i2c: au1550: relax bus timings a bit
[deliverable/linux.git] / drivers / scsi / scsi_lib.c
1 /*
2 * Copyright (C) 1999 Eric Youngdale
3 * Copyright (C) 2014 Christoph Hellwig
4 *
5 * SCSI queueing library.
6 * Initial versions: Eric Youngdale (eric@andante.org).
7 * Based upon conversations with large numbers
8 * of people at Linux Expo.
9 */
10
11 #include <linux/bio.h>
12 #include <linux/bitops.h>
13 #include <linux/blkdev.h>
14 #include <linux/completion.h>
15 #include <linux/kernel.h>
16 #include <linux/export.h>
17 #include <linux/mempool.h>
18 #include <linux/slab.h>
19 #include <linux/init.h>
20 #include <linux/pci.h>
21 #include <linux/delay.h>
22 #include <linux/hardirq.h>
23 #include <linux/scatterlist.h>
24 #include <linux/blk-mq.h>
25 #include <linux/ratelimit.h>
26
27 #include <scsi/scsi.h>
28 #include <scsi/scsi_cmnd.h>
29 #include <scsi/scsi_dbg.h>
30 #include <scsi/scsi_device.h>
31 #include <scsi/scsi_driver.h>
32 #include <scsi/scsi_eh.h>
33 #include <scsi/scsi_host.h>
34 #include <scsi/scsi_dh.h>
35
36 #include <trace/events/scsi.h>
37
38 #include "scsi_priv.h"
39 #include "scsi_logging.h"
40
41
42 #define SG_MEMPOOL_NR ARRAY_SIZE(scsi_sg_pools)
43 #define SG_MEMPOOL_SIZE 2
44
45 struct scsi_host_sg_pool {
46 size_t size;
47 char *name;
48 struct kmem_cache *slab;
49 mempool_t *pool;
50 };
51
52 #define SP(x) { .size = x, "sgpool-" __stringify(x) }
53 #if (SCSI_MAX_SG_SEGMENTS < 32)
54 #error SCSI_MAX_SG_SEGMENTS is too small (must be 32 or greater)
55 #endif
56 static struct scsi_host_sg_pool scsi_sg_pools[] = {
57 SP(8),
58 SP(16),
59 #if (SCSI_MAX_SG_SEGMENTS > 32)
60 SP(32),
61 #if (SCSI_MAX_SG_SEGMENTS > 64)
62 SP(64),
63 #if (SCSI_MAX_SG_SEGMENTS > 128)
64 SP(128),
65 #if (SCSI_MAX_SG_SEGMENTS > 256)
66 #error SCSI_MAX_SG_SEGMENTS is too large (256 MAX)
67 #endif
68 #endif
69 #endif
70 #endif
71 SP(SCSI_MAX_SG_SEGMENTS)
72 };
73 #undef SP
74
75 struct kmem_cache *scsi_sdb_cache;
76
77 /*
78 * When to reinvoke queueing after a resource shortage. It's 3 msecs to
79 * not change behaviour from the previous unplug mechanism, experimentation
80 * may prove this needs changing.
81 */
82 #define SCSI_QUEUE_DELAY 3
83
84 static void
85 scsi_set_blocked(struct scsi_cmnd *cmd, int reason)
86 {
87 struct Scsi_Host *host = cmd->device->host;
88 struct scsi_device *device = cmd->device;
89 struct scsi_target *starget = scsi_target(device);
90
91 /*
92 * Set the appropriate busy bit for the device/host.
93 *
94 * If the host/device isn't busy, assume that something actually
95 * completed, and that we should be able to queue a command now.
96 *
97 * Note that the prior mid-layer assumption that any host could
98 * always queue at least one command is now broken. The mid-layer
99 * will implement a user specifiable stall (see
100 * scsi_host.max_host_blocked and scsi_device.max_device_blocked)
101 * if a command is requeued with no other commands outstanding
102 * either for the device or for the host.
103 */
104 switch (reason) {
105 case SCSI_MLQUEUE_HOST_BUSY:
106 atomic_set(&host->host_blocked, host->max_host_blocked);
107 break;
108 case SCSI_MLQUEUE_DEVICE_BUSY:
109 case SCSI_MLQUEUE_EH_RETRY:
110 atomic_set(&device->device_blocked,
111 device->max_device_blocked);
112 break;
113 case SCSI_MLQUEUE_TARGET_BUSY:
114 atomic_set(&starget->target_blocked,
115 starget->max_target_blocked);
116 break;
117 }
118 }
119
120 static void scsi_mq_requeue_cmd(struct scsi_cmnd *cmd)
121 {
122 struct scsi_device *sdev = cmd->device;
123 struct request_queue *q = cmd->request->q;
124
125 blk_mq_requeue_request(cmd->request);
126 blk_mq_kick_requeue_list(q);
127 put_device(&sdev->sdev_gendev);
128 }
129
130 /**
131 * __scsi_queue_insert - private queue insertion
132 * @cmd: The SCSI command being requeued
133 * @reason: The reason for the requeue
134 * @unbusy: Whether the queue should be unbusied
135 *
136 * This is a private queue insertion. The public interface
137 * scsi_queue_insert() always assumes the queue should be unbusied
138 * because it's always called before the completion. This function is
139 * for a requeue after completion, which should only occur in this
140 * file.
141 */
142 static void __scsi_queue_insert(struct scsi_cmnd *cmd, int reason, int unbusy)
143 {
144 struct scsi_device *device = cmd->device;
145 struct request_queue *q = device->request_queue;
146 unsigned long flags;
147
148 SCSI_LOG_MLQUEUE(1, scmd_printk(KERN_INFO, cmd,
149 "Inserting command %p into mlqueue\n", cmd));
150
151 scsi_set_blocked(cmd, reason);
152
153 /*
154 * Decrement the counters, since these commands are no longer
155 * active on the host/device.
156 */
157 if (unbusy)
158 scsi_device_unbusy(device);
159
160 /*
161 * Requeue this command. It will go before all other commands
162 * that are already in the queue. Schedule requeue work under
163 * lock such that the kblockd_schedule_work() call happens
164 * before blk_cleanup_queue() finishes.
165 */
166 cmd->result = 0;
167 if (q->mq_ops) {
168 scsi_mq_requeue_cmd(cmd);
169 return;
170 }
171 spin_lock_irqsave(q->queue_lock, flags);
172 blk_requeue_request(q, cmd->request);
173 kblockd_schedule_work(&device->requeue_work);
174 spin_unlock_irqrestore(q->queue_lock, flags);
175 }
176
177 /*
178 * Function: scsi_queue_insert()
179 *
180 * Purpose: Insert a command in the midlevel queue.
181 *
182 * Arguments: cmd - command that we are adding to queue.
183 * reason - why we are inserting command to queue.
184 *
185 * Lock status: Assumed that lock is not held upon entry.
186 *
187 * Returns: Nothing.
188 *
189 * Notes: We do this for one of two cases. Either the host is busy
190 * and it cannot accept any more commands for the time being,
191 * or the device returned QUEUE_FULL and can accept no more
192 * commands.
193 * Notes: This could be called either from an interrupt context or a
194 * normal process context.
195 */
196 void scsi_queue_insert(struct scsi_cmnd *cmd, int reason)
197 {
198 __scsi_queue_insert(cmd, reason, 1);
199 }
200 /**
201 * scsi_execute - insert request and wait for the result
202 * @sdev: scsi device
203 * @cmd: scsi command
204 * @data_direction: data direction
205 * @buffer: data buffer
206 * @bufflen: len of buffer
207 * @sense: optional sense buffer
208 * @timeout: request timeout in seconds
209 * @retries: number of times to retry request
210 * @flags: or into request flags;
211 * @resid: optional residual length
212 *
213 * returns the req->errors value which is the scsi_cmnd result
214 * field.
215 */
216 int scsi_execute(struct scsi_device *sdev, const unsigned char *cmd,
217 int data_direction, void *buffer, unsigned bufflen,
218 unsigned char *sense, int timeout, int retries, u64 flags,
219 int *resid)
220 {
221 struct request *req;
222 int write = (data_direction == DMA_TO_DEVICE);
223 int ret = DRIVER_ERROR << 24;
224
225 req = blk_get_request(sdev->request_queue, write, __GFP_WAIT);
226 if (IS_ERR(req))
227 return ret;
228 blk_rq_set_block_pc(req);
229
230 if (bufflen && blk_rq_map_kern(sdev->request_queue, req,
231 buffer, bufflen, __GFP_WAIT))
232 goto out;
233
234 req->cmd_len = COMMAND_SIZE(cmd[0]);
235 memcpy(req->cmd, cmd, req->cmd_len);
236 req->sense = sense;
237 req->sense_len = 0;
238 req->retries = retries;
239 req->timeout = timeout;
240 req->cmd_flags |= flags | REQ_QUIET | REQ_PREEMPT;
241
242 /*
243 * head injection *required* here otherwise quiesce won't work
244 */
245 blk_execute_rq(req->q, NULL, req, 1);
246
247 /*
248 * Some devices (USB mass-storage in particular) may transfer
249 * garbage data together with a residue indicating that the data
250 * is invalid. Prevent the garbage from being misinterpreted
251 * and prevent security leaks by zeroing out the excess data.
252 */
253 if (unlikely(req->resid_len > 0 && req->resid_len <= bufflen))
254 memset(buffer + (bufflen - req->resid_len), 0, req->resid_len);
255
256 if (resid)
257 *resid = req->resid_len;
258 ret = req->errors;
259 out:
260 blk_put_request(req);
261
262 return ret;
263 }
264 EXPORT_SYMBOL(scsi_execute);
265
266 int scsi_execute_req_flags(struct scsi_device *sdev, const unsigned char *cmd,
267 int data_direction, void *buffer, unsigned bufflen,
268 struct scsi_sense_hdr *sshdr, int timeout, int retries,
269 int *resid, u64 flags)
270 {
271 char *sense = NULL;
272 int result;
273
274 if (sshdr) {
275 sense = kzalloc(SCSI_SENSE_BUFFERSIZE, GFP_NOIO);
276 if (!sense)
277 return DRIVER_ERROR << 24;
278 }
279 result = scsi_execute(sdev, cmd, data_direction, buffer, bufflen,
280 sense, timeout, retries, flags, resid);
281 if (sshdr)
282 scsi_normalize_sense(sense, SCSI_SENSE_BUFFERSIZE, sshdr);
283
284 kfree(sense);
285 return result;
286 }
287 EXPORT_SYMBOL(scsi_execute_req_flags);
288
289 /*
290 * Function: scsi_init_cmd_errh()
291 *
292 * Purpose: Initialize cmd fields related to error handling.
293 *
294 * Arguments: cmd - command that is ready to be queued.
295 *
296 * Notes: This function has the job of initializing a number of
297 * fields related to error handling. Typically this will
298 * be called once for each command, as required.
299 */
300 static void scsi_init_cmd_errh(struct scsi_cmnd *cmd)
301 {
302 cmd->serial_number = 0;
303 scsi_set_resid(cmd, 0);
304 memset(cmd->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE);
305 if (cmd->cmd_len == 0)
306 cmd->cmd_len = scsi_command_size(cmd->cmnd);
307 }
308
309 void scsi_device_unbusy(struct scsi_device *sdev)
310 {
311 struct Scsi_Host *shost = sdev->host;
312 struct scsi_target *starget = scsi_target(sdev);
313 unsigned long flags;
314
315 atomic_dec(&shost->host_busy);
316 if (starget->can_queue > 0)
317 atomic_dec(&starget->target_busy);
318
319 if (unlikely(scsi_host_in_recovery(shost) &&
320 (shost->host_failed || shost->host_eh_scheduled))) {
321 spin_lock_irqsave(shost->host_lock, flags);
322 scsi_eh_wakeup(shost);
323 spin_unlock_irqrestore(shost->host_lock, flags);
324 }
325
326 atomic_dec(&sdev->device_busy);
327 }
328
329 static void scsi_kick_queue(struct request_queue *q)
330 {
331 if (q->mq_ops)
332 blk_mq_start_hw_queues(q);
333 else
334 blk_run_queue(q);
335 }
336
337 /*
338 * Called for single_lun devices on IO completion. Clear starget_sdev_user,
339 * and call blk_run_queue for all the scsi_devices on the target -
340 * including current_sdev first.
341 *
342 * Called with *no* scsi locks held.
343 */
344 static void scsi_single_lun_run(struct scsi_device *current_sdev)
345 {
346 struct Scsi_Host *shost = current_sdev->host;
347 struct scsi_device *sdev, *tmp;
348 struct scsi_target *starget = scsi_target(current_sdev);
349 unsigned long flags;
350
351 spin_lock_irqsave(shost->host_lock, flags);
352 starget->starget_sdev_user = NULL;
353 spin_unlock_irqrestore(shost->host_lock, flags);
354
355 /*
356 * Call blk_run_queue for all LUNs on the target, starting with
357 * current_sdev. We race with others (to set starget_sdev_user),
358 * but in most cases, we will be first. Ideally, each LU on the
359 * target would get some limited time or requests on the target.
360 */
361 scsi_kick_queue(current_sdev->request_queue);
362
363 spin_lock_irqsave(shost->host_lock, flags);
364 if (starget->starget_sdev_user)
365 goto out;
366 list_for_each_entry_safe(sdev, tmp, &starget->devices,
367 same_target_siblings) {
368 if (sdev == current_sdev)
369 continue;
370 if (scsi_device_get(sdev))
371 continue;
372
373 spin_unlock_irqrestore(shost->host_lock, flags);
374 scsi_kick_queue(sdev->request_queue);
375 spin_lock_irqsave(shost->host_lock, flags);
376
377 scsi_device_put(sdev);
378 }
379 out:
380 spin_unlock_irqrestore(shost->host_lock, flags);
381 }
382
383 static inline bool scsi_device_is_busy(struct scsi_device *sdev)
384 {
385 if (atomic_read(&sdev->device_busy) >= sdev->queue_depth)
386 return true;
387 if (atomic_read(&sdev->device_blocked) > 0)
388 return true;
389 return false;
390 }
391
392 static inline bool scsi_target_is_busy(struct scsi_target *starget)
393 {
394 if (starget->can_queue > 0) {
395 if (atomic_read(&starget->target_busy) >= starget->can_queue)
396 return true;
397 if (atomic_read(&starget->target_blocked) > 0)
398 return true;
399 }
400 return false;
401 }
402
403 static inline bool scsi_host_is_busy(struct Scsi_Host *shost)
404 {
405 if (shost->can_queue > 0 &&
406 atomic_read(&shost->host_busy) >= shost->can_queue)
407 return true;
408 if (atomic_read(&shost->host_blocked) > 0)
409 return true;
410 if (shost->host_self_blocked)
411 return true;
412 return false;
413 }
414
415 static void scsi_starved_list_run(struct Scsi_Host *shost)
416 {
417 LIST_HEAD(starved_list);
418 struct scsi_device *sdev;
419 unsigned long flags;
420
421 spin_lock_irqsave(shost->host_lock, flags);
422 list_splice_init(&shost->starved_list, &starved_list);
423
424 while (!list_empty(&starved_list)) {
425 struct request_queue *slq;
426
427 /*
428 * As long as shost is accepting commands and we have
429 * starved queues, call blk_run_queue. scsi_request_fn
430 * drops the queue_lock and can add us back to the
431 * starved_list.
432 *
433 * host_lock protects the starved_list and starved_entry.
434 * scsi_request_fn must get the host_lock before checking
435 * or modifying starved_list or starved_entry.
436 */
437 if (scsi_host_is_busy(shost))
438 break;
439
440 sdev = list_entry(starved_list.next,
441 struct scsi_device, starved_entry);
442 list_del_init(&sdev->starved_entry);
443 if (scsi_target_is_busy(scsi_target(sdev))) {
444 list_move_tail(&sdev->starved_entry,
445 &shost->starved_list);
446 continue;
447 }
448
449 /*
450 * Once we drop the host lock, a racing scsi_remove_device()
451 * call may remove the sdev from the starved list and destroy
452 * it and the queue. Mitigate by taking a reference to the
453 * queue and never touching the sdev again after we drop the
454 * host lock. Note: if __scsi_remove_device() invokes
455 * blk_cleanup_queue() before the queue is run from this
456 * function then blk_run_queue() will return immediately since
457 * blk_cleanup_queue() marks the queue with QUEUE_FLAG_DYING.
458 */
459 slq = sdev->request_queue;
460 if (!blk_get_queue(slq))
461 continue;
462 spin_unlock_irqrestore(shost->host_lock, flags);
463
464 scsi_kick_queue(slq);
465 blk_put_queue(slq);
466
467 spin_lock_irqsave(shost->host_lock, flags);
468 }
469 /* put any unprocessed entries back */
470 list_splice(&starved_list, &shost->starved_list);
471 spin_unlock_irqrestore(shost->host_lock, flags);
472 }
473
474 /*
475 * Function: scsi_run_queue()
476 *
477 * Purpose: Select a proper request queue to serve next
478 *
479 * Arguments: q - last request's queue
480 *
481 * Returns: Nothing
482 *
483 * Notes: The previous command was completely finished, start
484 * a new one if possible.
485 */
486 static void scsi_run_queue(struct request_queue *q)
487 {
488 struct scsi_device *sdev = q->queuedata;
489
490 if (scsi_target(sdev)->single_lun)
491 scsi_single_lun_run(sdev);
492 if (!list_empty(&sdev->host->starved_list))
493 scsi_starved_list_run(sdev->host);
494
495 if (q->mq_ops)
496 blk_mq_start_stopped_hw_queues(q, false);
497 else
498 blk_run_queue(q);
499 }
500
501 void scsi_requeue_run_queue(struct work_struct *work)
502 {
503 struct scsi_device *sdev;
504 struct request_queue *q;
505
506 sdev = container_of(work, struct scsi_device, requeue_work);
507 q = sdev->request_queue;
508 scsi_run_queue(q);
509 }
510
511 /*
512 * Function: scsi_requeue_command()
513 *
514 * Purpose: Handle post-processing of completed commands.
515 *
516 * Arguments: q - queue to operate on
517 * cmd - command that may need to be requeued.
518 *
519 * Returns: Nothing
520 *
521 * Notes: After command completion, there may be blocks left
522 * over which weren't finished by the previous command
523 * this can be for a number of reasons - the main one is
524 * I/O errors in the middle of the request, in which case
525 * we need to request the blocks that come after the bad
526 * sector.
527 * Notes: Upon return, cmd is a stale pointer.
528 */
529 static void scsi_requeue_command(struct request_queue *q, struct scsi_cmnd *cmd)
530 {
531 struct scsi_device *sdev = cmd->device;
532 struct request *req = cmd->request;
533 unsigned long flags;
534
535 spin_lock_irqsave(q->queue_lock, flags);
536 blk_unprep_request(req);
537 req->special = NULL;
538 scsi_put_command(cmd);
539 blk_requeue_request(q, req);
540 spin_unlock_irqrestore(q->queue_lock, flags);
541
542 scsi_run_queue(q);
543
544 put_device(&sdev->sdev_gendev);
545 }
546
547 void scsi_run_host_queues(struct Scsi_Host *shost)
548 {
549 struct scsi_device *sdev;
550
551 shost_for_each_device(sdev, shost)
552 scsi_run_queue(sdev->request_queue);
553 }
554
555 static inline unsigned int scsi_sgtable_index(unsigned short nents)
556 {
557 unsigned int index;
558
559 BUG_ON(nents > SCSI_MAX_SG_SEGMENTS);
560
561 if (nents <= 8)
562 index = 0;
563 else
564 index = get_count_order(nents) - 3;
565
566 return index;
567 }
568
569 static void scsi_sg_free(struct scatterlist *sgl, unsigned int nents)
570 {
571 struct scsi_host_sg_pool *sgp;
572
573 sgp = scsi_sg_pools + scsi_sgtable_index(nents);
574 mempool_free(sgl, sgp->pool);
575 }
576
577 static struct scatterlist *scsi_sg_alloc(unsigned int nents, gfp_t gfp_mask)
578 {
579 struct scsi_host_sg_pool *sgp;
580
581 sgp = scsi_sg_pools + scsi_sgtable_index(nents);
582 return mempool_alloc(sgp->pool, gfp_mask);
583 }
584
585 static void scsi_free_sgtable(struct scsi_data_buffer *sdb, bool mq)
586 {
587 if (mq && sdb->table.orig_nents <= SCSI_MAX_SG_SEGMENTS)
588 return;
589 __sg_free_table(&sdb->table, SCSI_MAX_SG_SEGMENTS, mq, scsi_sg_free);
590 }
591
592 static int scsi_alloc_sgtable(struct scsi_data_buffer *sdb, int nents, bool mq)
593 {
594 struct scatterlist *first_chunk = NULL;
595 int ret;
596
597 BUG_ON(!nents);
598
599 if (mq) {
600 if (nents <= SCSI_MAX_SG_SEGMENTS) {
601 sdb->table.nents = sdb->table.orig_nents = nents;
602 sg_init_table(sdb->table.sgl, nents);
603 return 0;
604 }
605 first_chunk = sdb->table.sgl;
606 }
607
608 ret = __sg_alloc_table(&sdb->table, nents, SCSI_MAX_SG_SEGMENTS,
609 first_chunk, GFP_ATOMIC, scsi_sg_alloc);
610 if (unlikely(ret))
611 scsi_free_sgtable(sdb, mq);
612 return ret;
613 }
614
615 static void scsi_uninit_cmd(struct scsi_cmnd *cmd)
616 {
617 if (cmd->request->cmd_type == REQ_TYPE_FS) {
618 struct scsi_driver *drv = scsi_cmd_to_driver(cmd);
619
620 if (drv->uninit_command)
621 drv->uninit_command(cmd);
622 }
623 }
624
625 static void scsi_mq_free_sgtables(struct scsi_cmnd *cmd)
626 {
627 if (cmd->sdb.table.nents)
628 scsi_free_sgtable(&cmd->sdb, true);
629 if (cmd->request->next_rq && cmd->request->next_rq->special)
630 scsi_free_sgtable(cmd->request->next_rq->special, true);
631 if (scsi_prot_sg_count(cmd))
632 scsi_free_sgtable(cmd->prot_sdb, true);
633 }
634
635 static void scsi_mq_uninit_cmd(struct scsi_cmnd *cmd)
636 {
637 struct scsi_device *sdev = cmd->device;
638 struct Scsi_Host *shost = sdev->host;
639 unsigned long flags;
640
641 scsi_mq_free_sgtables(cmd);
642 scsi_uninit_cmd(cmd);
643
644 if (shost->use_cmd_list) {
645 BUG_ON(list_empty(&cmd->list));
646 spin_lock_irqsave(&sdev->list_lock, flags);
647 list_del_init(&cmd->list);
648 spin_unlock_irqrestore(&sdev->list_lock, flags);
649 }
650 }
651
652 /*
653 * Function: scsi_release_buffers()
654 *
655 * Purpose: Free resources allocate for a scsi_command.
656 *
657 * Arguments: cmd - command that we are bailing.
658 *
659 * Lock status: Assumed that no lock is held upon entry.
660 *
661 * Returns: Nothing
662 *
663 * Notes: In the event that an upper level driver rejects a
664 * command, we must release resources allocated during
665 * the __init_io() function. Primarily this would involve
666 * the scatter-gather table.
667 */
668 static void scsi_release_buffers(struct scsi_cmnd *cmd)
669 {
670 if (cmd->sdb.table.nents)
671 scsi_free_sgtable(&cmd->sdb, false);
672
673 memset(&cmd->sdb, 0, sizeof(cmd->sdb));
674
675 if (scsi_prot_sg_count(cmd))
676 scsi_free_sgtable(cmd->prot_sdb, false);
677 }
678
679 static void scsi_release_bidi_buffers(struct scsi_cmnd *cmd)
680 {
681 struct scsi_data_buffer *bidi_sdb = cmd->request->next_rq->special;
682
683 scsi_free_sgtable(bidi_sdb, false);
684 kmem_cache_free(scsi_sdb_cache, bidi_sdb);
685 cmd->request->next_rq->special = NULL;
686 }
687
688 static bool scsi_end_request(struct request *req, int error,
689 unsigned int bytes, unsigned int bidi_bytes)
690 {
691 struct scsi_cmnd *cmd = req->special;
692 struct scsi_device *sdev = cmd->device;
693 struct request_queue *q = sdev->request_queue;
694
695 if (blk_update_request(req, error, bytes))
696 return true;
697
698 /* Bidi request must be completed as a whole */
699 if (unlikely(bidi_bytes) &&
700 blk_update_request(req->next_rq, error, bidi_bytes))
701 return true;
702
703 if (blk_queue_add_random(q))
704 add_disk_randomness(req->rq_disk);
705
706 if (req->mq_ctx) {
707 /*
708 * In the MQ case the command gets freed by __blk_mq_end_request,
709 * so we have to do all cleanup that depends on it earlier.
710 *
711 * We also can't kick the queues from irq context, so we
712 * will have to defer it to a workqueue.
713 */
714 scsi_mq_uninit_cmd(cmd);
715
716 __blk_mq_end_request(req, error);
717
718 if (scsi_target(sdev)->single_lun ||
719 !list_empty(&sdev->host->starved_list))
720 kblockd_schedule_work(&sdev->requeue_work);
721 else
722 blk_mq_start_stopped_hw_queues(q, true);
723 } else {
724 unsigned long flags;
725
726 if (bidi_bytes)
727 scsi_release_bidi_buffers(cmd);
728
729 spin_lock_irqsave(q->queue_lock, flags);
730 blk_finish_request(req, error);
731 spin_unlock_irqrestore(q->queue_lock, flags);
732
733 scsi_release_buffers(cmd);
734
735 scsi_put_command(cmd);
736 scsi_run_queue(q);
737 }
738
739 put_device(&sdev->sdev_gendev);
740 return false;
741 }
742
743 /**
744 * __scsi_error_from_host_byte - translate SCSI error code into errno
745 * @cmd: SCSI command (unused)
746 * @result: scsi error code
747 *
748 * Translate SCSI error code into standard UNIX errno.
749 * Return values:
750 * -ENOLINK temporary transport failure
751 * -EREMOTEIO permanent target failure, do not retry
752 * -EBADE permanent nexus failure, retry on other path
753 * -ENOSPC No write space available
754 * -ENODATA Medium error
755 * -EIO unspecified I/O error
756 */
757 static int __scsi_error_from_host_byte(struct scsi_cmnd *cmd, int result)
758 {
759 int error = 0;
760
761 switch(host_byte(result)) {
762 case DID_TRANSPORT_FAILFAST:
763 error = -ENOLINK;
764 break;
765 case DID_TARGET_FAILURE:
766 set_host_byte(cmd, DID_OK);
767 error = -EREMOTEIO;
768 break;
769 case DID_NEXUS_FAILURE:
770 set_host_byte(cmd, DID_OK);
771 error = -EBADE;
772 break;
773 case DID_ALLOC_FAILURE:
774 set_host_byte(cmd, DID_OK);
775 error = -ENOSPC;
776 break;
777 case DID_MEDIUM_ERROR:
778 set_host_byte(cmd, DID_OK);
779 error = -ENODATA;
780 break;
781 default:
782 error = -EIO;
783 break;
784 }
785
786 return error;
787 }
788
789 /*
790 * Function: scsi_io_completion()
791 *
792 * Purpose: Completion processing for block device I/O requests.
793 *
794 * Arguments: cmd - command that is finished.
795 *
796 * Lock status: Assumed that no lock is held upon entry.
797 *
798 * Returns: Nothing
799 *
800 * Notes: We will finish off the specified number of sectors. If we
801 * are done, the command block will be released and the queue
802 * function will be goosed. If we are not done then we have to
803 * figure out what to do next:
804 *
805 * a) We can call scsi_requeue_command(). The request
806 * will be unprepared and put back on the queue. Then
807 * a new command will be created for it. This should
808 * be used if we made forward progress, or if we want
809 * to switch from READ(10) to READ(6) for example.
810 *
811 * b) We can call __scsi_queue_insert(). The request will
812 * be put back on the queue and retried using the same
813 * command as before, possibly after a delay.
814 *
815 * c) We can call scsi_end_request() with -EIO to fail
816 * the remainder of the request.
817 */
818 void scsi_io_completion(struct scsi_cmnd *cmd, unsigned int good_bytes)
819 {
820 int result = cmd->result;
821 struct request_queue *q = cmd->device->request_queue;
822 struct request *req = cmd->request;
823 int error = 0;
824 struct scsi_sense_hdr sshdr;
825 bool sense_valid = false;
826 int sense_deferred = 0, level = 0;
827 enum {ACTION_FAIL, ACTION_REPREP, ACTION_RETRY,
828 ACTION_DELAYED_RETRY} action;
829 unsigned long wait_for = (cmd->allowed + 1) * req->timeout;
830
831 if (result) {
832 sense_valid = scsi_command_normalize_sense(cmd, &sshdr);
833 if (sense_valid)
834 sense_deferred = scsi_sense_is_deferred(&sshdr);
835 }
836
837 if (req->cmd_type == REQ_TYPE_BLOCK_PC) { /* SG_IO ioctl from block level */
838 if (result) {
839 if (sense_valid && req->sense) {
840 /*
841 * SG_IO wants current and deferred errors
842 */
843 int len = 8 + cmd->sense_buffer[7];
844
845 if (len > SCSI_SENSE_BUFFERSIZE)
846 len = SCSI_SENSE_BUFFERSIZE;
847 memcpy(req->sense, cmd->sense_buffer, len);
848 req->sense_len = len;
849 }
850 if (!sense_deferred)
851 error = __scsi_error_from_host_byte(cmd, result);
852 }
853 /*
854 * __scsi_error_from_host_byte may have reset the host_byte
855 */
856 req->errors = cmd->result;
857
858 req->resid_len = scsi_get_resid(cmd);
859
860 if (scsi_bidi_cmnd(cmd)) {
861 /*
862 * Bidi commands Must be complete as a whole,
863 * both sides at once.
864 */
865 req->next_rq->resid_len = scsi_in(cmd)->resid;
866 if (scsi_end_request(req, 0, blk_rq_bytes(req),
867 blk_rq_bytes(req->next_rq)))
868 BUG();
869 return;
870 }
871 } else if (blk_rq_bytes(req) == 0 && result && !sense_deferred) {
872 /*
873 * Certain non BLOCK_PC requests are commands that don't
874 * actually transfer anything (FLUSH), so cannot use
875 * good_bytes != blk_rq_bytes(req) as the signal for an error.
876 * This sets the error explicitly for the problem case.
877 */
878 error = __scsi_error_from_host_byte(cmd, result);
879 }
880
881 /* no bidi support for !REQ_TYPE_BLOCK_PC yet */
882 BUG_ON(blk_bidi_rq(req));
883
884 /*
885 * Next deal with any sectors which we were able to correctly
886 * handle.
887 */
888 SCSI_LOG_HLCOMPLETE(1, scmd_printk(KERN_INFO, cmd,
889 "%u sectors total, %d bytes done.\n",
890 blk_rq_sectors(req), good_bytes));
891
892 /*
893 * Recovered errors need reporting, but they're always treated
894 * as success, so fiddle the result code here. For BLOCK_PC
895 * we already took a copy of the original into rq->errors which
896 * is what gets returned to the user
897 */
898 if (sense_valid && (sshdr.sense_key == RECOVERED_ERROR)) {
899 /* if ATA PASS-THROUGH INFORMATION AVAILABLE skip
900 * print since caller wants ATA registers. Only occurs on
901 * SCSI ATA PASS_THROUGH commands when CK_COND=1
902 */
903 if ((sshdr.asc == 0x0) && (sshdr.ascq == 0x1d))
904 ;
905 else if (!(req->cmd_flags & REQ_QUIET))
906 scsi_print_sense(cmd);
907 result = 0;
908 /* BLOCK_PC may have set error */
909 error = 0;
910 }
911
912 /*
913 * If we finished all bytes in the request we are done now.
914 */
915 if (!scsi_end_request(req, error, good_bytes, 0))
916 return;
917
918 /*
919 * Kill remainder if no retrys.
920 */
921 if (error && scsi_noretry_cmd(cmd)) {
922 if (scsi_end_request(req, error, blk_rq_bytes(req), 0))
923 BUG();
924 return;
925 }
926
927 /*
928 * If there had been no error, but we have leftover bytes in the
929 * requeues just queue the command up again.
930 */
931 if (result == 0)
932 goto requeue;
933
934 error = __scsi_error_from_host_byte(cmd, result);
935
936 if (host_byte(result) == DID_RESET) {
937 /* Third party bus reset or reset for error recovery
938 * reasons. Just retry the command and see what
939 * happens.
940 */
941 action = ACTION_RETRY;
942 } else if (sense_valid && !sense_deferred) {
943 switch (sshdr.sense_key) {
944 case UNIT_ATTENTION:
945 if (cmd->device->removable) {
946 /* Detected disc change. Set a bit
947 * and quietly refuse further access.
948 */
949 cmd->device->changed = 1;
950 action = ACTION_FAIL;
951 } else {
952 /* Must have been a power glitch, or a
953 * bus reset. Could not have been a
954 * media change, so we just retry the
955 * command and see what happens.
956 */
957 action = ACTION_RETRY;
958 }
959 break;
960 case ILLEGAL_REQUEST:
961 /* If we had an ILLEGAL REQUEST returned, then
962 * we may have performed an unsupported
963 * command. The only thing this should be
964 * would be a ten byte read where only a six
965 * byte read was supported. Also, on a system
966 * where READ CAPACITY failed, we may have
967 * read past the end of the disk.
968 */
969 if ((cmd->device->use_10_for_rw &&
970 sshdr.asc == 0x20 && sshdr.ascq == 0x00) &&
971 (cmd->cmnd[0] == READ_10 ||
972 cmd->cmnd[0] == WRITE_10)) {
973 /* This will issue a new 6-byte command. */
974 cmd->device->use_10_for_rw = 0;
975 action = ACTION_REPREP;
976 } else if (sshdr.asc == 0x10) /* DIX */ {
977 action = ACTION_FAIL;
978 error = -EILSEQ;
979 /* INVALID COMMAND OPCODE or INVALID FIELD IN CDB */
980 } else if (sshdr.asc == 0x20 || sshdr.asc == 0x24) {
981 action = ACTION_FAIL;
982 error = -EREMOTEIO;
983 } else
984 action = ACTION_FAIL;
985 break;
986 case ABORTED_COMMAND:
987 action = ACTION_FAIL;
988 if (sshdr.asc == 0x10) /* DIF */
989 error = -EILSEQ;
990 break;
991 case NOT_READY:
992 /* If the device is in the process of becoming
993 * ready, or has a temporary blockage, retry.
994 */
995 if (sshdr.asc == 0x04) {
996 switch (sshdr.ascq) {
997 case 0x01: /* becoming ready */
998 case 0x04: /* format in progress */
999 case 0x05: /* rebuild in progress */
1000 case 0x06: /* recalculation in progress */
1001 case 0x07: /* operation in progress */
1002 case 0x08: /* Long write in progress */
1003 case 0x09: /* self test in progress */
1004 case 0x14: /* space allocation in progress */
1005 action = ACTION_DELAYED_RETRY;
1006 break;
1007 default:
1008 action = ACTION_FAIL;
1009 break;
1010 }
1011 } else
1012 action = ACTION_FAIL;
1013 break;
1014 case VOLUME_OVERFLOW:
1015 /* See SSC3rXX or current. */
1016 action = ACTION_FAIL;
1017 break;
1018 default:
1019 action = ACTION_FAIL;
1020 break;
1021 }
1022 } else
1023 action = ACTION_FAIL;
1024
1025 if (action != ACTION_FAIL &&
1026 time_before(cmd->jiffies_at_alloc + wait_for, jiffies))
1027 action = ACTION_FAIL;
1028
1029 switch (action) {
1030 case ACTION_FAIL:
1031 /* Give up and fail the remainder of the request */
1032 if (!(req->cmd_flags & REQ_QUIET)) {
1033 static DEFINE_RATELIMIT_STATE(_rs,
1034 DEFAULT_RATELIMIT_INTERVAL,
1035 DEFAULT_RATELIMIT_BURST);
1036
1037 if (unlikely(scsi_logging_level))
1038 level = SCSI_LOG_LEVEL(SCSI_LOG_MLCOMPLETE_SHIFT,
1039 SCSI_LOG_MLCOMPLETE_BITS);
1040
1041 /*
1042 * if logging is enabled the failure will be printed
1043 * in scsi_log_completion(), so avoid duplicate messages
1044 */
1045 if (!level && __ratelimit(&_rs)) {
1046 scsi_print_result(cmd, NULL, FAILED);
1047 if (driver_byte(result) & DRIVER_SENSE)
1048 scsi_print_sense(cmd);
1049 scsi_print_command(cmd);
1050 }
1051 }
1052 if (!scsi_end_request(req, error, blk_rq_err_bytes(req), 0))
1053 return;
1054 /*FALLTHRU*/
1055 case ACTION_REPREP:
1056 requeue:
1057 /* Unprep the request and put it back at the head of the queue.
1058 * A new command will be prepared and issued.
1059 */
1060 if (q->mq_ops) {
1061 cmd->request->cmd_flags &= ~REQ_DONTPREP;
1062 scsi_mq_uninit_cmd(cmd);
1063 scsi_mq_requeue_cmd(cmd);
1064 } else {
1065 scsi_release_buffers(cmd);
1066 scsi_requeue_command(q, cmd);
1067 }
1068 break;
1069 case ACTION_RETRY:
1070 /* Retry the same command immediately */
1071 __scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY, 0);
1072 break;
1073 case ACTION_DELAYED_RETRY:
1074 /* Retry the same command after a delay */
1075 __scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY, 0);
1076 break;
1077 }
1078 }
1079
1080 static int scsi_init_sgtable(struct request *req, struct scsi_data_buffer *sdb)
1081 {
1082 int count;
1083
1084 /*
1085 * If sg table allocation fails, requeue request later.
1086 */
1087 if (unlikely(scsi_alloc_sgtable(sdb, req->nr_phys_segments,
1088 req->mq_ctx != NULL)))
1089 return BLKPREP_DEFER;
1090
1091 /*
1092 * Next, walk the list, and fill in the addresses and sizes of
1093 * each segment.
1094 */
1095 count = blk_rq_map_sg(req->q, req, sdb->table.sgl);
1096 BUG_ON(count > sdb->table.nents);
1097 sdb->table.nents = count;
1098 sdb->length = blk_rq_bytes(req);
1099 return BLKPREP_OK;
1100 }
1101
1102 /*
1103 * Function: scsi_init_io()
1104 *
1105 * Purpose: SCSI I/O initialize function.
1106 *
1107 * Arguments: cmd - Command descriptor we wish to initialize
1108 *
1109 * Returns: 0 on success
1110 * BLKPREP_DEFER if the failure is retryable
1111 * BLKPREP_KILL if the failure is fatal
1112 */
1113 int scsi_init_io(struct scsi_cmnd *cmd)
1114 {
1115 struct scsi_device *sdev = cmd->device;
1116 struct request *rq = cmd->request;
1117 bool is_mq = (rq->mq_ctx != NULL);
1118 int error;
1119
1120 BUG_ON(!rq->nr_phys_segments);
1121
1122 error = scsi_init_sgtable(rq, &cmd->sdb);
1123 if (error)
1124 goto err_exit;
1125
1126 if (blk_bidi_rq(rq)) {
1127 if (!rq->q->mq_ops) {
1128 struct scsi_data_buffer *bidi_sdb =
1129 kmem_cache_zalloc(scsi_sdb_cache, GFP_ATOMIC);
1130 if (!bidi_sdb) {
1131 error = BLKPREP_DEFER;
1132 goto err_exit;
1133 }
1134
1135 rq->next_rq->special = bidi_sdb;
1136 }
1137
1138 error = scsi_init_sgtable(rq->next_rq, rq->next_rq->special);
1139 if (error)
1140 goto err_exit;
1141 }
1142
1143 if (blk_integrity_rq(rq)) {
1144 struct scsi_data_buffer *prot_sdb = cmd->prot_sdb;
1145 int ivecs, count;
1146
1147 if (prot_sdb == NULL) {
1148 /*
1149 * This can happen if someone (e.g. multipath)
1150 * queues a command to a device on an adapter
1151 * that does not support DIX.
1152 */
1153 WARN_ON_ONCE(1);
1154 error = BLKPREP_KILL;
1155 goto err_exit;
1156 }
1157
1158 ivecs = blk_rq_count_integrity_sg(rq->q, rq->bio);
1159
1160 if (scsi_alloc_sgtable(prot_sdb, ivecs, is_mq)) {
1161 error = BLKPREP_DEFER;
1162 goto err_exit;
1163 }
1164
1165 count = blk_rq_map_integrity_sg(rq->q, rq->bio,
1166 prot_sdb->table.sgl);
1167 BUG_ON(unlikely(count > ivecs));
1168 BUG_ON(unlikely(count > queue_max_integrity_segments(rq->q)));
1169
1170 cmd->prot_sdb = prot_sdb;
1171 cmd->prot_sdb->table.nents = count;
1172 }
1173
1174 return BLKPREP_OK;
1175 err_exit:
1176 if (is_mq) {
1177 scsi_mq_free_sgtables(cmd);
1178 } else {
1179 scsi_release_buffers(cmd);
1180 cmd->request->special = NULL;
1181 scsi_put_command(cmd);
1182 put_device(&sdev->sdev_gendev);
1183 }
1184 return error;
1185 }
1186 EXPORT_SYMBOL(scsi_init_io);
1187
1188 static struct scsi_cmnd *scsi_get_cmd_from_req(struct scsi_device *sdev,
1189 struct request *req)
1190 {
1191 struct scsi_cmnd *cmd;
1192
1193 if (!req->special) {
1194 /* Bail if we can't get a reference to the device */
1195 if (!get_device(&sdev->sdev_gendev))
1196 return NULL;
1197
1198 cmd = scsi_get_command(sdev, GFP_ATOMIC);
1199 if (unlikely(!cmd)) {
1200 put_device(&sdev->sdev_gendev);
1201 return NULL;
1202 }
1203 req->special = cmd;
1204 } else {
1205 cmd = req->special;
1206 }
1207
1208 /* pull a tag out of the request if we have one */
1209 cmd->tag = req->tag;
1210 cmd->request = req;
1211
1212 cmd->cmnd = req->cmd;
1213 cmd->prot_op = SCSI_PROT_NORMAL;
1214
1215 return cmd;
1216 }
1217
1218 static int scsi_setup_blk_pc_cmnd(struct scsi_device *sdev, struct request *req)
1219 {
1220 struct scsi_cmnd *cmd = req->special;
1221
1222 /*
1223 * BLOCK_PC requests may transfer data, in which case they must
1224 * a bio attached to them. Or they might contain a SCSI command
1225 * that does not transfer data, in which case they may optionally
1226 * submit a request without an attached bio.
1227 */
1228 if (req->bio) {
1229 int ret = scsi_init_io(cmd);
1230 if (unlikely(ret))
1231 return ret;
1232 } else {
1233 BUG_ON(blk_rq_bytes(req));
1234
1235 memset(&cmd->sdb, 0, sizeof(cmd->sdb));
1236 }
1237
1238 cmd->cmd_len = req->cmd_len;
1239 cmd->transfersize = blk_rq_bytes(req);
1240 cmd->allowed = req->retries;
1241 return BLKPREP_OK;
1242 }
1243
1244 /*
1245 * Setup a REQ_TYPE_FS command. These are simple request from filesystems
1246 * that still need to be translated to SCSI CDBs from the ULD.
1247 */
1248 static int scsi_setup_fs_cmnd(struct scsi_device *sdev, struct request *req)
1249 {
1250 struct scsi_cmnd *cmd = req->special;
1251
1252 if (unlikely(sdev->handler && sdev->handler->prep_fn)) {
1253 int ret = sdev->handler->prep_fn(sdev, req);
1254 if (ret != BLKPREP_OK)
1255 return ret;
1256 }
1257
1258 memset(cmd->cmnd, 0, BLK_MAX_CDB);
1259 return scsi_cmd_to_driver(cmd)->init_command(cmd);
1260 }
1261
1262 static int scsi_setup_cmnd(struct scsi_device *sdev, struct request *req)
1263 {
1264 struct scsi_cmnd *cmd = req->special;
1265
1266 if (!blk_rq_bytes(req))
1267 cmd->sc_data_direction = DMA_NONE;
1268 else if (rq_data_dir(req) == WRITE)
1269 cmd->sc_data_direction = DMA_TO_DEVICE;
1270 else
1271 cmd->sc_data_direction = DMA_FROM_DEVICE;
1272
1273 switch (req->cmd_type) {
1274 case REQ_TYPE_FS:
1275 return scsi_setup_fs_cmnd(sdev, req);
1276 case REQ_TYPE_BLOCK_PC:
1277 return scsi_setup_blk_pc_cmnd(sdev, req);
1278 default:
1279 return BLKPREP_KILL;
1280 }
1281 }
1282
1283 static int
1284 scsi_prep_state_check(struct scsi_device *sdev, struct request *req)
1285 {
1286 int ret = BLKPREP_OK;
1287
1288 /*
1289 * If the device is not in running state we will reject some
1290 * or all commands.
1291 */
1292 if (unlikely(sdev->sdev_state != SDEV_RUNNING)) {
1293 switch (sdev->sdev_state) {
1294 case SDEV_OFFLINE:
1295 case SDEV_TRANSPORT_OFFLINE:
1296 /*
1297 * If the device is offline we refuse to process any
1298 * commands. The device must be brought online
1299 * before trying any recovery commands.
1300 */
1301 sdev_printk(KERN_ERR, sdev,
1302 "rejecting I/O to offline device\n");
1303 ret = BLKPREP_KILL;
1304 break;
1305 case SDEV_DEL:
1306 /*
1307 * If the device is fully deleted, we refuse to
1308 * process any commands as well.
1309 */
1310 sdev_printk(KERN_ERR, sdev,
1311 "rejecting I/O to dead device\n");
1312 ret = BLKPREP_KILL;
1313 break;
1314 case SDEV_BLOCK:
1315 case SDEV_CREATED_BLOCK:
1316 ret = BLKPREP_DEFER;
1317 break;
1318 case SDEV_QUIESCE:
1319 /*
1320 * If the devices is blocked we defer normal commands.
1321 */
1322 if (!(req->cmd_flags & REQ_PREEMPT))
1323 ret = BLKPREP_DEFER;
1324 break;
1325 default:
1326 /*
1327 * For any other not fully online state we only allow
1328 * special commands. In particular any user initiated
1329 * command is not allowed.
1330 */
1331 if (!(req->cmd_flags & REQ_PREEMPT))
1332 ret = BLKPREP_KILL;
1333 break;
1334 }
1335 }
1336 return ret;
1337 }
1338
1339 static int
1340 scsi_prep_return(struct request_queue *q, struct request *req, int ret)
1341 {
1342 struct scsi_device *sdev = q->queuedata;
1343
1344 switch (ret) {
1345 case BLKPREP_KILL:
1346 req->errors = DID_NO_CONNECT << 16;
1347 /* release the command and kill it */
1348 if (req->special) {
1349 struct scsi_cmnd *cmd = req->special;
1350 scsi_release_buffers(cmd);
1351 scsi_put_command(cmd);
1352 put_device(&sdev->sdev_gendev);
1353 req->special = NULL;
1354 }
1355 break;
1356 case BLKPREP_DEFER:
1357 /*
1358 * If we defer, the blk_peek_request() returns NULL, but the
1359 * queue must be restarted, so we schedule a callback to happen
1360 * shortly.
1361 */
1362 if (atomic_read(&sdev->device_busy) == 0)
1363 blk_delay_queue(q, SCSI_QUEUE_DELAY);
1364 break;
1365 default:
1366 req->cmd_flags |= REQ_DONTPREP;
1367 }
1368
1369 return ret;
1370 }
1371
1372 static int scsi_prep_fn(struct request_queue *q, struct request *req)
1373 {
1374 struct scsi_device *sdev = q->queuedata;
1375 struct scsi_cmnd *cmd;
1376 int ret;
1377
1378 ret = scsi_prep_state_check(sdev, req);
1379 if (ret != BLKPREP_OK)
1380 goto out;
1381
1382 cmd = scsi_get_cmd_from_req(sdev, req);
1383 if (unlikely(!cmd)) {
1384 ret = BLKPREP_DEFER;
1385 goto out;
1386 }
1387
1388 ret = scsi_setup_cmnd(sdev, req);
1389 out:
1390 return scsi_prep_return(q, req, ret);
1391 }
1392
1393 static void scsi_unprep_fn(struct request_queue *q, struct request *req)
1394 {
1395 scsi_uninit_cmd(req->special);
1396 }
1397
1398 /*
1399 * scsi_dev_queue_ready: if we can send requests to sdev, return 1 else
1400 * return 0.
1401 *
1402 * Called with the queue_lock held.
1403 */
1404 static inline int scsi_dev_queue_ready(struct request_queue *q,
1405 struct scsi_device *sdev)
1406 {
1407 unsigned int busy;
1408
1409 busy = atomic_inc_return(&sdev->device_busy) - 1;
1410 if (atomic_read(&sdev->device_blocked)) {
1411 if (busy)
1412 goto out_dec;
1413
1414 /*
1415 * unblock after device_blocked iterates to zero
1416 */
1417 if (atomic_dec_return(&sdev->device_blocked) > 0) {
1418 /*
1419 * For the MQ case we take care of this in the caller.
1420 */
1421 if (!q->mq_ops)
1422 blk_delay_queue(q, SCSI_QUEUE_DELAY);
1423 goto out_dec;
1424 }
1425 SCSI_LOG_MLQUEUE(3, sdev_printk(KERN_INFO, sdev,
1426 "unblocking device at zero depth\n"));
1427 }
1428
1429 if (busy >= sdev->queue_depth)
1430 goto out_dec;
1431
1432 return 1;
1433 out_dec:
1434 atomic_dec(&sdev->device_busy);
1435 return 0;
1436 }
1437
1438 /*
1439 * scsi_target_queue_ready: checks if there we can send commands to target
1440 * @sdev: scsi device on starget to check.
1441 */
1442 static inline int scsi_target_queue_ready(struct Scsi_Host *shost,
1443 struct scsi_device *sdev)
1444 {
1445 struct scsi_target *starget = scsi_target(sdev);
1446 unsigned int busy;
1447
1448 if (starget->single_lun) {
1449 spin_lock_irq(shost->host_lock);
1450 if (starget->starget_sdev_user &&
1451 starget->starget_sdev_user != sdev) {
1452 spin_unlock_irq(shost->host_lock);
1453 return 0;
1454 }
1455 starget->starget_sdev_user = sdev;
1456 spin_unlock_irq(shost->host_lock);
1457 }
1458
1459 if (starget->can_queue <= 0)
1460 return 1;
1461
1462 busy = atomic_inc_return(&starget->target_busy) - 1;
1463 if (atomic_read(&starget->target_blocked) > 0) {
1464 if (busy)
1465 goto starved;
1466
1467 /*
1468 * unblock after target_blocked iterates to zero
1469 */
1470 if (atomic_dec_return(&starget->target_blocked) > 0)
1471 goto out_dec;
1472
1473 SCSI_LOG_MLQUEUE(3, starget_printk(KERN_INFO, starget,
1474 "unblocking target at zero depth\n"));
1475 }
1476
1477 if (busy >= starget->can_queue)
1478 goto starved;
1479
1480 return 1;
1481
1482 starved:
1483 spin_lock_irq(shost->host_lock);
1484 list_move_tail(&sdev->starved_entry, &shost->starved_list);
1485 spin_unlock_irq(shost->host_lock);
1486 out_dec:
1487 if (starget->can_queue > 0)
1488 atomic_dec(&starget->target_busy);
1489 return 0;
1490 }
1491
1492 /*
1493 * scsi_host_queue_ready: if we can send requests to shost, return 1 else
1494 * return 0. We must end up running the queue again whenever 0 is
1495 * returned, else IO can hang.
1496 */
1497 static inline int scsi_host_queue_ready(struct request_queue *q,
1498 struct Scsi_Host *shost,
1499 struct scsi_device *sdev)
1500 {
1501 unsigned int busy;
1502
1503 if (scsi_host_in_recovery(shost))
1504 return 0;
1505
1506 busy = atomic_inc_return(&shost->host_busy) - 1;
1507 if (atomic_read(&shost->host_blocked) > 0) {
1508 if (busy)
1509 goto starved;
1510
1511 /*
1512 * unblock after host_blocked iterates to zero
1513 */
1514 if (atomic_dec_return(&shost->host_blocked) > 0)
1515 goto out_dec;
1516
1517 SCSI_LOG_MLQUEUE(3,
1518 shost_printk(KERN_INFO, shost,
1519 "unblocking host at zero depth\n"));
1520 }
1521
1522 if (shost->can_queue > 0 && busy >= shost->can_queue)
1523 goto starved;
1524 if (shost->host_self_blocked)
1525 goto starved;
1526
1527 /* We're OK to process the command, so we can't be starved */
1528 if (!list_empty(&sdev->starved_entry)) {
1529 spin_lock_irq(shost->host_lock);
1530 if (!list_empty(&sdev->starved_entry))
1531 list_del_init(&sdev->starved_entry);
1532 spin_unlock_irq(shost->host_lock);
1533 }
1534
1535 return 1;
1536
1537 starved:
1538 spin_lock_irq(shost->host_lock);
1539 if (list_empty(&sdev->starved_entry))
1540 list_add_tail(&sdev->starved_entry, &shost->starved_list);
1541 spin_unlock_irq(shost->host_lock);
1542 out_dec:
1543 atomic_dec(&shost->host_busy);
1544 return 0;
1545 }
1546
1547 /*
1548 * Busy state exporting function for request stacking drivers.
1549 *
1550 * For efficiency, no lock is taken to check the busy state of
1551 * shost/starget/sdev, since the returned value is not guaranteed and
1552 * may be changed after request stacking drivers call the function,
1553 * regardless of taking lock or not.
1554 *
1555 * When scsi can't dispatch I/Os anymore and needs to kill I/Os scsi
1556 * needs to return 'not busy'. Otherwise, request stacking drivers
1557 * may hold requests forever.
1558 */
1559 static int scsi_lld_busy(struct request_queue *q)
1560 {
1561 struct scsi_device *sdev = q->queuedata;
1562 struct Scsi_Host *shost;
1563
1564 if (blk_queue_dying(q))
1565 return 0;
1566
1567 shost = sdev->host;
1568
1569 /*
1570 * Ignore host/starget busy state.
1571 * Since block layer does not have a concept of fairness across
1572 * multiple queues, congestion of host/starget needs to be handled
1573 * in SCSI layer.
1574 */
1575 if (scsi_host_in_recovery(shost) || scsi_device_is_busy(sdev))
1576 return 1;
1577
1578 return 0;
1579 }
1580
1581 /*
1582 * Kill a request for a dead device
1583 */
1584 static void scsi_kill_request(struct request *req, struct request_queue *q)
1585 {
1586 struct scsi_cmnd *cmd = req->special;
1587 struct scsi_device *sdev;
1588 struct scsi_target *starget;
1589 struct Scsi_Host *shost;
1590
1591 blk_start_request(req);
1592
1593 scmd_printk(KERN_INFO, cmd, "killing request\n");
1594
1595 sdev = cmd->device;
1596 starget = scsi_target(sdev);
1597 shost = sdev->host;
1598 scsi_init_cmd_errh(cmd);
1599 cmd->result = DID_NO_CONNECT << 16;
1600 atomic_inc(&cmd->device->iorequest_cnt);
1601
1602 /*
1603 * SCSI request completion path will do scsi_device_unbusy(),
1604 * bump busy counts. To bump the counters, we need to dance
1605 * with the locks as normal issue path does.
1606 */
1607 atomic_inc(&sdev->device_busy);
1608 atomic_inc(&shost->host_busy);
1609 if (starget->can_queue > 0)
1610 atomic_inc(&starget->target_busy);
1611
1612 blk_complete_request(req);
1613 }
1614
1615 static void scsi_softirq_done(struct request *rq)
1616 {
1617 struct scsi_cmnd *cmd = rq->special;
1618 unsigned long wait_for = (cmd->allowed + 1) * rq->timeout;
1619 int disposition;
1620
1621 INIT_LIST_HEAD(&cmd->eh_entry);
1622
1623 atomic_inc(&cmd->device->iodone_cnt);
1624 if (cmd->result)
1625 atomic_inc(&cmd->device->ioerr_cnt);
1626
1627 disposition = scsi_decide_disposition(cmd);
1628 if (disposition != SUCCESS &&
1629 time_before(cmd->jiffies_at_alloc + wait_for, jiffies)) {
1630 sdev_printk(KERN_ERR, cmd->device,
1631 "timing out command, waited %lus\n",
1632 wait_for/HZ);
1633 disposition = SUCCESS;
1634 }
1635
1636 scsi_log_completion(cmd, disposition);
1637
1638 switch (disposition) {
1639 case SUCCESS:
1640 scsi_finish_command(cmd);
1641 break;
1642 case NEEDS_RETRY:
1643 scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY);
1644 break;
1645 case ADD_TO_MLQUEUE:
1646 scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY);
1647 break;
1648 default:
1649 if (!scsi_eh_scmd_add(cmd, 0))
1650 scsi_finish_command(cmd);
1651 }
1652 }
1653
1654 /**
1655 * scsi_dispatch_command - Dispatch a command to the low-level driver.
1656 * @cmd: command block we are dispatching.
1657 *
1658 * Return: nonzero return request was rejected and device's queue needs to be
1659 * plugged.
1660 */
1661 static int scsi_dispatch_cmd(struct scsi_cmnd *cmd)
1662 {
1663 struct Scsi_Host *host = cmd->device->host;
1664 int rtn = 0;
1665
1666 atomic_inc(&cmd->device->iorequest_cnt);
1667
1668 /* check if the device is still usable */
1669 if (unlikely(cmd->device->sdev_state == SDEV_DEL)) {
1670 /* in SDEV_DEL we error all commands. DID_NO_CONNECT
1671 * returns an immediate error upwards, and signals
1672 * that the device is no longer present */
1673 cmd->result = DID_NO_CONNECT << 16;
1674 goto done;
1675 }
1676
1677 /* Check to see if the scsi lld made this device blocked. */
1678 if (unlikely(scsi_device_blocked(cmd->device))) {
1679 /*
1680 * in blocked state, the command is just put back on
1681 * the device queue. The suspend state has already
1682 * blocked the queue so future requests should not
1683 * occur until the device transitions out of the
1684 * suspend state.
1685 */
1686 SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1687 "queuecommand : device blocked\n"));
1688 return SCSI_MLQUEUE_DEVICE_BUSY;
1689 }
1690
1691 /* Store the LUN value in cmnd, if needed. */
1692 if (cmd->device->lun_in_cdb)
1693 cmd->cmnd[1] = (cmd->cmnd[1] & 0x1f) |
1694 (cmd->device->lun << 5 & 0xe0);
1695
1696 scsi_log_send(cmd);
1697
1698 /*
1699 * Before we queue this command, check if the command
1700 * length exceeds what the host adapter can handle.
1701 */
1702 if (cmd->cmd_len > cmd->device->host->max_cmd_len) {
1703 SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1704 "queuecommand : command too long. "
1705 "cdb_size=%d host->max_cmd_len=%d\n",
1706 cmd->cmd_len, cmd->device->host->max_cmd_len));
1707 cmd->result = (DID_ABORT << 16);
1708 goto done;
1709 }
1710
1711 if (unlikely(host->shost_state == SHOST_DEL)) {
1712 cmd->result = (DID_NO_CONNECT << 16);
1713 goto done;
1714
1715 }
1716
1717 trace_scsi_dispatch_cmd_start(cmd);
1718 rtn = host->hostt->queuecommand(host, cmd);
1719 if (rtn) {
1720 trace_scsi_dispatch_cmd_error(cmd, rtn);
1721 if (rtn != SCSI_MLQUEUE_DEVICE_BUSY &&
1722 rtn != SCSI_MLQUEUE_TARGET_BUSY)
1723 rtn = SCSI_MLQUEUE_HOST_BUSY;
1724
1725 SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1726 "queuecommand : request rejected\n"));
1727 }
1728
1729 return rtn;
1730 done:
1731 cmd->scsi_done(cmd);
1732 return 0;
1733 }
1734
1735 /**
1736 * scsi_done - Invoke completion on finished SCSI command.
1737 * @cmd: The SCSI Command for which a low-level device driver (LLDD) gives
1738 * ownership back to SCSI Core -- i.e. the LLDD has finished with it.
1739 *
1740 * Description: This function is the mid-level's (SCSI Core) interrupt routine,
1741 * which regains ownership of the SCSI command (de facto) from a LLDD, and
1742 * calls blk_complete_request() for further processing.
1743 *
1744 * This function is interrupt context safe.
1745 */
1746 static void scsi_done(struct scsi_cmnd *cmd)
1747 {
1748 trace_scsi_dispatch_cmd_done(cmd);
1749 blk_complete_request(cmd->request);
1750 }
1751
1752 /*
1753 * Function: scsi_request_fn()
1754 *
1755 * Purpose: Main strategy routine for SCSI.
1756 *
1757 * Arguments: q - Pointer to actual queue.
1758 *
1759 * Returns: Nothing
1760 *
1761 * Lock status: IO request lock assumed to be held when called.
1762 */
1763 static void scsi_request_fn(struct request_queue *q)
1764 __releases(q->queue_lock)
1765 __acquires(q->queue_lock)
1766 {
1767 struct scsi_device *sdev = q->queuedata;
1768 struct Scsi_Host *shost;
1769 struct scsi_cmnd *cmd;
1770 struct request *req;
1771
1772 /*
1773 * To start with, we keep looping until the queue is empty, or until
1774 * the host is no longer able to accept any more requests.
1775 */
1776 shost = sdev->host;
1777 for (;;) {
1778 int rtn;
1779 /*
1780 * get next queueable request. We do this early to make sure
1781 * that the request is fully prepared even if we cannot
1782 * accept it.
1783 */
1784 req = blk_peek_request(q);
1785 if (!req)
1786 break;
1787
1788 if (unlikely(!scsi_device_online(sdev))) {
1789 sdev_printk(KERN_ERR, sdev,
1790 "rejecting I/O to offline device\n");
1791 scsi_kill_request(req, q);
1792 continue;
1793 }
1794
1795 if (!scsi_dev_queue_ready(q, sdev))
1796 break;
1797
1798 /*
1799 * Remove the request from the request list.
1800 */
1801 if (!(blk_queue_tagged(q) && !blk_queue_start_tag(q, req)))
1802 blk_start_request(req);
1803
1804 spin_unlock_irq(q->queue_lock);
1805 cmd = req->special;
1806 if (unlikely(cmd == NULL)) {
1807 printk(KERN_CRIT "impossible request in %s.\n"
1808 "please mail a stack trace to "
1809 "linux-scsi@vger.kernel.org\n",
1810 __func__);
1811 blk_dump_rq_flags(req, "foo");
1812 BUG();
1813 }
1814
1815 /*
1816 * We hit this when the driver is using a host wide
1817 * tag map. For device level tag maps the queue_depth check
1818 * in the device ready fn would prevent us from trying
1819 * to allocate a tag. Since the map is a shared host resource
1820 * we add the dev to the starved list so it eventually gets
1821 * a run when a tag is freed.
1822 */
1823 if (blk_queue_tagged(q) && !(req->cmd_flags & REQ_QUEUED)) {
1824 spin_lock_irq(shost->host_lock);
1825 if (list_empty(&sdev->starved_entry))
1826 list_add_tail(&sdev->starved_entry,
1827 &shost->starved_list);
1828 spin_unlock_irq(shost->host_lock);
1829 goto not_ready;
1830 }
1831
1832 if (!scsi_target_queue_ready(shost, sdev))
1833 goto not_ready;
1834
1835 if (!scsi_host_queue_ready(q, shost, sdev))
1836 goto host_not_ready;
1837
1838 if (sdev->simple_tags)
1839 cmd->flags |= SCMD_TAGGED;
1840 else
1841 cmd->flags &= ~SCMD_TAGGED;
1842
1843 /*
1844 * Finally, initialize any error handling parameters, and set up
1845 * the timers for timeouts.
1846 */
1847 scsi_init_cmd_errh(cmd);
1848
1849 /*
1850 * Dispatch the command to the low-level driver.
1851 */
1852 cmd->scsi_done = scsi_done;
1853 rtn = scsi_dispatch_cmd(cmd);
1854 if (rtn) {
1855 scsi_queue_insert(cmd, rtn);
1856 spin_lock_irq(q->queue_lock);
1857 goto out_delay;
1858 }
1859 spin_lock_irq(q->queue_lock);
1860 }
1861
1862 return;
1863
1864 host_not_ready:
1865 if (scsi_target(sdev)->can_queue > 0)
1866 atomic_dec(&scsi_target(sdev)->target_busy);
1867 not_ready:
1868 /*
1869 * lock q, handle tag, requeue req, and decrement device_busy. We
1870 * must return with queue_lock held.
1871 *
1872 * Decrementing device_busy without checking it is OK, as all such
1873 * cases (host limits or settings) should run the queue at some
1874 * later time.
1875 */
1876 spin_lock_irq(q->queue_lock);
1877 blk_requeue_request(q, req);
1878 atomic_dec(&sdev->device_busy);
1879 out_delay:
1880 if (!atomic_read(&sdev->device_busy) && !scsi_device_blocked(sdev))
1881 blk_delay_queue(q, SCSI_QUEUE_DELAY);
1882 }
1883
1884 static inline int prep_to_mq(int ret)
1885 {
1886 switch (ret) {
1887 case BLKPREP_OK:
1888 return 0;
1889 case BLKPREP_DEFER:
1890 return BLK_MQ_RQ_QUEUE_BUSY;
1891 default:
1892 return BLK_MQ_RQ_QUEUE_ERROR;
1893 }
1894 }
1895
1896 static int scsi_mq_prep_fn(struct request *req)
1897 {
1898 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1899 struct scsi_device *sdev = req->q->queuedata;
1900 struct Scsi_Host *shost = sdev->host;
1901 unsigned char *sense_buf = cmd->sense_buffer;
1902 struct scatterlist *sg;
1903
1904 memset(cmd, 0, sizeof(struct scsi_cmnd));
1905
1906 req->special = cmd;
1907
1908 cmd->request = req;
1909 cmd->device = sdev;
1910 cmd->sense_buffer = sense_buf;
1911
1912 cmd->tag = req->tag;
1913
1914 cmd->cmnd = req->cmd;
1915 cmd->prot_op = SCSI_PROT_NORMAL;
1916
1917 INIT_LIST_HEAD(&cmd->list);
1918 INIT_DELAYED_WORK(&cmd->abort_work, scmd_eh_abort_handler);
1919 cmd->jiffies_at_alloc = jiffies;
1920
1921 if (shost->use_cmd_list) {
1922 spin_lock_irq(&sdev->list_lock);
1923 list_add_tail(&cmd->list, &sdev->cmd_list);
1924 spin_unlock_irq(&sdev->list_lock);
1925 }
1926
1927 sg = (void *)cmd + sizeof(struct scsi_cmnd) + shost->hostt->cmd_size;
1928 cmd->sdb.table.sgl = sg;
1929
1930 if (scsi_host_get_prot(shost)) {
1931 cmd->prot_sdb = (void *)sg +
1932 min_t(unsigned int,
1933 shost->sg_tablesize, SCSI_MAX_SG_SEGMENTS) *
1934 sizeof(struct scatterlist);
1935 memset(cmd->prot_sdb, 0, sizeof(struct scsi_data_buffer));
1936
1937 cmd->prot_sdb->table.sgl =
1938 (struct scatterlist *)(cmd->prot_sdb + 1);
1939 }
1940
1941 if (blk_bidi_rq(req)) {
1942 struct request *next_rq = req->next_rq;
1943 struct scsi_data_buffer *bidi_sdb = blk_mq_rq_to_pdu(next_rq);
1944
1945 memset(bidi_sdb, 0, sizeof(struct scsi_data_buffer));
1946 bidi_sdb->table.sgl =
1947 (struct scatterlist *)(bidi_sdb + 1);
1948
1949 next_rq->special = bidi_sdb;
1950 }
1951
1952 blk_mq_start_request(req);
1953
1954 return scsi_setup_cmnd(sdev, req);
1955 }
1956
1957 static void scsi_mq_done(struct scsi_cmnd *cmd)
1958 {
1959 trace_scsi_dispatch_cmd_done(cmd);
1960 blk_mq_complete_request(cmd->request, cmd->request->errors);
1961 }
1962
1963 static int scsi_queue_rq(struct blk_mq_hw_ctx *hctx,
1964 const struct blk_mq_queue_data *bd)
1965 {
1966 struct request *req = bd->rq;
1967 struct request_queue *q = req->q;
1968 struct scsi_device *sdev = q->queuedata;
1969 struct Scsi_Host *shost = sdev->host;
1970 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1971 int ret;
1972 int reason;
1973
1974 ret = prep_to_mq(scsi_prep_state_check(sdev, req));
1975 if (ret)
1976 goto out;
1977
1978 ret = BLK_MQ_RQ_QUEUE_BUSY;
1979 if (!get_device(&sdev->sdev_gendev))
1980 goto out;
1981
1982 if (!scsi_dev_queue_ready(q, sdev))
1983 goto out_put_device;
1984 if (!scsi_target_queue_ready(shost, sdev))
1985 goto out_dec_device_busy;
1986 if (!scsi_host_queue_ready(q, shost, sdev))
1987 goto out_dec_target_busy;
1988
1989
1990 if (!(req->cmd_flags & REQ_DONTPREP)) {
1991 ret = prep_to_mq(scsi_mq_prep_fn(req));
1992 if (ret)
1993 goto out_dec_host_busy;
1994 req->cmd_flags |= REQ_DONTPREP;
1995 } else {
1996 blk_mq_start_request(req);
1997 }
1998
1999 if (sdev->simple_tags)
2000 cmd->flags |= SCMD_TAGGED;
2001 else
2002 cmd->flags &= ~SCMD_TAGGED;
2003
2004 scsi_init_cmd_errh(cmd);
2005 cmd->scsi_done = scsi_mq_done;
2006
2007 reason = scsi_dispatch_cmd(cmd);
2008 if (reason) {
2009 scsi_set_blocked(cmd, reason);
2010 ret = BLK_MQ_RQ_QUEUE_BUSY;
2011 goto out_dec_host_busy;
2012 }
2013
2014 return BLK_MQ_RQ_QUEUE_OK;
2015
2016 out_dec_host_busy:
2017 atomic_dec(&shost->host_busy);
2018 out_dec_target_busy:
2019 if (scsi_target(sdev)->can_queue > 0)
2020 atomic_dec(&scsi_target(sdev)->target_busy);
2021 out_dec_device_busy:
2022 atomic_dec(&sdev->device_busy);
2023 out_put_device:
2024 put_device(&sdev->sdev_gendev);
2025 out:
2026 switch (ret) {
2027 case BLK_MQ_RQ_QUEUE_BUSY:
2028 blk_mq_stop_hw_queue(hctx);
2029 if (atomic_read(&sdev->device_busy) == 0 &&
2030 !scsi_device_blocked(sdev))
2031 blk_mq_delay_queue(hctx, SCSI_QUEUE_DELAY);
2032 break;
2033 case BLK_MQ_RQ_QUEUE_ERROR:
2034 /*
2035 * Make sure to release all allocated ressources when
2036 * we hit an error, as we will never see this command
2037 * again.
2038 */
2039 if (req->cmd_flags & REQ_DONTPREP)
2040 scsi_mq_uninit_cmd(cmd);
2041 break;
2042 default:
2043 break;
2044 }
2045 return ret;
2046 }
2047
2048 static enum blk_eh_timer_return scsi_timeout(struct request *req,
2049 bool reserved)
2050 {
2051 if (reserved)
2052 return BLK_EH_RESET_TIMER;
2053 return scsi_times_out(req);
2054 }
2055
2056 static int scsi_init_request(void *data, struct request *rq,
2057 unsigned int hctx_idx, unsigned int request_idx,
2058 unsigned int numa_node)
2059 {
2060 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
2061
2062 cmd->sense_buffer = kzalloc_node(SCSI_SENSE_BUFFERSIZE, GFP_KERNEL,
2063 numa_node);
2064 if (!cmd->sense_buffer)
2065 return -ENOMEM;
2066 return 0;
2067 }
2068
2069 static void scsi_exit_request(void *data, struct request *rq,
2070 unsigned int hctx_idx, unsigned int request_idx)
2071 {
2072 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
2073
2074 kfree(cmd->sense_buffer);
2075 }
2076
2077 static u64 scsi_calculate_bounce_limit(struct Scsi_Host *shost)
2078 {
2079 struct device *host_dev;
2080 u64 bounce_limit = 0xffffffff;
2081
2082 if (shost->unchecked_isa_dma)
2083 return BLK_BOUNCE_ISA;
2084 /*
2085 * Platforms with virtual-DMA translation
2086 * hardware have no practical limit.
2087 */
2088 if (!PCI_DMA_BUS_IS_PHYS)
2089 return BLK_BOUNCE_ANY;
2090
2091 host_dev = scsi_get_device(shost);
2092 if (host_dev && host_dev->dma_mask)
2093 bounce_limit = (u64)dma_max_pfn(host_dev) << PAGE_SHIFT;
2094
2095 return bounce_limit;
2096 }
2097
2098 static void __scsi_init_queue(struct Scsi_Host *shost, struct request_queue *q)
2099 {
2100 struct device *dev = shost->dma_dev;
2101
2102 /*
2103 * this limit is imposed by hardware restrictions
2104 */
2105 blk_queue_max_segments(q, min_t(unsigned short, shost->sg_tablesize,
2106 SCSI_MAX_SG_CHAIN_SEGMENTS));
2107
2108 if (scsi_host_prot_dma(shost)) {
2109 shost->sg_prot_tablesize =
2110 min_not_zero(shost->sg_prot_tablesize,
2111 (unsigned short)SCSI_MAX_PROT_SG_SEGMENTS);
2112 BUG_ON(shost->sg_prot_tablesize < shost->sg_tablesize);
2113 blk_queue_max_integrity_segments(q, shost->sg_prot_tablesize);
2114 }
2115
2116 blk_queue_max_hw_sectors(q, shost->max_sectors);
2117 blk_queue_bounce_limit(q, scsi_calculate_bounce_limit(shost));
2118 blk_queue_segment_boundary(q, shost->dma_boundary);
2119 dma_set_seg_boundary(dev, shost->dma_boundary);
2120
2121 blk_queue_max_segment_size(q, dma_get_max_seg_size(dev));
2122
2123 if (!shost->use_clustering)
2124 q->limits.cluster = 0;
2125
2126 /*
2127 * set a reasonable default alignment on word boundaries: the
2128 * host and device may alter it using
2129 * blk_queue_update_dma_alignment() later.
2130 */
2131 blk_queue_dma_alignment(q, 0x03);
2132 }
2133
2134 struct request_queue *__scsi_alloc_queue(struct Scsi_Host *shost,
2135 request_fn_proc *request_fn)
2136 {
2137 struct request_queue *q;
2138
2139 q = blk_init_queue(request_fn, NULL);
2140 if (!q)
2141 return NULL;
2142 __scsi_init_queue(shost, q);
2143 return q;
2144 }
2145 EXPORT_SYMBOL(__scsi_alloc_queue);
2146
2147 struct request_queue *scsi_alloc_queue(struct scsi_device *sdev)
2148 {
2149 struct request_queue *q;
2150
2151 q = __scsi_alloc_queue(sdev->host, scsi_request_fn);
2152 if (!q)
2153 return NULL;
2154
2155 blk_queue_prep_rq(q, scsi_prep_fn);
2156 blk_queue_unprep_rq(q, scsi_unprep_fn);
2157 blk_queue_softirq_done(q, scsi_softirq_done);
2158 blk_queue_rq_timed_out(q, scsi_times_out);
2159 blk_queue_lld_busy(q, scsi_lld_busy);
2160 return q;
2161 }
2162
2163 static struct blk_mq_ops scsi_mq_ops = {
2164 .map_queue = blk_mq_map_queue,
2165 .queue_rq = scsi_queue_rq,
2166 .complete = scsi_softirq_done,
2167 .timeout = scsi_timeout,
2168 .init_request = scsi_init_request,
2169 .exit_request = scsi_exit_request,
2170 };
2171
2172 struct request_queue *scsi_mq_alloc_queue(struct scsi_device *sdev)
2173 {
2174 sdev->request_queue = blk_mq_init_queue(&sdev->host->tag_set);
2175 if (IS_ERR(sdev->request_queue))
2176 return NULL;
2177
2178 sdev->request_queue->queuedata = sdev;
2179 __scsi_init_queue(sdev->host, sdev->request_queue);
2180 return sdev->request_queue;
2181 }
2182
2183 int scsi_mq_setup_tags(struct Scsi_Host *shost)
2184 {
2185 unsigned int cmd_size, sgl_size, tbl_size;
2186
2187 tbl_size = shost->sg_tablesize;
2188 if (tbl_size > SCSI_MAX_SG_SEGMENTS)
2189 tbl_size = SCSI_MAX_SG_SEGMENTS;
2190 sgl_size = tbl_size * sizeof(struct scatterlist);
2191 cmd_size = sizeof(struct scsi_cmnd) + shost->hostt->cmd_size + sgl_size;
2192 if (scsi_host_get_prot(shost))
2193 cmd_size += sizeof(struct scsi_data_buffer) + sgl_size;
2194
2195 memset(&shost->tag_set, 0, sizeof(shost->tag_set));
2196 shost->tag_set.ops = &scsi_mq_ops;
2197 shost->tag_set.nr_hw_queues = shost->nr_hw_queues ? : 1;
2198 shost->tag_set.queue_depth = shost->can_queue;
2199 shost->tag_set.cmd_size = cmd_size;
2200 shost->tag_set.numa_node = NUMA_NO_NODE;
2201 shost->tag_set.flags = BLK_MQ_F_SHOULD_MERGE | BLK_MQ_F_SG_MERGE;
2202 shost->tag_set.flags |=
2203 BLK_ALLOC_POLICY_TO_MQ_FLAG(shost->hostt->tag_alloc_policy);
2204 shost->tag_set.driver_data = shost;
2205
2206 return blk_mq_alloc_tag_set(&shost->tag_set);
2207 }
2208
2209 void scsi_mq_destroy_tags(struct Scsi_Host *shost)
2210 {
2211 blk_mq_free_tag_set(&shost->tag_set);
2212 }
2213
2214 /*
2215 * Function: scsi_block_requests()
2216 *
2217 * Purpose: Utility function used by low-level drivers to prevent further
2218 * commands from being queued to the device.
2219 *
2220 * Arguments: shost - Host in question
2221 *
2222 * Returns: Nothing
2223 *
2224 * Lock status: No locks are assumed held.
2225 *
2226 * Notes: There is no timer nor any other means by which the requests
2227 * get unblocked other than the low-level driver calling
2228 * scsi_unblock_requests().
2229 */
2230 void scsi_block_requests(struct Scsi_Host *shost)
2231 {
2232 shost->host_self_blocked = 1;
2233 }
2234 EXPORT_SYMBOL(scsi_block_requests);
2235
2236 /*
2237 * Function: scsi_unblock_requests()
2238 *
2239 * Purpose: Utility function used by low-level drivers to allow further
2240 * commands from being queued to the device.
2241 *
2242 * Arguments: shost - Host in question
2243 *
2244 * Returns: Nothing
2245 *
2246 * Lock status: No locks are assumed held.
2247 *
2248 * Notes: There is no timer nor any other means by which the requests
2249 * get unblocked other than the low-level driver calling
2250 * scsi_unblock_requests().
2251 *
2252 * This is done as an API function so that changes to the
2253 * internals of the scsi mid-layer won't require wholesale
2254 * changes to drivers that use this feature.
2255 */
2256 void scsi_unblock_requests(struct Scsi_Host *shost)
2257 {
2258 shost->host_self_blocked = 0;
2259 scsi_run_host_queues(shost);
2260 }
2261 EXPORT_SYMBOL(scsi_unblock_requests);
2262
2263 int __init scsi_init_queue(void)
2264 {
2265 int i;
2266
2267 scsi_sdb_cache = kmem_cache_create("scsi_data_buffer",
2268 sizeof(struct scsi_data_buffer),
2269 0, 0, NULL);
2270 if (!scsi_sdb_cache) {
2271 printk(KERN_ERR "SCSI: can't init scsi sdb cache\n");
2272 return -ENOMEM;
2273 }
2274
2275 for (i = 0; i < SG_MEMPOOL_NR; i++) {
2276 struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
2277 int size = sgp->size * sizeof(struct scatterlist);
2278
2279 sgp->slab = kmem_cache_create(sgp->name, size, 0,
2280 SLAB_HWCACHE_ALIGN, NULL);
2281 if (!sgp->slab) {
2282 printk(KERN_ERR "SCSI: can't init sg slab %s\n",
2283 sgp->name);
2284 goto cleanup_sdb;
2285 }
2286
2287 sgp->pool = mempool_create_slab_pool(SG_MEMPOOL_SIZE,
2288 sgp->slab);
2289 if (!sgp->pool) {
2290 printk(KERN_ERR "SCSI: can't init sg mempool %s\n",
2291 sgp->name);
2292 goto cleanup_sdb;
2293 }
2294 }
2295
2296 return 0;
2297
2298 cleanup_sdb:
2299 for (i = 0; i < SG_MEMPOOL_NR; i++) {
2300 struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
2301 if (sgp->pool)
2302 mempool_destroy(sgp->pool);
2303 if (sgp->slab)
2304 kmem_cache_destroy(sgp->slab);
2305 }
2306 kmem_cache_destroy(scsi_sdb_cache);
2307
2308 return -ENOMEM;
2309 }
2310
2311 void scsi_exit_queue(void)
2312 {
2313 int i;
2314
2315 kmem_cache_destroy(scsi_sdb_cache);
2316
2317 for (i = 0; i < SG_MEMPOOL_NR; i++) {
2318 struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
2319 mempool_destroy(sgp->pool);
2320 kmem_cache_destroy(sgp->slab);
2321 }
2322 }
2323
2324 /**
2325 * scsi_mode_select - issue a mode select
2326 * @sdev: SCSI device to be queried
2327 * @pf: Page format bit (1 == standard, 0 == vendor specific)
2328 * @sp: Save page bit (0 == don't save, 1 == save)
2329 * @modepage: mode page being requested
2330 * @buffer: request buffer (may not be smaller than eight bytes)
2331 * @len: length of request buffer.
2332 * @timeout: command timeout
2333 * @retries: number of retries before failing
2334 * @data: returns a structure abstracting the mode header data
2335 * @sshdr: place to put sense data (or NULL if no sense to be collected).
2336 * must be SCSI_SENSE_BUFFERSIZE big.
2337 *
2338 * Returns zero if successful; negative error number or scsi
2339 * status on error
2340 *
2341 */
2342 int
2343 scsi_mode_select(struct scsi_device *sdev, int pf, int sp, int modepage,
2344 unsigned char *buffer, int len, int timeout, int retries,
2345 struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
2346 {
2347 unsigned char cmd[10];
2348 unsigned char *real_buffer;
2349 int ret;
2350
2351 memset(cmd, 0, sizeof(cmd));
2352 cmd[1] = (pf ? 0x10 : 0) | (sp ? 0x01 : 0);
2353
2354 if (sdev->use_10_for_ms) {
2355 if (len > 65535)
2356 return -EINVAL;
2357 real_buffer = kmalloc(8 + len, GFP_KERNEL);
2358 if (!real_buffer)
2359 return -ENOMEM;
2360 memcpy(real_buffer + 8, buffer, len);
2361 len += 8;
2362 real_buffer[0] = 0;
2363 real_buffer[1] = 0;
2364 real_buffer[2] = data->medium_type;
2365 real_buffer[3] = data->device_specific;
2366 real_buffer[4] = data->longlba ? 0x01 : 0;
2367 real_buffer[5] = 0;
2368 real_buffer[6] = data->block_descriptor_length >> 8;
2369 real_buffer[7] = data->block_descriptor_length;
2370
2371 cmd[0] = MODE_SELECT_10;
2372 cmd[7] = len >> 8;
2373 cmd[8] = len;
2374 } else {
2375 if (len > 255 || data->block_descriptor_length > 255 ||
2376 data->longlba)
2377 return -EINVAL;
2378
2379 real_buffer = kmalloc(4 + len, GFP_KERNEL);
2380 if (!real_buffer)
2381 return -ENOMEM;
2382 memcpy(real_buffer + 4, buffer, len);
2383 len += 4;
2384 real_buffer[0] = 0;
2385 real_buffer[1] = data->medium_type;
2386 real_buffer[2] = data->device_specific;
2387 real_buffer[3] = data->block_descriptor_length;
2388
2389
2390 cmd[0] = MODE_SELECT;
2391 cmd[4] = len;
2392 }
2393
2394 ret = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, real_buffer, len,
2395 sshdr, timeout, retries, NULL);
2396 kfree(real_buffer);
2397 return ret;
2398 }
2399 EXPORT_SYMBOL_GPL(scsi_mode_select);
2400
2401 /**
2402 * scsi_mode_sense - issue a mode sense, falling back from 10 to six bytes if necessary.
2403 * @sdev: SCSI device to be queried
2404 * @dbd: set if mode sense will allow block descriptors to be returned
2405 * @modepage: mode page being requested
2406 * @buffer: request buffer (may not be smaller than eight bytes)
2407 * @len: length of request buffer.
2408 * @timeout: command timeout
2409 * @retries: number of retries before failing
2410 * @data: returns a structure abstracting the mode header data
2411 * @sshdr: place to put sense data (or NULL if no sense to be collected).
2412 * must be SCSI_SENSE_BUFFERSIZE big.
2413 *
2414 * Returns zero if unsuccessful, or the header offset (either 4
2415 * or 8 depending on whether a six or ten byte command was
2416 * issued) if successful.
2417 */
2418 int
2419 scsi_mode_sense(struct scsi_device *sdev, int dbd, int modepage,
2420 unsigned char *buffer, int len, int timeout, int retries,
2421 struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
2422 {
2423 unsigned char cmd[12];
2424 int use_10_for_ms;
2425 int header_length;
2426 int result, retry_count = retries;
2427 struct scsi_sense_hdr my_sshdr;
2428
2429 memset(data, 0, sizeof(*data));
2430 memset(&cmd[0], 0, 12);
2431 cmd[1] = dbd & 0x18; /* allows DBD and LLBA bits */
2432 cmd[2] = modepage;
2433
2434 /* caller might not be interested in sense, but we need it */
2435 if (!sshdr)
2436 sshdr = &my_sshdr;
2437
2438 retry:
2439 use_10_for_ms = sdev->use_10_for_ms;
2440
2441 if (use_10_for_ms) {
2442 if (len < 8)
2443 len = 8;
2444
2445 cmd[0] = MODE_SENSE_10;
2446 cmd[8] = len;
2447 header_length = 8;
2448 } else {
2449 if (len < 4)
2450 len = 4;
2451
2452 cmd[0] = MODE_SENSE;
2453 cmd[4] = len;
2454 header_length = 4;
2455 }
2456
2457 memset(buffer, 0, len);
2458
2459 result = scsi_execute_req(sdev, cmd, DMA_FROM_DEVICE, buffer, len,
2460 sshdr, timeout, retries, NULL);
2461
2462 /* This code looks awful: what it's doing is making sure an
2463 * ILLEGAL REQUEST sense return identifies the actual command
2464 * byte as the problem. MODE_SENSE commands can return
2465 * ILLEGAL REQUEST if the code page isn't supported */
2466
2467 if (use_10_for_ms && !scsi_status_is_good(result) &&
2468 (driver_byte(result) & DRIVER_SENSE)) {
2469 if (scsi_sense_valid(sshdr)) {
2470 if ((sshdr->sense_key == ILLEGAL_REQUEST) &&
2471 (sshdr->asc == 0x20) && (sshdr->ascq == 0)) {
2472 /*
2473 * Invalid command operation code
2474 */
2475 sdev->use_10_for_ms = 0;
2476 goto retry;
2477 }
2478 }
2479 }
2480
2481 if(scsi_status_is_good(result)) {
2482 if (unlikely(buffer[0] == 0x86 && buffer[1] == 0x0b &&
2483 (modepage == 6 || modepage == 8))) {
2484 /* Initio breakage? */
2485 header_length = 0;
2486 data->length = 13;
2487 data->medium_type = 0;
2488 data->device_specific = 0;
2489 data->longlba = 0;
2490 data->block_descriptor_length = 0;
2491 } else if(use_10_for_ms) {
2492 data->length = buffer[0]*256 + buffer[1] + 2;
2493 data->medium_type = buffer[2];
2494 data->device_specific = buffer[3];
2495 data->longlba = buffer[4] & 0x01;
2496 data->block_descriptor_length = buffer[6]*256
2497 + buffer[7];
2498 } else {
2499 data->length = buffer[0] + 1;
2500 data->medium_type = buffer[1];
2501 data->device_specific = buffer[2];
2502 data->block_descriptor_length = buffer[3];
2503 }
2504 data->header_length = header_length;
2505 } else if ((status_byte(result) == CHECK_CONDITION) &&
2506 scsi_sense_valid(sshdr) &&
2507 sshdr->sense_key == UNIT_ATTENTION && retry_count) {
2508 retry_count--;
2509 goto retry;
2510 }
2511
2512 return result;
2513 }
2514 EXPORT_SYMBOL(scsi_mode_sense);
2515
2516 /**
2517 * scsi_test_unit_ready - test if unit is ready
2518 * @sdev: scsi device to change the state of.
2519 * @timeout: command timeout
2520 * @retries: number of retries before failing
2521 * @sshdr_external: Optional pointer to struct scsi_sense_hdr for
2522 * returning sense. Make sure that this is cleared before passing
2523 * in.
2524 *
2525 * Returns zero if unsuccessful or an error if TUR failed. For
2526 * removable media, UNIT_ATTENTION sets ->changed flag.
2527 **/
2528 int
2529 scsi_test_unit_ready(struct scsi_device *sdev, int timeout, int retries,
2530 struct scsi_sense_hdr *sshdr_external)
2531 {
2532 char cmd[] = {
2533 TEST_UNIT_READY, 0, 0, 0, 0, 0,
2534 };
2535 struct scsi_sense_hdr *sshdr;
2536 int result;
2537
2538 if (!sshdr_external)
2539 sshdr = kzalloc(sizeof(*sshdr), GFP_KERNEL);
2540 else
2541 sshdr = sshdr_external;
2542
2543 /* try to eat the UNIT_ATTENTION if there are enough retries */
2544 do {
2545 result = scsi_execute_req(sdev, cmd, DMA_NONE, NULL, 0, sshdr,
2546 timeout, retries, NULL);
2547 if (sdev->removable && scsi_sense_valid(sshdr) &&
2548 sshdr->sense_key == UNIT_ATTENTION)
2549 sdev->changed = 1;
2550 } while (scsi_sense_valid(sshdr) &&
2551 sshdr->sense_key == UNIT_ATTENTION && --retries);
2552
2553 if (!sshdr_external)
2554 kfree(sshdr);
2555 return result;
2556 }
2557 EXPORT_SYMBOL(scsi_test_unit_ready);
2558
2559 /**
2560 * scsi_device_set_state - Take the given device through the device state model.
2561 * @sdev: scsi device to change the state of.
2562 * @state: state to change to.
2563 *
2564 * Returns zero if unsuccessful or an error if the requested
2565 * transition is illegal.
2566 */
2567 int
2568 scsi_device_set_state(struct scsi_device *sdev, enum scsi_device_state state)
2569 {
2570 enum scsi_device_state oldstate = sdev->sdev_state;
2571
2572 if (state == oldstate)
2573 return 0;
2574
2575 switch (state) {
2576 case SDEV_CREATED:
2577 switch (oldstate) {
2578 case SDEV_CREATED_BLOCK:
2579 break;
2580 default:
2581 goto illegal;
2582 }
2583 break;
2584
2585 case SDEV_RUNNING:
2586 switch (oldstate) {
2587 case SDEV_CREATED:
2588 case SDEV_OFFLINE:
2589 case SDEV_TRANSPORT_OFFLINE:
2590 case SDEV_QUIESCE:
2591 case SDEV_BLOCK:
2592 break;
2593 default:
2594 goto illegal;
2595 }
2596 break;
2597
2598 case SDEV_QUIESCE:
2599 switch (oldstate) {
2600 case SDEV_RUNNING:
2601 case SDEV_OFFLINE:
2602 case SDEV_TRANSPORT_OFFLINE:
2603 break;
2604 default:
2605 goto illegal;
2606 }
2607 break;
2608
2609 case SDEV_OFFLINE:
2610 case SDEV_TRANSPORT_OFFLINE:
2611 switch (oldstate) {
2612 case SDEV_CREATED:
2613 case SDEV_RUNNING:
2614 case SDEV_QUIESCE:
2615 case SDEV_BLOCK:
2616 break;
2617 default:
2618 goto illegal;
2619 }
2620 break;
2621
2622 case SDEV_BLOCK:
2623 switch (oldstate) {
2624 case SDEV_RUNNING:
2625 case SDEV_CREATED_BLOCK:
2626 break;
2627 default:
2628 goto illegal;
2629 }
2630 break;
2631
2632 case SDEV_CREATED_BLOCK:
2633 switch (oldstate) {
2634 case SDEV_CREATED:
2635 break;
2636 default:
2637 goto illegal;
2638 }
2639 break;
2640
2641 case SDEV_CANCEL:
2642 switch (oldstate) {
2643 case SDEV_CREATED:
2644 case SDEV_RUNNING:
2645 case SDEV_QUIESCE:
2646 case SDEV_OFFLINE:
2647 case SDEV_TRANSPORT_OFFLINE:
2648 case SDEV_BLOCK:
2649 break;
2650 default:
2651 goto illegal;
2652 }
2653 break;
2654
2655 case SDEV_DEL:
2656 switch (oldstate) {
2657 case SDEV_CREATED:
2658 case SDEV_RUNNING:
2659 case SDEV_OFFLINE:
2660 case SDEV_TRANSPORT_OFFLINE:
2661 case SDEV_CANCEL:
2662 case SDEV_CREATED_BLOCK:
2663 break;
2664 default:
2665 goto illegal;
2666 }
2667 break;
2668
2669 }
2670 sdev->sdev_state = state;
2671 return 0;
2672
2673 illegal:
2674 SCSI_LOG_ERROR_RECOVERY(1,
2675 sdev_printk(KERN_ERR, sdev,
2676 "Illegal state transition %s->%s",
2677 scsi_device_state_name(oldstate),
2678 scsi_device_state_name(state))
2679 );
2680 return -EINVAL;
2681 }
2682 EXPORT_SYMBOL(scsi_device_set_state);
2683
2684 /**
2685 * sdev_evt_emit - emit a single SCSI device uevent
2686 * @sdev: associated SCSI device
2687 * @evt: event to emit
2688 *
2689 * Send a single uevent (scsi_event) to the associated scsi_device.
2690 */
2691 static void scsi_evt_emit(struct scsi_device *sdev, struct scsi_event *evt)
2692 {
2693 int idx = 0;
2694 char *envp[3];
2695
2696 switch (evt->evt_type) {
2697 case SDEV_EVT_MEDIA_CHANGE:
2698 envp[idx++] = "SDEV_MEDIA_CHANGE=1";
2699 break;
2700 case SDEV_EVT_INQUIRY_CHANGE_REPORTED:
2701 envp[idx++] = "SDEV_UA=INQUIRY_DATA_HAS_CHANGED";
2702 break;
2703 case SDEV_EVT_CAPACITY_CHANGE_REPORTED:
2704 envp[idx++] = "SDEV_UA=CAPACITY_DATA_HAS_CHANGED";
2705 break;
2706 case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED:
2707 envp[idx++] = "SDEV_UA=THIN_PROVISIONING_SOFT_THRESHOLD_REACHED";
2708 break;
2709 case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED:
2710 envp[idx++] = "SDEV_UA=MODE_PARAMETERS_CHANGED";
2711 break;
2712 case SDEV_EVT_LUN_CHANGE_REPORTED:
2713 envp[idx++] = "SDEV_UA=REPORTED_LUNS_DATA_HAS_CHANGED";
2714 break;
2715 case SDEV_EVT_ALUA_STATE_CHANGE_REPORTED:
2716 envp[idx++] = "SDEV_UA=ASYMMETRIC_ACCESS_STATE_CHANGED";
2717 break;
2718 default:
2719 /* do nothing */
2720 break;
2721 }
2722
2723 envp[idx++] = NULL;
2724
2725 kobject_uevent_env(&sdev->sdev_gendev.kobj, KOBJ_CHANGE, envp);
2726 }
2727
2728 /**
2729 * sdev_evt_thread - send a uevent for each scsi event
2730 * @work: work struct for scsi_device
2731 *
2732 * Dispatch queued events to their associated scsi_device kobjects
2733 * as uevents.
2734 */
2735 void scsi_evt_thread(struct work_struct *work)
2736 {
2737 struct scsi_device *sdev;
2738 enum scsi_device_event evt_type;
2739 LIST_HEAD(event_list);
2740
2741 sdev = container_of(work, struct scsi_device, event_work);
2742
2743 for (evt_type = SDEV_EVT_FIRST; evt_type <= SDEV_EVT_LAST; evt_type++)
2744 if (test_and_clear_bit(evt_type, sdev->pending_events))
2745 sdev_evt_send_simple(sdev, evt_type, GFP_KERNEL);
2746
2747 while (1) {
2748 struct scsi_event *evt;
2749 struct list_head *this, *tmp;
2750 unsigned long flags;
2751
2752 spin_lock_irqsave(&sdev->list_lock, flags);
2753 list_splice_init(&sdev->event_list, &event_list);
2754 spin_unlock_irqrestore(&sdev->list_lock, flags);
2755
2756 if (list_empty(&event_list))
2757 break;
2758
2759 list_for_each_safe(this, tmp, &event_list) {
2760 evt = list_entry(this, struct scsi_event, node);
2761 list_del(&evt->node);
2762 scsi_evt_emit(sdev, evt);
2763 kfree(evt);
2764 }
2765 }
2766 }
2767
2768 /**
2769 * sdev_evt_send - send asserted event to uevent thread
2770 * @sdev: scsi_device event occurred on
2771 * @evt: event to send
2772 *
2773 * Assert scsi device event asynchronously.
2774 */
2775 void sdev_evt_send(struct scsi_device *sdev, struct scsi_event *evt)
2776 {
2777 unsigned long flags;
2778
2779 #if 0
2780 /* FIXME: currently this check eliminates all media change events
2781 * for polled devices. Need to update to discriminate between AN
2782 * and polled events */
2783 if (!test_bit(evt->evt_type, sdev->supported_events)) {
2784 kfree(evt);
2785 return;
2786 }
2787 #endif
2788
2789 spin_lock_irqsave(&sdev->list_lock, flags);
2790 list_add_tail(&evt->node, &sdev->event_list);
2791 schedule_work(&sdev->event_work);
2792 spin_unlock_irqrestore(&sdev->list_lock, flags);
2793 }
2794 EXPORT_SYMBOL_GPL(sdev_evt_send);
2795
2796 /**
2797 * sdev_evt_alloc - allocate a new scsi event
2798 * @evt_type: type of event to allocate
2799 * @gfpflags: GFP flags for allocation
2800 *
2801 * Allocates and returns a new scsi_event.
2802 */
2803 struct scsi_event *sdev_evt_alloc(enum scsi_device_event evt_type,
2804 gfp_t gfpflags)
2805 {
2806 struct scsi_event *evt = kzalloc(sizeof(struct scsi_event), gfpflags);
2807 if (!evt)
2808 return NULL;
2809
2810 evt->evt_type = evt_type;
2811 INIT_LIST_HEAD(&evt->node);
2812
2813 /* evt_type-specific initialization, if any */
2814 switch (evt_type) {
2815 case SDEV_EVT_MEDIA_CHANGE:
2816 case SDEV_EVT_INQUIRY_CHANGE_REPORTED:
2817 case SDEV_EVT_CAPACITY_CHANGE_REPORTED:
2818 case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED:
2819 case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED:
2820 case SDEV_EVT_LUN_CHANGE_REPORTED:
2821 case SDEV_EVT_ALUA_STATE_CHANGE_REPORTED:
2822 default:
2823 /* do nothing */
2824 break;
2825 }
2826
2827 return evt;
2828 }
2829 EXPORT_SYMBOL_GPL(sdev_evt_alloc);
2830
2831 /**
2832 * sdev_evt_send_simple - send asserted event to uevent thread
2833 * @sdev: scsi_device event occurred on
2834 * @evt_type: type of event to send
2835 * @gfpflags: GFP flags for allocation
2836 *
2837 * Assert scsi device event asynchronously, given an event type.
2838 */
2839 void sdev_evt_send_simple(struct scsi_device *sdev,
2840 enum scsi_device_event evt_type, gfp_t gfpflags)
2841 {
2842 struct scsi_event *evt = sdev_evt_alloc(evt_type, gfpflags);
2843 if (!evt) {
2844 sdev_printk(KERN_ERR, sdev, "event %d eaten due to OOM\n",
2845 evt_type);
2846 return;
2847 }
2848
2849 sdev_evt_send(sdev, evt);
2850 }
2851 EXPORT_SYMBOL_GPL(sdev_evt_send_simple);
2852
2853 /**
2854 * scsi_device_quiesce - Block user issued commands.
2855 * @sdev: scsi device to quiesce.
2856 *
2857 * This works by trying to transition to the SDEV_QUIESCE state
2858 * (which must be a legal transition). When the device is in this
2859 * state, only special requests will be accepted, all others will
2860 * be deferred. Since special requests may also be requeued requests,
2861 * a successful return doesn't guarantee the device will be
2862 * totally quiescent.
2863 *
2864 * Must be called with user context, may sleep.
2865 *
2866 * Returns zero if unsuccessful or an error if not.
2867 */
2868 int
2869 scsi_device_quiesce(struct scsi_device *sdev)
2870 {
2871 int err = scsi_device_set_state(sdev, SDEV_QUIESCE);
2872 if (err)
2873 return err;
2874
2875 scsi_run_queue(sdev->request_queue);
2876 while (atomic_read(&sdev->device_busy)) {
2877 msleep_interruptible(200);
2878 scsi_run_queue(sdev->request_queue);
2879 }
2880 return 0;
2881 }
2882 EXPORT_SYMBOL(scsi_device_quiesce);
2883
2884 /**
2885 * scsi_device_resume - Restart user issued commands to a quiesced device.
2886 * @sdev: scsi device to resume.
2887 *
2888 * Moves the device from quiesced back to running and restarts the
2889 * queues.
2890 *
2891 * Must be called with user context, may sleep.
2892 */
2893 void scsi_device_resume(struct scsi_device *sdev)
2894 {
2895 /* check if the device state was mutated prior to resume, and if
2896 * so assume the state is being managed elsewhere (for example
2897 * device deleted during suspend)
2898 */
2899 if (sdev->sdev_state != SDEV_QUIESCE ||
2900 scsi_device_set_state(sdev, SDEV_RUNNING))
2901 return;
2902 scsi_run_queue(sdev->request_queue);
2903 }
2904 EXPORT_SYMBOL(scsi_device_resume);
2905
2906 static void
2907 device_quiesce_fn(struct scsi_device *sdev, void *data)
2908 {
2909 scsi_device_quiesce(sdev);
2910 }
2911
2912 void
2913 scsi_target_quiesce(struct scsi_target *starget)
2914 {
2915 starget_for_each_device(starget, NULL, device_quiesce_fn);
2916 }
2917 EXPORT_SYMBOL(scsi_target_quiesce);
2918
2919 static void
2920 device_resume_fn(struct scsi_device *sdev, void *data)
2921 {
2922 scsi_device_resume(sdev);
2923 }
2924
2925 void
2926 scsi_target_resume(struct scsi_target *starget)
2927 {
2928 starget_for_each_device(starget, NULL, device_resume_fn);
2929 }
2930 EXPORT_SYMBOL(scsi_target_resume);
2931
2932 /**
2933 * scsi_internal_device_block - internal function to put a device temporarily into the SDEV_BLOCK state
2934 * @sdev: device to block
2935 *
2936 * Block request made by scsi lld's to temporarily stop all
2937 * scsi commands on the specified device. Called from interrupt
2938 * or normal process context.
2939 *
2940 * Returns zero if successful or error if not
2941 *
2942 * Notes:
2943 * This routine transitions the device to the SDEV_BLOCK state
2944 * (which must be a legal transition). When the device is in this
2945 * state, all commands are deferred until the scsi lld reenables
2946 * the device with scsi_device_unblock or device_block_tmo fires.
2947 */
2948 int
2949 scsi_internal_device_block(struct scsi_device *sdev)
2950 {
2951 struct request_queue *q = sdev->request_queue;
2952 unsigned long flags;
2953 int err = 0;
2954
2955 err = scsi_device_set_state(sdev, SDEV_BLOCK);
2956 if (err) {
2957 err = scsi_device_set_state(sdev, SDEV_CREATED_BLOCK);
2958
2959 if (err)
2960 return err;
2961 }
2962
2963 /*
2964 * The device has transitioned to SDEV_BLOCK. Stop the
2965 * block layer from calling the midlayer with this device's
2966 * request queue.
2967 */
2968 if (q->mq_ops) {
2969 blk_mq_stop_hw_queues(q);
2970 } else {
2971 spin_lock_irqsave(q->queue_lock, flags);
2972 blk_stop_queue(q);
2973 spin_unlock_irqrestore(q->queue_lock, flags);
2974 }
2975
2976 return 0;
2977 }
2978 EXPORT_SYMBOL_GPL(scsi_internal_device_block);
2979
2980 /**
2981 * scsi_internal_device_unblock - resume a device after a block request
2982 * @sdev: device to resume
2983 * @new_state: state to set devices to after unblocking
2984 *
2985 * Called by scsi lld's or the midlayer to restart the device queue
2986 * for the previously suspended scsi device. Called from interrupt or
2987 * normal process context.
2988 *
2989 * Returns zero if successful or error if not.
2990 *
2991 * Notes:
2992 * This routine transitions the device to the SDEV_RUNNING state
2993 * or to one of the offline states (which must be a legal transition)
2994 * allowing the midlayer to goose the queue for this device.
2995 */
2996 int
2997 scsi_internal_device_unblock(struct scsi_device *sdev,
2998 enum scsi_device_state new_state)
2999 {
3000 struct request_queue *q = sdev->request_queue;
3001 unsigned long flags;
3002
3003 /*
3004 * Try to transition the scsi device to SDEV_RUNNING or one of the
3005 * offlined states and goose the device queue if successful.
3006 */
3007 if ((sdev->sdev_state == SDEV_BLOCK) ||
3008 (sdev->sdev_state == SDEV_TRANSPORT_OFFLINE))
3009 sdev->sdev_state = new_state;
3010 else if (sdev->sdev_state == SDEV_CREATED_BLOCK) {
3011 if (new_state == SDEV_TRANSPORT_OFFLINE ||
3012 new_state == SDEV_OFFLINE)
3013 sdev->sdev_state = new_state;
3014 else
3015 sdev->sdev_state = SDEV_CREATED;
3016 } else if (sdev->sdev_state != SDEV_CANCEL &&
3017 sdev->sdev_state != SDEV_OFFLINE)
3018 return -EINVAL;
3019
3020 if (q->mq_ops) {
3021 blk_mq_start_stopped_hw_queues(q, false);
3022 } else {
3023 spin_lock_irqsave(q->queue_lock, flags);
3024 blk_start_queue(q);
3025 spin_unlock_irqrestore(q->queue_lock, flags);
3026 }
3027
3028 return 0;
3029 }
3030 EXPORT_SYMBOL_GPL(scsi_internal_device_unblock);
3031
3032 static void
3033 device_block(struct scsi_device *sdev, void *data)
3034 {
3035 scsi_internal_device_block(sdev);
3036 }
3037
3038 static int
3039 target_block(struct device *dev, void *data)
3040 {
3041 if (scsi_is_target_device(dev))
3042 starget_for_each_device(to_scsi_target(dev), NULL,
3043 device_block);
3044 return 0;
3045 }
3046
3047 void
3048 scsi_target_block(struct device *dev)
3049 {
3050 if (scsi_is_target_device(dev))
3051 starget_for_each_device(to_scsi_target(dev), NULL,
3052 device_block);
3053 else
3054 device_for_each_child(dev, NULL, target_block);
3055 }
3056 EXPORT_SYMBOL_GPL(scsi_target_block);
3057
3058 static void
3059 device_unblock(struct scsi_device *sdev, void *data)
3060 {
3061 scsi_internal_device_unblock(sdev, *(enum scsi_device_state *)data);
3062 }
3063
3064 static int
3065 target_unblock(struct device *dev, void *data)
3066 {
3067 if (scsi_is_target_device(dev))
3068 starget_for_each_device(to_scsi_target(dev), data,
3069 device_unblock);
3070 return 0;
3071 }
3072
3073 void
3074 scsi_target_unblock(struct device *dev, enum scsi_device_state new_state)
3075 {
3076 if (scsi_is_target_device(dev))
3077 starget_for_each_device(to_scsi_target(dev), &new_state,
3078 device_unblock);
3079 else
3080 device_for_each_child(dev, &new_state, target_unblock);
3081 }
3082 EXPORT_SYMBOL_GPL(scsi_target_unblock);
3083
3084 /**
3085 * scsi_kmap_atomic_sg - find and atomically map an sg-elemnt
3086 * @sgl: scatter-gather list
3087 * @sg_count: number of segments in sg
3088 * @offset: offset in bytes into sg, on return offset into the mapped area
3089 * @len: bytes to map, on return number of bytes mapped
3090 *
3091 * Returns virtual address of the start of the mapped page
3092 */
3093 void *scsi_kmap_atomic_sg(struct scatterlist *sgl, int sg_count,
3094 size_t *offset, size_t *len)
3095 {
3096 int i;
3097 size_t sg_len = 0, len_complete = 0;
3098 struct scatterlist *sg;
3099 struct page *page;
3100
3101 WARN_ON(!irqs_disabled());
3102
3103 for_each_sg(sgl, sg, sg_count, i) {
3104 len_complete = sg_len; /* Complete sg-entries */
3105 sg_len += sg->length;
3106 if (sg_len > *offset)
3107 break;
3108 }
3109
3110 if (unlikely(i == sg_count)) {
3111 printk(KERN_ERR "%s: Bytes in sg: %zu, requested offset %zu, "
3112 "elements %d\n",
3113 __func__, sg_len, *offset, sg_count);
3114 WARN_ON(1);
3115 return NULL;
3116 }
3117
3118 /* Offset starting from the beginning of first page in this sg-entry */
3119 *offset = *offset - len_complete + sg->offset;
3120
3121 /* Assumption: contiguous pages can be accessed as "page + i" */
3122 page = nth_page(sg_page(sg), (*offset >> PAGE_SHIFT));
3123 *offset &= ~PAGE_MASK;
3124
3125 /* Bytes in this sg-entry from *offset to the end of the page */
3126 sg_len = PAGE_SIZE - *offset;
3127 if (*len > sg_len)
3128 *len = sg_len;
3129
3130 return kmap_atomic(page);
3131 }
3132 EXPORT_SYMBOL(scsi_kmap_atomic_sg);
3133
3134 /**
3135 * scsi_kunmap_atomic_sg - atomically unmap a virtual address, previously mapped with scsi_kmap_atomic_sg
3136 * @virt: virtual address to be unmapped
3137 */
3138 void scsi_kunmap_atomic_sg(void *virt)
3139 {
3140 kunmap_atomic(virt);
3141 }
3142 EXPORT_SYMBOL(scsi_kunmap_atomic_sg);
3143
3144 void sdev_disable_disk_events(struct scsi_device *sdev)
3145 {
3146 atomic_inc(&sdev->disk_events_disable_depth);
3147 }
3148 EXPORT_SYMBOL(sdev_disable_disk_events);
3149
3150 void sdev_enable_disk_events(struct scsi_device *sdev)
3151 {
3152 if (WARN_ON_ONCE(atomic_read(&sdev->disk_events_disable_depth) <= 0))
3153 return;
3154 atomic_dec(&sdev->disk_events_disable_depth);
3155 }
3156 EXPORT_SYMBOL(sdev_enable_disk_events);
This page took 0.130976 seconds and 5 git commands to generate.