Merge branch 'master' of git://git.kernel.org/pub/scm/linux/kernel/git/linville/wirel...
[deliverable/linux.git] / drivers / scsi / qla2xxx / qla_sup.c
1 /*
2 * QLogic Fibre Channel HBA Driver
3 * Copyright (c) 2003-2008 QLogic Corporation
4 *
5 * See LICENSE.qla2xxx for copyright and licensing details.
6 */
7 #include "qla_def.h"
8
9 #include <linux/delay.h>
10 #include <linux/vmalloc.h>
11 #include <asm/uaccess.h>
12
13 static uint16_t qla2x00_nvram_request(scsi_qla_host_t *, uint32_t);
14 static void qla2x00_nv_deselect(scsi_qla_host_t *);
15 static void qla2x00_nv_write(scsi_qla_host_t *, uint16_t);
16
17 /*
18 * NVRAM support routines
19 */
20
21 /**
22 * qla2x00_lock_nvram_access() -
23 * @ha: HA context
24 */
25 static void
26 qla2x00_lock_nvram_access(scsi_qla_host_t *ha)
27 {
28 uint16_t data;
29 struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
30
31 if (!IS_QLA2100(ha) && !IS_QLA2200(ha) && !IS_QLA2300(ha)) {
32 data = RD_REG_WORD(&reg->nvram);
33 while (data & NVR_BUSY) {
34 udelay(100);
35 data = RD_REG_WORD(&reg->nvram);
36 }
37
38 /* Lock resource */
39 WRT_REG_WORD(&reg->u.isp2300.host_semaphore, 0x1);
40 RD_REG_WORD(&reg->u.isp2300.host_semaphore);
41 udelay(5);
42 data = RD_REG_WORD(&reg->u.isp2300.host_semaphore);
43 while ((data & BIT_0) == 0) {
44 /* Lock failed */
45 udelay(100);
46 WRT_REG_WORD(&reg->u.isp2300.host_semaphore, 0x1);
47 RD_REG_WORD(&reg->u.isp2300.host_semaphore);
48 udelay(5);
49 data = RD_REG_WORD(&reg->u.isp2300.host_semaphore);
50 }
51 }
52 }
53
54 /**
55 * qla2x00_unlock_nvram_access() -
56 * @ha: HA context
57 */
58 static void
59 qla2x00_unlock_nvram_access(scsi_qla_host_t *ha)
60 {
61 struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
62
63 if (!IS_QLA2100(ha) && !IS_QLA2200(ha) && !IS_QLA2300(ha)) {
64 WRT_REG_WORD(&reg->u.isp2300.host_semaphore, 0);
65 RD_REG_WORD(&reg->u.isp2300.host_semaphore);
66 }
67 }
68
69 /**
70 * qla2x00_get_nvram_word() - Calculates word position in NVRAM and calls the
71 * request routine to get the word from NVRAM.
72 * @ha: HA context
73 * @addr: Address in NVRAM to read
74 *
75 * Returns the word read from nvram @addr.
76 */
77 static uint16_t
78 qla2x00_get_nvram_word(scsi_qla_host_t *ha, uint32_t addr)
79 {
80 uint16_t data;
81 uint32_t nv_cmd;
82
83 nv_cmd = addr << 16;
84 nv_cmd |= NV_READ_OP;
85 data = qla2x00_nvram_request(ha, nv_cmd);
86
87 return (data);
88 }
89
90 /**
91 * qla2x00_write_nvram_word() - Write NVRAM data.
92 * @ha: HA context
93 * @addr: Address in NVRAM to write
94 * @data: word to program
95 */
96 static void
97 qla2x00_write_nvram_word(scsi_qla_host_t *ha, uint32_t addr, uint16_t data)
98 {
99 int count;
100 uint16_t word;
101 uint32_t nv_cmd, wait_cnt;
102 struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
103
104 qla2x00_nv_write(ha, NVR_DATA_OUT);
105 qla2x00_nv_write(ha, 0);
106 qla2x00_nv_write(ha, 0);
107
108 for (word = 0; word < 8; word++)
109 qla2x00_nv_write(ha, NVR_DATA_OUT);
110
111 qla2x00_nv_deselect(ha);
112
113 /* Write data */
114 nv_cmd = (addr << 16) | NV_WRITE_OP;
115 nv_cmd |= data;
116 nv_cmd <<= 5;
117 for (count = 0; count < 27; count++) {
118 if (nv_cmd & BIT_31)
119 qla2x00_nv_write(ha, NVR_DATA_OUT);
120 else
121 qla2x00_nv_write(ha, 0);
122
123 nv_cmd <<= 1;
124 }
125
126 qla2x00_nv_deselect(ha);
127
128 /* Wait for NVRAM to become ready */
129 WRT_REG_WORD(&reg->nvram, NVR_SELECT);
130 RD_REG_WORD(&reg->nvram); /* PCI Posting. */
131 wait_cnt = NVR_WAIT_CNT;
132 do {
133 if (!--wait_cnt) {
134 DEBUG9_10(printk("%s(%ld): NVRAM didn't go ready...\n",
135 __func__, ha->host_no));
136 break;
137 }
138 NVRAM_DELAY();
139 word = RD_REG_WORD(&reg->nvram);
140 } while ((word & NVR_DATA_IN) == 0);
141
142 qla2x00_nv_deselect(ha);
143
144 /* Disable writes */
145 qla2x00_nv_write(ha, NVR_DATA_OUT);
146 for (count = 0; count < 10; count++)
147 qla2x00_nv_write(ha, 0);
148
149 qla2x00_nv_deselect(ha);
150 }
151
152 static int
153 qla2x00_write_nvram_word_tmo(scsi_qla_host_t *ha, uint32_t addr, uint16_t data,
154 uint32_t tmo)
155 {
156 int ret, count;
157 uint16_t word;
158 uint32_t nv_cmd;
159 struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
160
161 ret = QLA_SUCCESS;
162
163 qla2x00_nv_write(ha, NVR_DATA_OUT);
164 qla2x00_nv_write(ha, 0);
165 qla2x00_nv_write(ha, 0);
166
167 for (word = 0; word < 8; word++)
168 qla2x00_nv_write(ha, NVR_DATA_OUT);
169
170 qla2x00_nv_deselect(ha);
171
172 /* Write data */
173 nv_cmd = (addr << 16) | NV_WRITE_OP;
174 nv_cmd |= data;
175 nv_cmd <<= 5;
176 for (count = 0; count < 27; count++) {
177 if (nv_cmd & BIT_31)
178 qla2x00_nv_write(ha, NVR_DATA_OUT);
179 else
180 qla2x00_nv_write(ha, 0);
181
182 nv_cmd <<= 1;
183 }
184
185 qla2x00_nv_deselect(ha);
186
187 /* Wait for NVRAM to become ready */
188 WRT_REG_WORD(&reg->nvram, NVR_SELECT);
189 RD_REG_WORD(&reg->nvram); /* PCI Posting. */
190 do {
191 NVRAM_DELAY();
192 word = RD_REG_WORD(&reg->nvram);
193 if (!--tmo) {
194 ret = QLA_FUNCTION_FAILED;
195 break;
196 }
197 } while ((word & NVR_DATA_IN) == 0);
198
199 qla2x00_nv_deselect(ha);
200
201 /* Disable writes */
202 qla2x00_nv_write(ha, NVR_DATA_OUT);
203 for (count = 0; count < 10; count++)
204 qla2x00_nv_write(ha, 0);
205
206 qla2x00_nv_deselect(ha);
207
208 return ret;
209 }
210
211 /**
212 * qla2x00_nvram_request() - Sends read command to NVRAM and gets data from
213 * NVRAM.
214 * @ha: HA context
215 * @nv_cmd: NVRAM command
216 *
217 * Bit definitions for NVRAM command:
218 *
219 * Bit 26 = start bit
220 * Bit 25, 24 = opcode
221 * Bit 23-16 = address
222 * Bit 15-0 = write data
223 *
224 * Returns the word read from nvram @addr.
225 */
226 static uint16_t
227 qla2x00_nvram_request(scsi_qla_host_t *ha, uint32_t nv_cmd)
228 {
229 uint8_t cnt;
230 struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
231 uint16_t data = 0;
232 uint16_t reg_data;
233
234 /* Send command to NVRAM. */
235 nv_cmd <<= 5;
236 for (cnt = 0; cnt < 11; cnt++) {
237 if (nv_cmd & BIT_31)
238 qla2x00_nv_write(ha, NVR_DATA_OUT);
239 else
240 qla2x00_nv_write(ha, 0);
241 nv_cmd <<= 1;
242 }
243
244 /* Read data from NVRAM. */
245 for (cnt = 0; cnt < 16; cnt++) {
246 WRT_REG_WORD(&reg->nvram, NVR_SELECT | NVR_CLOCK);
247 RD_REG_WORD(&reg->nvram); /* PCI Posting. */
248 NVRAM_DELAY();
249 data <<= 1;
250 reg_data = RD_REG_WORD(&reg->nvram);
251 if (reg_data & NVR_DATA_IN)
252 data |= BIT_0;
253 WRT_REG_WORD(&reg->nvram, NVR_SELECT);
254 RD_REG_WORD(&reg->nvram); /* PCI Posting. */
255 NVRAM_DELAY();
256 }
257
258 /* Deselect chip. */
259 WRT_REG_WORD(&reg->nvram, NVR_DESELECT);
260 RD_REG_WORD(&reg->nvram); /* PCI Posting. */
261 NVRAM_DELAY();
262
263 return (data);
264 }
265
266 /**
267 * qla2x00_nv_write() - Clean NVRAM operations.
268 * @ha: HA context
269 */
270 static void
271 qla2x00_nv_deselect(scsi_qla_host_t *ha)
272 {
273 struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
274
275 WRT_REG_WORD(&reg->nvram, NVR_DESELECT);
276 RD_REG_WORD(&reg->nvram); /* PCI Posting. */
277 NVRAM_DELAY();
278 }
279
280 /**
281 * qla2x00_nv_write() - Prepare for NVRAM read/write operation.
282 * @ha: HA context
283 * @data: Serial interface selector
284 */
285 static void
286 qla2x00_nv_write(scsi_qla_host_t *ha, uint16_t data)
287 {
288 struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
289
290 WRT_REG_WORD(&reg->nvram, data | NVR_SELECT | NVR_WRT_ENABLE);
291 RD_REG_WORD(&reg->nvram); /* PCI Posting. */
292 NVRAM_DELAY();
293 WRT_REG_WORD(&reg->nvram, data | NVR_SELECT| NVR_CLOCK |
294 NVR_WRT_ENABLE);
295 RD_REG_WORD(&reg->nvram); /* PCI Posting. */
296 NVRAM_DELAY();
297 WRT_REG_WORD(&reg->nvram, data | NVR_SELECT | NVR_WRT_ENABLE);
298 RD_REG_WORD(&reg->nvram); /* PCI Posting. */
299 NVRAM_DELAY();
300 }
301
302 /**
303 * qla2x00_clear_nvram_protection() -
304 * @ha: HA context
305 */
306 static int
307 qla2x00_clear_nvram_protection(scsi_qla_host_t *ha)
308 {
309 int ret, stat;
310 struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
311 uint32_t word, wait_cnt;
312 uint16_t wprot, wprot_old;
313
314 /* Clear NVRAM write protection. */
315 ret = QLA_FUNCTION_FAILED;
316
317 wprot_old = cpu_to_le16(qla2x00_get_nvram_word(ha, ha->nvram_base));
318 stat = qla2x00_write_nvram_word_tmo(ha, ha->nvram_base,
319 __constant_cpu_to_le16(0x1234), 100000);
320 wprot = cpu_to_le16(qla2x00_get_nvram_word(ha, ha->nvram_base));
321 if (stat != QLA_SUCCESS || wprot != 0x1234) {
322 /* Write enable. */
323 qla2x00_nv_write(ha, NVR_DATA_OUT);
324 qla2x00_nv_write(ha, 0);
325 qla2x00_nv_write(ha, 0);
326 for (word = 0; word < 8; word++)
327 qla2x00_nv_write(ha, NVR_DATA_OUT);
328
329 qla2x00_nv_deselect(ha);
330
331 /* Enable protection register. */
332 qla2x00_nv_write(ha, NVR_PR_ENABLE | NVR_DATA_OUT);
333 qla2x00_nv_write(ha, NVR_PR_ENABLE);
334 qla2x00_nv_write(ha, NVR_PR_ENABLE);
335 for (word = 0; word < 8; word++)
336 qla2x00_nv_write(ha, NVR_DATA_OUT | NVR_PR_ENABLE);
337
338 qla2x00_nv_deselect(ha);
339
340 /* Clear protection register (ffff is cleared). */
341 qla2x00_nv_write(ha, NVR_PR_ENABLE | NVR_DATA_OUT);
342 qla2x00_nv_write(ha, NVR_PR_ENABLE | NVR_DATA_OUT);
343 qla2x00_nv_write(ha, NVR_PR_ENABLE | NVR_DATA_OUT);
344 for (word = 0; word < 8; word++)
345 qla2x00_nv_write(ha, NVR_DATA_OUT | NVR_PR_ENABLE);
346
347 qla2x00_nv_deselect(ha);
348
349 /* Wait for NVRAM to become ready. */
350 WRT_REG_WORD(&reg->nvram, NVR_SELECT);
351 RD_REG_WORD(&reg->nvram); /* PCI Posting. */
352 wait_cnt = NVR_WAIT_CNT;
353 do {
354 if (!--wait_cnt) {
355 DEBUG9_10(printk("%s(%ld): NVRAM didn't go "
356 "ready...\n", __func__,
357 ha->host_no));
358 break;
359 }
360 NVRAM_DELAY();
361 word = RD_REG_WORD(&reg->nvram);
362 } while ((word & NVR_DATA_IN) == 0);
363
364 if (wait_cnt)
365 ret = QLA_SUCCESS;
366 } else
367 qla2x00_write_nvram_word(ha, ha->nvram_base, wprot_old);
368
369 return ret;
370 }
371
372 static void
373 qla2x00_set_nvram_protection(scsi_qla_host_t *ha, int stat)
374 {
375 struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
376 uint32_t word, wait_cnt;
377
378 if (stat != QLA_SUCCESS)
379 return;
380
381 /* Set NVRAM write protection. */
382 /* Write enable. */
383 qla2x00_nv_write(ha, NVR_DATA_OUT);
384 qla2x00_nv_write(ha, 0);
385 qla2x00_nv_write(ha, 0);
386 for (word = 0; word < 8; word++)
387 qla2x00_nv_write(ha, NVR_DATA_OUT);
388
389 qla2x00_nv_deselect(ha);
390
391 /* Enable protection register. */
392 qla2x00_nv_write(ha, NVR_PR_ENABLE | NVR_DATA_OUT);
393 qla2x00_nv_write(ha, NVR_PR_ENABLE);
394 qla2x00_nv_write(ha, NVR_PR_ENABLE);
395 for (word = 0; word < 8; word++)
396 qla2x00_nv_write(ha, NVR_DATA_OUT | NVR_PR_ENABLE);
397
398 qla2x00_nv_deselect(ha);
399
400 /* Enable protection register. */
401 qla2x00_nv_write(ha, NVR_PR_ENABLE | NVR_DATA_OUT);
402 qla2x00_nv_write(ha, NVR_PR_ENABLE);
403 qla2x00_nv_write(ha, NVR_PR_ENABLE | NVR_DATA_OUT);
404 for (word = 0; word < 8; word++)
405 qla2x00_nv_write(ha, NVR_PR_ENABLE);
406
407 qla2x00_nv_deselect(ha);
408
409 /* Wait for NVRAM to become ready. */
410 WRT_REG_WORD(&reg->nvram, NVR_SELECT);
411 RD_REG_WORD(&reg->nvram); /* PCI Posting. */
412 wait_cnt = NVR_WAIT_CNT;
413 do {
414 if (!--wait_cnt) {
415 DEBUG9_10(printk("%s(%ld): NVRAM didn't go ready...\n",
416 __func__, ha->host_no));
417 break;
418 }
419 NVRAM_DELAY();
420 word = RD_REG_WORD(&reg->nvram);
421 } while ((word & NVR_DATA_IN) == 0);
422 }
423
424
425 /*****************************************************************************/
426 /* Flash Manipulation Routines */
427 /*****************************************************************************/
428
429 #define OPTROM_BURST_SIZE 0x1000
430 #define OPTROM_BURST_DWORDS (OPTROM_BURST_SIZE / 4)
431
432 static inline uint32_t
433 flash_conf_to_access_addr(uint32_t faddr)
434 {
435 return FARX_ACCESS_FLASH_CONF | faddr;
436 }
437
438 static inline uint32_t
439 flash_data_to_access_addr(uint32_t faddr)
440 {
441 return FARX_ACCESS_FLASH_DATA | faddr;
442 }
443
444 static inline uint32_t
445 nvram_conf_to_access_addr(uint32_t naddr)
446 {
447 return FARX_ACCESS_NVRAM_CONF | naddr;
448 }
449
450 static inline uint32_t
451 nvram_data_to_access_addr(uint32_t naddr)
452 {
453 return FARX_ACCESS_NVRAM_DATA | naddr;
454 }
455
456 static uint32_t
457 qla24xx_read_flash_dword(scsi_qla_host_t *ha, uint32_t addr)
458 {
459 int rval;
460 uint32_t cnt, data;
461 struct device_reg_24xx __iomem *reg = &ha->iobase->isp24;
462
463 WRT_REG_DWORD(&reg->flash_addr, addr & ~FARX_DATA_FLAG);
464 /* Wait for READ cycle to complete. */
465 rval = QLA_SUCCESS;
466 for (cnt = 3000;
467 (RD_REG_DWORD(&reg->flash_addr) & FARX_DATA_FLAG) == 0 &&
468 rval == QLA_SUCCESS; cnt--) {
469 if (cnt)
470 udelay(10);
471 else
472 rval = QLA_FUNCTION_TIMEOUT;
473 cond_resched();
474 }
475
476 /* TODO: What happens if we time out? */
477 data = 0xDEADDEAD;
478 if (rval == QLA_SUCCESS)
479 data = RD_REG_DWORD(&reg->flash_data);
480
481 return data;
482 }
483
484 uint32_t *
485 qla24xx_read_flash_data(scsi_qla_host_t *ha, uint32_t *dwptr, uint32_t faddr,
486 uint32_t dwords)
487 {
488 uint32_t i;
489
490 /* Dword reads to flash. */
491 for (i = 0; i < dwords; i++, faddr++)
492 dwptr[i] = cpu_to_le32(qla24xx_read_flash_dword(ha,
493 flash_data_to_access_addr(faddr)));
494
495 return dwptr;
496 }
497
498 static int
499 qla24xx_write_flash_dword(scsi_qla_host_t *ha, uint32_t addr, uint32_t data)
500 {
501 int rval;
502 uint32_t cnt;
503 struct device_reg_24xx __iomem *reg = &ha->iobase->isp24;
504
505 WRT_REG_DWORD(&reg->flash_data, data);
506 RD_REG_DWORD(&reg->flash_data); /* PCI Posting. */
507 WRT_REG_DWORD(&reg->flash_addr, addr | FARX_DATA_FLAG);
508 /* Wait for Write cycle to complete. */
509 rval = QLA_SUCCESS;
510 for (cnt = 500000; (RD_REG_DWORD(&reg->flash_addr) & FARX_DATA_FLAG) &&
511 rval == QLA_SUCCESS; cnt--) {
512 if (cnt)
513 udelay(10);
514 else
515 rval = QLA_FUNCTION_TIMEOUT;
516 cond_resched();
517 }
518 return rval;
519 }
520
521 static void
522 qla24xx_get_flash_manufacturer(scsi_qla_host_t *ha, uint8_t *man_id,
523 uint8_t *flash_id)
524 {
525 uint32_t ids;
526
527 ids = qla24xx_read_flash_dword(ha, flash_data_to_access_addr(0xd03ab));
528 *man_id = LSB(ids);
529 *flash_id = MSB(ids);
530
531 /* Check if man_id and flash_id are valid. */
532 if (ids != 0xDEADDEAD && (*man_id == 0 || *flash_id == 0)) {
533 /* Read information using 0x9f opcode
534 * Device ID, Mfg ID would be read in the format:
535 * <Ext Dev Info><Device ID Part2><Device ID Part 1><Mfg ID>
536 * Example: ATMEL 0x00 01 45 1F
537 * Extract MFG and Dev ID from last two bytes.
538 */
539 ids = qla24xx_read_flash_dword(ha,
540 flash_data_to_access_addr(0xd009f));
541 *man_id = LSB(ids);
542 *flash_id = MSB(ids);
543 }
544 }
545
546 static int
547 qla2xxx_find_flt_start(scsi_qla_host_t *ha, uint32_t *start)
548 {
549 const char *loc, *locations[] = { "DEF", "PCI" };
550 uint32_t pcihdr, pcids;
551 uint32_t *dcode;
552 uint8_t *buf, *bcode, last_image;
553 uint16_t cnt, chksum, *wptr;
554 struct qla_flt_location *fltl;
555
556 /*
557 * FLT-location structure resides after the last PCI region.
558 */
559
560 /* Begin with sane defaults. */
561 loc = locations[0];
562 *start = IS_QLA24XX_TYPE(ha) ? FA_FLASH_LAYOUT_ADDR_24:
563 FA_FLASH_LAYOUT_ADDR;
564
565 /* Begin with first PCI expansion ROM header. */
566 buf = (uint8_t *)ha->request_ring;
567 dcode = (uint32_t *)ha->request_ring;
568 pcihdr = 0;
569 last_image = 1;
570 do {
571 /* Verify PCI expansion ROM header. */
572 qla24xx_read_flash_data(ha, dcode, pcihdr >> 2, 0x20);
573 bcode = buf + (pcihdr % 4);
574 if (bcode[0x0] != 0x55 || bcode[0x1] != 0xaa)
575 goto end;
576
577 /* Locate PCI data structure. */
578 pcids = pcihdr + ((bcode[0x19] << 8) | bcode[0x18]);
579 qla24xx_read_flash_data(ha, dcode, pcids >> 2, 0x20);
580 bcode = buf + (pcihdr % 4);
581
582 /* Validate signature of PCI data structure. */
583 if (bcode[0x0] != 'P' || bcode[0x1] != 'C' ||
584 bcode[0x2] != 'I' || bcode[0x3] != 'R')
585 goto end;
586
587 last_image = bcode[0x15] & BIT_7;
588
589 /* Locate next PCI expansion ROM. */
590 pcihdr += ((bcode[0x11] << 8) | bcode[0x10]) * 512;
591 } while (!last_image);
592
593 /* Now verify FLT-location structure. */
594 fltl = (struct qla_flt_location *)ha->request_ring;
595 qla24xx_read_flash_data(ha, dcode, pcihdr >> 2,
596 sizeof(struct qla_flt_location) >> 2);
597 if (fltl->sig[0] != 'Q' || fltl->sig[1] != 'F' ||
598 fltl->sig[2] != 'L' || fltl->sig[3] != 'T')
599 goto end;
600
601 wptr = (uint16_t *)ha->request_ring;
602 cnt = sizeof(struct qla_flt_location) >> 1;
603 for (chksum = 0; cnt; cnt--)
604 chksum += le16_to_cpu(*wptr++);
605 if (chksum) {
606 qla_printk(KERN_ERR, ha,
607 "Inconsistent FLTL detected: checksum=0x%x.\n", chksum);
608 qla2x00_dump_buffer(buf, sizeof(struct qla_flt_location));
609 return QLA_FUNCTION_FAILED;
610 }
611
612 /* Good data. Use specified location. */
613 loc = locations[1];
614 *start = le16_to_cpu(fltl->start_hi) << 16 |
615 le16_to_cpu(fltl->start_lo);
616 end:
617 DEBUG2(qla_printk(KERN_DEBUG, ha, "FLTL[%s] = 0x%x.\n", loc, *start));
618 return QLA_SUCCESS;
619 }
620
621 static void
622 qla2xxx_get_flt_info(scsi_qla_host_t *ha, uint32_t flt_addr)
623 {
624 const char *loc, *locations[] = { "DEF", "FLT" };
625 uint16_t *wptr;
626 uint16_t cnt, chksum;
627 uint32_t start;
628 struct qla_flt_header *flt;
629 struct qla_flt_region *region;
630
631 ha->flt_region_flt = flt_addr;
632 wptr = (uint16_t *)ha->request_ring;
633 flt = (struct qla_flt_header *)ha->request_ring;
634 region = (struct qla_flt_region *)&flt[1];
635 ha->isp_ops->read_optrom(ha, (uint8_t *)ha->request_ring,
636 flt_addr << 2, OPTROM_BURST_SIZE);
637 if (*wptr == __constant_cpu_to_le16(0xffff))
638 goto no_flash_data;
639 if (flt->version != __constant_cpu_to_le16(1)) {
640 DEBUG2(qla_printk(KERN_INFO, ha, "Unsupported FLT detected: "
641 "version=0x%x length=0x%x checksum=0x%x.\n",
642 le16_to_cpu(flt->version), le16_to_cpu(flt->length),
643 le16_to_cpu(flt->checksum)));
644 goto no_flash_data;
645 }
646
647 cnt = (sizeof(struct qla_flt_header) + le16_to_cpu(flt->length)) >> 1;
648 for (chksum = 0; cnt; cnt--)
649 chksum += le16_to_cpu(*wptr++);
650 if (chksum) {
651 DEBUG2(qla_printk(KERN_INFO, ha, "Inconsistent FLT detected: "
652 "version=0x%x length=0x%x checksum=0x%x.\n",
653 le16_to_cpu(flt->version), le16_to_cpu(flt->length),
654 chksum));
655 goto no_flash_data;
656 }
657
658 loc = locations[1];
659 cnt = le16_to_cpu(flt->length) / sizeof(struct qla_flt_region);
660 for ( ; cnt; cnt--, region++) {
661 /* Store addresses as DWORD offsets. */
662 start = le32_to_cpu(region->start) >> 2;
663
664 DEBUG3(qla_printk(KERN_DEBUG, ha, "FLT[%02x]: start=0x%x "
665 "end=0x%x size=0x%x.\n", le32_to_cpu(region->code), start,
666 le32_to_cpu(region->end) >> 2, le32_to_cpu(region->size)));
667
668 switch (le32_to_cpu(region->code)) {
669 case FLT_REG_FW:
670 ha->flt_region_fw = start;
671 break;
672 case FLT_REG_BOOT_CODE:
673 ha->flt_region_boot = start;
674 break;
675 case FLT_REG_VPD_0:
676 ha->flt_region_vpd_nvram = start;
677 break;
678 case FLT_REG_FDT:
679 ha->flt_region_fdt = start;
680 break;
681 case FLT_REG_HW_EVENT_0:
682 if (!PCI_FUNC(ha->pdev->devfn))
683 ha->flt_region_hw_event = start;
684 break;
685 case FLT_REG_HW_EVENT_1:
686 if (PCI_FUNC(ha->pdev->devfn))
687 ha->flt_region_hw_event = start;
688 break;
689 case FLT_REG_NPIV_CONF_0:
690 if (!PCI_FUNC(ha->pdev->devfn))
691 ha->flt_region_npiv_conf = start;
692 break;
693 case FLT_REG_NPIV_CONF_1:
694 if (PCI_FUNC(ha->pdev->devfn))
695 ha->flt_region_npiv_conf = start;
696 break;
697 }
698 }
699 goto done;
700
701 no_flash_data:
702 /* Use hardcoded defaults. */
703 loc = locations[0];
704 ha->flt_region_fw = FA_RISC_CODE_ADDR;
705 ha->flt_region_boot = FA_BOOT_CODE_ADDR;
706 ha->flt_region_vpd_nvram = FA_VPD_NVRAM_ADDR;
707 ha->flt_region_fdt = IS_QLA24XX_TYPE(ha) ? FA_FLASH_DESCR_ADDR_24:
708 FA_FLASH_DESCR_ADDR;
709 ha->flt_region_hw_event = !PCI_FUNC(ha->pdev->devfn) ?
710 FA_HW_EVENT0_ADDR: FA_HW_EVENT1_ADDR;
711 ha->flt_region_npiv_conf = !PCI_FUNC(ha->pdev->devfn) ?
712 (IS_QLA24XX_TYPE(ha) ? FA_NPIV_CONF0_ADDR_24: FA_NPIV_CONF0_ADDR):
713 (IS_QLA24XX_TYPE(ha) ? FA_NPIV_CONF1_ADDR_24: FA_NPIV_CONF1_ADDR);
714 done:
715 DEBUG2(qla_printk(KERN_DEBUG, ha, "FLT[%s]: boot=0x%x fw=0x%x "
716 "vpd_nvram=0x%x fdt=0x%x flt=0x%x hwe=0x%x npiv=0x%x.\n", loc,
717 ha->flt_region_boot, ha->flt_region_fw, ha->flt_region_vpd_nvram,
718 ha->flt_region_fdt, ha->flt_region_flt, ha->flt_region_hw_event,
719 ha->flt_region_npiv_conf));
720 }
721
722 static void
723 qla2xxx_get_fdt_info(scsi_qla_host_t *ha)
724 {
725 #define FLASH_BLK_SIZE_4K 0x1000
726 #define FLASH_BLK_SIZE_32K 0x8000
727 #define FLASH_BLK_SIZE_64K 0x10000
728 const char *loc, *locations[] = { "MID", "FDT" };
729 uint16_t cnt, chksum;
730 uint16_t *wptr;
731 struct qla_fdt_layout *fdt;
732 uint8_t man_id, flash_id;
733 uint16_t mid, fid;
734
735 wptr = (uint16_t *)ha->request_ring;
736 fdt = (struct qla_fdt_layout *)ha->request_ring;
737 ha->isp_ops->read_optrom(ha, (uint8_t *)ha->request_ring,
738 ha->flt_region_fdt << 2, OPTROM_BURST_SIZE);
739 if (*wptr == __constant_cpu_to_le16(0xffff))
740 goto no_flash_data;
741 if (fdt->sig[0] != 'Q' || fdt->sig[1] != 'L' || fdt->sig[2] != 'I' ||
742 fdt->sig[3] != 'D')
743 goto no_flash_data;
744
745 for (cnt = 0, chksum = 0; cnt < sizeof(struct qla_fdt_layout) >> 1;
746 cnt++)
747 chksum += le16_to_cpu(*wptr++);
748 if (chksum) {
749 DEBUG2(qla_printk(KERN_INFO, ha, "Inconsistent FDT detected: "
750 "checksum=0x%x id=%c version=0x%x.\n", chksum, fdt->sig[0],
751 le16_to_cpu(fdt->version)));
752 DEBUG9(qla2x00_dump_buffer((uint8_t *)fdt, sizeof(*fdt)));
753 goto no_flash_data;
754 }
755
756 loc = locations[1];
757 mid = le16_to_cpu(fdt->man_id);
758 fid = le16_to_cpu(fdt->id);
759 ha->fdt_wrt_disable = fdt->wrt_disable_bits;
760 ha->fdt_erase_cmd = flash_conf_to_access_addr(0x0300 | fdt->erase_cmd);
761 ha->fdt_block_size = le32_to_cpu(fdt->block_size);
762 if (fdt->unprotect_sec_cmd) {
763 ha->fdt_unprotect_sec_cmd = flash_conf_to_access_addr(0x0300 |
764 fdt->unprotect_sec_cmd);
765 ha->fdt_protect_sec_cmd = fdt->protect_sec_cmd ?
766 flash_conf_to_access_addr(0x0300 | fdt->protect_sec_cmd):
767 flash_conf_to_access_addr(0x0336);
768 }
769 goto done;
770 no_flash_data:
771 loc = locations[0];
772 qla24xx_get_flash_manufacturer(ha, &man_id, &flash_id);
773 mid = man_id;
774 fid = flash_id;
775 ha->fdt_wrt_disable = 0x9c;
776 ha->fdt_erase_cmd = flash_conf_to_access_addr(0x03d8);
777 switch (man_id) {
778 case 0xbf: /* STT flash. */
779 if (flash_id == 0x8e)
780 ha->fdt_block_size = FLASH_BLK_SIZE_64K;
781 else
782 ha->fdt_block_size = FLASH_BLK_SIZE_32K;
783
784 if (flash_id == 0x80)
785 ha->fdt_erase_cmd = flash_conf_to_access_addr(0x0352);
786 break;
787 case 0x13: /* ST M25P80. */
788 ha->fdt_block_size = FLASH_BLK_SIZE_64K;
789 break;
790 case 0x1f: /* Atmel 26DF081A. */
791 ha->fdt_block_size = FLASH_BLK_SIZE_4K;
792 ha->fdt_erase_cmd = flash_conf_to_access_addr(0x0320);
793 ha->fdt_unprotect_sec_cmd = flash_conf_to_access_addr(0x0339);
794 ha->fdt_protect_sec_cmd = flash_conf_to_access_addr(0x0336);
795 break;
796 default:
797 /* Default to 64 kb sector size. */
798 ha->fdt_block_size = FLASH_BLK_SIZE_64K;
799 break;
800 }
801 done:
802 DEBUG2(qla_printk(KERN_DEBUG, ha, "FDT[%s]: (0x%x/0x%x) erase=0x%x "
803 "pro=%x upro=%x wrtd=0x%x blk=0x%x.\n", loc, mid, fid,
804 ha->fdt_erase_cmd, ha->fdt_protect_sec_cmd,
805 ha->fdt_unprotect_sec_cmd, ha->fdt_wrt_disable,
806 ha->fdt_block_size));
807 }
808
809 int
810 qla2xxx_get_flash_info(scsi_qla_host_t *ha)
811 {
812 int ret;
813 uint32_t flt_addr;
814
815 if (!IS_QLA24XX_TYPE(ha) && !IS_QLA25XX(ha))
816 return QLA_SUCCESS;
817
818 ret = qla2xxx_find_flt_start(ha, &flt_addr);
819 if (ret != QLA_SUCCESS)
820 return ret;
821
822 qla2xxx_get_flt_info(ha, flt_addr);
823 qla2xxx_get_fdt_info(ha);
824
825 return QLA_SUCCESS;
826 }
827
828 void
829 qla2xxx_flash_npiv_conf(scsi_qla_host_t *ha)
830 {
831 #define NPIV_CONFIG_SIZE (16*1024)
832 void *data;
833 uint16_t *wptr;
834 uint16_t cnt, chksum;
835 struct qla_npiv_header hdr;
836 struct qla_npiv_entry *entry;
837
838 if (!IS_QLA24XX_TYPE(ha) && !IS_QLA25XX(ha))
839 return;
840
841 ha->isp_ops->read_optrom(ha, (uint8_t *)&hdr,
842 ha->flt_region_npiv_conf << 2, sizeof(struct qla_npiv_header));
843 if (hdr.version == __constant_cpu_to_le16(0xffff))
844 return;
845 if (hdr.version != __constant_cpu_to_le16(1)) {
846 DEBUG2(qla_printk(KERN_INFO, ha, "Unsupported NPIV-Config "
847 "detected: version=0x%x entries=0x%x checksum=0x%x.\n",
848 le16_to_cpu(hdr.version), le16_to_cpu(hdr.entries),
849 le16_to_cpu(hdr.checksum)));
850 return;
851 }
852
853 data = kmalloc(NPIV_CONFIG_SIZE, GFP_KERNEL);
854 if (!data) {
855 DEBUG2(qla_printk(KERN_INFO, ha, "NPIV-Config: Unable to "
856 "allocate memory.\n"));
857 return;
858 }
859
860 ha->isp_ops->read_optrom(ha, (uint8_t *)data,
861 ha->flt_region_npiv_conf << 2, NPIV_CONFIG_SIZE);
862
863 cnt = (sizeof(struct qla_npiv_header) + le16_to_cpu(hdr.entries) *
864 sizeof(struct qla_npiv_entry)) >> 1;
865 for (wptr = data, chksum = 0; cnt; cnt--)
866 chksum += le16_to_cpu(*wptr++);
867 if (chksum) {
868 DEBUG2(qla_printk(KERN_INFO, ha, "Inconsistent NPIV-Config "
869 "detected: version=0x%x entries=0x%x checksum=0x%x.\n",
870 le16_to_cpu(hdr.version), le16_to_cpu(hdr.entries),
871 chksum));
872 goto done;
873 }
874
875 entry = data + sizeof(struct qla_npiv_header);
876 cnt = le16_to_cpu(hdr.entries);
877 for ( ; cnt; cnt--, entry++) {
878 uint16_t flags;
879 struct fc_vport_identifiers vid;
880 struct fc_vport *vport;
881
882 flags = le16_to_cpu(entry->flags);
883 if (flags == 0xffff)
884 continue;
885 if ((flags & BIT_0) == 0)
886 continue;
887
888 memset(&vid, 0, sizeof(vid));
889 vid.roles = FC_PORT_ROLE_FCP_INITIATOR;
890 vid.vport_type = FC_PORTTYPE_NPIV;
891 vid.disable = false;
892 vid.port_name = wwn_to_u64(entry->port_name);
893 vid.node_name = wwn_to_u64(entry->node_name);
894
895 DEBUG2(qla_printk(KERN_DEBUG, ha, "NPIV[%02x]: wwpn=%llx "
896 "wwnn=%llx vf_id=0x%x qos=0x%x.\n", cnt,
897 (unsigned long long)vid.port_name,
898 (unsigned long long)vid.node_name,
899 le16_to_cpu(entry->vf_id), le16_to_cpu(entry->qos)));
900
901 vport = fc_vport_create(ha->host, 0, &vid);
902 if (!vport)
903 qla_printk(KERN_INFO, ha, "NPIV-Config: Failed to "
904 "create vport [%02x]: wwpn=%llx wwnn=%llx.\n", cnt,
905 (unsigned long long)vid.port_name,
906 (unsigned long long)vid.node_name);
907 }
908 done:
909 kfree(data);
910 }
911
912 static void
913 qla24xx_unprotect_flash(scsi_qla_host_t *ha)
914 {
915 struct device_reg_24xx __iomem *reg = &ha->iobase->isp24;
916
917 /* Enable flash write. */
918 WRT_REG_DWORD(&reg->ctrl_status,
919 RD_REG_DWORD(&reg->ctrl_status) | CSRX_FLASH_ENABLE);
920 RD_REG_DWORD(&reg->ctrl_status); /* PCI Posting. */
921
922 if (!ha->fdt_wrt_disable)
923 return;
924
925 /* Disable flash write-protection. */
926 qla24xx_write_flash_dword(ha, flash_conf_to_access_addr(0x101), 0);
927 /* Some flash parts need an additional zero-write to clear bits.*/
928 qla24xx_write_flash_dword(ha, flash_conf_to_access_addr(0x101), 0);
929 }
930
931 static void
932 qla24xx_protect_flash(scsi_qla_host_t *ha)
933 {
934 uint32_t cnt;
935 struct device_reg_24xx __iomem *reg = &ha->iobase->isp24;
936
937 if (!ha->fdt_wrt_disable)
938 goto skip_wrt_protect;
939
940 /* Enable flash write-protection and wait for completion. */
941 qla24xx_write_flash_dword(ha, flash_conf_to_access_addr(0x101),
942 ha->fdt_wrt_disable);
943 for (cnt = 300; cnt &&
944 qla24xx_read_flash_dword(ha,
945 flash_conf_to_access_addr(0x005)) & BIT_0;
946 cnt--) {
947 udelay(10);
948 }
949
950 skip_wrt_protect:
951 /* Disable flash write. */
952 WRT_REG_DWORD(&reg->ctrl_status,
953 RD_REG_DWORD(&reg->ctrl_status) & ~CSRX_FLASH_ENABLE);
954 RD_REG_DWORD(&reg->ctrl_status); /* PCI Posting. */
955 }
956
957 static int
958 qla24xx_write_flash_data(scsi_qla_host_t *ha, uint32_t *dwptr, uint32_t faddr,
959 uint32_t dwords)
960 {
961 int ret;
962 uint32_t liter, miter;
963 uint32_t sec_mask, rest_addr;
964 uint32_t fdata, findex;
965 dma_addr_t optrom_dma;
966 void *optrom = NULL;
967 uint32_t *s, *d;
968
969 ret = QLA_SUCCESS;
970
971 /* Prepare burst-capable write on supported ISPs. */
972 if (IS_QLA25XX(ha) && !(faddr & 0xfff) &&
973 dwords > OPTROM_BURST_DWORDS) {
974 optrom = dma_alloc_coherent(&ha->pdev->dev, OPTROM_BURST_SIZE,
975 &optrom_dma, GFP_KERNEL);
976 if (!optrom) {
977 qla_printk(KERN_DEBUG, ha,
978 "Unable to allocate memory for optrom burst write "
979 "(%x KB).\n", OPTROM_BURST_SIZE / 1024);
980 }
981 }
982
983 rest_addr = (ha->fdt_block_size >> 2) - 1;
984 sec_mask = 0x80000 - (ha->fdt_block_size >> 2);
985
986 qla24xx_unprotect_flash(ha);
987
988 for (liter = 0; liter < dwords; liter++, faddr++, dwptr++) {
989
990 findex = faddr;
991 fdata = (findex & sec_mask) << 2;
992
993 /* Are we at the beginning of a sector? */
994 if ((findex & rest_addr) == 0) {
995 /* Do sector unprotect. */
996 if (ha->fdt_unprotect_sec_cmd)
997 qla24xx_write_flash_dword(ha,
998 ha->fdt_unprotect_sec_cmd,
999 (fdata & 0xff00) | ((fdata << 16) &
1000 0xff0000) | ((fdata >> 16) & 0xff));
1001 ret = qla24xx_write_flash_dword(ha, ha->fdt_erase_cmd,
1002 (fdata & 0xff00) |((fdata << 16) &
1003 0xff0000) | ((fdata >> 16) & 0xff));
1004 if (ret != QLA_SUCCESS) {
1005 DEBUG9(printk("%s(%ld) Unable to flash "
1006 "sector: address=%x.\n", __func__,
1007 ha->host_no, faddr));
1008 break;
1009 }
1010 }
1011
1012 /* Go with burst-write. */
1013 if (optrom && (liter + OPTROM_BURST_DWORDS) <= dwords) {
1014 /* Copy data to DMA'ble buffer. */
1015 for (miter = 0, s = optrom, d = dwptr;
1016 miter < OPTROM_BURST_DWORDS; miter++, s++, d++)
1017 *s = cpu_to_le32(*d);
1018
1019 ret = qla2x00_load_ram(ha, optrom_dma,
1020 flash_data_to_access_addr(faddr),
1021 OPTROM_BURST_DWORDS);
1022 if (ret != QLA_SUCCESS) {
1023 qla_printk(KERN_WARNING, ha,
1024 "Unable to burst-write optrom segment "
1025 "(%x/%x/%llx).\n", ret,
1026 flash_data_to_access_addr(faddr),
1027 (unsigned long long)optrom_dma);
1028 qla_printk(KERN_WARNING, ha,
1029 "Reverting to slow-write.\n");
1030
1031 dma_free_coherent(&ha->pdev->dev,
1032 OPTROM_BURST_SIZE, optrom, optrom_dma);
1033 optrom = NULL;
1034 } else {
1035 liter += OPTROM_BURST_DWORDS - 1;
1036 faddr += OPTROM_BURST_DWORDS - 1;
1037 dwptr += OPTROM_BURST_DWORDS - 1;
1038 continue;
1039 }
1040 }
1041
1042 ret = qla24xx_write_flash_dword(ha,
1043 flash_data_to_access_addr(faddr), cpu_to_le32(*dwptr));
1044 if (ret != QLA_SUCCESS) {
1045 DEBUG9(printk("%s(%ld) Unable to program flash "
1046 "address=%x data=%x.\n", __func__,
1047 ha->host_no, faddr, *dwptr));
1048 break;
1049 }
1050
1051 /* Do sector protect. */
1052 if (ha->fdt_unprotect_sec_cmd &&
1053 ((faddr & rest_addr) == rest_addr))
1054 qla24xx_write_flash_dword(ha,
1055 ha->fdt_protect_sec_cmd,
1056 (fdata & 0xff00) | ((fdata << 16) &
1057 0xff0000) | ((fdata >> 16) & 0xff));
1058 }
1059
1060 qla24xx_protect_flash(ha);
1061
1062 if (optrom)
1063 dma_free_coherent(&ha->pdev->dev,
1064 OPTROM_BURST_SIZE, optrom, optrom_dma);
1065
1066 return ret;
1067 }
1068
1069 uint8_t *
1070 qla2x00_read_nvram_data(scsi_qla_host_t *ha, uint8_t *buf, uint32_t naddr,
1071 uint32_t bytes)
1072 {
1073 uint32_t i;
1074 uint16_t *wptr;
1075
1076 /* Word reads to NVRAM via registers. */
1077 wptr = (uint16_t *)buf;
1078 qla2x00_lock_nvram_access(ha);
1079 for (i = 0; i < bytes >> 1; i++, naddr++)
1080 wptr[i] = cpu_to_le16(qla2x00_get_nvram_word(ha,
1081 naddr));
1082 qla2x00_unlock_nvram_access(ha);
1083
1084 return buf;
1085 }
1086
1087 uint8_t *
1088 qla24xx_read_nvram_data(scsi_qla_host_t *ha, uint8_t *buf, uint32_t naddr,
1089 uint32_t bytes)
1090 {
1091 uint32_t i;
1092 uint32_t *dwptr;
1093
1094 /* Dword reads to flash. */
1095 dwptr = (uint32_t *)buf;
1096 for (i = 0; i < bytes >> 2; i++, naddr++)
1097 dwptr[i] = cpu_to_le32(qla24xx_read_flash_dword(ha,
1098 nvram_data_to_access_addr(naddr)));
1099
1100 return buf;
1101 }
1102
1103 int
1104 qla2x00_write_nvram_data(scsi_qla_host_t *ha, uint8_t *buf, uint32_t naddr,
1105 uint32_t bytes)
1106 {
1107 int ret, stat;
1108 uint32_t i;
1109 uint16_t *wptr;
1110 unsigned long flags;
1111
1112 ret = QLA_SUCCESS;
1113
1114 spin_lock_irqsave(&ha->hardware_lock, flags);
1115 qla2x00_lock_nvram_access(ha);
1116
1117 /* Disable NVRAM write-protection. */
1118 stat = qla2x00_clear_nvram_protection(ha);
1119
1120 wptr = (uint16_t *)buf;
1121 for (i = 0; i < bytes >> 1; i++, naddr++) {
1122 qla2x00_write_nvram_word(ha, naddr,
1123 cpu_to_le16(*wptr));
1124 wptr++;
1125 }
1126
1127 /* Enable NVRAM write-protection. */
1128 qla2x00_set_nvram_protection(ha, stat);
1129
1130 qla2x00_unlock_nvram_access(ha);
1131 spin_unlock_irqrestore(&ha->hardware_lock, flags);
1132
1133 return ret;
1134 }
1135
1136 int
1137 qla24xx_write_nvram_data(scsi_qla_host_t *ha, uint8_t *buf, uint32_t naddr,
1138 uint32_t bytes)
1139 {
1140 int ret;
1141 uint32_t i;
1142 uint32_t *dwptr;
1143 struct device_reg_24xx __iomem *reg = &ha->iobase->isp24;
1144
1145 ret = QLA_SUCCESS;
1146
1147 /* Enable flash write. */
1148 WRT_REG_DWORD(&reg->ctrl_status,
1149 RD_REG_DWORD(&reg->ctrl_status) | CSRX_FLASH_ENABLE);
1150 RD_REG_DWORD(&reg->ctrl_status); /* PCI Posting. */
1151
1152 /* Disable NVRAM write-protection. */
1153 qla24xx_write_flash_dword(ha, nvram_conf_to_access_addr(0x101),
1154 0);
1155 qla24xx_write_flash_dword(ha, nvram_conf_to_access_addr(0x101),
1156 0);
1157
1158 /* Dword writes to flash. */
1159 dwptr = (uint32_t *)buf;
1160 for (i = 0; i < bytes >> 2; i++, naddr++, dwptr++) {
1161 ret = qla24xx_write_flash_dword(ha,
1162 nvram_data_to_access_addr(naddr),
1163 cpu_to_le32(*dwptr));
1164 if (ret != QLA_SUCCESS) {
1165 DEBUG9(printk("%s(%ld) Unable to program "
1166 "nvram address=%x data=%x.\n", __func__,
1167 ha->host_no, naddr, *dwptr));
1168 break;
1169 }
1170 }
1171
1172 /* Enable NVRAM write-protection. */
1173 qla24xx_write_flash_dword(ha, nvram_conf_to_access_addr(0x101),
1174 0x8c);
1175
1176 /* Disable flash write. */
1177 WRT_REG_DWORD(&reg->ctrl_status,
1178 RD_REG_DWORD(&reg->ctrl_status) & ~CSRX_FLASH_ENABLE);
1179 RD_REG_DWORD(&reg->ctrl_status); /* PCI Posting. */
1180
1181 return ret;
1182 }
1183
1184 uint8_t *
1185 qla25xx_read_nvram_data(scsi_qla_host_t *ha, uint8_t *buf, uint32_t naddr,
1186 uint32_t bytes)
1187 {
1188 uint32_t i;
1189 uint32_t *dwptr;
1190
1191 /* Dword reads to flash. */
1192 dwptr = (uint32_t *)buf;
1193 for (i = 0; i < bytes >> 2; i++, naddr++)
1194 dwptr[i] = cpu_to_le32(qla24xx_read_flash_dword(ha,
1195 flash_data_to_access_addr(ha->flt_region_vpd_nvram |
1196 naddr)));
1197
1198 return buf;
1199 }
1200
1201 int
1202 qla25xx_write_nvram_data(scsi_qla_host_t *ha, uint8_t *buf, uint32_t naddr,
1203 uint32_t bytes)
1204 {
1205 #define RMW_BUFFER_SIZE (64 * 1024)
1206 uint8_t *dbuf;
1207
1208 dbuf = vmalloc(RMW_BUFFER_SIZE);
1209 if (!dbuf)
1210 return QLA_MEMORY_ALLOC_FAILED;
1211 ha->isp_ops->read_optrom(ha, dbuf, ha->flt_region_vpd_nvram << 2,
1212 RMW_BUFFER_SIZE);
1213 memcpy(dbuf + (naddr << 2), buf, bytes);
1214 ha->isp_ops->write_optrom(ha, dbuf, ha->flt_region_vpd_nvram << 2,
1215 RMW_BUFFER_SIZE);
1216 vfree(dbuf);
1217
1218 return QLA_SUCCESS;
1219 }
1220
1221 static inline void
1222 qla2x00_flip_colors(scsi_qla_host_t *ha, uint16_t *pflags)
1223 {
1224 if (IS_QLA2322(ha)) {
1225 /* Flip all colors. */
1226 if (ha->beacon_color_state == QLA_LED_ALL_ON) {
1227 /* Turn off. */
1228 ha->beacon_color_state = 0;
1229 *pflags = GPIO_LED_ALL_OFF;
1230 } else {
1231 /* Turn on. */
1232 ha->beacon_color_state = QLA_LED_ALL_ON;
1233 *pflags = GPIO_LED_RGA_ON;
1234 }
1235 } else {
1236 /* Flip green led only. */
1237 if (ha->beacon_color_state == QLA_LED_GRN_ON) {
1238 /* Turn off. */
1239 ha->beacon_color_state = 0;
1240 *pflags = GPIO_LED_GREEN_OFF_AMBER_OFF;
1241 } else {
1242 /* Turn on. */
1243 ha->beacon_color_state = QLA_LED_GRN_ON;
1244 *pflags = GPIO_LED_GREEN_ON_AMBER_OFF;
1245 }
1246 }
1247 }
1248
1249 #define PIO_REG(h, r) ((h)->pio_address + offsetof(struct device_reg_2xxx, r))
1250
1251 void
1252 qla2x00_beacon_blink(struct scsi_qla_host *ha)
1253 {
1254 uint16_t gpio_enable;
1255 uint16_t gpio_data;
1256 uint16_t led_color = 0;
1257 unsigned long flags;
1258 struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
1259
1260 spin_lock_irqsave(&ha->hardware_lock, flags);
1261
1262 /* Save the Original GPIOE. */
1263 if (ha->pio_address) {
1264 gpio_enable = RD_REG_WORD_PIO(PIO_REG(ha, gpioe));
1265 gpio_data = RD_REG_WORD_PIO(PIO_REG(ha, gpiod));
1266 } else {
1267 gpio_enable = RD_REG_WORD(&reg->gpioe);
1268 gpio_data = RD_REG_WORD(&reg->gpiod);
1269 }
1270
1271 /* Set the modified gpio_enable values */
1272 gpio_enable |= GPIO_LED_MASK;
1273
1274 if (ha->pio_address) {
1275 WRT_REG_WORD_PIO(PIO_REG(ha, gpioe), gpio_enable);
1276 } else {
1277 WRT_REG_WORD(&reg->gpioe, gpio_enable);
1278 RD_REG_WORD(&reg->gpioe);
1279 }
1280
1281 qla2x00_flip_colors(ha, &led_color);
1282
1283 /* Clear out any previously set LED color. */
1284 gpio_data &= ~GPIO_LED_MASK;
1285
1286 /* Set the new input LED color to GPIOD. */
1287 gpio_data |= led_color;
1288
1289 /* Set the modified gpio_data values */
1290 if (ha->pio_address) {
1291 WRT_REG_WORD_PIO(PIO_REG(ha, gpiod), gpio_data);
1292 } else {
1293 WRT_REG_WORD(&reg->gpiod, gpio_data);
1294 RD_REG_WORD(&reg->gpiod);
1295 }
1296
1297 spin_unlock_irqrestore(&ha->hardware_lock, flags);
1298 }
1299
1300 int
1301 qla2x00_beacon_on(struct scsi_qla_host *ha)
1302 {
1303 uint16_t gpio_enable;
1304 uint16_t gpio_data;
1305 unsigned long flags;
1306 struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
1307
1308 ha->fw_options[1] &= ~FO1_SET_EMPHASIS_SWING;
1309 ha->fw_options[1] |= FO1_DISABLE_GPIO6_7;
1310
1311 if (qla2x00_set_fw_options(ha, ha->fw_options) != QLA_SUCCESS) {
1312 qla_printk(KERN_WARNING, ha,
1313 "Unable to update fw options (beacon on).\n");
1314 return QLA_FUNCTION_FAILED;
1315 }
1316
1317 /* Turn off LEDs. */
1318 spin_lock_irqsave(&ha->hardware_lock, flags);
1319 if (ha->pio_address) {
1320 gpio_enable = RD_REG_WORD_PIO(PIO_REG(ha, gpioe));
1321 gpio_data = RD_REG_WORD_PIO(PIO_REG(ha, gpiod));
1322 } else {
1323 gpio_enable = RD_REG_WORD(&reg->gpioe);
1324 gpio_data = RD_REG_WORD(&reg->gpiod);
1325 }
1326 gpio_enable |= GPIO_LED_MASK;
1327
1328 /* Set the modified gpio_enable values. */
1329 if (ha->pio_address) {
1330 WRT_REG_WORD_PIO(PIO_REG(ha, gpioe), gpio_enable);
1331 } else {
1332 WRT_REG_WORD(&reg->gpioe, gpio_enable);
1333 RD_REG_WORD(&reg->gpioe);
1334 }
1335
1336 /* Clear out previously set LED colour. */
1337 gpio_data &= ~GPIO_LED_MASK;
1338 if (ha->pio_address) {
1339 WRT_REG_WORD_PIO(PIO_REG(ha, gpiod), gpio_data);
1340 } else {
1341 WRT_REG_WORD(&reg->gpiod, gpio_data);
1342 RD_REG_WORD(&reg->gpiod);
1343 }
1344 spin_unlock_irqrestore(&ha->hardware_lock, flags);
1345
1346 /*
1347 * Let the per HBA timer kick off the blinking process based on
1348 * the following flags. No need to do anything else now.
1349 */
1350 ha->beacon_blink_led = 1;
1351 ha->beacon_color_state = 0;
1352
1353 return QLA_SUCCESS;
1354 }
1355
1356 int
1357 qla2x00_beacon_off(struct scsi_qla_host *ha)
1358 {
1359 int rval = QLA_SUCCESS;
1360
1361 ha->beacon_blink_led = 0;
1362
1363 /* Set the on flag so when it gets flipped it will be off. */
1364 if (IS_QLA2322(ha))
1365 ha->beacon_color_state = QLA_LED_ALL_ON;
1366 else
1367 ha->beacon_color_state = QLA_LED_GRN_ON;
1368
1369 ha->isp_ops->beacon_blink(ha); /* This turns green LED off */
1370
1371 ha->fw_options[1] &= ~FO1_SET_EMPHASIS_SWING;
1372 ha->fw_options[1] &= ~FO1_DISABLE_GPIO6_7;
1373
1374 rval = qla2x00_set_fw_options(ha, ha->fw_options);
1375 if (rval != QLA_SUCCESS)
1376 qla_printk(KERN_WARNING, ha,
1377 "Unable to update fw options (beacon off).\n");
1378 return rval;
1379 }
1380
1381
1382 static inline void
1383 qla24xx_flip_colors(scsi_qla_host_t *ha, uint16_t *pflags)
1384 {
1385 /* Flip all colors. */
1386 if (ha->beacon_color_state == QLA_LED_ALL_ON) {
1387 /* Turn off. */
1388 ha->beacon_color_state = 0;
1389 *pflags = 0;
1390 } else {
1391 /* Turn on. */
1392 ha->beacon_color_state = QLA_LED_ALL_ON;
1393 *pflags = GPDX_LED_YELLOW_ON | GPDX_LED_AMBER_ON;
1394 }
1395 }
1396
1397 void
1398 qla24xx_beacon_blink(struct scsi_qla_host *ha)
1399 {
1400 uint16_t led_color = 0;
1401 uint32_t gpio_data;
1402 unsigned long flags;
1403 struct device_reg_24xx __iomem *reg = &ha->iobase->isp24;
1404
1405 /* Save the Original GPIOD. */
1406 spin_lock_irqsave(&ha->hardware_lock, flags);
1407 gpio_data = RD_REG_DWORD(&reg->gpiod);
1408
1409 /* Enable the gpio_data reg for update. */
1410 gpio_data |= GPDX_LED_UPDATE_MASK;
1411
1412 WRT_REG_DWORD(&reg->gpiod, gpio_data);
1413 gpio_data = RD_REG_DWORD(&reg->gpiod);
1414
1415 /* Set the color bits. */
1416 qla24xx_flip_colors(ha, &led_color);
1417
1418 /* Clear out any previously set LED color. */
1419 gpio_data &= ~GPDX_LED_COLOR_MASK;
1420
1421 /* Set the new input LED color to GPIOD. */
1422 gpio_data |= led_color;
1423
1424 /* Set the modified gpio_data values. */
1425 WRT_REG_DWORD(&reg->gpiod, gpio_data);
1426 gpio_data = RD_REG_DWORD(&reg->gpiod);
1427 spin_unlock_irqrestore(&ha->hardware_lock, flags);
1428 }
1429
1430 int
1431 qla24xx_beacon_on(struct scsi_qla_host *ha)
1432 {
1433 uint32_t gpio_data;
1434 unsigned long flags;
1435 struct device_reg_24xx __iomem *reg = &ha->iobase->isp24;
1436
1437 if (ha->beacon_blink_led == 0) {
1438 /* Enable firmware for update */
1439 ha->fw_options[1] |= ADD_FO1_DISABLE_GPIO_LED_CTRL;
1440
1441 if (qla2x00_set_fw_options(ha, ha->fw_options) != QLA_SUCCESS)
1442 return QLA_FUNCTION_FAILED;
1443
1444 if (qla2x00_get_fw_options(ha, ha->fw_options) !=
1445 QLA_SUCCESS) {
1446 qla_printk(KERN_WARNING, ha,
1447 "Unable to update fw options (beacon on).\n");
1448 return QLA_FUNCTION_FAILED;
1449 }
1450
1451 spin_lock_irqsave(&ha->hardware_lock, flags);
1452 gpio_data = RD_REG_DWORD(&reg->gpiod);
1453
1454 /* Enable the gpio_data reg for update. */
1455 gpio_data |= GPDX_LED_UPDATE_MASK;
1456 WRT_REG_DWORD(&reg->gpiod, gpio_data);
1457 RD_REG_DWORD(&reg->gpiod);
1458
1459 spin_unlock_irqrestore(&ha->hardware_lock, flags);
1460 }
1461
1462 /* So all colors blink together. */
1463 ha->beacon_color_state = 0;
1464
1465 /* Let the per HBA timer kick off the blinking process. */
1466 ha->beacon_blink_led = 1;
1467
1468 return QLA_SUCCESS;
1469 }
1470
1471 int
1472 qla24xx_beacon_off(struct scsi_qla_host *ha)
1473 {
1474 uint32_t gpio_data;
1475 unsigned long flags;
1476 struct device_reg_24xx __iomem *reg = &ha->iobase->isp24;
1477
1478 ha->beacon_blink_led = 0;
1479 ha->beacon_color_state = QLA_LED_ALL_ON;
1480
1481 ha->isp_ops->beacon_blink(ha); /* Will flip to all off. */
1482
1483 /* Give control back to firmware. */
1484 spin_lock_irqsave(&ha->hardware_lock, flags);
1485 gpio_data = RD_REG_DWORD(&reg->gpiod);
1486
1487 /* Disable the gpio_data reg for update. */
1488 gpio_data &= ~GPDX_LED_UPDATE_MASK;
1489 WRT_REG_DWORD(&reg->gpiod, gpio_data);
1490 RD_REG_DWORD(&reg->gpiod);
1491 spin_unlock_irqrestore(&ha->hardware_lock, flags);
1492
1493 ha->fw_options[1] &= ~ADD_FO1_DISABLE_GPIO_LED_CTRL;
1494
1495 if (qla2x00_set_fw_options(ha, ha->fw_options) != QLA_SUCCESS) {
1496 qla_printk(KERN_WARNING, ha,
1497 "Unable to update fw options (beacon off).\n");
1498 return QLA_FUNCTION_FAILED;
1499 }
1500
1501 if (qla2x00_get_fw_options(ha, ha->fw_options) != QLA_SUCCESS) {
1502 qla_printk(KERN_WARNING, ha,
1503 "Unable to get fw options (beacon off).\n");
1504 return QLA_FUNCTION_FAILED;
1505 }
1506
1507 return QLA_SUCCESS;
1508 }
1509
1510
1511 /*
1512 * Flash support routines
1513 */
1514
1515 /**
1516 * qla2x00_flash_enable() - Setup flash for reading and writing.
1517 * @ha: HA context
1518 */
1519 static void
1520 qla2x00_flash_enable(scsi_qla_host_t *ha)
1521 {
1522 uint16_t data;
1523 struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
1524
1525 data = RD_REG_WORD(&reg->ctrl_status);
1526 data |= CSR_FLASH_ENABLE;
1527 WRT_REG_WORD(&reg->ctrl_status, data);
1528 RD_REG_WORD(&reg->ctrl_status); /* PCI Posting. */
1529 }
1530
1531 /**
1532 * qla2x00_flash_disable() - Disable flash and allow RISC to run.
1533 * @ha: HA context
1534 */
1535 static void
1536 qla2x00_flash_disable(scsi_qla_host_t *ha)
1537 {
1538 uint16_t data;
1539 struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
1540
1541 data = RD_REG_WORD(&reg->ctrl_status);
1542 data &= ~(CSR_FLASH_ENABLE);
1543 WRT_REG_WORD(&reg->ctrl_status, data);
1544 RD_REG_WORD(&reg->ctrl_status); /* PCI Posting. */
1545 }
1546
1547 /**
1548 * qla2x00_read_flash_byte() - Reads a byte from flash
1549 * @ha: HA context
1550 * @addr: Address in flash to read
1551 *
1552 * A word is read from the chip, but, only the lower byte is valid.
1553 *
1554 * Returns the byte read from flash @addr.
1555 */
1556 static uint8_t
1557 qla2x00_read_flash_byte(scsi_qla_host_t *ha, uint32_t addr)
1558 {
1559 uint16_t data;
1560 uint16_t bank_select;
1561 struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
1562
1563 bank_select = RD_REG_WORD(&reg->ctrl_status);
1564
1565 if (IS_QLA2322(ha) || IS_QLA6322(ha)) {
1566 /* Specify 64K address range: */
1567 /* clear out Module Select and Flash Address bits [19:16]. */
1568 bank_select &= ~0xf8;
1569 bank_select |= addr >> 12 & 0xf0;
1570 bank_select |= CSR_FLASH_64K_BANK;
1571 WRT_REG_WORD(&reg->ctrl_status, bank_select);
1572 RD_REG_WORD(&reg->ctrl_status); /* PCI Posting. */
1573
1574 WRT_REG_WORD(&reg->flash_address, (uint16_t)addr);
1575 data = RD_REG_WORD(&reg->flash_data);
1576
1577 return (uint8_t)data;
1578 }
1579
1580 /* Setup bit 16 of flash address. */
1581 if ((addr & BIT_16) && ((bank_select & CSR_FLASH_64K_BANK) == 0)) {
1582 bank_select |= CSR_FLASH_64K_BANK;
1583 WRT_REG_WORD(&reg->ctrl_status, bank_select);
1584 RD_REG_WORD(&reg->ctrl_status); /* PCI Posting. */
1585 } else if (((addr & BIT_16) == 0) &&
1586 (bank_select & CSR_FLASH_64K_BANK)) {
1587 bank_select &= ~(CSR_FLASH_64K_BANK);
1588 WRT_REG_WORD(&reg->ctrl_status, bank_select);
1589 RD_REG_WORD(&reg->ctrl_status); /* PCI Posting. */
1590 }
1591
1592 /* Always perform IO mapped accesses to the FLASH registers. */
1593 if (ha->pio_address) {
1594 uint16_t data2;
1595
1596 WRT_REG_WORD_PIO(PIO_REG(ha, flash_address), (uint16_t)addr);
1597 do {
1598 data = RD_REG_WORD_PIO(PIO_REG(ha, flash_data));
1599 barrier();
1600 cpu_relax();
1601 data2 = RD_REG_WORD_PIO(PIO_REG(ha, flash_data));
1602 } while (data != data2);
1603 } else {
1604 WRT_REG_WORD(&reg->flash_address, (uint16_t)addr);
1605 data = qla2x00_debounce_register(&reg->flash_data);
1606 }
1607
1608 return (uint8_t)data;
1609 }
1610
1611 /**
1612 * qla2x00_write_flash_byte() - Write a byte to flash
1613 * @ha: HA context
1614 * @addr: Address in flash to write
1615 * @data: Data to write
1616 */
1617 static void
1618 qla2x00_write_flash_byte(scsi_qla_host_t *ha, uint32_t addr, uint8_t data)
1619 {
1620 uint16_t bank_select;
1621 struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
1622
1623 bank_select = RD_REG_WORD(&reg->ctrl_status);
1624 if (IS_QLA2322(ha) || IS_QLA6322(ha)) {
1625 /* Specify 64K address range: */
1626 /* clear out Module Select and Flash Address bits [19:16]. */
1627 bank_select &= ~0xf8;
1628 bank_select |= addr >> 12 & 0xf0;
1629 bank_select |= CSR_FLASH_64K_BANK;
1630 WRT_REG_WORD(&reg->ctrl_status, bank_select);
1631 RD_REG_WORD(&reg->ctrl_status); /* PCI Posting. */
1632
1633 WRT_REG_WORD(&reg->flash_address, (uint16_t)addr);
1634 RD_REG_WORD(&reg->ctrl_status); /* PCI Posting. */
1635 WRT_REG_WORD(&reg->flash_data, (uint16_t)data);
1636 RD_REG_WORD(&reg->ctrl_status); /* PCI Posting. */
1637
1638 return;
1639 }
1640
1641 /* Setup bit 16 of flash address. */
1642 if ((addr & BIT_16) && ((bank_select & CSR_FLASH_64K_BANK) == 0)) {
1643 bank_select |= CSR_FLASH_64K_BANK;
1644 WRT_REG_WORD(&reg->ctrl_status, bank_select);
1645 RD_REG_WORD(&reg->ctrl_status); /* PCI Posting. */
1646 } else if (((addr & BIT_16) == 0) &&
1647 (bank_select & CSR_FLASH_64K_BANK)) {
1648 bank_select &= ~(CSR_FLASH_64K_BANK);
1649 WRT_REG_WORD(&reg->ctrl_status, bank_select);
1650 RD_REG_WORD(&reg->ctrl_status); /* PCI Posting. */
1651 }
1652
1653 /* Always perform IO mapped accesses to the FLASH registers. */
1654 if (ha->pio_address) {
1655 WRT_REG_WORD_PIO(PIO_REG(ha, flash_address), (uint16_t)addr);
1656 WRT_REG_WORD_PIO(PIO_REG(ha, flash_data), (uint16_t)data);
1657 } else {
1658 WRT_REG_WORD(&reg->flash_address, (uint16_t)addr);
1659 RD_REG_WORD(&reg->ctrl_status); /* PCI Posting. */
1660 WRT_REG_WORD(&reg->flash_data, (uint16_t)data);
1661 RD_REG_WORD(&reg->ctrl_status); /* PCI Posting. */
1662 }
1663 }
1664
1665 /**
1666 * qla2x00_poll_flash() - Polls flash for completion.
1667 * @ha: HA context
1668 * @addr: Address in flash to poll
1669 * @poll_data: Data to be polled
1670 * @man_id: Flash manufacturer ID
1671 * @flash_id: Flash ID
1672 *
1673 * This function polls the device until bit 7 of what is read matches data
1674 * bit 7 or until data bit 5 becomes a 1. If that hapens, the flash ROM timed
1675 * out (a fatal error). The flash book recommeds reading bit 7 again after
1676 * reading bit 5 as a 1.
1677 *
1678 * Returns 0 on success, else non-zero.
1679 */
1680 static int
1681 qla2x00_poll_flash(scsi_qla_host_t *ha, uint32_t addr, uint8_t poll_data,
1682 uint8_t man_id, uint8_t flash_id)
1683 {
1684 int status;
1685 uint8_t flash_data;
1686 uint32_t cnt;
1687
1688 status = 1;
1689
1690 /* Wait for 30 seconds for command to finish. */
1691 poll_data &= BIT_7;
1692 for (cnt = 3000000; cnt; cnt--) {
1693 flash_data = qla2x00_read_flash_byte(ha, addr);
1694 if ((flash_data & BIT_7) == poll_data) {
1695 status = 0;
1696 break;
1697 }
1698
1699 if (man_id != 0x40 && man_id != 0xda) {
1700 if ((flash_data & BIT_5) && cnt > 2)
1701 cnt = 2;
1702 }
1703 udelay(10);
1704 barrier();
1705 cond_resched();
1706 }
1707 return status;
1708 }
1709
1710 /**
1711 * qla2x00_program_flash_address() - Programs a flash address
1712 * @ha: HA context
1713 * @addr: Address in flash to program
1714 * @data: Data to be written in flash
1715 * @man_id: Flash manufacturer ID
1716 * @flash_id: Flash ID
1717 *
1718 * Returns 0 on success, else non-zero.
1719 */
1720 static int
1721 qla2x00_program_flash_address(scsi_qla_host_t *ha, uint32_t addr, uint8_t data,
1722 uint8_t man_id, uint8_t flash_id)
1723 {
1724 /* Write Program Command Sequence. */
1725 if (IS_OEM_001(ha)) {
1726 qla2x00_write_flash_byte(ha, 0xaaa, 0xaa);
1727 qla2x00_write_flash_byte(ha, 0x555, 0x55);
1728 qla2x00_write_flash_byte(ha, 0xaaa, 0xa0);
1729 qla2x00_write_flash_byte(ha, addr, data);
1730 } else {
1731 if (man_id == 0xda && flash_id == 0xc1) {
1732 qla2x00_write_flash_byte(ha, addr, data);
1733 if (addr & 0x7e)
1734 return 0;
1735 } else {
1736 qla2x00_write_flash_byte(ha, 0x5555, 0xaa);
1737 qla2x00_write_flash_byte(ha, 0x2aaa, 0x55);
1738 qla2x00_write_flash_byte(ha, 0x5555, 0xa0);
1739 qla2x00_write_flash_byte(ha, addr, data);
1740 }
1741 }
1742
1743 udelay(150);
1744
1745 /* Wait for write to complete. */
1746 return qla2x00_poll_flash(ha, addr, data, man_id, flash_id);
1747 }
1748
1749 /**
1750 * qla2x00_erase_flash() - Erase the flash.
1751 * @ha: HA context
1752 * @man_id: Flash manufacturer ID
1753 * @flash_id: Flash ID
1754 *
1755 * Returns 0 on success, else non-zero.
1756 */
1757 static int
1758 qla2x00_erase_flash(scsi_qla_host_t *ha, uint8_t man_id, uint8_t flash_id)
1759 {
1760 /* Individual Sector Erase Command Sequence */
1761 if (IS_OEM_001(ha)) {
1762 qla2x00_write_flash_byte(ha, 0xaaa, 0xaa);
1763 qla2x00_write_flash_byte(ha, 0x555, 0x55);
1764 qla2x00_write_flash_byte(ha, 0xaaa, 0x80);
1765 qla2x00_write_flash_byte(ha, 0xaaa, 0xaa);
1766 qla2x00_write_flash_byte(ha, 0x555, 0x55);
1767 qla2x00_write_flash_byte(ha, 0xaaa, 0x10);
1768 } else {
1769 qla2x00_write_flash_byte(ha, 0x5555, 0xaa);
1770 qla2x00_write_flash_byte(ha, 0x2aaa, 0x55);
1771 qla2x00_write_flash_byte(ha, 0x5555, 0x80);
1772 qla2x00_write_flash_byte(ha, 0x5555, 0xaa);
1773 qla2x00_write_flash_byte(ha, 0x2aaa, 0x55);
1774 qla2x00_write_flash_byte(ha, 0x5555, 0x10);
1775 }
1776
1777 udelay(150);
1778
1779 /* Wait for erase to complete. */
1780 return qla2x00_poll_flash(ha, 0x00, 0x80, man_id, flash_id);
1781 }
1782
1783 /**
1784 * qla2x00_erase_flash_sector() - Erase a flash sector.
1785 * @ha: HA context
1786 * @addr: Flash sector to erase
1787 * @sec_mask: Sector address mask
1788 * @man_id: Flash manufacturer ID
1789 * @flash_id: Flash ID
1790 *
1791 * Returns 0 on success, else non-zero.
1792 */
1793 static int
1794 qla2x00_erase_flash_sector(scsi_qla_host_t *ha, uint32_t addr,
1795 uint32_t sec_mask, uint8_t man_id, uint8_t flash_id)
1796 {
1797 /* Individual Sector Erase Command Sequence */
1798 qla2x00_write_flash_byte(ha, 0x5555, 0xaa);
1799 qla2x00_write_flash_byte(ha, 0x2aaa, 0x55);
1800 qla2x00_write_flash_byte(ha, 0x5555, 0x80);
1801 qla2x00_write_flash_byte(ha, 0x5555, 0xaa);
1802 qla2x00_write_flash_byte(ha, 0x2aaa, 0x55);
1803 if (man_id == 0x1f && flash_id == 0x13)
1804 qla2x00_write_flash_byte(ha, addr & sec_mask, 0x10);
1805 else
1806 qla2x00_write_flash_byte(ha, addr & sec_mask, 0x30);
1807
1808 udelay(150);
1809
1810 /* Wait for erase to complete. */
1811 return qla2x00_poll_flash(ha, addr, 0x80, man_id, flash_id);
1812 }
1813
1814 /**
1815 * qla2x00_get_flash_manufacturer() - Read manufacturer ID from flash chip.
1816 * @man_id: Flash manufacturer ID
1817 * @flash_id: Flash ID
1818 */
1819 static void
1820 qla2x00_get_flash_manufacturer(scsi_qla_host_t *ha, uint8_t *man_id,
1821 uint8_t *flash_id)
1822 {
1823 qla2x00_write_flash_byte(ha, 0x5555, 0xaa);
1824 qla2x00_write_flash_byte(ha, 0x2aaa, 0x55);
1825 qla2x00_write_flash_byte(ha, 0x5555, 0x90);
1826 *man_id = qla2x00_read_flash_byte(ha, 0x0000);
1827 *flash_id = qla2x00_read_flash_byte(ha, 0x0001);
1828 qla2x00_write_flash_byte(ha, 0x5555, 0xaa);
1829 qla2x00_write_flash_byte(ha, 0x2aaa, 0x55);
1830 qla2x00_write_flash_byte(ha, 0x5555, 0xf0);
1831 }
1832
1833 static void
1834 qla2x00_read_flash_data(scsi_qla_host_t *ha, uint8_t *tmp_buf, uint32_t saddr,
1835 uint32_t length)
1836 {
1837 struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
1838 uint32_t midpoint, ilength;
1839 uint8_t data;
1840
1841 midpoint = length / 2;
1842
1843 WRT_REG_WORD(&reg->nvram, 0);
1844 RD_REG_WORD(&reg->nvram);
1845 for (ilength = 0; ilength < length; saddr++, ilength++, tmp_buf++) {
1846 if (ilength == midpoint) {
1847 WRT_REG_WORD(&reg->nvram, NVR_SELECT);
1848 RD_REG_WORD(&reg->nvram);
1849 }
1850 data = qla2x00_read_flash_byte(ha, saddr);
1851 if (saddr % 100)
1852 udelay(10);
1853 *tmp_buf = data;
1854 cond_resched();
1855 }
1856 }
1857
1858 static inline void
1859 qla2x00_suspend_hba(struct scsi_qla_host *ha)
1860 {
1861 int cnt;
1862 unsigned long flags;
1863 struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
1864
1865 /* Suspend HBA. */
1866 scsi_block_requests(ha->host);
1867 ha->isp_ops->disable_intrs(ha);
1868 set_bit(MBX_UPDATE_FLASH_ACTIVE, &ha->mbx_cmd_flags);
1869
1870 /* Pause RISC. */
1871 spin_lock_irqsave(&ha->hardware_lock, flags);
1872 WRT_REG_WORD(&reg->hccr, HCCR_PAUSE_RISC);
1873 RD_REG_WORD(&reg->hccr);
1874 if (IS_QLA2100(ha) || IS_QLA2200(ha) || IS_QLA2300(ha)) {
1875 for (cnt = 0; cnt < 30000; cnt++) {
1876 if ((RD_REG_WORD(&reg->hccr) & HCCR_RISC_PAUSE) != 0)
1877 break;
1878 udelay(100);
1879 }
1880 } else {
1881 udelay(10);
1882 }
1883 spin_unlock_irqrestore(&ha->hardware_lock, flags);
1884 }
1885
1886 static inline void
1887 qla2x00_resume_hba(struct scsi_qla_host *ha)
1888 {
1889 /* Resume HBA. */
1890 clear_bit(MBX_UPDATE_FLASH_ACTIVE, &ha->mbx_cmd_flags);
1891 set_bit(ISP_ABORT_NEEDED, &ha->dpc_flags);
1892 qla2xxx_wake_dpc(ha);
1893 qla2x00_wait_for_hba_online(ha);
1894 scsi_unblock_requests(ha->host);
1895 }
1896
1897 uint8_t *
1898 qla2x00_read_optrom_data(struct scsi_qla_host *ha, uint8_t *buf,
1899 uint32_t offset, uint32_t length)
1900 {
1901 uint32_t addr, midpoint;
1902 uint8_t *data;
1903 struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
1904
1905 /* Suspend HBA. */
1906 qla2x00_suspend_hba(ha);
1907
1908 /* Go with read. */
1909 midpoint = ha->optrom_size / 2;
1910
1911 qla2x00_flash_enable(ha);
1912 WRT_REG_WORD(&reg->nvram, 0);
1913 RD_REG_WORD(&reg->nvram); /* PCI Posting. */
1914 for (addr = offset, data = buf; addr < length; addr++, data++) {
1915 if (addr == midpoint) {
1916 WRT_REG_WORD(&reg->nvram, NVR_SELECT);
1917 RD_REG_WORD(&reg->nvram); /* PCI Posting. */
1918 }
1919
1920 *data = qla2x00_read_flash_byte(ha, addr);
1921 }
1922 qla2x00_flash_disable(ha);
1923
1924 /* Resume HBA. */
1925 qla2x00_resume_hba(ha);
1926
1927 return buf;
1928 }
1929
1930 int
1931 qla2x00_write_optrom_data(struct scsi_qla_host *ha, uint8_t *buf,
1932 uint32_t offset, uint32_t length)
1933 {
1934
1935 int rval;
1936 uint8_t man_id, flash_id, sec_number, data;
1937 uint16_t wd;
1938 uint32_t addr, liter, sec_mask, rest_addr;
1939 struct device_reg_2xxx __iomem *reg = &ha->iobase->isp;
1940
1941 /* Suspend HBA. */
1942 qla2x00_suspend_hba(ha);
1943
1944 rval = QLA_SUCCESS;
1945 sec_number = 0;
1946
1947 /* Reset ISP chip. */
1948 WRT_REG_WORD(&reg->ctrl_status, CSR_ISP_SOFT_RESET);
1949 pci_read_config_word(ha->pdev, PCI_COMMAND, &wd);
1950
1951 /* Go with write. */
1952 qla2x00_flash_enable(ha);
1953 do { /* Loop once to provide quick error exit */
1954 /* Structure of flash memory based on manufacturer */
1955 if (IS_OEM_001(ha)) {
1956 /* OEM variant with special flash part. */
1957 man_id = flash_id = 0;
1958 rest_addr = 0xffff;
1959 sec_mask = 0x10000;
1960 goto update_flash;
1961 }
1962 qla2x00_get_flash_manufacturer(ha, &man_id, &flash_id);
1963 switch (man_id) {
1964 case 0x20: /* ST flash. */
1965 if (flash_id == 0xd2 || flash_id == 0xe3) {
1966 /*
1967 * ST m29w008at part - 64kb sector size with
1968 * 32kb,8kb,8kb,16kb sectors at memory address
1969 * 0xf0000.
1970 */
1971 rest_addr = 0xffff;
1972 sec_mask = 0x10000;
1973 break;
1974 }
1975 /*
1976 * ST m29w010b part - 16kb sector size
1977 * Default to 16kb sectors
1978 */
1979 rest_addr = 0x3fff;
1980 sec_mask = 0x1c000;
1981 break;
1982 case 0x40: /* Mostel flash. */
1983 /* Mostel v29c51001 part - 512 byte sector size. */
1984 rest_addr = 0x1ff;
1985 sec_mask = 0x1fe00;
1986 break;
1987 case 0xbf: /* SST flash. */
1988 /* SST39sf10 part - 4kb sector size. */
1989 rest_addr = 0xfff;
1990 sec_mask = 0x1f000;
1991 break;
1992 case 0xda: /* Winbond flash. */
1993 /* Winbond W29EE011 part - 256 byte sector size. */
1994 rest_addr = 0x7f;
1995 sec_mask = 0x1ff80;
1996 break;
1997 case 0xc2: /* Macronix flash. */
1998 /* 64k sector size. */
1999 if (flash_id == 0x38 || flash_id == 0x4f) {
2000 rest_addr = 0xffff;
2001 sec_mask = 0x10000;
2002 break;
2003 }
2004 /* Fall through... */
2005
2006 case 0x1f: /* Atmel flash. */
2007 /* 512k sector size. */
2008 if (flash_id == 0x13) {
2009 rest_addr = 0x7fffffff;
2010 sec_mask = 0x80000000;
2011 break;
2012 }
2013 /* Fall through... */
2014
2015 case 0x01: /* AMD flash. */
2016 if (flash_id == 0x38 || flash_id == 0x40 ||
2017 flash_id == 0x4f) {
2018 /* Am29LV081 part - 64kb sector size. */
2019 /* Am29LV002BT part - 64kb sector size. */
2020 rest_addr = 0xffff;
2021 sec_mask = 0x10000;
2022 break;
2023 } else if (flash_id == 0x3e) {
2024 /*
2025 * Am29LV008b part - 64kb sector size with
2026 * 32kb,8kb,8kb,16kb sector at memory address
2027 * h0xf0000.
2028 */
2029 rest_addr = 0xffff;
2030 sec_mask = 0x10000;
2031 break;
2032 } else if (flash_id == 0x20 || flash_id == 0x6e) {
2033 /*
2034 * Am29LV010 part or AM29f010 - 16kb sector
2035 * size.
2036 */
2037 rest_addr = 0x3fff;
2038 sec_mask = 0x1c000;
2039 break;
2040 } else if (flash_id == 0x6d) {
2041 /* Am29LV001 part - 8kb sector size. */
2042 rest_addr = 0x1fff;
2043 sec_mask = 0x1e000;
2044 break;
2045 }
2046 default:
2047 /* Default to 16 kb sector size. */
2048 rest_addr = 0x3fff;
2049 sec_mask = 0x1c000;
2050 break;
2051 }
2052
2053 update_flash:
2054 if (IS_QLA2322(ha) || IS_QLA6322(ha)) {
2055 if (qla2x00_erase_flash(ha, man_id, flash_id)) {
2056 rval = QLA_FUNCTION_FAILED;
2057 break;
2058 }
2059 }
2060
2061 for (addr = offset, liter = 0; liter < length; liter++,
2062 addr++) {
2063 data = buf[liter];
2064 /* Are we at the beginning of a sector? */
2065 if ((addr & rest_addr) == 0) {
2066 if (IS_QLA2322(ha) || IS_QLA6322(ha)) {
2067 if (addr >= 0x10000UL) {
2068 if (((addr >> 12) & 0xf0) &&
2069 ((man_id == 0x01 &&
2070 flash_id == 0x3e) ||
2071 (man_id == 0x20 &&
2072 flash_id == 0xd2))) {
2073 sec_number++;
2074 if (sec_number == 1) {
2075 rest_addr =
2076 0x7fff;
2077 sec_mask =
2078 0x18000;
2079 } else if (
2080 sec_number == 2 ||
2081 sec_number == 3) {
2082 rest_addr =
2083 0x1fff;
2084 sec_mask =
2085 0x1e000;
2086 } else if (
2087 sec_number == 4) {
2088 rest_addr =
2089 0x3fff;
2090 sec_mask =
2091 0x1c000;
2092 }
2093 }
2094 }
2095 } else if (addr == ha->optrom_size / 2) {
2096 WRT_REG_WORD(&reg->nvram, NVR_SELECT);
2097 RD_REG_WORD(&reg->nvram);
2098 }
2099
2100 if (flash_id == 0xda && man_id == 0xc1) {
2101 qla2x00_write_flash_byte(ha, 0x5555,
2102 0xaa);
2103 qla2x00_write_flash_byte(ha, 0x2aaa,
2104 0x55);
2105 qla2x00_write_flash_byte(ha, 0x5555,
2106 0xa0);
2107 } else if (!IS_QLA2322(ha) && !IS_QLA6322(ha)) {
2108 /* Then erase it */
2109 if (qla2x00_erase_flash_sector(ha,
2110 addr, sec_mask, man_id,
2111 flash_id)) {
2112 rval = QLA_FUNCTION_FAILED;
2113 break;
2114 }
2115 if (man_id == 0x01 && flash_id == 0x6d)
2116 sec_number++;
2117 }
2118 }
2119
2120 if (man_id == 0x01 && flash_id == 0x6d) {
2121 if (sec_number == 1 &&
2122 addr == (rest_addr - 1)) {
2123 rest_addr = 0x0fff;
2124 sec_mask = 0x1f000;
2125 } else if (sec_number == 3 && (addr & 0x7ffe)) {
2126 rest_addr = 0x3fff;
2127 sec_mask = 0x1c000;
2128 }
2129 }
2130
2131 if (qla2x00_program_flash_address(ha, addr, data,
2132 man_id, flash_id)) {
2133 rval = QLA_FUNCTION_FAILED;
2134 break;
2135 }
2136 cond_resched();
2137 }
2138 } while (0);
2139 qla2x00_flash_disable(ha);
2140
2141 /* Resume HBA. */
2142 qla2x00_resume_hba(ha);
2143
2144 return rval;
2145 }
2146
2147 uint8_t *
2148 qla24xx_read_optrom_data(struct scsi_qla_host *ha, uint8_t *buf,
2149 uint32_t offset, uint32_t length)
2150 {
2151 /* Suspend HBA. */
2152 scsi_block_requests(ha->host);
2153 set_bit(MBX_UPDATE_FLASH_ACTIVE, &ha->mbx_cmd_flags);
2154
2155 /* Go with read. */
2156 qla24xx_read_flash_data(ha, (uint32_t *)buf, offset >> 2, length >> 2);
2157
2158 /* Resume HBA. */
2159 clear_bit(MBX_UPDATE_FLASH_ACTIVE, &ha->mbx_cmd_flags);
2160 scsi_unblock_requests(ha->host);
2161
2162 return buf;
2163 }
2164
2165 int
2166 qla24xx_write_optrom_data(struct scsi_qla_host *ha, uint8_t *buf,
2167 uint32_t offset, uint32_t length)
2168 {
2169 int rval;
2170
2171 /* Suspend HBA. */
2172 scsi_block_requests(ha->host);
2173 set_bit(MBX_UPDATE_FLASH_ACTIVE, &ha->mbx_cmd_flags);
2174
2175 /* Go with write. */
2176 rval = qla24xx_write_flash_data(ha, (uint32_t *)buf, offset >> 2,
2177 length >> 2);
2178
2179 /* Resume HBA -- RISC reset needed. */
2180 clear_bit(MBX_UPDATE_FLASH_ACTIVE, &ha->mbx_cmd_flags);
2181 set_bit(ISP_ABORT_NEEDED, &ha->dpc_flags);
2182 qla2xxx_wake_dpc(ha);
2183 qla2x00_wait_for_hba_online(ha);
2184 scsi_unblock_requests(ha->host);
2185
2186 return rval;
2187 }
2188
2189 uint8_t *
2190 qla25xx_read_optrom_data(struct scsi_qla_host *ha, uint8_t *buf,
2191 uint32_t offset, uint32_t length)
2192 {
2193 int rval;
2194 dma_addr_t optrom_dma;
2195 void *optrom;
2196 uint8_t *pbuf;
2197 uint32_t faddr, left, burst;
2198
2199 if (offset & 0xfff)
2200 goto slow_read;
2201 if (length < OPTROM_BURST_SIZE)
2202 goto slow_read;
2203
2204 optrom = dma_alloc_coherent(&ha->pdev->dev, OPTROM_BURST_SIZE,
2205 &optrom_dma, GFP_KERNEL);
2206 if (!optrom) {
2207 qla_printk(KERN_DEBUG, ha,
2208 "Unable to allocate memory for optrom burst read "
2209 "(%x KB).\n", OPTROM_BURST_SIZE / 1024);
2210
2211 goto slow_read;
2212 }
2213
2214 pbuf = buf;
2215 faddr = offset >> 2;
2216 left = length >> 2;
2217 burst = OPTROM_BURST_DWORDS;
2218 while (left != 0) {
2219 if (burst > left)
2220 burst = left;
2221
2222 rval = qla2x00_dump_ram(ha, optrom_dma,
2223 flash_data_to_access_addr(faddr), burst);
2224 if (rval) {
2225 qla_printk(KERN_WARNING, ha,
2226 "Unable to burst-read optrom segment "
2227 "(%x/%x/%llx).\n", rval,
2228 flash_data_to_access_addr(faddr),
2229 (unsigned long long)optrom_dma);
2230 qla_printk(KERN_WARNING, ha,
2231 "Reverting to slow-read.\n");
2232
2233 dma_free_coherent(&ha->pdev->dev, OPTROM_BURST_SIZE,
2234 optrom, optrom_dma);
2235 goto slow_read;
2236 }
2237
2238 memcpy(pbuf, optrom, burst * 4);
2239
2240 left -= burst;
2241 faddr += burst;
2242 pbuf += burst * 4;
2243 }
2244
2245 dma_free_coherent(&ha->pdev->dev, OPTROM_BURST_SIZE, optrom,
2246 optrom_dma);
2247
2248 return buf;
2249
2250 slow_read:
2251 return qla24xx_read_optrom_data(ha, buf, offset, length);
2252 }
2253
2254 /**
2255 * qla2x00_get_fcode_version() - Determine an FCODE image's version.
2256 * @ha: HA context
2257 * @pcids: Pointer to the FCODE PCI data structure
2258 *
2259 * The process of retrieving the FCODE version information is at best
2260 * described as interesting.
2261 *
2262 * Within the first 100h bytes of the image an ASCII string is present
2263 * which contains several pieces of information including the FCODE
2264 * version. Unfortunately it seems the only reliable way to retrieve
2265 * the version is by scanning for another sentinel within the string,
2266 * the FCODE build date:
2267 *
2268 * ... 2.00.02 10/17/02 ...
2269 *
2270 * Returns QLA_SUCCESS on successful retrieval of version.
2271 */
2272 static void
2273 qla2x00_get_fcode_version(scsi_qla_host_t *ha, uint32_t pcids)
2274 {
2275 int ret = QLA_FUNCTION_FAILED;
2276 uint32_t istart, iend, iter, vend;
2277 uint8_t do_next, rbyte, *vbyte;
2278
2279 memset(ha->fcode_revision, 0, sizeof(ha->fcode_revision));
2280
2281 /* Skip the PCI data structure. */
2282 istart = pcids +
2283 ((qla2x00_read_flash_byte(ha, pcids + 0x0B) << 8) |
2284 qla2x00_read_flash_byte(ha, pcids + 0x0A));
2285 iend = istart + 0x100;
2286 do {
2287 /* Scan for the sentinel date string...eeewww. */
2288 do_next = 0;
2289 iter = istart;
2290 while ((iter < iend) && !do_next) {
2291 iter++;
2292 if (qla2x00_read_flash_byte(ha, iter) == '/') {
2293 if (qla2x00_read_flash_byte(ha, iter + 2) ==
2294 '/')
2295 do_next++;
2296 else if (qla2x00_read_flash_byte(ha,
2297 iter + 3) == '/')
2298 do_next++;
2299 }
2300 }
2301 if (!do_next)
2302 break;
2303
2304 /* Backtrack to previous ' ' (space). */
2305 do_next = 0;
2306 while ((iter > istart) && !do_next) {
2307 iter--;
2308 if (qla2x00_read_flash_byte(ha, iter) == ' ')
2309 do_next++;
2310 }
2311 if (!do_next)
2312 break;
2313
2314 /*
2315 * Mark end of version tag, and find previous ' ' (space) or
2316 * string length (recent FCODE images -- major hack ahead!!!).
2317 */
2318 vend = iter - 1;
2319 do_next = 0;
2320 while ((iter > istart) && !do_next) {
2321 iter--;
2322 rbyte = qla2x00_read_flash_byte(ha, iter);
2323 if (rbyte == ' ' || rbyte == 0xd || rbyte == 0x10)
2324 do_next++;
2325 }
2326 if (!do_next)
2327 break;
2328
2329 /* Mark beginning of version tag, and copy data. */
2330 iter++;
2331 if ((vend - iter) &&
2332 ((vend - iter) < sizeof(ha->fcode_revision))) {
2333 vbyte = ha->fcode_revision;
2334 while (iter <= vend) {
2335 *vbyte++ = qla2x00_read_flash_byte(ha, iter);
2336 iter++;
2337 }
2338 ret = QLA_SUCCESS;
2339 }
2340 } while (0);
2341
2342 if (ret != QLA_SUCCESS)
2343 memset(ha->fcode_revision, 0, sizeof(ha->fcode_revision));
2344 }
2345
2346 int
2347 qla2x00_get_flash_version(scsi_qla_host_t *ha, void *mbuf)
2348 {
2349 int ret = QLA_SUCCESS;
2350 uint8_t code_type, last_image;
2351 uint32_t pcihdr, pcids;
2352 uint8_t *dbyte;
2353 uint16_t *dcode;
2354
2355 if (!ha->pio_address || !mbuf)
2356 return QLA_FUNCTION_FAILED;
2357
2358 memset(ha->bios_revision, 0, sizeof(ha->bios_revision));
2359 memset(ha->efi_revision, 0, sizeof(ha->efi_revision));
2360 memset(ha->fcode_revision, 0, sizeof(ha->fcode_revision));
2361 memset(ha->fw_revision, 0, sizeof(ha->fw_revision));
2362
2363 qla2x00_flash_enable(ha);
2364
2365 /* Begin with first PCI expansion ROM header. */
2366 pcihdr = 0;
2367 last_image = 1;
2368 do {
2369 /* Verify PCI expansion ROM header. */
2370 if (qla2x00_read_flash_byte(ha, pcihdr) != 0x55 ||
2371 qla2x00_read_flash_byte(ha, pcihdr + 0x01) != 0xaa) {
2372 /* No signature */
2373 DEBUG2(printk("scsi(%ld): No matching ROM "
2374 "signature.\n", ha->host_no));
2375 ret = QLA_FUNCTION_FAILED;
2376 break;
2377 }
2378
2379 /* Locate PCI data structure. */
2380 pcids = pcihdr +
2381 ((qla2x00_read_flash_byte(ha, pcihdr + 0x19) << 8) |
2382 qla2x00_read_flash_byte(ha, pcihdr + 0x18));
2383
2384 /* Validate signature of PCI data structure. */
2385 if (qla2x00_read_flash_byte(ha, pcids) != 'P' ||
2386 qla2x00_read_flash_byte(ha, pcids + 0x1) != 'C' ||
2387 qla2x00_read_flash_byte(ha, pcids + 0x2) != 'I' ||
2388 qla2x00_read_flash_byte(ha, pcids + 0x3) != 'R') {
2389 /* Incorrect header. */
2390 DEBUG2(printk("%s(): PCI data struct not found "
2391 "pcir_adr=%x.\n", __func__, pcids));
2392 ret = QLA_FUNCTION_FAILED;
2393 break;
2394 }
2395
2396 /* Read version */
2397 code_type = qla2x00_read_flash_byte(ha, pcids + 0x14);
2398 switch (code_type) {
2399 case ROM_CODE_TYPE_BIOS:
2400 /* Intel x86, PC-AT compatible. */
2401 ha->bios_revision[0] =
2402 qla2x00_read_flash_byte(ha, pcids + 0x12);
2403 ha->bios_revision[1] =
2404 qla2x00_read_flash_byte(ha, pcids + 0x13);
2405 DEBUG3(printk("%s(): read BIOS %d.%d.\n", __func__,
2406 ha->bios_revision[1], ha->bios_revision[0]));
2407 break;
2408 case ROM_CODE_TYPE_FCODE:
2409 /* Open Firmware standard for PCI (FCode). */
2410 /* Eeeewww... */
2411 qla2x00_get_fcode_version(ha, pcids);
2412 break;
2413 case ROM_CODE_TYPE_EFI:
2414 /* Extensible Firmware Interface (EFI). */
2415 ha->efi_revision[0] =
2416 qla2x00_read_flash_byte(ha, pcids + 0x12);
2417 ha->efi_revision[1] =
2418 qla2x00_read_flash_byte(ha, pcids + 0x13);
2419 DEBUG3(printk("%s(): read EFI %d.%d.\n", __func__,
2420 ha->efi_revision[1], ha->efi_revision[0]));
2421 break;
2422 default:
2423 DEBUG2(printk("%s(): Unrecognized code type %x at "
2424 "pcids %x.\n", __func__, code_type, pcids));
2425 break;
2426 }
2427
2428 last_image = qla2x00_read_flash_byte(ha, pcids + 0x15) & BIT_7;
2429
2430 /* Locate next PCI expansion ROM. */
2431 pcihdr += ((qla2x00_read_flash_byte(ha, pcids + 0x11) << 8) |
2432 qla2x00_read_flash_byte(ha, pcids + 0x10)) * 512;
2433 } while (!last_image);
2434
2435 if (IS_QLA2322(ha)) {
2436 /* Read firmware image information. */
2437 memset(ha->fw_revision, 0, sizeof(ha->fw_revision));
2438 dbyte = mbuf;
2439 memset(dbyte, 0, 8);
2440 dcode = (uint16_t *)dbyte;
2441
2442 qla2x00_read_flash_data(ha, dbyte, ha->flt_region_fw * 4 + 10,
2443 8);
2444 DEBUG3(printk("%s(%ld): dumping fw ver from flash:\n",
2445 __func__, ha->host_no));
2446 DEBUG3(qla2x00_dump_buffer((uint8_t *)dbyte, 8));
2447
2448 if ((dcode[0] == 0xffff && dcode[1] == 0xffff &&
2449 dcode[2] == 0xffff && dcode[3] == 0xffff) ||
2450 (dcode[0] == 0 && dcode[1] == 0 && dcode[2] == 0 &&
2451 dcode[3] == 0)) {
2452 DEBUG2(printk("%s(): Unrecognized fw revision at "
2453 "%x.\n", __func__, ha->flt_region_fw * 4));
2454 } else {
2455 /* values are in big endian */
2456 ha->fw_revision[0] = dbyte[0] << 16 | dbyte[1];
2457 ha->fw_revision[1] = dbyte[2] << 16 | dbyte[3];
2458 ha->fw_revision[2] = dbyte[4] << 16 | dbyte[5];
2459 }
2460 }
2461
2462 qla2x00_flash_disable(ha);
2463
2464 return ret;
2465 }
2466
2467 int
2468 qla24xx_get_flash_version(scsi_qla_host_t *ha, void *mbuf)
2469 {
2470 int ret = QLA_SUCCESS;
2471 uint32_t pcihdr, pcids;
2472 uint32_t *dcode;
2473 uint8_t *bcode;
2474 uint8_t code_type, last_image;
2475 int i;
2476
2477 if (!mbuf)
2478 return QLA_FUNCTION_FAILED;
2479
2480 memset(ha->bios_revision, 0, sizeof(ha->bios_revision));
2481 memset(ha->efi_revision, 0, sizeof(ha->efi_revision));
2482 memset(ha->fcode_revision, 0, sizeof(ha->fcode_revision));
2483 memset(ha->fw_revision, 0, sizeof(ha->fw_revision));
2484
2485 dcode = mbuf;
2486
2487 /* Begin with first PCI expansion ROM header. */
2488 pcihdr = ha->flt_region_boot;
2489 last_image = 1;
2490 do {
2491 /* Verify PCI expansion ROM header. */
2492 qla24xx_read_flash_data(ha, dcode, pcihdr >> 2, 0x20);
2493 bcode = mbuf + (pcihdr % 4);
2494 if (bcode[0x0] != 0x55 || bcode[0x1] != 0xaa) {
2495 /* No signature */
2496 DEBUG2(printk("scsi(%ld): No matching ROM "
2497 "signature.\n", ha->host_no));
2498 ret = QLA_FUNCTION_FAILED;
2499 break;
2500 }
2501
2502 /* Locate PCI data structure. */
2503 pcids = pcihdr + ((bcode[0x19] << 8) | bcode[0x18]);
2504
2505 qla24xx_read_flash_data(ha, dcode, pcids >> 2, 0x20);
2506 bcode = mbuf + (pcihdr % 4);
2507
2508 /* Validate signature of PCI data structure. */
2509 if (bcode[0x0] != 'P' || bcode[0x1] != 'C' ||
2510 bcode[0x2] != 'I' || bcode[0x3] != 'R') {
2511 /* Incorrect header. */
2512 DEBUG2(printk("%s(): PCI data struct not found "
2513 "pcir_adr=%x.\n", __func__, pcids));
2514 ret = QLA_FUNCTION_FAILED;
2515 break;
2516 }
2517
2518 /* Read version */
2519 code_type = bcode[0x14];
2520 switch (code_type) {
2521 case ROM_CODE_TYPE_BIOS:
2522 /* Intel x86, PC-AT compatible. */
2523 ha->bios_revision[0] = bcode[0x12];
2524 ha->bios_revision[1] = bcode[0x13];
2525 DEBUG3(printk("%s(): read BIOS %d.%d.\n", __func__,
2526 ha->bios_revision[1], ha->bios_revision[0]));
2527 break;
2528 case ROM_CODE_TYPE_FCODE:
2529 /* Open Firmware standard for PCI (FCode). */
2530 ha->fcode_revision[0] = bcode[0x12];
2531 ha->fcode_revision[1] = bcode[0x13];
2532 DEBUG3(printk("%s(): read FCODE %d.%d.\n", __func__,
2533 ha->fcode_revision[1], ha->fcode_revision[0]));
2534 break;
2535 case ROM_CODE_TYPE_EFI:
2536 /* Extensible Firmware Interface (EFI). */
2537 ha->efi_revision[0] = bcode[0x12];
2538 ha->efi_revision[1] = bcode[0x13];
2539 DEBUG3(printk("%s(): read EFI %d.%d.\n", __func__,
2540 ha->efi_revision[1], ha->efi_revision[0]));
2541 break;
2542 default:
2543 DEBUG2(printk("%s(): Unrecognized code type %x at "
2544 "pcids %x.\n", __func__, code_type, pcids));
2545 break;
2546 }
2547
2548 last_image = bcode[0x15] & BIT_7;
2549
2550 /* Locate next PCI expansion ROM. */
2551 pcihdr += ((bcode[0x11] << 8) | bcode[0x10]) * 512;
2552 } while (!last_image);
2553
2554 /* Read firmware image information. */
2555 memset(ha->fw_revision, 0, sizeof(ha->fw_revision));
2556 dcode = mbuf;
2557
2558 qla24xx_read_flash_data(ha, dcode, ha->flt_region_fw + 4, 4);
2559 for (i = 0; i < 4; i++)
2560 dcode[i] = be32_to_cpu(dcode[i]);
2561
2562 if ((dcode[0] == 0xffffffff && dcode[1] == 0xffffffff &&
2563 dcode[2] == 0xffffffff && dcode[3] == 0xffffffff) ||
2564 (dcode[0] == 0 && dcode[1] == 0 && dcode[2] == 0 &&
2565 dcode[3] == 0)) {
2566 DEBUG2(printk("%s(): Unrecognized fw version at %x.\n",
2567 __func__, ha->flt_region_fw));
2568 } else {
2569 ha->fw_revision[0] = dcode[0];
2570 ha->fw_revision[1] = dcode[1];
2571 ha->fw_revision[2] = dcode[2];
2572 ha->fw_revision[3] = dcode[3];
2573 }
2574
2575 return ret;
2576 }
2577
2578 static int
2579 qla2xxx_is_vpd_valid(uint8_t *pos, uint8_t *end)
2580 {
2581 if (pos >= end || *pos != 0x82)
2582 return 0;
2583
2584 pos += 3 + pos[1];
2585 if (pos >= end || *pos != 0x90)
2586 return 0;
2587
2588 pos += 3 + pos[1];
2589 if (pos >= end || *pos != 0x78)
2590 return 0;
2591
2592 return 1;
2593 }
2594
2595 int
2596 qla2xxx_get_vpd_field(scsi_qla_host_t *ha, char *key, char *str, size_t size)
2597 {
2598 uint8_t *pos = ha->vpd;
2599 uint8_t *end = pos + ha->vpd_size;
2600 int len = 0;
2601
2602 if (!IS_FWI2_CAPABLE(ha) || !qla2xxx_is_vpd_valid(pos, end))
2603 return 0;
2604
2605 while (pos < end && *pos != 0x78) {
2606 len = (*pos == 0x82) ? pos[1] : pos[2];
2607
2608 if (!strncmp(pos, key, strlen(key)))
2609 break;
2610
2611 if (*pos != 0x90 && *pos != 0x91)
2612 pos += len;
2613
2614 pos += 3;
2615 }
2616
2617 if (pos < end - len && *pos != 0x78)
2618 return snprintf(str, size, "%.*s", len, pos + 3);
2619
2620 return 0;
2621 }
2622
2623 static int
2624 qla2xxx_hw_event_store(scsi_qla_host_t *ha, uint32_t *fdata)
2625 {
2626 uint32_t d[2], faddr;
2627
2628 /* Locate first empty entry. */
2629 for (;;) {
2630 if (ha->hw_event_ptr >=
2631 ha->flt_region_hw_event + FA_HW_EVENT_SIZE) {
2632 DEBUG2(qla_printk(KERN_WARNING, ha,
2633 "HW event -- Log Full!\n"));
2634 return QLA_MEMORY_ALLOC_FAILED;
2635 }
2636
2637 qla24xx_read_flash_data(ha, d, ha->hw_event_ptr, 2);
2638 faddr = flash_data_to_access_addr(ha->hw_event_ptr);
2639 ha->hw_event_ptr += FA_HW_EVENT_ENTRY_SIZE;
2640 if (d[0] == __constant_cpu_to_le32(0xffffffff) &&
2641 d[1] == __constant_cpu_to_le32(0xffffffff)) {
2642 qla24xx_unprotect_flash(ha);
2643
2644 qla24xx_write_flash_dword(ha, faddr++,
2645 cpu_to_le32(jiffies));
2646 qla24xx_write_flash_dword(ha, faddr++, 0);
2647 qla24xx_write_flash_dword(ha, faddr++, *fdata++);
2648 qla24xx_write_flash_dword(ha, faddr++, *fdata);
2649
2650 qla24xx_protect_flash(ha);
2651 break;
2652 }
2653 }
2654 return QLA_SUCCESS;
2655 }
2656
2657 int
2658 qla2xxx_hw_event_log(scsi_qla_host_t *ha, uint16_t code, uint16_t d1,
2659 uint16_t d2, uint16_t d3)
2660 {
2661 #define QMARK(a, b, c, d) \
2662 cpu_to_le32(LSB(a) << 24 | LSB(b) << 16 | LSB(c) << 8 | LSB(d))
2663
2664 int rval;
2665 uint32_t marker[2], fdata[4];
2666
2667 if (ha->flt_region_hw_event == 0)
2668 return QLA_FUNCTION_FAILED;
2669
2670 DEBUG2(qla_printk(KERN_WARNING, ha,
2671 "HW event -- code=%x, d1=%x, d2=%x, d3=%x.\n", code, d1, d2, d3));
2672
2673 /* If marker not already found, locate or write. */
2674 if (!ha->flags.hw_event_marker_found) {
2675 /* Create marker. */
2676 marker[0] = QMARK('L', ha->fw_major_version,
2677 ha->fw_minor_version, ha->fw_subminor_version);
2678 marker[1] = QMARK(QLA_DRIVER_MAJOR_VER, QLA_DRIVER_MINOR_VER,
2679 QLA_DRIVER_PATCH_VER, QLA_DRIVER_BETA_VER);
2680
2681 /* Locate marker. */
2682 ha->hw_event_ptr = ha->flt_region_hw_event;
2683 for (;;) {
2684 qla24xx_read_flash_data(ha, fdata, ha->hw_event_ptr,
2685 4);
2686 if (fdata[0] == __constant_cpu_to_le32(0xffffffff) &&
2687 fdata[1] == __constant_cpu_to_le32(0xffffffff))
2688 break;
2689 ha->hw_event_ptr += FA_HW_EVENT_ENTRY_SIZE;
2690 if (ha->hw_event_ptr >=
2691 ha->flt_region_hw_event + FA_HW_EVENT_SIZE) {
2692 DEBUG2(qla_printk(KERN_WARNING, ha,
2693 "HW event -- Log Full!\n"));
2694 return QLA_MEMORY_ALLOC_FAILED;
2695 }
2696 if (fdata[2] == marker[0] && fdata[3] == marker[1]) {
2697 ha->flags.hw_event_marker_found = 1;
2698 break;
2699 }
2700 }
2701 /* No marker, write it. */
2702 if (!ha->flags.hw_event_marker_found) {
2703 rval = qla2xxx_hw_event_store(ha, marker);
2704 if (rval != QLA_SUCCESS) {
2705 DEBUG2(qla_printk(KERN_WARNING, ha,
2706 "HW event -- Failed marker write=%x.!\n",
2707 rval));
2708 return rval;
2709 }
2710 ha->flags.hw_event_marker_found = 1;
2711 }
2712 }
2713
2714 /* Store error. */
2715 fdata[0] = cpu_to_le32(code << 16 | d1);
2716 fdata[1] = cpu_to_le32(d2 << 16 | d3);
2717 rval = qla2xxx_hw_event_store(ha, fdata);
2718 if (rval != QLA_SUCCESS) {
2719 DEBUG2(qla_printk(KERN_WARNING, ha,
2720 "HW event -- Failed error write=%x.!\n",
2721 rval));
2722 }
2723
2724 return rval;
2725 }
This page took 0.083584 seconds and 6 git commands to generate.