 qla24xx_write_optrom_data(struct scsi_qla_host *ha, uint8_t *buf,
1814 uint32_t offset, uint32_t length)
1815 {
1816 int rval;
1817
1818 /* Suspend HBA. */
1819 scsi_block_requests(ha->host);
1820 set_bit(MBX_UPDATE_FLASH_ACTIVE, &ha->mbx_cmd_flags);
1821
1822 /* Go with write. */
1823 rval = qla24xx_write_flash_data(ha, (uint32_t *)buf, offset >> 2,
1824 length >> 2);
1825
1826 /* Resume HBA -- RISC reset needed. */
1827 clear_bit(MBX_UPDATE_FLASH_ACTIVE, &ha->mbx_cmd_flags);
1828 set_bit(ISP_ABORT_NEEDED, &ha->dpc_flags);
1829 qla2xxx_wake_dpc(ha);
1830 qla2x00_wait_for_hba_online(ha);
1831 scsi_unblock_requests(ha->host);
1832
1833 return rval;
1834 }
1835
1836 uint8_t *
1837 qla25xx_read_optrom_data(struct scsi_qla_host *ha, uint8_t *buf,
1838 uint32_t offset, uint32_t length)
1839 {
1840 int rval;
1841 dma_addr_t optrom_dma;
1842 void *optrom;
1843 uint8_t *pbuf;
1844 uint32_t faddr, left, burst;
1845
1846 if (offset & 0xfff)
1847 goto slow_read;
1848 if (length < OPTROM_BURST_SIZE)
1849 goto slow_read;
1850
1851 optrom = dma_alloc_coherent(&ha->pdev->dev, OPTROM_BURST_SIZE,
1852 &optrom_dma, GFP_KERNEL);
1853 if (!optrom) {
1854 qla_printk(KERN_DEBUG, ha,
1855 "Unable to allocate memory for optrom burst read "
1856 "(%x KB).\n", OPTROM_BURST_SIZE / 1024);
1857
1858 goto slow_read;
1859 }
1860
1861 pbuf = buf;
1862 faddr = offset >> 2;
1863 left = length >> 2;
1864 burst = OPTROM_BURST_DWORDS;
1865 while (left != 0) {
1866 if (burst > left)
1867 burst = left;
1868
1869 rval = qla2x00_dump_ram(ha, optrom_dma,
1870 flash_data_to_access_addr(faddr), burst);
1871 if (rval) {
1872 qla_printk(KERN_WARNING, ha,
1873 "Unable to burst-read optrom segment "
1874 "(%x/%x/%llx).\n", rval,
1875 flash_data_to_access_addr(faddr),
1876 (unsigned long long)optrom_dma);
1877 qla_printk(KERN_WARNING, ha,
1878 "Reverting to slow-read.\n");
1879
1880 dma_free_coherent(&ha->pdev->dev, OPTROM_BURST_SIZE,
1881 optrom, optrom_dma);
1882 goto slow_read;
1883 }
1884
1885 memcpy(pbuf, optrom, burst * 4);
1886
1887 left -= burst;
1888 faddr += burst;
1889 pbuf += burst * 4;
1890 }
1891
1892 dma_free_coherent(&ha->pdev->dev, OPTROM_BURST_SIZE, optrom,
1893 optrom_dma);
1894
1895 return buf;
1896
1897 slow_read:
1898 return qla24xx_read_optrom_data(ha, buf, offset, length);
1899 }
1900
1901 /**
1902 * qla2x00_get_fcode_version() - Determine an FCODE image's version.
1903 * @ha: HA context
1904 * @pcids: Pointer to the FCODE PCI data structure
1905 *
1906 * The process of retrieving the FCODE version information is at best
1907 * described as interesting.
1908 *
1909 * Within the first 100h bytes of the image an ASCII string is present
1910 * which contains several pieces of information including the FCODE
1911 * version. Unfortunately it seems the only reliable way to retrieve
1912 * the version is by scanning for another sentinel within the string,
1913 * the FCODE build date:
1914 *
1915 * ... 2.00.02 10/17/02 ...
1916 *
1917 * Returns QLA_SUCCESS on successful retrieval of version.
1918 */
1919 static void
1920 qla2x00_get_fcode_version(scsi_qla_host_t *ha, uint32_t pcids)
1921 {
1922 int ret = QLA_FUNCTION_FAILED;
1923 uint32_t istart, iend, iter, vend;
1924 uint8_t do_next, rbyte, *vbyte;
1925
1926 memset(ha->fcode_revision, 0, sizeof(ha->fcode_revision));
1927
1928 /* Skip the PCI data structure. */
1929 istart = pcids +
1930 ((qla2x00_read_flash_byte(ha, pcids + 0x0B) << 8) |
1931 qla2x00_read_flash_byte(ha, pcids + 0x0A));
1932 iend = istart + 0x100;
1933 do {
1934 /* Scan for the sentinel date string...eeewww. */
1935 do_next = 0;
1936 iter = istart;
1937 while ((iter < iend) && !do_next) {
1938 iter++;
1939 if (qla2x00_read_flash_byte(ha, iter) == '/') {
1940 if (qla2x00_read_flash_byte(ha, iter + 2) ==
1941 '/')
1942 do_next++;
1943 else if (qla2x00_read_flash_byte(ha,
1944 iter + 3) == '/')
1945 do_next++;
1946 }
1947 }
1948 if (!do_next)
1949 break;
1950
1951 /* Backtrack to previous ' ' (space). */
1952 do_next = 0;
1953 while ((iter > istart) && !do_next) {
1954 iter--;
1955 if (qla2x00_read_flash_byte(ha, iter) == ' ')
1956 do_next++;
1957 }
1958 if (!do_next)
1959 break;
1960
1961 /*
1962 * Mark end of version tag, and find previous ' ' (space) or
1963 * string length (recent FCODE images -- major hack ahead!!!).
1964 */
1965 vend = iter - 1;
1966 do_next = 0;
1967 while ((iter > istart) && !do_next) {
1968 iter--;
1969 rbyte = qla2x00_read_flash_byte(ha, iter);
1970 if (rbyte == ' ' || rbyte == 0xd || rbyte == 0x10)
1971 do_next++;
1972 }
1973 if (!do_next)
1974 break;
1975
1976 /* Mark beginning of version tag, and copy data. */
1977 iter++;
1978 if ((vend - iter) &&
1979 ((vend - iter) < sizeof(ha->fcode_revision))) {
1980 vbyte = ha->fcode_revision;
1981 while (iter <= vend) {
1982 *vbyte++ = qla2x00_read_flash_byte(ha, iter);
1983 iter++;
1984 }
1985 ret = QLA_SUCCESS;
1986 }
1987 } while (0);
1988
1989 if (ret != QLA_SUCCESS)
1990 memset(ha->fcode_revision, 0, sizeof(ha->fcode_revision));
1991 }
1992
1993 int
1994 qla2x00_get_flash_version(scsi_qla_host_t *ha, void *mbuf)
1995 {
1996 int ret = QLA_SUCCESS;
1997 uint8_t code_type, last_image;
1998 uint32_t pcihdr, pcids;
1999 uint8_t *dbyte;
2000 uint16_t *dcode;
2001
2002 if (!ha->pio_address || !mbuf)
2003 return QLA_FUNCTION_FAILED;
2004
2005 memset(ha->bios_revision, 0, sizeof(ha->bios_revision));
2006 memset(ha->efi_revision, 0, sizeof(ha->efi_revision));
2007 memset(ha->fcode_revision, 0, sizeof(ha->fcode_revision));
2008 memset(ha->fw_revision, 0, sizeof(ha->fw_revision));
2009
2010 qla2x00_flash_enable(ha);
2011
2012 /* Begin with first PCI expansion ROM header. */
2013 pcihdr = 0;
2014 last_image = 1;
2015 do {
2016 /* Verify PCI expansion ROM header. */
2017 if (qla2x00_read_flash_byte(ha, pcihdr) != 0x55 ||
2018 qla2x00_read_flash_byte(ha, pcihdr + 0x01) != 0xaa) {
2019 /* No signature */
2020 DEBUG2(printk("scsi(%ld): No matching ROM "
2021 "signature.\n", ha->host_no));
2022 ret = QLA_FUNCTION_FAILED;
2023 break;
2024 }
2025
2026 /* Locate PCI data structure. */
2027 pcids = pcihdr +
2028 ((qla2x00_read_flash_byte(ha, pcihdr + 0x19) << 8) |
2029 qla2x00_read_flash_byte(ha, pcihdr + 0x18));
2030
2031 /* Validate signature of PCI data structure. */
2032 if (qla2x00_read_flash_byte(ha, pcids) != 'P' ||
2033 qla2x00_read_flash_byte(ha, pcids + 0x1) != 'C' ||
2034 qla2x00_read_flash_byte(ha, pcids + 0x2) != 'I' ||
2035 qla2x00_read_flash_byte(ha, pcids + 0x3) != 'R') {
2036 /* Incorrect header. */
2037 DEBUG2(printk("%s(): PCI data struct not found "
2038 "pcir_adr=%x.\n", __func__, pcids));
2039 ret = QLA_FUNCTION_FAILED;
2040 break;
2041 }
2042
2043 /* Read version */
2044 code_type = qla2x00_read_flash_byte(ha, pcids + 0x14);
2045 switch (code_type) {
2046 case ROM_CODE_TYPE_BIOS:
2047 /* Intel x86, PC-AT compatible. */
2048 ha->bios_revision[0] =
2049 qla2x00_read_flash_byte(ha, pcids + 0x12);
2050 ha->bios_revision[1] =
2051 qla2x00_read_flash_byte(ha, pcids + 0x13);
2052 DEBUG3(printk("%s(): read BIOS %d.%d.\n", __func__,
2053 ha->bios_revision[1], ha->bios_revision[0]));
2054 break;
2055 case ROM_CODE_TYPE_FCODE:
2056 /* Open Firmware standard for PCI (FCode). */
2057 /* Eeeewww... */
2058 qla2x00_get_fcode_version(ha, pcids);
2059 break;
2060 case ROM_CODE_TYPE_EFI:
2061 /* Extensible Firmware Interface (EFI). */
2062 ha->efi_revision[0] =
2063 qla2x00_read_flash_byte(ha, pcids + 0x12);
2064 ha->efi_revision[1] =
2065 qla2x00_read_flash_byte(ha, pcids + 0x13);
2066 DEBUG3(printk("%s(): read EFI %d.%d.\n", __func__,
2067 ha->efi_revision[1], ha->efi_revision[0]));
2068 break;
2069 default:
2070 DEBUG2(printk("%s(): Unrecognized code type %x at "
2071 "pcids %x.\n", __func__, code_type, pcids));
2072 break;
2073 }
2074
2075 last_image = qla2x00_read_flash_byte(ha, pcids + 0x15) & BIT_7;
2076
2077 /* Locate next PCI expansion ROM. */
2078 pcihdr += ((qla2x00_read_flash_byte(ha, pcids + 0x11) << 8) |
2079 qla2x00_read_flash_byte(ha, pcids + 0x10)) * 512;
2080 } while (!last_image);
2081
2082 if (IS_QLA2322(ha)) {
2083 /* Read firmware image information. */
2084 memset(ha->fw_revision, 0, sizeof(ha->fw_revision));
2085 dbyte = mbuf;
2086 memset(dbyte, 0, 8);
2087 dcode = (uint16_t *)dbyte;
2088
2089 qla2x00_read_flash_data(ha, dbyte, FA_RISC_CODE_ADDR * 4 + 10,
2090 8);
2091 DEBUG3(printk("%s(%ld): dumping fw ver from flash:\n",
2092 __func__, ha->host_no));
2093 DEBUG3(qla2x00_dump_buffer((uint8_t *)dbyte, 8));
2094
2095 if ((dcode[0] == 0xffff && dcode[1] == 0xffff &&
2096 dcode[2] == 0xffff && dcode[3] == 0xffff) ||
2097 (dcode[0] == 0 && dcode[1] == 0 && dcode[2] == 0 &&
2098 dcode[3] == 0)) {
2099 DEBUG2(printk("%s(): Unrecognized fw revision at "
2100 "%x.\n", __func__, FA_RISC_CODE_ADDR * 4));
2101 } else {
2102 /* values are in big endian */
2103 ha->fw_revision[0] = dbyte[0] << 16 | dbyte[1];
2104 ha->fw_revision[1] = dbyte[2] << 16 | dbyte[3];
2105 ha->fw_revision[2] = dbyte[4] << 16 | dbyte[5];
2106 }
2107 }
2108
2109 qla2x00_flash_disable(ha);
2110
2111 return ret;
2112 }
2113
2114 int
2115 qla24xx_get_flash_version(scsi_qla_host_t *ha, void *mbuf)
2116 {
2117 int ret = QLA_SUCCESS;
2118 uint32_t pcihdr, pcids;
2119 uint32_t *dcode;
2120 uint8_t *bcode;
2121 uint8_t code_type, last_image;
2122 int i;
2123
2124 if (!mbuf)
2125 return QLA_FUNCTION_FAILED;
2126
2127 memset(ha->bios_revision, 0, sizeof(ha->bios_revision));
2128 memset(ha->efi_revision, 0, sizeof(ha->efi_revision));
2129 memset(ha->fcode_revision, 0, sizeof(ha->fcode_revision));
2130 memset(ha->fw_revision, 0, sizeof(ha->fw_revision));
2131
2132 dcode = mbuf;
2133
2134 /* Begin with first PCI expansion ROM header. */
2135 pcihdr = 0;
2136 last_image = 1;
2137 do {
2138 /* Verify PCI expansion ROM header. */
2139 qla24xx_read_flash_data(ha, dcode, pcihdr >> 2, 0x20);
2140 bcode = mbuf + (pcihdr % 4);
2141 if (bcode[0x0] != 0x55 || bcode[0x1] != 0xaa) {
2142 /* No signature */
2143 DEBUG2(printk("scsi(%ld): No matching ROM "
2144 "signature.\n", ha->host_no));
2145 ret = QLA_FUNCTION_FAILED;
2146 break;
2147 }
2148
2149 /* Locate PCI data structure. */
2150 pcids = pcihdr + ((bcode[0x19] << 8) | bcode[0x18]);
2151
2152 qla24xx_read_flash_data(ha, dcode, pcids >> 2, 0x20);
2153 bcode = mbuf + (pcihdr % 4);
2154
2155 /* Validate signature of PCI data structure. */
2156 if (bcode[0x0] != 'P' || bcode[0x1] != 'C' ||
2157 bcode[0x2] != 'I' || bcode[0x3] != 'R') {
2158 /* Incorrect header. */
2159 DEBUG2(printk("%s(): PCI data struct not found "
2160 "pcir_adr=%x.\n", __func__, pcids));
2161 ret = QLA_FUNCTION_FAILED;
2162 break;
2163 }
2164
2165 /* Read version */
2166 code_type = bcode[0x14];
2167 switch (code_type) {
2168 case ROM_CODE_TYPE_BIOS:
2169 /* Intel x86, PC-AT compatible. */
2170 ha->bios_revision[0] = bcode[0x12];
2171 ha->bios_revision[1] = bcode[0x13];
2172 DEBUG3(printk("%s(): read BIOS %d.%d.\n", __func__,
2173 ha->bios_revision[1], ha->bios_revision[0]));
2174 break;
2175 case ROM_CODE_TYPE_FCODE:
2176 /* Open Firmware standard for PCI (FCode). */
2177 ha->fcode_revision[0] = bcode[0x12];
2178 ha->fcode_revision[1] = bcode[0x13];
2179 DEBUG3(printk("%s(): read FCODE %d.%d.\n", __func__,
2180 ha->fcode_revision[1], ha->fcode_revision[0]));
2181 break;
2182 case ROM_CODE_TYPE_EFI:
2183 /* Extensible Firmware Interface (EFI). */
2184 ha->efi_revision[0] = bcode[0x12];
2185 ha->efi_revision[1] = bcode[0x13];
2186 DEBUG3(printk("%s(): read EFI %d.%d.\n", __func__,
2187 ha->efi_revision[1], ha->efi_revision[0]));
2188 break;
2189 default:
2190 DEBUG2(printk("%s(): Unrecognized code type %x at "
2191 "pcids %x.\n", __func__, code_type, pcids));
2192 break;
2193 }
2194
2195 last_image = bcode[0x15] & BIT_7;
2196
2197 /* Locate next PCI expansion ROM. */
2198 pcihdr += ((bcode[0x11] << 8) | bcode[0x10]) * 512;
2199 } while (!last_image);
2200
2201 /* Read firmware image information. */
2202 memset(ha->fw_revision, 0, sizeof(ha->fw_revision));
2203 dcode = mbuf;
2204
2205 qla24xx_read_flash_data(ha, dcode, FA_RISC_CODE_ADDR + 4, 4);
2206 for (i = 0; i < 4; i++)
2207 dcode[i] = be32_to_cpu(dcode[i]);
2208
2209 if ((dcode[0] == 0xffffffff && dcode[1] == 0xffffffff &&
2210 dcode[2] == 0xffffffff && dcode[3] == 0xffffffff) ||
2211 (dcode[0] == 0 && dcode[1] == 0 && dcode[2] == 0 &&
2212 dcode[3] == 0)) {
2213 DEBUG2(printk("%s(): Unrecognized fw version at %x.\n",
2214 __func__, FA_RISC_CODE_ADDR));
2215 } else {
2216 ha->fw_revision[0] = dcode[0];
2217 ha->fw_revision[1] = dcode[1];
2218 ha->fw_revision[2] = dcode[2];
2219 ha->fw_revision[3] = dcode[3];
2220 }
2221
2222 return ret;
2223 }
This page took 0.091176 seconds and 5 git commands to generate.