[SCSI] fix locking in host use of blk_plug_device()
[deliverable/linux.git] / drivers / scsi / scsi_lib.c
1 /*
2 * scsi_lib.c Copyright (C) 1999 Eric Youngdale
3 *
4 * SCSI queueing library.
5 * Initial versions: Eric Youngdale (eric@andante.org).
6 * Based upon conversations with large numbers
7 * of people at Linux Expo.
8 */
9
10 #include <linux/bio.h>
11 #include <linux/bitops.h>
12 #include <linux/blkdev.h>
13 #include <linux/completion.h>
14 #include <linux/kernel.h>
15 #include <linux/mempool.h>
16 #include <linux/slab.h>
17 #include <linux/init.h>
18 #include <linux/pci.h>
19 #include <linux/delay.h>
20 #include <linux/hardirq.h>
21 #include <linux/scatterlist.h>
22
23 #include <scsi/scsi.h>
24 #include <scsi/scsi_cmnd.h>
25 #include <scsi/scsi_dbg.h>
26 #include <scsi/scsi_device.h>
27 #include <scsi/scsi_driver.h>
28 #include <scsi/scsi_eh.h>
29 #include <scsi/scsi_host.h>
30
31 #include "scsi_priv.h"
32 #include "scsi_logging.h"
33
34
35 #define SG_MEMPOOL_NR ARRAY_SIZE(scsi_sg_pools)
36 #define SG_MEMPOOL_SIZE 2
37
38 struct scsi_host_sg_pool {
39 size_t size;
40 char *name;
41 struct kmem_cache *slab;
42 mempool_t *pool;
43 };
44
45 #define SP(x) { x, "sgpool-" __stringify(x) }
46 #if (SCSI_MAX_SG_SEGMENTS < 32)
47 #error SCSI_MAX_SG_SEGMENTS is too small (must be 32 or greater)
48 #endif
49 static struct scsi_host_sg_pool scsi_sg_pools[] = {
50 SP(8),
51 SP(16),
52 #if (SCSI_MAX_SG_SEGMENTS > 32)
53 SP(32),
54 #if (SCSI_MAX_SG_SEGMENTS > 64)
55 SP(64),
56 #if (SCSI_MAX_SG_SEGMENTS > 128)
57 SP(128),
58 #if (SCSI_MAX_SG_SEGMENTS > 256)
59 #error SCSI_MAX_SG_SEGMENTS is too large (256 MAX)
60 #endif
61 #endif
62 #endif
63 #endif
64 SP(SCSI_MAX_SG_SEGMENTS)
65 };
66 #undef SP
67
68 static struct kmem_cache *scsi_sdb_cache;
69
70 static void scsi_run_queue(struct request_queue *q);
71
72 /*
73 * Function: scsi_unprep_request()
74 *
75 * Purpose: Remove all preparation done for a request, including its
76 * associated scsi_cmnd, so that it can be requeued.
77 *
78 * Arguments: req - request to unprepare
79 *
80 * Lock status: Assumed that no locks are held upon entry.
81 *
82 * Returns: Nothing.
83 */
84 static void scsi_unprep_request(struct request *req)
85 {
86 struct scsi_cmnd *cmd = req->special;
87
88 req->cmd_flags &= ~REQ_DONTPREP;
89 req->special = NULL;
90
91 scsi_put_command(cmd);
92 }
93
94 /*
95 * Function: scsi_queue_insert()
96 *
97 * Purpose: Insert a command in the midlevel queue.
98 *
99 * Arguments: cmd - command that we are adding to queue.
100 * reason - why we are inserting command to queue.
101 *
102 * Lock status: Assumed that lock is not held upon entry.
103 *
104 * Returns: Nothing.
105 *
106 * Notes: We do this for one of two cases. Either the host is busy
107 * and it cannot accept any more commands for the time being,
108 * or the device returned QUEUE_FULL and can accept no more
109 * commands.
110 * Notes: This could be called either from an interrupt context or a
111 * normal process context.
112 */
113 int scsi_queue_insert(struct scsi_cmnd *cmd, int reason)
114 {
115 struct Scsi_Host *host = cmd->device->host;
116 struct scsi_device *device = cmd->device;
117 struct request_queue *q = device->request_queue;
118 unsigned long flags;
119
120 SCSI_LOG_MLQUEUE(1,
121 printk("Inserting command %p into mlqueue\n", cmd));
122
123 /*
124 * Set the appropriate busy bit for the device/host.
125 *
126 * If the host/device isn't busy, assume that something actually
127 * completed, and that we should be able to queue a command now.
128 *
129 * Note that the prior mid-layer assumption that any host could
130 * always queue at least one command is now broken. The mid-layer
131 * will implement a user specifiable stall (see
132 * scsi_host.max_host_blocked and scsi_device.max_device_blocked)
133 * if a command is requeued with no other commands outstanding
134 * either for the device or for the host.
135 */
136 if (reason == SCSI_MLQUEUE_HOST_BUSY)
137 host->host_blocked = host->max_host_blocked;
138 else if (reason == SCSI_MLQUEUE_DEVICE_BUSY)
139 device->device_blocked = device->max_device_blocked;
140
141 /*
142 * Decrement the counters, since these commands are no longer
143 * active on the host/device.
144 */
145 scsi_device_unbusy(device);
146
147 /*
148 * Requeue this command. It will go before all other commands
149 * that are already in the queue.
150 *
151 * NOTE: there is magic here about the way the queue is plugged if
152 * we have no outstanding commands.
153 *
154 * Although we *don't* plug the queue, we call the request
155 * function. The SCSI request function detects the blocked condition
156 * and plugs the queue appropriately.
157 */
158 spin_lock_irqsave(q->queue_lock, flags);
159 blk_requeue_request(q, cmd->request);
160 spin_unlock_irqrestore(q->queue_lock, flags);
161
162 scsi_run_queue(q);
163
164 return 0;
165 }
166
167 /**
168 * scsi_execute - insert request and wait for the result
169 * @sdev: scsi device
170 * @cmd: scsi command
171 * @data_direction: data direction
172 * @buffer: data buffer
173 * @bufflen: len of buffer
174 * @sense: optional sense buffer
175 * @timeout: request timeout in seconds
176 * @retries: number of times to retry request
177 * @flags: or into request flags;
178 *
179 * returns the req->errors value which is the scsi_cmnd result
180 * field.
181 */
182 int scsi_execute(struct scsi_device *sdev, const unsigned char *cmd,
183 int data_direction, void *buffer, unsigned bufflen,
184 unsigned char *sense, int timeout, int retries, int flags)
185 {
186 struct request *req;
187 int write = (data_direction == DMA_TO_DEVICE);
188 int ret = DRIVER_ERROR << 24;
189
190 req = blk_get_request(sdev->request_queue, write, __GFP_WAIT);
191
192 if (bufflen && blk_rq_map_kern(sdev->request_queue, req,
193 buffer, bufflen, __GFP_WAIT))
194 goto out;
195
196 req->cmd_len = COMMAND_SIZE(cmd[0]);
197 memcpy(req->cmd, cmd, req->cmd_len);
198 req->sense = sense;
199 req->sense_len = 0;
200 req->retries = retries;
201 req->timeout = timeout;
202 req->cmd_type = REQ_TYPE_BLOCK_PC;
203 req->cmd_flags |= flags | REQ_QUIET | REQ_PREEMPT;
204
205 /*
206 * head injection *required* here otherwise quiesce won't work
207 */
208 blk_execute_rq(req->q, NULL, req, 1);
209
210 ret = req->errors;
211 out:
212 blk_put_request(req);
213
214 return ret;
215 }
216 EXPORT_SYMBOL(scsi_execute);
217
218
219 int scsi_execute_req(struct scsi_device *sdev, const unsigned char *cmd,
220 int data_direction, void *buffer, unsigned bufflen,
221 struct scsi_sense_hdr *sshdr, int timeout, int retries)
222 {
223 char *sense = NULL;
224 int result;
225
226 if (sshdr) {
227 sense = kzalloc(SCSI_SENSE_BUFFERSIZE, GFP_NOIO);
228 if (!sense)
229 return DRIVER_ERROR << 24;
230 }
231 result = scsi_execute(sdev, cmd, data_direction, buffer, bufflen,
232 sense, timeout, retries, 0);
233 if (sshdr)
234 scsi_normalize_sense(sense, SCSI_SENSE_BUFFERSIZE, sshdr);
235
236 kfree(sense);
237 return result;
238 }
239 EXPORT_SYMBOL(scsi_execute_req);
240
241 struct scsi_io_context {
242 void *data;
243 void (*done)(void *data, char *sense, int result, int resid);
244 char sense[SCSI_SENSE_BUFFERSIZE];
245 };
246
247 static struct kmem_cache *scsi_io_context_cache;
248
249 static void scsi_end_async(struct request *req, int uptodate)
250 {
251 struct scsi_io_context *sioc = req->end_io_data;
252
253 if (sioc->done)
254 sioc->done(sioc->data, sioc->sense, req->errors, req->data_len);
255
256 kmem_cache_free(scsi_io_context_cache, sioc);
257 __blk_put_request(req->q, req);
258 }
259
260 static int scsi_merge_bio(struct request *rq, struct bio *bio)
261 {
262 struct request_queue *q = rq->q;
263
264 bio->bi_flags &= ~(1 << BIO_SEG_VALID);
265 if (rq_data_dir(rq) == WRITE)
266 bio->bi_rw |= (1 << BIO_RW);
267 blk_queue_bounce(q, &bio);
268
269 return blk_rq_append_bio(q, rq, bio);
270 }
271
272 static void scsi_bi_endio(struct bio *bio, int error)
273 {
274 bio_put(bio);
275 }
276
277 /**
278 * scsi_req_map_sg - map a scatterlist into a request
279 * @rq: request to fill
280 * @sgl: scatterlist
281 * @nsegs: number of elements
282 * @bufflen: len of buffer
283 * @gfp: memory allocation flags
284 *
285 * scsi_req_map_sg maps a scatterlist into a request so that the
286 * request can be sent to the block layer. We do not trust the scatterlist
287 * sent to use, as some ULDs use that struct to only organize the pages.
288 */
289 static int scsi_req_map_sg(struct request *rq, struct scatterlist *sgl,
290 int nsegs, unsigned bufflen, gfp_t gfp)
291 {
292 struct request_queue *q = rq->q;
293 int nr_pages = (bufflen + sgl[0].offset + PAGE_SIZE - 1) >> PAGE_SHIFT;
294 unsigned int data_len = bufflen, len, bytes, off;
295 struct scatterlist *sg;
296 struct page *page;
297 struct bio *bio = NULL;
298 int i, err, nr_vecs = 0;
299
300 for_each_sg(sgl, sg, nsegs, i) {
301 page = sg_page(sg);
302 off = sg->offset;
303 len = sg->length;
304
305 while (len > 0 && data_len > 0) {
306 /*
307 * sg sends a scatterlist that is larger than
308 * the data_len it wants transferred for certain
309 * IO sizes
310 */
311 bytes = min_t(unsigned int, len, PAGE_SIZE - off);
312 bytes = min(bytes, data_len);
313
314 if (!bio) {
315 nr_vecs = min_t(int, BIO_MAX_PAGES, nr_pages);
316 nr_pages -= nr_vecs;
317
318 bio = bio_alloc(gfp, nr_vecs);
319 if (!bio) {
320 err = -ENOMEM;
321 goto free_bios;
322 }
323 bio->bi_end_io = scsi_bi_endio;
324 }
325
326 if (bio_add_pc_page(q, bio, page, bytes, off) !=
327 bytes) {
328 bio_put(bio);
329 err = -EINVAL;
330 goto free_bios;
331 }
332
333 if (bio->bi_vcnt >= nr_vecs) {
334 err = scsi_merge_bio(rq, bio);
335 if (err) {
336 bio_endio(bio, 0);
337 goto free_bios;
338 }
339 bio = NULL;
340 }
341
342 page++;
343 len -= bytes;
344 data_len -=bytes;
345 off = 0;
346 }
347 }
348
349 rq->buffer = rq->data = NULL;
350 rq->data_len = bufflen;
351 return 0;
352
353 free_bios:
354 while ((bio = rq->bio) != NULL) {
355 rq->bio = bio->bi_next;
356 /*
357 * call endio instead of bio_put incase it was bounced
358 */
359 bio_endio(bio, 0);
360 }
361
362 return err;
363 }
364
365 /**
366 * scsi_execute_async - insert request
367 * @sdev: scsi device
368 * @cmd: scsi command
369 * @cmd_len: length of scsi cdb
370 * @data_direction: DMA_TO_DEVICE, DMA_FROM_DEVICE, or DMA_NONE
371 * @buffer: data buffer (this can be a kernel buffer or scatterlist)
372 * @bufflen: len of buffer
373 * @use_sg: if buffer is a scatterlist this is the number of elements
374 * @timeout: request timeout in seconds
375 * @retries: number of times to retry request
376 * @privdata: data passed to done()
377 * @done: callback function when done
378 * @gfp: memory allocation flags
379 */
380 int scsi_execute_async(struct scsi_device *sdev, const unsigned char *cmd,
381 int cmd_len, int data_direction, void *buffer, unsigned bufflen,
382 int use_sg, int timeout, int retries, void *privdata,
383 void (*done)(void *, char *, int, int), gfp_t gfp)
384 {
385 struct request *req;
386 struct scsi_io_context *sioc;
387 int err = 0;
388 int write = (data_direction == DMA_TO_DEVICE);
389
390 sioc = kmem_cache_zalloc(scsi_io_context_cache, gfp);
391 if (!sioc)
392 return DRIVER_ERROR << 24;
393
394 req = blk_get_request(sdev->request_queue, write, gfp);
395 if (!req)
396 goto free_sense;
397 req->cmd_type = REQ_TYPE_BLOCK_PC;
398 req->cmd_flags |= REQ_QUIET;
399
400 if (use_sg)
401 err = scsi_req_map_sg(req, buffer, use_sg, bufflen, gfp);
402 else if (bufflen)
403 err = blk_rq_map_kern(req->q, req, buffer, bufflen, gfp);
404
405 if (err)
406 goto free_req;
407
408 req->cmd_len = cmd_len;
409 memset(req->cmd, 0, BLK_MAX_CDB); /* ATAPI hates garbage after CDB */
410 memcpy(req->cmd, cmd, req->cmd_len);
411 req->sense = sioc->sense;
412 req->sense_len = 0;
413 req->timeout = timeout;
414 req->retries = retries;
415 req->end_io_data = sioc;
416
417 sioc->data = privdata;
418 sioc->done = done;
419
420 blk_execute_rq_nowait(req->q, NULL, req, 1, scsi_end_async);
421 return 0;
422
423 free_req:
424 blk_put_request(req);
425 free_sense:
426 kmem_cache_free(scsi_io_context_cache, sioc);
427 return DRIVER_ERROR << 24;
428 }
429 EXPORT_SYMBOL_GPL(scsi_execute_async);
430
431 /*
432 * Function: scsi_init_cmd_errh()
433 *
434 * Purpose: Initialize cmd fields related to error handling.
435 *
436 * Arguments: cmd - command that is ready to be queued.
437 *
438 * Notes: This function has the job of initializing a number of
439 * fields related to error handling. Typically this will
440 * be called once for each command, as required.
441 */
442 static void scsi_init_cmd_errh(struct scsi_cmnd *cmd)
443 {
444 cmd->serial_number = 0;
445 scsi_set_resid(cmd, 0);
446 memset(cmd->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE);
447 if (cmd->cmd_len == 0)
448 cmd->cmd_len = scsi_command_size(cmd->cmnd);
449 }
450
451 void scsi_device_unbusy(struct scsi_device *sdev)
452 {
453 struct Scsi_Host *shost = sdev->host;
454 unsigned long flags;
455
456 spin_lock_irqsave(shost->host_lock, flags);
457 shost->host_busy--;
458 if (unlikely(scsi_host_in_recovery(shost) &&
459 (shost->host_failed || shost->host_eh_scheduled)))
460 scsi_eh_wakeup(shost);
461 spin_unlock(shost->host_lock);
462 spin_lock(sdev->request_queue->queue_lock);
463 sdev->device_busy--;
464 spin_unlock_irqrestore(sdev->request_queue->queue_lock, flags);
465 }
466
467 /*
468 * Called for single_lun devices on IO completion. Clear starget_sdev_user,
469 * and call blk_run_queue for all the scsi_devices on the target -
470 * including current_sdev first.
471 *
472 * Called with *no* scsi locks held.
473 */
474 static void scsi_single_lun_run(struct scsi_device *current_sdev)
475 {
476 struct Scsi_Host *shost = current_sdev->host;
477 struct scsi_device *sdev, *tmp;
478 struct scsi_target *starget = scsi_target(current_sdev);
479 unsigned long flags;
480
481 spin_lock_irqsave(shost->host_lock, flags);
482 starget->starget_sdev_user = NULL;
483 spin_unlock_irqrestore(shost->host_lock, flags);
484
485 /*
486 * Call blk_run_queue for all LUNs on the target, starting with
487 * current_sdev. We race with others (to set starget_sdev_user),
488 * but in most cases, we will be first. Ideally, each LU on the
489 * target would get some limited time or requests on the target.
490 */
491 blk_run_queue(current_sdev->request_queue);
492
493 spin_lock_irqsave(shost->host_lock, flags);
494 if (starget->starget_sdev_user)
495 goto out;
496 list_for_each_entry_safe(sdev, tmp, &starget->devices,
497 same_target_siblings) {
498 if (sdev == current_sdev)
499 continue;
500 if (scsi_device_get(sdev))
501 continue;
502
503 spin_unlock_irqrestore(shost->host_lock, flags);
504 blk_run_queue(sdev->request_queue);
505 spin_lock_irqsave(shost->host_lock, flags);
506
507 scsi_device_put(sdev);
508 }
509 out:
510 spin_unlock_irqrestore(shost->host_lock, flags);
511 }
512
513 /*
514 * Function: scsi_run_queue()
515 *
516 * Purpose: Select a proper request queue to serve next
517 *
518 * Arguments: q - last request's queue
519 *
520 * Returns: Nothing
521 *
522 * Notes: The previous command was completely finished, start
523 * a new one if possible.
524 */
525 static void scsi_run_queue(struct request_queue *q)
526 {
527 struct scsi_device *sdev = q->queuedata;
528 struct Scsi_Host *shost = sdev->host;
529 unsigned long flags;
530
531 if (scsi_target(sdev)->single_lun)
532 scsi_single_lun_run(sdev);
533
534 spin_lock_irqsave(shost->host_lock, flags);
535 while (!list_empty(&shost->starved_list) &&
536 !shost->host_blocked && !shost->host_self_blocked &&
537 !((shost->can_queue > 0) &&
538 (shost->host_busy >= shost->can_queue))) {
539
540 int flagset;
541
542 /*
543 * As long as shost is accepting commands and we have
544 * starved queues, call blk_run_queue. scsi_request_fn
545 * drops the queue_lock and can add us back to the
546 * starved_list.
547 *
548 * host_lock protects the starved_list and starved_entry.
549 * scsi_request_fn must get the host_lock before checking
550 * or modifying starved_list or starved_entry.
551 */
552 sdev = list_entry(shost->starved_list.next,
553 struct scsi_device, starved_entry);
554 list_del_init(&sdev->starved_entry);
555 spin_unlock(shost->host_lock);
556
557 spin_lock(sdev->request_queue->queue_lock);
558 flagset = test_bit(QUEUE_FLAG_REENTER, &q->queue_flags) &&
559 !test_bit(QUEUE_FLAG_REENTER,
560 &sdev->request_queue->queue_flags);
561 if (flagset)
562 queue_flag_set(QUEUE_FLAG_REENTER, sdev->request_queue);
563 __blk_run_queue(sdev->request_queue);
564 if (flagset)
565 queue_flag_clear(QUEUE_FLAG_REENTER, sdev->request_queue);
566 spin_unlock(sdev->request_queue->queue_lock);
567
568 spin_lock(shost->host_lock);
569 if (unlikely(!list_empty(&sdev->starved_entry)))
570 /*
571 * sdev lost a race, and was put back on the
572 * starved list. This is unlikely but without this
573 * in theory we could loop forever.
574 */
575 break;
576 }
577 spin_unlock_irqrestore(shost->host_lock, flags);
578
579 blk_run_queue(q);
580 }
581
582 /*
583 * Function: scsi_requeue_command()
584 *
585 * Purpose: Handle post-processing of completed commands.
586 *
587 * Arguments: q - queue to operate on
588 * cmd - command that may need to be requeued.
589 *
590 * Returns: Nothing
591 *
592 * Notes: After command completion, there may be blocks left
593 * over which weren't finished by the previous command
594 * this can be for a number of reasons - the main one is
595 * I/O errors in the middle of the request, in which case
596 * we need to request the blocks that come after the bad
597 * sector.
598 * Notes: Upon return, cmd is a stale pointer.
599 */
600 static void scsi_requeue_command(struct request_queue *q, struct scsi_cmnd *cmd)
601 {
602 struct request *req = cmd->request;
603 unsigned long flags;
604
605 scsi_unprep_request(req);
606 spin_lock_irqsave(q->queue_lock, flags);
607 blk_requeue_request(q, req);
608 spin_unlock_irqrestore(q->queue_lock, flags);
609
610 scsi_run_queue(q);
611 }
612
613 void scsi_next_command(struct scsi_cmnd *cmd)
614 {
615 struct scsi_device *sdev = cmd->device;
616 struct request_queue *q = sdev->request_queue;
617
618 /* need to hold a reference on the device before we let go of the cmd */
619 get_device(&sdev->sdev_gendev);
620
621 scsi_put_command(cmd);
622 scsi_run_queue(q);
623
624 /* ok to remove device now */
625 put_device(&sdev->sdev_gendev);
626 }
627
628 void scsi_run_host_queues(struct Scsi_Host *shost)
629 {
630 struct scsi_device *sdev;
631
632 shost_for_each_device(sdev, shost)
633 scsi_run_queue(sdev->request_queue);
634 }
635
636 /*
637 * Function: scsi_end_request()
638 *
639 * Purpose: Post-processing of completed commands (usually invoked at end
640 * of upper level post-processing and scsi_io_completion).
641 *
642 * Arguments: cmd - command that is complete.
643 * error - 0 if I/O indicates success, < 0 for I/O error.
644 * bytes - number of bytes of completed I/O
645 * requeue - indicates whether we should requeue leftovers.
646 *
647 * Lock status: Assumed that lock is not held upon entry.
648 *
649 * Returns: cmd if requeue required, NULL otherwise.
650 *
651 * Notes: This is called for block device requests in order to
652 * mark some number of sectors as complete.
653 *
654 * We are guaranteeing that the request queue will be goosed
655 * at some point during this call.
656 * Notes: If cmd was requeued, upon return it will be a stale pointer.
657 */
658 static struct scsi_cmnd *scsi_end_request(struct scsi_cmnd *cmd, int error,
659 int bytes, int requeue)
660 {
661 struct request_queue *q = cmd->device->request_queue;
662 struct request *req = cmd->request;
663
664 /*
665 * If there are blocks left over at the end, set up the command
666 * to queue the remainder of them.
667 */
668 if (blk_end_request(req, error, bytes)) {
669 int leftover = (req->hard_nr_sectors << 9);
670
671 if (blk_pc_request(req))
672 leftover = req->data_len;
673
674 /* kill remainder if no retrys */
675 if (error && blk_noretry_request(req))
676 blk_end_request(req, error, leftover);
677 else {
678 if (requeue) {
679 /*
680 * Bleah. Leftovers again. Stick the
681 * leftovers in the front of the
682 * queue, and goose the queue again.
683 */
684 scsi_requeue_command(q, cmd);
685 cmd = NULL;
686 }
687 return cmd;
688 }
689 }
690
691 /*
692 * This will goose the queue request function at the end, so we don't
693 * need to worry about launching another command.
694 */
695 scsi_next_command(cmd);
696 return NULL;
697 }
698
699 static inline unsigned int scsi_sgtable_index(unsigned short nents)
700 {
701 unsigned int index;
702
703 BUG_ON(nents > SCSI_MAX_SG_SEGMENTS);
704
705 if (nents <= 8)
706 index = 0;
707 else
708 index = get_count_order(nents) - 3;
709
710 return index;
711 }
712
713 static void scsi_sg_free(struct scatterlist *sgl, unsigned int nents)
714 {
715 struct scsi_host_sg_pool *sgp;
716
717 sgp = scsi_sg_pools + scsi_sgtable_index(nents);
718 mempool_free(sgl, sgp->pool);
719 }
720
721 static struct scatterlist *scsi_sg_alloc(unsigned int nents, gfp_t gfp_mask)
722 {
723 struct scsi_host_sg_pool *sgp;
724
725 sgp = scsi_sg_pools + scsi_sgtable_index(nents);
726 return mempool_alloc(sgp->pool, gfp_mask);
727 }
728
729 static int scsi_alloc_sgtable(struct scsi_data_buffer *sdb, int nents,
730 gfp_t gfp_mask)
731 {
732 int ret;
733
734 BUG_ON(!nents);
735
736 ret = __sg_alloc_table(&sdb->table, nents, SCSI_MAX_SG_SEGMENTS,
737 gfp_mask, scsi_sg_alloc);
738 if (unlikely(ret))
739 __sg_free_table(&sdb->table, SCSI_MAX_SG_SEGMENTS,
740 scsi_sg_free);
741
742 return ret;
743 }
744
745 static void scsi_free_sgtable(struct scsi_data_buffer *sdb)
746 {
747 __sg_free_table(&sdb->table, SCSI_MAX_SG_SEGMENTS, scsi_sg_free);
748 }
749
750 /*
751 * Function: scsi_release_buffers()
752 *
753 * Purpose: Completion processing for block device I/O requests.
754 *
755 * Arguments: cmd - command that we are bailing.
756 *
757 * Lock status: Assumed that no lock is held upon entry.
758 *
759 * Returns: Nothing
760 *
761 * Notes: In the event that an upper level driver rejects a
762 * command, we must release resources allocated during
763 * the __init_io() function. Primarily this would involve
764 * the scatter-gather table, and potentially any bounce
765 * buffers.
766 */
767 void scsi_release_buffers(struct scsi_cmnd *cmd)
768 {
769 if (cmd->sdb.table.nents)
770 scsi_free_sgtable(&cmd->sdb);
771
772 memset(&cmd->sdb, 0, sizeof(cmd->sdb));
773
774 if (scsi_bidi_cmnd(cmd)) {
775 struct scsi_data_buffer *bidi_sdb =
776 cmd->request->next_rq->special;
777 scsi_free_sgtable(bidi_sdb);
778 kmem_cache_free(scsi_sdb_cache, bidi_sdb);
779 cmd->request->next_rq->special = NULL;
780 }
781 }
782 EXPORT_SYMBOL(scsi_release_buffers);
783
784 /*
785 * Bidi commands Must be complete as a whole, both sides at once.
786 * If part of the bytes were written and lld returned
787 * scsi_in()->resid and/or scsi_out()->resid this information will be left
788 * in req->data_len and req->next_rq->data_len. The upper-layer driver can
789 * decide what to do with this information.
790 */
791 static void scsi_end_bidi_request(struct scsi_cmnd *cmd)
792 {
793 struct request *req = cmd->request;
794 unsigned int dlen = req->data_len;
795 unsigned int next_dlen = req->next_rq->data_len;
796
797 req->data_len = scsi_out(cmd)->resid;
798 req->next_rq->data_len = scsi_in(cmd)->resid;
799
800 /* The req and req->next_rq have not been completed */
801 BUG_ON(blk_end_bidi_request(req, 0, dlen, next_dlen));
802
803 scsi_release_buffers(cmd);
804
805 /*
806 * This will goose the queue request function at the end, so we don't
807 * need to worry about launching another command.
808 */
809 scsi_next_command(cmd);
810 }
811
812 /*
813 * Function: scsi_io_completion()
814 *
815 * Purpose: Completion processing for block device I/O requests.
816 *
817 * Arguments: cmd - command that is finished.
818 *
819 * Lock status: Assumed that no lock is held upon entry.
820 *
821 * Returns: Nothing
822 *
823 * Notes: This function is matched in terms of capabilities to
824 * the function that created the scatter-gather list.
825 * In other words, if there are no bounce buffers
826 * (the normal case for most drivers), we don't need
827 * the logic to deal with cleaning up afterwards.
828 *
829 * We must do one of several things here:
830 *
831 * a) Call scsi_end_request. This will finish off the
832 * specified number of sectors. If we are done, the
833 * command block will be released, and the queue
834 * function will be goosed. If we are not done, then
835 * scsi_end_request will directly goose the queue.
836 *
837 * b) We can just use scsi_requeue_command() here. This would
838 * be used if we just wanted to retry, for example.
839 */
840 void scsi_io_completion(struct scsi_cmnd *cmd, unsigned int good_bytes)
841 {
842 int result = cmd->result;
843 int this_count = scsi_bufflen(cmd);
844 struct request_queue *q = cmd->device->request_queue;
845 struct request *req = cmd->request;
846 int error = 0;
847 struct scsi_sense_hdr sshdr;
848 int sense_valid = 0;
849 int sense_deferred = 0;
850
851 if (result) {
852 sense_valid = scsi_command_normalize_sense(cmd, &sshdr);
853 if (sense_valid)
854 sense_deferred = scsi_sense_is_deferred(&sshdr);
855 }
856
857 if (blk_pc_request(req)) { /* SG_IO ioctl from block level */
858 req->errors = result;
859 if (result) {
860 if (sense_valid && req->sense) {
861 /*
862 * SG_IO wants current and deferred errors
863 */
864 int len = 8 + cmd->sense_buffer[7];
865
866 if (len > SCSI_SENSE_BUFFERSIZE)
867 len = SCSI_SENSE_BUFFERSIZE;
868 memcpy(req->sense, cmd->sense_buffer, len);
869 req->sense_len = len;
870 }
871 if (!sense_deferred)
872 error = -EIO;
873 }
874 if (scsi_bidi_cmnd(cmd)) {
875 /* will also release_buffers */
876 scsi_end_bidi_request(cmd);
877 return;
878 }
879 req->data_len = scsi_get_resid(cmd);
880 }
881
882 BUG_ON(blk_bidi_rq(req)); /* bidi not support for !blk_pc_request yet */
883 scsi_release_buffers(cmd);
884
885 /*
886 * Next deal with any sectors which we were able to correctly
887 * handle.
888 */
889 SCSI_LOG_HLCOMPLETE(1, printk("%ld sectors total, "
890 "%d bytes done.\n",
891 req->nr_sectors, good_bytes));
892
893 /* A number of bytes were successfully read. If there
894 * are leftovers and there is some kind of error
895 * (result != 0), retry the rest.
896 */
897 if (scsi_end_request(cmd, error, good_bytes, result == 0) == NULL)
898 return;
899
900 /* good_bytes = 0, or (inclusive) there were leftovers and
901 * result = 0, so scsi_end_request couldn't retry.
902 */
903 if (sense_valid && !sense_deferred) {
904 switch (sshdr.sense_key) {
905 case UNIT_ATTENTION:
906 if (cmd->device->removable) {
907 /* Detected disc change. Set a bit
908 * and quietly refuse further access.
909 */
910 cmd->device->changed = 1;
911 scsi_end_request(cmd, -EIO, this_count, 1);
912 return;
913 } else {
914 /* Must have been a power glitch, or a
915 * bus reset. Could not have been a
916 * media change, so we just retry the
917 * request and see what happens.
918 */
919 scsi_requeue_command(q, cmd);
920 return;
921 }
922 break;
923 case ILLEGAL_REQUEST:
924 /* If we had an ILLEGAL REQUEST returned, then
925 * we may have performed an unsupported
926 * command. The only thing this should be
927 * would be a ten byte read where only a six
928 * byte read was supported. Also, on a system
929 * where READ CAPACITY failed, we may have
930 * read past the end of the disk.
931 */
932 if ((cmd->device->use_10_for_rw &&
933 sshdr.asc == 0x20 && sshdr.ascq == 0x00) &&
934 (cmd->cmnd[0] == READ_10 ||
935 cmd->cmnd[0] == WRITE_10)) {
936 cmd->device->use_10_for_rw = 0;
937 /* This will cause a retry with a
938 * 6-byte command.
939 */
940 scsi_requeue_command(q, cmd);
941 return;
942 } else {
943 scsi_end_request(cmd, -EIO, this_count, 1);
944 return;
945 }
946 break;
947 case NOT_READY:
948 /* If the device is in the process of becoming
949 * ready, or has a temporary blockage, retry.
950 */
951 if (sshdr.asc == 0x04) {
952 switch (sshdr.ascq) {
953 case 0x01: /* becoming ready */
954 case 0x04: /* format in progress */
955 case 0x05: /* rebuild in progress */
956 case 0x06: /* recalculation in progress */
957 case 0x07: /* operation in progress */
958 case 0x08: /* Long write in progress */
959 case 0x09: /* self test in progress */
960 scsi_requeue_command(q, cmd);
961 return;
962 default:
963 break;
964 }
965 }
966 if (!(req->cmd_flags & REQ_QUIET))
967 scsi_cmd_print_sense_hdr(cmd,
968 "Device not ready",
969 &sshdr);
970
971 scsi_end_request(cmd, -EIO, this_count, 1);
972 return;
973 case VOLUME_OVERFLOW:
974 if (!(req->cmd_flags & REQ_QUIET)) {
975 scmd_printk(KERN_INFO, cmd,
976 "Volume overflow, CDB: ");
977 __scsi_print_command(cmd->cmnd);
978 scsi_print_sense("", cmd);
979 }
980 /* See SSC3rXX or current. */
981 scsi_end_request(cmd, -EIO, this_count, 1);
982 return;
983 default:
984 break;
985 }
986 }
987 if (host_byte(result) == DID_RESET) {
988 /* Third party bus reset or reset for error recovery
989 * reasons. Just retry the request and see what
990 * happens.
991 */
992 scsi_requeue_command(q, cmd);
993 return;
994 }
995 if (result) {
996 if (!(req->cmd_flags & REQ_QUIET)) {
997 scsi_print_result(cmd);
998 if (driver_byte(result) & DRIVER_SENSE)
999 scsi_print_sense("", cmd);
1000 }
1001 }
1002 scsi_end_request(cmd, -EIO, this_count, !result);
1003 }
1004
1005 static int scsi_init_sgtable(struct request *req, struct scsi_data_buffer *sdb,
1006 gfp_t gfp_mask)
1007 {
1008 int count;
1009
1010 /*
1011 * If sg table allocation fails, requeue request later.
1012 */
1013 if (unlikely(scsi_alloc_sgtable(sdb, req->nr_phys_segments,
1014 gfp_mask))) {
1015 return BLKPREP_DEFER;
1016 }
1017
1018 req->buffer = NULL;
1019
1020 /*
1021 * Next, walk the list, and fill in the addresses and sizes of
1022 * each segment.
1023 */
1024 count = blk_rq_map_sg(req->q, req, sdb->table.sgl);
1025 BUG_ON(count > sdb->table.nents);
1026 sdb->table.nents = count;
1027 if (blk_pc_request(req))
1028 sdb->length = req->data_len;
1029 else
1030 sdb->length = req->nr_sectors << 9;
1031 return BLKPREP_OK;
1032 }
1033
1034 /*
1035 * Function: scsi_init_io()
1036 *
1037 * Purpose: SCSI I/O initialize function.
1038 *
1039 * Arguments: cmd - Command descriptor we wish to initialize
1040 *
1041 * Returns: 0 on success
1042 * BLKPREP_DEFER if the failure is retryable
1043 * BLKPREP_KILL if the failure is fatal
1044 */
1045 int scsi_init_io(struct scsi_cmnd *cmd, gfp_t gfp_mask)
1046 {
1047 int error = scsi_init_sgtable(cmd->request, &cmd->sdb, gfp_mask);
1048 if (error)
1049 goto err_exit;
1050
1051 if (blk_bidi_rq(cmd->request)) {
1052 struct scsi_data_buffer *bidi_sdb = kmem_cache_zalloc(
1053 scsi_sdb_cache, GFP_ATOMIC);
1054 if (!bidi_sdb) {
1055 error = BLKPREP_DEFER;
1056 goto err_exit;
1057 }
1058
1059 cmd->request->next_rq->special = bidi_sdb;
1060 error = scsi_init_sgtable(cmd->request->next_rq, bidi_sdb,
1061 GFP_ATOMIC);
1062 if (error)
1063 goto err_exit;
1064 }
1065
1066 return BLKPREP_OK ;
1067
1068 err_exit:
1069 scsi_release_buffers(cmd);
1070 if (error == BLKPREP_KILL)
1071 scsi_put_command(cmd);
1072 else /* BLKPREP_DEFER */
1073 scsi_unprep_request(cmd->request);
1074
1075 return error;
1076 }
1077 EXPORT_SYMBOL(scsi_init_io);
1078
1079 static struct scsi_cmnd *scsi_get_cmd_from_req(struct scsi_device *sdev,
1080 struct request *req)
1081 {
1082 struct scsi_cmnd *cmd;
1083
1084 if (!req->special) {
1085 cmd = scsi_get_command(sdev, GFP_ATOMIC);
1086 if (unlikely(!cmd))
1087 return NULL;
1088 req->special = cmd;
1089 } else {
1090 cmd = req->special;
1091 }
1092
1093 /* pull a tag out of the request if we have one */
1094 cmd->tag = req->tag;
1095 cmd->request = req;
1096
1097 cmd->cmnd = req->cmd;
1098
1099 return cmd;
1100 }
1101
1102 int scsi_setup_blk_pc_cmnd(struct scsi_device *sdev, struct request *req)
1103 {
1104 struct scsi_cmnd *cmd;
1105 int ret = scsi_prep_state_check(sdev, req);
1106
1107 if (ret != BLKPREP_OK)
1108 return ret;
1109
1110 cmd = scsi_get_cmd_from_req(sdev, req);
1111 if (unlikely(!cmd))
1112 return BLKPREP_DEFER;
1113
1114 /*
1115 * BLOCK_PC requests may transfer data, in which case they must
1116 * a bio attached to them. Or they might contain a SCSI command
1117 * that does not transfer data, in which case they may optionally
1118 * submit a request without an attached bio.
1119 */
1120 if (req->bio) {
1121 int ret;
1122
1123 BUG_ON(!req->nr_phys_segments);
1124
1125 ret = scsi_init_io(cmd, GFP_ATOMIC);
1126 if (unlikely(ret))
1127 return ret;
1128 } else {
1129 BUG_ON(req->data_len);
1130 BUG_ON(req->data);
1131
1132 memset(&cmd->sdb, 0, sizeof(cmd->sdb));
1133 req->buffer = NULL;
1134 }
1135
1136 cmd->cmd_len = req->cmd_len;
1137 if (!req->data_len)
1138 cmd->sc_data_direction = DMA_NONE;
1139 else if (rq_data_dir(req) == WRITE)
1140 cmd->sc_data_direction = DMA_TO_DEVICE;
1141 else
1142 cmd->sc_data_direction = DMA_FROM_DEVICE;
1143
1144 cmd->transfersize = req->data_len;
1145 cmd->allowed = req->retries;
1146 cmd->timeout_per_command = req->timeout;
1147 return BLKPREP_OK;
1148 }
1149 EXPORT_SYMBOL(scsi_setup_blk_pc_cmnd);
1150
1151 /*
1152 * Setup a REQ_TYPE_FS command. These are simple read/write request
1153 * from filesystems that still need to be translated to SCSI CDBs from
1154 * the ULD.
1155 */
1156 int scsi_setup_fs_cmnd(struct scsi_device *sdev, struct request *req)
1157 {
1158 struct scsi_cmnd *cmd;
1159 int ret = scsi_prep_state_check(sdev, req);
1160
1161 if (ret != BLKPREP_OK)
1162 return ret;
1163
1164 if (unlikely(sdev->scsi_dh_data && sdev->scsi_dh_data->scsi_dh
1165 && sdev->scsi_dh_data->scsi_dh->prep_fn)) {
1166 ret = sdev->scsi_dh_data->scsi_dh->prep_fn(sdev, req);
1167 if (ret != BLKPREP_OK)
1168 return ret;
1169 }
1170
1171 /*
1172 * Filesystem requests must transfer data.
1173 */
1174 BUG_ON(!req->nr_phys_segments);
1175
1176 cmd = scsi_get_cmd_from_req(sdev, req);
1177 if (unlikely(!cmd))
1178 return BLKPREP_DEFER;
1179
1180 memset(cmd->cmnd, 0, BLK_MAX_CDB);
1181 return scsi_init_io(cmd, GFP_ATOMIC);
1182 }
1183 EXPORT_SYMBOL(scsi_setup_fs_cmnd);
1184
1185 int scsi_prep_state_check(struct scsi_device *sdev, struct request *req)
1186 {
1187 int ret = BLKPREP_OK;
1188
1189 /*
1190 * If the device is not in running state we will reject some
1191 * or all commands.
1192 */
1193 if (unlikely(sdev->sdev_state != SDEV_RUNNING)) {
1194 switch (sdev->sdev_state) {
1195 case SDEV_OFFLINE:
1196 /*
1197 * If the device is offline we refuse to process any
1198 * commands. The device must be brought online
1199 * before trying any recovery commands.
1200 */
1201 sdev_printk(KERN_ERR, sdev,
1202 "rejecting I/O to offline device\n");
1203 ret = BLKPREP_KILL;
1204 break;
1205 case SDEV_DEL:
1206 /*
1207 * If the device is fully deleted, we refuse to
1208 * process any commands as well.
1209 */
1210 sdev_printk(KERN_ERR, sdev,
1211 "rejecting I/O to dead device\n");
1212 ret = BLKPREP_KILL;
1213 break;
1214 case SDEV_QUIESCE:
1215 case SDEV_BLOCK:
1216 /*
1217 * If the devices is blocked we defer normal commands.
1218 */
1219 if (!(req->cmd_flags & REQ_PREEMPT))
1220 ret = BLKPREP_DEFER;
1221 break;
1222 default:
1223 /*
1224 * For any other not fully online state we only allow
1225 * special commands. In particular any user initiated
1226 * command is not allowed.
1227 */
1228 if (!(req->cmd_flags & REQ_PREEMPT))
1229 ret = BLKPREP_KILL;
1230 break;
1231 }
1232 }
1233 return ret;
1234 }
1235 EXPORT_SYMBOL(scsi_prep_state_check);
1236
1237 int scsi_prep_return(struct request_queue *q, struct request *req, int ret)
1238 {
1239 struct scsi_device *sdev = q->queuedata;
1240
1241 switch (ret) {
1242 case BLKPREP_KILL:
1243 req->errors = DID_NO_CONNECT << 16;
1244 /* release the command and kill it */
1245 if (req->special) {
1246 struct scsi_cmnd *cmd = req->special;
1247 scsi_release_buffers(cmd);
1248 scsi_put_command(cmd);
1249 req->special = NULL;
1250 }
1251 break;
1252 case BLKPREP_DEFER:
1253 /*
1254 * If we defer, the elv_next_request() returns NULL, but the
1255 * queue must be restarted, so we plug here if no returning
1256 * command will automatically do that.
1257 */
1258 if (sdev->device_busy == 0)
1259 blk_plug_device(q);
1260 break;
1261 default:
1262 req->cmd_flags |= REQ_DONTPREP;
1263 }
1264
1265 return ret;
1266 }
1267 EXPORT_SYMBOL(scsi_prep_return);
1268
1269 int scsi_prep_fn(struct request_queue *q, struct request *req)
1270 {
1271 struct scsi_device *sdev = q->queuedata;
1272 int ret = BLKPREP_KILL;
1273
1274 if (req->cmd_type == REQ_TYPE_BLOCK_PC)
1275 ret = scsi_setup_blk_pc_cmnd(sdev, req);
1276 return scsi_prep_return(q, req, ret);
1277 }
1278
1279 /*
1280 * scsi_dev_queue_ready: if we can send requests to sdev, return 1 else
1281 * return 0.
1282 *
1283 * Called with the queue_lock held.
1284 */
1285 static inline int scsi_dev_queue_ready(struct request_queue *q,
1286 struct scsi_device *sdev)
1287 {
1288 if (sdev->device_busy >= sdev->queue_depth)
1289 return 0;
1290 if (sdev->device_busy == 0 && sdev->device_blocked) {
1291 /*
1292 * unblock after device_blocked iterates to zero
1293 */
1294 if (--sdev->device_blocked == 0) {
1295 SCSI_LOG_MLQUEUE(3,
1296 sdev_printk(KERN_INFO, sdev,
1297 "unblocking device at zero depth\n"));
1298 } else {
1299 blk_plug_device(q);
1300 return 0;
1301 }
1302 }
1303 if (sdev->device_blocked)
1304 return 0;
1305
1306 return 1;
1307 }
1308
1309 /*
1310 * scsi_host_queue_ready: if we can send requests to shost, return 1 else
1311 * return 0. We must end up running the queue again whenever 0 is
1312 * returned, else IO can hang.
1313 *
1314 * Called with host_lock held.
1315 */
1316 static inline int scsi_host_queue_ready(struct request_queue *q,
1317 struct Scsi_Host *shost,
1318 struct scsi_device *sdev)
1319 {
1320 if (scsi_host_in_recovery(shost))
1321 return 0;
1322 if (shost->host_busy == 0 && shost->host_blocked) {
1323 /*
1324 * unblock after host_blocked iterates to zero
1325 */
1326 if (--shost->host_blocked == 0) {
1327 SCSI_LOG_MLQUEUE(3,
1328 printk("scsi%d unblocking host at zero depth\n",
1329 shost->host_no));
1330 } else {
1331 return 0;
1332 }
1333 }
1334 if ((shost->can_queue > 0 && shost->host_busy >= shost->can_queue) ||
1335 shost->host_blocked || shost->host_self_blocked) {
1336 if (list_empty(&sdev->starved_entry))
1337 list_add_tail(&sdev->starved_entry, &shost->starved_list);
1338 return 0;
1339 }
1340
1341 /* We're OK to process the command, so we can't be starved */
1342 if (!list_empty(&sdev->starved_entry))
1343 list_del_init(&sdev->starved_entry);
1344
1345 return 1;
1346 }
1347
1348 /*
1349 * Kill a request for a dead device
1350 */
1351 static void scsi_kill_request(struct request *req, struct request_queue *q)
1352 {
1353 struct scsi_cmnd *cmd = req->special;
1354 struct scsi_device *sdev = cmd->device;
1355 struct Scsi_Host *shost = sdev->host;
1356
1357 blkdev_dequeue_request(req);
1358
1359 if (unlikely(cmd == NULL)) {
1360 printk(KERN_CRIT "impossible request in %s.\n",
1361 __FUNCTION__);
1362 BUG();
1363 }
1364
1365 scsi_init_cmd_errh(cmd);
1366 cmd->result = DID_NO_CONNECT << 16;
1367 atomic_inc(&cmd->device->iorequest_cnt);
1368
1369 /*
1370 * SCSI request completion path will do scsi_device_unbusy(),
1371 * bump busy counts. To bump the counters, we need to dance
1372 * with the locks as normal issue path does.
1373 */
1374 sdev->device_busy++;
1375 spin_unlock(sdev->request_queue->queue_lock);
1376 spin_lock(shost->host_lock);
1377 shost->host_busy++;
1378 spin_unlock(shost->host_lock);
1379 spin_lock(sdev->request_queue->queue_lock);
1380
1381 __scsi_done(cmd);
1382 }
1383
1384 static void scsi_softirq_done(struct request *rq)
1385 {
1386 struct scsi_cmnd *cmd = rq->completion_data;
1387 unsigned long wait_for = (cmd->allowed + 1) * cmd->timeout_per_command;
1388 int disposition;
1389
1390 INIT_LIST_HEAD(&cmd->eh_entry);
1391
1392 disposition = scsi_decide_disposition(cmd);
1393 if (disposition != SUCCESS &&
1394 time_before(cmd->jiffies_at_alloc + wait_for, jiffies)) {
1395 sdev_printk(KERN_ERR, cmd->device,
1396 "timing out command, waited %lus\n",
1397 wait_for/HZ);
1398 disposition = SUCCESS;
1399 }
1400
1401 scsi_log_completion(cmd, disposition);
1402
1403 switch (disposition) {
1404 case SUCCESS:
1405 scsi_finish_command(cmd);
1406 break;
1407 case NEEDS_RETRY:
1408 scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY);
1409 break;
1410 case ADD_TO_MLQUEUE:
1411 scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY);
1412 break;
1413 default:
1414 if (!scsi_eh_scmd_add(cmd, 0))
1415 scsi_finish_command(cmd);
1416 }
1417 }
1418
1419 /*
1420 * Function: scsi_request_fn()
1421 *
1422 * Purpose: Main strategy routine for SCSI.
1423 *
1424 * Arguments: q - Pointer to actual queue.
1425 *
1426 * Returns: Nothing
1427 *
1428 * Lock status: IO request lock assumed to be held when called.
1429 */
1430 static void scsi_request_fn(struct request_queue *q)
1431 {
1432 struct scsi_device *sdev = q->queuedata;
1433 struct Scsi_Host *shost;
1434 struct scsi_cmnd *cmd;
1435 struct request *req;
1436
1437 if (!sdev) {
1438 printk("scsi: killing requests for dead queue\n");
1439 while ((req = elv_next_request(q)) != NULL)
1440 scsi_kill_request(req, q);
1441 return;
1442 }
1443
1444 if(!get_device(&sdev->sdev_gendev))
1445 /* We must be tearing the block queue down already */
1446 return;
1447
1448 /*
1449 * To start with, we keep looping until the queue is empty, or until
1450 * the host is no longer able to accept any more requests.
1451 */
1452 shost = sdev->host;
1453 while (!blk_queue_plugged(q)) {
1454 int rtn;
1455 /*
1456 * get next queueable request. We do this early to make sure
1457 * that the request is fully prepared even if we cannot
1458 * accept it.
1459 */
1460 req = elv_next_request(q);
1461 if (!req || !scsi_dev_queue_ready(q, sdev))
1462 break;
1463
1464 if (unlikely(!scsi_device_online(sdev))) {
1465 sdev_printk(KERN_ERR, sdev,
1466 "rejecting I/O to offline device\n");
1467 scsi_kill_request(req, q);
1468 continue;
1469 }
1470
1471
1472 /*
1473 * Remove the request from the request list.
1474 */
1475 if (!(blk_queue_tagged(q) && !blk_queue_start_tag(q, req)))
1476 blkdev_dequeue_request(req);
1477 sdev->device_busy++;
1478
1479 spin_unlock(q->queue_lock);
1480 cmd = req->special;
1481 if (unlikely(cmd == NULL)) {
1482 printk(KERN_CRIT "impossible request in %s.\n"
1483 "please mail a stack trace to "
1484 "linux-scsi@vger.kernel.org\n",
1485 __FUNCTION__);
1486 blk_dump_rq_flags(req, "foo");
1487 BUG();
1488 }
1489 spin_lock(shost->host_lock);
1490
1491 if (!scsi_host_queue_ready(q, shost, sdev))
1492 goto not_ready;
1493 if (scsi_target(sdev)->single_lun) {
1494 if (scsi_target(sdev)->starget_sdev_user &&
1495 scsi_target(sdev)->starget_sdev_user != sdev)
1496 goto not_ready;
1497 scsi_target(sdev)->starget_sdev_user = sdev;
1498 }
1499 shost->host_busy++;
1500
1501 /*
1502 * XXX(hch): This is rather suboptimal, scsi_dispatch_cmd will
1503 * take the lock again.
1504 */
1505 spin_unlock_irq(shost->host_lock);
1506
1507 /*
1508 * Finally, initialize any error handling parameters, and set up
1509 * the timers for timeouts.
1510 */
1511 scsi_init_cmd_errh(cmd);
1512
1513 /*
1514 * Dispatch the command to the low-level driver.
1515 */
1516 rtn = scsi_dispatch_cmd(cmd);
1517 spin_lock_irq(q->queue_lock);
1518 if(rtn) {
1519 /* we're refusing the command; because of
1520 * the way locks get dropped, we need to
1521 * check here if plugging is required */
1522 if(sdev->device_busy == 0)
1523 blk_plug_device(q);
1524
1525 break;
1526 }
1527 }
1528
1529 goto out;
1530
1531 not_ready:
1532 spin_unlock_irq(shost->host_lock);
1533
1534 /*
1535 * lock q, handle tag, requeue req, and decrement device_busy. We
1536 * must return with queue_lock held.
1537 *
1538 * Decrementing device_busy without checking it is OK, as all such
1539 * cases (host limits or settings) should run the queue at some
1540 * later time.
1541 */
1542 spin_lock_irq(q->queue_lock);
1543 blk_requeue_request(q, req);
1544 sdev->device_busy--;
1545 if(sdev->device_busy == 0)
1546 blk_plug_device(q);
1547 out:
1548 /* must be careful here...if we trigger the ->remove() function
1549 * we cannot be holding the q lock */
1550 spin_unlock_irq(q->queue_lock);
1551 put_device(&sdev->sdev_gendev);
1552 spin_lock_irq(q->queue_lock);
1553 }
1554
1555 u64 scsi_calculate_bounce_limit(struct Scsi_Host *shost)
1556 {
1557 struct device *host_dev;
1558 u64 bounce_limit = 0xffffffff;
1559
1560 if (shost->unchecked_isa_dma)
1561 return BLK_BOUNCE_ISA;
1562 /*
1563 * Platforms with virtual-DMA translation
1564 * hardware have no practical limit.
1565 */
1566 if (!PCI_DMA_BUS_IS_PHYS)
1567 return BLK_BOUNCE_ANY;
1568
1569 host_dev = scsi_get_device(shost);
1570 if (host_dev && host_dev->dma_mask)
1571 bounce_limit = *host_dev->dma_mask;
1572
1573 return bounce_limit;
1574 }
1575 EXPORT_SYMBOL(scsi_calculate_bounce_limit);
1576
1577 struct request_queue *__scsi_alloc_queue(struct Scsi_Host *shost,
1578 request_fn_proc *request_fn)
1579 {
1580 struct request_queue *q;
1581 struct device *dev = shost->shost_gendev.parent;
1582
1583 q = blk_init_queue(request_fn, NULL);
1584 if (!q)
1585 return NULL;
1586
1587 /*
1588 * this limit is imposed by hardware restrictions
1589 */
1590 blk_queue_max_hw_segments(q, shost->sg_tablesize);
1591 blk_queue_max_phys_segments(q, SCSI_MAX_SG_CHAIN_SEGMENTS);
1592
1593 blk_queue_max_sectors(q, shost->max_sectors);
1594 blk_queue_bounce_limit(q, scsi_calculate_bounce_limit(shost));
1595 blk_queue_segment_boundary(q, shost->dma_boundary);
1596 dma_set_seg_boundary(dev, shost->dma_boundary);
1597
1598 blk_queue_max_segment_size(q, dma_get_max_seg_size(dev));
1599
1600 /* New queue, no concurrency on queue_flags */
1601 if (!shost->use_clustering)
1602 queue_flag_clear_unlocked(QUEUE_FLAG_CLUSTER, q);
1603
1604 /*
1605 * set a reasonable default alignment on word boundaries: the
1606 * host and device may alter it using
1607 * blk_queue_update_dma_alignment() later.
1608 */
1609 blk_queue_dma_alignment(q, 0x03);
1610
1611 return q;
1612 }
1613 EXPORT_SYMBOL(__scsi_alloc_queue);
1614
1615 struct request_queue *scsi_alloc_queue(struct scsi_device *sdev)
1616 {
1617 struct request_queue *q;
1618
1619 q = __scsi_alloc_queue(sdev->host, scsi_request_fn);
1620 if (!q)
1621 return NULL;
1622
1623 blk_queue_prep_rq(q, scsi_prep_fn);
1624 blk_queue_softirq_done(q, scsi_softirq_done);
1625 return q;
1626 }
1627
1628 void scsi_free_queue(struct request_queue *q)
1629 {
1630 blk_cleanup_queue(q);
1631 }
1632
1633 /*
1634 * Function: scsi_block_requests()
1635 *
1636 * Purpose: Utility function used by low-level drivers to prevent further
1637 * commands from being queued to the device.
1638 *
1639 * Arguments: shost - Host in question
1640 *
1641 * Returns: Nothing
1642 *
1643 * Lock status: No locks are assumed held.
1644 *
1645 * Notes: There is no timer nor any other means by which the requests
1646 * get unblocked other than the low-level driver calling
1647 * scsi_unblock_requests().
1648 */
1649 void scsi_block_requests(struct Scsi_Host *shost)
1650 {
1651 shost->host_self_blocked = 1;
1652 }
1653 EXPORT_SYMBOL(scsi_block_requests);
1654
1655 /*
1656 * Function: scsi_unblock_requests()
1657 *
1658 * Purpose: Utility function used by low-level drivers to allow further
1659 * commands from being queued to the device.
1660 *
1661 * Arguments: shost - Host in question
1662 *
1663 * Returns: Nothing
1664 *
1665 * Lock status: No locks are assumed held.
1666 *
1667 * Notes: There is no timer nor any other means by which the requests
1668 * get unblocked other than the low-level driver calling
1669 * scsi_unblock_requests().
1670 *
1671 * This is done as an API function so that changes to the
1672 * internals of the scsi mid-layer won't require wholesale
1673 * changes to drivers that use this feature.
1674 */
1675 void scsi_unblock_requests(struct Scsi_Host *shost)
1676 {
1677 shost->host_self_blocked = 0;
1678 scsi_run_host_queues(shost);
1679 }
1680 EXPORT_SYMBOL(scsi_unblock_requests);
1681
1682 int __init scsi_init_queue(void)
1683 {
1684 int i;
1685
1686 scsi_io_context_cache = kmem_cache_create("scsi_io_context",
1687 sizeof(struct scsi_io_context),
1688 0, 0, NULL);
1689 if (!scsi_io_context_cache) {
1690 printk(KERN_ERR "SCSI: can't init scsi io context cache\n");
1691 return -ENOMEM;
1692 }
1693
1694 scsi_sdb_cache = kmem_cache_create("scsi_data_buffer",
1695 sizeof(struct scsi_data_buffer),
1696 0, 0, NULL);
1697 if (!scsi_sdb_cache) {
1698 printk(KERN_ERR "SCSI: can't init scsi sdb cache\n");
1699 goto cleanup_io_context;
1700 }
1701
1702 for (i = 0; i < SG_MEMPOOL_NR; i++) {
1703 struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
1704 int size = sgp->size * sizeof(struct scatterlist);
1705
1706 sgp->slab = kmem_cache_create(sgp->name, size, 0,
1707 SLAB_HWCACHE_ALIGN, NULL);
1708 if (!sgp->slab) {
1709 printk(KERN_ERR "SCSI: can't init sg slab %s\n",
1710 sgp->name);
1711 goto cleanup_sdb;
1712 }
1713
1714 sgp->pool = mempool_create_slab_pool(SG_MEMPOOL_SIZE,
1715 sgp->slab);
1716 if (!sgp->pool) {
1717 printk(KERN_ERR "SCSI: can't init sg mempool %s\n",
1718 sgp->name);
1719 goto cleanup_sdb;
1720 }
1721 }
1722
1723 return 0;
1724
1725 cleanup_sdb:
1726 for (i = 0; i < SG_MEMPOOL_NR; i++) {
1727 struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
1728 if (sgp->pool)
1729 mempool_destroy(sgp->pool);
1730 if (sgp->slab)
1731 kmem_cache_destroy(sgp->slab);
1732 }
1733 kmem_cache_destroy(scsi_sdb_cache);
1734 cleanup_io_context:
1735 kmem_cache_destroy(scsi_io_context_cache);
1736
1737 return -ENOMEM;
1738 }
1739
1740 void scsi_exit_queue(void)
1741 {
1742 int i;
1743
1744 kmem_cache_destroy(scsi_io_context_cache);
1745 kmem_cache_destroy(scsi_sdb_cache);
1746
1747 for (i = 0; i < SG_MEMPOOL_NR; i++) {
1748 struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
1749 mempool_destroy(sgp->pool);
1750 kmem_cache_destroy(sgp->slab);
1751 }
1752 }
1753
1754 /**
1755 * scsi_mode_select - issue a mode select
1756 * @sdev: SCSI device to be queried
1757 * @pf: Page format bit (1 == standard, 0 == vendor specific)
1758 * @sp: Save page bit (0 == don't save, 1 == save)
1759 * @modepage: mode page being requested
1760 * @buffer: request buffer (may not be smaller than eight bytes)
1761 * @len: length of request buffer.
1762 * @timeout: command timeout
1763 * @retries: number of retries before failing
1764 * @data: returns a structure abstracting the mode header data
1765 * @sshdr: place to put sense data (or NULL if no sense to be collected).
1766 * must be SCSI_SENSE_BUFFERSIZE big.
1767 *
1768 * Returns zero if successful; negative error number or scsi
1769 * status on error
1770 *
1771 */
1772 int
1773 scsi_mode_select(struct scsi_device *sdev, int pf, int sp, int modepage,
1774 unsigned char *buffer, int len, int timeout, int retries,
1775 struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
1776 {
1777 unsigned char cmd[10];
1778 unsigned char *real_buffer;
1779 int ret;
1780
1781 memset(cmd, 0, sizeof(cmd));
1782 cmd[1] = (pf ? 0x10 : 0) | (sp ? 0x01 : 0);
1783
1784 if (sdev->use_10_for_ms) {
1785 if (len > 65535)
1786 return -EINVAL;
1787 real_buffer = kmalloc(8 + len, GFP_KERNEL);
1788 if (!real_buffer)
1789 return -ENOMEM;
1790 memcpy(real_buffer + 8, buffer, len);
1791 len += 8;
1792 real_buffer[0] = 0;
1793 real_buffer[1] = 0;
1794 real_buffer[2] = data->medium_type;
1795 real_buffer[3] = data->device_specific;
1796 real_buffer[4] = data->longlba ? 0x01 : 0;
1797 real_buffer[5] = 0;
1798 real_buffer[6] = data->block_descriptor_length >> 8;
1799 real_buffer[7] = data->block_descriptor_length;
1800
1801 cmd[0] = MODE_SELECT_10;
1802 cmd[7] = len >> 8;
1803 cmd[8] = len;
1804 } else {
1805 if (len > 255 || data->block_descriptor_length > 255 ||
1806 data->longlba)
1807 return -EINVAL;
1808
1809 real_buffer = kmalloc(4 + len, GFP_KERNEL);
1810 if (!real_buffer)
1811 return -ENOMEM;
1812 memcpy(real_buffer + 4, buffer, len);
1813 len += 4;
1814 real_buffer[0] = 0;
1815 real_buffer[1] = data->medium_type;
1816 real_buffer[2] = data->device_specific;
1817 real_buffer[3] = data->block_descriptor_length;
1818
1819
1820 cmd[0] = MODE_SELECT;
1821 cmd[4] = len;
1822 }
1823
1824 ret = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, real_buffer, len,
1825 sshdr, timeout, retries);
1826 kfree(real_buffer);
1827 return ret;
1828 }
1829 EXPORT_SYMBOL_GPL(scsi_mode_select);
1830
1831 /**
1832 * scsi_mode_sense - issue a mode sense, falling back from 10 to six bytes if necessary.
1833 * @sdev: SCSI device to be queried
1834 * @dbd: set if mode sense will allow block descriptors to be returned
1835 * @modepage: mode page being requested
1836 * @buffer: request buffer (may not be smaller than eight bytes)
1837 * @len: length of request buffer.
1838 * @timeout: command timeout
1839 * @retries: number of retries before failing
1840 * @data: returns a structure abstracting the mode header data
1841 * @sshdr: place to put sense data (or NULL if no sense to be collected).
1842 * must be SCSI_SENSE_BUFFERSIZE big.
1843 *
1844 * Returns zero if unsuccessful, or the header offset (either 4
1845 * or 8 depending on whether a six or ten byte command was
1846 * issued) if successful.
1847 */
1848 int
1849 scsi_mode_sense(struct scsi_device *sdev, int dbd, int modepage,
1850 unsigned char *buffer, int len, int timeout, int retries,
1851 struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
1852 {
1853 unsigned char cmd[12];
1854 int use_10_for_ms;
1855 int header_length;
1856 int result;
1857 struct scsi_sense_hdr my_sshdr;
1858
1859 memset(data, 0, sizeof(*data));
1860 memset(&cmd[0], 0, 12);
1861 cmd[1] = dbd & 0x18; /* allows DBD and LLBA bits */
1862 cmd[2] = modepage;
1863
1864 /* caller might not be interested in sense, but we need it */
1865 if (!sshdr)
1866 sshdr = &my_sshdr;
1867
1868 retry:
1869 use_10_for_ms = sdev->use_10_for_ms;
1870
1871 if (use_10_for_ms) {
1872 if (len < 8)
1873 len = 8;
1874
1875 cmd[0] = MODE_SENSE_10;
1876 cmd[8] = len;
1877 header_length = 8;
1878 } else {
1879 if (len < 4)
1880 len = 4;
1881
1882 cmd[0] = MODE_SENSE;
1883 cmd[4] = len;
1884 header_length = 4;
1885 }
1886
1887 memset(buffer, 0, len);
1888
1889 result = scsi_execute_req(sdev, cmd, DMA_FROM_DEVICE, buffer, len,
1890 sshdr, timeout, retries);
1891
1892 /* This code looks awful: what it's doing is making sure an
1893 * ILLEGAL REQUEST sense return identifies the actual command
1894 * byte as the problem. MODE_SENSE commands can return
1895 * ILLEGAL REQUEST if the code page isn't supported */
1896
1897 if (use_10_for_ms && !scsi_status_is_good(result) &&
1898 (driver_byte(result) & DRIVER_SENSE)) {
1899 if (scsi_sense_valid(sshdr)) {
1900 if ((sshdr->sense_key == ILLEGAL_REQUEST) &&
1901 (sshdr->asc == 0x20) && (sshdr->ascq == 0)) {
1902 /*
1903 * Invalid command operation code
1904 */
1905 sdev->use_10_for_ms = 0;
1906 goto retry;
1907 }
1908 }
1909 }
1910
1911 if(scsi_status_is_good(result)) {
1912 if (unlikely(buffer[0] == 0x86 && buffer[1] == 0x0b &&
1913 (modepage == 6 || modepage == 8))) {
1914 /* Initio breakage? */
1915 header_length = 0;
1916 data->length = 13;
1917 data->medium_type = 0;
1918 data->device_specific = 0;
1919 data->longlba = 0;
1920 data->block_descriptor_length = 0;
1921 } else if(use_10_for_ms) {
1922 data->length = buffer[0]*256 + buffer[1] + 2;
1923 data->medium_type = buffer[2];
1924 data->device_specific = buffer[3];
1925 data->longlba = buffer[4] & 0x01;
1926 data->block_descriptor_length = buffer[6]*256
1927 + buffer[7];
1928 } else {
1929 data->length = buffer[0] + 1;
1930 data->medium_type = buffer[1];
1931 data->device_specific = buffer[2];
1932 data->block_descriptor_length = buffer[3];
1933 }
1934 data->header_length = header_length;
1935 }
1936
1937 return result;
1938 }
1939 EXPORT_SYMBOL(scsi_mode_sense);
1940
1941 /**
1942 * scsi_test_unit_ready - test if unit is ready
1943 * @sdev: scsi device to change the state of.
1944 * @timeout: command timeout
1945 * @retries: number of retries before failing
1946 * @sshdr_external: Optional pointer to struct scsi_sense_hdr for
1947 * returning sense. Make sure that this is cleared before passing
1948 * in.
1949 *
1950 * Returns zero if unsuccessful or an error if TUR failed. For
1951 * removable media, a return of NOT_READY or UNIT_ATTENTION is
1952 * translated to success, with the ->changed flag updated.
1953 **/
1954 int
1955 scsi_test_unit_ready(struct scsi_device *sdev, int timeout, int retries,
1956 struct scsi_sense_hdr *sshdr_external)
1957 {
1958 char cmd[] = {
1959 TEST_UNIT_READY, 0, 0, 0, 0, 0,
1960 };
1961 struct scsi_sense_hdr *sshdr;
1962 int result;
1963
1964 if (!sshdr_external)
1965 sshdr = kzalloc(sizeof(*sshdr), GFP_KERNEL);
1966 else
1967 sshdr = sshdr_external;
1968
1969 /* try to eat the UNIT_ATTENTION if there are enough retries */
1970 do {
1971 result = scsi_execute_req(sdev, cmd, DMA_NONE, NULL, 0, sshdr,
1972 timeout, retries);
1973 } while ((driver_byte(result) & DRIVER_SENSE) &&
1974 sshdr && sshdr->sense_key == UNIT_ATTENTION &&
1975 --retries);
1976
1977 if (!sshdr)
1978 /* could not allocate sense buffer, so can't process it */
1979 return result;
1980
1981 if ((driver_byte(result) & DRIVER_SENSE) && sdev->removable) {
1982
1983 if ((scsi_sense_valid(sshdr)) &&
1984 ((sshdr->sense_key == UNIT_ATTENTION) ||
1985 (sshdr->sense_key == NOT_READY))) {
1986 sdev->changed = 1;
1987 result = 0;
1988 }
1989 }
1990 if (!sshdr_external)
1991 kfree(sshdr);
1992 return result;
1993 }
1994 EXPORT_SYMBOL(scsi_test_unit_ready);
1995
1996 /**
1997 * scsi_device_set_state - Take the given device through the device state model.
1998 * @sdev: scsi device to change the state of.
1999 * @state: state to change to.
2000 *
2001 * Returns zero if unsuccessful or an error if the requested
2002 * transition is illegal.
2003 */
2004 int
2005 scsi_device_set_state(struct scsi_device *sdev, enum scsi_device_state state)
2006 {
2007 enum scsi_device_state oldstate = sdev->sdev_state;
2008
2009 if (state == oldstate)
2010 return 0;
2011
2012 switch (state) {
2013 case SDEV_CREATED:
2014 /* There are no legal states that come back to
2015 * created. This is the manually initialised start
2016 * state */
2017 goto illegal;
2018
2019 case SDEV_RUNNING:
2020 switch (oldstate) {
2021 case SDEV_CREATED:
2022 case SDEV_OFFLINE:
2023 case SDEV_QUIESCE:
2024 case SDEV_BLOCK:
2025 break;
2026 default:
2027 goto illegal;
2028 }
2029 break;
2030
2031 case SDEV_QUIESCE:
2032 switch (oldstate) {
2033 case SDEV_RUNNING:
2034 case SDEV_OFFLINE:
2035 break;
2036 default:
2037 goto illegal;
2038 }
2039 break;
2040
2041 case SDEV_OFFLINE:
2042 switch (oldstate) {
2043 case SDEV_CREATED:
2044 case SDEV_RUNNING:
2045 case SDEV_QUIESCE:
2046 case SDEV_BLOCK:
2047 break;
2048 default:
2049 goto illegal;
2050 }
2051 break;
2052
2053 case SDEV_BLOCK:
2054 switch (oldstate) {
2055 case SDEV_CREATED:
2056 case SDEV_RUNNING:
2057 break;
2058 default:
2059 goto illegal;
2060 }
2061 break;
2062
2063 case SDEV_CANCEL:
2064 switch (oldstate) {
2065 case SDEV_CREATED:
2066 case SDEV_RUNNING:
2067 case SDEV_QUIESCE:
2068 case SDEV_OFFLINE:
2069 case SDEV_BLOCK:
2070 break;
2071 default:
2072 goto illegal;
2073 }
2074 break;
2075
2076 case SDEV_DEL:
2077 switch (oldstate) {
2078 case SDEV_CREATED:
2079 case SDEV_RUNNING:
2080 case SDEV_OFFLINE:
2081 case SDEV_CANCEL:
2082 break;
2083 default:
2084 goto illegal;
2085 }
2086 break;
2087
2088 }
2089 sdev->sdev_state = state;
2090 return 0;
2091
2092 illegal:
2093 SCSI_LOG_ERROR_RECOVERY(1,
2094 sdev_printk(KERN_ERR, sdev,
2095 "Illegal state transition %s->%s\n",
2096 scsi_device_state_name(oldstate),
2097 scsi_device_state_name(state))
2098 );
2099 return -EINVAL;
2100 }
2101 EXPORT_SYMBOL(scsi_device_set_state);
2102
2103 /**
2104 * sdev_evt_emit - emit a single SCSI device uevent
2105 * @sdev: associated SCSI device
2106 * @evt: event to emit
2107 *
2108 * Send a single uevent (scsi_event) to the associated scsi_device.
2109 */
2110 static void scsi_evt_emit(struct scsi_device *sdev, struct scsi_event *evt)
2111 {
2112 int idx = 0;
2113 char *envp[3];
2114
2115 switch (evt->evt_type) {
2116 case SDEV_EVT_MEDIA_CHANGE:
2117 envp[idx++] = "SDEV_MEDIA_CHANGE=1";
2118 break;
2119
2120 default:
2121 /* do nothing */
2122 break;
2123 }
2124
2125 envp[idx++] = NULL;
2126
2127 kobject_uevent_env(&sdev->sdev_gendev.kobj, KOBJ_CHANGE, envp);
2128 }
2129
2130 /**
2131 * sdev_evt_thread - send a uevent for each scsi event
2132 * @work: work struct for scsi_device
2133 *
2134 * Dispatch queued events to their associated scsi_device kobjects
2135 * as uevents.
2136 */
2137 void scsi_evt_thread(struct work_struct *work)
2138 {
2139 struct scsi_device *sdev;
2140 LIST_HEAD(event_list);
2141
2142 sdev = container_of(work, struct scsi_device, event_work);
2143
2144 while (1) {
2145 struct scsi_event *evt;
2146 struct list_head *this, *tmp;
2147 unsigned long flags;
2148
2149 spin_lock_irqsave(&sdev->list_lock, flags);
2150 list_splice_init(&sdev->event_list, &event_list);
2151 spin_unlock_irqrestore(&sdev->list_lock, flags);
2152
2153 if (list_empty(&event_list))
2154 break;
2155
2156 list_for_each_safe(this, tmp, &event_list) {
2157 evt = list_entry(this, struct scsi_event, node);
2158 list_del(&evt->node);
2159 scsi_evt_emit(sdev, evt);
2160 kfree(evt);
2161 }
2162 }
2163 }
2164
2165 /**
2166 * sdev_evt_send - send asserted event to uevent thread
2167 * @sdev: scsi_device event occurred on
2168 * @evt: event to send
2169 *
2170 * Assert scsi device event asynchronously.
2171 */
2172 void sdev_evt_send(struct scsi_device *sdev, struct scsi_event *evt)
2173 {
2174 unsigned long flags;
2175
2176 #if 0
2177 /* FIXME: currently this check eliminates all media change events
2178 * for polled devices. Need to update to discriminate between AN
2179 * and polled events */
2180 if (!test_bit(evt->evt_type, sdev->supported_events)) {
2181 kfree(evt);
2182 return;
2183 }
2184 #endif
2185
2186 spin_lock_irqsave(&sdev->list_lock, flags);
2187 list_add_tail(&evt->node, &sdev->event_list);
2188 schedule_work(&sdev->event_work);
2189 spin_unlock_irqrestore(&sdev->list_lock, flags);
2190 }
2191 EXPORT_SYMBOL_GPL(sdev_evt_send);
2192
2193 /**
2194 * sdev_evt_alloc - allocate a new scsi event
2195 * @evt_type: type of event to allocate
2196 * @gfpflags: GFP flags for allocation
2197 *
2198 * Allocates and returns a new scsi_event.
2199 */
2200 struct scsi_event *sdev_evt_alloc(enum scsi_device_event evt_type,
2201 gfp_t gfpflags)
2202 {
2203 struct scsi_event *evt = kzalloc(sizeof(struct scsi_event), gfpflags);
2204 if (!evt)
2205 return NULL;
2206
2207 evt->evt_type = evt_type;
2208 INIT_LIST_HEAD(&evt->node);
2209
2210 /* evt_type-specific initialization, if any */
2211 switch (evt_type) {
2212 case SDEV_EVT_MEDIA_CHANGE:
2213 default:
2214 /* do nothing */
2215 break;
2216 }
2217
2218 return evt;
2219 }
2220 EXPORT_SYMBOL_GPL(sdev_evt_alloc);
2221
2222 /**
2223 * sdev_evt_send_simple - send asserted event to uevent thread
2224 * @sdev: scsi_device event occurred on
2225 * @evt_type: type of event to send
2226 * @gfpflags: GFP flags for allocation
2227 *
2228 * Assert scsi device event asynchronously, given an event type.
2229 */
2230 void sdev_evt_send_simple(struct scsi_device *sdev,
2231 enum scsi_device_event evt_type, gfp_t gfpflags)
2232 {
2233 struct scsi_event *evt = sdev_evt_alloc(evt_type, gfpflags);
2234 if (!evt) {
2235 sdev_printk(KERN_ERR, sdev, "event %d eaten due to OOM\n",
2236 evt_type);
2237 return;
2238 }
2239
2240 sdev_evt_send(sdev, evt);
2241 }
2242 EXPORT_SYMBOL_GPL(sdev_evt_send_simple);
2243
2244 /**
2245 * scsi_device_quiesce - Block user issued commands.
2246 * @sdev: scsi device to quiesce.
2247 *
2248 * This works by trying to transition to the SDEV_QUIESCE state
2249 * (which must be a legal transition). When the device is in this
2250 * state, only special requests will be accepted, all others will
2251 * be deferred. Since special requests may also be requeued requests,
2252 * a successful return doesn't guarantee the device will be
2253 * totally quiescent.
2254 *
2255 * Must be called with user context, may sleep.
2256 *
2257 * Returns zero if unsuccessful or an error if not.
2258 */
2259 int
2260 scsi_device_quiesce(struct scsi_device *sdev)
2261 {
2262 int err = scsi_device_set_state(sdev, SDEV_QUIESCE);
2263 if (err)
2264 return err;
2265
2266 scsi_run_queue(sdev->request_queue);
2267 while (sdev->device_busy) {
2268 msleep_interruptible(200);
2269 scsi_run_queue(sdev->request_queue);
2270 }
2271 return 0;
2272 }
2273 EXPORT_SYMBOL(scsi_device_quiesce);
2274
2275 /**
2276 * scsi_device_resume - Restart user issued commands to a quiesced device.
2277 * @sdev: scsi device to resume.
2278 *
2279 * Moves the device from quiesced back to running and restarts the
2280 * queues.
2281 *
2282 * Must be called with user context, may sleep.
2283 */
2284 void
2285 scsi_device_resume(struct scsi_device *sdev)
2286 {
2287 if(scsi_device_set_state(sdev, SDEV_RUNNING))
2288 return;
2289 scsi_run_queue(sdev->request_queue);
2290 }
2291 EXPORT_SYMBOL(scsi_device_resume);
2292
2293 static void
2294 device_quiesce_fn(struct scsi_device *sdev, void *data)
2295 {
2296 scsi_device_quiesce(sdev);
2297 }
2298
2299 void
2300 scsi_target_quiesce(struct scsi_target *starget)
2301 {
2302 starget_for_each_device(starget, NULL, device_quiesce_fn);
2303 }
2304 EXPORT_SYMBOL(scsi_target_quiesce);
2305
2306 static void
2307 device_resume_fn(struct scsi_device *sdev, void *data)
2308 {
2309 scsi_device_resume(sdev);
2310 }
2311
2312 void
2313 scsi_target_resume(struct scsi_target *starget)
2314 {
2315 starget_for_each_device(starget, NULL, device_resume_fn);
2316 }
2317 EXPORT_SYMBOL(scsi_target_resume);
2318
2319 /**
2320 * scsi_internal_device_block - internal function to put a device temporarily into the SDEV_BLOCK state
2321 * @sdev: device to block
2322 *
2323 * Block request made by scsi lld's to temporarily stop all
2324 * scsi commands on the specified device. Called from interrupt
2325 * or normal process context.
2326 *
2327 * Returns zero if successful or error if not
2328 *
2329 * Notes:
2330 * This routine transitions the device to the SDEV_BLOCK state
2331 * (which must be a legal transition). When the device is in this
2332 * state, all commands are deferred until the scsi lld reenables
2333 * the device with scsi_device_unblock or device_block_tmo fires.
2334 * This routine assumes the host_lock is held on entry.
2335 */
2336 int
2337 scsi_internal_device_block(struct scsi_device *sdev)
2338 {
2339 struct request_queue *q = sdev->request_queue;
2340 unsigned long flags;
2341 int err = 0;
2342
2343 err = scsi_device_set_state(sdev, SDEV_BLOCK);
2344 if (err)
2345 return err;
2346
2347 /*
2348 * The device has transitioned to SDEV_BLOCK. Stop the
2349 * block layer from calling the midlayer with this device's
2350 * request queue.
2351 */
2352 spin_lock_irqsave(q->queue_lock, flags);
2353 blk_stop_queue(q);
2354 spin_unlock_irqrestore(q->queue_lock, flags);
2355
2356 return 0;
2357 }
2358 EXPORT_SYMBOL_GPL(scsi_internal_device_block);
2359
2360 /**
2361 * scsi_internal_device_unblock - resume a device after a block request
2362 * @sdev: device to resume
2363 *
2364 * Called by scsi lld's or the midlayer to restart the device queue
2365 * for the previously suspended scsi device. Called from interrupt or
2366 * normal process context.
2367 *
2368 * Returns zero if successful or error if not.
2369 *
2370 * Notes:
2371 * This routine transitions the device to the SDEV_RUNNING state
2372 * (which must be a legal transition) allowing the midlayer to
2373 * goose the queue for this device. This routine assumes the
2374 * host_lock is held upon entry.
2375 */
2376 int
2377 scsi_internal_device_unblock(struct scsi_device *sdev)
2378 {
2379 struct request_queue *q = sdev->request_queue;
2380 int err;
2381 unsigned long flags;
2382
2383 /*
2384 * Try to transition the scsi device to SDEV_RUNNING
2385 * and goose the device queue if successful.
2386 */
2387 err = scsi_device_set_state(sdev, SDEV_RUNNING);
2388 if (err)
2389 return err;
2390
2391 spin_lock_irqsave(q->queue_lock, flags);
2392 blk_start_queue(q);
2393 spin_unlock_irqrestore(q->queue_lock, flags);
2394
2395 return 0;
2396 }
2397 EXPORT_SYMBOL_GPL(scsi_internal_device_unblock);
2398
2399 static void
2400 device_block(struct scsi_device *sdev, void *data)
2401 {
2402 scsi_internal_device_block(sdev);
2403 }
2404
2405 static int
2406 target_block(struct device *dev, void *data)
2407 {
2408 if (scsi_is_target_device(dev))
2409 starget_for_each_device(to_scsi_target(dev), NULL,
2410 device_block);
2411 return 0;
2412 }
2413
2414 void
2415 scsi_target_block(struct device *dev)
2416 {
2417 if (scsi_is_target_device(dev))
2418 starget_for_each_device(to_scsi_target(dev), NULL,
2419 device_block);
2420 else
2421 device_for_each_child(dev, NULL, target_block);
2422 }
2423 EXPORT_SYMBOL_GPL(scsi_target_block);
2424
2425 static void
2426 device_unblock(struct scsi_device *sdev, void *data)
2427 {
2428 scsi_internal_device_unblock(sdev);
2429 }
2430
2431 static int
2432 target_unblock(struct device *dev, void *data)
2433 {
2434 if (scsi_is_target_device(dev))
2435 starget_for_each_device(to_scsi_target(dev), NULL,
2436 device_unblock);
2437 return 0;
2438 }
2439
2440 void
2441 scsi_target_unblock(struct device *dev)
2442 {
2443 if (scsi_is_target_device(dev))
2444 starget_for_each_device(to_scsi_target(dev), NULL,
2445 device_unblock);
2446 else
2447 device_for_each_child(dev, NULL, target_unblock);
2448 }
2449 EXPORT_SYMBOL_GPL(scsi_target_unblock);
2450
2451 /**
2452 * scsi_kmap_atomic_sg - find and atomically map an sg-elemnt
2453 * @sgl: scatter-gather list
2454 * @sg_count: number of segments in sg
2455 * @offset: offset in bytes into sg, on return offset into the mapped area
2456 * @len: bytes to map, on return number of bytes mapped
2457 *
2458 * Returns virtual address of the start of the mapped page
2459 */
2460 void *scsi_kmap_atomic_sg(struct scatterlist *sgl, int sg_count,
2461 size_t *offset, size_t *len)
2462 {
2463 int i;
2464 size_t sg_len = 0, len_complete = 0;
2465 struct scatterlist *sg;
2466 struct page *page;
2467
2468 WARN_ON(!irqs_disabled());
2469
2470 for_each_sg(sgl, sg, sg_count, i) {
2471 len_complete = sg_len; /* Complete sg-entries */
2472 sg_len += sg->length;
2473 if (sg_len > *offset)
2474 break;
2475 }
2476
2477 if (unlikely(i == sg_count)) {
2478 printk(KERN_ERR "%s: Bytes in sg: %zu, requested offset %zu, "
2479 "elements %d\n",
2480 __FUNCTION__, sg_len, *offset, sg_count);
2481 WARN_ON(1);
2482 return NULL;
2483 }
2484
2485 /* Offset starting from the beginning of first page in this sg-entry */
2486 *offset = *offset - len_complete + sg->offset;
2487
2488 /* Assumption: contiguous pages can be accessed as "page + i" */
2489 page = nth_page(sg_page(sg), (*offset >> PAGE_SHIFT));
2490 *offset &= ~PAGE_MASK;
2491
2492 /* Bytes in this sg-entry from *offset to the end of the page */
2493 sg_len = PAGE_SIZE - *offset;
2494 if (*len > sg_len)
2495 *len = sg_len;
2496
2497 return kmap_atomic(page, KM_BIO_SRC_IRQ);
2498 }
2499 EXPORT_SYMBOL(scsi_kmap_atomic_sg);
2500
2501 /**
2502 * scsi_kunmap_atomic_sg - atomically unmap a virtual address, previously mapped with scsi_kmap_atomic_sg
2503 * @virt: virtual address to be unmapped
2504 */
2505 void scsi_kunmap_atomic_sg(void *virt)
2506 {
2507 kunmap_atomic(virt, KM_BIO_SRC_IRQ);
2508 }
2509 EXPORT_SYMBOL(scsi_kunmap_atomic_sg);
This page took 0.082795 seconds and 5 git commands to generate.