Merge branch 'upstream-fixes'
[deliverable/linux.git] / drivers / scsi / sata_mv.c
1 /*
2 * sata_mv.c - Marvell SATA support
3 *
4 * Copyright 2005: EMC Corporation, all rights reserved.
5 * Copyright 2005 Red Hat, Inc. All rights reserved.
6 *
7 * Please ALWAYS copy linux-ide@vger.kernel.org on emails.
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation; version 2 of the License.
12 *
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
17 *
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
21 *
22 */
23
24 #include <linux/kernel.h>
25 #include <linux/module.h>
26 #include <linux/pci.h>
27 #include <linux/init.h>
28 #include <linux/blkdev.h>
29 #include <linux/delay.h>
30 #include <linux/interrupt.h>
31 #include <linux/sched.h>
32 #include <linux/dma-mapping.h>
33 #include <linux/device.h>
34 #include <scsi/scsi_host.h>
35 #include <scsi/scsi_cmnd.h>
36 #include <linux/libata.h>
37 #include <asm/io.h>
38
39 #define DRV_NAME "sata_mv"
40 #define DRV_VERSION "0.6"
41
42 enum {
43 /* BAR's are enumerated in terms of pci_resource_start() terms */
44 MV_PRIMARY_BAR = 0, /* offset 0x10: memory space */
45 MV_IO_BAR = 2, /* offset 0x18: IO space */
46 MV_MISC_BAR = 3, /* offset 0x1c: FLASH, NVRAM, SRAM */
47
48 MV_MAJOR_REG_AREA_SZ = 0x10000, /* 64KB */
49 MV_MINOR_REG_AREA_SZ = 0x2000, /* 8KB */
50
51 MV_PCI_REG_BASE = 0,
52 MV_IRQ_COAL_REG_BASE = 0x18000, /* 6xxx part only */
53 MV_SATAHC0_REG_BASE = 0x20000,
54 MV_FLASH_CTL = 0x1046c,
55 MV_GPIO_PORT_CTL = 0x104f0,
56 MV_RESET_CFG = 0x180d8,
57
58 MV_PCI_REG_SZ = MV_MAJOR_REG_AREA_SZ,
59 MV_SATAHC_REG_SZ = MV_MAJOR_REG_AREA_SZ,
60 MV_SATAHC_ARBTR_REG_SZ = MV_MINOR_REG_AREA_SZ, /* arbiter */
61 MV_PORT_REG_SZ = MV_MINOR_REG_AREA_SZ,
62
63 MV_USE_Q_DEPTH = ATA_DEF_QUEUE,
64
65 MV_MAX_Q_DEPTH = 32,
66 MV_MAX_Q_DEPTH_MASK = MV_MAX_Q_DEPTH - 1,
67
68 /* CRQB needs alignment on a 1KB boundary. Size == 1KB
69 * CRPB needs alignment on a 256B boundary. Size == 256B
70 * SG count of 176 leads to MV_PORT_PRIV_DMA_SZ == 4KB
71 * ePRD (SG) entries need alignment on a 16B boundary. Size == 16B
72 */
73 MV_CRQB_Q_SZ = (32 * MV_MAX_Q_DEPTH),
74 MV_CRPB_Q_SZ = (8 * MV_MAX_Q_DEPTH),
75 MV_MAX_SG_CT = 176,
76 MV_SG_TBL_SZ = (16 * MV_MAX_SG_CT),
77 MV_PORT_PRIV_DMA_SZ = (MV_CRQB_Q_SZ + MV_CRPB_Q_SZ + MV_SG_TBL_SZ),
78
79 MV_PORTS_PER_HC = 4,
80 /* == (port / MV_PORTS_PER_HC) to determine HC from 0-7 port */
81 MV_PORT_HC_SHIFT = 2,
82 /* == (port % MV_PORTS_PER_HC) to determine hard port from 0-7 port */
83 MV_PORT_MASK = 3,
84
85 /* Host Flags */
86 MV_FLAG_DUAL_HC = (1 << 30), /* two SATA Host Controllers */
87 MV_FLAG_IRQ_COALESCE = (1 << 29), /* IRQ coalescing capability */
88 MV_COMMON_FLAGS = (ATA_FLAG_SATA | ATA_FLAG_NO_LEGACY |
89 ATA_FLAG_SATA_RESET | ATA_FLAG_MMIO |
90 ATA_FLAG_NO_ATAPI),
91 MV_6XXX_FLAGS = MV_FLAG_IRQ_COALESCE,
92
93 CRQB_FLAG_READ = (1 << 0),
94 CRQB_TAG_SHIFT = 1,
95 CRQB_CMD_ADDR_SHIFT = 8,
96 CRQB_CMD_CS = (0x2 << 11),
97 CRQB_CMD_LAST = (1 << 15),
98
99 CRPB_FLAG_STATUS_SHIFT = 8,
100
101 EPRD_FLAG_END_OF_TBL = (1 << 31),
102
103 /* PCI interface registers */
104
105 PCI_COMMAND_OFS = 0xc00,
106
107 PCI_MAIN_CMD_STS_OFS = 0xd30,
108 STOP_PCI_MASTER = (1 << 2),
109 PCI_MASTER_EMPTY = (1 << 3),
110 GLOB_SFT_RST = (1 << 4),
111
112 MV_PCI_MODE = 0xd00,
113 MV_PCI_EXP_ROM_BAR_CTL = 0xd2c,
114 MV_PCI_DISC_TIMER = 0xd04,
115 MV_PCI_MSI_TRIGGER = 0xc38,
116 MV_PCI_SERR_MASK = 0xc28,
117 MV_PCI_XBAR_TMOUT = 0x1d04,
118 MV_PCI_ERR_LOW_ADDRESS = 0x1d40,
119 MV_PCI_ERR_HIGH_ADDRESS = 0x1d44,
120 MV_PCI_ERR_ATTRIBUTE = 0x1d48,
121 MV_PCI_ERR_COMMAND = 0x1d50,
122
123 PCI_IRQ_CAUSE_OFS = 0x1d58,
124 PCI_IRQ_MASK_OFS = 0x1d5c,
125 PCI_UNMASK_ALL_IRQS = 0x7fffff, /* bits 22-0 */
126
127 HC_MAIN_IRQ_CAUSE_OFS = 0x1d60,
128 HC_MAIN_IRQ_MASK_OFS = 0x1d64,
129 PORT0_ERR = (1 << 0), /* shift by port # */
130 PORT0_DONE = (1 << 1), /* shift by port # */
131 HC0_IRQ_PEND = 0x1ff, /* bits 0-8 = HC0's ports */
132 HC_SHIFT = 9, /* bits 9-17 = HC1's ports */
133 PCI_ERR = (1 << 18),
134 TRAN_LO_DONE = (1 << 19), /* 6xxx: IRQ coalescing */
135 TRAN_HI_DONE = (1 << 20), /* 6xxx: IRQ coalescing */
136 PORTS_0_7_COAL_DONE = (1 << 21), /* 6xxx: IRQ coalescing */
137 GPIO_INT = (1 << 22),
138 SELF_INT = (1 << 23),
139 TWSI_INT = (1 << 24),
140 HC_MAIN_RSVD = (0x7f << 25), /* bits 31-25 */
141 HC_MAIN_MASKED_IRQS = (TRAN_LO_DONE | TRAN_HI_DONE |
142 PORTS_0_7_COAL_DONE | GPIO_INT | TWSI_INT |
143 HC_MAIN_RSVD),
144
145 /* SATAHC registers */
146 HC_CFG_OFS = 0,
147
148 HC_IRQ_CAUSE_OFS = 0x14,
149 CRPB_DMA_DONE = (1 << 0), /* shift by port # */
150 HC_IRQ_COAL = (1 << 4), /* IRQ coalescing */
151 DEV_IRQ = (1 << 8), /* shift by port # */
152
153 /* Shadow block registers */
154 SHD_BLK_OFS = 0x100,
155 SHD_CTL_AST_OFS = 0x20, /* ofs from SHD_BLK_OFS */
156
157 /* SATA registers */
158 SATA_STATUS_OFS = 0x300, /* ctrl, err regs follow status */
159 SATA_ACTIVE_OFS = 0x350,
160 PHY_MODE3 = 0x310,
161 PHY_MODE4 = 0x314,
162 PHY_MODE2 = 0x330,
163 MV5_PHY_MODE = 0x74,
164 MV5_LT_MODE = 0x30,
165 MV5_PHY_CTL = 0x0C,
166 SATA_INTERFACE_CTL = 0x050,
167
168 MV_M2_PREAMP_MASK = 0x7e0,
169
170 /* Port registers */
171 EDMA_CFG_OFS = 0,
172 EDMA_CFG_Q_DEPTH = 0, /* queueing disabled */
173 EDMA_CFG_NCQ = (1 << 5),
174 EDMA_CFG_NCQ_GO_ON_ERR = (1 << 14), /* continue on error */
175 EDMA_CFG_RD_BRST_EXT = (1 << 11), /* read burst 512B */
176 EDMA_CFG_WR_BUFF_LEN = (1 << 13), /* write buffer 512B */
177
178 EDMA_ERR_IRQ_CAUSE_OFS = 0x8,
179 EDMA_ERR_IRQ_MASK_OFS = 0xc,
180 EDMA_ERR_D_PAR = (1 << 0),
181 EDMA_ERR_PRD_PAR = (1 << 1),
182 EDMA_ERR_DEV = (1 << 2),
183 EDMA_ERR_DEV_DCON = (1 << 3),
184 EDMA_ERR_DEV_CON = (1 << 4),
185 EDMA_ERR_SERR = (1 << 5),
186 EDMA_ERR_SELF_DIS = (1 << 7),
187 EDMA_ERR_BIST_ASYNC = (1 << 8),
188 EDMA_ERR_CRBQ_PAR = (1 << 9),
189 EDMA_ERR_CRPB_PAR = (1 << 10),
190 EDMA_ERR_INTRL_PAR = (1 << 11),
191 EDMA_ERR_IORDY = (1 << 12),
192 EDMA_ERR_LNK_CTRL_RX = (0xf << 13),
193 EDMA_ERR_LNK_CTRL_RX_2 = (1 << 15),
194 EDMA_ERR_LNK_DATA_RX = (0xf << 17),
195 EDMA_ERR_LNK_CTRL_TX = (0x1f << 21),
196 EDMA_ERR_LNK_DATA_TX = (0x1f << 26),
197 EDMA_ERR_TRANS_PROTO = (1 << 31),
198 EDMA_ERR_FATAL = (EDMA_ERR_D_PAR | EDMA_ERR_PRD_PAR |
199 EDMA_ERR_DEV_DCON | EDMA_ERR_CRBQ_PAR |
200 EDMA_ERR_CRPB_PAR | EDMA_ERR_INTRL_PAR |
201 EDMA_ERR_IORDY | EDMA_ERR_LNK_CTRL_RX_2 |
202 EDMA_ERR_LNK_DATA_RX |
203 EDMA_ERR_LNK_DATA_TX |
204 EDMA_ERR_TRANS_PROTO),
205
206 EDMA_REQ_Q_BASE_HI_OFS = 0x10,
207 EDMA_REQ_Q_IN_PTR_OFS = 0x14, /* also contains BASE_LO */
208
209 EDMA_REQ_Q_OUT_PTR_OFS = 0x18,
210 EDMA_REQ_Q_PTR_SHIFT = 5,
211
212 EDMA_RSP_Q_BASE_HI_OFS = 0x1c,
213 EDMA_RSP_Q_IN_PTR_OFS = 0x20,
214 EDMA_RSP_Q_OUT_PTR_OFS = 0x24, /* also contains BASE_LO */
215 EDMA_RSP_Q_PTR_SHIFT = 3,
216
217 EDMA_CMD_OFS = 0x28,
218 EDMA_EN = (1 << 0),
219 EDMA_DS = (1 << 1),
220 ATA_RST = (1 << 2),
221
222 EDMA_IORDY_TMOUT = 0x34,
223 EDMA_ARB_CFG = 0x38,
224
225 /* Host private flags (hp_flags) */
226 MV_HP_FLAG_MSI = (1 << 0),
227 MV_HP_ERRATA_50XXB0 = (1 << 1),
228 MV_HP_ERRATA_50XXB2 = (1 << 2),
229 MV_HP_ERRATA_60X1B2 = (1 << 3),
230 MV_HP_ERRATA_60X1C0 = (1 << 4),
231 MV_HP_ERRATA_XX42A0 = (1 << 5),
232 MV_HP_50XX = (1 << 6),
233 MV_HP_GEN_IIE = (1 << 7),
234
235 /* Port private flags (pp_flags) */
236 MV_PP_FLAG_EDMA_EN = (1 << 0),
237 MV_PP_FLAG_EDMA_DS_ACT = (1 << 1),
238 };
239
240 #define IS_50XX(hpriv) ((hpriv)->hp_flags & MV_HP_50XX)
241 #define IS_60XX(hpriv) (((hpriv)->hp_flags & MV_HP_50XX) == 0)
242 #define IS_GEN_I(hpriv) IS_50XX(hpriv)
243 #define IS_GEN_II(hpriv) IS_60XX(hpriv)
244 #define IS_GEN_IIE(hpriv) ((hpriv)->hp_flags & MV_HP_GEN_IIE)
245
246 enum {
247 /* Our DMA boundary is determined by an ePRD being unable to handle
248 * anything larger than 64KB
249 */
250 MV_DMA_BOUNDARY = 0xffffU,
251
252 EDMA_REQ_Q_BASE_LO_MASK = 0xfffffc00U,
253
254 EDMA_RSP_Q_BASE_LO_MASK = 0xffffff00U,
255 };
256
257 enum chip_type {
258 chip_504x,
259 chip_508x,
260 chip_5080,
261 chip_604x,
262 chip_608x,
263 chip_6042,
264 chip_7042,
265 };
266
267 /* Command ReQuest Block: 32B */
268 struct mv_crqb {
269 u32 sg_addr;
270 u32 sg_addr_hi;
271 u16 ctrl_flags;
272 u16 ata_cmd[11];
273 };
274
275 struct mv_crqb_iie {
276 u32 addr;
277 u32 addr_hi;
278 u32 flags;
279 u32 len;
280 u32 ata_cmd[4];
281 };
282
283 /* Command ResPonse Block: 8B */
284 struct mv_crpb {
285 u16 id;
286 u16 flags;
287 u32 tmstmp;
288 };
289
290 /* EDMA Physical Region Descriptor (ePRD); A.K.A. SG */
291 struct mv_sg {
292 u32 addr;
293 u32 flags_size;
294 u32 addr_hi;
295 u32 reserved;
296 };
297
298 struct mv_port_priv {
299 struct mv_crqb *crqb;
300 dma_addr_t crqb_dma;
301 struct mv_crpb *crpb;
302 dma_addr_t crpb_dma;
303 struct mv_sg *sg_tbl;
304 dma_addr_t sg_tbl_dma;
305
306 unsigned req_producer; /* cp of req_in_ptr */
307 unsigned rsp_consumer; /* cp of rsp_out_ptr */
308 u32 pp_flags;
309 };
310
311 struct mv_port_signal {
312 u32 amps;
313 u32 pre;
314 };
315
316 struct mv_host_priv;
317 struct mv_hw_ops {
318 void (*phy_errata)(struct mv_host_priv *hpriv, void __iomem *mmio,
319 unsigned int port);
320 void (*enable_leds)(struct mv_host_priv *hpriv, void __iomem *mmio);
321 void (*read_preamp)(struct mv_host_priv *hpriv, int idx,
322 void __iomem *mmio);
323 int (*reset_hc)(struct mv_host_priv *hpriv, void __iomem *mmio,
324 unsigned int n_hc);
325 void (*reset_flash)(struct mv_host_priv *hpriv, void __iomem *mmio);
326 void (*reset_bus)(struct pci_dev *pdev, void __iomem *mmio);
327 };
328
329 struct mv_host_priv {
330 u32 hp_flags;
331 struct mv_port_signal signal[8];
332 const struct mv_hw_ops *ops;
333 };
334
335 static void mv_irq_clear(struct ata_port *ap);
336 static u32 mv_scr_read(struct ata_port *ap, unsigned int sc_reg_in);
337 static void mv_scr_write(struct ata_port *ap, unsigned int sc_reg_in, u32 val);
338 static u32 mv5_scr_read(struct ata_port *ap, unsigned int sc_reg_in);
339 static void mv5_scr_write(struct ata_port *ap, unsigned int sc_reg_in, u32 val);
340 static void mv_phy_reset(struct ata_port *ap);
341 static void __mv_phy_reset(struct ata_port *ap, int can_sleep);
342 static void mv_host_stop(struct ata_host_set *host_set);
343 static int mv_port_start(struct ata_port *ap);
344 static void mv_port_stop(struct ata_port *ap);
345 static void mv_qc_prep(struct ata_queued_cmd *qc);
346 static void mv_qc_prep_iie(struct ata_queued_cmd *qc);
347 static unsigned int mv_qc_issue(struct ata_queued_cmd *qc);
348 static irqreturn_t mv_interrupt(int irq, void *dev_instance,
349 struct pt_regs *regs);
350 static void mv_eng_timeout(struct ata_port *ap);
351 static int mv_init_one(struct pci_dev *pdev, const struct pci_device_id *ent);
352
353 static void mv5_phy_errata(struct mv_host_priv *hpriv, void __iomem *mmio,
354 unsigned int port);
355 static void mv5_enable_leds(struct mv_host_priv *hpriv, void __iomem *mmio);
356 static void mv5_read_preamp(struct mv_host_priv *hpriv, int idx,
357 void __iomem *mmio);
358 static int mv5_reset_hc(struct mv_host_priv *hpriv, void __iomem *mmio,
359 unsigned int n_hc);
360 static void mv5_reset_flash(struct mv_host_priv *hpriv, void __iomem *mmio);
361 static void mv5_reset_bus(struct pci_dev *pdev, void __iomem *mmio);
362
363 static void mv6_phy_errata(struct mv_host_priv *hpriv, void __iomem *mmio,
364 unsigned int port);
365 static void mv6_enable_leds(struct mv_host_priv *hpriv, void __iomem *mmio);
366 static void mv6_read_preamp(struct mv_host_priv *hpriv, int idx,
367 void __iomem *mmio);
368 static int mv6_reset_hc(struct mv_host_priv *hpriv, void __iomem *mmio,
369 unsigned int n_hc);
370 static void mv6_reset_flash(struct mv_host_priv *hpriv, void __iomem *mmio);
371 static void mv_reset_pci_bus(struct pci_dev *pdev, void __iomem *mmio);
372 static void mv_channel_reset(struct mv_host_priv *hpriv, void __iomem *mmio,
373 unsigned int port_no);
374 static void mv_stop_and_reset(struct ata_port *ap);
375
376 static struct scsi_host_template mv_sht = {
377 .module = THIS_MODULE,
378 .name = DRV_NAME,
379 .ioctl = ata_scsi_ioctl,
380 .queuecommand = ata_scsi_queuecmd,
381 .eh_strategy_handler = ata_scsi_error,
382 .can_queue = MV_USE_Q_DEPTH,
383 .this_id = ATA_SHT_THIS_ID,
384 .sg_tablesize = MV_MAX_SG_CT / 2,
385 .max_sectors = ATA_MAX_SECTORS,
386 .cmd_per_lun = ATA_SHT_CMD_PER_LUN,
387 .emulated = ATA_SHT_EMULATED,
388 .use_clustering = ATA_SHT_USE_CLUSTERING,
389 .proc_name = DRV_NAME,
390 .dma_boundary = MV_DMA_BOUNDARY,
391 .slave_configure = ata_scsi_slave_config,
392 .bios_param = ata_std_bios_param,
393 };
394
395 static const struct ata_port_operations mv5_ops = {
396 .port_disable = ata_port_disable,
397
398 .tf_load = ata_tf_load,
399 .tf_read = ata_tf_read,
400 .check_status = ata_check_status,
401 .exec_command = ata_exec_command,
402 .dev_select = ata_std_dev_select,
403
404 .phy_reset = mv_phy_reset,
405
406 .qc_prep = mv_qc_prep,
407 .qc_issue = mv_qc_issue,
408
409 .eng_timeout = mv_eng_timeout,
410
411 .irq_handler = mv_interrupt,
412 .irq_clear = mv_irq_clear,
413
414 .scr_read = mv5_scr_read,
415 .scr_write = mv5_scr_write,
416
417 .port_start = mv_port_start,
418 .port_stop = mv_port_stop,
419 .host_stop = mv_host_stop,
420 };
421
422 static const struct ata_port_operations mv6_ops = {
423 .port_disable = ata_port_disable,
424
425 .tf_load = ata_tf_load,
426 .tf_read = ata_tf_read,
427 .check_status = ata_check_status,
428 .exec_command = ata_exec_command,
429 .dev_select = ata_std_dev_select,
430
431 .phy_reset = mv_phy_reset,
432
433 .qc_prep = mv_qc_prep,
434 .qc_issue = mv_qc_issue,
435
436 .eng_timeout = mv_eng_timeout,
437
438 .irq_handler = mv_interrupt,
439 .irq_clear = mv_irq_clear,
440
441 .scr_read = mv_scr_read,
442 .scr_write = mv_scr_write,
443
444 .port_start = mv_port_start,
445 .port_stop = mv_port_stop,
446 .host_stop = mv_host_stop,
447 };
448
449 static const struct ata_port_operations mv_iie_ops = {
450 .port_disable = ata_port_disable,
451
452 .tf_load = ata_tf_load,
453 .tf_read = ata_tf_read,
454 .check_status = ata_check_status,
455 .exec_command = ata_exec_command,
456 .dev_select = ata_std_dev_select,
457
458 .phy_reset = mv_phy_reset,
459
460 .qc_prep = mv_qc_prep_iie,
461 .qc_issue = mv_qc_issue,
462
463 .eng_timeout = mv_eng_timeout,
464
465 .irq_handler = mv_interrupt,
466 .irq_clear = mv_irq_clear,
467
468 .scr_read = mv_scr_read,
469 .scr_write = mv_scr_write,
470
471 .port_start = mv_port_start,
472 .port_stop = mv_port_stop,
473 .host_stop = mv_host_stop,
474 };
475
476 static const struct ata_port_info mv_port_info[] = {
477 { /* chip_504x */
478 .sht = &mv_sht,
479 .host_flags = MV_COMMON_FLAGS,
480 .pio_mask = 0x1f, /* pio0-4 */
481 .udma_mask = 0x7f, /* udma0-6 */
482 .port_ops = &mv5_ops,
483 },
484 { /* chip_508x */
485 .sht = &mv_sht,
486 .host_flags = (MV_COMMON_FLAGS | MV_FLAG_DUAL_HC),
487 .pio_mask = 0x1f, /* pio0-4 */
488 .udma_mask = 0x7f, /* udma0-6 */
489 .port_ops = &mv5_ops,
490 },
491 { /* chip_5080 */
492 .sht = &mv_sht,
493 .host_flags = (MV_COMMON_FLAGS | MV_FLAG_DUAL_HC),
494 .pio_mask = 0x1f, /* pio0-4 */
495 .udma_mask = 0x7f, /* udma0-6 */
496 .port_ops = &mv5_ops,
497 },
498 { /* chip_604x */
499 .sht = &mv_sht,
500 .host_flags = (MV_COMMON_FLAGS | MV_6XXX_FLAGS),
501 .pio_mask = 0x1f, /* pio0-4 */
502 .udma_mask = 0x7f, /* udma0-6 */
503 .port_ops = &mv6_ops,
504 },
505 { /* chip_608x */
506 .sht = &mv_sht,
507 .host_flags = (MV_COMMON_FLAGS | MV_6XXX_FLAGS |
508 MV_FLAG_DUAL_HC),
509 .pio_mask = 0x1f, /* pio0-4 */
510 .udma_mask = 0x7f, /* udma0-6 */
511 .port_ops = &mv6_ops,
512 },
513 { /* chip_6042 */
514 .sht = &mv_sht,
515 .host_flags = (MV_COMMON_FLAGS | MV_6XXX_FLAGS),
516 .pio_mask = 0x1f, /* pio0-4 */
517 .udma_mask = 0x7f, /* udma0-6 */
518 .port_ops = &mv_iie_ops,
519 },
520 { /* chip_7042 */
521 .sht = &mv_sht,
522 .host_flags = (MV_COMMON_FLAGS | MV_6XXX_FLAGS |
523 MV_FLAG_DUAL_HC),
524 .pio_mask = 0x1f, /* pio0-4 */
525 .udma_mask = 0x7f, /* udma0-6 */
526 .port_ops = &mv_iie_ops,
527 },
528 };
529
530 static const struct pci_device_id mv_pci_tbl[] = {
531 {PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x5040), 0, 0, chip_504x},
532 {PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x5041), 0, 0, chip_504x},
533 {PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x5080), 0, 0, chip_5080},
534 {PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x5081), 0, 0, chip_508x},
535
536 {PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x6040), 0, 0, chip_604x},
537 {PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x6041), 0, 0, chip_604x},
538 {PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x6042), 0, 0, chip_6042},
539 {PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x6080), 0, 0, chip_608x},
540 {PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x6081), 0, 0, chip_608x},
541
542 {PCI_DEVICE(PCI_VENDOR_ID_ADAPTEC2, 0x0241), 0, 0, chip_604x},
543 {} /* terminate list */
544 };
545
546 static struct pci_driver mv_pci_driver = {
547 .name = DRV_NAME,
548 .id_table = mv_pci_tbl,
549 .probe = mv_init_one,
550 .remove = ata_pci_remove_one,
551 };
552
553 static const struct mv_hw_ops mv5xxx_ops = {
554 .phy_errata = mv5_phy_errata,
555 .enable_leds = mv5_enable_leds,
556 .read_preamp = mv5_read_preamp,
557 .reset_hc = mv5_reset_hc,
558 .reset_flash = mv5_reset_flash,
559 .reset_bus = mv5_reset_bus,
560 };
561
562 static const struct mv_hw_ops mv6xxx_ops = {
563 .phy_errata = mv6_phy_errata,
564 .enable_leds = mv6_enable_leds,
565 .read_preamp = mv6_read_preamp,
566 .reset_hc = mv6_reset_hc,
567 .reset_flash = mv6_reset_flash,
568 .reset_bus = mv_reset_pci_bus,
569 };
570
571 /*
572 * module options
573 */
574 static int msi; /* Use PCI msi; either zero (off, default) or non-zero */
575
576
577 /*
578 * Functions
579 */
580
581 static inline void writelfl(unsigned long data, void __iomem *addr)
582 {
583 writel(data, addr);
584 (void) readl(addr); /* flush to avoid PCI posted write */
585 }
586
587 static inline void __iomem *mv_hc_base(void __iomem *base, unsigned int hc)
588 {
589 return (base + MV_SATAHC0_REG_BASE + (hc * MV_SATAHC_REG_SZ));
590 }
591
592 static inline unsigned int mv_hc_from_port(unsigned int port)
593 {
594 return port >> MV_PORT_HC_SHIFT;
595 }
596
597 static inline unsigned int mv_hardport_from_port(unsigned int port)
598 {
599 return port & MV_PORT_MASK;
600 }
601
602 static inline void __iomem *mv_hc_base_from_port(void __iomem *base,
603 unsigned int port)
604 {
605 return mv_hc_base(base, mv_hc_from_port(port));
606 }
607
608 static inline void __iomem *mv_port_base(void __iomem *base, unsigned int port)
609 {
610 return mv_hc_base_from_port(base, port) +
611 MV_SATAHC_ARBTR_REG_SZ +
612 (mv_hardport_from_port(port) * MV_PORT_REG_SZ);
613 }
614
615 static inline void __iomem *mv_ap_base(struct ata_port *ap)
616 {
617 return mv_port_base(ap->host_set->mmio_base, ap->port_no);
618 }
619
620 static inline int mv_get_hc_count(unsigned long host_flags)
621 {
622 return ((host_flags & MV_FLAG_DUAL_HC) ? 2 : 1);
623 }
624
625 static void mv_irq_clear(struct ata_port *ap)
626 {
627 }
628
629 /**
630 * mv_start_dma - Enable eDMA engine
631 * @base: port base address
632 * @pp: port private data
633 *
634 * Verify the local cache of the eDMA state is accurate with an
635 * assert.
636 *
637 * LOCKING:
638 * Inherited from caller.
639 */
640 static void mv_start_dma(void __iomem *base, struct mv_port_priv *pp)
641 {
642 if (!(MV_PP_FLAG_EDMA_EN & pp->pp_flags)) {
643 writelfl(EDMA_EN, base + EDMA_CMD_OFS);
644 pp->pp_flags |= MV_PP_FLAG_EDMA_EN;
645 }
646 assert(EDMA_EN & readl(base + EDMA_CMD_OFS));
647 }
648
649 /**
650 * mv_stop_dma - Disable eDMA engine
651 * @ap: ATA channel to manipulate
652 *
653 * Verify the local cache of the eDMA state is accurate with an
654 * assert.
655 *
656 * LOCKING:
657 * Inherited from caller.
658 */
659 static void mv_stop_dma(struct ata_port *ap)
660 {
661 void __iomem *port_mmio = mv_ap_base(ap);
662 struct mv_port_priv *pp = ap->private_data;
663 u32 reg;
664 int i;
665
666 if (MV_PP_FLAG_EDMA_EN & pp->pp_flags) {
667 /* Disable EDMA if active. The disable bit auto clears.
668 */
669 writelfl(EDMA_DS, port_mmio + EDMA_CMD_OFS);
670 pp->pp_flags &= ~MV_PP_FLAG_EDMA_EN;
671 } else {
672 assert(!(EDMA_EN & readl(port_mmio + EDMA_CMD_OFS)));
673 }
674
675 /* now properly wait for the eDMA to stop */
676 for (i = 1000; i > 0; i--) {
677 reg = readl(port_mmio + EDMA_CMD_OFS);
678 if (!(EDMA_EN & reg)) {
679 break;
680 }
681 udelay(100);
682 }
683
684 if (EDMA_EN & reg) {
685 printk(KERN_ERR "ata%u: Unable to stop eDMA\n", ap->id);
686 /* FIXME: Consider doing a reset here to recover */
687 }
688 }
689
690 #ifdef ATA_DEBUG
691 static void mv_dump_mem(void __iomem *start, unsigned bytes)
692 {
693 int b, w;
694 for (b = 0; b < bytes; ) {
695 DPRINTK("%p: ", start + b);
696 for (w = 0; b < bytes && w < 4; w++) {
697 printk("%08x ",readl(start + b));
698 b += sizeof(u32);
699 }
700 printk("\n");
701 }
702 }
703 #endif
704
705 static void mv_dump_pci_cfg(struct pci_dev *pdev, unsigned bytes)
706 {
707 #ifdef ATA_DEBUG
708 int b, w;
709 u32 dw;
710 for (b = 0; b < bytes; ) {
711 DPRINTK("%02x: ", b);
712 for (w = 0; b < bytes && w < 4; w++) {
713 (void) pci_read_config_dword(pdev,b,&dw);
714 printk("%08x ",dw);
715 b += sizeof(u32);
716 }
717 printk("\n");
718 }
719 #endif
720 }
721 static void mv_dump_all_regs(void __iomem *mmio_base, int port,
722 struct pci_dev *pdev)
723 {
724 #ifdef ATA_DEBUG
725 void __iomem *hc_base = mv_hc_base(mmio_base,
726 port >> MV_PORT_HC_SHIFT);
727 void __iomem *port_base;
728 int start_port, num_ports, p, start_hc, num_hcs, hc;
729
730 if (0 > port) {
731 start_hc = start_port = 0;
732 num_ports = 8; /* shld be benign for 4 port devs */
733 num_hcs = 2;
734 } else {
735 start_hc = port >> MV_PORT_HC_SHIFT;
736 start_port = port;
737 num_ports = num_hcs = 1;
738 }
739 DPRINTK("All registers for port(s) %u-%u:\n", start_port,
740 num_ports > 1 ? num_ports - 1 : start_port);
741
742 if (NULL != pdev) {
743 DPRINTK("PCI config space regs:\n");
744 mv_dump_pci_cfg(pdev, 0x68);
745 }
746 DPRINTK("PCI regs:\n");
747 mv_dump_mem(mmio_base+0xc00, 0x3c);
748 mv_dump_mem(mmio_base+0xd00, 0x34);
749 mv_dump_mem(mmio_base+0xf00, 0x4);
750 mv_dump_mem(mmio_base+0x1d00, 0x6c);
751 for (hc = start_hc; hc < start_hc + num_hcs; hc++) {
752 hc_base = mv_hc_base(mmio_base, port >> MV_PORT_HC_SHIFT);
753 DPRINTK("HC regs (HC %i):\n", hc);
754 mv_dump_mem(hc_base, 0x1c);
755 }
756 for (p = start_port; p < start_port + num_ports; p++) {
757 port_base = mv_port_base(mmio_base, p);
758 DPRINTK("EDMA regs (port %i):\n",p);
759 mv_dump_mem(port_base, 0x54);
760 DPRINTK("SATA regs (port %i):\n",p);
761 mv_dump_mem(port_base+0x300, 0x60);
762 }
763 #endif
764 }
765
766 static unsigned int mv_scr_offset(unsigned int sc_reg_in)
767 {
768 unsigned int ofs;
769
770 switch (sc_reg_in) {
771 case SCR_STATUS:
772 case SCR_CONTROL:
773 case SCR_ERROR:
774 ofs = SATA_STATUS_OFS + (sc_reg_in * sizeof(u32));
775 break;
776 case SCR_ACTIVE:
777 ofs = SATA_ACTIVE_OFS; /* active is not with the others */
778 break;
779 default:
780 ofs = 0xffffffffU;
781 break;
782 }
783 return ofs;
784 }
785
786 static u32 mv_scr_read(struct ata_port *ap, unsigned int sc_reg_in)
787 {
788 unsigned int ofs = mv_scr_offset(sc_reg_in);
789
790 if (0xffffffffU != ofs) {
791 return readl(mv_ap_base(ap) + ofs);
792 } else {
793 return (u32) ofs;
794 }
795 }
796
797 static void mv_scr_write(struct ata_port *ap, unsigned int sc_reg_in, u32 val)
798 {
799 unsigned int ofs = mv_scr_offset(sc_reg_in);
800
801 if (0xffffffffU != ofs) {
802 writelfl(val, mv_ap_base(ap) + ofs);
803 }
804 }
805
806 /**
807 * mv_host_stop - Host specific cleanup/stop routine.
808 * @host_set: host data structure
809 *
810 * Disable ints, cleanup host memory, call general purpose
811 * host_stop.
812 *
813 * LOCKING:
814 * Inherited from caller.
815 */
816 static void mv_host_stop(struct ata_host_set *host_set)
817 {
818 struct mv_host_priv *hpriv = host_set->private_data;
819 struct pci_dev *pdev = to_pci_dev(host_set->dev);
820
821 if (hpriv->hp_flags & MV_HP_FLAG_MSI) {
822 pci_disable_msi(pdev);
823 } else {
824 pci_intx(pdev, 0);
825 }
826 kfree(hpriv);
827 ata_host_stop(host_set);
828 }
829
830 static inline void mv_priv_free(struct mv_port_priv *pp, struct device *dev)
831 {
832 dma_free_coherent(dev, MV_PORT_PRIV_DMA_SZ, pp->crpb, pp->crpb_dma);
833 }
834
835 static void mv_edma_cfg(struct mv_host_priv *hpriv, void __iomem *port_mmio)
836 {
837 u32 cfg = readl(port_mmio + EDMA_CFG_OFS);
838
839 /* set up non-NCQ EDMA configuration */
840 cfg &= ~0x1f; /* clear queue depth */
841 cfg &= ~EDMA_CFG_NCQ; /* clear NCQ mode */
842 cfg &= ~(1 << 9); /* disable equeue */
843
844 if (IS_GEN_I(hpriv))
845 cfg |= (1 << 8); /* enab config burst size mask */
846
847 else if (IS_GEN_II(hpriv))
848 cfg |= EDMA_CFG_RD_BRST_EXT | EDMA_CFG_WR_BUFF_LEN;
849
850 else if (IS_GEN_IIE(hpriv)) {
851 cfg |= (1 << 23); /* dis RX PM port mask */
852 cfg &= ~(1 << 16); /* dis FIS-based switching (for now) */
853 cfg &= ~(1 << 19); /* dis 128-entry queue (for now?) */
854 cfg |= (1 << 18); /* enab early completion */
855 cfg |= (1 << 17); /* enab host q cache */
856 cfg |= (1 << 22); /* enab cutthrough */
857 }
858
859 writelfl(cfg, port_mmio + EDMA_CFG_OFS);
860 }
861
862 /**
863 * mv_port_start - Port specific init/start routine.
864 * @ap: ATA channel to manipulate
865 *
866 * Allocate and point to DMA memory, init port private memory,
867 * zero indices.
868 *
869 * LOCKING:
870 * Inherited from caller.
871 */
872 static int mv_port_start(struct ata_port *ap)
873 {
874 struct device *dev = ap->host_set->dev;
875 struct mv_host_priv *hpriv = ap->host_set->private_data;
876 struct mv_port_priv *pp;
877 void __iomem *port_mmio = mv_ap_base(ap);
878 void *mem;
879 dma_addr_t mem_dma;
880 int rc = -ENOMEM;
881
882 pp = kmalloc(sizeof(*pp), GFP_KERNEL);
883 if (!pp)
884 goto err_out;
885 memset(pp, 0, sizeof(*pp));
886
887 mem = dma_alloc_coherent(dev, MV_PORT_PRIV_DMA_SZ, &mem_dma,
888 GFP_KERNEL);
889 if (!mem)
890 goto err_out_pp;
891 memset(mem, 0, MV_PORT_PRIV_DMA_SZ);
892
893 rc = ata_pad_alloc(ap, dev);
894 if (rc)
895 goto err_out_priv;
896
897 /* First item in chunk of DMA memory:
898 * 32-slot command request table (CRQB), 32 bytes each in size
899 */
900 pp->crqb = mem;
901 pp->crqb_dma = mem_dma;
902 mem += MV_CRQB_Q_SZ;
903 mem_dma += MV_CRQB_Q_SZ;
904
905 /* Second item:
906 * 32-slot command response table (CRPB), 8 bytes each in size
907 */
908 pp->crpb = mem;
909 pp->crpb_dma = mem_dma;
910 mem += MV_CRPB_Q_SZ;
911 mem_dma += MV_CRPB_Q_SZ;
912
913 /* Third item:
914 * Table of scatter-gather descriptors (ePRD), 16 bytes each
915 */
916 pp->sg_tbl = mem;
917 pp->sg_tbl_dma = mem_dma;
918
919 mv_edma_cfg(hpriv, port_mmio);
920
921 writel((pp->crqb_dma >> 16) >> 16, port_mmio + EDMA_REQ_Q_BASE_HI_OFS);
922 writelfl(pp->crqb_dma & EDMA_REQ_Q_BASE_LO_MASK,
923 port_mmio + EDMA_REQ_Q_IN_PTR_OFS);
924
925 if (hpriv->hp_flags & MV_HP_ERRATA_XX42A0)
926 writelfl(pp->crqb_dma & 0xffffffff,
927 port_mmio + EDMA_REQ_Q_OUT_PTR_OFS);
928 else
929 writelfl(0, port_mmio + EDMA_REQ_Q_OUT_PTR_OFS);
930
931 writel((pp->crpb_dma >> 16) >> 16, port_mmio + EDMA_RSP_Q_BASE_HI_OFS);
932
933 if (hpriv->hp_flags & MV_HP_ERRATA_XX42A0)
934 writelfl(pp->crpb_dma & 0xffffffff,
935 port_mmio + EDMA_RSP_Q_IN_PTR_OFS);
936 else
937 writelfl(0, port_mmio + EDMA_RSP_Q_IN_PTR_OFS);
938
939 writelfl(pp->crpb_dma & EDMA_RSP_Q_BASE_LO_MASK,
940 port_mmio + EDMA_RSP_Q_OUT_PTR_OFS);
941
942 pp->req_producer = pp->rsp_consumer = 0;
943
944 /* Don't turn on EDMA here...do it before DMA commands only. Else
945 * we'll be unable to send non-data, PIO, etc due to restricted access
946 * to shadow regs.
947 */
948 ap->private_data = pp;
949 return 0;
950
951 err_out_priv:
952 mv_priv_free(pp, dev);
953 err_out_pp:
954 kfree(pp);
955 err_out:
956 return rc;
957 }
958
959 /**
960 * mv_port_stop - Port specific cleanup/stop routine.
961 * @ap: ATA channel to manipulate
962 *
963 * Stop DMA, cleanup port memory.
964 *
965 * LOCKING:
966 * This routine uses the host_set lock to protect the DMA stop.
967 */
968 static void mv_port_stop(struct ata_port *ap)
969 {
970 struct device *dev = ap->host_set->dev;
971 struct mv_port_priv *pp = ap->private_data;
972 unsigned long flags;
973
974 spin_lock_irqsave(&ap->host_set->lock, flags);
975 mv_stop_dma(ap);
976 spin_unlock_irqrestore(&ap->host_set->lock, flags);
977
978 ap->private_data = NULL;
979 ata_pad_free(ap, dev);
980 mv_priv_free(pp, dev);
981 kfree(pp);
982 }
983
984 /**
985 * mv_fill_sg - Fill out the Marvell ePRD (scatter gather) entries
986 * @qc: queued command whose SG list to source from
987 *
988 * Populate the SG list and mark the last entry.
989 *
990 * LOCKING:
991 * Inherited from caller.
992 */
993 static void mv_fill_sg(struct ata_queued_cmd *qc)
994 {
995 struct mv_port_priv *pp = qc->ap->private_data;
996 unsigned int i = 0;
997 struct scatterlist *sg;
998
999 ata_for_each_sg(sg, qc) {
1000 dma_addr_t addr;
1001 u32 sg_len, len, offset;
1002
1003 addr = sg_dma_address(sg);
1004 sg_len = sg_dma_len(sg);
1005
1006 while (sg_len) {
1007 offset = addr & MV_DMA_BOUNDARY;
1008 len = sg_len;
1009 if ((offset + sg_len) > 0x10000)
1010 len = 0x10000 - offset;
1011
1012 pp->sg_tbl[i].addr = cpu_to_le32(addr & 0xffffffff);
1013 pp->sg_tbl[i].addr_hi = cpu_to_le32((addr >> 16) >> 16);
1014 pp->sg_tbl[i].flags_size = cpu_to_le32(len);
1015
1016 sg_len -= len;
1017 addr += len;
1018
1019 if (!sg_len && ata_sg_is_last(sg, qc))
1020 pp->sg_tbl[i].flags_size |= cpu_to_le32(EPRD_FLAG_END_OF_TBL);
1021
1022 i++;
1023 }
1024 }
1025 }
1026
1027 static inline unsigned mv_inc_q_index(unsigned *index)
1028 {
1029 *index = (*index + 1) & MV_MAX_Q_DEPTH_MASK;
1030 return *index;
1031 }
1032
1033 static inline void mv_crqb_pack_cmd(u16 *cmdw, u8 data, u8 addr, unsigned last)
1034 {
1035 *cmdw = data | (addr << CRQB_CMD_ADDR_SHIFT) | CRQB_CMD_CS |
1036 (last ? CRQB_CMD_LAST : 0);
1037 }
1038
1039 /**
1040 * mv_qc_prep - Host specific command preparation.
1041 * @qc: queued command to prepare
1042 *
1043 * This routine simply redirects to the general purpose routine
1044 * if command is not DMA. Else, it handles prep of the CRQB
1045 * (command request block), does some sanity checking, and calls
1046 * the SG load routine.
1047 *
1048 * LOCKING:
1049 * Inherited from caller.
1050 */
1051 static void mv_qc_prep(struct ata_queued_cmd *qc)
1052 {
1053 struct ata_port *ap = qc->ap;
1054 struct mv_port_priv *pp = ap->private_data;
1055 u16 *cw;
1056 struct ata_taskfile *tf;
1057 u16 flags = 0;
1058
1059 if (ATA_PROT_DMA != qc->tf.protocol)
1060 return;
1061
1062 /* the req producer index should be the same as we remember it */
1063 assert(((readl(mv_ap_base(qc->ap) + EDMA_REQ_Q_IN_PTR_OFS) >>
1064 EDMA_REQ_Q_PTR_SHIFT) & MV_MAX_Q_DEPTH_MASK) ==
1065 pp->req_producer);
1066
1067 /* Fill in command request block
1068 */
1069 if (!(qc->tf.flags & ATA_TFLAG_WRITE))
1070 flags |= CRQB_FLAG_READ;
1071 assert(MV_MAX_Q_DEPTH > qc->tag);
1072 flags |= qc->tag << CRQB_TAG_SHIFT;
1073
1074 pp->crqb[pp->req_producer].sg_addr =
1075 cpu_to_le32(pp->sg_tbl_dma & 0xffffffff);
1076 pp->crqb[pp->req_producer].sg_addr_hi =
1077 cpu_to_le32((pp->sg_tbl_dma >> 16) >> 16);
1078 pp->crqb[pp->req_producer].ctrl_flags = cpu_to_le16(flags);
1079
1080 cw = &pp->crqb[pp->req_producer].ata_cmd[0];
1081 tf = &qc->tf;
1082
1083 /* Sadly, the CRQB cannot accomodate all registers--there are
1084 * only 11 bytes...so we must pick and choose required
1085 * registers based on the command. So, we drop feature and
1086 * hob_feature for [RW] DMA commands, but they are needed for
1087 * NCQ. NCQ will drop hob_nsect.
1088 */
1089 switch (tf->command) {
1090 case ATA_CMD_READ:
1091 case ATA_CMD_READ_EXT:
1092 case ATA_CMD_WRITE:
1093 case ATA_CMD_WRITE_EXT:
1094 mv_crqb_pack_cmd(cw++, tf->hob_nsect, ATA_REG_NSECT, 0);
1095 break;
1096 #ifdef LIBATA_NCQ /* FIXME: remove this line when NCQ added */
1097 case ATA_CMD_FPDMA_READ:
1098 case ATA_CMD_FPDMA_WRITE:
1099 mv_crqb_pack_cmd(cw++, tf->hob_feature, ATA_REG_FEATURE, 0);
1100 mv_crqb_pack_cmd(cw++, tf->feature, ATA_REG_FEATURE, 0);
1101 break;
1102 #endif /* FIXME: remove this line when NCQ added */
1103 default:
1104 /* The only other commands EDMA supports in non-queued and
1105 * non-NCQ mode are: [RW] STREAM DMA and W DMA FUA EXT, none
1106 * of which are defined/used by Linux. If we get here, this
1107 * driver needs work.
1108 *
1109 * FIXME: modify libata to give qc_prep a return value and
1110 * return error here.
1111 */
1112 BUG_ON(tf->command);
1113 break;
1114 }
1115 mv_crqb_pack_cmd(cw++, tf->nsect, ATA_REG_NSECT, 0);
1116 mv_crqb_pack_cmd(cw++, tf->hob_lbal, ATA_REG_LBAL, 0);
1117 mv_crqb_pack_cmd(cw++, tf->lbal, ATA_REG_LBAL, 0);
1118 mv_crqb_pack_cmd(cw++, tf->hob_lbam, ATA_REG_LBAM, 0);
1119 mv_crqb_pack_cmd(cw++, tf->lbam, ATA_REG_LBAM, 0);
1120 mv_crqb_pack_cmd(cw++, tf->hob_lbah, ATA_REG_LBAH, 0);
1121 mv_crqb_pack_cmd(cw++, tf->lbah, ATA_REG_LBAH, 0);
1122 mv_crqb_pack_cmd(cw++, tf->device, ATA_REG_DEVICE, 0);
1123 mv_crqb_pack_cmd(cw++, tf->command, ATA_REG_CMD, 1); /* last */
1124
1125 if (!(qc->flags & ATA_QCFLAG_DMAMAP))
1126 return;
1127 mv_fill_sg(qc);
1128 }
1129
1130 /**
1131 * mv_qc_prep_iie - Host specific command preparation.
1132 * @qc: queued command to prepare
1133 *
1134 * This routine simply redirects to the general purpose routine
1135 * if command is not DMA. Else, it handles prep of the CRQB
1136 * (command request block), does some sanity checking, and calls
1137 * the SG load routine.
1138 *
1139 * LOCKING:
1140 * Inherited from caller.
1141 */
1142 static void mv_qc_prep_iie(struct ata_queued_cmd *qc)
1143 {
1144 struct ata_port *ap = qc->ap;
1145 struct mv_port_priv *pp = ap->private_data;
1146 struct mv_crqb_iie *crqb;
1147 struct ata_taskfile *tf;
1148 u32 flags = 0;
1149
1150 if (ATA_PROT_DMA != qc->tf.protocol)
1151 return;
1152
1153 /* the req producer index should be the same as we remember it */
1154 assert(((readl(mv_ap_base(qc->ap) + EDMA_REQ_Q_IN_PTR_OFS) >>
1155 EDMA_REQ_Q_PTR_SHIFT) & MV_MAX_Q_DEPTH_MASK) ==
1156 pp->req_producer);
1157
1158 /* Fill in Gen IIE command request block
1159 */
1160 if (!(qc->tf.flags & ATA_TFLAG_WRITE))
1161 flags |= CRQB_FLAG_READ;
1162
1163 assert(MV_MAX_Q_DEPTH > qc->tag);
1164 flags |= qc->tag << CRQB_TAG_SHIFT;
1165
1166 crqb = (struct mv_crqb_iie *) &pp->crqb[pp->req_producer];
1167 crqb->addr = cpu_to_le32(pp->sg_tbl_dma & 0xffffffff);
1168 crqb->addr_hi = cpu_to_le32((pp->sg_tbl_dma >> 16) >> 16);
1169 crqb->flags = cpu_to_le32(flags);
1170
1171 tf = &qc->tf;
1172 crqb->ata_cmd[0] = cpu_to_le32(
1173 (tf->command << 16) |
1174 (tf->feature << 24)
1175 );
1176 crqb->ata_cmd[1] = cpu_to_le32(
1177 (tf->lbal << 0) |
1178 (tf->lbam << 8) |
1179 (tf->lbah << 16) |
1180 (tf->device << 24)
1181 );
1182 crqb->ata_cmd[2] = cpu_to_le32(
1183 (tf->hob_lbal << 0) |
1184 (tf->hob_lbam << 8) |
1185 (tf->hob_lbah << 16) |
1186 (tf->hob_feature << 24)
1187 );
1188 crqb->ata_cmd[3] = cpu_to_le32(
1189 (tf->nsect << 0) |
1190 (tf->hob_nsect << 8)
1191 );
1192
1193 if (!(qc->flags & ATA_QCFLAG_DMAMAP))
1194 return;
1195 mv_fill_sg(qc);
1196 }
1197
1198 /**
1199 * mv_qc_issue - Initiate a command to the host
1200 * @qc: queued command to start
1201 *
1202 * This routine simply redirects to the general purpose routine
1203 * if command is not DMA. Else, it sanity checks our local
1204 * caches of the request producer/consumer indices then enables
1205 * DMA and bumps the request producer index.
1206 *
1207 * LOCKING:
1208 * Inherited from caller.
1209 */
1210 static unsigned int mv_qc_issue(struct ata_queued_cmd *qc)
1211 {
1212 void __iomem *port_mmio = mv_ap_base(qc->ap);
1213 struct mv_port_priv *pp = qc->ap->private_data;
1214 u32 in_ptr;
1215
1216 if (ATA_PROT_DMA != qc->tf.protocol) {
1217 /* We're about to send a non-EDMA capable command to the
1218 * port. Turn off EDMA so there won't be problems accessing
1219 * shadow block, etc registers.
1220 */
1221 mv_stop_dma(qc->ap);
1222 return ata_qc_issue_prot(qc);
1223 }
1224
1225 in_ptr = readl(port_mmio + EDMA_REQ_Q_IN_PTR_OFS);
1226
1227 /* the req producer index should be the same as we remember it */
1228 assert(((in_ptr >> EDMA_REQ_Q_PTR_SHIFT) & MV_MAX_Q_DEPTH_MASK) ==
1229 pp->req_producer);
1230 /* until we do queuing, the queue should be empty at this point */
1231 assert(((in_ptr >> EDMA_REQ_Q_PTR_SHIFT) & MV_MAX_Q_DEPTH_MASK) ==
1232 ((readl(port_mmio + EDMA_REQ_Q_OUT_PTR_OFS) >>
1233 EDMA_REQ_Q_PTR_SHIFT) & MV_MAX_Q_DEPTH_MASK));
1234
1235 mv_inc_q_index(&pp->req_producer); /* now incr producer index */
1236
1237 mv_start_dma(port_mmio, pp);
1238
1239 /* and write the request in pointer to kick the EDMA to life */
1240 in_ptr &= EDMA_REQ_Q_BASE_LO_MASK;
1241 in_ptr |= pp->req_producer << EDMA_REQ_Q_PTR_SHIFT;
1242 writelfl(in_ptr, port_mmio + EDMA_REQ_Q_IN_PTR_OFS);
1243
1244 return 0;
1245 }
1246
1247 /**
1248 * mv_get_crpb_status - get status from most recently completed cmd
1249 * @ap: ATA channel to manipulate
1250 *
1251 * This routine is for use when the port is in DMA mode, when it
1252 * will be using the CRPB (command response block) method of
1253 * returning command completion information. We assert indices
1254 * are good, grab status, and bump the response consumer index to
1255 * prove that we're up to date.
1256 *
1257 * LOCKING:
1258 * Inherited from caller.
1259 */
1260 static u8 mv_get_crpb_status(struct ata_port *ap)
1261 {
1262 void __iomem *port_mmio = mv_ap_base(ap);
1263 struct mv_port_priv *pp = ap->private_data;
1264 u32 out_ptr;
1265
1266 out_ptr = readl(port_mmio + EDMA_RSP_Q_OUT_PTR_OFS);
1267
1268 /* the response consumer index should be the same as we remember it */
1269 assert(((out_ptr >> EDMA_RSP_Q_PTR_SHIFT) & MV_MAX_Q_DEPTH_MASK) ==
1270 pp->rsp_consumer);
1271
1272 /* increment our consumer index... */
1273 pp->rsp_consumer = mv_inc_q_index(&pp->rsp_consumer);
1274
1275 /* and, until we do NCQ, there should only be 1 CRPB waiting */
1276 assert(((readl(port_mmio + EDMA_RSP_Q_IN_PTR_OFS) >>
1277 EDMA_RSP_Q_PTR_SHIFT) & MV_MAX_Q_DEPTH_MASK) ==
1278 pp->rsp_consumer);
1279
1280 /* write out our inc'd consumer index so EDMA knows we're caught up */
1281 out_ptr &= EDMA_RSP_Q_BASE_LO_MASK;
1282 out_ptr |= pp->rsp_consumer << EDMA_RSP_Q_PTR_SHIFT;
1283 writelfl(out_ptr, port_mmio + EDMA_RSP_Q_OUT_PTR_OFS);
1284
1285 /* Return ATA status register for completed CRPB */
1286 return (pp->crpb[pp->rsp_consumer].flags >> CRPB_FLAG_STATUS_SHIFT);
1287 }
1288
1289 /**
1290 * mv_err_intr - Handle error interrupts on the port
1291 * @ap: ATA channel to manipulate
1292 *
1293 * In most cases, just clear the interrupt and move on. However,
1294 * some cases require an eDMA reset, which is done right before
1295 * the COMRESET in mv_phy_reset(). The SERR case requires a
1296 * clear of pending errors in the SATA SERROR register. Finally,
1297 * if the port disabled DMA, update our cached copy to match.
1298 *
1299 * LOCKING:
1300 * Inherited from caller.
1301 */
1302 static void mv_err_intr(struct ata_port *ap)
1303 {
1304 void __iomem *port_mmio = mv_ap_base(ap);
1305 u32 edma_err_cause, serr = 0;
1306
1307 edma_err_cause = readl(port_mmio + EDMA_ERR_IRQ_CAUSE_OFS);
1308
1309 if (EDMA_ERR_SERR & edma_err_cause) {
1310 serr = scr_read(ap, SCR_ERROR);
1311 scr_write_flush(ap, SCR_ERROR, serr);
1312 }
1313 if (EDMA_ERR_SELF_DIS & edma_err_cause) {
1314 struct mv_port_priv *pp = ap->private_data;
1315 pp->pp_flags &= ~MV_PP_FLAG_EDMA_EN;
1316 }
1317 DPRINTK(KERN_ERR "ata%u: port error; EDMA err cause: 0x%08x "
1318 "SERR: 0x%08x\n", ap->id, edma_err_cause, serr);
1319
1320 /* Clear EDMA now that SERR cleanup done */
1321 writelfl(0, port_mmio + EDMA_ERR_IRQ_CAUSE_OFS);
1322
1323 /* check for fatal here and recover if needed */
1324 if (EDMA_ERR_FATAL & edma_err_cause) {
1325 mv_stop_and_reset(ap);
1326 }
1327 }
1328
1329 /**
1330 * mv_host_intr - Handle all interrupts on the given host controller
1331 * @host_set: host specific structure
1332 * @relevant: port error bits relevant to this host controller
1333 * @hc: which host controller we're to look at
1334 *
1335 * Read then write clear the HC interrupt status then walk each
1336 * port connected to the HC and see if it needs servicing. Port
1337 * success ints are reported in the HC interrupt status reg, the
1338 * port error ints are reported in the higher level main
1339 * interrupt status register and thus are passed in via the
1340 * 'relevant' argument.
1341 *
1342 * LOCKING:
1343 * Inherited from caller.
1344 */
1345 static void mv_host_intr(struct ata_host_set *host_set, u32 relevant,
1346 unsigned int hc)
1347 {
1348 void __iomem *mmio = host_set->mmio_base;
1349 void __iomem *hc_mmio = mv_hc_base(mmio, hc);
1350 struct ata_port *ap;
1351 struct ata_queued_cmd *qc;
1352 u32 hc_irq_cause;
1353 int shift, port, port0, hard_port, handled;
1354 unsigned int err_mask;
1355 u8 ata_status = 0;
1356
1357 if (hc == 0) {
1358 port0 = 0;
1359 } else {
1360 port0 = MV_PORTS_PER_HC;
1361 }
1362
1363 /* we'll need the HC success int register in most cases */
1364 hc_irq_cause = readl(hc_mmio + HC_IRQ_CAUSE_OFS);
1365 if (hc_irq_cause) {
1366 writelfl(~hc_irq_cause, hc_mmio + HC_IRQ_CAUSE_OFS);
1367 }
1368
1369 VPRINTK("ENTER, hc%u relevant=0x%08x HC IRQ cause=0x%08x\n",
1370 hc,relevant,hc_irq_cause);
1371
1372 for (port = port0; port < port0 + MV_PORTS_PER_HC; port++) {
1373 ap = host_set->ports[port];
1374 hard_port = port & MV_PORT_MASK; /* range 0-3 */
1375 handled = 0; /* ensure ata_status is set if handled++ */
1376
1377 if ((CRPB_DMA_DONE << hard_port) & hc_irq_cause) {
1378 /* new CRPB on the queue; just one at a time until NCQ
1379 */
1380 ata_status = mv_get_crpb_status(ap);
1381 handled++;
1382 } else if ((DEV_IRQ << hard_port) & hc_irq_cause) {
1383 /* received ATA IRQ; read the status reg to clear INTRQ
1384 */
1385 ata_status = readb((void __iomem *)
1386 ap->ioaddr.status_addr);
1387 handled++;
1388 }
1389
1390 if (ap &&
1391 (ap->flags & (ATA_FLAG_PORT_DISABLED | ATA_FLAG_NOINTR)))
1392 continue;
1393
1394 err_mask = ac_err_mask(ata_status);
1395
1396 shift = port << 1; /* (port * 2) */
1397 if (port >= MV_PORTS_PER_HC) {
1398 shift++; /* skip bit 8 in the HC Main IRQ reg */
1399 }
1400 if ((PORT0_ERR << shift) & relevant) {
1401 mv_err_intr(ap);
1402 err_mask |= AC_ERR_OTHER;
1403 handled++;
1404 }
1405
1406 if (handled && ap) {
1407 qc = ata_qc_from_tag(ap, ap->active_tag);
1408 if (NULL != qc) {
1409 VPRINTK("port %u IRQ found for qc, "
1410 "ata_status 0x%x\n", port,ata_status);
1411 /* mark qc status appropriately */
1412 if (!(qc->tf.ctl & ATA_NIEN)) {
1413 qc->err_mask |= err_mask;
1414 ata_qc_complete(qc);
1415 }
1416 }
1417 }
1418 }
1419 VPRINTK("EXIT\n");
1420 }
1421
1422 /**
1423 * mv_interrupt -
1424 * @irq: unused
1425 * @dev_instance: private data; in this case the host structure
1426 * @regs: unused
1427 *
1428 * Read the read only register to determine if any host
1429 * controllers have pending interrupts. If so, call lower level
1430 * routine to handle. Also check for PCI errors which are only
1431 * reported here.
1432 *
1433 * LOCKING:
1434 * This routine holds the host_set lock while processing pending
1435 * interrupts.
1436 */
1437 static irqreturn_t mv_interrupt(int irq, void *dev_instance,
1438 struct pt_regs *regs)
1439 {
1440 struct ata_host_set *host_set = dev_instance;
1441 unsigned int hc, handled = 0, n_hcs;
1442 void __iomem *mmio = host_set->mmio_base;
1443 u32 irq_stat;
1444
1445 irq_stat = readl(mmio + HC_MAIN_IRQ_CAUSE_OFS);
1446
1447 /* check the cases where we either have nothing pending or have read
1448 * a bogus register value which can indicate HW removal or PCI fault
1449 */
1450 if (!irq_stat || (0xffffffffU == irq_stat)) {
1451 return IRQ_NONE;
1452 }
1453
1454 n_hcs = mv_get_hc_count(host_set->ports[0]->flags);
1455 spin_lock(&host_set->lock);
1456
1457 for (hc = 0; hc < n_hcs; hc++) {
1458 u32 relevant = irq_stat & (HC0_IRQ_PEND << (hc * HC_SHIFT));
1459 if (relevant) {
1460 mv_host_intr(host_set, relevant, hc);
1461 handled++;
1462 }
1463 }
1464 if (PCI_ERR & irq_stat) {
1465 printk(KERN_ERR DRV_NAME ": PCI ERROR; PCI IRQ cause=0x%08x\n",
1466 readl(mmio + PCI_IRQ_CAUSE_OFS));
1467
1468 DPRINTK("All regs @ PCI error\n");
1469 mv_dump_all_regs(mmio, -1, to_pci_dev(host_set->dev));
1470
1471 writelfl(0, mmio + PCI_IRQ_CAUSE_OFS);
1472 handled++;
1473 }
1474 spin_unlock(&host_set->lock);
1475
1476 return IRQ_RETVAL(handled);
1477 }
1478
1479 static void __iomem *mv5_phy_base(void __iomem *mmio, unsigned int port)
1480 {
1481 void __iomem *hc_mmio = mv_hc_base_from_port(mmio, port);
1482 unsigned long ofs = (mv_hardport_from_port(port) + 1) * 0x100UL;
1483
1484 return hc_mmio + ofs;
1485 }
1486
1487 static unsigned int mv5_scr_offset(unsigned int sc_reg_in)
1488 {
1489 unsigned int ofs;
1490
1491 switch (sc_reg_in) {
1492 case SCR_STATUS:
1493 case SCR_ERROR:
1494 case SCR_CONTROL:
1495 ofs = sc_reg_in * sizeof(u32);
1496 break;
1497 default:
1498 ofs = 0xffffffffU;
1499 break;
1500 }
1501 return ofs;
1502 }
1503
1504 static u32 mv5_scr_read(struct ata_port *ap, unsigned int sc_reg_in)
1505 {
1506 void __iomem *mmio = mv5_phy_base(ap->host_set->mmio_base, ap->port_no);
1507 unsigned int ofs = mv5_scr_offset(sc_reg_in);
1508
1509 if (ofs != 0xffffffffU)
1510 return readl(mmio + ofs);
1511 else
1512 return (u32) ofs;
1513 }
1514
1515 static void mv5_scr_write(struct ata_port *ap, unsigned int sc_reg_in, u32 val)
1516 {
1517 void __iomem *mmio = mv5_phy_base(ap->host_set->mmio_base, ap->port_no);
1518 unsigned int ofs = mv5_scr_offset(sc_reg_in);
1519
1520 if (ofs != 0xffffffffU)
1521 writelfl(val, mmio + ofs);
1522 }
1523
1524 static void mv5_reset_bus(struct pci_dev *pdev, void __iomem *mmio)
1525 {
1526 u8 rev_id;
1527 int early_5080;
1528
1529 pci_read_config_byte(pdev, PCI_REVISION_ID, &rev_id);
1530
1531 early_5080 = (pdev->device == 0x5080) && (rev_id == 0);
1532
1533 if (!early_5080) {
1534 u32 tmp = readl(mmio + MV_PCI_EXP_ROM_BAR_CTL);
1535 tmp |= (1 << 0);
1536 writel(tmp, mmio + MV_PCI_EXP_ROM_BAR_CTL);
1537 }
1538
1539 mv_reset_pci_bus(pdev, mmio);
1540 }
1541
1542 static void mv5_reset_flash(struct mv_host_priv *hpriv, void __iomem *mmio)
1543 {
1544 writel(0x0fcfffff, mmio + MV_FLASH_CTL);
1545 }
1546
1547 static void mv5_read_preamp(struct mv_host_priv *hpriv, int idx,
1548 void __iomem *mmio)
1549 {
1550 void __iomem *phy_mmio = mv5_phy_base(mmio, idx);
1551 u32 tmp;
1552
1553 tmp = readl(phy_mmio + MV5_PHY_MODE);
1554
1555 hpriv->signal[idx].pre = tmp & 0x1800; /* bits 12:11 */
1556 hpriv->signal[idx].amps = tmp & 0xe0; /* bits 7:5 */
1557 }
1558
1559 static void mv5_enable_leds(struct mv_host_priv *hpriv, void __iomem *mmio)
1560 {
1561 u32 tmp;
1562
1563 writel(0, mmio + MV_GPIO_PORT_CTL);
1564
1565 /* FIXME: handle MV_HP_ERRATA_50XXB2 errata */
1566
1567 tmp = readl(mmio + MV_PCI_EXP_ROM_BAR_CTL);
1568 tmp |= ~(1 << 0);
1569 writel(tmp, mmio + MV_PCI_EXP_ROM_BAR_CTL);
1570 }
1571
1572 static void mv5_phy_errata(struct mv_host_priv *hpriv, void __iomem *mmio,
1573 unsigned int port)
1574 {
1575 void __iomem *phy_mmio = mv5_phy_base(mmio, port);
1576 const u32 mask = (1<<12) | (1<<11) | (1<<7) | (1<<6) | (1<<5);
1577 u32 tmp;
1578 int fix_apm_sq = (hpriv->hp_flags & MV_HP_ERRATA_50XXB0);
1579
1580 if (fix_apm_sq) {
1581 tmp = readl(phy_mmio + MV5_LT_MODE);
1582 tmp |= (1 << 19);
1583 writel(tmp, phy_mmio + MV5_LT_MODE);
1584
1585 tmp = readl(phy_mmio + MV5_PHY_CTL);
1586 tmp &= ~0x3;
1587 tmp |= 0x1;
1588 writel(tmp, phy_mmio + MV5_PHY_CTL);
1589 }
1590
1591 tmp = readl(phy_mmio + MV5_PHY_MODE);
1592 tmp &= ~mask;
1593 tmp |= hpriv->signal[port].pre;
1594 tmp |= hpriv->signal[port].amps;
1595 writel(tmp, phy_mmio + MV5_PHY_MODE);
1596 }
1597
1598
1599 #undef ZERO
1600 #define ZERO(reg) writel(0, port_mmio + (reg))
1601 static void mv5_reset_hc_port(struct mv_host_priv *hpriv, void __iomem *mmio,
1602 unsigned int port)
1603 {
1604 void __iomem *port_mmio = mv_port_base(mmio, port);
1605
1606 writelfl(EDMA_DS, port_mmio + EDMA_CMD_OFS);
1607
1608 mv_channel_reset(hpriv, mmio, port);
1609
1610 ZERO(0x028); /* command */
1611 writel(0x11f, port_mmio + EDMA_CFG_OFS);
1612 ZERO(0x004); /* timer */
1613 ZERO(0x008); /* irq err cause */
1614 ZERO(0x00c); /* irq err mask */
1615 ZERO(0x010); /* rq bah */
1616 ZERO(0x014); /* rq inp */
1617 ZERO(0x018); /* rq outp */
1618 ZERO(0x01c); /* respq bah */
1619 ZERO(0x024); /* respq outp */
1620 ZERO(0x020); /* respq inp */
1621 ZERO(0x02c); /* test control */
1622 writel(0xbc, port_mmio + EDMA_IORDY_TMOUT);
1623 }
1624 #undef ZERO
1625
1626 #define ZERO(reg) writel(0, hc_mmio + (reg))
1627 static void mv5_reset_one_hc(struct mv_host_priv *hpriv, void __iomem *mmio,
1628 unsigned int hc)
1629 {
1630 void __iomem *hc_mmio = mv_hc_base(mmio, hc);
1631 u32 tmp;
1632
1633 ZERO(0x00c);
1634 ZERO(0x010);
1635 ZERO(0x014);
1636 ZERO(0x018);
1637
1638 tmp = readl(hc_mmio + 0x20);
1639 tmp &= 0x1c1c1c1c;
1640 tmp |= 0x03030303;
1641 writel(tmp, hc_mmio + 0x20);
1642 }
1643 #undef ZERO
1644
1645 static int mv5_reset_hc(struct mv_host_priv *hpriv, void __iomem *mmio,
1646 unsigned int n_hc)
1647 {
1648 unsigned int hc, port;
1649
1650 for (hc = 0; hc < n_hc; hc++) {
1651 for (port = 0; port < MV_PORTS_PER_HC; port++)
1652 mv5_reset_hc_port(hpriv, mmio,
1653 (hc * MV_PORTS_PER_HC) + port);
1654
1655 mv5_reset_one_hc(hpriv, mmio, hc);
1656 }
1657
1658 return 0;
1659 }
1660
1661 #undef ZERO
1662 #define ZERO(reg) writel(0, mmio + (reg))
1663 static void mv_reset_pci_bus(struct pci_dev *pdev, void __iomem *mmio)
1664 {
1665 u32 tmp;
1666
1667 tmp = readl(mmio + MV_PCI_MODE);
1668 tmp &= 0xff00ffff;
1669 writel(tmp, mmio + MV_PCI_MODE);
1670
1671 ZERO(MV_PCI_DISC_TIMER);
1672 ZERO(MV_PCI_MSI_TRIGGER);
1673 writel(0x000100ff, mmio + MV_PCI_XBAR_TMOUT);
1674 ZERO(HC_MAIN_IRQ_MASK_OFS);
1675 ZERO(MV_PCI_SERR_MASK);
1676 ZERO(PCI_IRQ_CAUSE_OFS);
1677 ZERO(PCI_IRQ_MASK_OFS);
1678 ZERO(MV_PCI_ERR_LOW_ADDRESS);
1679 ZERO(MV_PCI_ERR_HIGH_ADDRESS);
1680 ZERO(MV_PCI_ERR_ATTRIBUTE);
1681 ZERO(MV_PCI_ERR_COMMAND);
1682 }
1683 #undef ZERO
1684
1685 static void mv6_reset_flash(struct mv_host_priv *hpriv, void __iomem *mmio)
1686 {
1687 u32 tmp;
1688
1689 mv5_reset_flash(hpriv, mmio);
1690
1691 tmp = readl(mmio + MV_GPIO_PORT_CTL);
1692 tmp &= 0x3;
1693 tmp |= (1 << 5) | (1 << 6);
1694 writel(tmp, mmio + MV_GPIO_PORT_CTL);
1695 }
1696
1697 /**
1698 * mv6_reset_hc - Perform the 6xxx global soft reset
1699 * @mmio: base address of the HBA
1700 *
1701 * This routine only applies to 6xxx parts.
1702 *
1703 * LOCKING:
1704 * Inherited from caller.
1705 */
1706 static int mv6_reset_hc(struct mv_host_priv *hpriv, void __iomem *mmio,
1707 unsigned int n_hc)
1708 {
1709 void __iomem *reg = mmio + PCI_MAIN_CMD_STS_OFS;
1710 int i, rc = 0;
1711 u32 t;
1712
1713 /* Following procedure defined in PCI "main command and status
1714 * register" table.
1715 */
1716 t = readl(reg);
1717 writel(t | STOP_PCI_MASTER, reg);
1718
1719 for (i = 0; i < 1000; i++) {
1720 udelay(1);
1721 t = readl(reg);
1722 if (PCI_MASTER_EMPTY & t) {
1723 break;
1724 }
1725 }
1726 if (!(PCI_MASTER_EMPTY & t)) {
1727 printk(KERN_ERR DRV_NAME ": PCI master won't flush\n");
1728 rc = 1;
1729 goto done;
1730 }
1731
1732 /* set reset */
1733 i = 5;
1734 do {
1735 writel(t | GLOB_SFT_RST, reg);
1736 t = readl(reg);
1737 udelay(1);
1738 } while (!(GLOB_SFT_RST & t) && (i-- > 0));
1739
1740 if (!(GLOB_SFT_RST & t)) {
1741 printk(KERN_ERR DRV_NAME ": can't set global reset\n");
1742 rc = 1;
1743 goto done;
1744 }
1745
1746 /* clear reset and *reenable the PCI master* (not mentioned in spec) */
1747 i = 5;
1748 do {
1749 writel(t & ~(GLOB_SFT_RST | STOP_PCI_MASTER), reg);
1750 t = readl(reg);
1751 udelay(1);
1752 } while ((GLOB_SFT_RST & t) && (i-- > 0));
1753
1754 if (GLOB_SFT_RST & t) {
1755 printk(KERN_ERR DRV_NAME ": can't clear global reset\n");
1756 rc = 1;
1757 }
1758 done:
1759 return rc;
1760 }
1761
1762 static void mv6_read_preamp(struct mv_host_priv *hpriv, int idx,
1763 void __iomem *mmio)
1764 {
1765 void __iomem *port_mmio;
1766 u32 tmp;
1767
1768 tmp = readl(mmio + MV_RESET_CFG);
1769 if ((tmp & (1 << 0)) == 0) {
1770 hpriv->signal[idx].amps = 0x7 << 8;
1771 hpriv->signal[idx].pre = 0x1 << 5;
1772 return;
1773 }
1774
1775 port_mmio = mv_port_base(mmio, idx);
1776 tmp = readl(port_mmio + PHY_MODE2);
1777
1778 hpriv->signal[idx].amps = tmp & 0x700; /* bits 10:8 */
1779 hpriv->signal[idx].pre = tmp & 0xe0; /* bits 7:5 */
1780 }
1781
1782 static void mv6_enable_leds(struct mv_host_priv *hpriv, void __iomem *mmio)
1783 {
1784 writel(0x00000060, mmio + MV_GPIO_PORT_CTL);
1785 }
1786
1787 static void mv6_phy_errata(struct mv_host_priv *hpriv, void __iomem *mmio,
1788 unsigned int port)
1789 {
1790 void __iomem *port_mmio = mv_port_base(mmio, port);
1791
1792 u32 hp_flags = hpriv->hp_flags;
1793 int fix_phy_mode2 =
1794 hp_flags & (MV_HP_ERRATA_60X1B2 | MV_HP_ERRATA_60X1C0);
1795 int fix_phy_mode4 =
1796 hp_flags & (MV_HP_ERRATA_60X1B2 | MV_HP_ERRATA_60X1C0);
1797 u32 m2, tmp;
1798
1799 if (fix_phy_mode2) {
1800 m2 = readl(port_mmio + PHY_MODE2);
1801 m2 &= ~(1 << 16);
1802 m2 |= (1 << 31);
1803 writel(m2, port_mmio + PHY_MODE2);
1804
1805 udelay(200);
1806
1807 m2 = readl(port_mmio + PHY_MODE2);
1808 m2 &= ~((1 << 16) | (1 << 31));
1809 writel(m2, port_mmio + PHY_MODE2);
1810
1811 udelay(200);
1812 }
1813
1814 /* who knows what this magic does */
1815 tmp = readl(port_mmio + PHY_MODE3);
1816 tmp &= ~0x7F800000;
1817 tmp |= 0x2A800000;
1818 writel(tmp, port_mmio + PHY_MODE3);
1819
1820 if (fix_phy_mode4) {
1821 u32 m4;
1822
1823 m4 = readl(port_mmio + PHY_MODE4);
1824
1825 if (hp_flags & MV_HP_ERRATA_60X1B2)
1826 tmp = readl(port_mmio + 0x310);
1827
1828 m4 = (m4 & ~(1 << 1)) | (1 << 0);
1829
1830 writel(m4, port_mmio + PHY_MODE4);
1831
1832 if (hp_flags & MV_HP_ERRATA_60X1B2)
1833 writel(tmp, port_mmio + 0x310);
1834 }
1835
1836 /* Revert values of pre-emphasis and signal amps to the saved ones */
1837 m2 = readl(port_mmio + PHY_MODE2);
1838
1839 m2 &= ~MV_M2_PREAMP_MASK;
1840 m2 |= hpriv->signal[port].amps;
1841 m2 |= hpriv->signal[port].pre;
1842 m2 &= ~(1 << 16);
1843
1844 /* according to mvSata 3.6.1, some IIE values are fixed */
1845 if (IS_GEN_IIE(hpriv)) {
1846 m2 &= ~0xC30FF01F;
1847 m2 |= 0x0000900F;
1848 }
1849
1850 writel(m2, port_mmio + PHY_MODE2);
1851 }
1852
1853 static void mv_channel_reset(struct mv_host_priv *hpriv, void __iomem *mmio,
1854 unsigned int port_no)
1855 {
1856 void __iomem *port_mmio = mv_port_base(mmio, port_no);
1857
1858 writelfl(ATA_RST, port_mmio + EDMA_CMD_OFS);
1859
1860 if (IS_60XX(hpriv)) {
1861 u32 ifctl = readl(port_mmio + SATA_INTERFACE_CTL);
1862 ifctl |= (1 << 12) | (1 << 7);
1863 writelfl(ifctl, port_mmio + SATA_INTERFACE_CTL);
1864 }
1865
1866 udelay(25); /* allow reset propagation */
1867
1868 /* Spec never mentions clearing the bit. Marvell's driver does
1869 * clear the bit, however.
1870 */
1871 writelfl(0, port_mmio + EDMA_CMD_OFS);
1872
1873 hpriv->ops->phy_errata(hpriv, mmio, port_no);
1874
1875 if (IS_50XX(hpriv))
1876 mdelay(1);
1877 }
1878
1879 static void mv_stop_and_reset(struct ata_port *ap)
1880 {
1881 struct mv_host_priv *hpriv = ap->host_set->private_data;
1882 void __iomem *mmio = ap->host_set->mmio_base;
1883
1884 mv_stop_dma(ap);
1885
1886 mv_channel_reset(hpriv, mmio, ap->port_no);
1887
1888 __mv_phy_reset(ap, 0);
1889 }
1890
1891 static inline void __msleep(unsigned int msec, int can_sleep)
1892 {
1893 if (can_sleep)
1894 msleep(msec);
1895 else
1896 mdelay(msec);
1897 }
1898
1899 /**
1900 * __mv_phy_reset - Perform eDMA reset followed by COMRESET
1901 * @ap: ATA channel to manipulate
1902 *
1903 * Part of this is taken from __sata_phy_reset and modified to
1904 * not sleep since this routine gets called from interrupt level.
1905 *
1906 * LOCKING:
1907 * Inherited from caller. This is coded to safe to call at
1908 * interrupt level, i.e. it does not sleep.
1909 */
1910 static void __mv_phy_reset(struct ata_port *ap, int can_sleep)
1911 {
1912 struct mv_port_priv *pp = ap->private_data;
1913 struct mv_host_priv *hpriv = ap->host_set->private_data;
1914 void __iomem *port_mmio = mv_ap_base(ap);
1915 struct ata_taskfile tf;
1916 struct ata_device *dev = &ap->device[0];
1917 unsigned long timeout;
1918 int retry = 5;
1919 u32 sstatus;
1920
1921 VPRINTK("ENTER, port %u, mmio 0x%p\n", ap->port_no, port_mmio);
1922
1923 DPRINTK("S-regs after ATA_RST: SStat 0x%08x SErr 0x%08x "
1924 "SCtrl 0x%08x\n", mv_scr_read(ap, SCR_STATUS),
1925 mv_scr_read(ap, SCR_ERROR), mv_scr_read(ap, SCR_CONTROL));
1926
1927 /* Issue COMRESET via SControl */
1928 comreset_retry:
1929 scr_write_flush(ap, SCR_CONTROL, 0x301);
1930 __msleep(1, can_sleep);
1931
1932 scr_write_flush(ap, SCR_CONTROL, 0x300);
1933 __msleep(20, can_sleep);
1934
1935 timeout = jiffies + msecs_to_jiffies(200);
1936 do {
1937 sstatus = scr_read(ap, SCR_STATUS) & 0x3;
1938 if ((sstatus == 3) || (sstatus == 0))
1939 break;
1940
1941 __msleep(1, can_sleep);
1942 } while (time_before(jiffies, timeout));
1943
1944 /* work around errata */
1945 if (IS_60XX(hpriv) &&
1946 (sstatus != 0x0) && (sstatus != 0x113) && (sstatus != 0x123) &&
1947 (retry-- > 0))
1948 goto comreset_retry;
1949
1950 DPRINTK("S-regs after PHY wake: SStat 0x%08x SErr 0x%08x "
1951 "SCtrl 0x%08x\n", mv_scr_read(ap, SCR_STATUS),
1952 mv_scr_read(ap, SCR_ERROR), mv_scr_read(ap, SCR_CONTROL));
1953
1954 if (sata_dev_present(ap)) {
1955 ata_port_probe(ap);
1956 } else {
1957 printk(KERN_INFO "ata%u: no device found (phy stat %08x)\n",
1958 ap->id, scr_read(ap, SCR_STATUS));
1959 ata_port_disable(ap);
1960 return;
1961 }
1962 ap->cbl = ATA_CBL_SATA;
1963
1964 /* even after SStatus reflects that device is ready,
1965 * it seems to take a while for link to be fully
1966 * established (and thus Status no longer 0x80/0x7F),
1967 * so we poll a bit for that, here.
1968 */
1969 retry = 20;
1970 while (1) {
1971 u8 drv_stat = ata_check_status(ap);
1972 if ((drv_stat != 0x80) && (drv_stat != 0x7f))
1973 break;
1974 __msleep(500, can_sleep);
1975 if (retry-- <= 0)
1976 break;
1977 }
1978
1979 tf.lbah = readb((void __iomem *) ap->ioaddr.lbah_addr);
1980 tf.lbam = readb((void __iomem *) ap->ioaddr.lbam_addr);
1981 tf.lbal = readb((void __iomem *) ap->ioaddr.lbal_addr);
1982 tf.nsect = readb((void __iomem *) ap->ioaddr.nsect_addr);
1983
1984 dev->class = ata_dev_classify(&tf);
1985 if (!ata_dev_present(dev)) {
1986 VPRINTK("Port disabled post-sig: No device present.\n");
1987 ata_port_disable(ap);
1988 }
1989
1990 writelfl(0, port_mmio + EDMA_ERR_IRQ_CAUSE_OFS);
1991
1992 pp->pp_flags &= ~MV_PP_FLAG_EDMA_EN;
1993
1994 VPRINTK("EXIT\n");
1995 }
1996
1997 static void mv_phy_reset(struct ata_port *ap)
1998 {
1999 __mv_phy_reset(ap, 1);
2000 }
2001
2002 /**
2003 * mv_eng_timeout - Routine called by libata when SCSI times out I/O
2004 * @ap: ATA channel to manipulate
2005 *
2006 * Intent is to clear all pending error conditions, reset the
2007 * chip/bus, fail the command, and move on.
2008 *
2009 * LOCKING:
2010 * This routine holds the host_set lock while failing the command.
2011 */
2012 static void mv_eng_timeout(struct ata_port *ap)
2013 {
2014 struct ata_queued_cmd *qc;
2015
2016 printk(KERN_ERR "ata%u: Entering mv_eng_timeout\n",ap->id);
2017 DPRINTK("All regs @ start of eng_timeout\n");
2018 mv_dump_all_regs(ap->host_set->mmio_base, ap->port_no,
2019 to_pci_dev(ap->host_set->dev));
2020
2021 qc = ata_qc_from_tag(ap, ap->active_tag);
2022 printk(KERN_ERR "mmio_base %p ap %p qc %p scsi_cmnd %p &cmnd %p\n",
2023 ap->host_set->mmio_base, ap, qc, qc->scsicmd,
2024 &qc->scsicmd->cmnd);
2025
2026 mv_err_intr(ap);
2027 mv_stop_and_reset(ap);
2028
2029 if (!qc) {
2030 printk(KERN_ERR "ata%u: BUG: timeout without command\n",
2031 ap->id);
2032 } else {
2033 qc->err_mask |= AC_ERR_TIMEOUT;
2034 ata_eh_qc_complete(qc);
2035 }
2036 }
2037
2038 /**
2039 * mv_port_init - Perform some early initialization on a single port.
2040 * @port: libata data structure storing shadow register addresses
2041 * @port_mmio: base address of the port
2042 *
2043 * Initialize shadow register mmio addresses, clear outstanding
2044 * interrupts on the port, and unmask interrupts for the future
2045 * start of the port.
2046 *
2047 * LOCKING:
2048 * Inherited from caller.
2049 */
2050 static void mv_port_init(struct ata_ioports *port, void __iomem *port_mmio)
2051 {
2052 unsigned long shd_base = (unsigned long) port_mmio + SHD_BLK_OFS;
2053 unsigned serr_ofs;
2054
2055 /* PIO related setup
2056 */
2057 port->data_addr = shd_base + (sizeof(u32) * ATA_REG_DATA);
2058 port->error_addr =
2059 port->feature_addr = shd_base + (sizeof(u32) * ATA_REG_ERR);
2060 port->nsect_addr = shd_base + (sizeof(u32) * ATA_REG_NSECT);
2061 port->lbal_addr = shd_base + (sizeof(u32) * ATA_REG_LBAL);
2062 port->lbam_addr = shd_base + (sizeof(u32) * ATA_REG_LBAM);
2063 port->lbah_addr = shd_base + (sizeof(u32) * ATA_REG_LBAH);
2064 port->device_addr = shd_base + (sizeof(u32) * ATA_REG_DEVICE);
2065 port->status_addr =
2066 port->command_addr = shd_base + (sizeof(u32) * ATA_REG_STATUS);
2067 /* special case: control/altstatus doesn't have ATA_REG_ address */
2068 port->altstatus_addr = port->ctl_addr = shd_base + SHD_CTL_AST_OFS;
2069
2070 /* unused: */
2071 port->cmd_addr = port->bmdma_addr = port->scr_addr = 0;
2072
2073 /* Clear any currently outstanding port interrupt conditions */
2074 serr_ofs = mv_scr_offset(SCR_ERROR);
2075 writelfl(readl(port_mmio + serr_ofs), port_mmio + serr_ofs);
2076 writelfl(0, port_mmio + EDMA_ERR_IRQ_CAUSE_OFS);
2077
2078 /* unmask all EDMA error interrupts */
2079 writelfl(~0, port_mmio + EDMA_ERR_IRQ_MASK_OFS);
2080
2081 VPRINTK("EDMA cfg=0x%08x EDMA IRQ err cause/mask=0x%08x/0x%08x\n",
2082 readl(port_mmio + EDMA_CFG_OFS),
2083 readl(port_mmio + EDMA_ERR_IRQ_CAUSE_OFS),
2084 readl(port_mmio + EDMA_ERR_IRQ_MASK_OFS));
2085 }
2086
2087 static int mv_chip_id(struct pci_dev *pdev, struct mv_host_priv *hpriv,
2088 unsigned int board_idx)
2089 {
2090 u8 rev_id;
2091 u32 hp_flags = hpriv->hp_flags;
2092
2093 pci_read_config_byte(pdev, PCI_REVISION_ID, &rev_id);
2094
2095 switch(board_idx) {
2096 case chip_5080:
2097 hpriv->ops = &mv5xxx_ops;
2098 hp_flags |= MV_HP_50XX;
2099
2100 switch (rev_id) {
2101 case 0x1:
2102 hp_flags |= MV_HP_ERRATA_50XXB0;
2103 break;
2104 case 0x3:
2105 hp_flags |= MV_HP_ERRATA_50XXB2;
2106 break;
2107 default:
2108 dev_printk(KERN_WARNING, &pdev->dev,
2109 "Applying 50XXB2 workarounds to unknown rev\n");
2110 hp_flags |= MV_HP_ERRATA_50XXB2;
2111 break;
2112 }
2113 break;
2114
2115 case chip_504x:
2116 case chip_508x:
2117 hpriv->ops = &mv5xxx_ops;
2118 hp_flags |= MV_HP_50XX;
2119
2120 switch (rev_id) {
2121 case 0x0:
2122 hp_flags |= MV_HP_ERRATA_50XXB0;
2123 break;
2124 case 0x3:
2125 hp_flags |= MV_HP_ERRATA_50XXB2;
2126 break;
2127 default:
2128 dev_printk(KERN_WARNING, &pdev->dev,
2129 "Applying B2 workarounds to unknown rev\n");
2130 hp_flags |= MV_HP_ERRATA_50XXB2;
2131 break;
2132 }
2133 break;
2134
2135 case chip_604x:
2136 case chip_608x:
2137 hpriv->ops = &mv6xxx_ops;
2138
2139 switch (rev_id) {
2140 case 0x7:
2141 hp_flags |= MV_HP_ERRATA_60X1B2;
2142 break;
2143 case 0x9:
2144 hp_flags |= MV_HP_ERRATA_60X1C0;
2145 break;
2146 default:
2147 dev_printk(KERN_WARNING, &pdev->dev,
2148 "Applying B2 workarounds to unknown rev\n");
2149 hp_flags |= MV_HP_ERRATA_60X1B2;
2150 break;
2151 }
2152 break;
2153
2154 case chip_7042:
2155 case chip_6042:
2156 hpriv->ops = &mv6xxx_ops;
2157
2158 hp_flags |= MV_HP_GEN_IIE;
2159
2160 switch (rev_id) {
2161 case 0x0:
2162 hp_flags |= MV_HP_ERRATA_XX42A0;
2163 break;
2164 case 0x1:
2165 hp_flags |= MV_HP_ERRATA_60X1C0;
2166 break;
2167 default:
2168 dev_printk(KERN_WARNING, &pdev->dev,
2169 "Applying 60X1C0 workarounds to unknown rev\n");
2170 hp_flags |= MV_HP_ERRATA_60X1C0;
2171 break;
2172 }
2173 break;
2174
2175 default:
2176 printk(KERN_ERR DRV_NAME ": BUG: invalid board index %u\n", board_idx);
2177 return 1;
2178 }
2179
2180 hpriv->hp_flags = hp_flags;
2181
2182 return 0;
2183 }
2184
2185 /**
2186 * mv_init_host - Perform some early initialization of the host.
2187 * @pdev: host PCI device
2188 * @probe_ent: early data struct representing the host
2189 *
2190 * If possible, do an early global reset of the host. Then do
2191 * our port init and clear/unmask all/relevant host interrupts.
2192 *
2193 * LOCKING:
2194 * Inherited from caller.
2195 */
2196 static int mv_init_host(struct pci_dev *pdev, struct ata_probe_ent *probe_ent,
2197 unsigned int board_idx)
2198 {
2199 int rc = 0, n_hc, port, hc;
2200 void __iomem *mmio = probe_ent->mmio_base;
2201 struct mv_host_priv *hpriv = probe_ent->private_data;
2202
2203 /* global interrupt mask */
2204 writel(0, mmio + HC_MAIN_IRQ_MASK_OFS);
2205
2206 rc = mv_chip_id(pdev, hpriv, board_idx);
2207 if (rc)
2208 goto done;
2209
2210 n_hc = mv_get_hc_count(probe_ent->host_flags);
2211 probe_ent->n_ports = MV_PORTS_PER_HC * n_hc;
2212
2213 for (port = 0; port < probe_ent->n_ports; port++)
2214 hpriv->ops->read_preamp(hpriv, port, mmio);
2215
2216 rc = hpriv->ops->reset_hc(hpriv, mmio, n_hc);
2217 if (rc)
2218 goto done;
2219
2220 hpriv->ops->reset_flash(hpriv, mmio);
2221 hpriv->ops->reset_bus(pdev, mmio);
2222 hpriv->ops->enable_leds(hpriv, mmio);
2223
2224 for (port = 0; port < probe_ent->n_ports; port++) {
2225 if (IS_60XX(hpriv)) {
2226 void __iomem *port_mmio = mv_port_base(mmio, port);
2227
2228 u32 ifctl = readl(port_mmio + SATA_INTERFACE_CTL);
2229 ifctl |= (1 << 12);
2230 writelfl(ifctl, port_mmio + SATA_INTERFACE_CTL);
2231 }
2232
2233 hpriv->ops->phy_errata(hpriv, mmio, port);
2234 }
2235
2236 for (port = 0; port < probe_ent->n_ports; port++) {
2237 void __iomem *port_mmio = mv_port_base(mmio, port);
2238 mv_port_init(&probe_ent->port[port], port_mmio);
2239 }
2240
2241 for (hc = 0; hc < n_hc; hc++) {
2242 void __iomem *hc_mmio = mv_hc_base(mmio, hc);
2243
2244 VPRINTK("HC%i: HC config=0x%08x HC IRQ cause "
2245 "(before clear)=0x%08x\n", hc,
2246 readl(hc_mmio + HC_CFG_OFS),
2247 readl(hc_mmio + HC_IRQ_CAUSE_OFS));
2248
2249 /* Clear any currently outstanding hc interrupt conditions */
2250 writelfl(0, hc_mmio + HC_IRQ_CAUSE_OFS);
2251 }
2252
2253 /* Clear any currently outstanding host interrupt conditions */
2254 writelfl(0, mmio + PCI_IRQ_CAUSE_OFS);
2255
2256 /* and unmask interrupt generation for host regs */
2257 writelfl(PCI_UNMASK_ALL_IRQS, mmio + PCI_IRQ_MASK_OFS);
2258 writelfl(~HC_MAIN_MASKED_IRQS, mmio + HC_MAIN_IRQ_MASK_OFS);
2259
2260 VPRINTK("HC MAIN IRQ cause/mask=0x%08x/0x%08x "
2261 "PCI int cause/mask=0x%08x/0x%08x\n",
2262 readl(mmio + HC_MAIN_IRQ_CAUSE_OFS),
2263 readl(mmio + HC_MAIN_IRQ_MASK_OFS),
2264 readl(mmio + PCI_IRQ_CAUSE_OFS),
2265 readl(mmio + PCI_IRQ_MASK_OFS));
2266
2267 done:
2268 return rc;
2269 }
2270
2271 /**
2272 * mv_print_info - Dump key info to kernel log for perusal.
2273 * @probe_ent: early data struct representing the host
2274 *
2275 * FIXME: complete this.
2276 *
2277 * LOCKING:
2278 * Inherited from caller.
2279 */
2280 static void mv_print_info(struct ata_probe_ent *probe_ent)
2281 {
2282 struct pci_dev *pdev = to_pci_dev(probe_ent->dev);
2283 struct mv_host_priv *hpriv = probe_ent->private_data;
2284 u8 rev_id, scc;
2285 const char *scc_s;
2286
2287 /* Use this to determine the HW stepping of the chip so we know
2288 * what errata to workaround
2289 */
2290 pci_read_config_byte(pdev, PCI_REVISION_ID, &rev_id);
2291
2292 pci_read_config_byte(pdev, PCI_CLASS_DEVICE, &scc);
2293 if (scc == 0)
2294 scc_s = "SCSI";
2295 else if (scc == 0x01)
2296 scc_s = "RAID";
2297 else
2298 scc_s = "unknown";
2299
2300 dev_printk(KERN_INFO, &pdev->dev,
2301 "%u slots %u ports %s mode IRQ via %s\n",
2302 (unsigned)MV_MAX_Q_DEPTH, probe_ent->n_ports,
2303 scc_s, (MV_HP_FLAG_MSI & hpriv->hp_flags) ? "MSI" : "INTx");
2304 }
2305
2306 /**
2307 * mv_init_one - handle a positive probe of a Marvell host
2308 * @pdev: PCI device found
2309 * @ent: PCI device ID entry for the matched host
2310 *
2311 * LOCKING:
2312 * Inherited from caller.
2313 */
2314 static int mv_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
2315 {
2316 static int printed_version = 0;
2317 struct ata_probe_ent *probe_ent = NULL;
2318 struct mv_host_priv *hpriv;
2319 unsigned int board_idx = (unsigned int)ent->driver_data;
2320 void __iomem *mmio_base;
2321 int pci_dev_busy = 0, rc;
2322
2323 if (!printed_version++)
2324 dev_printk(KERN_INFO, &pdev->dev, "version " DRV_VERSION "\n");
2325
2326 rc = pci_enable_device(pdev);
2327 if (rc) {
2328 return rc;
2329 }
2330
2331 rc = pci_request_regions(pdev, DRV_NAME);
2332 if (rc) {
2333 pci_dev_busy = 1;
2334 goto err_out;
2335 }
2336
2337 probe_ent = kmalloc(sizeof(*probe_ent), GFP_KERNEL);
2338 if (probe_ent == NULL) {
2339 rc = -ENOMEM;
2340 goto err_out_regions;
2341 }
2342
2343 memset(probe_ent, 0, sizeof(*probe_ent));
2344 probe_ent->dev = pci_dev_to_dev(pdev);
2345 INIT_LIST_HEAD(&probe_ent->node);
2346
2347 mmio_base = pci_iomap(pdev, MV_PRIMARY_BAR, 0);
2348 if (mmio_base == NULL) {
2349 rc = -ENOMEM;
2350 goto err_out_free_ent;
2351 }
2352
2353 hpriv = kmalloc(sizeof(*hpriv), GFP_KERNEL);
2354 if (!hpriv) {
2355 rc = -ENOMEM;
2356 goto err_out_iounmap;
2357 }
2358 memset(hpriv, 0, sizeof(*hpriv));
2359
2360 probe_ent->sht = mv_port_info[board_idx].sht;
2361 probe_ent->host_flags = mv_port_info[board_idx].host_flags;
2362 probe_ent->pio_mask = mv_port_info[board_idx].pio_mask;
2363 probe_ent->udma_mask = mv_port_info[board_idx].udma_mask;
2364 probe_ent->port_ops = mv_port_info[board_idx].port_ops;
2365
2366 probe_ent->irq = pdev->irq;
2367 probe_ent->irq_flags = SA_SHIRQ;
2368 probe_ent->mmio_base = mmio_base;
2369 probe_ent->private_data = hpriv;
2370
2371 /* initialize adapter */
2372 rc = mv_init_host(pdev, probe_ent, board_idx);
2373 if (rc) {
2374 goto err_out_hpriv;
2375 }
2376
2377 /* Enable interrupts */
2378 if (msi && pci_enable_msi(pdev) == 0) {
2379 hpriv->hp_flags |= MV_HP_FLAG_MSI;
2380 } else {
2381 pci_intx(pdev, 1);
2382 }
2383
2384 mv_dump_pci_cfg(pdev, 0x68);
2385 mv_print_info(probe_ent);
2386
2387 if (ata_device_add(probe_ent) == 0) {
2388 rc = -ENODEV; /* No devices discovered */
2389 goto err_out_dev_add;
2390 }
2391
2392 kfree(probe_ent);
2393 return 0;
2394
2395 err_out_dev_add:
2396 if (MV_HP_FLAG_MSI & hpriv->hp_flags) {
2397 pci_disable_msi(pdev);
2398 } else {
2399 pci_intx(pdev, 0);
2400 }
2401 err_out_hpriv:
2402 kfree(hpriv);
2403 err_out_iounmap:
2404 pci_iounmap(pdev, mmio_base);
2405 err_out_free_ent:
2406 kfree(probe_ent);
2407 err_out_regions:
2408 pci_release_regions(pdev);
2409 err_out:
2410 if (!pci_dev_busy) {
2411 pci_disable_device(pdev);
2412 }
2413
2414 return rc;
2415 }
2416
2417 static int __init mv_init(void)
2418 {
2419 return pci_module_init(&mv_pci_driver);
2420 }
2421
2422 static void __exit mv_exit(void)
2423 {
2424 pci_unregister_driver(&mv_pci_driver);
2425 }
2426
2427 MODULE_AUTHOR("Brett Russ");
2428 MODULE_DESCRIPTION("SCSI low-level driver for Marvell SATA controllers");
2429 MODULE_LICENSE("GPL");
2430 MODULE_DEVICE_TABLE(pci, mv_pci_tbl);
2431 MODULE_VERSION(DRV_VERSION);
2432
2433 module_param(msi, int, 0444);
2434 MODULE_PARM_DESC(msi, "Enable use of PCI MSI (0=off, 1=on)");
2435
2436 module_init(mv_init);
2437 module_exit(mv_exit);
This page took 0.108992 seconds and 6 git commands to generate.