Merge branch 'upstream'
[deliverable/linux.git] / drivers / scsi / sata_mv.c
1 /*
2 * sata_mv.c - Marvell SATA support
3 *
4 * Copyright 2005: EMC Corporation, all rights reserved.
5 * Copyright 2005 Red Hat, Inc. All rights reserved.
6 *
7 * Please ALWAYS copy linux-ide@vger.kernel.org on emails.
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation; version 2 of the License.
12 *
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
17 *
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
21 *
22 */
23
24 #include <linux/kernel.h>
25 #include <linux/module.h>
26 #include <linux/pci.h>
27 #include <linux/init.h>
28 #include <linux/blkdev.h>
29 #include <linux/delay.h>
30 #include <linux/interrupt.h>
31 #include <linux/sched.h>
32 #include <linux/dma-mapping.h>
33 #include <linux/device.h>
34 #include <scsi/scsi_host.h>
35 #include <scsi/scsi_cmnd.h>
36 #include <linux/libata.h>
37 #include <asm/io.h>
38
39 #define DRV_NAME "sata_mv"
40 #define DRV_VERSION "0.6"
41
42 enum {
43 /* BAR's are enumerated in terms of pci_resource_start() terms */
44 MV_PRIMARY_BAR = 0, /* offset 0x10: memory space */
45 MV_IO_BAR = 2, /* offset 0x18: IO space */
46 MV_MISC_BAR = 3, /* offset 0x1c: FLASH, NVRAM, SRAM */
47
48 MV_MAJOR_REG_AREA_SZ = 0x10000, /* 64KB */
49 MV_MINOR_REG_AREA_SZ = 0x2000, /* 8KB */
50
51 MV_PCI_REG_BASE = 0,
52 MV_IRQ_COAL_REG_BASE = 0x18000, /* 6xxx part only */
53 MV_SATAHC0_REG_BASE = 0x20000,
54 MV_FLASH_CTL = 0x1046c,
55 MV_GPIO_PORT_CTL = 0x104f0,
56 MV_RESET_CFG = 0x180d8,
57
58 MV_PCI_REG_SZ = MV_MAJOR_REG_AREA_SZ,
59 MV_SATAHC_REG_SZ = MV_MAJOR_REG_AREA_SZ,
60 MV_SATAHC_ARBTR_REG_SZ = MV_MINOR_REG_AREA_SZ, /* arbiter */
61 MV_PORT_REG_SZ = MV_MINOR_REG_AREA_SZ,
62
63 MV_USE_Q_DEPTH = ATA_DEF_QUEUE,
64
65 MV_MAX_Q_DEPTH = 32,
66 MV_MAX_Q_DEPTH_MASK = MV_MAX_Q_DEPTH - 1,
67
68 /* CRQB needs alignment on a 1KB boundary. Size == 1KB
69 * CRPB needs alignment on a 256B boundary. Size == 256B
70 * SG count of 176 leads to MV_PORT_PRIV_DMA_SZ == 4KB
71 * ePRD (SG) entries need alignment on a 16B boundary. Size == 16B
72 */
73 MV_CRQB_Q_SZ = (32 * MV_MAX_Q_DEPTH),
74 MV_CRPB_Q_SZ = (8 * MV_MAX_Q_DEPTH),
75 MV_MAX_SG_CT = 176,
76 MV_SG_TBL_SZ = (16 * MV_MAX_SG_CT),
77 MV_PORT_PRIV_DMA_SZ = (MV_CRQB_Q_SZ + MV_CRPB_Q_SZ + MV_SG_TBL_SZ),
78
79 MV_PORTS_PER_HC = 4,
80 /* == (port / MV_PORTS_PER_HC) to determine HC from 0-7 port */
81 MV_PORT_HC_SHIFT = 2,
82 /* == (port % MV_PORTS_PER_HC) to determine hard port from 0-7 port */
83 MV_PORT_MASK = 3,
84
85 /* Host Flags */
86 MV_FLAG_DUAL_HC = (1 << 30), /* two SATA Host Controllers */
87 MV_FLAG_IRQ_COALESCE = (1 << 29), /* IRQ coalescing capability */
88 MV_COMMON_FLAGS = (ATA_FLAG_SATA | ATA_FLAG_NO_LEGACY |
89 ATA_FLAG_SATA_RESET | ATA_FLAG_MMIO |
90 ATA_FLAG_PIO_POLLING),
91 MV_6XXX_FLAGS = MV_FLAG_IRQ_COALESCE,
92
93 CRQB_FLAG_READ = (1 << 0),
94 CRQB_TAG_SHIFT = 1,
95 CRQB_CMD_ADDR_SHIFT = 8,
96 CRQB_CMD_CS = (0x2 << 11),
97 CRQB_CMD_LAST = (1 << 15),
98
99 CRPB_FLAG_STATUS_SHIFT = 8,
100
101 EPRD_FLAG_END_OF_TBL = (1 << 31),
102
103 /* PCI interface registers */
104
105 PCI_COMMAND_OFS = 0xc00,
106
107 PCI_MAIN_CMD_STS_OFS = 0xd30,
108 STOP_PCI_MASTER = (1 << 2),
109 PCI_MASTER_EMPTY = (1 << 3),
110 GLOB_SFT_RST = (1 << 4),
111
112 MV_PCI_MODE = 0xd00,
113 MV_PCI_EXP_ROM_BAR_CTL = 0xd2c,
114 MV_PCI_DISC_TIMER = 0xd04,
115 MV_PCI_MSI_TRIGGER = 0xc38,
116 MV_PCI_SERR_MASK = 0xc28,
117 MV_PCI_XBAR_TMOUT = 0x1d04,
118 MV_PCI_ERR_LOW_ADDRESS = 0x1d40,
119 MV_PCI_ERR_HIGH_ADDRESS = 0x1d44,
120 MV_PCI_ERR_ATTRIBUTE = 0x1d48,
121 MV_PCI_ERR_COMMAND = 0x1d50,
122
123 PCI_IRQ_CAUSE_OFS = 0x1d58,
124 PCI_IRQ_MASK_OFS = 0x1d5c,
125 PCI_UNMASK_ALL_IRQS = 0x7fffff, /* bits 22-0 */
126
127 HC_MAIN_IRQ_CAUSE_OFS = 0x1d60,
128 HC_MAIN_IRQ_MASK_OFS = 0x1d64,
129 PORT0_ERR = (1 << 0), /* shift by port # */
130 PORT0_DONE = (1 << 1), /* shift by port # */
131 HC0_IRQ_PEND = 0x1ff, /* bits 0-8 = HC0's ports */
132 HC_SHIFT = 9, /* bits 9-17 = HC1's ports */
133 PCI_ERR = (1 << 18),
134 TRAN_LO_DONE = (1 << 19), /* 6xxx: IRQ coalescing */
135 TRAN_HI_DONE = (1 << 20), /* 6xxx: IRQ coalescing */
136 PORTS_0_7_COAL_DONE = (1 << 21), /* 6xxx: IRQ coalescing */
137 GPIO_INT = (1 << 22),
138 SELF_INT = (1 << 23),
139 TWSI_INT = (1 << 24),
140 HC_MAIN_RSVD = (0x7f << 25), /* bits 31-25 */
141 HC_MAIN_MASKED_IRQS = (TRAN_LO_DONE | TRAN_HI_DONE |
142 PORTS_0_7_COAL_DONE | GPIO_INT | TWSI_INT |
143 HC_MAIN_RSVD),
144
145 /* SATAHC registers */
146 HC_CFG_OFS = 0,
147
148 HC_IRQ_CAUSE_OFS = 0x14,
149 CRPB_DMA_DONE = (1 << 0), /* shift by port # */
150 HC_IRQ_COAL = (1 << 4), /* IRQ coalescing */
151 DEV_IRQ = (1 << 8), /* shift by port # */
152
153 /* Shadow block registers */
154 SHD_BLK_OFS = 0x100,
155 SHD_CTL_AST_OFS = 0x20, /* ofs from SHD_BLK_OFS */
156
157 /* SATA registers */
158 SATA_STATUS_OFS = 0x300, /* ctrl, err regs follow status */
159 SATA_ACTIVE_OFS = 0x350,
160 PHY_MODE3 = 0x310,
161 PHY_MODE4 = 0x314,
162 PHY_MODE2 = 0x330,
163 MV5_PHY_MODE = 0x74,
164 MV5_LT_MODE = 0x30,
165 MV5_PHY_CTL = 0x0C,
166 SATA_INTERFACE_CTL = 0x050,
167
168 MV_M2_PREAMP_MASK = 0x7e0,
169
170 /* Port registers */
171 EDMA_CFG_OFS = 0,
172 EDMA_CFG_Q_DEPTH = 0, /* queueing disabled */
173 EDMA_CFG_NCQ = (1 << 5),
174 EDMA_CFG_NCQ_GO_ON_ERR = (1 << 14), /* continue on error */
175 EDMA_CFG_RD_BRST_EXT = (1 << 11), /* read burst 512B */
176 EDMA_CFG_WR_BUFF_LEN = (1 << 13), /* write buffer 512B */
177
178 EDMA_ERR_IRQ_CAUSE_OFS = 0x8,
179 EDMA_ERR_IRQ_MASK_OFS = 0xc,
180 EDMA_ERR_D_PAR = (1 << 0),
181 EDMA_ERR_PRD_PAR = (1 << 1),
182 EDMA_ERR_DEV = (1 << 2),
183 EDMA_ERR_DEV_DCON = (1 << 3),
184 EDMA_ERR_DEV_CON = (1 << 4),
185 EDMA_ERR_SERR = (1 << 5),
186 EDMA_ERR_SELF_DIS = (1 << 7),
187 EDMA_ERR_BIST_ASYNC = (1 << 8),
188 EDMA_ERR_CRBQ_PAR = (1 << 9),
189 EDMA_ERR_CRPB_PAR = (1 << 10),
190 EDMA_ERR_INTRL_PAR = (1 << 11),
191 EDMA_ERR_IORDY = (1 << 12),
192 EDMA_ERR_LNK_CTRL_RX = (0xf << 13),
193 EDMA_ERR_LNK_CTRL_RX_2 = (1 << 15),
194 EDMA_ERR_LNK_DATA_RX = (0xf << 17),
195 EDMA_ERR_LNK_CTRL_TX = (0x1f << 21),
196 EDMA_ERR_LNK_DATA_TX = (0x1f << 26),
197 EDMA_ERR_TRANS_PROTO = (1 << 31),
198 EDMA_ERR_FATAL = (EDMA_ERR_D_PAR | EDMA_ERR_PRD_PAR |
199 EDMA_ERR_DEV_DCON | EDMA_ERR_CRBQ_PAR |
200 EDMA_ERR_CRPB_PAR | EDMA_ERR_INTRL_PAR |
201 EDMA_ERR_IORDY | EDMA_ERR_LNK_CTRL_RX_2 |
202 EDMA_ERR_LNK_DATA_RX |
203 EDMA_ERR_LNK_DATA_TX |
204 EDMA_ERR_TRANS_PROTO),
205
206 EDMA_REQ_Q_BASE_HI_OFS = 0x10,
207 EDMA_REQ_Q_IN_PTR_OFS = 0x14, /* also contains BASE_LO */
208
209 EDMA_REQ_Q_OUT_PTR_OFS = 0x18,
210 EDMA_REQ_Q_PTR_SHIFT = 5,
211
212 EDMA_RSP_Q_BASE_HI_OFS = 0x1c,
213 EDMA_RSP_Q_IN_PTR_OFS = 0x20,
214 EDMA_RSP_Q_OUT_PTR_OFS = 0x24, /* also contains BASE_LO */
215 EDMA_RSP_Q_PTR_SHIFT = 3,
216
217 EDMA_CMD_OFS = 0x28,
218 EDMA_EN = (1 << 0),
219 EDMA_DS = (1 << 1),
220 ATA_RST = (1 << 2),
221
222 EDMA_IORDY_TMOUT = 0x34,
223 EDMA_ARB_CFG = 0x38,
224
225 /* Host private flags (hp_flags) */
226 MV_HP_FLAG_MSI = (1 << 0),
227 MV_HP_ERRATA_50XXB0 = (1 << 1),
228 MV_HP_ERRATA_50XXB2 = (1 << 2),
229 MV_HP_ERRATA_60X1B2 = (1 << 3),
230 MV_HP_ERRATA_60X1C0 = (1 << 4),
231 MV_HP_ERRATA_XX42A0 = (1 << 5),
232 MV_HP_50XX = (1 << 6),
233 MV_HP_GEN_IIE = (1 << 7),
234
235 /* Port private flags (pp_flags) */
236 MV_PP_FLAG_EDMA_EN = (1 << 0),
237 MV_PP_FLAG_EDMA_DS_ACT = (1 << 1),
238 };
239
240 #define IS_50XX(hpriv) ((hpriv)->hp_flags & MV_HP_50XX)
241 #define IS_60XX(hpriv) (((hpriv)->hp_flags & MV_HP_50XX) == 0)
242 #define IS_GEN_I(hpriv) IS_50XX(hpriv)
243 #define IS_GEN_II(hpriv) IS_60XX(hpriv)
244 #define IS_GEN_IIE(hpriv) ((hpriv)->hp_flags & MV_HP_GEN_IIE)
245
246 enum {
247 /* Our DMA boundary is determined by an ePRD being unable to handle
248 * anything larger than 64KB
249 */
250 MV_DMA_BOUNDARY = 0xffffU,
251
252 EDMA_REQ_Q_BASE_LO_MASK = 0xfffffc00U,
253
254 EDMA_RSP_Q_BASE_LO_MASK = 0xffffff00U,
255 };
256
257 enum chip_type {
258 chip_504x,
259 chip_508x,
260 chip_5080,
261 chip_604x,
262 chip_608x,
263 chip_6042,
264 chip_7042,
265 };
266
267 /* Command ReQuest Block: 32B */
268 struct mv_crqb {
269 u32 sg_addr;
270 u32 sg_addr_hi;
271 u16 ctrl_flags;
272 u16 ata_cmd[11];
273 };
274
275 struct mv_crqb_iie {
276 u32 addr;
277 u32 addr_hi;
278 u32 flags;
279 u32 len;
280 u32 ata_cmd[4];
281 };
282
283 /* Command ResPonse Block: 8B */
284 struct mv_crpb {
285 u16 id;
286 u16 flags;
287 u32 tmstmp;
288 };
289
290 /* EDMA Physical Region Descriptor (ePRD); A.K.A. SG */
291 struct mv_sg {
292 u32 addr;
293 u32 flags_size;
294 u32 addr_hi;
295 u32 reserved;
296 };
297
298 struct mv_port_priv {
299 struct mv_crqb *crqb;
300 dma_addr_t crqb_dma;
301 struct mv_crpb *crpb;
302 dma_addr_t crpb_dma;
303 struct mv_sg *sg_tbl;
304 dma_addr_t sg_tbl_dma;
305
306 unsigned req_producer; /* cp of req_in_ptr */
307 unsigned rsp_consumer; /* cp of rsp_out_ptr */
308 u32 pp_flags;
309 };
310
311 struct mv_port_signal {
312 u32 amps;
313 u32 pre;
314 };
315
316 struct mv_host_priv;
317 struct mv_hw_ops {
318 void (*phy_errata)(struct mv_host_priv *hpriv, void __iomem *mmio,
319 unsigned int port);
320 void (*enable_leds)(struct mv_host_priv *hpriv, void __iomem *mmio);
321 void (*read_preamp)(struct mv_host_priv *hpriv, int idx,
322 void __iomem *mmio);
323 int (*reset_hc)(struct mv_host_priv *hpriv, void __iomem *mmio,
324 unsigned int n_hc);
325 void (*reset_flash)(struct mv_host_priv *hpriv, void __iomem *mmio);
326 void (*reset_bus)(struct pci_dev *pdev, void __iomem *mmio);
327 };
328
329 struct mv_host_priv {
330 u32 hp_flags;
331 struct mv_port_signal signal[8];
332 const struct mv_hw_ops *ops;
333 };
334
335 static void mv_irq_clear(struct ata_port *ap);
336 static u32 mv_scr_read(struct ata_port *ap, unsigned int sc_reg_in);
337 static void mv_scr_write(struct ata_port *ap, unsigned int sc_reg_in, u32 val);
338 static u32 mv5_scr_read(struct ata_port *ap, unsigned int sc_reg_in);
339 static void mv5_scr_write(struct ata_port *ap, unsigned int sc_reg_in, u32 val);
340 static void mv_phy_reset(struct ata_port *ap);
341 static void __mv_phy_reset(struct ata_port *ap, int can_sleep);
342 static void mv_host_stop(struct ata_host_set *host_set);
343 static int mv_port_start(struct ata_port *ap);
344 static void mv_port_stop(struct ata_port *ap);
345 static void mv_qc_prep(struct ata_queued_cmd *qc);
346 static void mv_qc_prep_iie(struct ata_queued_cmd *qc);
347 static unsigned int mv_qc_issue(struct ata_queued_cmd *qc);
348 static irqreturn_t mv_interrupt(int irq, void *dev_instance,
349 struct pt_regs *regs);
350 static void mv_eng_timeout(struct ata_port *ap);
351 static int mv_init_one(struct pci_dev *pdev, const struct pci_device_id *ent);
352
353 static void mv5_phy_errata(struct mv_host_priv *hpriv, void __iomem *mmio,
354 unsigned int port);
355 static void mv5_enable_leds(struct mv_host_priv *hpriv, void __iomem *mmio);
356 static void mv5_read_preamp(struct mv_host_priv *hpriv, int idx,
357 void __iomem *mmio);
358 static int mv5_reset_hc(struct mv_host_priv *hpriv, void __iomem *mmio,
359 unsigned int n_hc);
360 static void mv5_reset_flash(struct mv_host_priv *hpriv, void __iomem *mmio);
361 static void mv5_reset_bus(struct pci_dev *pdev, void __iomem *mmio);
362
363 static void mv6_phy_errata(struct mv_host_priv *hpriv, void __iomem *mmio,
364 unsigned int port);
365 static void mv6_enable_leds(struct mv_host_priv *hpriv, void __iomem *mmio);
366 static void mv6_read_preamp(struct mv_host_priv *hpriv, int idx,
367 void __iomem *mmio);
368 static int mv6_reset_hc(struct mv_host_priv *hpriv, void __iomem *mmio,
369 unsigned int n_hc);
370 static void mv6_reset_flash(struct mv_host_priv *hpriv, void __iomem *mmio);
371 static void mv_reset_pci_bus(struct pci_dev *pdev, void __iomem *mmio);
372 static void mv_channel_reset(struct mv_host_priv *hpriv, void __iomem *mmio,
373 unsigned int port_no);
374 static void mv_stop_and_reset(struct ata_port *ap);
375
376 static struct scsi_host_template mv_sht = {
377 .module = THIS_MODULE,
378 .name = DRV_NAME,
379 .ioctl = ata_scsi_ioctl,
380 .queuecommand = ata_scsi_queuecmd,
381 .eh_timed_out = ata_scsi_timed_out,
382 .eh_strategy_handler = ata_scsi_error,
383 .can_queue = MV_USE_Q_DEPTH,
384 .this_id = ATA_SHT_THIS_ID,
385 .sg_tablesize = MV_MAX_SG_CT / 2,
386 .max_sectors = ATA_MAX_SECTORS,
387 .cmd_per_lun = ATA_SHT_CMD_PER_LUN,
388 .emulated = ATA_SHT_EMULATED,
389 .use_clustering = ATA_SHT_USE_CLUSTERING,
390 .proc_name = DRV_NAME,
391 .dma_boundary = MV_DMA_BOUNDARY,
392 .slave_configure = ata_scsi_slave_config,
393 .bios_param = ata_std_bios_param,
394 };
395
396 static const struct ata_port_operations mv5_ops = {
397 .port_disable = ata_port_disable,
398
399 .tf_load = ata_tf_load,
400 .tf_read = ata_tf_read,
401 .check_status = ata_check_status,
402 .exec_command = ata_exec_command,
403 .dev_select = ata_std_dev_select,
404
405 .phy_reset = mv_phy_reset,
406
407 .qc_prep = mv_qc_prep,
408 .qc_issue = mv_qc_issue,
409
410 .eng_timeout = mv_eng_timeout,
411
412 .irq_handler = mv_interrupt,
413 .irq_clear = mv_irq_clear,
414
415 .scr_read = mv5_scr_read,
416 .scr_write = mv5_scr_write,
417
418 .port_start = mv_port_start,
419 .port_stop = mv_port_stop,
420 .host_stop = mv_host_stop,
421 };
422
423 static const struct ata_port_operations mv6_ops = {
424 .port_disable = ata_port_disable,
425
426 .tf_load = ata_tf_load,
427 .tf_read = ata_tf_read,
428 .check_status = ata_check_status,
429 .exec_command = ata_exec_command,
430 .dev_select = ata_std_dev_select,
431
432 .phy_reset = mv_phy_reset,
433
434 .qc_prep = mv_qc_prep,
435 .qc_issue = mv_qc_issue,
436
437 .eng_timeout = mv_eng_timeout,
438
439 .irq_handler = mv_interrupt,
440 .irq_clear = mv_irq_clear,
441
442 .scr_read = mv_scr_read,
443 .scr_write = mv_scr_write,
444
445 .port_start = mv_port_start,
446 .port_stop = mv_port_stop,
447 .host_stop = mv_host_stop,
448 };
449
450 static const struct ata_port_operations mv_iie_ops = {
451 .port_disable = ata_port_disable,
452
453 .tf_load = ata_tf_load,
454 .tf_read = ata_tf_read,
455 .check_status = ata_check_status,
456 .exec_command = ata_exec_command,
457 .dev_select = ata_std_dev_select,
458
459 .phy_reset = mv_phy_reset,
460
461 .qc_prep = mv_qc_prep_iie,
462 .qc_issue = mv_qc_issue,
463
464 .eng_timeout = mv_eng_timeout,
465
466 .irq_handler = mv_interrupt,
467 .irq_clear = mv_irq_clear,
468
469 .scr_read = mv_scr_read,
470 .scr_write = mv_scr_write,
471
472 .port_start = mv_port_start,
473 .port_stop = mv_port_stop,
474 .host_stop = mv_host_stop,
475 };
476
477 static const struct ata_port_info mv_port_info[] = {
478 { /* chip_504x */
479 .sht = &mv_sht,
480 .host_flags = MV_COMMON_FLAGS,
481 .pio_mask = 0x1f, /* pio0-4 */
482 .udma_mask = 0x7f, /* udma0-6 */
483 .port_ops = &mv5_ops,
484 },
485 { /* chip_508x */
486 .sht = &mv_sht,
487 .host_flags = (MV_COMMON_FLAGS | MV_FLAG_DUAL_HC),
488 .pio_mask = 0x1f, /* pio0-4 */
489 .udma_mask = 0x7f, /* udma0-6 */
490 .port_ops = &mv5_ops,
491 },
492 { /* chip_5080 */
493 .sht = &mv_sht,
494 .host_flags = (MV_COMMON_FLAGS | MV_FLAG_DUAL_HC),
495 .pio_mask = 0x1f, /* pio0-4 */
496 .udma_mask = 0x7f, /* udma0-6 */
497 .port_ops = &mv5_ops,
498 },
499 { /* chip_604x */
500 .sht = &mv_sht,
501 .host_flags = (MV_COMMON_FLAGS | MV_6XXX_FLAGS),
502 .pio_mask = 0x1f, /* pio0-4 */
503 .udma_mask = 0x7f, /* udma0-6 */
504 .port_ops = &mv6_ops,
505 },
506 { /* chip_608x */
507 .sht = &mv_sht,
508 .host_flags = (MV_COMMON_FLAGS | MV_6XXX_FLAGS |
509 MV_FLAG_DUAL_HC),
510 .pio_mask = 0x1f, /* pio0-4 */
511 .udma_mask = 0x7f, /* udma0-6 */
512 .port_ops = &mv6_ops,
513 },
514 { /* chip_6042 */
515 .sht = &mv_sht,
516 .host_flags = (MV_COMMON_FLAGS | MV_6XXX_FLAGS),
517 .pio_mask = 0x1f, /* pio0-4 */
518 .udma_mask = 0x7f, /* udma0-6 */
519 .port_ops = &mv_iie_ops,
520 },
521 { /* chip_7042 */
522 .sht = &mv_sht,
523 .host_flags = (MV_COMMON_FLAGS | MV_6XXX_FLAGS |
524 MV_FLAG_DUAL_HC),
525 .pio_mask = 0x1f, /* pio0-4 */
526 .udma_mask = 0x7f, /* udma0-6 */
527 .port_ops = &mv_iie_ops,
528 },
529 };
530
531 static const struct pci_device_id mv_pci_tbl[] = {
532 {PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x5040), 0, 0, chip_504x},
533 {PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x5041), 0, 0, chip_504x},
534 {PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x5080), 0, 0, chip_5080},
535 {PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x5081), 0, 0, chip_508x},
536
537 {PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x6040), 0, 0, chip_604x},
538 {PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x6041), 0, 0, chip_604x},
539 {PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x6042), 0, 0, chip_6042},
540 {PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x6080), 0, 0, chip_608x},
541 {PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x6081), 0, 0, chip_608x},
542
543 {PCI_DEVICE(PCI_VENDOR_ID_ADAPTEC2, 0x0241), 0, 0, chip_604x},
544 {} /* terminate list */
545 };
546
547 static struct pci_driver mv_pci_driver = {
548 .name = DRV_NAME,
549 .id_table = mv_pci_tbl,
550 .probe = mv_init_one,
551 .remove = ata_pci_remove_one,
552 };
553
554 static const struct mv_hw_ops mv5xxx_ops = {
555 .phy_errata = mv5_phy_errata,
556 .enable_leds = mv5_enable_leds,
557 .read_preamp = mv5_read_preamp,
558 .reset_hc = mv5_reset_hc,
559 .reset_flash = mv5_reset_flash,
560 .reset_bus = mv5_reset_bus,
561 };
562
563 static const struct mv_hw_ops mv6xxx_ops = {
564 .phy_errata = mv6_phy_errata,
565 .enable_leds = mv6_enable_leds,
566 .read_preamp = mv6_read_preamp,
567 .reset_hc = mv6_reset_hc,
568 .reset_flash = mv6_reset_flash,
569 .reset_bus = mv_reset_pci_bus,
570 };
571
572 /*
573 * module options
574 */
575 static int msi; /* Use PCI msi; either zero (off, default) or non-zero */
576
577
578 /*
579 * Functions
580 */
581
582 static inline void writelfl(unsigned long data, void __iomem *addr)
583 {
584 writel(data, addr);
585 (void) readl(addr); /* flush to avoid PCI posted write */
586 }
587
588 static inline void __iomem *mv_hc_base(void __iomem *base, unsigned int hc)
589 {
590 return (base + MV_SATAHC0_REG_BASE + (hc * MV_SATAHC_REG_SZ));
591 }
592
593 static inline unsigned int mv_hc_from_port(unsigned int port)
594 {
595 return port >> MV_PORT_HC_SHIFT;
596 }
597
598 static inline unsigned int mv_hardport_from_port(unsigned int port)
599 {
600 return port & MV_PORT_MASK;
601 }
602
603 static inline void __iomem *mv_hc_base_from_port(void __iomem *base,
604 unsigned int port)
605 {
606 return mv_hc_base(base, mv_hc_from_port(port));
607 }
608
609 static inline void __iomem *mv_port_base(void __iomem *base, unsigned int port)
610 {
611 return mv_hc_base_from_port(base, port) +
612 MV_SATAHC_ARBTR_REG_SZ +
613 (mv_hardport_from_port(port) * MV_PORT_REG_SZ);
614 }
615
616 static inline void __iomem *mv_ap_base(struct ata_port *ap)
617 {
618 return mv_port_base(ap->host_set->mmio_base, ap->port_no);
619 }
620
621 static inline int mv_get_hc_count(unsigned long host_flags)
622 {
623 return ((host_flags & MV_FLAG_DUAL_HC) ? 2 : 1);
624 }
625
626 static void mv_irq_clear(struct ata_port *ap)
627 {
628 }
629
630 /**
631 * mv_start_dma - Enable eDMA engine
632 * @base: port base address
633 * @pp: port private data
634 *
635 * Verify the local cache of the eDMA state is accurate with a
636 * WARN_ON.
637 *
638 * LOCKING:
639 * Inherited from caller.
640 */
641 static void mv_start_dma(void __iomem *base, struct mv_port_priv *pp)
642 {
643 if (!(MV_PP_FLAG_EDMA_EN & pp->pp_flags)) {
644 writelfl(EDMA_EN, base + EDMA_CMD_OFS);
645 pp->pp_flags |= MV_PP_FLAG_EDMA_EN;
646 }
647 WARN_ON(!(EDMA_EN & readl(base + EDMA_CMD_OFS)));
648 }
649
650 /**
651 * mv_stop_dma - Disable eDMA engine
652 * @ap: ATA channel to manipulate
653 *
654 * Verify the local cache of the eDMA state is accurate with a
655 * WARN_ON.
656 *
657 * LOCKING:
658 * Inherited from caller.
659 */
660 static void mv_stop_dma(struct ata_port *ap)
661 {
662 void __iomem *port_mmio = mv_ap_base(ap);
663 struct mv_port_priv *pp = ap->private_data;
664 u32 reg;
665 int i;
666
667 if (MV_PP_FLAG_EDMA_EN & pp->pp_flags) {
668 /* Disable EDMA if active. The disable bit auto clears.
669 */
670 writelfl(EDMA_DS, port_mmio + EDMA_CMD_OFS);
671 pp->pp_flags &= ~MV_PP_FLAG_EDMA_EN;
672 } else {
673 WARN_ON(EDMA_EN & readl(port_mmio + EDMA_CMD_OFS));
674 }
675
676 /* now properly wait for the eDMA to stop */
677 for (i = 1000; i > 0; i--) {
678 reg = readl(port_mmio + EDMA_CMD_OFS);
679 if (!(EDMA_EN & reg)) {
680 break;
681 }
682 udelay(100);
683 }
684
685 if (EDMA_EN & reg) {
686 printk(KERN_ERR "ata%u: Unable to stop eDMA\n", ap->id);
687 /* FIXME: Consider doing a reset here to recover */
688 }
689 }
690
691 #ifdef ATA_DEBUG
692 static void mv_dump_mem(void __iomem *start, unsigned bytes)
693 {
694 int b, w;
695 for (b = 0; b < bytes; ) {
696 DPRINTK("%p: ", start + b);
697 for (w = 0; b < bytes && w < 4; w++) {
698 printk("%08x ",readl(start + b));
699 b += sizeof(u32);
700 }
701 printk("\n");
702 }
703 }
704 #endif
705
706 static void mv_dump_pci_cfg(struct pci_dev *pdev, unsigned bytes)
707 {
708 #ifdef ATA_DEBUG
709 int b, w;
710 u32 dw;
711 for (b = 0; b < bytes; ) {
712 DPRINTK("%02x: ", b);
713 for (w = 0; b < bytes && w < 4; w++) {
714 (void) pci_read_config_dword(pdev,b,&dw);
715 printk("%08x ",dw);
716 b += sizeof(u32);
717 }
718 printk("\n");
719 }
720 #endif
721 }
722 static void mv_dump_all_regs(void __iomem *mmio_base, int port,
723 struct pci_dev *pdev)
724 {
725 #ifdef ATA_DEBUG
726 void __iomem *hc_base = mv_hc_base(mmio_base,
727 port >> MV_PORT_HC_SHIFT);
728 void __iomem *port_base;
729 int start_port, num_ports, p, start_hc, num_hcs, hc;
730
731 if (0 > port) {
732 start_hc = start_port = 0;
733 num_ports = 8; /* shld be benign for 4 port devs */
734 num_hcs = 2;
735 } else {
736 start_hc = port >> MV_PORT_HC_SHIFT;
737 start_port = port;
738 num_ports = num_hcs = 1;
739 }
740 DPRINTK("All registers for port(s) %u-%u:\n", start_port,
741 num_ports > 1 ? num_ports - 1 : start_port);
742
743 if (NULL != pdev) {
744 DPRINTK("PCI config space regs:\n");
745 mv_dump_pci_cfg(pdev, 0x68);
746 }
747 DPRINTK("PCI regs:\n");
748 mv_dump_mem(mmio_base+0xc00, 0x3c);
749 mv_dump_mem(mmio_base+0xd00, 0x34);
750 mv_dump_mem(mmio_base+0xf00, 0x4);
751 mv_dump_mem(mmio_base+0x1d00, 0x6c);
752 for (hc = start_hc; hc < start_hc + num_hcs; hc++) {
753 hc_base = mv_hc_base(mmio_base, port >> MV_PORT_HC_SHIFT);
754 DPRINTK("HC regs (HC %i):\n", hc);
755 mv_dump_mem(hc_base, 0x1c);
756 }
757 for (p = start_port; p < start_port + num_ports; p++) {
758 port_base = mv_port_base(mmio_base, p);
759 DPRINTK("EDMA regs (port %i):\n",p);
760 mv_dump_mem(port_base, 0x54);
761 DPRINTK("SATA regs (port %i):\n",p);
762 mv_dump_mem(port_base+0x300, 0x60);
763 }
764 #endif
765 }
766
767 static unsigned int mv_scr_offset(unsigned int sc_reg_in)
768 {
769 unsigned int ofs;
770
771 switch (sc_reg_in) {
772 case SCR_STATUS:
773 case SCR_CONTROL:
774 case SCR_ERROR:
775 ofs = SATA_STATUS_OFS + (sc_reg_in * sizeof(u32));
776 break;
777 case SCR_ACTIVE:
778 ofs = SATA_ACTIVE_OFS; /* active is not with the others */
779 break;
780 default:
781 ofs = 0xffffffffU;
782 break;
783 }
784 return ofs;
785 }
786
787 static u32 mv_scr_read(struct ata_port *ap, unsigned int sc_reg_in)
788 {
789 unsigned int ofs = mv_scr_offset(sc_reg_in);
790
791 if (0xffffffffU != ofs) {
792 return readl(mv_ap_base(ap) + ofs);
793 } else {
794 return (u32) ofs;
795 }
796 }
797
798 static void mv_scr_write(struct ata_port *ap, unsigned int sc_reg_in, u32 val)
799 {
800 unsigned int ofs = mv_scr_offset(sc_reg_in);
801
802 if (0xffffffffU != ofs) {
803 writelfl(val, mv_ap_base(ap) + ofs);
804 }
805 }
806
807 /**
808 * mv_host_stop - Host specific cleanup/stop routine.
809 * @host_set: host data structure
810 *
811 * Disable ints, cleanup host memory, call general purpose
812 * host_stop.
813 *
814 * LOCKING:
815 * Inherited from caller.
816 */
817 static void mv_host_stop(struct ata_host_set *host_set)
818 {
819 struct mv_host_priv *hpriv = host_set->private_data;
820 struct pci_dev *pdev = to_pci_dev(host_set->dev);
821
822 if (hpriv->hp_flags & MV_HP_FLAG_MSI) {
823 pci_disable_msi(pdev);
824 } else {
825 pci_intx(pdev, 0);
826 }
827 kfree(hpriv);
828 ata_host_stop(host_set);
829 }
830
831 static inline void mv_priv_free(struct mv_port_priv *pp, struct device *dev)
832 {
833 dma_free_coherent(dev, MV_PORT_PRIV_DMA_SZ, pp->crpb, pp->crpb_dma);
834 }
835
836 static void mv_edma_cfg(struct mv_host_priv *hpriv, void __iomem *port_mmio)
837 {
838 u32 cfg = readl(port_mmio + EDMA_CFG_OFS);
839
840 /* set up non-NCQ EDMA configuration */
841 cfg &= ~0x1f; /* clear queue depth */
842 cfg &= ~EDMA_CFG_NCQ; /* clear NCQ mode */
843 cfg &= ~(1 << 9); /* disable equeue */
844
845 if (IS_GEN_I(hpriv))
846 cfg |= (1 << 8); /* enab config burst size mask */
847
848 else if (IS_GEN_II(hpriv))
849 cfg |= EDMA_CFG_RD_BRST_EXT | EDMA_CFG_WR_BUFF_LEN;
850
851 else if (IS_GEN_IIE(hpriv)) {
852 cfg |= (1 << 23); /* dis RX PM port mask */
853 cfg &= ~(1 << 16); /* dis FIS-based switching (for now) */
854 cfg &= ~(1 << 19); /* dis 128-entry queue (for now?) */
855 cfg |= (1 << 18); /* enab early completion */
856 cfg |= (1 << 17); /* enab host q cache */
857 cfg |= (1 << 22); /* enab cutthrough */
858 }
859
860 writelfl(cfg, port_mmio + EDMA_CFG_OFS);
861 }
862
863 /**
864 * mv_port_start - Port specific init/start routine.
865 * @ap: ATA channel to manipulate
866 *
867 * Allocate and point to DMA memory, init port private memory,
868 * zero indices.
869 *
870 * LOCKING:
871 * Inherited from caller.
872 */
873 static int mv_port_start(struct ata_port *ap)
874 {
875 struct device *dev = ap->host_set->dev;
876 struct mv_host_priv *hpriv = ap->host_set->private_data;
877 struct mv_port_priv *pp;
878 void __iomem *port_mmio = mv_ap_base(ap);
879 void *mem;
880 dma_addr_t mem_dma;
881 int rc = -ENOMEM;
882
883 pp = kmalloc(sizeof(*pp), GFP_KERNEL);
884 if (!pp)
885 goto err_out;
886 memset(pp, 0, sizeof(*pp));
887
888 mem = dma_alloc_coherent(dev, MV_PORT_PRIV_DMA_SZ, &mem_dma,
889 GFP_KERNEL);
890 if (!mem)
891 goto err_out_pp;
892 memset(mem, 0, MV_PORT_PRIV_DMA_SZ);
893
894 rc = ata_pad_alloc(ap, dev);
895 if (rc)
896 goto err_out_priv;
897
898 /* First item in chunk of DMA memory:
899 * 32-slot command request table (CRQB), 32 bytes each in size
900 */
901 pp->crqb = mem;
902 pp->crqb_dma = mem_dma;
903 mem += MV_CRQB_Q_SZ;
904 mem_dma += MV_CRQB_Q_SZ;
905
906 /* Second item:
907 * 32-slot command response table (CRPB), 8 bytes each in size
908 */
909 pp->crpb = mem;
910 pp->crpb_dma = mem_dma;
911 mem += MV_CRPB_Q_SZ;
912 mem_dma += MV_CRPB_Q_SZ;
913
914 /* Third item:
915 * Table of scatter-gather descriptors (ePRD), 16 bytes each
916 */
917 pp->sg_tbl = mem;
918 pp->sg_tbl_dma = mem_dma;
919
920 mv_edma_cfg(hpriv, port_mmio);
921
922 writel((pp->crqb_dma >> 16) >> 16, port_mmio + EDMA_REQ_Q_BASE_HI_OFS);
923 writelfl(pp->crqb_dma & EDMA_REQ_Q_BASE_LO_MASK,
924 port_mmio + EDMA_REQ_Q_IN_PTR_OFS);
925
926 if (hpriv->hp_flags & MV_HP_ERRATA_XX42A0)
927 writelfl(pp->crqb_dma & 0xffffffff,
928 port_mmio + EDMA_REQ_Q_OUT_PTR_OFS);
929 else
930 writelfl(0, port_mmio + EDMA_REQ_Q_OUT_PTR_OFS);
931
932 writel((pp->crpb_dma >> 16) >> 16, port_mmio + EDMA_RSP_Q_BASE_HI_OFS);
933
934 if (hpriv->hp_flags & MV_HP_ERRATA_XX42A0)
935 writelfl(pp->crpb_dma & 0xffffffff,
936 port_mmio + EDMA_RSP_Q_IN_PTR_OFS);
937 else
938 writelfl(0, port_mmio + EDMA_RSP_Q_IN_PTR_OFS);
939
940 writelfl(pp->crpb_dma & EDMA_RSP_Q_BASE_LO_MASK,
941 port_mmio + EDMA_RSP_Q_OUT_PTR_OFS);
942
943 pp->req_producer = pp->rsp_consumer = 0;
944
945 /* Don't turn on EDMA here...do it before DMA commands only. Else
946 * we'll be unable to send non-data, PIO, etc due to restricted access
947 * to shadow regs.
948 */
949 ap->private_data = pp;
950 return 0;
951
952 err_out_priv:
953 mv_priv_free(pp, dev);
954 err_out_pp:
955 kfree(pp);
956 err_out:
957 return rc;
958 }
959
960 /**
961 * mv_port_stop - Port specific cleanup/stop routine.
962 * @ap: ATA channel to manipulate
963 *
964 * Stop DMA, cleanup port memory.
965 *
966 * LOCKING:
967 * This routine uses the host_set lock to protect the DMA stop.
968 */
969 static void mv_port_stop(struct ata_port *ap)
970 {
971 struct device *dev = ap->host_set->dev;
972 struct mv_port_priv *pp = ap->private_data;
973 unsigned long flags;
974
975 spin_lock_irqsave(&ap->host_set->lock, flags);
976 mv_stop_dma(ap);
977 spin_unlock_irqrestore(&ap->host_set->lock, flags);
978
979 ap->private_data = NULL;
980 ata_pad_free(ap, dev);
981 mv_priv_free(pp, dev);
982 kfree(pp);
983 }
984
985 /**
986 * mv_fill_sg - Fill out the Marvell ePRD (scatter gather) entries
987 * @qc: queued command whose SG list to source from
988 *
989 * Populate the SG list and mark the last entry.
990 *
991 * LOCKING:
992 * Inherited from caller.
993 */
994 static void mv_fill_sg(struct ata_queued_cmd *qc)
995 {
996 struct mv_port_priv *pp = qc->ap->private_data;
997 unsigned int i = 0;
998 struct scatterlist *sg;
999
1000 ata_for_each_sg(sg, qc) {
1001 dma_addr_t addr;
1002 u32 sg_len, len, offset;
1003
1004 addr = sg_dma_address(sg);
1005 sg_len = sg_dma_len(sg);
1006
1007 while (sg_len) {
1008 offset = addr & MV_DMA_BOUNDARY;
1009 len = sg_len;
1010 if ((offset + sg_len) > 0x10000)
1011 len = 0x10000 - offset;
1012
1013 pp->sg_tbl[i].addr = cpu_to_le32(addr & 0xffffffff);
1014 pp->sg_tbl[i].addr_hi = cpu_to_le32((addr >> 16) >> 16);
1015 pp->sg_tbl[i].flags_size = cpu_to_le32(len);
1016
1017 sg_len -= len;
1018 addr += len;
1019
1020 if (!sg_len && ata_sg_is_last(sg, qc))
1021 pp->sg_tbl[i].flags_size |= cpu_to_le32(EPRD_FLAG_END_OF_TBL);
1022
1023 i++;
1024 }
1025 }
1026 }
1027
1028 static inline unsigned mv_inc_q_index(unsigned *index)
1029 {
1030 *index = (*index + 1) & MV_MAX_Q_DEPTH_MASK;
1031 return *index;
1032 }
1033
1034 static inline void mv_crqb_pack_cmd(u16 *cmdw, u8 data, u8 addr, unsigned last)
1035 {
1036 *cmdw = data | (addr << CRQB_CMD_ADDR_SHIFT) | CRQB_CMD_CS |
1037 (last ? CRQB_CMD_LAST : 0);
1038 }
1039
1040 /**
1041 * mv_qc_prep - Host specific command preparation.
1042 * @qc: queued command to prepare
1043 *
1044 * This routine simply redirects to the general purpose routine
1045 * if command is not DMA. Else, it handles prep of the CRQB
1046 * (command request block), does some sanity checking, and calls
1047 * the SG load routine.
1048 *
1049 * LOCKING:
1050 * Inherited from caller.
1051 */
1052 static void mv_qc_prep(struct ata_queued_cmd *qc)
1053 {
1054 struct ata_port *ap = qc->ap;
1055 struct mv_port_priv *pp = ap->private_data;
1056 u16 *cw;
1057 struct ata_taskfile *tf;
1058 u16 flags = 0;
1059
1060 if (ATA_PROT_DMA != qc->tf.protocol)
1061 return;
1062
1063 /* the req producer index should be the same as we remember it */
1064 WARN_ON(((readl(mv_ap_base(qc->ap) + EDMA_REQ_Q_IN_PTR_OFS) >>
1065 EDMA_REQ_Q_PTR_SHIFT) & MV_MAX_Q_DEPTH_MASK) !=
1066 pp->req_producer);
1067
1068 /* Fill in command request block
1069 */
1070 if (!(qc->tf.flags & ATA_TFLAG_WRITE))
1071 flags |= CRQB_FLAG_READ;
1072 WARN_ON(MV_MAX_Q_DEPTH <= qc->tag);
1073 flags |= qc->tag << CRQB_TAG_SHIFT;
1074
1075 pp->crqb[pp->req_producer].sg_addr =
1076 cpu_to_le32(pp->sg_tbl_dma & 0xffffffff);
1077 pp->crqb[pp->req_producer].sg_addr_hi =
1078 cpu_to_le32((pp->sg_tbl_dma >> 16) >> 16);
1079 pp->crqb[pp->req_producer].ctrl_flags = cpu_to_le16(flags);
1080
1081 cw = &pp->crqb[pp->req_producer].ata_cmd[0];
1082 tf = &qc->tf;
1083
1084 /* Sadly, the CRQB cannot accomodate all registers--there are
1085 * only 11 bytes...so we must pick and choose required
1086 * registers based on the command. So, we drop feature and
1087 * hob_feature for [RW] DMA commands, but they are needed for
1088 * NCQ. NCQ will drop hob_nsect.
1089 */
1090 switch (tf->command) {
1091 case ATA_CMD_READ:
1092 case ATA_CMD_READ_EXT:
1093 case ATA_CMD_WRITE:
1094 case ATA_CMD_WRITE_EXT:
1095 mv_crqb_pack_cmd(cw++, tf->hob_nsect, ATA_REG_NSECT, 0);
1096 break;
1097 #ifdef LIBATA_NCQ /* FIXME: remove this line when NCQ added */
1098 case ATA_CMD_FPDMA_READ:
1099 case ATA_CMD_FPDMA_WRITE:
1100 mv_crqb_pack_cmd(cw++, tf->hob_feature, ATA_REG_FEATURE, 0);
1101 mv_crqb_pack_cmd(cw++, tf->feature, ATA_REG_FEATURE, 0);
1102 break;
1103 #endif /* FIXME: remove this line when NCQ added */
1104 default:
1105 /* The only other commands EDMA supports in non-queued and
1106 * non-NCQ mode are: [RW] STREAM DMA and W DMA FUA EXT, none
1107 * of which are defined/used by Linux. If we get here, this
1108 * driver needs work.
1109 *
1110 * FIXME: modify libata to give qc_prep a return value and
1111 * return error here.
1112 */
1113 BUG_ON(tf->command);
1114 break;
1115 }
1116 mv_crqb_pack_cmd(cw++, tf->nsect, ATA_REG_NSECT, 0);
1117 mv_crqb_pack_cmd(cw++, tf->hob_lbal, ATA_REG_LBAL, 0);
1118 mv_crqb_pack_cmd(cw++, tf->lbal, ATA_REG_LBAL, 0);
1119 mv_crqb_pack_cmd(cw++, tf->hob_lbam, ATA_REG_LBAM, 0);
1120 mv_crqb_pack_cmd(cw++, tf->lbam, ATA_REG_LBAM, 0);
1121 mv_crqb_pack_cmd(cw++, tf->hob_lbah, ATA_REG_LBAH, 0);
1122 mv_crqb_pack_cmd(cw++, tf->lbah, ATA_REG_LBAH, 0);
1123 mv_crqb_pack_cmd(cw++, tf->device, ATA_REG_DEVICE, 0);
1124 mv_crqb_pack_cmd(cw++, tf->command, ATA_REG_CMD, 1); /* last */
1125
1126 if (!(qc->flags & ATA_QCFLAG_DMAMAP))
1127 return;
1128 mv_fill_sg(qc);
1129 }
1130
1131 /**
1132 * mv_qc_prep_iie - Host specific command preparation.
1133 * @qc: queued command to prepare
1134 *
1135 * This routine simply redirects to the general purpose routine
1136 * if command is not DMA. Else, it handles prep of the CRQB
1137 * (command request block), does some sanity checking, and calls
1138 * the SG load routine.
1139 *
1140 * LOCKING:
1141 * Inherited from caller.
1142 */
1143 static void mv_qc_prep_iie(struct ata_queued_cmd *qc)
1144 {
1145 struct ata_port *ap = qc->ap;
1146 struct mv_port_priv *pp = ap->private_data;
1147 struct mv_crqb_iie *crqb;
1148 struct ata_taskfile *tf;
1149 u32 flags = 0;
1150
1151 if (ATA_PROT_DMA != qc->tf.protocol)
1152 return;
1153
1154 /* the req producer index should be the same as we remember it */
1155 WARN_ON(((readl(mv_ap_base(qc->ap) + EDMA_REQ_Q_IN_PTR_OFS) >>
1156 EDMA_REQ_Q_PTR_SHIFT) & MV_MAX_Q_DEPTH_MASK) !=
1157 pp->req_producer);
1158
1159 /* Fill in Gen IIE command request block
1160 */
1161 if (!(qc->tf.flags & ATA_TFLAG_WRITE))
1162 flags |= CRQB_FLAG_READ;
1163
1164 WARN_ON(MV_MAX_Q_DEPTH <= qc->tag);
1165 flags |= qc->tag << CRQB_TAG_SHIFT;
1166
1167 crqb = (struct mv_crqb_iie *) &pp->crqb[pp->req_producer];
1168 crqb->addr = cpu_to_le32(pp->sg_tbl_dma & 0xffffffff);
1169 crqb->addr_hi = cpu_to_le32((pp->sg_tbl_dma >> 16) >> 16);
1170 crqb->flags = cpu_to_le32(flags);
1171
1172 tf = &qc->tf;
1173 crqb->ata_cmd[0] = cpu_to_le32(
1174 (tf->command << 16) |
1175 (tf->feature << 24)
1176 );
1177 crqb->ata_cmd[1] = cpu_to_le32(
1178 (tf->lbal << 0) |
1179 (tf->lbam << 8) |
1180 (tf->lbah << 16) |
1181 (tf->device << 24)
1182 );
1183 crqb->ata_cmd[2] = cpu_to_le32(
1184 (tf->hob_lbal << 0) |
1185 (tf->hob_lbam << 8) |
1186 (tf->hob_lbah << 16) |
1187 (tf->hob_feature << 24)
1188 );
1189 crqb->ata_cmd[3] = cpu_to_le32(
1190 (tf->nsect << 0) |
1191 (tf->hob_nsect << 8)
1192 );
1193
1194 if (!(qc->flags & ATA_QCFLAG_DMAMAP))
1195 return;
1196 mv_fill_sg(qc);
1197 }
1198
1199 /**
1200 * mv_qc_issue - Initiate a command to the host
1201 * @qc: queued command to start
1202 *
1203 * This routine simply redirects to the general purpose routine
1204 * if command is not DMA. Else, it sanity checks our local
1205 * caches of the request producer/consumer indices then enables
1206 * DMA and bumps the request producer index.
1207 *
1208 * LOCKING:
1209 * Inherited from caller.
1210 */
1211 static unsigned int mv_qc_issue(struct ata_queued_cmd *qc)
1212 {
1213 void __iomem *port_mmio = mv_ap_base(qc->ap);
1214 struct mv_port_priv *pp = qc->ap->private_data;
1215 u32 in_ptr;
1216
1217 if (ATA_PROT_DMA != qc->tf.protocol) {
1218 /* We're about to send a non-EDMA capable command to the
1219 * port. Turn off EDMA so there won't be problems accessing
1220 * shadow block, etc registers.
1221 */
1222 mv_stop_dma(qc->ap);
1223 return ata_qc_issue_prot(qc);
1224 }
1225
1226 in_ptr = readl(port_mmio + EDMA_REQ_Q_IN_PTR_OFS);
1227
1228 /* the req producer index should be the same as we remember it */
1229 WARN_ON(((in_ptr >> EDMA_REQ_Q_PTR_SHIFT) & MV_MAX_Q_DEPTH_MASK) !=
1230 pp->req_producer);
1231 /* until we do queuing, the queue should be empty at this point */
1232 WARN_ON(((in_ptr >> EDMA_REQ_Q_PTR_SHIFT) & MV_MAX_Q_DEPTH_MASK) !=
1233 ((readl(port_mmio + EDMA_REQ_Q_OUT_PTR_OFS) >>
1234 EDMA_REQ_Q_PTR_SHIFT) & MV_MAX_Q_DEPTH_MASK));
1235
1236 mv_inc_q_index(&pp->req_producer); /* now incr producer index */
1237
1238 mv_start_dma(port_mmio, pp);
1239
1240 /* and write the request in pointer to kick the EDMA to life */
1241 in_ptr &= EDMA_REQ_Q_BASE_LO_MASK;
1242 in_ptr |= pp->req_producer << EDMA_REQ_Q_PTR_SHIFT;
1243 writelfl(in_ptr, port_mmio + EDMA_REQ_Q_IN_PTR_OFS);
1244
1245 return 0;
1246 }
1247
1248 /**
1249 * mv_get_crpb_status - get status from most recently completed cmd
1250 * @ap: ATA channel to manipulate
1251 *
1252 * This routine is for use when the port is in DMA mode, when it
1253 * will be using the CRPB (command response block) method of
1254 * returning command completion information. We check indices
1255 * are good, grab status, and bump the response consumer index to
1256 * prove that we're up to date.
1257 *
1258 * LOCKING:
1259 * Inherited from caller.
1260 */
1261 static u8 mv_get_crpb_status(struct ata_port *ap)
1262 {
1263 void __iomem *port_mmio = mv_ap_base(ap);
1264 struct mv_port_priv *pp = ap->private_data;
1265 u32 out_ptr;
1266
1267 out_ptr = readl(port_mmio + EDMA_RSP_Q_OUT_PTR_OFS);
1268
1269 /* the response consumer index should be the same as we remember it */
1270 WARN_ON(((out_ptr >> EDMA_RSP_Q_PTR_SHIFT) & MV_MAX_Q_DEPTH_MASK) !=
1271 pp->rsp_consumer);
1272
1273 /* increment our consumer index... */
1274 pp->rsp_consumer = mv_inc_q_index(&pp->rsp_consumer);
1275
1276 /* and, until we do NCQ, there should only be 1 CRPB waiting */
1277 WARN_ON(((readl(port_mmio + EDMA_RSP_Q_IN_PTR_OFS) >>
1278 EDMA_RSP_Q_PTR_SHIFT) & MV_MAX_Q_DEPTH_MASK) !=
1279 pp->rsp_consumer);
1280
1281 /* write out our inc'd consumer index so EDMA knows we're caught up */
1282 out_ptr &= EDMA_RSP_Q_BASE_LO_MASK;
1283 out_ptr |= pp->rsp_consumer << EDMA_RSP_Q_PTR_SHIFT;
1284 writelfl(out_ptr, port_mmio + EDMA_RSP_Q_OUT_PTR_OFS);
1285
1286 /* Return ATA status register for completed CRPB */
1287 return (pp->crpb[pp->rsp_consumer].flags >> CRPB_FLAG_STATUS_SHIFT);
1288 }
1289
1290 /**
1291 * mv_err_intr - Handle error interrupts on the port
1292 * @ap: ATA channel to manipulate
1293 *
1294 * In most cases, just clear the interrupt and move on. However,
1295 * some cases require an eDMA reset, which is done right before
1296 * the COMRESET in mv_phy_reset(). The SERR case requires a
1297 * clear of pending errors in the SATA SERROR register. Finally,
1298 * if the port disabled DMA, update our cached copy to match.
1299 *
1300 * LOCKING:
1301 * Inherited from caller.
1302 */
1303 static void mv_err_intr(struct ata_port *ap)
1304 {
1305 void __iomem *port_mmio = mv_ap_base(ap);
1306 u32 edma_err_cause, serr = 0;
1307
1308 edma_err_cause = readl(port_mmio + EDMA_ERR_IRQ_CAUSE_OFS);
1309
1310 if (EDMA_ERR_SERR & edma_err_cause) {
1311 serr = scr_read(ap, SCR_ERROR);
1312 scr_write_flush(ap, SCR_ERROR, serr);
1313 }
1314 if (EDMA_ERR_SELF_DIS & edma_err_cause) {
1315 struct mv_port_priv *pp = ap->private_data;
1316 pp->pp_flags &= ~MV_PP_FLAG_EDMA_EN;
1317 }
1318 DPRINTK(KERN_ERR "ata%u: port error; EDMA err cause: 0x%08x "
1319 "SERR: 0x%08x\n", ap->id, edma_err_cause, serr);
1320
1321 /* Clear EDMA now that SERR cleanup done */
1322 writelfl(0, port_mmio + EDMA_ERR_IRQ_CAUSE_OFS);
1323
1324 /* check for fatal here and recover if needed */
1325 if (EDMA_ERR_FATAL & edma_err_cause) {
1326 mv_stop_and_reset(ap);
1327 }
1328 }
1329
1330 /**
1331 * mv_host_intr - Handle all interrupts on the given host controller
1332 * @host_set: host specific structure
1333 * @relevant: port error bits relevant to this host controller
1334 * @hc: which host controller we're to look at
1335 *
1336 * Read then write clear the HC interrupt status then walk each
1337 * port connected to the HC and see if it needs servicing. Port
1338 * success ints are reported in the HC interrupt status reg, the
1339 * port error ints are reported in the higher level main
1340 * interrupt status register and thus are passed in via the
1341 * 'relevant' argument.
1342 *
1343 * LOCKING:
1344 * Inherited from caller.
1345 */
1346 static void mv_host_intr(struct ata_host_set *host_set, u32 relevant,
1347 unsigned int hc)
1348 {
1349 void __iomem *mmio = host_set->mmio_base;
1350 void __iomem *hc_mmio = mv_hc_base(mmio, hc);
1351 struct ata_port *ap;
1352 struct ata_queued_cmd *qc;
1353 u32 hc_irq_cause;
1354 int shift, port, port0, hard_port, handled;
1355 unsigned int err_mask;
1356 u8 ata_status = 0;
1357
1358 if (hc == 0) {
1359 port0 = 0;
1360 } else {
1361 port0 = MV_PORTS_PER_HC;
1362 }
1363
1364 /* we'll need the HC success int register in most cases */
1365 hc_irq_cause = readl(hc_mmio + HC_IRQ_CAUSE_OFS);
1366 if (hc_irq_cause) {
1367 writelfl(~hc_irq_cause, hc_mmio + HC_IRQ_CAUSE_OFS);
1368 }
1369
1370 VPRINTK("ENTER, hc%u relevant=0x%08x HC IRQ cause=0x%08x\n",
1371 hc,relevant,hc_irq_cause);
1372
1373 for (port = port0; port < port0 + MV_PORTS_PER_HC; port++) {
1374 ap = host_set->ports[port];
1375 hard_port = port & MV_PORT_MASK; /* range 0-3 */
1376 handled = 0; /* ensure ata_status is set if handled++ */
1377
1378 if ((CRPB_DMA_DONE << hard_port) & hc_irq_cause) {
1379 /* new CRPB on the queue; just one at a time until NCQ
1380 */
1381 ata_status = mv_get_crpb_status(ap);
1382 handled++;
1383 } else if ((DEV_IRQ << hard_port) & hc_irq_cause) {
1384 /* received ATA IRQ; read the status reg to clear INTRQ
1385 */
1386 ata_status = readb((void __iomem *)
1387 ap->ioaddr.status_addr);
1388 handled++;
1389 }
1390
1391 if (ap && (ap->flags & ATA_FLAG_PORT_DISABLED))
1392 continue;
1393
1394 err_mask = ac_err_mask(ata_status);
1395
1396 shift = port << 1; /* (port * 2) */
1397 if (port >= MV_PORTS_PER_HC) {
1398 shift++; /* skip bit 8 in the HC Main IRQ reg */
1399 }
1400 if ((PORT0_ERR << shift) & relevant) {
1401 mv_err_intr(ap);
1402 err_mask |= AC_ERR_OTHER;
1403 handled++;
1404 }
1405
1406 if (handled && ap) {
1407 qc = ata_qc_from_tag(ap, ap->active_tag);
1408 if (NULL != qc) {
1409 VPRINTK("port %u IRQ found for qc, "
1410 "ata_status 0x%x\n", port,ata_status);
1411 /* mark qc status appropriately */
1412 if (!(qc->tf.flags & ATA_TFLAG_POLLING)) {
1413 qc->err_mask |= err_mask;
1414 ata_qc_complete(qc);
1415 }
1416 }
1417 }
1418 }
1419 VPRINTK("EXIT\n");
1420 }
1421
1422 /**
1423 * mv_interrupt -
1424 * @irq: unused
1425 * @dev_instance: private data; in this case the host structure
1426 * @regs: unused
1427 *
1428 * Read the read only register to determine if any host
1429 * controllers have pending interrupts. If so, call lower level
1430 * routine to handle. Also check for PCI errors which are only
1431 * reported here.
1432 *
1433 * LOCKING:
1434 * This routine holds the host_set lock while processing pending
1435 * interrupts.
1436 */
1437 static irqreturn_t mv_interrupt(int irq, void *dev_instance,
1438 struct pt_regs *regs)
1439 {
1440 struct ata_host_set *host_set = dev_instance;
1441 unsigned int hc, handled = 0, n_hcs;
1442 void __iomem *mmio = host_set->mmio_base;
1443 u32 irq_stat;
1444
1445 irq_stat = readl(mmio + HC_MAIN_IRQ_CAUSE_OFS);
1446
1447 /* check the cases where we either have nothing pending or have read
1448 * a bogus register value which can indicate HW removal or PCI fault
1449 */
1450 if (!irq_stat || (0xffffffffU == irq_stat)) {
1451 return IRQ_NONE;
1452 }
1453
1454 n_hcs = mv_get_hc_count(host_set->ports[0]->flags);
1455 spin_lock(&host_set->lock);
1456
1457 for (hc = 0; hc < n_hcs; hc++) {
1458 u32 relevant = irq_stat & (HC0_IRQ_PEND << (hc * HC_SHIFT));
1459 if (relevant) {
1460 mv_host_intr(host_set, relevant, hc);
1461 handled++;
1462 }
1463 }
1464 if (PCI_ERR & irq_stat) {
1465 printk(KERN_ERR DRV_NAME ": PCI ERROR; PCI IRQ cause=0x%08x\n",
1466 readl(mmio + PCI_IRQ_CAUSE_OFS));
1467
1468 DPRINTK("All regs @ PCI error\n");
1469 mv_dump_all_regs(mmio, -1, to_pci_dev(host_set->dev));
1470
1471 writelfl(0, mmio + PCI_IRQ_CAUSE_OFS);
1472 handled++;
1473 }
1474 spin_unlock(&host_set->lock);
1475
1476 return IRQ_RETVAL(handled);
1477 }
1478
1479 static void __iomem *mv5_phy_base(void __iomem *mmio, unsigned int port)
1480 {
1481 void __iomem *hc_mmio = mv_hc_base_from_port(mmio, port);
1482 unsigned long ofs = (mv_hardport_from_port(port) + 1) * 0x100UL;
1483
1484 return hc_mmio + ofs;
1485 }
1486
1487 static unsigned int mv5_scr_offset(unsigned int sc_reg_in)
1488 {
1489 unsigned int ofs;
1490
1491 switch (sc_reg_in) {
1492 case SCR_STATUS:
1493 case SCR_ERROR:
1494 case SCR_CONTROL:
1495 ofs = sc_reg_in * sizeof(u32);
1496 break;
1497 default:
1498 ofs = 0xffffffffU;
1499 break;
1500 }
1501 return ofs;
1502 }
1503
1504 static u32 mv5_scr_read(struct ata_port *ap, unsigned int sc_reg_in)
1505 {
1506 void __iomem *mmio = mv5_phy_base(ap->host_set->mmio_base, ap->port_no);
1507 unsigned int ofs = mv5_scr_offset(sc_reg_in);
1508
1509 if (ofs != 0xffffffffU)
1510 return readl(mmio + ofs);
1511 else
1512 return (u32) ofs;
1513 }
1514
1515 static void mv5_scr_write(struct ata_port *ap, unsigned int sc_reg_in, u32 val)
1516 {
1517 void __iomem *mmio = mv5_phy_base(ap->host_set->mmio_base, ap->port_no);
1518 unsigned int ofs = mv5_scr_offset(sc_reg_in);
1519
1520 if (ofs != 0xffffffffU)
1521 writelfl(val, mmio + ofs);
1522 }
1523
1524 static void mv5_reset_bus(struct pci_dev *pdev, void __iomem *mmio)
1525 {
1526 u8 rev_id;
1527 int early_5080;
1528
1529 pci_read_config_byte(pdev, PCI_REVISION_ID, &rev_id);
1530
1531 early_5080 = (pdev->device == 0x5080) && (rev_id == 0);
1532
1533 if (!early_5080) {
1534 u32 tmp = readl(mmio + MV_PCI_EXP_ROM_BAR_CTL);
1535 tmp |= (1 << 0);
1536 writel(tmp, mmio + MV_PCI_EXP_ROM_BAR_CTL);
1537 }
1538
1539 mv_reset_pci_bus(pdev, mmio);
1540 }
1541
1542 static void mv5_reset_flash(struct mv_host_priv *hpriv, void __iomem *mmio)
1543 {
1544 writel(0x0fcfffff, mmio + MV_FLASH_CTL);
1545 }
1546
1547 static void mv5_read_preamp(struct mv_host_priv *hpriv, int idx,
1548 void __iomem *mmio)
1549 {
1550 void __iomem *phy_mmio = mv5_phy_base(mmio, idx);
1551 u32 tmp;
1552
1553 tmp = readl(phy_mmio + MV5_PHY_MODE);
1554
1555 hpriv->signal[idx].pre = tmp & 0x1800; /* bits 12:11 */
1556 hpriv->signal[idx].amps = tmp & 0xe0; /* bits 7:5 */
1557 }
1558
1559 static void mv5_enable_leds(struct mv_host_priv *hpriv, void __iomem *mmio)
1560 {
1561 u32 tmp;
1562
1563 writel(0, mmio + MV_GPIO_PORT_CTL);
1564
1565 /* FIXME: handle MV_HP_ERRATA_50XXB2 errata */
1566
1567 tmp = readl(mmio + MV_PCI_EXP_ROM_BAR_CTL);
1568 tmp |= ~(1 << 0);
1569 writel(tmp, mmio + MV_PCI_EXP_ROM_BAR_CTL);
1570 }
1571
1572 static void mv5_phy_errata(struct mv_host_priv *hpriv, void __iomem *mmio,
1573 unsigned int port)
1574 {
1575 void __iomem *phy_mmio = mv5_phy_base(mmio, port);
1576 const u32 mask = (1<<12) | (1<<11) | (1<<7) | (1<<6) | (1<<5);
1577 u32 tmp;
1578 int fix_apm_sq = (hpriv->hp_flags & MV_HP_ERRATA_50XXB0);
1579
1580 if (fix_apm_sq) {
1581 tmp = readl(phy_mmio + MV5_LT_MODE);
1582 tmp |= (1 << 19);
1583 writel(tmp, phy_mmio + MV5_LT_MODE);
1584
1585 tmp = readl(phy_mmio + MV5_PHY_CTL);
1586 tmp &= ~0x3;
1587 tmp |= 0x1;
1588 writel(tmp, phy_mmio + MV5_PHY_CTL);
1589 }
1590
1591 tmp = readl(phy_mmio + MV5_PHY_MODE);
1592 tmp &= ~mask;
1593 tmp |= hpriv->signal[port].pre;
1594 tmp |= hpriv->signal[port].amps;
1595 writel(tmp, phy_mmio + MV5_PHY_MODE);
1596 }
1597
1598
1599 #undef ZERO
1600 #define ZERO(reg) writel(0, port_mmio + (reg))
1601 static void mv5_reset_hc_port(struct mv_host_priv *hpriv, void __iomem *mmio,
1602 unsigned int port)
1603 {
1604 void __iomem *port_mmio = mv_port_base(mmio, port);
1605
1606 writelfl(EDMA_DS, port_mmio + EDMA_CMD_OFS);
1607
1608 mv_channel_reset(hpriv, mmio, port);
1609
1610 ZERO(0x028); /* command */
1611 writel(0x11f, port_mmio + EDMA_CFG_OFS);
1612 ZERO(0x004); /* timer */
1613 ZERO(0x008); /* irq err cause */
1614 ZERO(0x00c); /* irq err mask */
1615 ZERO(0x010); /* rq bah */
1616 ZERO(0x014); /* rq inp */
1617 ZERO(0x018); /* rq outp */
1618 ZERO(0x01c); /* respq bah */
1619 ZERO(0x024); /* respq outp */
1620 ZERO(0x020); /* respq inp */
1621 ZERO(0x02c); /* test control */
1622 writel(0xbc, port_mmio + EDMA_IORDY_TMOUT);
1623 }
1624 #undef ZERO
1625
1626 #define ZERO(reg) writel(0, hc_mmio + (reg))
1627 static void mv5_reset_one_hc(struct mv_host_priv *hpriv, void __iomem *mmio,
1628 unsigned int hc)
1629 {
1630 void __iomem *hc_mmio = mv_hc_base(mmio, hc);
1631 u32 tmp;
1632
1633 ZERO(0x00c);
1634 ZERO(0x010);
1635 ZERO(0x014);
1636 ZERO(0x018);
1637
1638 tmp = readl(hc_mmio + 0x20);
1639 tmp &= 0x1c1c1c1c;
1640 tmp |= 0x03030303;
1641 writel(tmp, hc_mmio + 0x20);
1642 }
1643 #undef ZERO
1644
1645 static int mv5_reset_hc(struct mv_host_priv *hpriv, void __iomem *mmio,
1646 unsigned int n_hc)
1647 {
1648 unsigned int hc, port;
1649
1650 for (hc = 0; hc < n_hc; hc++) {
1651 for (port = 0; port < MV_PORTS_PER_HC; port++)
1652 mv5_reset_hc_port(hpriv, mmio,
1653 (hc * MV_PORTS_PER_HC) + port);
1654
1655 mv5_reset_one_hc(hpriv, mmio, hc);
1656 }
1657
1658 return 0;
1659 }
1660
1661 #undef ZERO
1662 #define ZERO(reg) writel(0, mmio + (reg))
1663 static void mv_reset_pci_bus(struct pci_dev *pdev, void __iomem *mmio)
1664 {
1665 u32 tmp;
1666
1667 tmp = readl(mmio + MV_PCI_MODE);
1668 tmp &= 0xff00ffff;
1669 writel(tmp, mmio + MV_PCI_MODE);
1670
1671 ZERO(MV_PCI_DISC_TIMER);
1672 ZERO(MV_PCI_MSI_TRIGGER);
1673 writel(0x000100ff, mmio + MV_PCI_XBAR_TMOUT);
1674 ZERO(HC_MAIN_IRQ_MASK_OFS);
1675 ZERO(MV_PCI_SERR_MASK);
1676 ZERO(PCI_IRQ_CAUSE_OFS);
1677 ZERO(PCI_IRQ_MASK_OFS);
1678 ZERO(MV_PCI_ERR_LOW_ADDRESS);
1679 ZERO(MV_PCI_ERR_HIGH_ADDRESS);
1680 ZERO(MV_PCI_ERR_ATTRIBUTE);
1681 ZERO(MV_PCI_ERR_COMMAND);
1682 }
1683 #undef ZERO
1684
1685 static void mv6_reset_flash(struct mv_host_priv *hpriv, void __iomem *mmio)
1686 {
1687 u32 tmp;
1688
1689 mv5_reset_flash(hpriv, mmio);
1690
1691 tmp = readl(mmio + MV_GPIO_PORT_CTL);
1692 tmp &= 0x3;
1693 tmp |= (1 << 5) | (1 << 6);
1694 writel(tmp, mmio + MV_GPIO_PORT_CTL);
1695 }
1696
1697 /**
1698 * mv6_reset_hc - Perform the 6xxx global soft reset
1699 * @mmio: base address of the HBA
1700 *
1701 * This routine only applies to 6xxx parts.
1702 *
1703 * LOCKING:
1704 * Inherited from caller.
1705 */
1706 static int mv6_reset_hc(struct mv_host_priv *hpriv, void __iomem *mmio,
1707 unsigned int n_hc)
1708 {
1709 void __iomem *reg = mmio + PCI_MAIN_CMD_STS_OFS;
1710 int i, rc = 0;
1711 u32 t;
1712
1713 /* Following procedure defined in PCI "main command and status
1714 * register" table.
1715 */
1716 t = readl(reg);
1717 writel(t | STOP_PCI_MASTER, reg);
1718
1719 for (i = 0; i < 1000; i++) {
1720 udelay(1);
1721 t = readl(reg);
1722 if (PCI_MASTER_EMPTY & t) {
1723 break;
1724 }
1725 }
1726 if (!(PCI_MASTER_EMPTY & t)) {
1727 printk(KERN_ERR DRV_NAME ": PCI master won't flush\n");
1728 rc = 1;
1729 goto done;
1730 }
1731
1732 /* set reset */
1733 i = 5;
1734 do {
1735 writel(t | GLOB_SFT_RST, reg);
1736 t = readl(reg);
1737 udelay(1);
1738 } while (!(GLOB_SFT_RST & t) && (i-- > 0));
1739
1740 if (!(GLOB_SFT_RST & t)) {
1741 printk(KERN_ERR DRV_NAME ": can't set global reset\n");
1742 rc = 1;
1743 goto done;
1744 }
1745
1746 /* clear reset and *reenable the PCI master* (not mentioned in spec) */
1747 i = 5;
1748 do {
1749 writel(t & ~(GLOB_SFT_RST | STOP_PCI_MASTER), reg);
1750 t = readl(reg);
1751 udelay(1);
1752 } while ((GLOB_SFT_RST & t) && (i-- > 0));
1753
1754 if (GLOB_SFT_RST & t) {
1755 printk(KERN_ERR DRV_NAME ": can't clear global reset\n");
1756 rc = 1;
1757 }
1758 done:
1759 return rc;
1760 }
1761
1762 static void mv6_read_preamp(struct mv_host_priv *hpriv, int idx,
1763 void __iomem *mmio)
1764 {
1765 void __iomem *port_mmio;
1766 u32 tmp;
1767
1768 tmp = readl(mmio + MV_RESET_CFG);
1769 if ((tmp & (1 << 0)) == 0) {
1770 hpriv->signal[idx].amps = 0x7 << 8;
1771 hpriv->signal[idx].pre = 0x1 << 5;
1772 return;
1773 }
1774
1775 port_mmio = mv_port_base(mmio, idx);
1776 tmp = readl(port_mmio + PHY_MODE2);
1777
1778 hpriv->signal[idx].amps = tmp & 0x700; /* bits 10:8 */
1779 hpriv->signal[idx].pre = tmp & 0xe0; /* bits 7:5 */
1780 }
1781
1782 static void mv6_enable_leds(struct mv_host_priv *hpriv, void __iomem *mmio)
1783 {
1784 writel(0x00000060, mmio + MV_GPIO_PORT_CTL);
1785 }
1786
1787 static void mv6_phy_errata(struct mv_host_priv *hpriv, void __iomem *mmio,
1788 unsigned int port)
1789 {
1790 void __iomem *port_mmio = mv_port_base(mmio, port);
1791
1792 u32 hp_flags = hpriv->hp_flags;
1793 int fix_phy_mode2 =
1794 hp_flags & (MV_HP_ERRATA_60X1B2 | MV_HP_ERRATA_60X1C0);
1795 int fix_phy_mode4 =
1796 hp_flags & (MV_HP_ERRATA_60X1B2 | MV_HP_ERRATA_60X1C0);
1797 u32 m2, tmp;
1798
1799 if (fix_phy_mode2) {
1800 m2 = readl(port_mmio + PHY_MODE2);
1801 m2 &= ~(1 << 16);
1802 m2 |= (1 << 31);
1803 writel(m2, port_mmio + PHY_MODE2);
1804
1805 udelay(200);
1806
1807 m2 = readl(port_mmio + PHY_MODE2);
1808 m2 &= ~((1 << 16) | (1 << 31));
1809 writel(m2, port_mmio + PHY_MODE2);
1810
1811 udelay(200);
1812 }
1813
1814 /* who knows what this magic does */
1815 tmp = readl(port_mmio + PHY_MODE3);
1816 tmp &= ~0x7F800000;
1817 tmp |= 0x2A800000;
1818 writel(tmp, port_mmio + PHY_MODE3);
1819
1820 if (fix_phy_mode4) {
1821 u32 m4;
1822
1823 m4 = readl(port_mmio + PHY_MODE4);
1824
1825 if (hp_flags & MV_HP_ERRATA_60X1B2)
1826 tmp = readl(port_mmio + 0x310);
1827
1828 m4 = (m4 & ~(1 << 1)) | (1 << 0);
1829
1830 writel(m4, port_mmio + PHY_MODE4);
1831
1832 if (hp_flags & MV_HP_ERRATA_60X1B2)
1833 writel(tmp, port_mmio + 0x310);
1834 }
1835
1836 /* Revert values of pre-emphasis and signal amps to the saved ones */
1837 m2 = readl(port_mmio + PHY_MODE2);
1838
1839 m2 &= ~MV_M2_PREAMP_MASK;
1840 m2 |= hpriv->signal[port].amps;
1841 m2 |= hpriv->signal[port].pre;
1842 m2 &= ~(1 << 16);
1843
1844 /* according to mvSata 3.6.1, some IIE values are fixed */
1845 if (IS_GEN_IIE(hpriv)) {
1846 m2 &= ~0xC30FF01F;
1847 m2 |= 0x0000900F;
1848 }
1849
1850 writel(m2, port_mmio + PHY_MODE2);
1851 }
1852
1853 static void mv_channel_reset(struct mv_host_priv *hpriv, void __iomem *mmio,
1854 unsigned int port_no)
1855 {
1856 void __iomem *port_mmio = mv_port_base(mmio, port_no);
1857
1858 writelfl(ATA_RST, port_mmio + EDMA_CMD_OFS);
1859
1860 if (IS_60XX(hpriv)) {
1861 u32 ifctl = readl(port_mmio + SATA_INTERFACE_CTL);
1862 ifctl |= (1 << 12) | (1 << 7);
1863 writelfl(ifctl, port_mmio + SATA_INTERFACE_CTL);
1864 }
1865
1866 udelay(25); /* allow reset propagation */
1867
1868 /* Spec never mentions clearing the bit. Marvell's driver does
1869 * clear the bit, however.
1870 */
1871 writelfl(0, port_mmio + EDMA_CMD_OFS);
1872
1873 hpriv->ops->phy_errata(hpriv, mmio, port_no);
1874
1875 if (IS_50XX(hpriv))
1876 mdelay(1);
1877 }
1878
1879 static void mv_stop_and_reset(struct ata_port *ap)
1880 {
1881 struct mv_host_priv *hpriv = ap->host_set->private_data;
1882 void __iomem *mmio = ap->host_set->mmio_base;
1883
1884 mv_stop_dma(ap);
1885
1886 mv_channel_reset(hpriv, mmio, ap->port_no);
1887
1888 __mv_phy_reset(ap, 0);
1889 }
1890
1891 static inline void __msleep(unsigned int msec, int can_sleep)
1892 {
1893 if (can_sleep)
1894 msleep(msec);
1895 else
1896 mdelay(msec);
1897 }
1898
1899 /**
1900 * __mv_phy_reset - Perform eDMA reset followed by COMRESET
1901 * @ap: ATA channel to manipulate
1902 *
1903 * Part of this is taken from __sata_phy_reset and modified to
1904 * not sleep since this routine gets called from interrupt level.
1905 *
1906 * LOCKING:
1907 * Inherited from caller. This is coded to safe to call at
1908 * interrupt level, i.e. it does not sleep.
1909 */
1910 static void __mv_phy_reset(struct ata_port *ap, int can_sleep)
1911 {
1912 struct mv_port_priv *pp = ap->private_data;
1913 struct mv_host_priv *hpriv = ap->host_set->private_data;
1914 void __iomem *port_mmio = mv_ap_base(ap);
1915 struct ata_taskfile tf;
1916 struct ata_device *dev = &ap->device[0];
1917 unsigned long timeout;
1918 int retry = 5;
1919 u32 sstatus;
1920
1921 VPRINTK("ENTER, port %u, mmio 0x%p\n", ap->port_no, port_mmio);
1922
1923 DPRINTK("S-regs after ATA_RST: SStat 0x%08x SErr 0x%08x "
1924 "SCtrl 0x%08x\n", mv_scr_read(ap, SCR_STATUS),
1925 mv_scr_read(ap, SCR_ERROR), mv_scr_read(ap, SCR_CONTROL));
1926
1927 /* Issue COMRESET via SControl */
1928 comreset_retry:
1929 scr_write_flush(ap, SCR_CONTROL, 0x301);
1930 __msleep(1, can_sleep);
1931
1932 scr_write_flush(ap, SCR_CONTROL, 0x300);
1933 __msleep(20, can_sleep);
1934
1935 timeout = jiffies + msecs_to_jiffies(200);
1936 do {
1937 sstatus = scr_read(ap, SCR_STATUS) & 0x3;
1938 if ((sstatus == 3) || (sstatus == 0))
1939 break;
1940
1941 __msleep(1, can_sleep);
1942 } while (time_before(jiffies, timeout));
1943
1944 /* work around errata */
1945 if (IS_60XX(hpriv) &&
1946 (sstatus != 0x0) && (sstatus != 0x113) && (sstatus != 0x123) &&
1947 (retry-- > 0))
1948 goto comreset_retry;
1949
1950 DPRINTK("S-regs after PHY wake: SStat 0x%08x SErr 0x%08x "
1951 "SCtrl 0x%08x\n", mv_scr_read(ap, SCR_STATUS),
1952 mv_scr_read(ap, SCR_ERROR), mv_scr_read(ap, SCR_CONTROL));
1953
1954 if (sata_dev_present(ap)) {
1955 ata_port_probe(ap);
1956 } else {
1957 printk(KERN_INFO "ata%u: no device found (phy stat %08x)\n",
1958 ap->id, scr_read(ap, SCR_STATUS));
1959 ata_port_disable(ap);
1960 return;
1961 }
1962 ap->cbl = ATA_CBL_SATA;
1963
1964 /* even after SStatus reflects that device is ready,
1965 * it seems to take a while for link to be fully
1966 * established (and thus Status no longer 0x80/0x7F),
1967 * so we poll a bit for that, here.
1968 */
1969 retry = 20;
1970 while (1) {
1971 u8 drv_stat = ata_check_status(ap);
1972 if ((drv_stat != 0x80) && (drv_stat != 0x7f))
1973 break;
1974 __msleep(500, can_sleep);
1975 if (retry-- <= 0)
1976 break;
1977 }
1978
1979 tf.lbah = readb((void __iomem *) ap->ioaddr.lbah_addr);
1980 tf.lbam = readb((void __iomem *) ap->ioaddr.lbam_addr);
1981 tf.lbal = readb((void __iomem *) ap->ioaddr.lbal_addr);
1982 tf.nsect = readb((void __iomem *) ap->ioaddr.nsect_addr);
1983
1984 dev->class = ata_dev_classify(&tf);
1985 if (!ata_dev_present(dev)) {
1986 VPRINTK("Port disabled post-sig: No device present.\n");
1987 ata_port_disable(ap);
1988 }
1989
1990 writelfl(0, port_mmio + EDMA_ERR_IRQ_CAUSE_OFS);
1991
1992 pp->pp_flags &= ~MV_PP_FLAG_EDMA_EN;
1993
1994 VPRINTK("EXIT\n");
1995 }
1996
1997 static void mv_phy_reset(struct ata_port *ap)
1998 {
1999 __mv_phy_reset(ap, 1);
2000 }
2001
2002 /**
2003 * mv_eng_timeout - Routine called by libata when SCSI times out I/O
2004 * @ap: ATA channel to manipulate
2005 *
2006 * Intent is to clear all pending error conditions, reset the
2007 * chip/bus, fail the command, and move on.
2008 *
2009 * LOCKING:
2010 * This routine holds the host_set lock while failing the command.
2011 */
2012 static void mv_eng_timeout(struct ata_port *ap)
2013 {
2014 struct ata_queued_cmd *qc;
2015
2016 printk(KERN_ERR "ata%u: Entering mv_eng_timeout\n",ap->id);
2017 DPRINTK("All regs @ start of eng_timeout\n");
2018 mv_dump_all_regs(ap->host_set->mmio_base, ap->port_no,
2019 to_pci_dev(ap->host_set->dev));
2020
2021 qc = ata_qc_from_tag(ap, ap->active_tag);
2022 printk(KERN_ERR "mmio_base %p ap %p qc %p scsi_cmnd %p &cmnd %p\n",
2023 ap->host_set->mmio_base, ap, qc, qc->scsicmd,
2024 &qc->scsicmd->cmnd);
2025
2026 mv_err_intr(ap);
2027 mv_stop_and_reset(ap);
2028
2029 qc->err_mask |= AC_ERR_TIMEOUT;
2030 ata_eh_qc_complete(qc);
2031 }
2032
2033 /**
2034 * mv_port_init - Perform some early initialization on a single port.
2035 * @port: libata data structure storing shadow register addresses
2036 * @port_mmio: base address of the port
2037 *
2038 * Initialize shadow register mmio addresses, clear outstanding
2039 * interrupts on the port, and unmask interrupts for the future
2040 * start of the port.
2041 *
2042 * LOCKING:
2043 * Inherited from caller.
2044 */
2045 static void mv_port_init(struct ata_ioports *port, void __iomem *port_mmio)
2046 {
2047 unsigned long shd_base = (unsigned long) port_mmio + SHD_BLK_OFS;
2048 unsigned serr_ofs;
2049
2050 /* PIO related setup
2051 */
2052 port->data_addr = shd_base + (sizeof(u32) * ATA_REG_DATA);
2053 port->error_addr =
2054 port->feature_addr = shd_base + (sizeof(u32) * ATA_REG_ERR);
2055 port->nsect_addr = shd_base + (sizeof(u32) * ATA_REG_NSECT);
2056 port->lbal_addr = shd_base + (sizeof(u32) * ATA_REG_LBAL);
2057 port->lbam_addr = shd_base + (sizeof(u32) * ATA_REG_LBAM);
2058 port->lbah_addr = shd_base + (sizeof(u32) * ATA_REG_LBAH);
2059 port->device_addr = shd_base + (sizeof(u32) * ATA_REG_DEVICE);
2060 port->status_addr =
2061 port->command_addr = shd_base + (sizeof(u32) * ATA_REG_STATUS);
2062 /* special case: control/altstatus doesn't have ATA_REG_ address */
2063 port->altstatus_addr = port->ctl_addr = shd_base + SHD_CTL_AST_OFS;
2064
2065 /* unused: */
2066 port->cmd_addr = port->bmdma_addr = port->scr_addr = 0;
2067
2068 /* Clear any currently outstanding port interrupt conditions */
2069 serr_ofs = mv_scr_offset(SCR_ERROR);
2070 writelfl(readl(port_mmio + serr_ofs), port_mmio + serr_ofs);
2071 writelfl(0, port_mmio + EDMA_ERR_IRQ_CAUSE_OFS);
2072
2073 /* unmask all EDMA error interrupts */
2074 writelfl(~0, port_mmio + EDMA_ERR_IRQ_MASK_OFS);
2075
2076 VPRINTK("EDMA cfg=0x%08x EDMA IRQ err cause/mask=0x%08x/0x%08x\n",
2077 readl(port_mmio + EDMA_CFG_OFS),
2078 readl(port_mmio + EDMA_ERR_IRQ_CAUSE_OFS),
2079 readl(port_mmio + EDMA_ERR_IRQ_MASK_OFS));
2080 }
2081
2082 static int mv_chip_id(struct pci_dev *pdev, struct mv_host_priv *hpriv,
2083 unsigned int board_idx)
2084 {
2085 u8 rev_id;
2086 u32 hp_flags = hpriv->hp_flags;
2087
2088 pci_read_config_byte(pdev, PCI_REVISION_ID, &rev_id);
2089
2090 switch(board_idx) {
2091 case chip_5080:
2092 hpriv->ops = &mv5xxx_ops;
2093 hp_flags |= MV_HP_50XX;
2094
2095 switch (rev_id) {
2096 case 0x1:
2097 hp_flags |= MV_HP_ERRATA_50XXB0;
2098 break;
2099 case 0x3:
2100 hp_flags |= MV_HP_ERRATA_50XXB2;
2101 break;
2102 default:
2103 dev_printk(KERN_WARNING, &pdev->dev,
2104 "Applying 50XXB2 workarounds to unknown rev\n");
2105 hp_flags |= MV_HP_ERRATA_50XXB2;
2106 break;
2107 }
2108 break;
2109
2110 case chip_504x:
2111 case chip_508x:
2112 hpriv->ops = &mv5xxx_ops;
2113 hp_flags |= MV_HP_50XX;
2114
2115 switch (rev_id) {
2116 case 0x0:
2117 hp_flags |= MV_HP_ERRATA_50XXB0;
2118 break;
2119 case 0x3:
2120 hp_flags |= MV_HP_ERRATA_50XXB2;
2121 break;
2122 default:
2123 dev_printk(KERN_WARNING, &pdev->dev,
2124 "Applying B2 workarounds to unknown rev\n");
2125 hp_flags |= MV_HP_ERRATA_50XXB2;
2126 break;
2127 }
2128 break;
2129
2130 case chip_604x:
2131 case chip_608x:
2132 hpriv->ops = &mv6xxx_ops;
2133
2134 switch (rev_id) {
2135 case 0x7:
2136 hp_flags |= MV_HP_ERRATA_60X1B2;
2137 break;
2138 case 0x9:
2139 hp_flags |= MV_HP_ERRATA_60X1C0;
2140 break;
2141 default:
2142 dev_printk(KERN_WARNING, &pdev->dev,
2143 "Applying B2 workarounds to unknown rev\n");
2144 hp_flags |= MV_HP_ERRATA_60X1B2;
2145 break;
2146 }
2147 break;
2148
2149 case chip_7042:
2150 case chip_6042:
2151 hpriv->ops = &mv6xxx_ops;
2152
2153 hp_flags |= MV_HP_GEN_IIE;
2154
2155 switch (rev_id) {
2156 case 0x0:
2157 hp_flags |= MV_HP_ERRATA_XX42A0;
2158 break;
2159 case 0x1:
2160 hp_flags |= MV_HP_ERRATA_60X1C0;
2161 break;
2162 default:
2163 dev_printk(KERN_WARNING, &pdev->dev,
2164 "Applying 60X1C0 workarounds to unknown rev\n");
2165 hp_flags |= MV_HP_ERRATA_60X1C0;
2166 break;
2167 }
2168 break;
2169
2170 default:
2171 printk(KERN_ERR DRV_NAME ": BUG: invalid board index %u\n", board_idx);
2172 return 1;
2173 }
2174
2175 hpriv->hp_flags = hp_flags;
2176
2177 return 0;
2178 }
2179
2180 /**
2181 * mv_init_host - Perform some early initialization of the host.
2182 * @pdev: host PCI device
2183 * @probe_ent: early data struct representing the host
2184 *
2185 * If possible, do an early global reset of the host. Then do
2186 * our port init and clear/unmask all/relevant host interrupts.
2187 *
2188 * LOCKING:
2189 * Inherited from caller.
2190 */
2191 static int mv_init_host(struct pci_dev *pdev, struct ata_probe_ent *probe_ent,
2192 unsigned int board_idx)
2193 {
2194 int rc = 0, n_hc, port, hc;
2195 void __iomem *mmio = probe_ent->mmio_base;
2196 struct mv_host_priv *hpriv = probe_ent->private_data;
2197
2198 /* global interrupt mask */
2199 writel(0, mmio + HC_MAIN_IRQ_MASK_OFS);
2200
2201 rc = mv_chip_id(pdev, hpriv, board_idx);
2202 if (rc)
2203 goto done;
2204
2205 n_hc = mv_get_hc_count(probe_ent->host_flags);
2206 probe_ent->n_ports = MV_PORTS_PER_HC * n_hc;
2207
2208 for (port = 0; port < probe_ent->n_ports; port++)
2209 hpriv->ops->read_preamp(hpriv, port, mmio);
2210
2211 rc = hpriv->ops->reset_hc(hpriv, mmio, n_hc);
2212 if (rc)
2213 goto done;
2214
2215 hpriv->ops->reset_flash(hpriv, mmio);
2216 hpriv->ops->reset_bus(pdev, mmio);
2217 hpriv->ops->enable_leds(hpriv, mmio);
2218
2219 for (port = 0; port < probe_ent->n_ports; port++) {
2220 if (IS_60XX(hpriv)) {
2221 void __iomem *port_mmio = mv_port_base(mmio, port);
2222
2223 u32 ifctl = readl(port_mmio + SATA_INTERFACE_CTL);
2224 ifctl |= (1 << 12);
2225 writelfl(ifctl, port_mmio + SATA_INTERFACE_CTL);
2226 }
2227
2228 hpriv->ops->phy_errata(hpriv, mmio, port);
2229 }
2230
2231 for (port = 0; port < probe_ent->n_ports; port++) {
2232 void __iomem *port_mmio = mv_port_base(mmio, port);
2233 mv_port_init(&probe_ent->port[port], port_mmio);
2234 }
2235
2236 for (hc = 0; hc < n_hc; hc++) {
2237 void __iomem *hc_mmio = mv_hc_base(mmio, hc);
2238
2239 VPRINTK("HC%i: HC config=0x%08x HC IRQ cause "
2240 "(before clear)=0x%08x\n", hc,
2241 readl(hc_mmio + HC_CFG_OFS),
2242 readl(hc_mmio + HC_IRQ_CAUSE_OFS));
2243
2244 /* Clear any currently outstanding hc interrupt conditions */
2245 writelfl(0, hc_mmio + HC_IRQ_CAUSE_OFS);
2246 }
2247
2248 /* Clear any currently outstanding host interrupt conditions */
2249 writelfl(0, mmio + PCI_IRQ_CAUSE_OFS);
2250
2251 /* and unmask interrupt generation for host regs */
2252 writelfl(PCI_UNMASK_ALL_IRQS, mmio + PCI_IRQ_MASK_OFS);
2253 writelfl(~HC_MAIN_MASKED_IRQS, mmio + HC_MAIN_IRQ_MASK_OFS);
2254
2255 VPRINTK("HC MAIN IRQ cause/mask=0x%08x/0x%08x "
2256 "PCI int cause/mask=0x%08x/0x%08x\n",
2257 readl(mmio + HC_MAIN_IRQ_CAUSE_OFS),
2258 readl(mmio + HC_MAIN_IRQ_MASK_OFS),
2259 readl(mmio + PCI_IRQ_CAUSE_OFS),
2260 readl(mmio + PCI_IRQ_MASK_OFS));
2261
2262 done:
2263 return rc;
2264 }
2265
2266 /**
2267 * mv_print_info - Dump key info to kernel log for perusal.
2268 * @probe_ent: early data struct representing the host
2269 *
2270 * FIXME: complete this.
2271 *
2272 * LOCKING:
2273 * Inherited from caller.
2274 */
2275 static void mv_print_info(struct ata_probe_ent *probe_ent)
2276 {
2277 struct pci_dev *pdev = to_pci_dev(probe_ent->dev);
2278 struct mv_host_priv *hpriv = probe_ent->private_data;
2279 u8 rev_id, scc;
2280 const char *scc_s;
2281
2282 /* Use this to determine the HW stepping of the chip so we know
2283 * what errata to workaround
2284 */
2285 pci_read_config_byte(pdev, PCI_REVISION_ID, &rev_id);
2286
2287 pci_read_config_byte(pdev, PCI_CLASS_DEVICE, &scc);
2288 if (scc == 0)
2289 scc_s = "SCSI";
2290 else if (scc == 0x01)
2291 scc_s = "RAID";
2292 else
2293 scc_s = "unknown";
2294
2295 dev_printk(KERN_INFO, &pdev->dev,
2296 "%u slots %u ports %s mode IRQ via %s\n",
2297 (unsigned)MV_MAX_Q_DEPTH, probe_ent->n_ports,
2298 scc_s, (MV_HP_FLAG_MSI & hpriv->hp_flags) ? "MSI" : "INTx");
2299 }
2300
2301 /**
2302 * mv_init_one - handle a positive probe of a Marvell host
2303 * @pdev: PCI device found
2304 * @ent: PCI device ID entry for the matched host
2305 *
2306 * LOCKING:
2307 * Inherited from caller.
2308 */
2309 static int mv_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
2310 {
2311 static int printed_version = 0;
2312 struct ata_probe_ent *probe_ent = NULL;
2313 struct mv_host_priv *hpriv;
2314 unsigned int board_idx = (unsigned int)ent->driver_data;
2315 void __iomem *mmio_base;
2316 int pci_dev_busy = 0, rc;
2317
2318 if (!printed_version++)
2319 dev_printk(KERN_INFO, &pdev->dev, "version " DRV_VERSION "\n");
2320
2321 rc = pci_enable_device(pdev);
2322 if (rc) {
2323 return rc;
2324 }
2325
2326 rc = pci_request_regions(pdev, DRV_NAME);
2327 if (rc) {
2328 pci_dev_busy = 1;
2329 goto err_out;
2330 }
2331
2332 probe_ent = kmalloc(sizeof(*probe_ent), GFP_KERNEL);
2333 if (probe_ent == NULL) {
2334 rc = -ENOMEM;
2335 goto err_out_regions;
2336 }
2337
2338 memset(probe_ent, 0, sizeof(*probe_ent));
2339 probe_ent->dev = pci_dev_to_dev(pdev);
2340 INIT_LIST_HEAD(&probe_ent->node);
2341
2342 mmio_base = pci_iomap(pdev, MV_PRIMARY_BAR, 0);
2343 if (mmio_base == NULL) {
2344 rc = -ENOMEM;
2345 goto err_out_free_ent;
2346 }
2347
2348 hpriv = kmalloc(sizeof(*hpriv), GFP_KERNEL);
2349 if (!hpriv) {
2350 rc = -ENOMEM;
2351 goto err_out_iounmap;
2352 }
2353 memset(hpriv, 0, sizeof(*hpriv));
2354
2355 probe_ent->sht = mv_port_info[board_idx].sht;
2356 probe_ent->host_flags = mv_port_info[board_idx].host_flags;
2357 probe_ent->pio_mask = mv_port_info[board_idx].pio_mask;
2358 probe_ent->udma_mask = mv_port_info[board_idx].udma_mask;
2359 probe_ent->port_ops = mv_port_info[board_idx].port_ops;
2360
2361 probe_ent->irq = pdev->irq;
2362 probe_ent->irq_flags = SA_SHIRQ;
2363 probe_ent->mmio_base = mmio_base;
2364 probe_ent->private_data = hpriv;
2365
2366 /* initialize adapter */
2367 rc = mv_init_host(pdev, probe_ent, board_idx);
2368 if (rc) {
2369 goto err_out_hpriv;
2370 }
2371
2372 /* Enable interrupts */
2373 if (msi && pci_enable_msi(pdev) == 0) {
2374 hpriv->hp_flags |= MV_HP_FLAG_MSI;
2375 } else {
2376 pci_intx(pdev, 1);
2377 }
2378
2379 mv_dump_pci_cfg(pdev, 0x68);
2380 mv_print_info(probe_ent);
2381
2382 if (ata_device_add(probe_ent) == 0) {
2383 rc = -ENODEV; /* No devices discovered */
2384 goto err_out_dev_add;
2385 }
2386
2387 kfree(probe_ent);
2388 return 0;
2389
2390 err_out_dev_add:
2391 if (MV_HP_FLAG_MSI & hpriv->hp_flags) {
2392 pci_disable_msi(pdev);
2393 } else {
2394 pci_intx(pdev, 0);
2395 }
2396 err_out_hpriv:
2397 kfree(hpriv);
2398 err_out_iounmap:
2399 pci_iounmap(pdev, mmio_base);
2400 err_out_free_ent:
2401 kfree(probe_ent);
2402 err_out_regions:
2403 pci_release_regions(pdev);
2404 err_out:
2405 if (!pci_dev_busy) {
2406 pci_disable_device(pdev);
2407 }
2408
2409 return rc;
2410 }
2411
2412 static int __init mv_init(void)
2413 {
2414 return pci_module_init(&mv_pci_driver);
2415 }
2416
2417 static void __exit mv_exit(void)
2418 {
2419 pci_unregister_driver(&mv_pci_driver);
2420 }
2421
2422 MODULE_AUTHOR("Brett Russ");
2423 MODULE_DESCRIPTION("SCSI low-level driver for Marvell SATA controllers");
2424 MODULE_LICENSE("GPL");
2425 MODULE_DEVICE_TABLE(pci, mv_pci_tbl);
2426 MODULE_VERSION(DRV_VERSION);
2427
2428 module_param(msi, int, 0444);
2429 MODULE_PARM_DESC(msi, "Enable use of PCI MSI (0=off, 1=on)");
2430
2431 module_init(mv_init);
2432 module_exit(mv_exit);
This page took 0.080205 seconds and 6 git commands to generate.