scsi: add use_cmd_list flag
[deliverable/linux.git] / drivers / scsi / scsi_lib.c
1 /*
2 * Copyright (C) 1999 Eric Youngdale
3 * Copyright (C) 2014 Christoph Hellwig
4 *
5 * SCSI queueing library.
6 * Initial versions: Eric Youngdale (eric@andante.org).
7 * Based upon conversations with large numbers
8 * of people at Linux Expo.
9 */
10
11 #include <linux/bio.h>
12 #include <linux/bitops.h>
13 #include <linux/blkdev.h>
14 #include <linux/completion.h>
15 #include <linux/kernel.h>
16 #include <linux/export.h>
17 #include <linux/mempool.h>
18 #include <linux/slab.h>
19 #include <linux/init.h>
20 #include <linux/pci.h>
21 #include <linux/delay.h>
22 #include <linux/hardirq.h>
23 #include <linux/scatterlist.h>
24 #include <linux/blk-mq.h>
25
26 #include <scsi/scsi.h>
27 #include <scsi/scsi_cmnd.h>
28 #include <scsi/scsi_dbg.h>
29 #include <scsi/scsi_device.h>
30 #include <scsi/scsi_driver.h>
31 #include <scsi/scsi_eh.h>
32 #include <scsi/scsi_host.h>
33
34 #include <trace/events/scsi.h>
35
36 #include "scsi_priv.h"
37 #include "scsi_logging.h"
38
39
40 #define SG_MEMPOOL_NR ARRAY_SIZE(scsi_sg_pools)
41 #define SG_MEMPOOL_SIZE 2
42
43 struct scsi_host_sg_pool {
44 size_t size;
45 char *name;
46 struct kmem_cache *slab;
47 mempool_t *pool;
48 };
49
50 #define SP(x) { x, "sgpool-" __stringify(x) }
51 #if (SCSI_MAX_SG_SEGMENTS < 32)
52 #error SCSI_MAX_SG_SEGMENTS is too small (must be 32 or greater)
53 #endif
54 static struct scsi_host_sg_pool scsi_sg_pools[] = {
55 SP(8),
56 SP(16),
57 #if (SCSI_MAX_SG_SEGMENTS > 32)
58 SP(32),
59 #if (SCSI_MAX_SG_SEGMENTS > 64)
60 SP(64),
61 #if (SCSI_MAX_SG_SEGMENTS > 128)
62 SP(128),
63 #if (SCSI_MAX_SG_SEGMENTS > 256)
64 #error SCSI_MAX_SG_SEGMENTS is too large (256 MAX)
65 #endif
66 #endif
67 #endif
68 #endif
69 SP(SCSI_MAX_SG_SEGMENTS)
70 };
71 #undef SP
72
73 struct kmem_cache *scsi_sdb_cache;
74
75 /*
76 * When to reinvoke queueing after a resource shortage. It's 3 msecs to
77 * not change behaviour from the previous unplug mechanism, experimentation
78 * may prove this needs changing.
79 */
80 #define SCSI_QUEUE_DELAY 3
81
82 static void
83 scsi_set_blocked(struct scsi_cmnd *cmd, int reason)
84 {
85 struct Scsi_Host *host = cmd->device->host;
86 struct scsi_device *device = cmd->device;
87 struct scsi_target *starget = scsi_target(device);
88
89 /*
90 * Set the appropriate busy bit for the device/host.
91 *
92 * If the host/device isn't busy, assume that something actually
93 * completed, and that we should be able to queue a command now.
94 *
95 * Note that the prior mid-layer assumption that any host could
96 * always queue at least one command is now broken. The mid-layer
97 * will implement a user specifiable stall (see
98 * scsi_host.max_host_blocked and scsi_device.max_device_blocked)
99 * if a command is requeued with no other commands outstanding
100 * either for the device or for the host.
101 */
102 switch (reason) {
103 case SCSI_MLQUEUE_HOST_BUSY:
104 atomic_set(&host->host_blocked, host->max_host_blocked);
105 break;
106 case SCSI_MLQUEUE_DEVICE_BUSY:
107 case SCSI_MLQUEUE_EH_RETRY:
108 atomic_set(&device->device_blocked,
109 device->max_device_blocked);
110 break;
111 case SCSI_MLQUEUE_TARGET_BUSY:
112 atomic_set(&starget->target_blocked,
113 starget->max_target_blocked);
114 break;
115 }
116 }
117
118 static void scsi_mq_requeue_cmd(struct scsi_cmnd *cmd)
119 {
120 struct scsi_device *sdev = cmd->device;
121 struct request_queue *q = cmd->request->q;
122
123 blk_mq_requeue_request(cmd->request);
124 blk_mq_kick_requeue_list(q);
125 put_device(&sdev->sdev_gendev);
126 }
127
128 /**
129 * __scsi_queue_insert - private queue insertion
130 * @cmd: The SCSI command being requeued
131 * @reason: The reason for the requeue
132 * @unbusy: Whether the queue should be unbusied
133 *
134 * This is a private queue insertion. The public interface
135 * scsi_queue_insert() always assumes the queue should be unbusied
136 * because it's always called before the completion. This function is
137 * for a requeue after completion, which should only occur in this
138 * file.
139 */
140 static void __scsi_queue_insert(struct scsi_cmnd *cmd, int reason, int unbusy)
141 {
142 struct scsi_device *device = cmd->device;
143 struct request_queue *q = device->request_queue;
144 unsigned long flags;
145
146 SCSI_LOG_MLQUEUE(1, scmd_printk(KERN_INFO, cmd,
147 "Inserting command %p into mlqueue\n", cmd));
148
149 scsi_set_blocked(cmd, reason);
150
151 /*
152 * Decrement the counters, since these commands are no longer
153 * active on the host/device.
154 */
155 if (unbusy)
156 scsi_device_unbusy(device);
157
158 /*
159 * Requeue this command. It will go before all other commands
160 * that are already in the queue. Schedule requeue work under
161 * lock such that the kblockd_schedule_work() call happens
162 * before blk_cleanup_queue() finishes.
163 */
164 cmd->result = 0;
165 if (q->mq_ops) {
166 scsi_mq_requeue_cmd(cmd);
167 return;
168 }
169 spin_lock_irqsave(q->queue_lock, flags);
170 blk_requeue_request(q, cmd->request);
171 kblockd_schedule_work(&device->requeue_work);
172 spin_unlock_irqrestore(q->queue_lock, flags);
173 }
174
175 /*
176 * Function: scsi_queue_insert()
177 *
178 * Purpose: Insert a command in the midlevel queue.
179 *
180 * Arguments: cmd - command that we are adding to queue.
181 * reason - why we are inserting command to queue.
182 *
183 * Lock status: Assumed that lock is not held upon entry.
184 *
185 * Returns: Nothing.
186 *
187 * Notes: We do this for one of two cases. Either the host is busy
188 * and it cannot accept any more commands for the time being,
189 * or the device returned QUEUE_FULL and can accept no more
190 * commands.
191 * Notes: This could be called either from an interrupt context or a
192 * normal process context.
193 */
194 void scsi_queue_insert(struct scsi_cmnd *cmd, int reason)
195 {
196 __scsi_queue_insert(cmd, reason, 1);
197 }
198 /**
199 * scsi_execute - insert request and wait for the result
200 * @sdev: scsi device
201 * @cmd: scsi command
202 * @data_direction: data direction
203 * @buffer: data buffer
204 * @bufflen: len of buffer
205 * @sense: optional sense buffer
206 * @timeout: request timeout in seconds
207 * @retries: number of times to retry request
208 * @flags: or into request flags;
209 * @resid: optional residual length
210 *
211 * returns the req->errors value which is the scsi_cmnd result
212 * field.
213 */
214 int scsi_execute(struct scsi_device *sdev, const unsigned char *cmd,
215 int data_direction, void *buffer, unsigned bufflen,
216 unsigned char *sense, int timeout, int retries, u64 flags,
217 int *resid)
218 {
219 struct request *req;
220 int write = (data_direction == DMA_TO_DEVICE);
221 int ret = DRIVER_ERROR << 24;
222
223 req = blk_get_request(sdev->request_queue, write, __GFP_WAIT);
224 if (!req)
225 return ret;
226 blk_rq_set_block_pc(req);
227
228 if (bufflen && blk_rq_map_kern(sdev->request_queue, req,
229 buffer, bufflen, __GFP_WAIT))
230 goto out;
231
232 req->cmd_len = COMMAND_SIZE(cmd[0]);
233 memcpy(req->cmd, cmd, req->cmd_len);
234 req->sense = sense;
235 req->sense_len = 0;
236 req->retries = retries;
237 req->timeout = timeout;
238 req->cmd_flags |= flags | REQ_QUIET | REQ_PREEMPT;
239
240 /*
241 * head injection *required* here otherwise quiesce won't work
242 */
243 blk_execute_rq(req->q, NULL, req, 1);
244
245 /*
246 * Some devices (USB mass-storage in particular) may transfer
247 * garbage data together with a residue indicating that the data
248 * is invalid. Prevent the garbage from being misinterpreted
249 * and prevent security leaks by zeroing out the excess data.
250 */
251 if (unlikely(req->resid_len > 0 && req->resid_len <= bufflen))
252 memset(buffer + (bufflen - req->resid_len), 0, req->resid_len);
253
254 if (resid)
255 *resid = req->resid_len;
256 ret = req->errors;
257 out:
258 blk_put_request(req);
259
260 return ret;
261 }
262 EXPORT_SYMBOL(scsi_execute);
263
264 int scsi_execute_req_flags(struct scsi_device *sdev, const unsigned char *cmd,
265 int data_direction, void *buffer, unsigned bufflen,
266 struct scsi_sense_hdr *sshdr, int timeout, int retries,
267 int *resid, u64 flags)
268 {
269 char *sense = NULL;
270 int result;
271
272 if (sshdr) {
273 sense = kzalloc(SCSI_SENSE_BUFFERSIZE, GFP_NOIO);
274 if (!sense)
275 return DRIVER_ERROR << 24;
276 }
277 result = scsi_execute(sdev, cmd, data_direction, buffer, bufflen,
278 sense, timeout, retries, flags, resid);
279 if (sshdr)
280 scsi_normalize_sense(sense, SCSI_SENSE_BUFFERSIZE, sshdr);
281
282 kfree(sense);
283 return result;
284 }
285 EXPORT_SYMBOL(scsi_execute_req_flags);
286
287 /*
288 * Function: scsi_init_cmd_errh()
289 *
290 * Purpose: Initialize cmd fields related to error handling.
291 *
292 * Arguments: cmd - command that is ready to be queued.
293 *
294 * Notes: This function has the job of initializing a number of
295 * fields related to error handling. Typically this will
296 * be called once for each command, as required.
297 */
298 static void scsi_init_cmd_errh(struct scsi_cmnd *cmd)
299 {
300 cmd->serial_number = 0;
301 scsi_set_resid(cmd, 0);
302 memset(cmd->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE);
303 if (cmd->cmd_len == 0)
304 cmd->cmd_len = scsi_command_size(cmd->cmnd);
305 }
306
307 void scsi_device_unbusy(struct scsi_device *sdev)
308 {
309 struct Scsi_Host *shost = sdev->host;
310 struct scsi_target *starget = scsi_target(sdev);
311 unsigned long flags;
312
313 atomic_dec(&shost->host_busy);
314 if (starget->can_queue > 0)
315 atomic_dec(&starget->target_busy);
316
317 if (unlikely(scsi_host_in_recovery(shost) &&
318 (shost->host_failed || shost->host_eh_scheduled))) {
319 spin_lock_irqsave(shost->host_lock, flags);
320 scsi_eh_wakeup(shost);
321 spin_unlock_irqrestore(shost->host_lock, flags);
322 }
323
324 atomic_dec(&sdev->device_busy);
325 }
326
327 static void scsi_kick_queue(struct request_queue *q)
328 {
329 if (q->mq_ops)
330 blk_mq_start_hw_queues(q);
331 else
332 blk_run_queue(q);
333 }
334
335 /*
336 * Called for single_lun devices on IO completion. Clear starget_sdev_user,
337 * and call blk_run_queue for all the scsi_devices on the target -
338 * including current_sdev first.
339 *
340 * Called with *no* scsi locks held.
341 */
342 static void scsi_single_lun_run(struct scsi_device *current_sdev)
343 {
344 struct Scsi_Host *shost = current_sdev->host;
345 struct scsi_device *sdev, *tmp;
346 struct scsi_target *starget = scsi_target(current_sdev);
347 unsigned long flags;
348
349 spin_lock_irqsave(shost->host_lock, flags);
350 starget->starget_sdev_user = NULL;
351 spin_unlock_irqrestore(shost->host_lock, flags);
352
353 /*
354 * Call blk_run_queue for all LUNs on the target, starting with
355 * current_sdev. We race with others (to set starget_sdev_user),
356 * but in most cases, we will be first. Ideally, each LU on the
357 * target would get some limited time or requests on the target.
358 */
359 scsi_kick_queue(current_sdev->request_queue);
360
361 spin_lock_irqsave(shost->host_lock, flags);
362 if (starget->starget_sdev_user)
363 goto out;
364 list_for_each_entry_safe(sdev, tmp, &starget->devices,
365 same_target_siblings) {
366 if (sdev == current_sdev)
367 continue;
368 if (scsi_device_get(sdev))
369 continue;
370
371 spin_unlock_irqrestore(shost->host_lock, flags);
372 scsi_kick_queue(sdev->request_queue);
373 spin_lock_irqsave(shost->host_lock, flags);
374
375 scsi_device_put(sdev);
376 }
377 out:
378 spin_unlock_irqrestore(shost->host_lock, flags);
379 }
380
381 static inline bool scsi_device_is_busy(struct scsi_device *sdev)
382 {
383 if (atomic_read(&sdev->device_busy) >= sdev->queue_depth)
384 return true;
385 if (atomic_read(&sdev->device_blocked) > 0)
386 return true;
387 return false;
388 }
389
390 static inline bool scsi_target_is_busy(struct scsi_target *starget)
391 {
392 if (starget->can_queue > 0) {
393 if (atomic_read(&starget->target_busy) >= starget->can_queue)
394 return true;
395 if (atomic_read(&starget->target_blocked) > 0)
396 return true;
397 }
398 return false;
399 }
400
401 static inline bool scsi_host_is_busy(struct Scsi_Host *shost)
402 {
403 if (shost->can_queue > 0 &&
404 atomic_read(&shost->host_busy) >= shost->can_queue)
405 return true;
406 if (atomic_read(&shost->host_blocked) > 0)
407 return true;
408 if (shost->host_self_blocked)
409 return true;
410 return false;
411 }
412
413 static void scsi_starved_list_run(struct Scsi_Host *shost)
414 {
415 LIST_HEAD(starved_list);
416 struct scsi_device *sdev;
417 unsigned long flags;
418
419 spin_lock_irqsave(shost->host_lock, flags);
420 list_splice_init(&shost->starved_list, &starved_list);
421
422 while (!list_empty(&starved_list)) {
423 struct request_queue *slq;
424
425 /*
426 * As long as shost is accepting commands and we have
427 * starved queues, call blk_run_queue. scsi_request_fn
428 * drops the queue_lock and can add us back to the
429 * starved_list.
430 *
431 * host_lock protects the starved_list and starved_entry.
432 * scsi_request_fn must get the host_lock before checking
433 * or modifying starved_list or starved_entry.
434 */
435 if (scsi_host_is_busy(shost))
436 break;
437
438 sdev = list_entry(starved_list.next,
439 struct scsi_device, starved_entry);
440 list_del_init(&sdev->starved_entry);
441 if (scsi_target_is_busy(scsi_target(sdev))) {
442 list_move_tail(&sdev->starved_entry,
443 &shost->starved_list);
444 continue;
445 }
446
447 /*
448 * Once we drop the host lock, a racing scsi_remove_device()
449 * call may remove the sdev from the starved list and destroy
450 * it and the queue. Mitigate by taking a reference to the
451 * queue and never touching the sdev again after we drop the
452 * host lock. Note: if __scsi_remove_device() invokes
453 * blk_cleanup_queue() before the queue is run from this
454 * function then blk_run_queue() will return immediately since
455 * blk_cleanup_queue() marks the queue with QUEUE_FLAG_DYING.
456 */
457 slq = sdev->request_queue;
458 if (!blk_get_queue(slq))
459 continue;
460 spin_unlock_irqrestore(shost->host_lock, flags);
461
462 scsi_kick_queue(slq);
463 blk_put_queue(slq);
464
465 spin_lock_irqsave(shost->host_lock, flags);
466 }
467 /* put any unprocessed entries back */
468 list_splice(&starved_list, &shost->starved_list);
469 spin_unlock_irqrestore(shost->host_lock, flags);
470 }
471
472 /*
473 * Function: scsi_run_queue()
474 *
475 * Purpose: Select a proper request queue to serve next
476 *
477 * Arguments: q - last request's queue
478 *
479 * Returns: Nothing
480 *
481 * Notes: The previous command was completely finished, start
482 * a new one if possible.
483 */
484 static void scsi_run_queue(struct request_queue *q)
485 {
486 struct scsi_device *sdev = q->queuedata;
487
488 if (scsi_target(sdev)->single_lun)
489 scsi_single_lun_run(sdev);
490 if (!list_empty(&sdev->host->starved_list))
491 scsi_starved_list_run(sdev->host);
492
493 if (q->mq_ops)
494 blk_mq_start_stopped_hw_queues(q, false);
495 else
496 blk_run_queue(q);
497 }
498
499 void scsi_requeue_run_queue(struct work_struct *work)
500 {
501 struct scsi_device *sdev;
502 struct request_queue *q;
503
504 sdev = container_of(work, struct scsi_device, requeue_work);
505 q = sdev->request_queue;
506 scsi_run_queue(q);
507 }
508
509 /*
510 * Function: scsi_requeue_command()
511 *
512 * Purpose: Handle post-processing of completed commands.
513 *
514 * Arguments: q - queue to operate on
515 * cmd - command that may need to be requeued.
516 *
517 * Returns: Nothing
518 *
519 * Notes: After command completion, there may be blocks left
520 * over which weren't finished by the previous command
521 * this can be for a number of reasons - the main one is
522 * I/O errors in the middle of the request, in which case
523 * we need to request the blocks that come after the bad
524 * sector.
525 * Notes: Upon return, cmd is a stale pointer.
526 */
527 static void scsi_requeue_command(struct request_queue *q, struct scsi_cmnd *cmd)
528 {
529 struct scsi_device *sdev = cmd->device;
530 struct request *req = cmd->request;
531 unsigned long flags;
532
533 spin_lock_irqsave(q->queue_lock, flags);
534 blk_unprep_request(req);
535 req->special = NULL;
536 scsi_put_command(cmd);
537 blk_requeue_request(q, req);
538 spin_unlock_irqrestore(q->queue_lock, flags);
539
540 scsi_run_queue(q);
541
542 put_device(&sdev->sdev_gendev);
543 }
544
545 void scsi_next_command(struct scsi_cmnd *cmd)
546 {
547 struct scsi_device *sdev = cmd->device;
548 struct request_queue *q = sdev->request_queue;
549
550 scsi_put_command(cmd);
551 scsi_run_queue(q);
552
553 put_device(&sdev->sdev_gendev);
554 }
555
556 void scsi_run_host_queues(struct Scsi_Host *shost)
557 {
558 struct scsi_device *sdev;
559
560 shost_for_each_device(sdev, shost)
561 scsi_run_queue(sdev->request_queue);
562 }
563
564 static inline unsigned int scsi_sgtable_index(unsigned short nents)
565 {
566 unsigned int index;
567
568 BUG_ON(nents > SCSI_MAX_SG_SEGMENTS);
569
570 if (nents <= 8)
571 index = 0;
572 else
573 index = get_count_order(nents) - 3;
574
575 return index;
576 }
577
578 static void scsi_sg_free(struct scatterlist *sgl, unsigned int nents)
579 {
580 struct scsi_host_sg_pool *sgp;
581
582 sgp = scsi_sg_pools + scsi_sgtable_index(nents);
583 mempool_free(sgl, sgp->pool);
584 }
585
586 static struct scatterlist *scsi_sg_alloc(unsigned int nents, gfp_t gfp_mask)
587 {
588 struct scsi_host_sg_pool *sgp;
589
590 sgp = scsi_sg_pools + scsi_sgtable_index(nents);
591 return mempool_alloc(sgp->pool, gfp_mask);
592 }
593
594 static void scsi_free_sgtable(struct scsi_data_buffer *sdb, bool mq)
595 {
596 if (mq && sdb->table.nents <= SCSI_MAX_SG_SEGMENTS)
597 return;
598 __sg_free_table(&sdb->table, SCSI_MAX_SG_SEGMENTS, mq, scsi_sg_free);
599 }
600
601 static int scsi_alloc_sgtable(struct scsi_data_buffer *sdb, int nents,
602 gfp_t gfp_mask, bool mq)
603 {
604 struct scatterlist *first_chunk = NULL;
605 int ret;
606
607 BUG_ON(!nents);
608
609 if (mq) {
610 if (nents <= SCSI_MAX_SG_SEGMENTS) {
611 sdb->table.nents = nents;
612 sg_init_table(sdb->table.sgl, sdb->table.nents);
613 return 0;
614 }
615 first_chunk = sdb->table.sgl;
616 }
617
618 ret = __sg_alloc_table(&sdb->table, nents, SCSI_MAX_SG_SEGMENTS,
619 first_chunk, gfp_mask, scsi_sg_alloc);
620 if (unlikely(ret))
621 scsi_free_sgtable(sdb, mq);
622 return ret;
623 }
624
625 static void scsi_uninit_cmd(struct scsi_cmnd *cmd)
626 {
627 if (cmd->request->cmd_type == REQ_TYPE_FS) {
628 struct scsi_driver *drv = scsi_cmd_to_driver(cmd);
629
630 if (drv->uninit_command)
631 drv->uninit_command(cmd);
632 }
633 }
634
635 static void scsi_mq_free_sgtables(struct scsi_cmnd *cmd)
636 {
637 if (cmd->sdb.table.nents)
638 scsi_free_sgtable(&cmd->sdb, true);
639 if (cmd->request->next_rq && cmd->request->next_rq->special)
640 scsi_free_sgtable(cmd->request->next_rq->special, true);
641 if (scsi_prot_sg_count(cmd))
642 scsi_free_sgtable(cmd->prot_sdb, true);
643 }
644
645 static void scsi_mq_uninit_cmd(struct scsi_cmnd *cmd)
646 {
647 struct scsi_device *sdev = cmd->device;
648 struct Scsi_Host *shost = sdev->host;
649 unsigned long flags;
650
651 scsi_mq_free_sgtables(cmd);
652 scsi_uninit_cmd(cmd);
653
654 if (shost->use_cmd_list) {
655 BUG_ON(list_empty(&cmd->list));
656 spin_lock_irqsave(&sdev->list_lock, flags);
657 list_del_init(&cmd->list);
658 spin_unlock_irqrestore(&sdev->list_lock, flags);
659 }
660 }
661
662 /*
663 * Function: scsi_release_buffers()
664 *
665 * Purpose: Free resources allocate for a scsi_command.
666 *
667 * Arguments: cmd - command that we are bailing.
668 *
669 * Lock status: Assumed that no lock is held upon entry.
670 *
671 * Returns: Nothing
672 *
673 * Notes: In the event that an upper level driver rejects a
674 * command, we must release resources allocated during
675 * the __init_io() function. Primarily this would involve
676 * the scatter-gather table.
677 */
678 static void scsi_release_buffers(struct scsi_cmnd *cmd)
679 {
680 if (cmd->sdb.table.nents)
681 scsi_free_sgtable(&cmd->sdb, false);
682
683 memset(&cmd->sdb, 0, sizeof(cmd->sdb));
684
685 if (scsi_prot_sg_count(cmd))
686 scsi_free_sgtable(cmd->prot_sdb, false);
687 }
688
689 static void scsi_release_bidi_buffers(struct scsi_cmnd *cmd)
690 {
691 struct scsi_data_buffer *bidi_sdb = cmd->request->next_rq->special;
692
693 scsi_free_sgtable(bidi_sdb, false);
694 kmem_cache_free(scsi_sdb_cache, bidi_sdb);
695 cmd->request->next_rq->special = NULL;
696 }
697
698 static bool scsi_end_request(struct request *req, int error,
699 unsigned int bytes, unsigned int bidi_bytes)
700 {
701 struct scsi_cmnd *cmd = req->special;
702 struct scsi_device *sdev = cmd->device;
703 struct request_queue *q = sdev->request_queue;
704
705 if (blk_update_request(req, error, bytes))
706 return true;
707
708 /* Bidi request must be completed as a whole */
709 if (unlikely(bidi_bytes) &&
710 blk_update_request(req->next_rq, error, bidi_bytes))
711 return true;
712
713 if (blk_queue_add_random(q))
714 add_disk_randomness(req->rq_disk);
715
716 if (req->mq_ctx) {
717 /*
718 * In the MQ case the command gets freed by __blk_mq_end_io,
719 * so we have to do all cleanup that depends on it earlier.
720 *
721 * We also can't kick the queues from irq context, so we
722 * will have to defer it to a workqueue.
723 */
724 scsi_mq_uninit_cmd(cmd);
725
726 __blk_mq_end_io(req, error);
727
728 if (scsi_target(sdev)->single_lun ||
729 !list_empty(&sdev->host->starved_list))
730 kblockd_schedule_work(&sdev->requeue_work);
731 else
732 blk_mq_start_stopped_hw_queues(q, true);
733
734 put_device(&sdev->sdev_gendev);
735 } else {
736 unsigned long flags;
737
738 spin_lock_irqsave(q->queue_lock, flags);
739 blk_finish_request(req, error);
740 spin_unlock_irqrestore(q->queue_lock, flags);
741
742 if (bidi_bytes)
743 scsi_release_bidi_buffers(cmd);
744 scsi_release_buffers(cmd);
745 scsi_next_command(cmd);
746 }
747
748 return false;
749 }
750
751 /**
752 * __scsi_error_from_host_byte - translate SCSI error code into errno
753 * @cmd: SCSI command (unused)
754 * @result: scsi error code
755 *
756 * Translate SCSI error code into standard UNIX errno.
757 * Return values:
758 * -ENOLINK temporary transport failure
759 * -EREMOTEIO permanent target failure, do not retry
760 * -EBADE permanent nexus failure, retry on other path
761 * -ENOSPC No write space available
762 * -ENODATA Medium error
763 * -EIO unspecified I/O error
764 */
765 static int __scsi_error_from_host_byte(struct scsi_cmnd *cmd, int result)
766 {
767 int error = 0;
768
769 switch(host_byte(result)) {
770 case DID_TRANSPORT_FAILFAST:
771 error = -ENOLINK;
772 break;
773 case DID_TARGET_FAILURE:
774 set_host_byte(cmd, DID_OK);
775 error = -EREMOTEIO;
776 break;
777 case DID_NEXUS_FAILURE:
778 set_host_byte(cmd, DID_OK);
779 error = -EBADE;
780 break;
781 case DID_ALLOC_FAILURE:
782 set_host_byte(cmd, DID_OK);
783 error = -ENOSPC;
784 break;
785 case DID_MEDIUM_ERROR:
786 set_host_byte(cmd, DID_OK);
787 error = -ENODATA;
788 break;
789 default:
790 error = -EIO;
791 break;
792 }
793
794 return error;
795 }
796
797 /*
798 * Function: scsi_io_completion()
799 *
800 * Purpose: Completion processing for block device I/O requests.
801 *
802 * Arguments: cmd - command that is finished.
803 *
804 * Lock status: Assumed that no lock is held upon entry.
805 *
806 * Returns: Nothing
807 *
808 * Notes: We will finish off the specified number of sectors. If we
809 * are done, the command block will be released and the queue
810 * function will be goosed. If we are not done then we have to
811 * figure out what to do next:
812 *
813 * a) We can call scsi_requeue_command(). The request
814 * will be unprepared and put back on the queue. Then
815 * a new command will be created for it. This should
816 * be used if we made forward progress, or if we want
817 * to switch from READ(10) to READ(6) for example.
818 *
819 * b) We can call __scsi_queue_insert(). The request will
820 * be put back on the queue and retried using the same
821 * command as before, possibly after a delay.
822 *
823 * c) We can call scsi_end_request() with -EIO to fail
824 * the remainder of the request.
825 */
826 void scsi_io_completion(struct scsi_cmnd *cmd, unsigned int good_bytes)
827 {
828 int result = cmd->result;
829 struct request_queue *q = cmd->device->request_queue;
830 struct request *req = cmd->request;
831 int error = 0;
832 struct scsi_sense_hdr sshdr;
833 int sense_valid = 0;
834 int sense_deferred = 0;
835 enum {ACTION_FAIL, ACTION_REPREP, ACTION_RETRY,
836 ACTION_DELAYED_RETRY} action;
837 unsigned long wait_for = (cmd->allowed + 1) * req->timeout;
838
839 if (result) {
840 sense_valid = scsi_command_normalize_sense(cmd, &sshdr);
841 if (sense_valid)
842 sense_deferred = scsi_sense_is_deferred(&sshdr);
843 }
844
845 if (req->cmd_type == REQ_TYPE_BLOCK_PC) { /* SG_IO ioctl from block level */
846 if (result) {
847 if (sense_valid && req->sense) {
848 /*
849 * SG_IO wants current and deferred errors
850 */
851 int len = 8 + cmd->sense_buffer[7];
852
853 if (len > SCSI_SENSE_BUFFERSIZE)
854 len = SCSI_SENSE_BUFFERSIZE;
855 memcpy(req->sense, cmd->sense_buffer, len);
856 req->sense_len = len;
857 }
858 if (!sense_deferred)
859 error = __scsi_error_from_host_byte(cmd, result);
860 }
861 /*
862 * __scsi_error_from_host_byte may have reset the host_byte
863 */
864 req->errors = cmd->result;
865
866 req->resid_len = scsi_get_resid(cmd);
867
868 if (scsi_bidi_cmnd(cmd)) {
869 /*
870 * Bidi commands Must be complete as a whole,
871 * both sides at once.
872 */
873 req->next_rq->resid_len = scsi_in(cmd)->resid;
874 if (scsi_end_request(req, 0, blk_rq_bytes(req),
875 blk_rq_bytes(req->next_rq)))
876 BUG();
877 return;
878 }
879 } else if (blk_rq_bytes(req) == 0 && result && !sense_deferred) {
880 /*
881 * Certain non BLOCK_PC requests are commands that don't
882 * actually transfer anything (FLUSH), so cannot use
883 * good_bytes != blk_rq_bytes(req) as the signal for an error.
884 * This sets the error explicitly for the problem case.
885 */
886 error = __scsi_error_from_host_byte(cmd, result);
887 }
888
889 /* no bidi support for !REQ_TYPE_BLOCK_PC yet */
890 BUG_ON(blk_bidi_rq(req));
891
892 /*
893 * Next deal with any sectors which we were able to correctly
894 * handle.
895 */
896 SCSI_LOG_HLCOMPLETE(1, scmd_printk(KERN_INFO, cmd,
897 "%u sectors total, %d bytes done.\n",
898 blk_rq_sectors(req), good_bytes));
899
900 /*
901 * Recovered errors need reporting, but they're always treated
902 * as success, so fiddle the result code here. For BLOCK_PC
903 * we already took a copy of the original into rq->errors which
904 * is what gets returned to the user
905 */
906 if (sense_valid && (sshdr.sense_key == RECOVERED_ERROR)) {
907 /* if ATA PASS-THROUGH INFORMATION AVAILABLE skip
908 * print since caller wants ATA registers. Only occurs on
909 * SCSI ATA PASS_THROUGH commands when CK_COND=1
910 */
911 if ((sshdr.asc == 0x0) && (sshdr.ascq == 0x1d))
912 ;
913 else if (!(req->cmd_flags & REQ_QUIET))
914 scsi_print_sense("", cmd);
915 result = 0;
916 /* BLOCK_PC may have set error */
917 error = 0;
918 }
919
920 /*
921 * If we finished all bytes in the request we are done now.
922 */
923 if (!scsi_end_request(req, error, good_bytes, 0))
924 return;
925
926 /*
927 * Kill remainder if no retrys.
928 */
929 if (error && scsi_noretry_cmd(cmd)) {
930 if (scsi_end_request(req, error, blk_rq_bytes(req), 0))
931 BUG();
932 return;
933 }
934
935 /*
936 * If there had been no error, but we have leftover bytes in the
937 * requeues just queue the command up again.
938 */
939 if (result == 0)
940 goto requeue;
941
942 error = __scsi_error_from_host_byte(cmd, result);
943
944 if (host_byte(result) == DID_RESET) {
945 /* Third party bus reset or reset for error recovery
946 * reasons. Just retry the command and see what
947 * happens.
948 */
949 action = ACTION_RETRY;
950 } else if (sense_valid && !sense_deferred) {
951 switch (sshdr.sense_key) {
952 case UNIT_ATTENTION:
953 if (cmd->device->removable) {
954 /* Detected disc change. Set a bit
955 * and quietly refuse further access.
956 */
957 cmd->device->changed = 1;
958 action = ACTION_FAIL;
959 } else {
960 /* Must have been a power glitch, or a
961 * bus reset. Could not have been a
962 * media change, so we just retry the
963 * command and see what happens.
964 */
965 action = ACTION_RETRY;
966 }
967 break;
968 case ILLEGAL_REQUEST:
969 /* If we had an ILLEGAL REQUEST returned, then
970 * we may have performed an unsupported
971 * command. The only thing this should be
972 * would be a ten byte read where only a six
973 * byte read was supported. Also, on a system
974 * where READ CAPACITY failed, we may have
975 * read past the end of the disk.
976 */
977 if ((cmd->device->use_10_for_rw &&
978 sshdr.asc == 0x20 && sshdr.ascq == 0x00) &&
979 (cmd->cmnd[0] == READ_10 ||
980 cmd->cmnd[0] == WRITE_10)) {
981 /* This will issue a new 6-byte command. */
982 cmd->device->use_10_for_rw = 0;
983 action = ACTION_REPREP;
984 } else if (sshdr.asc == 0x10) /* DIX */ {
985 action = ACTION_FAIL;
986 error = -EILSEQ;
987 /* INVALID COMMAND OPCODE or INVALID FIELD IN CDB */
988 } else if (sshdr.asc == 0x20 || sshdr.asc == 0x24) {
989 action = ACTION_FAIL;
990 error = -EREMOTEIO;
991 } else
992 action = ACTION_FAIL;
993 break;
994 case ABORTED_COMMAND:
995 action = ACTION_FAIL;
996 if (sshdr.asc == 0x10) /* DIF */
997 error = -EILSEQ;
998 break;
999 case NOT_READY:
1000 /* If the device is in the process of becoming
1001 * ready, or has a temporary blockage, retry.
1002 */
1003 if (sshdr.asc == 0x04) {
1004 switch (sshdr.ascq) {
1005 case 0x01: /* becoming ready */
1006 case 0x04: /* format in progress */
1007 case 0x05: /* rebuild in progress */
1008 case 0x06: /* recalculation in progress */
1009 case 0x07: /* operation in progress */
1010 case 0x08: /* Long write in progress */
1011 case 0x09: /* self test in progress */
1012 case 0x14: /* space allocation in progress */
1013 action = ACTION_DELAYED_RETRY;
1014 break;
1015 default:
1016 action = ACTION_FAIL;
1017 break;
1018 }
1019 } else
1020 action = ACTION_FAIL;
1021 break;
1022 case VOLUME_OVERFLOW:
1023 /* See SSC3rXX or current. */
1024 action = ACTION_FAIL;
1025 break;
1026 default:
1027 action = ACTION_FAIL;
1028 break;
1029 }
1030 } else
1031 action = ACTION_FAIL;
1032
1033 if (action != ACTION_FAIL &&
1034 time_before(cmd->jiffies_at_alloc + wait_for, jiffies))
1035 action = ACTION_FAIL;
1036
1037 switch (action) {
1038 case ACTION_FAIL:
1039 /* Give up and fail the remainder of the request */
1040 if (!(req->cmd_flags & REQ_QUIET)) {
1041 scsi_print_result(cmd);
1042 if (driver_byte(result) & DRIVER_SENSE)
1043 scsi_print_sense("", cmd);
1044 scsi_print_command(cmd);
1045 }
1046 if (!scsi_end_request(req, error, blk_rq_err_bytes(req), 0))
1047 return;
1048 /*FALLTHRU*/
1049 case ACTION_REPREP:
1050 requeue:
1051 /* Unprep the request and put it back at the head of the queue.
1052 * A new command will be prepared and issued.
1053 */
1054 if (q->mq_ops) {
1055 cmd->request->cmd_flags &= ~REQ_DONTPREP;
1056 scsi_mq_uninit_cmd(cmd);
1057 scsi_mq_requeue_cmd(cmd);
1058 } else {
1059 scsi_release_buffers(cmd);
1060 scsi_requeue_command(q, cmd);
1061 }
1062 break;
1063 case ACTION_RETRY:
1064 /* Retry the same command immediately */
1065 __scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY, 0);
1066 break;
1067 case ACTION_DELAYED_RETRY:
1068 /* Retry the same command after a delay */
1069 __scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY, 0);
1070 break;
1071 }
1072 }
1073
1074 static int scsi_init_sgtable(struct request *req, struct scsi_data_buffer *sdb,
1075 gfp_t gfp_mask)
1076 {
1077 int count;
1078
1079 /*
1080 * If sg table allocation fails, requeue request later.
1081 */
1082 if (unlikely(scsi_alloc_sgtable(sdb, req->nr_phys_segments,
1083 gfp_mask, req->mq_ctx != NULL)))
1084 return BLKPREP_DEFER;
1085
1086 /*
1087 * Next, walk the list, and fill in the addresses and sizes of
1088 * each segment.
1089 */
1090 count = blk_rq_map_sg(req->q, req, sdb->table.sgl);
1091 BUG_ON(count > sdb->table.nents);
1092 sdb->table.nents = count;
1093 sdb->length = blk_rq_bytes(req);
1094 return BLKPREP_OK;
1095 }
1096
1097 /*
1098 * Function: scsi_init_io()
1099 *
1100 * Purpose: SCSI I/O initialize function.
1101 *
1102 * Arguments: cmd - Command descriptor we wish to initialize
1103 *
1104 * Returns: 0 on success
1105 * BLKPREP_DEFER if the failure is retryable
1106 * BLKPREP_KILL if the failure is fatal
1107 */
1108 int scsi_init_io(struct scsi_cmnd *cmd, gfp_t gfp_mask)
1109 {
1110 struct scsi_device *sdev = cmd->device;
1111 struct request *rq = cmd->request;
1112 bool is_mq = (rq->mq_ctx != NULL);
1113 int error;
1114
1115 BUG_ON(!rq->nr_phys_segments);
1116
1117 error = scsi_init_sgtable(rq, &cmd->sdb, gfp_mask);
1118 if (error)
1119 goto err_exit;
1120
1121 if (blk_bidi_rq(rq)) {
1122 if (!rq->q->mq_ops) {
1123 struct scsi_data_buffer *bidi_sdb =
1124 kmem_cache_zalloc(scsi_sdb_cache, GFP_ATOMIC);
1125 if (!bidi_sdb) {
1126 error = BLKPREP_DEFER;
1127 goto err_exit;
1128 }
1129
1130 rq->next_rq->special = bidi_sdb;
1131 }
1132
1133 error = scsi_init_sgtable(rq->next_rq, rq->next_rq->special,
1134 GFP_ATOMIC);
1135 if (error)
1136 goto err_exit;
1137 }
1138
1139 if (blk_integrity_rq(rq)) {
1140 struct scsi_data_buffer *prot_sdb = cmd->prot_sdb;
1141 int ivecs, count;
1142
1143 BUG_ON(prot_sdb == NULL);
1144 ivecs = blk_rq_count_integrity_sg(rq->q, rq->bio);
1145
1146 if (scsi_alloc_sgtable(prot_sdb, ivecs, gfp_mask, is_mq)) {
1147 error = BLKPREP_DEFER;
1148 goto err_exit;
1149 }
1150
1151 count = blk_rq_map_integrity_sg(rq->q, rq->bio,
1152 prot_sdb->table.sgl);
1153 BUG_ON(unlikely(count > ivecs));
1154 BUG_ON(unlikely(count > queue_max_integrity_segments(rq->q)));
1155
1156 cmd->prot_sdb = prot_sdb;
1157 cmd->prot_sdb->table.nents = count;
1158 }
1159
1160 return BLKPREP_OK;
1161 err_exit:
1162 if (is_mq) {
1163 scsi_mq_free_sgtables(cmd);
1164 } else {
1165 scsi_release_buffers(cmd);
1166 cmd->request->special = NULL;
1167 scsi_put_command(cmd);
1168 put_device(&sdev->sdev_gendev);
1169 }
1170 return error;
1171 }
1172 EXPORT_SYMBOL(scsi_init_io);
1173
1174 static struct scsi_cmnd *scsi_get_cmd_from_req(struct scsi_device *sdev,
1175 struct request *req)
1176 {
1177 struct scsi_cmnd *cmd;
1178
1179 if (!req->special) {
1180 /* Bail if we can't get a reference to the device */
1181 if (!get_device(&sdev->sdev_gendev))
1182 return NULL;
1183
1184 cmd = scsi_get_command(sdev, GFP_ATOMIC);
1185 if (unlikely(!cmd)) {
1186 put_device(&sdev->sdev_gendev);
1187 return NULL;
1188 }
1189 req->special = cmd;
1190 } else {
1191 cmd = req->special;
1192 }
1193
1194 /* pull a tag out of the request if we have one */
1195 cmd->tag = req->tag;
1196 cmd->request = req;
1197
1198 cmd->cmnd = req->cmd;
1199 cmd->prot_op = SCSI_PROT_NORMAL;
1200
1201 return cmd;
1202 }
1203
1204 static int scsi_setup_blk_pc_cmnd(struct scsi_device *sdev, struct request *req)
1205 {
1206 struct scsi_cmnd *cmd = req->special;
1207
1208 /*
1209 * BLOCK_PC requests may transfer data, in which case they must
1210 * a bio attached to them. Or they might contain a SCSI command
1211 * that does not transfer data, in which case they may optionally
1212 * submit a request without an attached bio.
1213 */
1214 if (req->bio) {
1215 int ret = scsi_init_io(cmd, GFP_ATOMIC);
1216 if (unlikely(ret))
1217 return ret;
1218 } else {
1219 BUG_ON(blk_rq_bytes(req));
1220
1221 memset(&cmd->sdb, 0, sizeof(cmd->sdb));
1222 }
1223
1224 cmd->cmd_len = req->cmd_len;
1225 cmd->transfersize = blk_rq_bytes(req);
1226 cmd->allowed = req->retries;
1227 return BLKPREP_OK;
1228 }
1229
1230 /*
1231 * Setup a REQ_TYPE_FS command. These are simple request from filesystems
1232 * that still need to be translated to SCSI CDBs from the ULD.
1233 */
1234 static int scsi_setup_fs_cmnd(struct scsi_device *sdev, struct request *req)
1235 {
1236 struct scsi_cmnd *cmd = req->special;
1237
1238 if (unlikely(sdev->scsi_dh_data && sdev->scsi_dh_data->scsi_dh
1239 && sdev->scsi_dh_data->scsi_dh->prep_fn)) {
1240 int ret = sdev->scsi_dh_data->scsi_dh->prep_fn(sdev, req);
1241 if (ret != BLKPREP_OK)
1242 return ret;
1243 }
1244
1245 memset(cmd->cmnd, 0, BLK_MAX_CDB);
1246 return scsi_cmd_to_driver(cmd)->init_command(cmd);
1247 }
1248
1249 static int scsi_setup_cmnd(struct scsi_device *sdev, struct request *req)
1250 {
1251 struct scsi_cmnd *cmd = req->special;
1252
1253 if (!blk_rq_bytes(req))
1254 cmd->sc_data_direction = DMA_NONE;
1255 else if (rq_data_dir(req) == WRITE)
1256 cmd->sc_data_direction = DMA_TO_DEVICE;
1257 else
1258 cmd->sc_data_direction = DMA_FROM_DEVICE;
1259
1260 switch (req->cmd_type) {
1261 case REQ_TYPE_FS:
1262 return scsi_setup_fs_cmnd(sdev, req);
1263 case REQ_TYPE_BLOCK_PC:
1264 return scsi_setup_blk_pc_cmnd(sdev, req);
1265 default:
1266 return BLKPREP_KILL;
1267 }
1268 }
1269
1270 static int
1271 scsi_prep_state_check(struct scsi_device *sdev, struct request *req)
1272 {
1273 int ret = BLKPREP_OK;
1274
1275 /*
1276 * If the device is not in running state we will reject some
1277 * or all commands.
1278 */
1279 if (unlikely(sdev->sdev_state != SDEV_RUNNING)) {
1280 switch (sdev->sdev_state) {
1281 case SDEV_OFFLINE:
1282 case SDEV_TRANSPORT_OFFLINE:
1283 /*
1284 * If the device is offline we refuse to process any
1285 * commands. The device must be brought online
1286 * before trying any recovery commands.
1287 */
1288 sdev_printk(KERN_ERR, sdev,
1289 "rejecting I/O to offline device\n");
1290 ret = BLKPREP_KILL;
1291 break;
1292 case SDEV_DEL:
1293 /*
1294 * If the device is fully deleted, we refuse to
1295 * process any commands as well.
1296 */
1297 sdev_printk(KERN_ERR, sdev,
1298 "rejecting I/O to dead device\n");
1299 ret = BLKPREP_KILL;
1300 break;
1301 case SDEV_QUIESCE:
1302 case SDEV_BLOCK:
1303 case SDEV_CREATED_BLOCK:
1304 /*
1305 * If the devices is blocked we defer normal commands.
1306 */
1307 if (!(req->cmd_flags & REQ_PREEMPT))
1308 ret = BLKPREP_DEFER;
1309 break;
1310 default:
1311 /*
1312 * For any other not fully online state we only allow
1313 * special commands. In particular any user initiated
1314 * command is not allowed.
1315 */
1316 if (!(req->cmd_flags & REQ_PREEMPT))
1317 ret = BLKPREP_KILL;
1318 break;
1319 }
1320 }
1321 return ret;
1322 }
1323
1324 static int
1325 scsi_prep_return(struct request_queue *q, struct request *req, int ret)
1326 {
1327 struct scsi_device *sdev = q->queuedata;
1328
1329 switch (ret) {
1330 case BLKPREP_KILL:
1331 req->errors = DID_NO_CONNECT << 16;
1332 /* release the command and kill it */
1333 if (req->special) {
1334 struct scsi_cmnd *cmd = req->special;
1335 scsi_release_buffers(cmd);
1336 scsi_put_command(cmd);
1337 put_device(&sdev->sdev_gendev);
1338 req->special = NULL;
1339 }
1340 break;
1341 case BLKPREP_DEFER:
1342 /*
1343 * If we defer, the blk_peek_request() returns NULL, but the
1344 * queue must be restarted, so we schedule a callback to happen
1345 * shortly.
1346 */
1347 if (atomic_read(&sdev->device_busy) == 0)
1348 blk_delay_queue(q, SCSI_QUEUE_DELAY);
1349 break;
1350 default:
1351 req->cmd_flags |= REQ_DONTPREP;
1352 }
1353
1354 return ret;
1355 }
1356
1357 static int scsi_prep_fn(struct request_queue *q, struct request *req)
1358 {
1359 struct scsi_device *sdev = q->queuedata;
1360 struct scsi_cmnd *cmd;
1361 int ret;
1362
1363 ret = scsi_prep_state_check(sdev, req);
1364 if (ret != BLKPREP_OK)
1365 goto out;
1366
1367 cmd = scsi_get_cmd_from_req(sdev, req);
1368 if (unlikely(!cmd)) {
1369 ret = BLKPREP_DEFER;
1370 goto out;
1371 }
1372
1373 ret = scsi_setup_cmnd(sdev, req);
1374 out:
1375 return scsi_prep_return(q, req, ret);
1376 }
1377
1378 static void scsi_unprep_fn(struct request_queue *q, struct request *req)
1379 {
1380 scsi_uninit_cmd(req->special);
1381 }
1382
1383 /*
1384 * scsi_dev_queue_ready: if we can send requests to sdev, return 1 else
1385 * return 0.
1386 *
1387 * Called with the queue_lock held.
1388 */
1389 static inline int scsi_dev_queue_ready(struct request_queue *q,
1390 struct scsi_device *sdev)
1391 {
1392 unsigned int busy;
1393
1394 busy = atomic_inc_return(&sdev->device_busy) - 1;
1395 if (atomic_read(&sdev->device_blocked)) {
1396 if (busy)
1397 goto out_dec;
1398
1399 /*
1400 * unblock after device_blocked iterates to zero
1401 */
1402 if (atomic_dec_return(&sdev->device_blocked) > 0) {
1403 /*
1404 * For the MQ case we take care of this in the caller.
1405 */
1406 if (!q->mq_ops)
1407 blk_delay_queue(q, SCSI_QUEUE_DELAY);
1408 goto out_dec;
1409 }
1410 SCSI_LOG_MLQUEUE(3, sdev_printk(KERN_INFO, sdev,
1411 "unblocking device at zero depth\n"));
1412 }
1413
1414 if (busy >= sdev->queue_depth)
1415 goto out_dec;
1416
1417 return 1;
1418 out_dec:
1419 atomic_dec(&sdev->device_busy);
1420 return 0;
1421 }
1422
1423 /*
1424 * scsi_target_queue_ready: checks if there we can send commands to target
1425 * @sdev: scsi device on starget to check.
1426 */
1427 static inline int scsi_target_queue_ready(struct Scsi_Host *shost,
1428 struct scsi_device *sdev)
1429 {
1430 struct scsi_target *starget = scsi_target(sdev);
1431 unsigned int busy;
1432
1433 if (starget->single_lun) {
1434 spin_lock_irq(shost->host_lock);
1435 if (starget->starget_sdev_user &&
1436 starget->starget_sdev_user != sdev) {
1437 spin_unlock_irq(shost->host_lock);
1438 return 0;
1439 }
1440 starget->starget_sdev_user = sdev;
1441 spin_unlock_irq(shost->host_lock);
1442 }
1443
1444 if (starget->can_queue <= 0)
1445 return 1;
1446
1447 busy = atomic_inc_return(&starget->target_busy) - 1;
1448 if (atomic_read(&starget->target_blocked) > 0) {
1449 if (busy)
1450 goto starved;
1451
1452 /*
1453 * unblock after target_blocked iterates to zero
1454 */
1455 if (atomic_dec_return(&starget->target_blocked) > 0)
1456 goto out_dec;
1457
1458 SCSI_LOG_MLQUEUE(3, starget_printk(KERN_INFO, starget,
1459 "unblocking target at zero depth\n"));
1460 }
1461
1462 if (busy >= starget->can_queue)
1463 goto starved;
1464
1465 return 1;
1466
1467 starved:
1468 spin_lock_irq(shost->host_lock);
1469 list_move_tail(&sdev->starved_entry, &shost->starved_list);
1470 spin_unlock_irq(shost->host_lock);
1471 out_dec:
1472 if (starget->can_queue > 0)
1473 atomic_dec(&starget->target_busy);
1474 return 0;
1475 }
1476
1477 /*
1478 * scsi_host_queue_ready: if we can send requests to shost, return 1 else
1479 * return 0. We must end up running the queue again whenever 0 is
1480 * returned, else IO can hang.
1481 */
1482 static inline int scsi_host_queue_ready(struct request_queue *q,
1483 struct Scsi_Host *shost,
1484 struct scsi_device *sdev)
1485 {
1486 unsigned int busy;
1487
1488 if (scsi_host_in_recovery(shost))
1489 return 0;
1490
1491 busy = atomic_inc_return(&shost->host_busy) - 1;
1492 if (atomic_read(&shost->host_blocked) > 0) {
1493 if (busy)
1494 goto starved;
1495
1496 /*
1497 * unblock after host_blocked iterates to zero
1498 */
1499 if (atomic_dec_return(&shost->host_blocked) > 0)
1500 goto out_dec;
1501
1502 SCSI_LOG_MLQUEUE(3,
1503 shost_printk(KERN_INFO, shost,
1504 "unblocking host at zero depth\n"));
1505 }
1506
1507 if (shost->can_queue > 0 && busy >= shost->can_queue)
1508 goto starved;
1509 if (shost->host_self_blocked)
1510 goto starved;
1511
1512 /* We're OK to process the command, so we can't be starved */
1513 if (!list_empty(&sdev->starved_entry)) {
1514 spin_lock_irq(shost->host_lock);
1515 if (!list_empty(&sdev->starved_entry))
1516 list_del_init(&sdev->starved_entry);
1517 spin_unlock_irq(shost->host_lock);
1518 }
1519
1520 return 1;
1521
1522 starved:
1523 spin_lock_irq(shost->host_lock);
1524 if (list_empty(&sdev->starved_entry))
1525 list_add_tail(&sdev->starved_entry, &shost->starved_list);
1526 spin_unlock_irq(shost->host_lock);
1527 out_dec:
1528 atomic_dec(&shost->host_busy);
1529 return 0;
1530 }
1531
1532 /*
1533 * Busy state exporting function for request stacking drivers.
1534 *
1535 * For efficiency, no lock is taken to check the busy state of
1536 * shost/starget/sdev, since the returned value is not guaranteed and
1537 * may be changed after request stacking drivers call the function,
1538 * regardless of taking lock or not.
1539 *
1540 * When scsi can't dispatch I/Os anymore and needs to kill I/Os scsi
1541 * needs to return 'not busy'. Otherwise, request stacking drivers
1542 * may hold requests forever.
1543 */
1544 static int scsi_lld_busy(struct request_queue *q)
1545 {
1546 struct scsi_device *sdev = q->queuedata;
1547 struct Scsi_Host *shost;
1548
1549 if (blk_queue_dying(q))
1550 return 0;
1551
1552 shost = sdev->host;
1553
1554 /*
1555 * Ignore host/starget busy state.
1556 * Since block layer does not have a concept of fairness across
1557 * multiple queues, congestion of host/starget needs to be handled
1558 * in SCSI layer.
1559 */
1560 if (scsi_host_in_recovery(shost) || scsi_device_is_busy(sdev))
1561 return 1;
1562
1563 return 0;
1564 }
1565
1566 /*
1567 * Kill a request for a dead device
1568 */
1569 static void scsi_kill_request(struct request *req, struct request_queue *q)
1570 {
1571 struct scsi_cmnd *cmd = req->special;
1572 struct scsi_device *sdev;
1573 struct scsi_target *starget;
1574 struct Scsi_Host *shost;
1575
1576 blk_start_request(req);
1577
1578 scmd_printk(KERN_INFO, cmd, "killing request\n");
1579
1580 sdev = cmd->device;
1581 starget = scsi_target(sdev);
1582 shost = sdev->host;
1583 scsi_init_cmd_errh(cmd);
1584 cmd->result = DID_NO_CONNECT << 16;
1585 atomic_inc(&cmd->device->iorequest_cnt);
1586
1587 /*
1588 * SCSI request completion path will do scsi_device_unbusy(),
1589 * bump busy counts. To bump the counters, we need to dance
1590 * with the locks as normal issue path does.
1591 */
1592 atomic_inc(&sdev->device_busy);
1593 atomic_inc(&shost->host_busy);
1594 if (starget->can_queue > 0)
1595 atomic_inc(&starget->target_busy);
1596
1597 blk_complete_request(req);
1598 }
1599
1600 static void scsi_softirq_done(struct request *rq)
1601 {
1602 struct scsi_cmnd *cmd = rq->special;
1603 unsigned long wait_for = (cmd->allowed + 1) * rq->timeout;
1604 int disposition;
1605
1606 INIT_LIST_HEAD(&cmd->eh_entry);
1607
1608 atomic_inc(&cmd->device->iodone_cnt);
1609 if (cmd->result)
1610 atomic_inc(&cmd->device->ioerr_cnt);
1611
1612 disposition = scsi_decide_disposition(cmd);
1613 if (disposition != SUCCESS &&
1614 time_before(cmd->jiffies_at_alloc + wait_for, jiffies)) {
1615 sdev_printk(KERN_ERR, cmd->device,
1616 "timing out command, waited %lus\n",
1617 wait_for/HZ);
1618 disposition = SUCCESS;
1619 }
1620
1621 scsi_log_completion(cmd, disposition);
1622
1623 switch (disposition) {
1624 case SUCCESS:
1625 scsi_finish_command(cmd);
1626 break;
1627 case NEEDS_RETRY:
1628 scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY);
1629 break;
1630 case ADD_TO_MLQUEUE:
1631 scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY);
1632 break;
1633 default:
1634 if (!scsi_eh_scmd_add(cmd, 0))
1635 scsi_finish_command(cmd);
1636 }
1637 }
1638
1639 /**
1640 * scsi_done - Invoke completion on finished SCSI command.
1641 * @cmd: The SCSI Command for which a low-level device driver (LLDD) gives
1642 * ownership back to SCSI Core -- i.e. the LLDD has finished with it.
1643 *
1644 * Description: This function is the mid-level's (SCSI Core) interrupt routine,
1645 * which regains ownership of the SCSI command (de facto) from a LLDD, and
1646 * calls blk_complete_request() for further processing.
1647 *
1648 * This function is interrupt context safe.
1649 */
1650 static void scsi_done(struct scsi_cmnd *cmd)
1651 {
1652 trace_scsi_dispatch_cmd_done(cmd);
1653 blk_complete_request(cmd->request);
1654 }
1655
1656 /*
1657 * Function: scsi_request_fn()
1658 *
1659 * Purpose: Main strategy routine for SCSI.
1660 *
1661 * Arguments: q - Pointer to actual queue.
1662 *
1663 * Returns: Nothing
1664 *
1665 * Lock status: IO request lock assumed to be held when called.
1666 */
1667 static void scsi_request_fn(struct request_queue *q)
1668 __releases(q->queue_lock)
1669 __acquires(q->queue_lock)
1670 {
1671 struct scsi_device *sdev = q->queuedata;
1672 struct Scsi_Host *shost;
1673 struct scsi_cmnd *cmd;
1674 struct request *req;
1675
1676 /*
1677 * To start with, we keep looping until the queue is empty, or until
1678 * the host is no longer able to accept any more requests.
1679 */
1680 shost = sdev->host;
1681 for (;;) {
1682 int rtn;
1683 /*
1684 * get next queueable request. We do this early to make sure
1685 * that the request is fully prepared even if we cannot
1686 * accept it.
1687 */
1688 req = blk_peek_request(q);
1689 if (!req)
1690 break;
1691
1692 if (unlikely(!scsi_device_online(sdev))) {
1693 sdev_printk(KERN_ERR, sdev,
1694 "rejecting I/O to offline device\n");
1695 scsi_kill_request(req, q);
1696 continue;
1697 }
1698
1699 if (!scsi_dev_queue_ready(q, sdev))
1700 break;
1701
1702 /*
1703 * Remove the request from the request list.
1704 */
1705 if (!(blk_queue_tagged(q) && !blk_queue_start_tag(q, req)))
1706 blk_start_request(req);
1707
1708 spin_unlock_irq(q->queue_lock);
1709 cmd = req->special;
1710 if (unlikely(cmd == NULL)) {
1711 printk(KERN_CRIT "impossible request in %s.\n"
1712 "please mail a stack trace to "
1713 "linux-scsi@vger.kernel.org\n",
1714 __func__);
1715 blk_dump_rq_flags(req, "foo");
1716 BUG();
1717 }
1718
1719 /*
1720 * We hit this when the driver is using a host wide
1721 * tag map. For device level tag maps the queue_depth check
1722 * in the device ready fn would prevent us from trying
1723 * to allocate a tag. Since the map is a shared host resource
1724 * we add the dev to the starved list so it eventually gets
1725 * a run when a tag is freed.
1726 */
1727 if (blk_queue_tagged(q) && !blk_rq_tagged(req)) {
1728 spin_lock_irq(shost->host_lock);
1729 if (list_empty(&sdev->starved_entry))
1730 list_add_tail(&sdev->starved_entry,
1731 &shost->starved_list);
1732 spin_unlock_irq(shost->host_lock);
1733 goto not_ready;
1734 }
1735
1736 if (!scsi_target_queue_ready(shost, sdev))
1737 goto not_ready;
1738
1739 if (!scsi_host_queue_ready(q, shost, sdev))
1740 goto host_not_ready;
1741
1742 /*
1743 * Finally, initialize any error handling parameters, and set up
1744 * the timers for timeouts.
1745 */
1746 scsi_init_cmd_errh(cmd);
1747
1748 /*
1749 * Dispatch the command to the low-level driver.
1750 */
1751 cmd->scsi_done = scsi_done;
1752 rtn = scsi_dispatch_cmd(cmd);
1753 if (rtn) {
1754 scsi_queue_insert(cmd, rtn);
1755 spin_lock_irq(q->queue_lock);
1756 goto out_delay;
1757 }
1758 spin_lock_irq(q->queue_lock);
1759 }
1760
1761 return;
1762
1763 host_not_ready:
1764 if (scsi_target(sdev)->can_queue > 0)
1765 atomic_dec(&scsi_target(sdev)->target_busy);
1766 not_ready:
1767 /*
1768 * lock q, handle tag, requeue req, and decrement device_busy. We
1769 * must return with queue_lock held.
1770 *
1771 * Decrementing device_busy without checking it is OK, as all such
1772 * cases (host limits or settings) should run the queue at some
1773 * later time.
1774 */
1775 spin_lock_irq(q->queue_lock);
1776 blk_requeue_request(q, req);
1777 atomic_dec(&sdev->device_busy);
1778 out_delay:
1779 if (!atomic_read(&sdev->device_busy) && !scsi_device_blocked(sdev))
1780 blk_delay_queue(q, SCSI_QUEUE_DELAY);
1781 }
1782
1783 static inline int prep_to_mq(int ret)
1784 {
1785 switch (ret) {
1786 case BLKPREP_OK:
1787 return 0;
1788 case BLKPREP_DEFER:
1789 return BLK_MQ_RQ_QUEUE_BUSY;
1790 default:
1791 return BLK_MQ_RQ_QUEUE_ERROR;
1792 }
1793 }
1794
1795 static int scsi_mq_prep_fn(struct request *req)
1796 {
1797 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1798 struct scsi_device *sdev = req->q->queuedata;
1799 struct Scsi_Host *shost = sdev->host;
1800 unsigned char *sense_buf = cmd->sense_buffer;
1801 struct scatterlist *sg;
1802
1803 memset(cmd, 0, sizeof(struct scsi_cmnd));
1804
1805 req->special = cmd;
1806
1807 cmd->request = req;
1808 cmd->device = sdev;
1809 cmd->sense_buffer = sense_buf;
1810
1811 cmd->tag = req->tag;
1812
1813 cmd->cmnd = req->cmd;
1814 cmd->prot_op = SCSI_PROT_NORMAL;
1815
1816 INIT_LIST_HEAD(&cmd->list);
1817 INIT_DELAYED_WORK(&cmd->abort_work, scmd_eh_abort_handler);
1818 cmd->jiffies_at_alloc = jiffies;
1819
1820 if (shost->use_cmd_list) {
1821 spin_lock_irq(&sdev->list_lock);
1822 list_add_tail(&cmd->list, &sdev->cmd_list);
1823 spin_unlock_irq(&sdev->list_lock);
1824 }
1825
1826 sg = (void *)cmd + sizeof(struct scsi_cmnd) + shost->hostt->cmd_size;
1827 cmd->sdb.table.sgl = sg;
1828
1829 if (scsi_host_get_prot(shost)) {
1830 cmd->prot_sdb = (void *)sg +
1831 shost->sg_tablesize * sizeof(struct scatterlist);
1832 memset(cmd->prot_sdb, 0, sizeof(struct scsi_data_buffer));
1833
1834 cmd->prot_sdb->table.sgl =
1835 (struct scatterlist *)(cmd->prot_sdb + 1);
1836 }
1837
1838 if (blk_bidi_rq(req)) {
1839 struct request *next_rq = req->next_rq;
1840 struct scsi_data_buffer *bidi_sdb = blk_mq_rq_to_pdu(next_rq);
1841
1842 memset(bidi_sdb, 0, sizeof(struct scsi_data_buffer));
1843 bidi_sdb->table.sgl =
1844 (struct scatterlist *)(bidi_sdb + 1);
1845
1846 next_rq->special = bidi_sdb;
1847 }
1848
1849 return scsi_setup_cmnd(sdev, req);
1850 }
1851
1852 static void scsi_mq_done(struct scsi_cmnd *cmd)
1853 {
1854 trace_scsi_dispatch_cmd_done(cmd);
1855 blk_mq_complete_request(cmd->request);
1856 }
1857
1858 static int scsi_queue_rq(struct blk_mq_hw_ctx *hctx, struct request *req)
1859 {
1860 struct request_queue *q = req->q;
1861 struct scsi_device *sdev = q->queuedata;
1862 struct Scsi_Host *shost = sdev->host;
1863 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1864 int ret;
1865 int reason;
1866
1867 ret = prep_to_mq(scsi_prep_state_check(sdev, req));
1868 if (ret)
1869 goto out;
1870
1871 ret = BLK_MQ_RQ_QUEUE_BUSY;
1872 if (!get_device(&sdev->sdev_gendev))
1873 goto out;
1874
1875 if (!scsi_dev_queue_ready(q, sdev))
1876 goto out_put_device;
1877 if (!scsi_target_queue_ready(shost, sdev))
1878 goto out_dec_device_busy;
1879 if (!scsi_host_queue_ready(q, shost, sdev))
1880 goto out_dec_target_busy;
1881
1882 if (!(req->cmd_flags & REQ_DONTPREP)) {
1883 ret = prep_to_mq(scsi_mq_prep_fn(req));
1884 if (ret)
1885 goto out_dec_host_busy;
1886 req->cmd_flags |= REQ_DONTPREP;
1887 }
1888
1889 scsi_init_cmd_errh(cmd);
1890 cmd->scsi_done = scsi_mq_done;
1891
1892 reason = scsi_dispatch_cmd(cmd);
1893 if (reason) {
1894 scsi_set_blocked(cmd, reason);
1895 ret = BLK_MQ_RQ_QUEUE_BUSY;
1896 goto out_dec_host_busy;
1897 }
1898
1899 return BLK_MQ_RQ_QUEUE_OK;
1900
1901 out_dec_host_busy:
1902 atomic_dec(&shost->host_busy);
1903 out_dec_target_busy:
1904 if (scsi_target(sdev)->can_queue > 0)
1905 atomic_dec(&scsi_target(sdev)->target_busy);
1906 out_dec_device_busy:
1907 atomic_dec(&sdev->device_busy);
1908 out_put_device:
1909 put_device(&sdev->sdev_gendev);
1910 out:
1911 switch (ret) {
1912 case BLK_MQ_RQ_QUEUE_BUSY:
1913 blk_mq_stop_hw_queue(hctx);
1914 if (atomic_read(&sdev->device_busy) == 0 &&
1915 !scsi_device_blocked(sdev))
1916 blk_mq_delay_queue(hctx, SCSI_QUEUE_DELAY);
1917 break;
1918 case BLK_MQ_RQ_QUEUE_ERROR:
1919 /*
1920 * Make sure to release all allocated ressources when
1921 * we hit an error, as we will never see this command
1922 * again.
1923 */
1924 if (req->cmd_flags & REQ_DONTPREP)
1925 scsi_mq_uninit_cmd(cmd);
1926 break;
1927 default:
1928 break;
1929 }
1930 return ret;
1931 }
1932
1933 static int scsi_init_request(void *data, struct request *rq,
1934 unsigned int hctx_idx, unsigned int request_idx,
1935 unsigned int numa_node)
1936 {
1937 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1938
1939 cmd->sense_buffer = kzalloc_node(SCSI_SENSE_BUFFERSIZE, GFP_KERNEL,
1940 numa_node);
1941 if (!cmd->sense_buffer)
1942 return -ENOMEM;
1943 return 0;
1944 }
1945
1946 static void scsi_exit_request(void *data, struct request *rq,
1947 unsigned int hctx_idx, unsigned int request_idx)
1948 {
1949 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1950
1951 kfree(cmd->sense_buffer);
1952 }
1953
1954 static u64 scsi_calculate_bounce_limit(struct Scsi_Host *shost)
1955 {
1956 struct device *host_dev;
1957 u64 bounce_limit = 0xffffffff;
1958
1959 if (shost->unchecked_isa_dma)
1960 return BLK_BOUNCE_ISA;
1961 /*
1962 * Platforms with virtual-DMA translation
1963 * hardware have no practical limit.
1964 */
1965 if (!PCI_DMA_BUS_IS_PHYS)
1966 return BLK_BOUNCE_ANY;
1967
1968 host_dev = scsi_get_device(shost);
1969 if (host_dev && host_dev->dma_mask)
1970 bounce_limit = (u64)dma_max_pfn(host_dev) << PAGE_SHIFT;
1971
1972 return bounce_limit;
1973 }
1974
1975 static void __scsi_init_queue(struct Scsi_Host *shost, struct request_queue *q)
1976 {
1977 struct device *dev = shost->dma_dev;
1978
1979 /*
1980 * this limit is imposed by hardware restrictions
1981 */
1982 blk_queue_max_segments(q, min_t(unsigned short, shost->sg_tablesize,
1983 SCSI_MAX_SG_CHAIN_SEGMENTS));
1984
1985 if (scsi_host_prot_dma(shost)) {
1986 shost->sg_prot_tablesize =
1987 min_not_zero(shost->sg_prot_tablesize,
1988 (unsigned short)SCSI_MAX_PROT_SG_SEGMENTS);
1989 BUG_ON(shost->sg_prot_tablesize < shost->sg_tablesize);
1990 blk_queue_max_integrity_segments(q, shost->sg_prot_tablesize);
1991 }
1992
1993 blk_queue_max_hw_sectors(q, shost->max_sectors);
1994 blk_queue_bounce_limit(q, scsi_calculate_bounce_limit(shost));
1995 blk_queue_segment_boundary(q, shost->dma_boundary);
1996 dma_set_seg_boundary(dev, shost->dma_boundary);
1997
1998 blk_queue_max_segment_size(q, dma_get_max_seg_size(dev));
1999
2000 if (!shost->use_clustering)
2001 q->limits.cluster = 0;
2002
2003 /*
2004 * set a reasonable default alignment on word boundaries: the
2005 * host and device may alter it using
2006 * blk_queue_update_dma_alignment() later.
2007 */
2008 blk_queue_dma_alignment(q, 0x03);
2009 }
2010
2011 struct request_queue *__scsi_alloc_queue(struct Scsi_Host *shost,
2012 request_fn_proc *request_fn)
2013 {
2014 struct request_queue *q;
2015
2016 q = blk_init_queue(request_fn, NULL);
2017 if (!q)
2018 return NULL;
2019 __scsi_init_queue(shost, q);
2020 return q;
2021 }
2022 EXPORT_SYMBOL(__scsi_alloc_queue);
2023
2024 struct request_queue *scsi_alloc_queue(struct scsi_device *sdev)
2025 {
2026 struct request_queue *q;
2027
2028 q = __scsi_alloc_queue(sdev->host, scsi_request_fn);
2029 if (!q)
2030 return NULL;
2031
2032 blk_queue_prep_rq(q, scsi_prep_fn);
2033 blk_queue_unprep_rq(q, scsi_unprep_fn);
2034 blk_queue_softirq_done(q, scsi_softirq_done);
2035 blk_queue_rq_timed_out(q, scsi_times_out);
2036 blk_queue_lld_busy(q, scsi_lld_busy);
2037 return q;
2038 }
2039
2040 static struct blk_mq_ops scsi_mq_ops = {
2041 .map_queue = blk_mq_map_queue,
2042 .queue_rq = scsi_queue_rq,
2043 .complete = scsi_softirq_done,
2044 .timeout = scsi_times_out,
2045 .init_request = scsi_init_request,
2046 .exit_request = scsi_exit_request,
2047 };
2048
2049 struct request_queue *scsi_mq_alloc_queue(struct scsi_device *sdev)
2050 {
2051 sdev->request_queue = blk_mq_init_queue(&sdev->host->tag_set);
2052 if (IS_ERR(sdev->request_queue))
2053 return NULL;
2054
2055 sdev->request_queue->queuedata = sdev;
2056 __scsi_init_queue(sdev->host, sdev->request_queue);
2057 return sdev->request_queue;
2058 }
2059
2060 int scsi_mq_setup_tags(struct Scsi_Host *shost)
2061 {
2062 unsigned int cmd_size, sgl_size, tbl_size;
2063
2064 tbl_size = shost->sg_tablesize;
2065 if (tbl_size > SCSI_MAX_SG_SEGMENTS)
2066 tbl_size = SCSI_MAX_SG_SEGMENTS;
2067 sgl_size = tbl_size * sizeof(struct scatterlist);
2068 cmd_size = sizeof(struct scsi_cmnd) + shost->hostt->cmd_size + sgl_size;
2069 if (scsi_host_get_prot(shost))
2070 cmd_size += sizeof(struct scsi_data_buffer) + sgl_size;
2071
2072 memset(&shost->tag_set, 0, sizeof(shost->tag_set));
2073 shost->tag_set.ops = &scsi_mq_ops;
2074 shost->tag_set.nr_hw_queues = 1;
2075 shost->tag_set.queue_depth = shost->can_queue;
2076 shost->tag_set.cmd_size = cmd_size;
2077 shost->tag_set.numa_node = NUMA_NO_NODE;
2078 shost->tag_set.flags = BLK_MQ_F_SHOULD_MERGE | BLK_MQ_F_SG_MERGE;
2079 shost->tag_set.driver_data = shost;
2080
2081 return blk_mq_alloc_tag_set(&shost->tag_set);
2082 }
2083
2084 void scsi_mq_destroy_tags(struct Scsi_Host *shost)
2085 {
2086 blk_mq_free_tag_set(&shost->tag_set);
2087 }
2088
2089 /*
2090 * Function: scsi_block_requests()
2091 *
2092 * Purpose: Utility function used by low-level drivers to prevent further
2093 * commands from being queued to the device.
2094 *
2095 * Arguments: shost - Host in question
2096 *
2097 * Returns: Nothing
2098 *
2099 * Lock status: No locks are assumed held.
2100 *
2101 * Notes: There is no timer nor any other means by which the requests
2102 * get unblocked other than the low-level driver calling
2103 * scsi_unblock_requests().
2104 */
2105 void scsi_block_requests(struct Scsi_Host *shost)
2106 {
2107 shost->host_self_blocked = 1;
2108 }
2109 EXPORT_SYMBOL(scsi_block_requests);
2110
2111 /*
2112 * Function: scsi_unblock_requests()
2113 *
2114 * Purpose: Utility function used by low-level drivers to allow further
2115 * commands from being queued to the device.
2116 *
2117 * Arguments: shost - Host in question
2118 *
2119 * Returns: Nothing
2120 *
2121 * Lock status: No locks are assumed held.
2122 *
2123 * Notes: There is no timer nor any other means by which the requests
2124 * get unblocked other than the low-level driver calling
2125 * scsi_unblock_requests().
2126 *
2127 * This is done as an API function so that changes to the
2128 * internals of the scsi mid-layer won't require wholesale
2129 * changes to drivers that use this feature.
2130 */
2131 void scsi_unblock_requests(struct Scsi_Host *shost)
2132 {
2133 shost->host_self_blocked = 0;
2134 scsi_run_host_queues(shost);
2135 }
2136 EXPORT_SYMBOL(scsi_unblock_requests);
2137
2138 int __init scsi_init_queue(void)
2139 {
2140 int i;
2141
2142 scsi_sdb_cache = kmem_cache_create("scsi_data_buffer",
2143 sizeof(struct scsi_data_buffer),
2144 0, 0, NULL);
2145 if (!scsi_sdb_cache) {
2146 printk(KERN_ERR "SCSI: can't init scsi sdb cache\n");
2147 return -ENOMEM;
2148 }
2149
2150 for (i = 0; i < SG_MEMPOOL_NR; i++) {
2151 struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
2152 int size = sgp->size * sizeof(struct scatterlist);
2153
2154 sgp->slab = kmem_cache_create(sgp->name, size, 0,
2155 SLAB_HWCACHE_ALIGN, NULL);
2156 if (!sgp->slab) {
2157 printk(KERN_ERR "SCSI: can't init sg slab %s\n",
2158 sgp->name);
2159 goto cleanup_sdb;
2160 }
2161
2162 sgp->pool = mempool_create_slab_pool(SG_MEMPOOL_SIZE,
2163 sgp->slab);
2164 if (!sgp->pool) {
2165 printk(KERN_ERR "SCSI: can't init sg mempool %s\n",
2166 sgp->name);
2167 goto cleanup_sdb;
2168 }
2169 }
2170
2171 return 0;
2172
2173 cleanup_sdb:
2174 for (i = 0; i < SG_MEMPOOL_NR; i++) {
2175 struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
2176 if (sgp->pool)
2177 mempool_destroy(sgp->pool);
2178 if (sgp->slab)
2179 kmem_cache_destroy(sgp->slab);
2180 }
2181 kmem_cache_destroy(scsi_sdb_cache);
2182
2183 return -ENOMEM;
2184 }
2185
2186 void scsi_exit_queue(void)
2187 {
2188 int i;
2189
2190 kmem_cache_destroy(scsi_sdb_cache);
2191
2192 for (i = 0; i < SG_MEMPOOL_NR; i++) {
2193 struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
2194 mempool_destroy(sgp->pool);
2195 kmem_cache_destroy(sgp->slab);
2196 }
2197 }
2198
2199 /**
2200 * scsi_mode_select - issue a mode select
2201 * @sdev: SCSI device to be queried
2202 * @pf: Page format bit (1 == standard, 0 == vendor specific)
2203 * @sp: Save page bit (0 == don't save, 1 == save)
2204 * @modepage: mode page being requested
2205 * @buffer: request buffer (may not be smaller than eight bytes)
2206 * @len: length of request buffer.
2207 * @timeout: command timeout
2208 * @retries: number of retries before failing
2209 * @data: returns a structure abstracting the mode header data
2210 * @sshdr: place to put sense data (or NULL if no sense to be collected).
2211 * must be SCSI_SENSE_BUFFERSIZE big.
2212 *
2213 * Returns zero if successful; negative error number or scsi
2214 * status on error
2215 *
2216 */
2217 int
2218 scsi_mode_select(struct scsi_device *sdev, int pf, int sp, int modepage,
2219 unsigned char *buffer, int len, int timeout, int retries,
2220 struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
2221 {
2222 unsigned char cmd[10];
2223 unsigned char *real_buffer;
2224 int ret;
2225
2226 memset(cmd, 0, sizeof(cmd));
2227 cmd[1] = (pf ? 0x10 : 0) | (sp ? 0x01 : 0);
2228
2229 if (sdev->use_10_for_ms) {
2230 if (len > 65535)
2231 return -EINVAL;
2232 real_buffer = kmalloc(8 + len, GFP_KERNEL);
2233 if (!real_buffer)
2234 return -ENOMEM;
2235 memcpy(real_buffer + 8, buffer, len);
2236 len += 8;
2237 real_buffer[0] = 0;
2238 real_buffer[1] = 0;
2239 real_buffer[2] = data->medium_type;
2240 real_buffer[3] = data->device_specific;
2241 real_buffer[4] = data->longlba ? 0x01 : 0;
2242 real_buffer[5] = 0;
2243 real_buffer[6] = data->block_descriptor_length >> 8;
2244 real_buffer[7] = data->block_descriptor_length;
2245
2246 cmd[0] = MODE_SELECT_10;
2247 cmd[7] = len >> 8;
2248 cmd[8] = len;
2249 } else {
2250 if (len > 255 || data->block_descriptor_length > 255 ||
2251 data->longlba)
2252 return -EINVAL;
2253
2254 real_buffer = kmalloc(4 + len, GFP_KERNEL);
2255 if (!real_buffer)
2256 return -ENOMEM;
2257 memcpy(real_buffer + 4, buffer, len);
2258 len += 4;
2259 real_buffer[0] = 0;
2260 real_buffer[1] = data->medium_type;
2261 real_buffer[2] = data->device_specific;
2262 real_buffer[3] = data->block_descriptor_length;
2263
2264
2265 cmd[0] = MODE_SELECT;
2266 cmd[4] = len;
2267 }
2268
2269 ret = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, real_buffer, len,
2270 sshdr, timeout, retries, NULL);
2271 kfree(real_buffer);
2272 return ret;
2273 }
2274 EXPORT_SYMBOL_GPL(scsi_mode_select);
2275
2276 /**
2277 * scsi_mode_sense - issue a mode sense, falling back from 10 to six bytes if necessary.
2278 * @sdev: SCSI device to be queried
2279 * @dbd: set if mode sense will allow block descriptors to be returned
2280 * @modepage: mode page being requested
2281 * @buffer: request buffer (may not be smaller than eight bytes)
2282 * @len: length of request buffer.
2283 * @timeout: command timeout
2284 * @retries: number of retries before failing
2285 * @data: returns a structure abstracting the mode header data
2286 * @sshdr: place to put sense data (or NULL if no sense to be collected).
2287 * must be SCSI_SENSE_BUFFERSIZE big.
2288 *
2289 * Returns zero if unsuccessful, or the header offset (either 4
2290 * or 8 depending on whether a six or ten byte command was
2291 * issued) if successful.
2292 */
2293 int
2294 scsi_mode_sense(struct scsi_device *sdev, int dbd, int modepage,
2295 unsigned char *buffer, int len, int timeout, int retries,
2296 struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
2297 {
2298 unsigned char cmd[12];
2299 int use_10_for_ms;
2300 int header_length;
2301 int result;
2302 struct scsi_sense_hdr my_sshdr;
2303
2304 memset(data, 0, sizeof(*data));
2305 memset(&cmd[0], 0, 12);
2306 cmd[1] = dbd & 0x18; /* allows DBD and LLBA bits */
2307 cmd[2] = modepage;
2308
2309 /* caller might not be interested in sense, but we need it */
2310 if (!sshdr)
2311 sshdr = &my_sshdr;
2312
2313 retry:
2314 use_10_for_ms = sdev->use_10_for_ms;
2315
2316 if (use_10_for_ms) {
2317 if (len < 8)
2318 len = 8;
2319
2320 cmd[0] = MODE_SENSE_10;
2321 cmd[8] = len;
2322 header_length = 8;
2323 } else {
2324 if (len < 4)
2325 len = 4;
2326
2327 cmd[0] = MODE_SENSE;
2328 cmd[4] = len;
2329 header_length = 4;
2330 }
2331
2332 memset(buffer, 0, len);
2333
2334 result = scsi_execute_req(sdev, cmd, DMA_FROM_DEVICE, buffer, len,
2335 sshdr, timeout, retries, NULL);
2336
2337 /* This code looks awful: what it's doing is making sure an
2338 * ILLEGAL REQUEST sense return identifies the actual command
2339 * byte as the problem. MODE_SENSE commands can return
2340 * ILLEGAL REQUEST if the code page isn't supported */
2341
2342 if (use_10_for_ms && !scsi_status_is_good(result) &&
2343 (driver_byte(result) & DRIVER_SENSE)) {
2344 if (scsi_sense_valid(sshdr)) {
2345 if ((sshdr->sense_key == ILLEGAL_REQUEST) &&
2346 (sshdr->asc == 0x20) && (sshdr->ascq == 0)) {
2347 /*
2348 * Invalid command operation code
2349 */
2350 sdev->use_10_for_ms = 0;
2351 goto retry;
2352 }
2353 }
2354 }
2355
2356 if(scsi_status_is_good(result)) {
2357 if (unlikely(buffer[0] == 0x86 && buffer[1] == 0x0b &&
2358 (modepage == 6 || modepage == 8))) {
2359 /* Initio breakage? */
2360 header_length = 0;
2361 data->length = 13;
2362 data->medium_type = 0;
2363 data->device_specific = 0;
2364 data->longlba = 0;
2365 data->block_descriptor_length = 0;
2366 } else if(use_10_for_ms) {
2367 data->length = buffer[0]*256 + buffer[1] + 2;
2368 data->medium_type = buffer[2];
2369 data->device_specific = buffer[3];
2370 data->longlba = buffer[4] & 0x01;
2371 data->block_descriptor_length = buffer[6]*256
2372 + buffer[7];
2373 } else {
2374 data->length = buffer[0] + 1;
2375 data->medium_type = buffer[1];
2376 data->device_specific = buffer[2];
2377 data->block_descriptor_length = buffer[3];
2378 }
2379 data->header_length = header_length;
2380 }
2381
2382 return result;
2383 }
2384 EXPORT_SYMBOL(scsi_mode_sense);
2385
2386 /**
2387 * scsi_test_unit_ready - test if unit is ready
2388 * @sdev: scsi device to change the state of.
2389 * @timeout: command timeout
2390 * @retries: number of retries before failing
2391 * @sshdr_external: Optional pointer to struct scsi_sense_hdr for
2392 * returning sense. Make sure that this is cleared before passing
2393 * in.
2394 *
2395 * Returns zero if unsuccessful or an error if TUR failed. For
2396 * removable media, UNIT_ATTENTION sets ->changed flag.
2397 **/
2398 int
2399 scsi_test_unit_ready(struct scsi_device *sdev, int timeout, int retries,
2400 struct scsi_sense_hdr *sshdr_external)
2401 {
2402 char cmd[] = {
2403 TEST_UNIT_READY, 0, 0, 0, 0, 0,
2404 };
2405 struct scsi_sense_hdr *sshdr;
2406 int result;
2407
2408 if (!sshdr_external)
2409 sshdr = kzalloc(sizeof(*sshdr), GFP_KERNEL);
2410 else
2411 sshdr = sshdr_external;
2412
2413 /* try to eat the UNIT_ATTENTION if there are enough retries */
2414 do {
2415 result = scsi_execute_req(sdev, cmd, DMA_NONE, NULL, 0, sshdr,
2416 timeout, retries, NULL);
2417 if (sdev->removable && scsi_sense_valid(sshdr) &&
2418 sshdr->sense_key == UNIT_ATTENTION)
2419 sdev->changed = 1;
2420 } while (scsi_sense_valid(sshdr) &&
2421 sshdr->sense_key == UNIT_ATTENTION && --retries);
2422
2423 if (!sshdr_external)
2424 kfree(sshdr);
2425 return result;
2426 }
2427 EXPORT_SYMBOL(scsi_test_unit_ready);
2428
2429 /**
2430 * scsi_device_set_state - Take the given device through the device state model.
2431 * @sdev: scsi device to change the state of.
2432 * @state: state to change to.
2433 *
2434 * Returns zero if unsuccessful or an error if the requested
2435 * transition is illegal.
2436 */
2437 int
2438 scsi_device_set_state(struct scsi_device *sdev, enum scsi_device_state state)
2439 {
2440 enum scsi_device_state oldstate = sdev->sdev_state;
2441
2442 if (state == oldstate)
2443 return 0;
2444
2445 switch (state) {
2446 case SDEV_CREATED:
2447 switch (oldstate) {
2448 case SDEV_CREATED_BLOCK:
2449 break;
2450 default:
2451 goto illegal;
2452 }
2453 break;
2454
2455 case SDEV_RUNNING:
2456 switch (oldstate) {
2457 case SDEV_CREATED:
2458 case SDEV_OFFLINE:
2459 case SDEV_TRANSPORT_OFFLINE:
2460 case SDEV_QUIESCE:
2461 case SDEV_BLOCK:
2462 break;
2463 default:
2464 goto illegal;
2465 }
2466 break;
2467
2468 case SDEV_QUIESCE:
2469 switch (oldstate) {
2470 case SDEV_RUNNING:
2471 case SDEV_OFFLINE:
2472 case SDEV_TRANSPORT_OFFLINE:
2473 break;
2474 default:
2475 goto illegal;
2476 }
2477 break;
2478
2479 case SDEV_OFFLINE:
2480 case SDEV_TRANSPORT_OFFLINE:
2481 switch (oldstate) {
2482 case SDEV_CREATED:
2483 case SDEV_RUNNING:
2484 case SDEV_QUIESCE:
2485 case SDEV_BLOCK:
2486 break;
2487 default:
2488 goto illegal;
2489 }
2490 break;
2491
2492 case SDEV_BLOCK:
2493 switch (oldstate) {
2494 case SDEV_RUNNING:
2495 case SDEV_CREATED_BLOCK:
2496 break;
2497 default:
2498 goto illegal;
2499 }
2500 break;
2501
2502 case SDEV_CREATED_BLOCK:
2503 switch (oldstate) {
2504 case SDEV_CREATED:
2505 break;
2506 default:
2507 goto illegal;
2508 }
2509 break;
2510
2511 case SDEV_CANCEL:
2512 switch (oldstate) {
2513 case SDEV_CREATED:
2514 case SDEV_RUNNING:
2515 case SDEV_QUIESCE:
2516 case SDEV_OFFLINE:
2517 case SDEV_TRANSPORT_OFFLINE:
2518 case SDEV_BLOCK:
2519 break;
2520 default:
2521 goto illegal;
2522 }
2523 break;
2524
2525 case SDEV_DEL:
2526 switch (oldstate) {
2527 case SDEV_CREATED:
2528 case SDEV_RUNNING:
2529 case SDEV_OFFLINE:
2530 case SDEV_TRANSPORT_OFFLINE:
2531 case SDEV_CANCEL:
2532 case SDEV_CREATED_BLOCK:
2533 break;
2534 default:
2535 goto illegal;
2536 }
2537 break;
2538
2539 }
2540 sdev->sdev_state = state;
2541 return 0;
2542
2543 illegal:
2544 SCSI_LOG_ERROR_RECOVERY(1,
2545 sdev_printk(KERN_ERR, sdev,
2546 "Illegal state transition %s->%s",
2547 scsi_device_state_name(oldstate),
2548 scsi_device_state_name(state))
2549 );
2550 return -EINVAL;
2551 }
2552 EXPORT_SYMBOL(scsi_device_set_state);
2553
2554 /**
2555 * sdev_evt_emit - emit a single SCSI device uevent
2556 * @sdev: associated SCSI device
2557 * @evt: event to emit
2558 *
2559 * Send a single uevent (scsi_event) to the associated scsi_device.
2560 */
2561 static void scsi_evt_emit(struct scsi_device *sdev, struct scsi_event *evt)
2562 {
2563 int idx = 0;
2564 char *envp[3];
2565
2566 switch (evt->evt_type) {
2567 case SDEV_EVT_MEDIA_CHANGE:
2568 envp[idx++] = "SDEV_MEDIA_CHANGE=1";
2569 break;
2570 case SDEV_EVT_INQUIRY_CHANGE_REPORTED:
2571 envp[idx++] = "SDEV_UA=INQUIRY_DATA_HAS_CHANGED";
2572 break;
2573 case SDEV_EVT_CAPACITY_CHANGE_REPORTED:
2574 envp[idx++] = "SDEV_UA=CAPACITY_DATA_HAS_CHANGED";
2575 break;
2576 case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED:
2577 envp[idx++] = "SDEV_UA=THIN_PROVISIONING_SOFT_THRESHOLD_REACHED";
2578 break;
2579 case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED:
2580 envp[idx++] = "SDEV_UA=MODE_PARAMETERS_CHANGED";
2581 break;
2582 case SDEV_EVT_LUN_CHANGE_REPORTED:
2583 envp[idx++] = "SDEV_UA=REPORTED_LUNS_DATA_HAS_CHANGED";
2584 break;
2585 default:
2586 /* do nothing */
2587 break;
2588 }
2589
2590 envp[idx++] = NULL;
2591
2592 kobject_uevent_env(&sdev->sdev_gendev.kobj, KOBJ_CHANGE, envp);
2593 }
2594
2595 /**
2596 * sdev_evt_thread - send a uevent for each scsi event
2597 * @work: work struct for scsi_device
2598 *
2599 * Dispatch queued events to their associated scsi_device kobjects
2600 * as uevents.
2601 */
2602 void scsi_evt_thread(struct work_struct *work)
2603 {
2604 struct scsi_device *sdev;
2605 enum scsi_device_event evt_type;
2606 LIST_HEAD(event_list);
2607
2608 sdev = container_of(work, struct scsi_device, event_work);
2609
2610 for (evt_type = SDEV_EVT_FIRST; evt_type <= SDEV_EVT_LAST; evt_type++)
2611 if (test_and_clear_bit(evt_type, sdev->pending_events))
2612 sdev_evt_send_simple(sdev, evt_type, GFP_KERNEL);
2613
2614 while (1) {
2615 struct scsi_event *evt;
2616 struct list_head *this, *tmp;
2617 unsigned long flags;
2618
2619 spin_lock_irqsave(&sdev->list_lock, flags);
2620 list_splice_init(&sdev->event_list, &event_list);
2621 spin_unlock_irqrestore(&sdev->list_lock, flags);
2622
2623 if (list_empty(&event_list))
2624 break;
2625
2626 list_for_each_safe(this, tmp, &event_list) {
2627 evt = list_entry(this, struct scsi_event, node);
2628 list_del(&evt->node);
2629 scsi_evt_emit(sdev, evt);
2630 kfree(evt);
2631 }
2632 }
2633 }
2634
2635 /**
2636 * sdev_evt_send - send asserted event to uevent thread
2637 * @sdev: scsi_device event occurred on
2638 * @evt: event to send
2639 *
2640 * Assert scsi device event asynchronously.
2641 */
2642 void sdev_evt_send(struct scsi_device *sdev, struct scsi_event *evt)
2643 {
2644 unsigned long flags;
2645
2646 #if 0
2647 /* FIXME: currently this check eliminates all media change events
2648 * for polled devices. Need to update to discriminate between AN
2649 * and polled events */
2650 if (!test_bit(evt->evt_type, sdev->supported_events)) {
2651 kfree(evt);
2652 return;
2653 }
2654 #endif
2655
2656 spin_lock_irqsave(&sdev->list_lock, flags);
2657 list_add_tail(&evt->node, &sdev->event_list);
2658 schedule_work(&sdev->event_work);
2659 spin_unlock_irqrestore(&sdev->list_lock, flags);
2660 }
2661 EXPORT_SYMBOL_GPL(sdev_evt_send);
2662
2663 /**
2664 * sdev_evt_alloc - allocate a new scsi event
2665 * @evt_type: type of event to allocate
2666 * @gfpflags: GFP flags for allocation
2667 *
2668 * Allocates and returns a new scsi_event.
2669 */
2670 struct scsi_event *sdev_evt_alloc(enum scsi_device_event evt_type,
2671 gfp_t gfpflags)
2672 {
2673 struct scsi_event *evt = kzalloc(sizeof(struct scsi_event), gfpflags);
2674 if (!evt)
2675 return NULL;
2676
2677 evt->evt_type = evt_type;
2678 INIT_LIST_HEAD(&evt->node);
2679
2680 /* evt_type-specific initialization, if any */
2681 switch (evt_type) {
2682 case SDEV_EVT_MEDIA_CHANGE:
2683 case SDEV_EVT_INQUIRY_CHANGE_REPORTED:
2684 case SDEV_EVT_CAPACITY_CHANGE_REPORTED:
2685 case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED:
2686 case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED:
2687 case SDEV_EVT_LUN_CHANGE_REPORTED:
2688 default:
2689 /* do nothing */
2690 break;
2691 }
2692
2693 return evt;
2694 }
2695 EXPORT_SYMBOL_GPL(sdev_evt_alloc);
2696
2697 /**
2698 * sdev_evt_send_simple - send asserted event to uevent thread
2699 * @sdev: scsi_device event occurred on
2700 * @evt_type: type of event to send
2701 * @gfpflags: GFP flags for allocation
2702 *
2703 * Assert scsi device event asynchronously, given an event type.
2704 */
2705 void sdev_evt_send_simple(struct scsi_device *sdev,
2706 enum scsi_device_event evt_type, gfp_t gfpflags)
2707 {
2708 struct scsi_event *evt = sdev_evt_alloc(evt_type, gfpflags);
2709 if (!evt) {
2710 sdev_printk(KERN_ERR, sdev, "event %d eaten due to OOM\n",
2711 evt_type);
2712 return;
2713 }
2714
2715 sdev_evt_send(sdev, evt);
2716 }
2717 EXPORT_SYMBOL_GPL(sdev_evt_send_simple);
2718
2719 /**
2720 * scsi_device_quiesce - Block user issued commands.
2721 * @sdev: scsi device to quiesce.
2722 *
2723 * This works by trying to transition to the SDEV_QUIESCE state
2724 * (which must be a legal transition). When the device is in this
2725 * state, only special requests will be accepted, all others will
2726 * be deferred. Since special requests may also be requeued requests,
2727 * a successful return doesn't guarantee the device will be
2728 * totally quiescent.
2729 *
2730 * Must be called with user context, may sleep.
2731 *
2732 * Returns zero if unsuccessful or an error if not.
2733 */
2734 int
2735 scsi_device_quiesce(struct scsi_device *sdev)
2736 {
2737 int err = scsi_device_set_state(sdev, SDEV_QUIESCE);
2738 if (err)
2739 return err;
2740
2741 scsi_run_queue(sdev->request_queue);
2742 while (atomic_read(&sdev->device_busy)) {
2743 msleep_interruptible(200);
2744 scsi_run_queue(sdev->request_queue);
2745 }
2746 return 0;
2747 }
2748 EXPORT_SYMBOL(scsi_device_quiesce);
2749
2750 /**
2751 * scsi_device_resume - Restart user issued commands to a quiesced device.
2752 * @sdev: scsi device to resume.
2753 *
2754 * Moves the device from quiesced back to running and restarts the
2755 * queues.
2756 *
2757 * Must be called with user context, may sleep.
2758 */
2759 void scsi_device_resume(struct scsi_device *sdev)
2760 {
2761 /* check if the device state was mutated prior to resume, and if
2762 * so assume the state is being managed elsewhere (for example
2763 * device deleted during suspend)
2764 */
2765 if (sdev->sdev_state != SDEV_QUIESCE ||
2766 scsi_device_set_state(sdev, SDEV_RUNNING))
2767 return;
2768 scsi_run_queue(sdev->request_queue);
2769 }
2770 EXPORT_SYMBOL(scsi_device_resume);
2771
2772 static void
2773 device_quiesce_fn(struct scsi_device *sdev, void *data)
2774 {
2775 scsi_device_quiesce(sdev);
2776 }
2777
2778 void
2779 scsi_target_quiesce(struct scsi_target *starget)
2780 {
2781 starget_for_each_device(starget, NULL, device_quiesce_fn);
2782 }
2783 EXPORT_SYMBOL(scsi_target_quiesce);
2784
2785 static void
2786 device_resume_fn(struct scsi_device *sdev, void *data)
2787 {
2788 scsi_device_resume(sdev);
2789 }
2790
2791 void
2792 scsi_target_resume(struct scsi_target *starget)
2793 {
2794 starget_for_each_device(starget, NULL, device_resume_fn);
2795 }
2796 EXPORT_SYMBOL(scsi_target_resume);
2797
2798 /**
2799 * scsi_internal_device_block - internal function to put a device temporarily into the SDEV_BLOCK state
2800 * @sdev: device to block
2801 *
2802 * Block request made by scsi lld's to temporarily stop all
2803 * scsi commands on the specified device. Called from interrupt
2804 * or normal process context.
2805 *
2806 * Returns zero if successful or error if not
2807 *
2808 * Notes:
2809 * This routine transitions the device to the SDEV_BLOCK state
2810 * (which must be a legal transition). When the device is in this
2811 * state, all commands are deferred until the scsi lld reenables
2812 * the device with scsi_device_unblock or device_block_tmo fires.
2813 */
2814 int
2815 scsi_internal_device_block(struct scsi_device *sdev)
2816 {
2817 struct request_queue *q = sdev->request_queue;
2818 unsigned long flags;
2819 int err = 0;
2820
2821 err = scsi_device_set_state(sdev, SDEV_BLOCK);
2822 if (err) {
2823 err = scsi_device_set_state(sdev, SDEV_CREATED_BLOCK);
2824
2825 if (err)
2826 return err;
2827 }
2828
2829 /*
2830 * The device has transitioned to SDEV_BLOCK. Stop the
2831 * block layer from calling the midlayer with this device's
2832 * request queue.
2833 */
2834 if (q->mq_ops) {
2835 blk_mq_stop_hw_queues(q);
2836 } else {
2837 spin_lock_irqsave(q->queue_lock, flags);
2838 blk_stop_queue(q);
2839 spin_unlock_irqrestore(q->queue_lock, flags);
2840 }
2841
2842 return 0;
2843 }
2844 EXPORT_SYMBOL_GPL(scsi_internal_device_block);
2845
2846 /**
2847 * scsi_internal_device_unblock - resume a device after a block request
2848 * @sdev: device to resume
2849 * @new_state: state to set devices to after unblocking
2850 *
2851 * Called by scsi lld's or the midlayer to restart the device queue
2852 * for the previously suspended scsi device. Called from interrupt or
2853 * normal process context.
2854 *
2855 * Returns zero if successful or error if not.
2856 *
2857 * Notes:
2858 * This routine transitions the device to the SDEV_RUNNING state
2859 * or to one of the offline states (which must be a legal transition)
2860 * allowing the midlayer to goose the queue for this device.
2861 */
2862 int
2863 scsi_internal_device_unblock(struct scsi_device *sdev,
2864 enum scsi_device_state new_state)
2865 {
2866 struct request_queue *q = sdev->request_queue;
2867 unsigned long flags;
2868
2869 /*
2870 * Try to transition the scsi device to SDEV_RUNNING or one of the
2871 * offlined states and goose the device queue if successful.
2872 */
2873 if ((sdev->sdev_state == SDEV_BLOCK) ||
2874 (sdev->sdev_state == SDEV_TRANSPORT_OFFLINE))
2875 sdev->sdev_state = new_state;
2876 else if (sdev->sdev_state == SDEV_CREATED_BLOCK) {
2877 if (new_state == SDEV_TRANSPORT_OFFLINE ||
2878 new_state == SDEV_OFFLINE)
2879 sdev->sdev_state = new_state;
2880 else
2881 sdev->sdev_state = SDEV_CREATED;
2882 } else if (sdev->sdev_state != SDEV_CANCEL &&
2883 sdev->sdev_state != SDEV_OFFLINE)
2884 return -EINVAL;
2885
2886 if (q->mq_ops) {
2887 blk_mq_start_stopped_hw_queues(q, false);
2888 } else {
2889 spin_lock_irqsave(q->queue_lock, flags);
2890 blk_start_queue(q);
2891 spin_unlock_irqrestore(q->queue_lock, flags);
2892 }
2893
2894 return 0;
2895 }
2896 EXPORT_SYMBOL_GPL(scsi_internal_device_unblock);
2897
2898 static void
2899 device_block(struct scsi_device *sdev, void *data)
2900 {
2901 scsi_internal_device_block(sdev);
2902 }
2903
2904 static int
2905 target_block(struct device *dev, void *data)
2906 {
2907 if (scsi_is_target_device(dev))
2908 starget_for_each_device(to_scsi_target(dev), NULL,
2909 device_block);
2910 return 0;
2911 }
2912
2913 void
2914 scsi_target_block(struct device *dev)
2915 {
2916 if (scsi_is_target_device(dev))
2917 starget_for_each_device(to_scsi_target(dev), NULL,
2918 device_block);
2919 else
2920 device_for_each_child(dev, NULL, target_block);
2921 }
2922 EXPORT_SYMBOL_GPL(scsi_target_block);
2923
2924 static void
2925 device_unblock(struct scsi_device *sdev, void *data)
2926 {
2927 scsi_internal_device_unblock(sdev, *(enum scsi_device_state *)data);
2928 }
2929
2930 static int
2931 target_unblock(struct device *dev, void *data)
2932 {
2933 if (scsi_is_target_device(dev))
2934 starget_for_each_device(to_scsi_target(dev), data,
2935 device_unblock);
2936 return 0;
2937 }
2938
2939 void
2940 scsi_target_unblock(struct device *dev, enum scsi_device_state new_state)
2941 {
2942 if (scsi_is_target_device(dev))
2943 starget_for_each_device(to_scsi_target(dev), &new_state,
2944 device_unblock);
2945 else
2946 device_for_each_child(dev, &new_state, target_unblock);
2947 }
2948 EXPORT_SYMBOL_GPL(scsi_target_unblock);
2949
2950 /**
2951 * scsi_kmap_atomic_sg - find and atomically map an sg-elemnt
2952 * @sgl: scatter-gather list
2953 * @sg_count: number of segments in sg
2954 * @offset: offset in bytes into sg, on return offset into the mapped area
2955 * @len: bytes to map, on return number of bytes mapped
2956 *
2957 * Returns virtual address of the start of the mapped page
2958 */
2959 void *scsi_kmap_atomic_sg(struct scatterlist *sgl, int sg_count,
2960 size_t *offset, size_t *len)
2961 {
2962 int i;
2963 size_t sg_len = 0, len_complete = 0;
2964 struct scatterlist *sg;
2965 struct page *page;
2966
2967 WARN_ON(!irqs_disabled());
2968
2969 for_each_sg(sgl, sg, sg_count, i) {
2970 len_complete = sg_len; /* Complete sg-entries */
2971 sg_len += sg->length;
2972 if (sg_len > *offset)
2973 break;
2974 }
2975
2976 if (unlikely(i == sg_count)) {
2977 printk(KERN_ERR "%s: Bytes in sg: %zu, requested offset %zu, "
2978 "elements %d\n",
2979 __func__, sg_len, *offset, sg_count);
2980 WARN_ON(1);
2981 return NULL;
2982 }
2983
2984 /* Offset starting from the beginning of first page in this sg-entry */
2985 *offset = *offset - len_complete + sg->offset;
2986
2987 /* Assumption: contiguous pages can be accessed as "page + i" */
2988 page = nth_page(sg_page(sg), (*offset >> PAGE_SHIFT));
2989 *offset &= ~PAGE_MASK;
2990
2991 /* Bytes in this sg-entry from *offset to the end of the page */
2992 sg_len = PAGE_SIZE - *offset;
2993 if (*len > sg_len)
2994 *len = sg_len;
2995
2996 return kmap_atomic(page);
2997 }
2998 EXPORT_SYMBOL(scsi_kmap_atomic_sg);
2999
3000 /**
3001 * scsi_kunmap_atomic_sg - atomically unmap a virtual address, previously mapped with scsi_kmap_atomic_sg
3002 * @virt: virtual address to be unmapped
3003 */
3004 void scsi_kunmap_atomic_sg(void *virt)
3005 {
3006 kunmap_atomic(virt);
3007 }
3008 EXPORT_SYMBOL(scsi_kunmap_atomic_sg);
3009
3010 void sdev_disable_disk_events(struct scsi_device *sdev)
3011 {
3012 atomic_inc(&sdev->disk_events_disable_depth);
3013 }
3014 EXPORT_SYMBOL(sdev_disable_disk_events);
3015
3016 void sdev_enable_disk_events(struct scsi_device *sdev)
3017 {
3018 if (WARN_ON_ONCE(atomic_read(&sdev->disk_events_disable_depth) <= 0))
3019 return;
3020 atomic_dec(&sdev->disk_events_disable_depth);
3021 }
3022 EXPORT_SYMBOL(sdev_enable_disk_events);
This page took 0.095511 seconds and 5 git commands to generate.