7fa54fe51f63fd8f684284f47207c499087bedb7
[deliverable/linux.git] / drivers / scsi / scsi_lib.c
1 /*
2 * scsi_lib.c Copyright (C) 1999 Eric Youngdale
3 *
4 * SCSI queueing library.
5 * Initial versions: Eric Youngdale (eric@andante.org).
6 * Based upon conversations with large numbers
7 * of people at Linux Expo.
8 */
9
10 #include <linux/bio.h>
11 #include <linux/bitops.h>
12 #include <linux/blkdev.h>
13 #include <linux/completion.h>
14 #include <linux/kernel.h>
15 #include <linux/export.h>
16 #include <linux/mempool.h>
17 #include <linux/slab.h>
18 #include <linux/init.h>
19 #include <linux/pci.h>
20 #include <linux/delay.h>
21 #include <linux/hardirq.h>
22 #include <linux/scatterlist.h>
23
24 #include <scsi/scsi.h>
25 #include <scsi/scsi_cmnd.h>
26 #include <scsi/scsi_dbg.h>
27 #include <scsi/scsi_device.h>
28 #include <scsi/scsi_driver.h>
29 #include <scsi/scsi_eh.h>
30 #include <scsi/scsi_host.h>
31
32 #include "scsi_priv.h"
33 #include "scsi_logging.h"
34
35
36 #define SG_MEMPOOL_NR ARRAY_SIZE(scsi_sg_pools)
37 #define SG_MEMPOOL_SIZE 2
38
39 struct scsi_host_sg_pool {
40 size_t size;
41 char *name;
42 struct kmem_cache *slab;
43 mempool_t *pool;
44 };
45
46 #define SP(x) { x, "sgpool-" __stringify(x) }
47 #if (SCSI_MAX_SG_SEGMENTS < 32)
48 #error SCSI_MAX_SG_SEGMENTS is too small (must be 32 or greater)
49 #endif
50 static struct scsi_host_sg_pool scsi_sg_pools[] = {
51 SP(8),
52 SP(16),
53 #if (SCSI_MAX_SG_SEGMENTS > 32)
54 SP(32),
55 #if (SCSI_MAX_SG_SEGMENTS > 64)
56 SP(64),
57 #if (SCSI_MAX_SG_SEGMENTS > 128)
58 SP(128),
59 #if (SCSI_MAX_SG_SEGMENTS > 256)
60 #error SCSI_MAX_SG_SEGMENTS is too large (256 MAX)
61 #endif
62 #endif
63 #endif
64 #endif
65 SP(SCSI_MAX_SG_SEGMENTS)
66 };
67 #undef SP
68
69 struct kmem_cache *scsi_sdb_cache;
70
71 /*
72 * When to reinvoke queueing after a resource shortage. It's 3 msecs to
73 * not change behaviour from the previous unplug mechanism, experimentation
74 * may prove this needs changing.
75 */
76 #define SCSI_QUEUE_DELAY 3
77
78 /**
79 * __scsi_queue_insert - private queue insertion
80 * @cmd: The SCSI command being requeued
81 * @reason: The reason for the requeue
82 * @unbusy: Whether the queue should be unbusied
83 *
84 * This is a private queue insertion. The public interface
85 * scsi_queue_insert() always assumes the queue should be unbusied
86 * because it's always called before the completion. This function is
87 * for a requeue after completion, which should only occur in this
88 * file.
89 */
90 static void __scsi_queue_insert(struct scsi_cmnd *cmd, int reason, int unbusy)
91 {
92 struct Scsi_Host *host = cmd->device->host;
93 struct scsi_device *device = cmd->device;
94 struct scsi_target *starget = scsi_target(device);
95 struct request_queue *q = device->request_queue;
96 unsigned long flags;
97
98 SCSI_LOG_MLQUEUE(1,
99 printk("Inserting command %p into mlqueue\n", cmd));
100
101 /*
102 * Set the appropriate busy bit for the device/host.
103 *
104 * If the host/device isn't busy, assume that something actually
105 * completed, and that we should be able to queue a command now.
106 *
107 * Note that the prior mid-layer assumption that any host could
108 * always queue at least one command is now broken. The mid-layer
109 * will implement a user specifiable stall (see
110 * scsi_host.max_host_blocked and scsi_device.max_device_blocked)
111 * if a command is requeued with no other commands outstanding
112 * either for the device or for the host.
113 */
114 switch (reason) {
115 case SCSI_MLQUEUE_HOST_BUSY:
116 host->host_blocked = host->max_host_blocked;
117 break;
118 case SCSI_MLQUEUE_DEVICE_BUSY:
119 case SCSI_MLQUEUE_EH_RETRY:
120 device->device_blocked = device->max_device_blocked;
121 break;
122 case SCSI_MLQUEUE_TARGET_BUSY:
123 starget->target_blocked = starget->max_target_blocked;
124 break;
125 }
126
127 /*
128 * Decrement the counters, since these commands are no longer
129 * active on the host/device.
130 */
131 if (unbusy)
132 scsi_device_unbusy(device);
133
134 /*
135 * Requeue this command. It will go before all other commands
136 * that are already in the queue. Schedule requeue work under
137 * lock such that the kblockd_schedule_work() call happens
138 * before blk_cleanup_queue() finishes.
139 */
140 spin_lock_irqsave(q->queue_lock, flags);
141 blk_requeue_request(q, cmd->request);
142 kblockd_schedule_work(q, &device->requeue_work);
143 spin_unlock_irqrestore(q->queue_lock, flags);
144 }
145
146 /*
147 * Function: scsi_queue_insert()
148 *
149 * Purpose: Insert a command in the midlevel queue.
150 *
151 * Arguments: cmd - command that we are adding to queue.
152 * reason - why we are inserting command to queue.
153 *
154 * Lock status: Assumed that lock is not held upon entry.
155 *
156 * Returns: Nothing.
157 *
158 * Notes: We do this for one of two cases. Either the host is busy
159 * and it cannot accept any more commands for the time being,
160 * or the device returned QUEUE_FULL and can accept no more
161 * commands.
162 * Notes: This could be called either from an interrupt context or a
163 * normal process context.
164 */
165 void scsi_queue_insert(struct scsi_cmnd *cmd, int reason)
166 {
167 __scsi_queue_insert(cmd, reason, 1);
168 }
169 /**
170 * scsi_execute - insert request and wait for the result
171 * @sdev: scsi device
172 * @cmd: scsi command
173 * @data_direction: data direction
174 * @buffer: data buffer
175 * @bufflen: len of buffer
176 * @sense: optional sense buffer
177 * @timeout: request timeout in seconds
178 * @retries: number of times to retry request
179 * @flags: or into request flags;
180 * @resid: optional residual length
181 *
182 * returns the req->errors value which is the scsi_cmnd result
183 * field.
184 */
185 int scsi_execute(struct scsi_device *sdev, const unsigned char *cmd,
186 int data_direction, void *buffer, unsigned bufflen,
187 unsigned char *sense, int timeout, int retries, u64 flags,
188 int *resid)
189 {
190 struct request *req;
191 int write = (data_direction == DMA_TO_DEVICE);
192 int ret = DRIVER_ERROR << 24;
193
194 req = blk_get_request(sdev->request_queue, write, __GFP_WAIT);
195 if (!req)
196 return ret;
197
198 if (bufflen && blk_rq_map_kern(sdev->request_queue, req,
199 buffer, bufflen, __GFP_WAIT))
200 goto out;
201
202 req->cmd_len = COMMAND_SIZE(cmd[0]);
203 memcpy(req->cmd, cmd, req->cmd_len);
204 req->sense = sense;
205 req->sense_len = 0;
206 req->retries = retries;
207 req->timeout = timeout;
208 req->cmd_type = REQ_TYPE_BLOCK_PC;
209 req->cmd_flags |= flags | REQ_QUIET | REQ_PREEMPT;
210
211 /*
212 * head injection *required* here otherwise quiesce won't work
213 */
214 blk_execute_rq(req->q, NULL, req, 1);
215
216 /*
217 * Some devices (USB mass-storage in particular) may transfer
218 * garbage data together with a residue indicating that the data
219 * is invalid. Prevent the garbage from being misinterpreted
220 * and prevent security leaks by zeroing out the excess data.
221 */
222 if (unlikely(req->resid_len > 0 && req->resid_len <= bufflen))
223 memset(buffer + (bufflen - req->resid_len), 0, req->resid_len);
224
225 if (resid)
226 *resid = req->resid_len;
227 ret = req->errors;
228 out:
229 blk_put_request(req);
230
231 return ret;
232 }
233 EXPORT_SYMBOL(scsi_execute);
234
235 int scsi_execute_req_flags(struct scsi_device *sdev, const unsigned char *cmd,
236 int data_direction, void *buffer, unsigned bufflen,
237 struct scsi_sense_hdr *sshdr, int timeout, int retries,
238 int *resid, u64 flags)
239 {
240 char *sense = NULL;
241 int result;
242
243 if (sshdr) {
244 sense = kzalloc(SCSI_SENSE_BUFFERSIZE, GFP_NOIO);
245 if (!sense)
246 return DRIVER_ERROR << 24;
247 }
248 result = scsi_execute(sdev, cmd, data_direction, buffer, bufflen,
249 sense, timeout, retries, flags, resid);
250 if (sshdr)
251 scsi_normalize_sense(sense, SCSI_SENSE_BUFFERSIZE, sshdr);
252
253 kfree(sense);
254 return result;
255 }
256 EXPORT_SYMBOL(scsi_execute_req_flags);
257
258 /*
259 * Function: scsi_init_cmd_errh()
260 *
261 * Purpose: Initialize cmd fields related to error handling.
262 *
263 * Arguments: cmd - command that is ready to be queued.
264 *
265 * Notes: This function has the job of initializing a number of
266 * fields related to error handling. Typically this will
267 * be called once for each command, as required.
268 */
269 static void scsi_init_cmd_errh(struct scsi_cmnd *cmd)
270 {
271 cmd->serial_number = 0;
272 scsi_set_resid(cmd, 0);
273 memset(cmd->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE);
274 if (cmd->cmd_len == 0)
275 cmd->cmd_len = scsi_command_size(cmd->cmnd);
276 }
277
278 void scsi_device_unbusy(struct scsi_device *sdev)
279 {
280 struct Scsi_Host *shost = sdev->host;
281 struct scsi_target *starget = scsi_target(sdev);
282 unsigned long flags;
283
284 spin_lock_irqsave(shost->host_lock, flags);
285 shost->host_busy--;
286 starget->target_busy--;
287 if (unlikely(scsi_host_in_recovery(shost) &&
288 (shost->host_failed || shost->host_eh_scheduled)))
289 scsi_eh_wakeup(shost);
290 spin_unlock(shost->host_lock);
291 spin_lock(sdev->request_queue->queue_lock);
292 sdev->device_busy--;
293 spin_unlock_irqrestore(sdev->request_queue->queue_lock, flags);
294 }
295
296 /*
297 * Called for single_lun devices on IO completion. Clear starget_sdev_user,
298 * and call blk_run_queue for all the scsi_devices on the target -
299 * including current_sdev first.
300 *
301 * Called with *no* scsi locks held.
302 */
303 static void scsi_single_lun_run(struct scsi_device *current_sdev)
304 {
305 struct Scsi_Host *shost = current_sdev->host;
306 struct scsi_device *sdev, *tmp;
307 struct scsi_target *starget = scsi_target(current_sdev);
308 unsigned long flags;
309
310 spin_lock_irqsave(shost->host_lock, flags);
311 starget->starget_sdev_user = NULL;
312 spin_unlock_irqrestore(shost->host_lock, flags);
313
314 /*
315 * Call blk_run_queue for all LUNs on the target, starting with
316 * current_sdev. We race with others (to set starget_sdev_user),
317 * but in most cases, we will be first. Ideally, each LU on the
318 * target would get some limited time or requests on the target.
319 */
320 blk_run_queue(current_sdev->request_queue);
321
322 spin_lock_irqsave(shost->host_lock, flags);
323 if (starget->starget_sdev_user)
324 goto out;
325 list_for_each_entry_safe(sdev, tmp, &starget->devices,
326 same_target_siblings) {
327 if (sdev == current_sdev)
328 continue;
329 if (scsi_device_get(sdev))
330 continue;
331
332 spin_unlock_irqrestore(shost->host_lock, flags);
333 blk_run_queue(sdev->request_queue);
334 spin_lock_irqsave(shost->host_lock, flags);
335
336 scsi_device_put(sdev);
337 }
338 out:
339 spin_unlock_irqrestore(shost->host_lock, flags);
340 }
341
342 static inline int scsi_device_is_busy(struct scsi_device *sdev)
343 {
344 if (sdev->device_busy >= sdev->queue_depth || sdev->device_blocked)
345 return 1;
346
347 return 0;
348 }
349
350 static inline int scsi_target_is_busy(struct scsi_target *starget)
351 {
352 return ((starget->can_queue > 0 &&
353 starget->target_busy >= starget->can_queue) ||
354 starget->target_blocked);
355 }
356
357 static inline int scsi_host_is_busy(struct Scsi_Host *shost)
358 {
359 if ((shost->can_queue > 0 && shost->host_busy >= shost->can_queue) ||
360 shost->host_blocked || shost->host_self_blocked)
361 return 1;
362
363 return 0;
364 }
365
366 static void scsi_starved_list_run(struct Scsi_Host *shost)
367 {
368 LIST_HEAD(starved_list);
369 struct scsi_device *sdev;
370 unsigned long flags;
371
372 spin_lock_irqsave(shost->host_lock, flags);
373 list_splice_init(&shost->starved_list, &starved_list);
374
375 while (!list_empty(&starved_list)) {
376 struct request_queue *slq;
377
378 /*
379 * As long as shost is accepting commands and we have
380 * starved queues, call blk_run_queue. scsi_request_fn
381 * drops the queue_lock and can add us back to the
382 * starved_list.
383 *
384 * host_lock protects the starved_list and starved_entry.
385 * scsi_request_fn must get the host_lock before checking
386 * or modifying starved_list or starved_entry.
387 */
388 if (scsi_host_is_busy(shost))
389 break;
390
391 sdev = list_entry(starved_list.next,
392 struct scsi_device, starved_entry);
393 list_del_init(&sdev->starved_entry);
394 if (scsi_target_is_busy(scsi_target(sdev))) {
395 list_move_tail(&sdev->starved_entry,
396 &shost->starved_list);
397 continue;
398 }
399
400 /*
401 * Once we drop the host lock, a racing scsi_remove_device()
402 * call may remove the sdev from the starved list and destroy
403 * it and the queue. Mitigate by taking a reference to the
404 * queue and never touching the sdev again after we drop the
405 * host lock. Note: if __scsi_remove_device() invokes
406 * blk_cleanup_queue() before the queue is run from this
407 * function then blk_run_queue() will return immediately since
408 * blk_cleanup_queue() marks the queue with QUEUE_FLAG_DYING.
409 */
410 slq = sdev->request_queue;
411 if (!blk_get_queue(slq))
412 continue;
413 spin_unlock_irqrestore(shost->host_lock, flags);
414
415 blk_run_queue(slq);
416 blk_put_queue(slq);
417
418 spin_lock_irqsave(shost->host_lock, flags);
419 }
420 /* put any unprocessed entries back */
421 list_splice(&starved_list, &shost->starved_list);
422 spin_unlock_irqrestore(shost->host_lock, flags);
423 }
424
425 /*
426 * Function: scsi_run_queue()
427 *
428 * Purpose: Select a proper request queue to serve next
429 *
430 * Arguments: q - last request's queue
431 *
432 * Returns: Nothing
433 *
434 * Notes: The previous command was completely finished, start
435 * a new one if possible.
436 */
437 static void scsi_run_queue(struct request_queue *q)
438 {
439 struct scsi_device *sdev = q->queuedata;
440
441 if (scsi_target(sdev)->single_lun)
442 scsi_single_lun_run(sdev);
443 if (!list_empty(&sdev->host->starved_list))
444 scsi_starved_list_run(sdev->host);
445
446 blk_run_queue(q);
447 }
448
449 void scsi_requeue_run_queue(struct work_struct *work)
450 {
451 struct scsi_device *sdev;
452 struct request_queue *q;
453
454 sdev = container_of(work, struct scsi_device, requeue_work);
455 q = sdev->request_queue;
456 scsi_run_queue(q);
457 }
458
459 /*
460 * Function: scsi_requeue_command()
461 *
462 * Purpose: Handle post-processing of completed commands.
463 *
464 * Arguments: q - queue to operate on
465 * cmd - command that may need to be requeued.
466 *
467 * Returns: Nothing
468 *
469 * Notes: After command completion, there may be blocks left
470 * over which weren't finished by the previous command
471 * this can be for a number of reasons - the main one is
472 * I/O errors in the middle of the request, in which case
473 * we need to request the blocks that come after the bad
474 * sector.
475 * Notes: Upon return, cmd is a stale pointer.
476 */
477 static void scsi_requeue_command(struct request_queue *q, struct scsi_cmnd *cmd)
478 {
479 struct scsi_device *sdev = cmd->device;
480 struct request *req = cmd->request;
481 unsigned long flags;
482
483 spin_lock_irqsave(q->queue_lock, flags);
484 blk_unprep_request(req);
485 req->special = NULL;
486 scsi_put_command(cmd);
487 blk_requeue_request(q, req);
488 spin_unlock_irqrestore(q->queue_lock, flags);
489
490 scsi_run_queue(q);
491
492 put_device(&sdev->sdev_gendev);
493 }
494
495 void scsi_next_command(struct scsi_cmnd *cmd)
496 {
497 struct scsi_device *sdev = cmd->device;
498 struct request_queue *q = sdev->request_queue;
499
500 scsi_put_command(cmd);
501 scsi_run_queue(q);
502
503 put_device(&sdev->sdev_gendev);
504 }
505
506 void scsi_run_host_queues(struct Scsi_Host *shost)
507 {
508 struct scsi_device *sdev;
509
510 shost_for_each_device(sdev, shost)
511 scsi_run_queue(sdev->request_queue);
512 }
513
514 static void __scsi_release_buffers(struct scsi_cmnd *, int);
515
516 /*
517 * Function: scsi_end_request()
518 *
519 * Purpose: Post-processing of completed commands (usually invoked at end
520 * of upper level post-processing and scsi_io_completion).
521 *
522 * Arguments: cmd - command that is complete.
523 * error - 0 if I/O indicates success, < 0 for I/O error.
524 * bytes - number of bytes of completed I/O
525 * requeue - indicates whether we should requeue leftovers.
526 *
527 * Lock status: Assumed that lock is not held upon entry.
528 *
529 * Returns: cmd if requeue required, NULL otherwise.
530 *
531 * Notes: This is called for block device requests in order to
532 * mark some number of sectors as complete.
533 *
534 * We are guaranteeing that the request queue will be goosed
535 * at some point during this call.
536 * Notes: If cmd was requeued, upon return it will be a stale pointer.
537 */
538 static struct scsi_cmnd *scsi_end_request(struct scsi_cmnd *cmd, int error,
539 int bytes, int requeue)
540 {
541 struct request_queue *q = cmd->device->request_queue;
542 struct request *req = cmd->request;
543
544 /*
545 * If there are blocks left over at the end, set up the command
546 * to queue the remainder of them.
547 */
548 if (blk_end_request(req, error, bytes)) {
549 /* kill remainder if no retrys */
550 if (error && scsi_noretry_cmd(cmd))
551 blk_end_request_all(req, error);
552 else {
553 if (requeue) {
554 /*
555 * Bleah. Leftovers again. Stick the
556 * leftovers in the front of the
557 * queue, and goose the queue again.
558 */
559 scsi_release_buffers(cmd);
560 scsi_requeue_command(q, cmd);
561 cmd = NULL;
562 }
563 return cmd;
564 }
565 }
566
567 /*
568 * This will goose the queue request function at the end, so we don't
569 * need to worry about launching another command.
570 */
571 __scsi_release_buffers(cmd, 0);
572 scsi_next_command(cmd);
573 return NULL;
574 }
575
576 static inline unsigned int scsi_sgtable_index(unsigned short nents)
577 {
578 unsigned int index;
579
580 BUG_ON(nents > SCSI_MAX_SG_SEGMENTS);
581
582 if (nents <= 8)
583 index = 0;
584 else
585 index = get_count_order(nents) - 3;
586
587 return index;
588 }
589
590 static void scsi_sg_free(struct scatterlist *sgl, unsigned int nents)
591 {
592 struct scsi_host_sg_pool *sgp;
593
594 sgp = scsi_sg_pools + scsi_sgtable_index(nents);
595 mempool_free(sgl, sgp->pool);
596 }
597
598 static struct scatterlist *scsi_sg_alloc(unsigned int nents, gfp_t gfp_mask)
599 {
600 struct scsi_host_sg_pool *sgp;
601
602 sgp = scsi_sg_pools + scsi_sgtable_index(nents);
603 return mempool_alloc(sgp->pool, gfp_mask);
604 }
605
606 static int scsi_alloc_sgtable(struct scsi_data_buffer *sdb, int nents,
607 gfp_t gfp_mask)
608 {
609 int ret;
610
611 BUG_ON(!nents);
612
613 ret = __sg_alloc_table(&sdb->table, nents, SCSI_MAX_SG_SEGMENTS,
614 gfp_mask, scsi_sg_alloc);
615 if (unlikely(ret))
616 __sg_free_table(&sdb->table, SCSI_MAX_SG_SEGMENTS,
617 scsi_sg_free);
618
619 return ret;
620 }
621
622 static void scsi_free_sgtable(struct scsi_data_buffer *sdb)
623 {
624 __sg_free_table(&sdb->table, SCSI_MAX_SG_SEGMENTS, scsi_sg_free);
625 }
626
627 static void __scsi_release_buffers(struct scsi_cmnd *cmd, int do_bidi_check)
628 {
629
630 if (cmd->sdb.table.nents)
631 scsi_free_sgtable(&cmd->sdb);
632
633 memset(&cmd->sdb, 0, sizeof(cmd->sdb));
634
635 if (do_bidi_check && scsi_bidi_cmnd(cmd)) {
636 struct scsi_data_buffer *bidi_sdb =
637 cmd->request->next_rq->special;
638 scsi_free_sgtable(bidi_sdb);
639 kmem_cache_free(scsi_sdb_cache, bidi_sdb);
640 cmd->request->next_rq->special = NULL;
641 }
642
643 if (scsi_prot_sg_count(cmd))
644 scsi_free_sgtable(cmd->prot_sdb);
645 }
646
647 /*
648 * Function: scsi_release_buffers()
649 *
650 * Purpose: Completion processing for block device I/O requests.
651 *
652 * Arguments: cmd - command that we are bailing.
653 *
654 * Lock status: Assumed that no lock is held upon entry.
655 *
656 * Returns: Nothing
657 *
658 * Notes: In the event that an upper level driver rejects a
659 * command, we must release resources allocated during
660 * the __init_io() function. Primarily this would involve
661 * the scatter-gather table, and potentially any bounce
662 * buffers.
663 */
664 void scsi_release_buffers(struct scsi_cmnd *cmd)
665 {
666 __scsi_release_buffers(cmd, 1);
667 }
668 EXPORT_SYMBOL(scsi_release_buffers);
669
670 /**
671 * __scsi_error_from_host_byte - translate SCSI error code into errno
672 * @cmd: SCSI command (unused)
673 * @result: scsi error code
674 *
675 * Translate SCSI error code into standard UNIX errno.
676 * Return values:
677 * -ENOLINK temporary transport failure
678 * -EREMOTEIO permanent target failure, do not retry
679 * -EBADE permanent nexus failure, retry on other path
680 * -ENOSPC No write space available
681 * -ENODATA Medium error
682 * -EIO unspecified I/O error
683 */
684 static int __scsi_error_from_host_byte(struct scsi_cmnd *cmd, int result)
685 {
686 int error = 0;
687
688 switch(host_byte(result)) {
689 case DID_TRANSPORT_FAILFAST:
690 error = -ENOLINK;
691 break;
692 case DID_TARGET_FAILURE:
693 set_host_byte(cmd, DID_OK);
694 error = -EREMOTEIO;
695 break;
696 case DID_NEXUS_FAILURE:
697 set_host_byte(cmd, DID_OK);
698 error = -EBADE;
699 break;
700 case DID_ALLOC_FAILURE:
701 set_host_byte(cmd, DID_OK);
702 error = -ENOSPC;
703 break;
704 case DID_MEDIUM_ERROR:
705 set_host_byte(cmd, DID_OK);
706 error = -ENODATA;
707 break;
708 default:
709 error = -EIO;
710 break;
711 }
712
713 return error;
714 }
715
716 /*
717 * Function: scsi_io_completion()
718 *
719 * Purpose: Completion processing for block device I/O requests.
720 *
721 * Arguments: cmd - command that is finished.
722 *
723 * Lock status: Assumed that no lock is held upon entry.
724 *
725 * Returns: Nothing
726 *
727 * Notes: This function is matched in terms of capabilities to
728 * the function that created the scatter-gather list.
729 * In other words, if there are no bounce buffers
730 * (the normal case for most drivers), we don't need
731 * the logic to deal with cleaning up afterwards.
732 *
733 * We must call scsi_end_request(). This will finish off
734 * the specified number of sectors. If we are done, the
735 * command block will be released and the queue function
736 * will be goosed. If we are not done then we have to
737 * figure out what to do next:
738 *
739 * a) We can call scsi_requeue_command(). The request
740 * will be unprepared and put back on the queue. Then
741 * a new command will be created for it. This should
742 * be used if we made forward progress, or if we want
743 * to switch from READ(10) to READ(6) for example.
744 *
745 * b) We can call scsi_queue_insert(). The request will
746 * be put back on the queue and retried using the same
747 * command as before, possibly after a delay.
748 *
749 * c) We can call blk_end_request() with -EIO to fail
750 * the remainder of the request.
751 */
752 void scsi_io_completion(struct scsi_cmnd *cmd, unsigned int good_bytes)
753 {
754 int result = cmd->result;
755 struct request_queue *q = cmd->device->request_queue;
756 struct request *req = cmd->request;
757 int error = 0;
758 struct scsi_sense_hdr sshdr;
759 int sense_valid = 0;
760 int sense_deferred = 0;
761 enum {ACTION_FAIL, ACTION_REPREP, ACTION_RETRY,
762 ACTION_DELAYED_RETRY} action;
763 char *description = NULL;
764 unsigned long wait_for = (cmd->allowed + 1) * req->timeout;
765
766 if (result) {
767 sense_valid = scsi_command_normalize_sense(cmd, &sshdr);
768 if (sense_valid)
769 sense_deferred = scsi_sense_is_deferred(&sshdr);
770 }
771
772 if (req->cmd_type == REQ_TYPE_BLOCK_PC) { /* SG_IO ioctl from block level */
773 if (result) {
774 if (sense_valid && req->sense) {
775 /*
776 * SG_IO wants current and deferred errors
777 */
778 int len = 8 + cmd->sense_buffer[7];
779
780 if (len > SCSI_SENSE_BUFFERSIZE)
781 len = SCSI_SENSE_BUFFERSIZE;
782 memcpy(req->sense, cmd->sense_buffer, len);
783 req->sense_len = len;
784 }
785 if (!sense_deferred)
786 error = __scsi_error_from_host_byte(cmd, result);
787 }
788 /*
789 * __scsi_error_from_host_byte may have reset the host_byte
790 */
791 req->errors = cmd->result;
792
793 req->resid_len = scsi_get_resid(cmd);
794
795 if (scsi_bidi_cmnd(cmd)) {
796 /*
797 * Bidi commands Must be complete as a whole,
798 * both sides at once.
799 */
800 req->next_rq->resid_len = scsi_in(cmd)->resid;
801
802 scsi_release_buffers(cmd);
803 blk_end_request_all(req, 0);
804
805 scsi_next_command(cmd);
806 return;
807 }
808 }
809
810 /* no bidi support for !REQ_TYPE_BLOCK_PC yet */
811 BUG_ON(blk_bidi_rq(req));
812
813 /*
814 * Next deal with any sectors which we were able to correctly
815 * handle.
816 */
817 SCSI_LOG_HLCOMPLETE(1, printk("%u sectors total, "
818 "%d bytes done.\n",
819 blk_rq_sectors(req), good_bytes));
820
821 /*
822 * Recovered errors need reporting, but they're always treated
823 * as success, so fiddle the result code here. For BLOCK_PC
824 * we already took a copy of the original into rq->errors which
825 * is what gets returned to the user
826 */
827 if (sense_valid && (sshdr.sense_key == RECOVERED_ERROR)) {
828 /* if ATA PASS-THROUGH INFORMATION AVAILABLE skip
829 * print since caller wants ATA registers. Only occurs on
830 * SCSI ATA PASS_THROUGH commands when CK_COND=1
831 */
832 if ((sshdr.asc == 0x0) && (sshdr.ascq == 0x1d))
833 ;
834 else if (!(req->cmd_flags & REQ_QUIET))
835 scsi_print_sense("", cmd);
836 result = 0;
837 /* BLOCK_PC may have set error */
838 error = 0;
839 }
840
841 /*
842 * A number of bytes were successfully read. If there
843 * are leftovers and there is some kind of error
844 * (result != 0), retry the rest.
845 */
846 if (scsi_end_request(cmd, error, good_bytes, result == 0) == NULL)
847 return;
848
849 error = __scsi_error_from_host_byte(cmd, result);
850
851 if (host_byte(result) == DID_RESET) {
852 /* Third party bus reset or reset for error recovery
853 * reasons. Just retry the command and see what
854 * happens.
855 */
856 action = ACTION_RETRY;
857 } else if (sense_valid && !sense_deferred) {
858 switch (sshdr.sense_key) {
859 case UNIT_ATTENTION:
860 if (cmd->device->removable) {
861 /* Detected disc change. Set a bit
862 * and quietly refuse further access.
863 */
864 cmd->device->changed = 1;
865 description = "Media Changed";
866 action = ACTION_FAIL;
867 } else {
868 /* Must have been a power glitch, or a
869 * bus reset. Could not have been a
870 * media change, so we just retry the
871 * command and see what happens.
872 */
873 action = ACTION_RETRY;
874 }
875 break;
876 case ILLEGAL_REQUEST:
877 /* If we had an ILLEGAL REQUEST returned, then
878 * we may have performed an unsupported
879 * command. The only thing this should be
880 * would be a ten byte read where only a six
881 * byte read was supported. Also, on a system
882 * where READ CAPACITY failed, we may have
883 * read past the end of the disk.
884 */
885 if ((cmd->device->use_10_for_rw &&
886 sshdr.asc == 0x20 && sshdr.ascq == 0x00) &&
887 (cmd->cmnd[0] == READ_10 ||
888 cmd->cmnd[0] == WRITE_10)) {
889 /* This will issue a new 6-byte command. */
890 cmd->device->use_10_for_rw = 0;
891 action = ACTION_REPREP;
892 } else if (sshdr.asc == 0x10) /* DIX */ {
893 description = "Host Data Integrity Failure";
894 action = ACTION_FAIL;
895 error = -EILSEQ;
896 /* INVALID COMMAND OPCODE or INVALID FIELD IN CDB */
897 } else if (sshdr.asc == 0x20 || sshdr.asc == 0x24) {
898 switch (cmd->cmnd[0]) {
899 case UNMAP:
900 description = "Discard failure";
901 break;
902 case WRITE_SAME:
903 case WRITE_SAME_16:
904 if (cmd->cmnd[1] & 0x8)
905 description = "Discard failure";
906 else
907 description =
908 "Write same failure";
909 break;
910 default:
911 description = "Invalid command failure";
912 break;
913 }
914 action = ACTION_FAIL;
915 error = -EREMOTEIO;
916 } else
917 action = ACTION_FAIL;
918 break;
919 case ABORTED_COMMAND:
920 action = ACTION_FAIL;
921 if (sshdr.asc == 0x10) { /* DIF */
922 description = "Target Data Integrity Failure";
923 error = -EILSEQ;
924 }
925 break;
926 case NOT_READY:
927 /* If the device is in the process of becoming
928 * ready, or has a temporary blockage, retry.
929 */
930 if (sshdr.asc == 0x04) {
931 switch (sshdr.ascq) {
932 case 0x01: /* becoming ready */
933 case 0x04: /* format in progress */
934 case 0x05: /* rebuild in progress */
935 case 0x06: /* recalculation in progress */
936 case 0x07: /* operation in progress */
937 case 0x08: /* Long write in progress */
938 case 0x09: /* self test in progress */
939 case 0x14: /* space allocation in progress */
940 action = ACTION_DELAYED_RETRY;
941 break;
942 default:
943 description = "Device not ready";
944 action = ACTION_FAIL;
945 break;
946 }
947 } else {
948 description = "Device not ready";
949 action = ACTION_FAIL;
950 }
951 break;
952 case VOLUME_OVERFLOW:
953 /* See SSC3rXX or current. */
954 action = ACTION_FAIL;
955 break;
956 default:
957 description = "Unhandled sense code";
958 action = ACTION_FAIL;
959 break;
960 }
961 } else {
962 description = "Unhandled error code";
963 action = ACTION_FAIL;
964 }
965
966 if (action != ACTION_FAIL &&
967 time_before(cmd->jiffies_at_alloc + wait_for, jiffies)) {
968 action = ACTION_FAIL;
969 description = "Command timed out";
970 }
971
972 switch (action) {
973 case ACTION_FAIL:
974 /* Give up and fail the remainder of the request */
975 scsi_release_buffers(cmd);
976 if (!(req->cmd_flags & REQ_QUIET)) {
977 if (description)
978 scmd_printk(KERN_INFO, cmd, "%s\n",
979 description);
980 scsi_print_result(cmd);
981 if (driver_byte(result) & DRIVER_SENSE)
982 scsi_print_sense("", cmd);
983 scsi_print_command(cmd);
984 }
985 if (blk_end_request_err(req, error))
986 scsi_requeue_command(q, cmd);
987 else
988 scsi_next_command(cmd);
989 break;
990 case ACTION_REPREP:
991 /* Unprep the request and put it back at the head of the queue.
992 * A new command will be prepared and issued.
993 */
994 scsi_release_buffers(cmd);
995 scsi_requeue_command(q, cmd);
996 break;
997 case ACTION_RETRY:
998 /* Retry the same command immediately */
999 __scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY, 0);
1000 break;
1001 case ACTION_DELAYED_RETRY:
1002 /* Retry the same command after a delay */
1003 __scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY, 0);
1004 break;
1005 }
1006 }
1007
1008 static int scsi_init_sgtable(struct request *req, struct scsi_data_buffer *sdb,
1009 gfp_t gfp_mask)
1010 {
1011 int count;
1012
1013 /*
1014 * If sg table allocation fails, requeue request later.
1015 */
1016 if (unlikely(scsi_alloc_sgtable(sdb, req->nr_phys_segments,
1017 gfp_mask))) {
1018 return BLKPREP_DEFER;
1019 }
1020
1021 req->buffer = NULL;
1022
1023 /*
1024 * Next, walk the list, and fill in the addresses and sizes of
1025 * each segment.
1026 */
1027 count = blk_rq_map_sg(req->q, req, sdb->table.sgl);
1028 BUG_ON(count > sdb->table.nents);
1029 sdb->table.nents = count;
1030 sdb->length = blk_rq_bytes(req);
1031 return BLKPREP_OK;
1032 }
1033
1034 /*
1035 * Function: scsi_init_io()
1036 *
1037 * Purpose: SCSI I/O initialize function.
1038 *
1039 * Arguments: cmd - Command descriptor we wish to initialize
1040 *
1041 * Returns: 0 on success
1042 * BLKPREP_DEFER if the failure is retryable
1043 * BLKPREP_KILL if the failure is fatal
1044 */
1045 int scsi_init_io(struct scsi_cmnd *cmd, gfp_t gfp_mask)
1046 {
1047 struct scsi_device *sdev = cmd->device;
1048 struct request *rq = cmd->request;
1049
1050 int error = scsi_init_sgtable(rq, &cmd->sdb, gfp_mask);
1051 if (error)
1052 goto err_exit;
1053
1054 if (blk_bidi_rq(rq)) {
1055 struct scsi_data_buffer *bidi_sdb = kmem_cache_zalloc(
1056 scsi_sdb_cache, GFP_ATOMIC);
1057 if (!bidi_sdb) {
1058 error = BLKPREP_DEFER;
1059 goto err_exit;
1060 }
1061
1062 rq->next_rq->special = bidi_sdb;
1063 error = scsi_init_sgtable(rq->next_rq, bidi_sdb, GFP_ATOMIC);
1064 if (error)
1065 goto err_exit;
1066 }
1067
1068 if (blk_integrity_rq(rq)) {
1069 struct scsi_data_buffer *prot_sdb = cmd->prot_sdb;
1070 int ivecs, count;
1071
1072 BUG_ON(prot_sdb == NULL);
1073 ivecs = blk_rq_count_integrity_sg(rq->q, rq->bio);
1074
1075 if (scsi_alloc_sgtable(prot_sdb, ivecs, gfp_mask)) {
1076 error = BLKPREP_DEFER;
1077 goto err_exit;
1078 }
1079
1080 count = blk_rq_map_integrity_sg(rq->q, rq->bio,
1081 prot_sdb->table.sgl);
1082 BUG_ON(unlikely(count > ivecs));
1083 BUG_ON(unlikely(count > queue_max_integrity_segments(rq->q)));
1084
1085 cmd->prot_sdb = prot_sdb;
1086 cmd->prot_sdb->table.nents = count;
1087 }
1088
1089 return BLKPREP_OK ;
1090
1091 err_exit:
1092 scsi_release_buffers(cmd);
1093 cmd->request->special = NULL;
1094 scsi_put_command(cmd);
1095 put_device(&sdev->sdev_gendev);
1096 return error;
1097 }
1098 EXPORT_SYMBOL(scsi_init_io);
1099
1100 static struct scsi_cmnd *scsi_get_cmd_from_req(struct scsi_device *sdev,
1101 struct request *req)
1102 {
1103 struct scsi_cmnd *cmd;
1104
1105 if (!req->special) {
1106 /* Bail if we can't get a reference to the device */
1107 if (!get_device(&sdev->sdev_gendev))
1108 return NULL;
1109
1110 cmd = scsi_get_command(sdev, GFP_ATOMIC);
1111 if (unlikely(!cmd)) {
1112 put_device(&sdev->sdev_gendev);
1113 return NULL;
1114 }
1115 req->special = cmd;
1116 } else {
1117 cmd = req->special;
1118 }
1119
1120 /* pull a tag out of the request if we have one */
1121 cmd->tag = req->tag;
1122 cmd->request = req;
1123
1124 cmd->cmnd = req->cmd;
1125 cmd->prot_op = SCSI_PROT_NORMAL;
1126
1127 return cmd;
1128 }
1129
1130 int scsi_setup_blk_pc_cmnd(struct scsi_device *sdev, struct request *req)
1131 {
1132 struct scsi_cmnd *cmd;
1133 int ret = scsi_prep_state_check(sdev, req);
1134
1135 if (ret != BLKPREP_OK)
1136 return ret;
1137
1138 cmd = scsi_get_cmd_from_req(sdev, req);
1139 if (unlikely(!cmd))
1140 return BLKPREP_DEFER;
1141
1142 /*
1143 * BLOCK_PC requests may transfer data, in which case they must
1144 * a bio attached to them. Or they might contain a SCSI command
1145 * that does not transfer data, in which case they may optionally
1146 * submit a request without an attached bio.
1147 */
1148 if (req->bio) {
1149 int ret;
1150
1151 BUG_ON(!req->nr_phys_segments);
1152
1153 ret = scsi_init_io(cmd, GFP_ATOMIC);
1154 if (unlikely(ret))
1155 return ret;
1156 } else {
1157 BUG_ON(blk_rq_bytes(req));
1158
1159 memset(&cmd->sdb, 0, sizeof(cmd->sdb));
1160 req->buffer = NULL;
1161 }
1162
1163 cmd->cmd_len = req->cmd_len;
1164 if (!blk_rq_bytes(req))
1165 cmd->sc_data_direction = DMA_NONE;
1166 else if (rq_data_dir(req) == WRITE)
1167 cmd->sc_data_direction = DMA_TO_DEVICE;
1168 else
1169 cmd->sc_data_direction = DMA_FROM_DEVICE;
1170
1171 cmd->transfersize = blk_rq_bytes(req);
1172 cmd->allowed = req->retries;
1173 return BLKPREP_OK;
1174 }
1175 EXPORT_SYMBOL(scsi_setup_blk_pc_cmnd);
1176
1177 /*
1178 * Setup a REQ_TYPE_FS command. These are simple read/write request
1179 * from filesystems that still need to be translated to SCSI CDBs from
1180 * the ULD.
1181 */
1182 int scsi_setup_fs_cmnd(struct scsi_device *sdev, struct request *req)
1183 {
1184 struct scsi_cmnd *cmd;
1185 int ret = scsi_prep_state_check(sdev, req);
1186
1187 if (ret != BLKPREP_OK)
1188 return ret;
1189
1190 if (unlikely(sdev->scsi_dh_data && sdev->scsi_dh_data->scsi_dh
1191 && sdev->scsi_dh_data->scsi_dh->prep_fn)) {
1192 ret = sdev->scsi_dh_data->scsi_dh->prep_fn(sdev, req);
1193 if (ret != BLKPREP_OK)
1194 return ret;
1195 }
1196
1197 /*
1198 * Filesystem requests must transfer data.
1199 */
1200 BUG_ON(!req->nr_phys_segments);
1201
1202 cmd = scsi_get_cmd_from_req(sdev, req);
1203 if (unlikely(!cmd))
1204 return BLKPREP_DEFER;
1205
1206 memset(cmd->cmnd, 0, BLK_MAX_CDB);
1207 return scsi_init_io(cmd, GFP_ATOMIC);
1208 }
1209 EXPORT_SYMBOL(scsi_setup_fs_cmnd);
1210
1211 int scsi_prep_state_check(struct scsi_device *sdev, struct request *req)
1212 {
1213 int ret = BLKPREP_OK;
1214
1215 /*
1216 * If the device is not in running state we will reject some
1217 * or all commands.
1218 */
1219 if (unlikely(sdev->sdev_state != SDEV_RUNNING)) {
1220 switch (sdev->sdev_state) {
1221 case SDEV_OFFLINE:
1222 case SDEV_TRANSPORT_OFFLINE:
1223 /*
1224 * If the device is offline we refuse to process any
1225 * commands. The device must be brought online
1226 * before trying any recovery commands.
1227 */
1228 sdev_printk(KERN_ERR, sdev,
1229 "rejecting I/O to offline device\n");
1230 ret = BLKPREP_KILL;
1231 break;
1232 case SDEV_DEL:
1233 /*
1234 * If the device is fully deleted, we refuse to
1235 * process any commands as well.
1236 */
1237 sdev_printk(KERN_ERR, sdev,
1238 "rejecting I/O to dead device\n");
1239 ret = BLKPREP_KILL;
1240 break;
1241 case SDEV_QUIESCE:
1242 case SDEV_BLOCK:
1243 case SDEV_CREATED_BLOCK:
1244 /*
1245 * If the devices is blocked we defer normal commands.
1246 */
1247 if (!(req->cmd_flags & REQ_PREEMPT))
1248 ret = BLKPREP_DEFER;
1249 break;
1250 default:
1251 /*
1252 * For any other not fully online state we only allow
1253 * special commands. In particular any user initiated
1254 * command is not allowed.
1255 */
1256 if (!(req->cmd_flags & REQ_PREEMPT))
1257 ret = BLKPREP_KILL;
1258 break;
1259 }
1260 }
1261 return ret;
1262 }
1263 EXPORT_SYMBOL(scsi_prep_state_check);
1264
1265 int scsi_prep_return(struct request_queue *q, struct request *req, int ret)
1266 {
1267 struct scsi_device *sdev = q->queuedata;
1268
1269 switch (ret) {
1270 case BLKPREP_KILL:
1271 req->errors = DID_NO_CONNECT << 16;
1272 /* release the command and kill it */
1273 if (req->special) {
1274 struct scsi_cmnd *cmd = req->special;
1275 scsi_release_buffers(cmd);
1276 scsi_put_command(cmd);
1277 put_device(&sdev->sdev_gendev);
1278 req->special = NULL;
1279 }
1280 break;
1281 case BLKPREP_DEFER:
1282 /*
1283 * If we defer, the blk_peek_request() returns NULL, but the
1284 * queue must be restarted, so we schedule a callback to happen
1285 * shortly.
1286 */
1287 if (sdev->device_busy == 0)
1288 blk_delay_queue(q, SCSI_QUEUE_DELAY);
1289 break;
1290 default:
1291 req->cmd_flags |= REQ_DONTPREP;
1292 }
1293
1294 return ret;
1295 }
1296 EXPORT_SYMBOL(scsi_prep_return);
1297
1298 int scsi_prep_fn(struct request_queue *q, struct request *req)
1299 {
1300 struct scsi_device *sdev = q->queuedata;
1301 int ret = BLKPREP_KILL;
1302
1303 if (req->cmd_type == REQ_TYPE_BLOCK_PC)
1304 ret = scsi_setup_blk_pc_cmnd(sdev, req);
1305 return scsi_prep_return(q, req, ret);
1306 }
1307 EXPORT_SYMBOL(scsi_prep_fn);
1308
1309 /*
1310 * scsi_dev_queue_ready: if we can send requests to sdev, return 1 else
1311 * return 0.
1312 *
1313 * Called with the queue_lock held.
1314 */
1315 static inline int scsi_dev_queue_ready(struct request_queue *q,
1316 struct scsi_device *sdev)
1317 {
1318 if (sdev->device_busy == 0 && sdev->device_blocked) {
1319 /*
1320 * unblock after device_blocked iterates to zero
1321 */
1322 if (--sdev->device_blocked == 0) {
1323 SCSI_LOG_MLQUEUE(3,
1324 sdev_printk(KERN_INFO, sdev,
1325 "unblocking device at zero depth\n"));
1326 } else {
1327 blk_delay_queue(q, SCSI_QUEUE_DELAY);
1328 return 0;
1329 }
1330 }
1331 if (scsi_device_is_busy(sdev))
1332 return 0;
1333
1334 return 1;
1335 }
1336
1337
1338 /*
1339 * scsi_target_queue_ready: checks if there we can send commands to target
1340 * @sdev: scsi device on starget to check.
1341 *
1342 * Called with the host lock held.
1343 */
1344 static inline int scsi_target_queue_ready(struct Scsi_Host *shost,
1345 struct scsi_device *sdev)
1346 {
1347 struct scsi_target *starget = scsi_target(sdev);
1348
1349 if (starget->single_lun) {
1350 if (starget->starget_sdev_user &&
1351 starget->starget_sdev_user != sdev)
1352 return 0;
1353 starget->starget_sdev_user = sdev;
1354 }
1355
1356 if (starget->target_busy == 0 && starget->target_blocked) {
1357 /*
1358 * unblock after target_blocked iterates to zero
1359 */
1360 if (--starget->target_blocked == 0) {
1361 SCSI_LOG_MLQUEUE(3, starget_printk(KERN_INFO, starget,
1362 "unblocking target at zero depth\n"));
1363 } else
1364 return 0;
1365 }
1366
1367 if (scsi_target_is_busy(starget)) {
1368 list_move_tail(&sdev->starved_entry, &shost->starved_list);
1369 return 0;
1370 }
1371
1372 return 1;
1373 }
1374
1375 /*
1376 * scsi_host_queue_ready: if we can send requests to shost, return 1 else
1377 * return 0. We must end up running the queue again whenever 0 is
1378 * returned, else IO can hang.
1379 *
1380 * Called with host_lock held.
1381 */
1382 static inline int scsi_host_queue_ready(struct request_queue *q,
1383 struct Scsi_Host *shost,
1384 struct scsi_device *sdev)
1385 {
1386 if (scsi_host_in_recovery(shost))
1387 return 0;
1388 if (shost->host_busy == 0 && shost->host_blocked) {
1389 /*
1390 * unblock after host_blocked iterates to zero
1391 */
1392 if (--shost->host_blocked == 0) {
1393 SCSI_LOG_MLQUEUE(3,
1394 printk("scsi%d unblocking host at zero depth\n",
1395 shost->host_no));
1396 } else {
1397 return 0;
1398 }
1399 }
1400 if (scsi_host_is_busy(shost)) {
1401 if (list_empty(&sdev->starved_entry))
1402 list_add_tail(&sdev->starved_entry, &shost->starved_list);
1403 return 0;
1404 }
1405
1406 /* We're OK to process the command, so we can't be starved */
1407 if (!list_empty(&sdev->starved_entry))
1408 list_del_init(&sdev->starved_entry);
1409
1410 return 1;
1411 }
1412
1413 /*
1414 * Busy state exporting function for request stacking drivers.
1415 *
1416 * For efficiency, no lock is taken to check the busy state of
1417 * shost/starget/sdev, since the returned value is not guaranteed and
1418 * may be changed after request stacking drivers call the function,
1419 * regardless of taking lock or not.
1420 *
1421 * When scsi can't dispatch I/Os anymore and needs to kill I/Os scsi
1422 * needs to return 'not busy'. Otherwise, request stacking drivers
1423 * may hold requests forever.
1424 */
1425 static int scsi_lld_busy(struct request_queue *q)
1426 {
1427 struct scsi_device *sdev = q->queuedata;
1428 struct Scsi_Host *shost;
1429
1430 if (blk_queue_dying(q))
1431 return 0;
1432
1433 shost = sdev->host;
1434
1435 /*
1436 * Ignore host/starget busy state.
1437 * Since block layer does not have a concept of fairness across
1438 * multiple queues, congestion of host/starget needs to be handled
1439 * in SCSI layer.
1440 */
1441 if (scsi_host_in_recovery(shost) || scsi_device_is_busy(sdev))
1442 return 1;
1443
1444 return 0;
1445 }
1446
1447 /*
1448 * Kill a request for a dead device
1449 */
1450 static void scsi_kill_request(struct request *req, struct request_queue *q)
1451 {
1452 struct scsi_cmnd *cmd = req->special;
1453 struct scsi_device *sdev;
1454 struct scsi_target *starget;
1455 struct Scsi_Host *shost;
1456
1457 blk_start_request(req);
1458
1459 scmd_printk(KERN_INFO, cmd, "killing request\n");
1460
1461 sdev = cmd->device;
1462 starget = scsi_target(sdev);
1463 shost = sdev->host;
1464 scsi_init_cmd_errh(cmd);
1465 cmd->result = DID_NO_CONNECT << 16;
1466 atomic_inc(&cmd->device->iorequest_cnt);
1467
1468 /*
1469 * SCSI request completion path will do scsi_device_unbusy(),
1470 * bump busy counts. To bump the counters, we need to dance
1471 * with the locks as normal issue path does.
1472 */
1473 sdev->device_busy++;
1474 spin_unlock(sdev->request_queue->queue_lock);
1475 spin_lock(shost->host_lock);
1476 shost->host_busy++;
1477 starget->target_busy++;
1478 spin_unlock(shost->host_lock);
1479 spin_lock(sdev->request_queue->queue_lock);
1480
1481 blk_complete_request(req);
1482 }
1483
1484 static void scsi_softirq_done(struct request *rq)
1485 {
1486 struct scsi_cmnd *cmd = rq->special;
1487 unsigned long wait_for = (cmd->allowed + 1) * rq->timeout;
1488 int disposition;
1489
1490 INIT_LIST_HEAD(&cmd->eh_entry);
1491
1492 atomic_inc(&cmd->device->iodone_cnt);
1493 if (cmd->result)
1494 atomic_inc(&cmd->device->ioerr_cnt);
1495
1496 disposition = scsi_decide_disposition(cmd);
1497 if (disposition != SUCCESS &&
1498 time_before(cmd->jiffies_at_alloc + wait_for, jiffies)) {
1499 sdev_printk(KERN_ERR, cmd->device,
1500 "timing out command, waited %lus\n",
1501 wait_for/HZ);
1502 disposition = SUCCESS;
1503 }
1504
1505 scsi_log_completion(cmd, disposition);
1506
1507 switch (disposition) {
1508 case SUCCESS:
1509 scsi_finish_command(cmd);
1510 break;
1511 case NEEDS_RETRY:
1512 scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY);
1513 break;
1514 case ADD_TO_MLQUEUE:
1515 scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY);
1516 break;
1517 default:
1518 if (!scsi_eh_scmd_add(cmd, 0))
1519 scsi_finish_command(cmd);
1520 }
1521 }
1522
1523 /*
1524 * Function: scsi_request_fn()
1525 *
1526 * Purpose: Main strategy routine for SCSI.
1527 *
1528 * Arguments: q - Pointer to actual queue.
1529 *
1530 * Returns: Nothing
1531 *
1532 * Lock status: IO request lock assumed to be held when called.
1533 */
1534 static void scsi_request_fn(struct request_queue *q)
1535 __releases(q->queue_lock)
1536 __acquires(q->queue_lock)
1537 {
1538 struct scsi_device *sdev = q->queuedata;
1539 struct Scsi_Host *shost;
1540 struct scsi_cmnd *cmd;
1541 struct request *req;
1542
1543 /*
1544 * To start with, we keep looping until the queue is empty, or until
1545 * the host is no longer able to accept any more requests.
1546 */
1547 shost = sdev->host;
1548 for (;;) {
1549 int rtn;
1550 /*
1551 * get next queueable request. We do this early to make sure
1552 * that the request is fully prepared even if we cannot
1553 * accept it.
1554 */
1555 req = blk_peek_request(q);
1556 if (!req || !scsi_dev_queue_ready(q, sdev))
1557 break;
1558
1559 if (unlikely(!scsi_device_online(sdev))) {
1560 sdev_printk(KERN_ERR, sdev,
1561 "rejecting I/O to offline device\n");
1562 scsi_kill_request(req, q);
1563 continue;
1564 }
1565
1566
1567 /*
1568 * Remove the request from the request list.
1569 */
1570 if (!(blk_queue_tagged(q) && !blk_queue_start_tag(q, req)))
1571 blk_start_request(req);
1572 sdev->device_busy++;
1573
1574 spin_unlock(q->queue_lock);
1575 cmd = req->special;
1576 if (unlikely(cmd == NULL)) {
1577 printk(KERN_CRIT "impossible request in %s.\n"
1578 "please mail a stack trace to "
1579 "linux-scsi@vger.kernel.org\n",
1580 __func__);
1581 blk_dump_rq_flags(req, "foo");
1582 BUG();
1583 }
1584 spin_lock(shost->host_lock);
1585
1586 /*
1587 * We hit this when the driver is using a host wide
1588 * tag map. For device level tag maps the queue_depth check
1589 * in the device ready fn would prevent us from trying
1590 * to allocate a tag. Since the map is a shared host resource
1591 * we add the dev to the starved list so it eventually gets
1592 * a run when a tag is freed.
1593 */
1594 if (blk_queue_tagged(q) && !blk_rq_tagged(req)) {
1595 if (list_empty(&sdev->starved_entry))
1596 list_add_tail(&sdev->starved_entry,
1597 &shost->starved_list);
1598 goto not_ready;
1599 }
1600
1601 if (!scsi_target_queue_ready(shost, sdev))
1602 goto not_ready;
1603
1604 if (!scsi_host_queue_ready(q, shost, sdev))
1605 goto not_ready;
1606
1607 scsi_target(sdev)->target_busy++;
1608 shost->host_busy++;
1609
1610 /*
1611 * XXX(hch): This is rather suboptimal, scsi_dispatch_cmd will
1612 * take the lock again.
1613 */
1614 spin_unlock_irq(shost->host_lock);
1615
1616 /*
1617 * Finally, initialize any error handling parameters, and set up
1618 * the timers for timeouts.
1619 */
1620 scsi_init_cmd_errh(cmd);
1621
1622 /*
1623 * Dispatch the command to the low-level driver.
1624 */
1625 rtn = scsi_dispatch_cmd(cmd);
1626 spin_lock_irq(q->queue_lock);
1627 if (rtn)
1628 goto out_delay;
1629 }
1630
1631 return;
1632
1633 not_ready:
1634 spin_unlock_irq(shost->host_lock);
1635
1636 /*
1637 * lock q, handle tag, requeue req, and decrement device_busy. We
1638 * must return with queue_lock held.
1639 *
1640 * Decrementing device_busy without checking it is OK, as all such
1641 * cases (host limits or settings) should run the queue at some
1642 * later time.
1643 */
1644 spin_lock_irq(q->queue_lock);
1645 blk_requeue_request(q, req);
1646 sdev->device_busy--;
1647 out_delay:
1648 if (sdev->device_busy == 0)
1649 blk_delay_queue(q, SCSI_QUEUE_DELAY);
1650 }
1651
1652 u64 scsi_calculate_bounce_limit(struct Scsi_Host *shost)
1653 {
1654 struct device *host_dev;
1655 u64 bounce_limit = 0xffffffff;
1656
1657 if (shost->unchecked_isa_dma)
1658 return BLK_BOUNCE_ISA;
1659 /*
1660 * Platforms with virtual-DMA translation
1661 * hardware have no practical limit.
1662 */
1663 if (!PCI_DMA_BUS_IS_PHYS)
1664 return BLK_BOUNCE_ANY;
1665
1666 host_dev = scsi_get_device(shost);
1667 if (host_dev && host_dev->dma_mask)
1668 bounce_limit = (u64)dma_max_pfn(host_dev) << PAGE_SHIFT;
1669
1670 return bounce_limit;
1671 }
1672 EXPORT_SYMBOL(scsi_calculate_bounce_limit);
1673
1674 struct request_queue *__scsi_alloc_queue(struct Scsi_Host *shost,
1675 request_fn_proc *request_fn)
1676 {
1677 struct request_queue *q;
1678 struct device *dev = shost->dma_dev;
1679
1680 q = blk_init_queue(request_fn, NULL);
1681 if (!q)
1682 return NULL;
1683
1684 /*
1685 * this limit is imposed by hardware restrictions
1686 */
1687 blk_queue_max_segments(q, min_t(unsigned short, shost->sg_tablesize,
1688 SCSI_MAX_SG_CHAIN_SEGMENTS));
1689
1690 if (scsi_host_prot_dma(shost)) {
1691 shost->sg_prot_tablesize =
1692 min_not_zero(shost->sg_prot_tablesize,
1693 (unsigned short)SCSI_MAX_PROT_SG_SEGMENTS);
1694 BUG_ON(shost->sg_prot_tablesize < shost->sg_tablesize);
1695 blk_queue_max_integrity_segments(q, shost->sg_prot_tablesize);
1696 }
1697
1698 blk_queue_max_hw_sectors(q, shost->max_sectors);
1699 blk_queue_bounce_limit(q, scsi_calculate_bounce_limit(shost));
1700 blk_queue_segment_boundary(q, shost->dma_boundary);
1701 dma_set_seg_boundary(dev, shost->dma_boundary);
1702
1703 blk_queue_max_segment_size(q, dma_get_max_seg_size(dev));
1704
1705 if (!shost->use_clustering)
1706 q->limits.cluster = 0;
1707
1708 /*
1709 * set a reasonable default alignment on word boundaries: the
1710 * host and device may alter it using
1711 * blk_queue_update_dma_alignment() later.
1712 */
1713 blk_queue_dma_alignment(q, 0x03);
1714
1715 return q;
1716 }
1717 EXPORT_SYMBOL(__scsi_alloc_queue);
1718
1719 struct request_queue *scsi_alloc_queue(struct scsi_device *sdev)
1720 {
1721 struct request_queue *q;
1722
1723 q = __scsi_alloc_queue(sdev->host, scsi_request_fn);
1724 if (!q)
1725 return NULL;
1726
1727 blk_queue_prep_rq(q, scsi_prep_fn);
1728 blk_queue_softirq_done(q, scsi_softirq_done);
1729 blk_queue_rq_timed_out(q, scsi_times_out);
1730 blk_queue_lld_busy(q, scsi_lld_busy);
1731 return q;
1732 }
1733
1734 /*
1735 * Function: scsi_block_requests()
1736 *
1737 * Purpose: Utility function used by low-level drivers to prevent further
1738 * commands from being queued to the device.
1739 *
1740 * Arguments: shost - Host in question
1741 *
1742 * Returns: Nothing
1743 *
1744 * Lock status: No locks are assumed held.
1745 *
1746 * Notes: There is no timer nor any other means by which the requests
1747 * get unblocked other than the low-level driver calling
1748 * scsi_unblock_requests().
1749 */
1750 void scsi_block_requests(struct Scsi_Host *shost)
1751 {
1752 shost->host_self_blocked = 1;
1753 }
1754 EXPORT_SYMBOL(scsi_block_requests);
1755
1756 /*
1757 * Function: scsi_unblock_requests()
1758 *
1759 * Purpose: Utility function used by low-level drivers to allow further
1760 * commands from being queued to the device.
1761 *
1762 * Arguments: shost - Host in question
1763 *
1764 * Returns: Nothing
1765 *
1766 * Lock status: No locks are assumed held.
1767 *
1768 * Notes: There is no timer nor any other means by which the requests
1769 * get unblocked other than the low-level driver calling
1770 * scsi_unblock_requests().
1771 *
1772 * This is done as an API function so that changes to the
1773 * internals of the scsi mid-layer won't require wholesale
1774 * changes to drivers that use this feature.
1775 */
1776 void scsi_unblock_requests(struct Scsi_Host *shost)
1777 {
1778 shost->host_self_blocked = 0;
1779 scsi_run_host_queues(shost);
1780 }
1781 EXPORT_SYMBOL(scsi_unblock_requests);
1782
1783 int __init scsi_init_queue(void)
1784 {
1785 int i;
1786
1787 scsi_sdb_cache = kmem_cache_create("scsi_data_buffer",
1788 sizeof(struct scsi_data_buffer),
1789 0, 0, NULL);
1790 if (!scsi_sdb_cache) {
1791 printk(KERN_ERR "SCSI: can't init scsi sdb cache\n");
1792 return -ENOMEM;
1793 }
1794
1795 for (i = 0; i < SG_MEMPOOL_NR; i++) {
1796 struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
1797 int size = sgp->size * sizeof(struct scatterlist);
1798
1799 sgp->slab = kmem_cache_create(sgp->name, size, 0,
1800 SLAB_HWCACHE_ALIGN, NULL);
1801 if (!sgp->slab) {
1802 printk(KERN_ERR "SCSI: can't init sg slab %s\n",
1803 sgp->name);
1804 goto cleanup_sdb;
1805 }
1806
1807 sgp->pool = mempool_create_slab_pool(SG_MEMPOOL_SIZE,
1808 sgp->slab);
1809 if (!sgp->pool) {
1810 printk(KERN_ERR "SCSI: can't init sg mempool %s\n",
1811 sgp->name);
1812 goto cleanup_sdb;
1813 }
1814 }
1815
1816 return 0;
1817
1818 cleanup_sdb:
1819 for (i = 0; i < SG_MEMPOOL_NR; i++) {
1820 struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
1821 if (sgp->pool)
1822 mempool_destroy(sgp->pool);
1823 if (sgp->slab)
1824 kmem_cache_destroy(sgp->slab);
1825 }
1826 kmem_cache_destroy(scsi_sdb_cache);
1827
1828 return -ENOMEM;
1829 }
1830
1831 void scsi_exit_queue(void)
1832 {
1833 int i;
1834
1835 kmem_cache_destroy(scsi_sdb_cache);
1836
1837 for (i = 0; i < SG_MEMPOOL_NR; i++) {
1838 struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
1839 mempool_destroy(sgp->pool);
1840 kmem_cache_destroy(sgp->slab);
1841 }
1842 }
1843
1844 /**
1845 * scsi_mode_select - issue a mode select
1846 * @sdev: SCSI device to be queried
1847 * @pf: Page format bit (1 == standard, 0 == vendor specific)
1848 * @sp: Save page bit (0 == don't save, 1 == save)
1849 * @modepage: mode page being requested
1850 * @buffer: request buffer (may not be smaller than eight bytes)
1851 * @len: length of request buffer.
1852 * @timeout: command timeout
1853 * @retries: number of retries before failing
1854 * @data: returns a structure abstracting the mode header data
1855 * @sshdr: place to put sense data (or NULL if no sense to be collected).
1856 * must be SCSI_SENSE_BUFFERSIZE big.
1857 *
1858 * Returns zero if successful; negative error number or scsi
1859 * status on error
1860 *
1861 */
1862 int
1863 scsi_mode_select(struct scsi_device *sdev, int pf, int sp, int modepage,
1864 unsigned char *buffer, int len, int timeout, int retries,
1865 struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
1866 {
1867 unsigned char cmd[10];
1868 unsigned char *real_buffer;
1869 int ret;
1870
1871 memset(cmd, 0, sizeof(cmd));
1872 cmd[1] = (pf ? 0x10 : 0) | (sp ? 0x01 : 0);
1873
1874 if (sdev->use_10_for_ms) {
1875 if (len > 65535)
1876 return -EINVAL;
1877 real_buffer = kmalloc(8 + len, GFP_KERNEL);
1878 if (!real_buffer)
1879 return -ENOMEM;
1880 memcpy(real_buffer + 8, buffer, len);
1881 len += 8;
1882 real_buffer[0] = 0;
1883 real_buffer[1] = 0;
1884 real_buffer[2] = data->medium_type;
1885 real_buffer[3] = data->device_specific;
1886 real_buffer[4] = data->longlba ? 0x01 : 0;
1887 real_buffer[5] = 0;
1888 real_buffer[6] = data->block_descriptor_length >> 8;
1889 real_buffer[7] = data->block_descriptor_length;
1890
1891 cmd[0] = MODE_SELECT_10;
1892 cmd[7] = len >> 8;
1893 cmd[8] = len;
1894 } else {
1895 if (len > 255 || data->block_descriptor_length > 255 ||
1896 data->longlba)
1897 return -EINVAL;
1898
1899 real_buffer = kmalloc(4 + len, GFP_KERNEL);
1900 if (!real_buffer)
1901 return -ENOMEM;
1902 memcpy(real_buffer + 4, buffer, len);
1903 len += 4;
1904 real_buffer[0] = 0;
1905 real_buffer[1] = data->medium_type;
1906 real_buffer[2] = data->device_specific;
1907 real_buffer[3] = data->block_descriptor_length;
1908
1909
1910 cmd[0] = MODE_SELECT;
1911 cmd[4] = len;
1912 }
1913
1914 ret = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, real_buffer, len,
1915 sshdr, timeout, retries, NULL);
1916 kfree(real_buffer);
1917 return ret;
1918 }
1919 EXPORT_SYMBOL_GPL(scsi_mode_select);
1920
1921 /**
1922 * scsi_mode_sense - issue a mode sense, falling back from 10 to six bytes if necessary.
1923 * @sdev: SCSI device to be queried
1924 * @dbd: set if mode sense will allow block descriptors to be returned
1925 * @modepage: mode page being requested
1926 * @buffer: request buffer (may not be smaller than eight bytes)
1927 * @len: length of request buffer.
1928 * @timeout: command timeout
1929 * @retries: number of retries before failing
1930 * @data: returns a structure abstracting the mode header data
1931 * @sshdr: place to put sense data (or NULL if no sense to be collected).
1932 * must be SCSI_SENSE_BUFFERSIZE big.
1933 *
1934 * Returns zero if unsuccessful, or the header offset (either 4
1935 * or 8 depending on whether a six or ten byte command was
1936 * issued) if successful.
1937 */
1938 int
1939 scsi_mode_sense(struct scsi_device *sdev, int dbd, int modepage,
1940 unsigned char *buffer, int len, int timeout, int retries,
1941 struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
1942 {
1943 unsigned char cmd[12];
1944 int use_10_for_ms;
1945 int header_length;
1946 int result;
1947 struct scsi_sense_hdr my_sshdr;
1948
1949 memset(data, 0, sizeof(*data));
1950 memset(&cmd[0], 0, 12);
1951 cmd[1] = dbd & 0x18; /* allows DBD and LLBA bits */
1952 cmd[2] = modepage;
1953
1954 /* caller might not be interested in sense, but we need it */
1955 if (!sshdr)
1956 sshdr = &my_sshdr;
1957
1958 retry:
1959 use_10_for_ms = sdev->use_10_for_ms;
1960
1961 if (use_10_for_ms) {
1962 if (len < 8)
1963 len = 8;
1964
1965 cmd[0] = MODE_SENSE_10;
1966 cmd[8] = len;
1967 header_length = 8;
1968 } else {
1969 if (len < 4)
1970 len = 4;
1971
1972 cmd[0] = MODE_SENSE;
1973 cmd[4] = len;
1974 header_length = 4;
1975 }
1976
1977 memset(buffer, 0, len);
1978
1979 result = scsi_execute_req(sdev, cmd, DMA_FROM_DEVICE, buffer, len,
1980 sshdr, timeout, retries, NULL);
1981
1982 /* This code looks awful: what it's doing is making sure an
1983 * ILLEGAL REQUEST sense return identifies the actual command
1984 * byte as the problem. MODE_SENSE commands can return
1985 * ILLEGAL REQUEST if the code page isn't supported */
1986
1987 if (use_10_for_ms && !scsi_status_is_good(result) &&
1988 (driver_byte(result) & DRIVER_SENSE)) {
1989 if (scsi_sense_valid(sshdr)) {
1990 if ((sshdr->sense_key == ILLEGAL_REQUEST) &&
1991 (sshdr->asc == 0x20) && (sshdr->ascq == 0)) {
1992 /*
1993 * Invalid command operation code
1994 */
1995 sdev->use_10_for_ms = 0;
1996 goto retry;
1997 }
1998 }
1999 }
2000
2001 if(scsi_status_is_good(result)) {
2002 if (unlikely(buffer[0] == 0x86 && buffer[1] == 0x0b &&
2003 (modepage == 6 || modepage == 8))) {
2004 /* Initio breakage? */
2005 header_length = 0;
2006 data->length = 13;
2007 data->medium_type = 0;
2008 data->device_specific = 0;
2009 data->longlba = 0;
2010 data->block_descriptor_length = 0;
2011 } else if(use_10_for_ms) {
2012 data->length = buffer[0]*256 + buffer[1] + 2;
2013 data->medium_type = buffer[2];
2014 data->device_specific = buffer[3];
2015 data->longlba = buffer[4] & 0x01;
2016 data->block_descriptor_length = buffer[6]*256
2017 + buffer[7];
2018 } else {
2019 data->length = buffer[0] + 1;
2020 data->medium_type = buffer[1];
2021 data->device_specific = buffer[2];
2022 data->block_descriptor_length = buffer[3];
2023 }
2024 data->header_length = header_length;
2025 }
2026
2027 return result;
2028 }
2029 EXPORT_SYMBOL(scsi_mode_sense);
2030
2031 /**
2032 * scsi_test_unit_ready - test if unit is ready
2033 * @sdev: scsi device to change the state of.
2034 * @timeout: command timeout
2035 * @retries: number of retries before failing
2036 * @sshdr_external: Optional pointer to struct scsi_sense_hdr for
2037 * returning sense. Make sure that this is cleared before passing
2038 * in.
2039 *
2040 * Returns zero if unsuccessful or an error if TUR failed. For
2041 * removable media, UNIT_ATTENTION sets ->changed flag.
2042 **/
2043 int
2044 scsi_test_unit_ready(struct scsi_device *sdev, int timeout, int retries,
2045 struct scsi_sense_hdr *sshdr_external)
2046 {
2047 char cmd[] = {
2048 TEST_UNIT_READY, 0, 0, 0, 0, 0,
2049 };
2050 struct scsi_sense_hdr *sshdr;
2051 int result;
2052
2053 if (!sshdr_external)
2054 sshdr = kzalloc(sizeof(*sshdr), GFP_KERNEL);
2055 else
2056 sshdr = sshdr_external;
2057
2058 /* try to eat the UNIT_ATTENTION if there are enough retries */
2059 do {
2060 result = scsi_execute_req(sdev, cmd, DMA_NONE, NULL, 0, sshdr,
2061 timeout, retries, NULL);
2062 if (sdev->removable && scsi_sense_valid(sshdr) &&
2063 sshdr->sense_key == UNIT_ATTENTION)
2064 sdev->changed = 1;
2065 } while (scsi_sense_valid(sshdr) &&
2066 sshdr->sense_key == UNIT_ATTENTION && --retries);
2067
2068 if (!sshdr_external)
2069 kfree(sshdr);
2070 return result;
2071 }
2072 EXPORT_SYMBOL(scsi_test_unit_ready);
2073
2074 /**
2075 * scsi_device_set_state - Take the given device through the device state model.
2076 * @sdev: scsi device to change the state of.
2077 * @state: state to change to.
2078 *
2079 * Returns zero if unsuccessful or an error if the requested
2080 * transition is illegal.
2081 */
2082 int
2083 scsi_device_set_state(struct scsi_device *sdev, enum scsi_device_state state)
2084 {
2085 enum scsi_device_state oldstate = sdev->sdev_state;
2086
2087 if (state == oldstate)
2088 return 0;
2089
2090 switch (state) {
2091 case SDEV_CREATED:
2092 switch (oldstate) {
2093 case SDEV_CREATED_BLOCK:
2094 break;
2095 default:
2096 goto illegal;
2097 }
2098 break;
2099
2100 case SDEV_RUNNING:
2101 switch (oldstate) {
2102 case SDEV_CREATED:
2103 case SDEV_OFFLINE:
2104 case SDEV_TRANSPORT_OFFLINE:
2105 case SDEV_QUIESCE:
2106 case SDEV_BLOCK:
2107 break;
2108 default:
2109 goto illegal;
2110 }
2111 break;
2112
2113 case SDEV_QUIESCE:
2114 switch (oldstate) {
2115 case SDEV_RUNNING:
2116 case SDEV_OFFLINE:
2117 case SDEV_TRANSPORT_OFFLINE:
2118 break;
2119 default:
2120 goto illegal;
2121 }
2122 break;
2123
2124 case SDEV_OFFLINE:
2125 case SDEV_TRANSPORT_OFFLINE:
2126 switch (oldstate) {
2127 case SDEV_CREATED:
2128 case SDEV_RUNNING:
2129 case SDEV_QUIESCE:
2130 case SDEV_BLOCK:
2131 break;
2132 default:
2133 goto illegal;
2134 }
2135 break;
2136
2137 case SDEV_BLOCK:
2138 switch (oldstate) {
2139 case SDEV_RUNNING:
2140 case SDEV_CREATED_BLOCK:
2141 break;
2142 default:
2143 goto illegal;
2144 }
2145 break;
2146
2147 case SDEV_CREATED_BLOCK:
2148 switch (oldstate) {
2149 case SDEV_CREATED:
2150 break;
2151 default:
2152 goto illegal;
2153 }
2154 break;
2155
2156 case SDEV_CANCEL:
2157 switch (oldstate) {
2158 case SDEV_CREATED:
2159 case SDEV_RUNNING:
2160 case SDEV_QUIESCE:
2161 case SDEV_OFFLINE:
2162 case SDEV_TRANSPORT_OFFLINE:
2163 case SDEV_BLOCK:
2164 break;
2165 default:
2166 goto illegal;
2167 }
2168 break;
2169
2170 case SDEV_DEL:
2171 switch (oldstate) {
2172 case SDEV_CREATED:
2173 case SDEV_RUNNING:
2174 case SDEV_OFFLINE:
2175 case SDEV_TRANSPORT_OFFLINE:
2176 case SDEV_CANCEL:
2177 case SDEV_CREATED_BLOCK:
2178 break;
2179 default:
2180 goto illegal;
2181 }
2182 break;
2183
2184 }
2185 sdev->sdev_state = state;
2186 return 0;
2187
2188 illegal:
2189 SCSI_LOG_ERROR_RECOVERY(1,
2190 sdev_printk(KERN_ERR, sdev,
2191 "Illegal state transition %s->%s\n",
2192 scsi_device_state_name(oldstate),
2193 scsi_device_state_name(state))
2194 );
2195 return -EINVAL;
2196 }
2197 EXPORT_SYMBOL(scsi_device_set_state);
2198
2199 /**
2200 * sdev_evt_emit - emit a single SCSI device uevent
2201 * @sdev: associated SCSI device
2202 * @evt: event to emit
2203 *
2204 * Send a single uevent (scsi_event) to the associated scsi_device.
2205 */
2206 static void scsi_evt_emit(struct scsi_device *sdev, struct scsi_event *evt)
2207 {
2208 int idx = 0;
2209 char *envp[3];
2210
2211 switch (evt->evt_type) {
2212 case SDEV_EVT_MEDIA_CHANGE:
2213 envp[idx++] = "SDEV_MEDIA_CHANGE=1";
2214 break;
2215 case SDEV_EVT_INQUIRY_CHANGE_REPORTED:
2216 envp[idx++] = "SDEV_UA=INQUIRY_DATA_HAS_CHANGED";
2217 break;
2218 case SDEV_EVT_CAPACITY_CHANGE_REPORTED:
2219 envp[idx++] = "SDEV_UA=CAPACITY_DATA_HAS_CHANGED";
2220 break;
2221 case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED:
2222 envp[idx++] = "SDEV_UA=THIN_PROVISIONING_SOFT_THRESHOLD_REACHED";
2223 break;
2224 case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED:
2225 envp[idx++] = "SDEV_UA=MODE_PARAMETERS_CHANGED";
2226 break;
2227 case SDEV_EVT_LUN_CHANGE_REPORTED:
2228 envp[idx++] = "SDEV_UA=REPORTED_LUNS_DATA_HAS_CHANGED";
2229 break;
2230 default:
2231 /* do nothing */
2232 break;
2233 }
2234
2235 envp[idx++] = NULL;
2236
2237 kobject_uevent_env(&sdev->sdev_gendev.kobj, KOBJ_CHANGE, envp);
2238 }
2239
2240 /**
2241 * sdev_evt_thread - send a uevent for each scsi event
2242 * @work: work struct for scsi_device
2243 *
2244 * Dispatch queued events to their associated scsi_device kobjects
2245 * as uevents.
2246 */
2247 void scsi_evt_thread(struct work_struct *work)
2248 {
2249 struct scsi_device *sdev;
2250 enum scsi_device_event evt_type;
2251 LIST_HEAD(event_list);
2252
2253 sdev = container_of(work, struct scsi_device, event_work);
2254
2255 for (evt_type = SDEV_EVT_FIRST; evt_type <= SDEV_EVT_LAST; evt_type++)
2256 if (test_and_clear_bit(evt_type, sdev->pending_events))
2257 sdev_evt_send_simple(sdev, evt_type, GFP_KERNEL);
2258
2259 while (1) {
2260 struct scsi_event *evt;
2261 struct list_head *this, *tmp;
2262 unsigned long flags;
2263
2264 spin_lock_irqsave(&sdev->list_lock, flags);
2265 list_splice_init(&sdev->event_list, &event_list);
2266 spin_unlock_irqrestore(&sdev->list_lock, flags);
2267
2268 if (list_empty(&event_list))
2269 break;
2270
2271 list_for_each_safe(this, tmp, &event_list) {
2272 evt = list_entry(this, struct scsi_event, node);
2273 list_del(&evt->node);
2274 scsi_evt_emit(sdev, evt);
2275 kfree(evt);
2276 }
2277 }
2278 }
2279
2280 /**
2281 * sdev_evt_send - send asserted event to uevent thread
2282 * @sdev: scsi_device event occurred on
2283 * @evt: event to send
2284 *
2285 * Assert scsi device event asynchronously.
2286 */
2287 void sdev_evt_send(struct scsi_device *sdev, struct scsi_event *evt)
2288 {
2289 unsigned long flags;
2290
2291 #if 0
2292 /* FIXME: currently this check eliminates all media change events
2293 * for polled devices. Need to update to discriminate between AN
2294 * and polled events */
2295 if (!test_bit(evt->evt_type, sdev->supported_events)) {
2296 kfree(evt);
2297 return;
2298 }
2299 #endif
2300
2301 spin_lock_irqsave(&sdev->list_lock, flags);
2302 list_add_tail(&evt->node, &sdev->event_list);
2303 schedule_work(&sdev->event_work);
2304 spin_unlock_irqrestore(&sdev->list_lock, flags);
2305 }
2306 EXPORT_SYMBOL_GPL(sdev_evt_send);
2307
2308 /**
2309 * sdev_evt_alloc - allocate a new scsi event
2310 * @evt_type: type of event to allocate
2311 * @gfpflags: GFP flags for allocation
2312 *
2313 * Allocates and returns a new scsi_event.
2314 */
2315 struct scsi_event *sdev_evt_alloc(enum scsi_device_event evt_type,
2316 gfp_t gfpflags)
2317 {
2318 struct scsi_event *evt = kzalloc(sizeof(struct scsi_event), gfpflags);
2319 if (!evt)
2320 return NULL;
2321
2322 evt->evt_type = evt_type;
2323 INIT_LIST_HEAD(&evt->node);
2324
2325 /* evt_type-specific initialization, if any */
2326 switch (evt_type) {
2327 case SDEV_EVT_MEDIA_CHANGE:
2328 case SDEV_EVT_INQUIRY_CHANGE_REPORTED:
2329 case SDEV_EVT_CAPACITY_CHANGE_REPORTED:
2330 case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED:
2331 case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED:
2332 case SDEV_EVT_LUN_CHANGE_REPORTED:
2333 default:
2334 /* do nothing */
2335 break;
2336 }
2337
2338 return evt;
2339 }
2340 EXPORT_SYMBOL_GPL(sdev_evt_alloc);
2341
2342 /**
2343 * sdev_evt_send_simple - send asserted event to uevent thread
2344 * @sdev: scsi_device event occurred on
2345 * @evt_type: type of event to send
2346 * @gfpflags: GFP flags for allocation
2347 *
2348 * Assert scsi device event asynchronously, given an event type.
2349 */
2350 void sdev_evt_send_simple(struct scsi_device *sdev,
2351 enum scsi_device_event evt_type, gfp_t gfpflags)
2352 {
2353 struct scsi_event *evt = sdev_evt_alloc(evt_type, gfpflags);
2354 if (!evt) {
2355 sdev_printk(KERN_ERR, sdev, "event %d eaten due to OOM\n",
2356 evt_type);
2357 return;
2358 }
2359
2360 sdev_evt_send(sdev, evt);
2361 }
2362 EXPORT_SYMBOL_GPL(sdev_evt_send_simple);
2363
2364 /**
2365 * scsi_device_quiesce - Block user issued commands.
2366 * @sdev: scsi device to quiesce.
2367 *
2368 * This works by trying to transition to the SDEV_QUIESCE state
2369 * (which must be a legal transition). When the device is in this
2370 * state, only special requests will be accepted, all others will
2371 * be deferred. Since special requests may also be requeued requests,
2372 * a successful return doesn't guarantee the device will be
2373 * totally quiescent.
2374 *
2375 * Must be called with user context, may sleep.
2376 *
2377 * Returns zero if unsuccessful or an error if not.
2378 */
2379 int
2380 scsi_device_quiesce(struct scsi_device *sdev)
2381 {
2382 int err = scsi_device_set_state(sdev, SDEV_QUIESCE);
2383 if (err)
2384 return err;
2385
2386 scsi_run_queue(sdev->request_queue);
2387 while (sdev->device_busy) {
2388 msleep_interruptible(200);
2389 scsi_run_queue(sdev->request_queue);
2390 }
2391 return 0;
2392 }
2393 EXPORT_SYMBOL(scsi_device_quiesce);
2394
2395 /**
2396 * scsi_device_resume - Restart user issued commands to a quiesced device.
2397 * @sdev: scsi device to resume.
2398 *
2399 * Moves the device from quiesced back to running and restarts the
2400 * queues.
2401 *
2402 * Must be called with user context, may sleep.
2403 */
2404 void scsi_device_resume(struct scsi_device *sdev)
2405 {
2406 /* check if the device state was mutated prior to resume, and if
2407 * so assume the state is being managed elsewhere (for example
2408 * device deleted during suspend)
2409 */
2410 if (sdev->sdev_state != SDEV_QUIESCE ||
2411 scsi_device_set_state(sdev, SDEV_RUNNING))
2412 return;
2413 scsi_run_queue(sdev->request_queue);
2414 }
2415 EXPORT_SYMBOL(scsi_device_resume);
2416
2417 static void
2418 device_quiesce_fn(struct scsi_device *sdev, void *data)
2419 {
2420 scsi_device_quiesce(sdev);
2421 }
2422
2423 void
2424 scsi_target_quiesce(struct scsi_target *starget)
2425 {
2426 starget_for_each_device(starget, NULL, device_quiesce_fn);
2427 }
2428 EXPORT_SYMBOL(scsi_target_quiesce);
2429
2430 static void
2431 device_resume_fn(struct scsi_device *sdev, void *data)
2432 {
2433 scsi_device_resume(sdev);
2434 }
2435
2436 void
2437 scsi_target_resume(struct scsi_target *starget)
2438 {
2439 starget_for_each_device(starget, NULL, device_resume_fn);
2440 }
2441 EXPORT_SYMBOL(scsi_target_resume);
2442
2443 /**
2444 * scsi_internal_device_block - internal function to put a device temporarily into the SDEV_BLOCK state
2445 * @sdev: device to block
2446 *
2447 * Block request made by scsi lld's to temporarily stop all
2448 * scsi commands on the specified device. Called from interrupt
2449 * or normal process context.
2450 *
2451 * Returns zero if successful or error if not
2452 *
2453 * Notes:
2454 * This routine transitions the device to the SDEV_BLOCK state
2455 * (which must be a legal transition). When the device is in this
2456 * state, all commands are deferred until the scsi lld reenables
2457 * the device with scsi_device_unblock or device_block_tmo fires.
2458 */
2459 int
2460 scsi_internal_device_block(struct scsi_device *sdev)
2461 {
2462 struct request_queue *q = sdev->request_queue;
2463 unsigned long flags;
2464 int err = 0;
2465
2466 err = scsi_device_set_state(sdev, SDEV_BLOCK);
2467 if (err) {
2468 err = scsi_device_set_state(sdev, SDEV_CREATED_BLOCK);
2469
2470 if (err)
2471 return err;
2472 }
2473
2474 /*
2475 * The device has transitioned to SDEV_BLOCK. Stop the
2476 * block layer from calling the midlayer with this device's
2477 * request queue.
2478 */
2479 spin_lock_irqsave(q->queue_lock, flags);
2480 blk_stop_queue(q);
2481 spin_unlock_irqrestore(q->queue_lock, flags);
2482
2483 return 0;
2484 }
2485 EXPORT_SYMBOL_GPL(scsi_internal_device_block);
2486
2487 /**
2488 * scsi_internal_device_unblock - resume a device after a block request
2489 * @sdev: device to resume
2490 * @new_state: state to set devices to after unblocking
2491 *
2492 * Called by scsi lld's or the midlayer to restart the device queue
2493 * for the previously suspended scsi device. Called from interrupt or
2494 * normal process context.
2495 *
2496 * Returns zero if successful or error if not.
2497 *
2498 * Notes:
2499 * This routine transitions the device to the SDEV_RUNNING state
2500 * or to one of the offline states (which must be a legal transition)
2501 * allowing the midlayer to goose the queue for this device.
2502 */
2503 int
2504 scsi_internal_device_unblock(struct scsi_device *sdev,
2505 enum scsi_device_state new_state)
2506 {
2507 struct request_queue *q = sdev->request_queue;
2508 unsigned long flags;
2509
2510 /*
2511 * Try to transition the scsi device to SDEV_RUNNING or one of the
2512 * offlined states and goose the device queue if successful.
2513 */
2514 if ((sdev->sdev_state == SDEV_BLOCK) ||
2515 (sdev->sdev_state == SDEV_TRANSPORT_OFFLINE))
2516 sdev->sdev_state = new_state;
2517 else if (sdev->sdev_state == SDEV_CREATED_BLOCK) {
2518 if (new_state == SDEV_TRANSPORT_OFFLINE ||
2519 new_state == SDEV_OFFLINE)
2520 sdev->sdev_state = new_state;
2521 else
2522 sdev->sdev_state = SDEV_CREATED;
2523 } else if (sdev->sdev_state != SDEV_CANCEL &&
2524 sdev->sdev_state != SDEV_OFFLINE)
2525 return -EINVAL;
2526
2527 spin_lock_irqsave(q->queue_lock, flags);
2528 blk_start_queue(q);
2529 spin_unlock_irqrestore(q->queue_lock, flags);
2530
2531 return 0;
2532 }
2533 EXPORT_SYMBOL_GPL(scsi_internal_device_unblock);
2534
2535 static void
2536 device_block(struct scsi_device *sdev, void *data)
2537 {
2538 scsi_internal_device_block(sdev);
2539 }
2540
2541 static int
2542 target_block(struct device *dev, void *data)
2543 {
2544 if (scsi_is_target_device(dev))
2545 starget_for_each_device(to_scsi_target(dev), NULL,
2546 device_block);
2547 return 0;
2548 }
2549
2550 void
2551 scsi_target_block(struct device *dev)
2552 {
2553 if (scsi_is_target_device(dev))
2554 starget_for_each_device(to_scsi_target(dev), NULL,
2555 device_block);
2556 else
2557 device_for_each_child(dev, NULL, target_block);
2558 }
2559 EXPORT_SYMBOL_GPL(scsi_target_block);
2560
2561 static void
2562 device_unblock(struct scsi_device *sdev, void *data)
2563 {
2564 scsi_internal_device_unblock(sdev, *(enum scsi_device_state *)data);
2565 }
2566
2567 static int
2568 target_unblock(struct device *dev, void *data)
2569 {
2570 if (scsi_is_target_device(dev))
2571 starget_for_each_device(to_scsi_target(dev), data,
2572 device_unblock);
2573 return 0;
2574 }
2575
2576 void
2577 scsi_target_unblock(struct device *dev, enum scsi_device_state new_state)
2578 {
2579 if (scsi_is_target_device(dev))
2580 starget_for_each_device(to_scsi_target(dev), &new_state,
2581 device_unblock);
2582 else
2583 device_for_each_child(dev, &new_state, target_unblock);
2584 }
2585 EXPORT_SYMBOL_GPL(scsi_target_unblock);
2586
2587 /**
2588 * scsi_kmap_atomic_sg - find and atomically map an sg-elemnt
2589 * @sgl: scatter-gather list
2590 * @sg_count: number of segments in sg
2591 * @offset: offset in bytes into sg, on return offset into the mapped area
2592 * @len: bytes to map, on return number of bytes mapped
2593 *
2594 * Returns virtual address of the start of the mapped page
2595 */
2596 void *scsi_kmap_atomic_sg(struct scatterlist *sgl, int sg_count,
2597 size_t *offset, size_t *len)
2598 {
2599 int i;
2600 size_t sg_len = 0, len_complete = 0;
2601 struct scatterlist *sg;
2602 struct page *page;
2603
2604 WARN_ON(!irqs_disabled());
2605
2606 for_each_sg(sgl, sg, sg_count, i) {
2607 len_complete = sg_len; /* Complete sg-entries */
2608 sg_len += sg->length;
2609 if (sg_len > *offset)
2610 break;
2611 }
2612
2613 if (unlikely(i == sg_count)) {
2614 printk(KERN_ERR "%s: Bytes in sg: %zu, requested offset %zu, "
2615 "elements %d\n",
2616 __func__, sg_len, *offset, sg_count);
2617 WARN_ON(1);
2618 return NULL;
2619 }
2620
2621 /* Offset starting from the beginning of first page in this sg-entry */
2622 *offset = *offset - len_complete + sg->offset;
2623
2624 /* Assumption: contiguous pages can be accessed as "page + i" */
2625 page = nth_page(sg_page(sg), (*offset >> PAGE_SHIFT));
2626 *offset &= ~PAGE_MASK;
2627
2628 /* Bytes in this sg-entry from *offset to the end of the page */
2629 sg_len = PAGE_SIZE - *offset;
2630 if (*len > sg_len)
2631 *len = sg_len;
2632
2633 return kmap_atomic(page);
2634 }
2635 EXPORT_SYMBOL(scsi_kmap_atomic_sg);
2636
2637 /**
2638 * scsi_kunmap_atomic_sg - atomically unmap a virtual address, previously mapped with scsi_kmap_atomic_sg
2639 * @virt: virtual address to be unmapped
2640 */
2641 void scsi_kunmap_atomic_sg(void *virt)
2642 {
2643 kunmap_atomic(virt);
2644 }
2645 EXPORT_SYMBOL(scsi_kunmap_atomic_sg);
2646
2647 void sdev_disable_disk_events(struct scsi_device *sdev)
2648 {
2649 atomic_inc(&sdev->disk_events_disable_depth);
2650 }
2651 EXPORT_SYMBOL(sdev_disable_disk_events);
2652
2653 void sdev_enable_disk_events(struct scsi_device *sdev)
2654 {
2655 if (WARN_ON_ONCE(atomic_read(&sdev->disk_events_disable_depth) <= 0))
2656 return;
2657 atomic_dec(&sdev->disk_events_disable_depth);
2658 }
2659 EXPORT_SYMBOL(sdev_enable_disk_events);
This page took 0.300192 seconds and 4 git commands to generate.