drm/i915: report Gen5+ CPU and PCH FIFO underruns
[deliverable/linux.git] / drivers / scsi / scsi_lib.c
1 /*
2 * scsi_lib.c Copyright (C) 1999 Eric Youngdale
3 *
4 * SCSI queueing library.
5 * Initial versions: Eric Youngdale (eric@andante.org).
6 * Based upon conversations with large numbers
7 * of people at Linux Expo.
8 */
9
10 #include <linux/bio.h>
11 #include <linux/bitops.h>
12 #include <linux/blkdev.h>
13 #include <linux/completion.h>
14 #include <linux/kernel.h>
15 #include <linux/export.h>
16 #include <linux/mempool.h>
17 #include <linux/slab.h>
18 #include <linux/init.h>
19 #include <linux/pci.h>
20 #include <linux/delay.h>
21 #include <linux/hardirq.h>
22 #include <linux/scatterlist.h>
23
24 #include <scsi/scsi.h>
25 #include <scsi/scsi_cmnd.h>
26 #include <scsi/scsi_dbg.h>
27 #include <scsi/scsi_device.h>
28 #include <scsi/scsi_driver.h>
29 #include <scsi/scsi_eh.h>
30 #include <scsi/scsi_host.h>
31
32 #include "scsi_priv.h"
33 #include "scsi_logging.h"
34
35
36 #define SG_MEMPOOL_NR ARRAY_SIZE(scsi_sg_pools)
37 #define SG_MEMPOOL_SIZE 2
38
39 struct scsi_host_sg_pool {
40 size_t size;
41 char *name;
42 struct kmem_cache *slab;
43 mempool_t *pool;
44 };
45
46 #define SP(x) { x, "sgpool-" __stringify(x) }
47 #if (SCSI_MAX_SG_SEGMENTS < 32)
48 #error SCSI_MAX_SG_SEGMENTS is too small (must be 32 or greater)
49 #endif
50 static struct scsi_host_sg_pool scsi_sg_pools[] = {
51 SP(8),
52 SP(16),
53 #if (SCSI_MAX_SG_SEGMENTS > 32)
54 SP(32),
55 #if (SCSI_MAX_SG_SEGMENTS > 64)
56 SP(64),
57 #if (SCSI_MAX_SG_SEGMENTS > 128)
58 SP(128),
59 #if (SCSI_MAX_SG_SEGMENTS > 256)
60 #error SCSI_MAX_SG_SEGMENTS is too large (256 MAX)
61 #endif
62 #endif
63 #endif
64 #endif
65 SP(SCSI_MAX_SG_SEGMENTS)
66 };
67 #undef SP
68
69 struct kmem_cache *scsi_sdb_cache;
70
71 #ifdef CONFIG_ACPI
72 #include <acpi/acpi_bus.h>
73
74 static bool acpi_scsi_bus_match(struct device *dev)
75 {
76 return dev->bus == &scsi_bus_type;
77 }
78
79 int scsi_register_acpi_bus_type(struct acpi_bus_type *bus)
80 {
81 bus->match = acpi_scsi_bus_match;
82 return register_acpi_bus_type(bus);
83 }
84 EXPORT_SYMBOL_GPL(scsi_register_acpi_bus_type);
85
86 void scsi_unregister_acpi_bus_type(struct acpi_bus_type *bus)
87 {
88 unregister_acpi_bus_type(bus);
89 }
90 EXPORT_SYMBOL_GPL(scsi_unregister_acpi_bus_type);
91 #endif
92
93 /*
94 * When to reinvoke queueing after a resource shortage. It's 3 msecs to
95 * not change behaviour from the previous unplug mechanism, experimentation
96 * may prove this needs changing.
97 */
98 #define SCSI_QUEUE_DELAY 3
99
100 /*
101 * Function: scsi_unprep_request()
102 *
103 * Purpose: Remove all preparation done for a request, including its
104 * associated scsi_cmnd, so that it can be requeued.
105 *
106 * Arguments: req - request to unprepare
107 *
108 * Lock status: Assumed that no locks are held upon entry.
109 *
110 * Returns: Nothing.
111 */
112 static void scsi_unprep_request(struct request *req)
113 {
114 struct scsi_cmnd *cmd = req->special;
115
116 blk_unprep_request(req);
117 req->special = NULL;
118
119 scsi_put_command(cmd);
120 }
121
122 /**
123 * __scsi_queue_insert - private queue insertion
124 * @cmd: The SCSI command being requeued
125 * @reason: The reason for the requeue
126 * @unbusy: Whether the queue should be unbusied
127 *
128 * This is a private queue insertion. The public interface
129 * scsi_queue_insert() always assumes the queue should be unbusied
130 * because it's always called before the completion. This function is
131 * for a requeue after completion, which should only occur in this
132 * file.
133 */
134 static void __scsi_queue_insert(struct scsi_cmnd *cmd, int reason, int unbusy)
135 {
136 struct Scsi_Host *host = cmd->device->host;
137 struct scsi_device *device = cmd->device;
138 struct scsi_target *starget = scsi_target(device);
139 struct request_queue *q = device->request_queue;
140 unsigned long flags;
141
142 SCSI_LOG_MLQUEUE(1,
143 printk("Inserting command %p into mlqueue\n", cmd));
144
145 /*
146 * Set the appropriate busy bit for the device/host.
147 *
148 * If the host/device isn't busy, assume that something actually
149 * completed, and that we should be able to queue a command now.
150 *
151 * Note that the prior mid-layer assumption that any host could
152 * always queue at least one command is now broken. The mid-layer
153 * will implement a user specifiable stall (see
154 * scsi_host.max_host_blocked and scsi_device.max_device_blocked)
155 * if a command is requeued with no other commands outstanding
156 * either for the device or for the host.
157 */
158 switch (reason) {
159 case SCSI_MLQUEUE_HOST_BUSY:
160 host->host_blocked = host->max_host_blocked;
161 break;
162 case SCSI_MLQUEUE_DEVICE_BUSY:
163 case SCSI_MLQUEUE_EH_RETRY:
164 device->device_blocked = device->max_device_blocked;
165 break;
166 case SCSI_MLQUEUE_TARGET_BUSY:
167 starget->target_blocked = starget->max_target_blocked;
168 break;
169 }
170
171 /*
172 * Decrement the counters, since these commands are no longer
173 * active on the host/device.
174 */
175 if (unbusy)
176 scsi_device_unbusy(device);
177
178 /*
179 * Requeue this command. It will go before all other commands
180 * that are already in the queue. Schedule requeue work under
181 * lock such that the kblockd_schedule_work() call happens
182 * before blk_cleanup_queue() finishes.
183 */
184 spin_lock_irqsave(q->queue_lock, flags);
185 blk_requeue_request(q, cmd->request);
186 kblockd_schedule_work(q, &device->requeue_work);
187 spin_unlock_irqrestore(q->queue_lock, flags);
188 }
189
190 /*
191 * Function: scsi_queue_insert()
192 *
193 * Purpose: Insert a command in the midlevel queue.
194 *
195 * Arguments: cmd - command that we are adding to queue.
196 * reason - why we are inserting command to queue.
197 *
198 * Lock status: Assumed that lock is not held upon entry.
199 *
200 * Returns: Nothing.
201 *
202 * Notes: We do this for one of two cases. Either the host is busy
203 * and it cannot accept any more commands for the time being,
204 * or the device returned QUEUE_FULL and can accept no more
205 * commands.
206 * Notes: This could be called either from an interrupt context or a
207 * normal process context.
208 */
209 void scsi_queue_insert(struct scsi_cmnd *cmd, int reason)
210 {
211 __scsi_queue_insert(cmd, reason, 1);
212 }
213 /**
214 * scsi_execute - insert request and wait for the result
215 * @sdev: scsi device
216 * @cmd: scsi command
217 * @data_direction: data direction
218 * @buffer: data buffer
219 * @bufflen: len of buffer
220 * @sense: optional sense buffer
221 * @timeout: request timeout in seconds
222 * @retries: number of times to retry request
223 * @flags: or into request flags;
224 * @resid: optional residual length
225 *
226 * returns the req->errors value which is the scsi_cmnd result
227 * field.
228 */
229 int scsi_execute(struct scsi_device *sdev, const unsigned char *cmd,
230 int data_direction, void *buffer, unsigned bufflen,
231 unsigned char *sense, int timeout, int retries, int flags,
232 int *resid)
233 {
234 struct request *req;
235 int write = (data_direction == DMA_TO_DEVICE);
236 int ret = DRIVER_ERROR << 24;
237
238 req = blk_get_request(sdev->request_queue, write, __GFP_WAIT);
239 if (!req)
240 return ret;
241
242 if (bufflen && blk_rq_map_kern(sdev->request_queue, req,
243 buffer, bufflen, __GFP_WAIT))
244 goto out;
245
246 req->cmd_len = COMMAND_SIZE(cmd[0]);
247 memcpy(req->cmd, cmd, req->cmd_len);
248 req->sense = sense;
249 req->sense_len = 0;
250 req->retries = retries;
251 req->timeout = timeout;
252 req->cmd_type = REQ_TYPE_BLOCK_PC;
253 req->cmd_flags |= flags | REQ_QUIET | REQ_PREEMPT;
254
255 /*
256 * head injection *required* here otherwise quiesce won't work
257 */
258 blk_execute_rq(req->q, NULL, req, 1);
259
260 /*
261 * Some devices (USB mass-storage in particular) may transfer
262 * garbage data together with a residue indicating that the data
263 * is invalid. Prevent the garbage from being misinterpreted
264 * and prevent security leaks by zeroing out the excess data.
265 */
266 if (unlikely(req->resid_len > 0 && req->resid_len <= bufflen))
267 memset(buffer + (bufflen - req->resid_len), 0, req->resid_len);
268
269 if (resid)
270 *resid = req->resid_len;
271 ret = req->errors;
272 out:
273 blk_put_request(req);
274
275 return ret;
276 }
277 EXPORT_SYMBOL(scsi_execute);
278
279
280 int scsi_execute_req(struct scsi_device *sdev, const unsigned char *cmd,
281 int data_direction, void *buffer, unsigned bufflen,
282 struct scsi_sense_hdr *sshdr, int timeout, int retries,
283 int *resid)
284 {
285 char *sense = NULL;
286 int result;
287
288 if (sshdr) {
289 sense = kzalloc(SCSI_SENSE_BUFFERSIZE, GFP_NOIO);
290 if (!sense)
291 return DRIVER_ERROR << 24;
292 }
293 result = scsi_execute(sdev, cmd, data_direction, buffer, bufflen,
294 sense, timeout, retries, 0, resid);
295 if (sshdr)
296 scsi_normalize_sense(sense, SCSI_SENSE_BUFFERSIZE, sshdr);
297
298 kfree(sense);
299 return result;
300 }
301 EXPORT_SYMBOL(scsi_execute_req);
302
303 /*
304 * Function: scsi_init_cmd_errh()
305 *
306 * Purpose: Initialize cmd fields related to error handling.
307 *
308 * Arguments: cmd - command that is ready to be queued.
309 *
310 * Notes: This function has the job of initializing a number of
311 * fields related to error handling. Typically this will
312 * be called once for each command, as required.
313 */
314 static void scsi_init_cmd_errh(struct scsi_cmnd *cmd)
315 {
316 cmd->serial_number = 0;
317 scsi_set_resid(cmd, 0);
318 memset(cmd->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE);
319 if (cmd->cmd_len == 0)
320 cmd->cmd_len = scsi_command_size(cmd->cmnd);
321 }
322
323 void scsi_device_unbusy(struct scsi_device *sdev)
324 {
325 struct Scsi_Host *shost = sdev->host;
326 struct scsi_target *starget = scsi_target(sdev);
327 unsigned long flags;
328
329 spin_lock_irqsave(shost->host_lock, flags);
330 shost->host_busy--;
331 starget->target_busy--;
332 if (unlikely(scsi_host_in_recovery(shost) &&
333 (shost->host_failed || shost->host_eh_scheduled)))
334 scsi_eh_wakeup(shost);
335 spin_unlock(shost->host_lock);
336 spin_lock(sdev->request_queue->queue_lock);
337 sdev->device_busy--;
338 spin_unlock_irqrestore(sdev->request_queue->queue_lock, flags);
339 }
340
341 /*
342 * Called for single_lun devices on IO completion. Clear starget_sdev_user,
343 * and call blk_run_queue for all the scsi_devices on the target -
344 * including current_sdev first.
345 *
346 * Called with *no* scsi locks held.
347 */
348 static void scsi_single_lun_run(struct scsi_device *current_sdev)
349 {
350 struct Scsi_Host *shost = current_sdev->host;
351 struct scsi_device *sdev, *tmp;
352 struct scsi_target *starget = scsi_target(current_sdev);
353 unsigned long flags;
354
355 spin_lock_irqsave(shost->host_lock, flags);
356 starget->starget_sdev_user = NULL;
357 spin_unlock_irqrestore(shost->host_lock, flags);
358
359 /*
360 * Call blk_run_queue for all LUNs on the target, starting with
361 * current_sdev. We race with others (to set starget_sdev_user),
362 * but in most cases, we will be first. Ideally, each LU on the
363 * target would get some limited time or requests on the target.
364 */
365 blk_run_queue(current_sdev->request_queue);
366
367 spin_lock_irqsave(shost->host_lock, flags);
368 if (starget->starget_sdev_user)
369 goto out;
370 list_for_each_entry_safe(sdev, tmp, &starget->devices,
371 same_target_siblings) {
372 if (sdev == current_sdev)
373 continue;
374 if (scsi_device_get(sdev))
375 continue;
376
377 spin_unlock_irqrestore(shost->host_lock, flags);
378 blk_run_queue(sdev->request_queue);
379 spin_lock_irqsave(shost->host_lock, flags);
380
381 scsi_device_put(sdev);
382 }
383 out:
384 spin_unlock_irqrestore(shost->host_lock, flags);
385 }
386
387 static inline int scsi_device_is_busy(struct scsi_device *sdev)
388 {
389 if (sdev->device_busy >= sdev->queue_depth || sdev->device_blocked)
390 return 1;
391
392 return 0;
393 }
394
395 static inline int scsi_target_is_busy(struct scsi_target *starget)
396 {
397 return ((starget->can_queue > 0 &&
398 starget->target_busy >= starget->can_queue) ||
399 starget->target_blocked);
400 }
401
402 static inline int scsi_host_is_busy(struct Scsi_Host *shost)
403 {
404 if ((shost->can_queue > 0 && shost->host_busy >= shost->can_queue) ||
405 shost->host_blocked || shost->host_self_blocked)
406 return 1;
407
408 return 0;
409 }
410
411 /*
412 * Function: scsi_run_queue()
413 *
414 * Purpose: Select a proper request queue to serve next
415 *
416 * Arguments: q - last request's queue
417 *
418 * Returns: Nothing
419 *
420 * Notes: The previous command was completely finished, start
421 * a new one if possible.
422 */
423 static void scsi_run_queue(struct request_queue *q)
424 {
425 struct scsi_device *sdev = q->queuedata;
426 struct Scsi_Host *shost;
427 LIST_HEAD(starved_list);
428 unsigned long flags;
429
430 shost = sdev->host;
431 if (scsi_target(sdev)->single_lun)
432 scsi_single_lun_run(sdev);
433
434 spin_lock_irqsave(shost->host_lock, flags);
435 list_splice_init(&shost->starved_list, &starved_list);
436
437 while (!list_empty(&starved_list)) {
438 /*
439 * As long as shost is accepting commands and we have
440 * starved queues, call blk_run_queue. scsi_request_fn
441 * drops the queue_lock and can add us back to the
442 * starved_list.
443 *
444 * host_lock protects the starved_list and starved_entry.
445 * scsi_request_fn must get the host_lock before checking
446 * or modifying starved_list or starved_entry.
447 */
448 if (scsi_host_is_busy(shost))
449 break;
450
451 sdev = list_entry(starved_list.next,
452 struct scsi_device, starved_entry);
453 list_del_init(&sdev->starved_entry);
454 if (scsi_target_is_busy(scsi_target(sdev))) {
455 list_move_tail(&sdev->starved_entry,
456 &shost->starved_list);
457 continue;
458 }
459
460 spin_unlock(shost->host_lock);
461 spin_lock(sdev->request_queue->queue_lock);
462 __blk_run_queue(sdev->request_queue);
463 spin_unlock(sdev->request_queue->queue_lock);
464 spin_lock(shost->host_lock);
465 }
466 /* put any unprocessed entries back */
467 list_splice(&starved_list, &shost->starved_list);
468 spin_unlock_irqrestore(shost->host_lock, flags);
469
470 blk_run_queue(q);
471 }
472
473 void scsi_requeue_run_queue(struct work_struct *work)
474 {
475 struct scsi_device *sdev;
476 struct request_queue *q;
477
478 sdev = container_of(work, struct scsi_device, requeue_work);
479 q = sdev->request_queue;
480 scsi_run_queue(q);
481 }
482
483 /*
484 * Function: scsi_requeue_command()
485 *
486 * Purpose: Handle post-processing of completed commands.
487 *
488 * Arguments: q - queue to operate on
489 * cmd - command that may need to be requeued.
490 *
491 * Returns: Nothing
492 *
493 * Notes: After command completion, there may be blocks left
494 * over which weren't finished by the previous command
495 * this can be for a number of reasons - the main one is
496 * I/O errors in the middle of the request, in which case
497 * we need to request the blocks that come after the bad
498 * sector.
499 * Notes: Upon return, cmd is a stale pointer.
500 */
501 static void scsi_requeue_command(struct request_queue *q, struct scsi_cmnd *cmd)
502 {
503 struct scsi_device *sdev = cmd->device;
504 struct request *req = cmd->request;
505 unsigned long flags;
506
507 /*
508 * We need to hold a reference on the device to avoid the queue being
509 * killed after the unlock and before scsi_run_queue is invoked which
510 * may happen because scsi_unprep_request() puts the command which
511 * releases its reference on the device.
512 */
513 get_device(&sdev->sdev_gendev);
514
515 spin_lock_irqsave(q->queue_lock, flags);
516 scsi_unprep_request(req);
517 blk_requeue_request(q, req);
518 spin_unlock_irqrestore(q->queue_lock, flags);
519
520 scsi_run_queue(q);
521
522 put_device(&sdev->sdev_gendev);
523 }
524
525 void scsi_next_command(struct scsi_cmnd *cmd)
526 {
527 struct scsi_device *sdev = cmd->device;
528 struct request_queue *q = sdev->request_queue;
529
530 /* need to hold a reference on the device before we let go of the cmd */
531 get_device(&sdev->sdev_gendev);
532
533 scsi_put_command(cmd);
534 scsi_run_queue(q);
535
536 /* ok to remove device now */
537 put_device(&sdev->sdev_gendev);
538 }
539
540 void scsi_run_host_queues(struct Scsi_Host *shost)
541 {
542 struct scsi_device *sdev;
543
544 shost_for_each_device(sdev, shost)
545 scsi_run_queue(sdev->request_queue);
546 }
547
548 static void __scsi_release_buffers(struct scsi_cmnd *, int);
549
550 /*
551 * Function: scsi_end_request()
552 *
553 * Purpose: Post-processing of completed commands (usually invoked at end
554 * of upper level post-processing and scsi_io_completion).
555 *
556 * Arguments: cmd - command that is complete.
557 * error - 0 if I/O indicates success, < 0 for I/O error.
558 * bytes - number of bytes of completed I/O
559 * requeue - indicates whether we should requeue leftovers.
560 *
561 * Lock status: Assumed that lock is not held upon entry.
562 *
563 * Returns: cmd if requeue required, NULL otherwise.
564 *
565 * Notes: This is called for block device requests in order to
566 * mark some number of sectors as complete.
567 *
568 * We are guaranteeing that the request queue will be goosed
569 * at some point during this call.
570 * Notes: If cmd was requeued, upon return it will be a stale pointer.
571 */
572 static struct scsi_cmnd *scsi_end_request(struct scsi_cmnd *cmd, int error,
573 int bytes, int requeue)
574 {
575 struct request_queue *q = cmd->device->request_queue;
576 struct request *req = cmd->request;
577
578 /*
579 * If there are blocks left over at the end, set up the command
580 * to queue the remainder of them.
581 */
582 if (blk_end_request(req, error, bytes)) {
583 /* kill remainder if no retrys */
584 if (error && scsi_noretry_cmd(cmd))
585 blk_end_request_all(req, error);
586 else {
587 if (requeue) {
588 /*
589 * Bleah. Leftovers again. Stick the
590 * leftovers in the front of the
591 * queue, and goose the queue again.
592 */
593 scsi_release_buffers(cmd);
594 scsi_requeue_command(q, cmd);
595 cmd = NULL;
596 }
597 return cmd;
598 }
599 }
600
601 /*
602 * This will goose the queue request function at the end, so we don't
603 * need to worry about launching another command.
604 */
605 __scsi_release_buffers(cmd, 0);
606 scsi_next_command(cmd);
607 return NULL;
608 }
609
610 static inline unsigned int scsi_sgtable_index(unsigned short nents)
611 {
612 unsigned int index;
613
614 BUG_ON(nents > SCSI_MAX_SG_SEGMENTS);
615
616 if (nents <= 8)
617 index = 0;
618 else
619 index = get_count_order(nents) - 3;
620
621 return index;
622 }
623
624 static void scsi_sg_free(struct scatterlist *sgl, unsigned int nents)
625 {
626 struct scsi_host_sg_pool *sgp;
627
628 sgp = scsi_sg_pools + scsi_sgtable_index(nents);
629 mempool_free(sgl, sgp->pool);
630 }
631
632 static struct scatterlist *scsi_sg_alloc(unsigned int nents, gfp_t gfp_mask)
633 {
634 struct scsi_host_sg_pool *sgp;
635
636 sgp = scsi_sg_pools + scsi_sgtable_index(nents);
637 return mempool_alloc(sgp->pool, gfp_mask);
638 }
639
640 static int scsi_alloc_sgtable(struct scsi_data_buffer *sdb, int nents,
641 gfp_t gfp_mask)
642 {
643 int ret;
644
645 BUG_ON(!nents);
646
647 ret = __sg_alloc_table(&sdb->table, nents, SCSI_MAX_SG_SEGMENTS,
648 gfp_mask, scsi_sg_alloc);
649 if (unlikely(ret))
650 __sg_free_table(&sdb->table, SCSI_MAX_SG_SEGMENTS,
651 scsi_sg_free);
652
653 return ret;
654 }
655
656 static void scsi_free_sgtable(struct scsi_data_buffer *sdb)
657 {
658 __sg_free_table(&sdb->table, SCSI_MAX_SG_SEGMENTS, scsi_sg_free);
659 }
660
661 static void __scsi_release_buffers(struct scsi_cmnd *cmd, int do_bidi_check)
662 {
663
664 if (cmd->sdb.table.nents)
665 scsi_free_sgtable(&cmd->sdb);
666
667 memset(&cmd->sdb, 0, sizeof(cmd->sdb));
668
669 if (do_bidi_check && scsi_bidi_cmnd(cmd)) {
670 struct scsi_data_buffer *bidi_sdb =
671 cmd->request->next_rq->special;
672 scsi_free_sgtable(bidi_sdb);
673 kmem_cache_free(scsi_sdb_cache, bidi_sdb);
674 cmd->request->next_rq->special = NULL;
675 }
676
677 if (scsi_prot_sg_count(cmd))
678 scsi_free_sgtable(cmd->prot_sdb);
679 }
680
681 /*
682 * Function: scsi_release_buffers()
683 *
684 * Purpose: Completion processing for block device I/O requests.
685 *
686 * Arguments: cmd - command that we are bailing.
687 *
688 * Lock status: Assumed that no lock is held upon entry.
689 *
690 * Returns: Nothing
691 *
692 * Notes: In the event that an upper level driver rejects a
693 * command, we must release resources allocated during
694 * the __init_io() function. Primarily this would involve
695 * the scatter-gather table, and potentially any bounce
696 * buffers.
697 */
698 void scsi_release_buffers(struct scsi_cmnd *cmd)
699 {
700 __scsi_release_buffers(cmd, 1);
701 }
702 EXPORT_SYMBOL(scsi_release_buffers);
703
704 static int __scsi_error_from_host_byte(struct scsi_cmnd *cmd, int result)
705 {
706 int error = 0;
707
708 switch(host_byte(result)) {
709 case DID_TRANSPORT_FAILFAST:
710 error = -ENOLINK;
711 break;
712 case DID_TARGET_FAILURE:
713 set_host_byte(cmd, DID_OK);
714 error = -EREMOTEIO;
715 break;
716 case DID_NEXUS_FAILURE:
717 set_host_byte(cmd, DID_OK);
718 error = -EBADE;
719 break;
720 default:
721 error = -EIO;
722 break;
723 }
724
725 return error;
726 }
727
728 /*
729 * Function: scsi_io_completion()
730 *
731 * Purpose: Completion processing for block device I/O requests.
732 *
733 * Arguments: cmd - command that is finished.
734 *
735 * Lock status: Assumed that no lock is held upon entry.
736 *
737 * Returns: Nothing
738 *
739 * Notes: This function is matched in terms of capabilities to
740 * the function that created the scatter-gather list.
741 * In other words, if there are no bounce buffers
742 * (the normal case for most drivers), we don't need
743 * the logic to deal with cleaning up afterwards.
744 *
745 * We must call scsi_end_request(). This will finish off
746 * the specified number of sectors. If we are done, the
747 * command block will be released and the queue function
748 * will be goosed. If we are not done then we have to
749 * figure out what to do next:
750 *
751 * a) We can call scsi_requeue_command(). The request
752 * will be unprepared and put back on the queue. Then
753 * a new command will be created for it. This should
754 * be used if we made forward progress, or if we want
755 * to switch from READ(10) to READ(6) for example.
756 *
757 * b) We can call scsi_queue_insert(). The request will
758 * be put back on the queue and retried using the same
759 * command as before, possibly after a delay.
760 *
761 * c) We can call blk_end_request() with -EIO to fail
762 * the remainder of the request.
763 */
764 void scsi_io_completion(struct scsi_cmnd *cmd, unsigned int good_bytes)
765 {
766 int result = cmd->result;
767 struct request_queue *q = cmd->device->request_queue;
768 struct request *req = cmd->request;
769 int error = 0;
770 struct scsi_sense_hdr sshdr;
771 int sense_valid = 0;
772 int sense_deferred = 0;
773 enum {ACTION_FAIL, ACTION_REPREP, ACTION_RETRY,
774 ACTION_DELAYED_RETRY} action;
775 char *description = NULL;
776
777 if (result) {
778 sense_valid = scsi_command_normalize_sense(cmd, &sshdr);
779 if (sense_valid)
780 sense_deferred = scsi_sense_is_deferred(&sshdr);
781 }
782
783 if (req->cmd_type == REQ_TYPE_BLOCK_PC) { /* SG_IO ioctl from block level */
784 if (result) {
785 if (sense_valid && req->sense) {
786 /*
787 * SG_IO wants current and deferred errors
788 */
789 int len = 8 + cmd->sense_buffer[7];
790
791 if (len > SCSI_SENSE_BUFFERSIZE)
792 len = SCSI_SENSE_BUFFERSIZE;
793 memcpy(req->sense, cmd->sense_buffer, len);
794 req->sense_len = len;
795 }
796 if (!sense_deferred)
797 error = __scsi_error_from_host_byte(cmd, result);
798 }
799 /*
800 * __scsi_error_from_host_byte may have reset the host_byte
801 */
802 req->errors = cmd->result;
803
804 req->resid_len = scsi_get_resid(cmd);
805
806 if (scsi_bidi_cmnd(cmd)) {
807 /*
808 * Bidi commands Must be complete as a whole,
809 * both sides at once.
810 */
811 req->next_rq->resid_len = scsi_in(cmd)->resid;
812
813 scsi_release_buffers(cmd);
814 blk_end_request_all(req, 0);
815
816 scsi_next_command(cmd);
817 return;
818 }
819 }
820
821 /* no bidi support for !REQ_TYPE_BLOCK_PC yet */
822 BUG_ON(blk_bidi_rq(req));
823
824 /*
825 * Next deal with any sectors which we were able to correctly
826 * handle.
827 */
828 SCSI_LOG_HLCOMPLETE(1, printk("%u sectors total, "
829 "%d bytes done.\n",
830 blk_rq_sectors(req), good_bytes));
831
832 /*
833 * Recovered errors need reporting, but they're always treated
834 * as success, so fiddle the result code here. For BLOCK_PC
835 * we already took a copy of the original into rq->errors which
836 * is what gets returned to the user
837 */
838 if (sense_valid && (sshdr.sense_key == RECOVERED_ERROR)) {
839 /* if ATA PASS-THROUGH INFORMATION AVAILABLE skip
840 * print since caller wants ATA registers. Only occurs on
841 * SCSI ATA PASS_THROUGH commands when CK_COND=1
842 */
843 if ((sshdr.asc == 0x0) && (sshdr.ascq == 0x1d))
844 ;
845 else if (!(req->cmd_flags & REQ_QUIET))
846 scsi_print_sense("", cmd);
847 result = 0;
848 /* BLOCK_PC may have set error */
849 error = 0;
850 }
851
852 /*
853 * A number of bytes were successfully read. If there
854 * are leftovers and there is some kind of error
855 * (result != 0), retry the rest.
856 */
857 if (scsi_end_request(cmd, error, good_bytes, result == 0) == NULL)
858 return;
859
860 error = __scsi_error_from_host_byte(cmd, result);
861
862 if (host_byte(result) == DID_RESET) {
863 /* Third party bus reset or reset for error recovery
864 * reasons. Just retry the command and see what
865 * happens.
866 */
867 action = ACTION_RETRY;
868 } else if (sense_valid && !sense_deferred) {
869 switch (sshdr.sense_key) {
870 case UNIT_ATTENTION:
871 if (cmd->device->removable) {
872 /* Detected disc change. Set a bit
873 * and quietly refuse further access.
874 */
875 cmd->device->changed = 1;
876 description = "Media Changed";
877 action = ACTION_FAIL;
878 } else {
879 /* Must have been a power glitch, or a
880 * bus reset. Could not have been a
881 * media change, so we just retry the
882 * command and see what happens.
883 */
884 action = ACTION_RETRY;
885 }
886 break;
887 case ILLEGAL_REQUEST:
888 /* If we had an ILLEGAL REQUEST returned, then
889 * we may have performed an unsupported
890 * command. The only thing this should be
891 * would be a ten byte read where only a six
892 * byte read was supported. Also, on a system
893 * where READ CAPACITY failed, we may have
894 * read past the end of the disk.
895 */
896 if ((cmd->device->use_10_for_rw &&
897 sshdr.asc == 0x20 && sshdr.ascq == 0x00) &&
898 (cmd->cmnd[0] == READ_10 ||
899 cmd->cmnd[0] == WRITE_10)) {
900 /* This will issue a new 6-byte command. */
901 cmd->device->use_10_for_rw = 0;
902 action = ACTION_REPREP;
903 } else if (sshdr.asc == 0x10) /* DIX */ {
904 description = "Host Data Integrity Failure";
905 action = ACTION_FAIL;
906 error = -EILSEQ;
907 /* INVALID COMMAND OPCODE or INVALID FIELD IN CDB */
908 } else if (sshdr.asc == 0x20 || sshdr.asc == 0x24) {
909 switch (cmd->cmnd[0]) {
910 case UNMAP:
911 description = "Discard failure";
912 break;
913 case WRITE_SAME:
914 case WRITE_SAME_16:
915 if (cmd->cmnd[1] & 0x8)
916 description = "Discard failure";
917 else
918 description =
919 "Write same failure";
920 break;
921 default:
922 description = "Invalid command failure";
923 break;
924 }
925 action = ACTION_FAIL;
926 error = -EREMOTEIO;
927 } else
928 action = ACTION_FAIL;
929 break;
930 case ABORTED_COMMAND:
931 action = ACTION_FAIL;
932 if (sshdr.asc == 0x10) { /* DIF */
933 description = "Target Data Integrity Failure";
934 error = -EILSEQ;
935 }
936 break;
937 case NOT_READY:
938 /* If the device is in the process of becoming
939 * ready, or has a temporary blockage, retry.
940 */
941 if (sshdr.asc == 0x04) {
942 switch (sshdr.ascq) {
943 case 0x01: /* becoming ready */
944 case 0x04: /* format in progress */
945 case 0x05: /* rebuild in progress */
946 case 0x06: /* recalculation in progress */
947 case 0x07: /* operation in progress */
948 case 0x08: /* Long write in progress */
949 case 0x09: /* self test in progress */
950 case 0x14: /* space allocation in progress */
951 action = ACTION_DELAYED_RETRY;
952 break;
953 default:
954 description = "Device not ready";
955 action = ACTION_FAIL;
956 break;
957 }
958 } else {
959 description = "Device not ready";
960 action = ACTION_FAIL;
961 }
962 break;
963 case VOLUME_OVERFLOW:
964 /* See SSC3rXX or current. */
965 action = ACTION_FAIL;
966 break;
967 default:
968 description = "Unhandled sense code";
969 action = ACTION_FAIL;
970 break;
971 }
972 } else {
973 description = "Unhandled error code";
974 action = ACTION_FAIL;
975 }
976
977 switch (action) {
978 case ACTION_FAIL:
979 /* Give up and fail the remainder of the request */
980 scsi_release_buffers(cmd);
981 if (!(req->cmd_flags & REQ_QUIET)) {
982 if (description)
983 scmd_printk(KERN_INFO, cmd, "%s\n",
984 description);
985 scsi_print_result(cmd);
986 if (driver_byte(result) & DRIVER_SENSE)
987 scsi_print_sense("", cmd);
988 scsi_print_command(cmd);
989 }
990 if (blk_end_request_err(req, error))
991 scsi_requeue_command(q, cmd);
992 else
993 scsi_next_command(cmd);
994 break;
995 case ACTION_REPREP:
996 /* Unprep the request and put it back at the head of the queue.
997 * A new command will be prepared and issued.
998 */
999 scsi_release_buffers(cmd);
1000 scsi_requeue_command(q, cmd);
1001 break;
1002 case ACTION_RETRY:
1003 /* Retry the same command immediately */
1004 __scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY, 0);
1005 break;
1006 case ACTION_DELAYED_RETRY:
1007 /* Retry the same command after a delay */
1008 __scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY, 0);
1009 break;
1010 }
1011 }
1012
1013 static int scsi_init_sgtable(struct request *req, struct scsi_data_buffer *sdb,
1014 gfp_t gfp_mask)
1015 {
1016 int count;
1017
1018 /*
1019 * If sg table allocation fails, requeue request later.
1020 */
1021 if (unlikely(scsi_alloc_sgtable(sdb, req->nr_phys_segments,
1022 gfp_mask))) {
1023 return BLKPREP_DEFER;
1024 }
1025
1026 req->buffer = NULL;
1027
1028 /*
1029 * Next, walk the list, and fill in the addresses and sizes of
1030 * each segment.
1031 */
1032 count = blk_rq_map_sg(req->q, req, sdb->table.sgl);
1033 BUG_ON(count > sdb->table.nents);
1034 sdb->table.nents = count;
1035 sdb->length = blk_rq_bytes(req);
1036 return BLKPREP_OK;
1037 }
1038
1039 /*
1040 * Function: scsi_init_io()
1041 *
1042 * Purpose: SCSI I/O initialize function.
1043 *
1044 * Arguments: cmd - Command descriptor we wish to initialize
1045 *
1046 * Returns: 0 on success
1047 * BLKPREP_DEFER if the failure is retryable
1048 * BLKPREP_KILL if the failure is fatal
1049 */
1050 int scsi_init_io(struct scsi_cmnd *cmd, gfp_t gfp_mask)
1051 {
1052 struct request *rq = cmd->request;
1053
1054 int error = scsi_init_sgtable(rq, &cmd->sdb, gfp_mask);
1055 if (error)
1056 goto err_exit;
1057
1058 if (blk_bidi_rq(rq)) {
1059 struct scsi_data_buffer *bidi_sdb = kmem_cache_zalloc(
1060 scsi_sdb_cache, GFP_ATOMIC);
1061 if (!bidi_sdb) {
1062 error = BLKPREP_DEFER;
1063 goto err_exit;
1064 }
1065
1066 rq->next_rq->special = bidi_sdb;
1067 error = scsi_init_sgtable(rq->next_rq, bidi_sdb, GFP_ATOMIC);
1068 if (error)
1069 goto err_exit;
1070 }
1071
1072 if (blk_integrity_rq(rq)) {
1073 struct scsi_data_buffer *prot_sdb = cmd->prot_sdb;
1074 int ivecs, count;
1075
1076 BUG_ON(prot_sdb == NULL);
1077 ivecs = blk_rq_count_integrity_sg(rq->q, rq->bio);
1078
1079 if (scsi_alloc_sgtable(prot_sdb, ivecs, gfp_mask)) {
1080 error = BLKPREP_DEFER;
1081 goto err_exit;
1082 }
1083
1084 count = blk_rq_map_integrity_sg(rq->q, rq->bio,
1085 prot_sdb->table.sgl);
1086 BUG_ON(unlikely(count > ivecs));
1087 BUG_ON(unlikely(count > queue_max_integrity_segments(rq->q)));
1088
1089 cmd->prot_sdb = prot_sdb;
1090 cmd->prot_sdb->table.nents = count;
1091 }
1092
1093 return BLKPREP_OK ;
1094
1095 err_exit:
1096 scsi_release_buffers(cmd);
1097 cmd->request->special = NULL;
1098 scsi_put_command(cmd);
1099 return error;
1100 }
1101 EXPORT_SYMBOL(scsi_init_io);
1102
1103 static struct scsi_cmnd *scsi_get_cmd_from_req(struct scsi_device *sdev,
1104 struct request *req)
1105 {
1106 struct scsi_cmnd *cmd;
1107
1108 if (!req->special) {
1109 cmd = scsi_get_command(sdev, GFP_ATOMIC);
1110 if (unlikely(!cmd))
1111 return NULL;
1112 req->special = cmd;
1113 } else {
1114 cmd = req->special;
1115 }
1116
1117 /* pull a tag out of the request if we have one */
1118 cmd->tag = req->tag;
1119 cmd->request = req;
1120
1121 cmd->cmnd = req->cmd;
1122 cmd->prot_op = SCSI_PROT_NORMAL;
1123
1124 return cmd;
1125 }
1126
1127 int scsi_setup_blk_pc_cmnd(struct scsi_device *sdev, struct request *req)
1128 {
1129 struct scsi_cmnd *cmd;
1130 int ret = scsi_prep_state_check(sdev, req);
1131
1132 if (ret != BLKPREP_OK)
1133 return ret;
1134
1135 cmd = scsi_get_cmd_from_req(sdev, req);
1136 if (unlikely(!cmd))
1137 return BLKPREP_DEFER;
1138
1139 /*
1140 * BLOCK_PC requests may transfer data, in which case they must
1141 * a bio attached to them. Or they might contain a SCSI command
1142 * that does not transfer data, in which case they may optionally
1143 * submit a request without an attached bio.
1144 */
1145 if (req->bio) {
1146 int ret;
1147
1148 BUG_ON(!req->nr_phys_segments);
1149
1150 ret = scsi_init_io(cmd, GFP_ATOMIC);
1151 if (unlikely(ret))
1152 return ret;
1153 } else {
1154 BUG_ON(blk_rq_bytes(req));
1155
1156 memset(&cmd->sdb, 0, sizeof(cmd->sdb));
1157 req->buffer = NULL;
1158 }
1159
1160 cmd->cmd_len = req->cmd_len;
1161 if (!blk_rq_bytes(req))
1162 cmd->sc_data_direction = DMA_NONE;
1163 else if (rq_data_dir(req) == WRITE)
1164 cmd->sc_data_direction = DMA_TO_DEVICE;
1165 else
1166 cmd->sc_data_direction = DMA_FROM_DEVICE;
1167
1168 cmd->transfersize = blk_rq_bytes(req);
1169 cmd->allowed = req->retries;
1170 return BLKPREP_OK;
1171 }
1172 EXPORT_SYMBOL(scsi_setup_blk_pc_cmnd);
1173
1174 /*
1175 * Setup a REQ_TYPE_FS command. These are simple read/write request
1176 * from filesystems that still need to be translated to SCSI CDBs from
1177 * the ULD.
1178 */
1179 int scsi_setup_fs_cmnd(struct scsi_device *sdev, struct request *req)
1180 {
1181 struct scsi_cmnd *cmd;
1182 int ret = scsi_prep_state_check(sdev, req);
1183
1184 if (ret != BLKPREP_OK)
1185 return ret;
1186
1187 if (unlikely(sdev->scsi_dh_data && sdev->scsi_dh_data->scsi_dh
1188 && sdev->scsi_dh_data->scsi_dh->prep_fn)) {
1189 ret = sdev->scsi_dh_data->scsi_dh->prep_fn(sdev, req);
1190 if (ret != BLKPREP_OK)
1191 return ret;
1192 }
1193
1194 /*
1195 * Filesystem requests must transfer data.
1196 */
1197 BUG_ON(!req->nr_phys_segments);
1198
1199 cmd = scsi_get_cmd_from_req(sdev, req);
1200 if (unlikely(!cmd))
1201 return BLKPREP_DEFER;
1202
1203 memset(cmd->cmnd, 0, BLK_MAX_CDB);
1204 return scsi_init_io(cmd, GFP_ATOMIC);
1205 }
1206 EXPORT_SYMBOL(scsi_setup_fs_cmnd);
1207
1208 int scsi_prep_state_check(struct scsi_device *sdev, struct request *req)
1209 {
1210 int ret = BLKPREP_OK;
1211
1212 /*
1213 * If the device is not in running state we will reject some
1214 * or all commands.
1215 */
1216 if (unlikely(sdev->sdev_state != SDEV_RUNNING)) {
1217 switch (sdev->sdev_state) {
1218 case SDEV_OFFLINE:
1219 case SDEV_TRANSPORT_OFFLINE:
1220 /*
1221 * If the device is offline we refuse to process any
1222 * commands. The device must be brought online
1223 * before trying any recovery commands.
1224 */
1225 sdev_printk(KERN_ERR, sdev,
1226 "rejecting I/O to offline device\n");
1227 ret = BLKPREP_KILL;
1228 break;
1229 case SDEV_DEL:
1230 /*
1231 * If the device is fully deleted, we refuse to
1232 * process any commands as well.
1233 */
1234 sdev_printk(KERN_ERR, sdev,
1235 "rejecting I/O to dead device\n");
1236 ret = BLKPREP_KILL;
1237 break;
1238 case SDEV_QUIESCE:
1239 case SDEV_BLOCK:
1240 case SDEV_CREATED_BLOCK:
1241 /*
1242 * If the devices is blocked we defer normal commands.
1243 */
1244 if (!(req->cmd_flags & REQ_PREEMPT))
1245 ret = BLKPREP_DEFER;
1246 break;
1247 default:
1248 /*
1249 * For any other not fully online state we only allow
1250 * special commands. In particular any user initiated
1251 * command is not allowed.
1252 */
1253 if (!(req->cmd_flags & REQ_PREEMPT))
1254 ret = BLKPREP_KILL;
1255 break;
1256 }
1257 }
1258 return ret;
1259 }
1260 EXPORT_SYMBOL(scsi_prep_state_check);
1261
1262 int scsi_prep_return(struct request_queue *q, struct request *req, int ret)
1263 {
1264 struct scsi_device *sdev = q->queuedata;
1265
1266 switch (ret) {
1267 case BLKPREP_KILL:
1268 req->errors = DID_NO_CONNECT << 16;
1269 /* release the command and kill it */
1270 if (req->special) {
1271 struct scsi_cmnd *cmd = req->special;
1272 scsi_release_buffers(cmd);
1273 scsi_put_command(cmd);
1274 req->special = NULL;
1275 }
1276 break;
1277 case BLKPREP_DEFER:
1278 /*
1279 * If we defer, the blk_peek_request() returns NULL, but the
1280 * queue must be restarted, so we schedule a callback to happen
1281 * shortly.
1282 */
1283 if (sdev->device_busy == 0)
1284 blk_delay_queue(q, SCSI_QUEUE_DELAY);
1285 break;
1286 default:
1287 req->cmd_flags |= REQ_DONTPREP;
1288 }
1289
1290 return ret;
1291 }
1292 EXPORT_SYMBOL(scsi_prep_return);
1293
1294 int scsi_prep_fn(struct request_queue *q, struct request *req)
1295 {
1296 struct scsi_device *sdev = q->queuedata;
1297 int ret = BLKPREP_KILL;
1298
1299 if (req->cmd_type == REQ_TYPE_BLOCK_PC)
1300 ret = scsi_setup_blk_pc_cmnd(sdev, req);
1301 return scsi_prep_return(q, req, ret);
1302 }
1303 EXPORT_SYMBOL(scsi_prep_fn);
1304
1305 /*
1306 * scsi_dev_queue_ready: if we can send requests to sdev, return 1 else
1307 * return 0.
1308 *
1309 * Called with the queue_lock held.
1310 */
1311 static inline int scsi_dev_queue_ready(struct request_queue *q,
1312 struct scsi_device *sdev)
1313 {
1314 if (sdev->device_busy == 0 && sdev->device_blocked) {
1315 /*
1316 * unblock after device_blocked iterates to zero
1317 */
1318 if (--sdev->device_blocked == 0) {
1319 SCSI_LOG_MLQUEUE(3,
1320 sdev_printk(KERN_INFO, sdev,
1321 "unblocking device at zero depth\n"));
1322 } else {
1323 blk_delay_queue(q, SCSI_QUEUE_DELAY);
1324 return 0;
1325 }
1326 }
1327 if (scsi_device_is_busy(sdev))
1328 return 0;
1329
1330 return 1;
1331 }
1332
1333
1334 /*
1335 * scsi_target_queue_ready: checks if there we can send commands to target
1336 * @sdev: scsi device on starget to check.
1337 *
1338 * Called with the host lock held.
1339 */
1340 static inline int scsi_target_queue_ready(struct Scsi_Host *shost,
1341 struct scsi_device *sdev)
1342 {
1343 struct scsi_target *starget = scsi_target(sdev);
1344
1345 if (starget->single_lun) {
1346 if (starget->starget_sdev_user &&
1347 starget->starget_sdev_user != sdev)
1348 return 0;
1349 starget->starget_sdev_user = sdev;
1350 }
1351
1352 if (starget->target_busy == 0 && starget->target_blocked) {
1353 /*
1354 * unblock after target_blocked iterates to zero
1355 */
1356 if (--starget->target_blocked == 0) {
1357 SCSI_LOG_MLQUEUE(3, starget_printk(KERN_INFO, starget,
1358 "unblocking target at zero depth\n"));
1359 } else
1360 return 0;
1361 }
1362
1363 if (scsi_target_is_busy(starget)) {
1364 list_move_tail(&sdev->starved_entry, &shost->starved_list);
1365 return 0;
1366 }
1367
1368 return 1;
1369 }
1370
1371 /*
1372 * scsi_host_queue_ready: if we can send requests to shost, return 1 else
1373 * return 0. We must end up running the queue again whenever 0 is
1374 * returned, else IO can hang.
1375 *
1376 * Called with host_lock held.
1377 */
1378 static inline int scsi_host_queue_ready(struct request_queue *q,
1379 struct Scsi_Host *shost,
1380 struct scsi_device *sdev)
1381 {
1382 if (scsi_host_in_recovery(shost))
1383 return 0;
1384 if (shost->host_busy == 0 && shost->host_blocked) {
1385 /*
1386 * unblock after host_blocked iterates to zero
1387 */
1388 if (--shost->host_blocked == 0) {
1389 SCSI_LOG_MLQUEUE(3,
1390 printk("scsi%d unblocking host at zero depth\n",
1391 shost->host_no));
1392 } else {
1393 return 0;
1394 }
1395 }
1396 if (scsi_host_is_busy(shost)) {
1397 if (list_empty(&sdev->starved_entry))
1398 list_add_tail(&sdev->starved_entry, &shost->starved_list);
1399 return 0;
1400 }
1401
1402 /* We're OK to process the command, so we can't be starved */
1403 if (!list_empty(&sdev->starved_entry))
1404 list_del_init(&sdev->starved_entry);
1405
1406 return 1;
1407 }
1408
1409 /*
1410 * Busy state exporting function for request stacking drivers.
1411 *
1412 * For efficiency, no lock is taken to check the busy state of
1413 * shost/starget/sdev, since the returned value is not guaranteed and
1414 * may be changed after request stacking drivers call the function,
1415 * regardless of taking lock or not.
1416 *
1417 * When scsi can't dispatch I/Os anymore and needs to kill I/Os scsi
1418 * needs to return 'not busy'. Otherwise, request stacking drivers
1419 * may hold requests forever.
1420 */
1421 static int scsi_lld_busy(struct request_queue *q)
1422 {
1423 struct scsi_device *sdev = q->queuedata;
1424 struct Scsi_Host *shost;
1425
1426 if (blk_queue_dying(q))
1427 return 0;
1428
1429 shost = sdev->host;
1430
1431 /*
1432 * Ignore host/starget busy state.
1433 * Since block layer does not have a concept of fairness across
1434 * multiple queues, congestion of host/starget needs to be handled
1435 * in SCSI layer.
1436 */
1437 if (scsi_host_in_recovery(shost) || scsi_device_is_busy(sdev))
1438 return 1;
1439
1440 return 0;
1441 }
1442
1443 /*
1444 * Kill a request for a dead device
1445 */
1446 static void scsi_kill_request(struct request *req, struct request_queue *q)
1447 {
1448 struct scsi_cmnd *cmd = req->special;
1449 struct scsi_device *sdev;
1450 struct scsi_target *starget;
1451 struct Scsi_Host *shost;
1452
1453 blk_start_request(req);
1454
1455 scmd_printk(KERN_INFO, cmd, "killing request\n");
1456
1457 sdev = cmd->device;
1458 starget = scsi_target(sdev);
1459 shost = sdev->host;
1460 scsi_init_cmd_errh(cmd);
1461 cmd->result = DID_NO_CONNECT << 16;
1462 atomic_inc(&cmd->device->iorequest_cnt);
1463
1464 /*
1465 * SCSI request completion path will do scsi_device_unbusy(),
1466 * bump busy counts. To bump the counters, we need to dance
1467 * with the locks as normal issue path does.
1468 */
1469 sdev->device_busy++;
1470 spin_unlock(sdev->request_queue->queue_lock);
1471 spin_lock(shost->host_lock);
1472 shost->host_busy++;
1473 starget->target_busy++;
1474 spin_unlock(shost->host_lock);
1475 spin_lock(sdev->request_queue->queue_lock);
1476
1477 blk_complete_request(req);
1478 }
1479
1480 static void scsi_softirq_done(struct request *rq)
1481 {
1482 struct scsi_cmnd *cmd = rq->special;
1483 unsigned long wait_for = (cmd->allowed + 1) * rq->timeout;
1484 int disposition;
1485
1486 INIT_LIST_HEAD(&cmd->eh_entry);
1487
1488 atomic_inc(&cmd->device->iodone_cnt);
1489 if (cmd->result)
1490 atomic_inc(&cmd->device->ioerr_cnt);
1491
1492 disposition = scsi_decide_disposition(cmd);
1493 if (disposition != SUCCESS &&
1494 time_before(cmd->jiffies_at_alloc + wait_for, jiffies)) {
1495 sdev_printk(KERN_ERR, cmd->device,
1496 "timing out command, waited %lus\n",
1497 wait_for/HZ);
1498 disposition = SUCCESS;
1499 }
1500
1501 scsi_log_completion(cmd, disposition);
1502
1503 switch (disposition) {
1504 case SUCCESS:
1505 scsi_finish_command(cmd);
1506 break;
1507 case NEEDS_RETRY:
1508 scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY);
1509 break;
1510 case ADD_TO_MLQUEUE:
1511 scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY);
1512 break;
1513 default:
1514 if (!scsi_eh_scmd_add(cmd, 0))
1515 scsi_finish_command(cmd);
1516 }
1517 }
1518
1519 /*
1520 * Function: scsi_request_fn()
1521 *
1522 * Purpose: Main strategy routine for SCSI.
1523 *
1524 * Arguments: q - Pointer to actual queue.
1525 *
1526 * Returns: Nothing
1527 *
1528 * Lock status: IO request lock assumed to be held when called.
1529 */
1530 static void scsi_request_fn(struct request_queue *q)
1531 {
1532 struct scsi_device *sdev = q->queuedata;
1533 struct Scsi_Host *shost;
1534 struct scsi_cmnd *cmd;
1535 struct request *req;
1536
1537 if(!get_device(&sdev->sdev_gendev))
1538 /* We must be tearing the block queue down already */
1539 return;
1540
1541 /*
1542 * To start with, we keep looping until the queue is empty, or until
1543 * the host is no longer able to accept any more requests.
1544 */
1545 shost = sdev->host;
1546 for (;;) {
1547 int rtn;
1548 /*
1549 * get next queueable request. We do this early to make sure
1550 * that the request is fully prepared even if we cannot
1551 * accept it.
1552 */
1553 req = blk_peek_request(q);
1554 if (!req || !scsi_dev_queue_ready(q, sdev))
1555 break;
1556
1557 if (unlikely(!scsi_device_online(sdev))) {
1558 sdev_printk(KERN_ERR, sdev,
1559 "rejecting I/O to offline device\n");
1560 scsi_kill_request(req, q);
1561 continue;
1562 }
1563
1564
1565 /*
1566 * Remove the request from the request list.
1567 */
1568 if (!(blk_queue_tagged(q) && !blk_queue_start_tag(q, req)))
1569 blk_start_request(req);
1570 sdev->device_busy++;
1571
1572 spin_unlock(q->queue_lock);
1573 cmd = req->special;
1574 if (unlikely(cmd == NULL)) {
1575 printk(KERN_CRIT "impossible request in %s.\n"
1576 "please mail a stack trace to "
1577 "linux-scsi@vger.kernel.org\n",
1578 __func__);
1579 blk_dump_rq_flags(req, "foo");
1580 BUG();
1581 }
1582 spin_lock(shost->host_lock);
1583
1584 /*
1585 * We hit this when the driver is using a host wide
1586 * tag map. For device level tag maps the queue_depth check
1587 * in the device ready fn would prevent us from trying
1588 * to allocate a tag. Since the map is a shared host resource
1589 * we add the dev to the starved list so it eventually gets
1590 * a run when a tag is freed.
1591 */
1592 if (blk_queue_tagged(q) && !blk_rq_tagged(req)) {
1593 if (list_empty(&sdev->starved_entry))
1594 list_add_tail(&sdev->starved_entry,
1595 &shost->starved_list);
1596 goto not_ready;
1597 }
1598
1599 if (!scsi_target_queue_ready(shost, sdev))
1600 goto not_ready;
1601
1602 if (!scsi_host_queue_ready(q, shost, sdev))
1603 goto not_ready;
1604
1605 scsi_target(sdev)->target_busy++;
1606 shost->host_busy++;
1607
1608 /*
1609 * XXX(hch): This is rather suboptimal, scsi_dispatch_cmd will
1610 * take the lock again.
1611 */
1612 spin_unlock_irq(shost->host_lock);
1613
1614 /*
1615 * Finally, initialize any error handling parameters, and set up
1616 * the timers for timeouts.
1617 */
1618 scsi_init_cmd_errh(cmd);
1619
1620 /*
1621 * Dispatch the command to the low-level driver.
1622 */
1623 rtn = scsi_dispatch_cmd(cmd);
1624 spin_lock_irq(q->queue_lock);
1625 if (rtn)
1626 goto out_delay;
1627 }
1628
1629 goto out;
1630
1631 not_ready:
1632 spin_unlock_irq(shost->host_lock);
1633
1634 /*
1635 * lock q, handle tag, requeue req, and decrement device_busy. We
1636 * must return with queue_lock held.
1637 *
1638 * Decrementing device_busy without checking it is OK, as all such
1639 * cases (host limits or settings) should run the queue at some
1640 * later time.
1641 */
1642 spin_lock_irq(q->queue_lock);
1643 blk_requeue_request(q, req);
1644 sdev->device_busy--;
1645 out_delay:
1646 if (sdev->device_busy == 0)
1647 blk_delay_queue(q, SCSI_QUEUE_DELAY);
1648 out:
1649 /* must be careful here...if we trigger the ->remove() function
1650 * we cannot be holding the q lock */
1651 spin_unlock_irq(q->queue_lock);
1652 put_device(&sdev->sdev_gendev);
1653 spin_lock_irq(q->queue_lock);
1654 }
1655
1656 u64 scsi_calculate_bounce_limit(struct Scsi_Host *shost)
1657 {
1658 struct device *host_dev;
1659 u64 bounce_limit = 0xffffffff;
1660
1661 if (shost->unchecked_isa_dma)
1662 return BLK_BOUNCE_ISA;
1663 /*
1664 * Platforms with virtual-DMA translation
1665 * hardware have no practical limit.
1666 */
1667 if (!PCI_DMA_BUS_IS_PHYS)
1668 return BLK_BOUNCE_ANY;
1669
1670 host_dev = scsi_get_device(shost);
1671 if (host_dev && host_dev->dma_mask)
1672 bounce_limit = *host_dev->dma_mask;
1673
1674 return bounce_limit;
1675 }
1676 EXPORT_SYMBOL(scsi_calculate_bounce_limit);
1677
1678 struct request_queue *__scsi_alloc_queue(struct Scsi_Host *shost,
1679 request_fn_proc *request_fn)
1680 {
1681 struct request_queue *q;
1682 struct device *dev = shost->dma_dev;
1683
1684 q = blk_init_queue(request_fn, NULL);
1685 if (!q)
1686 return NULL;
1687
1688 /*
1689 * this limit is imposed by hardware restrictions
1690 */
1691 blk_queue_max_segments(q, min_t(unsigned short, shost->sg_tablesize,
1692 SCSI_MAX_SG_CHAIN_SEGMENTS));
1693
1694 if (scsi_host_prot_dma(shost)) {
1695 shost->sg_prot_tablesize =
1696 min_not_zero(shost->sg_prot_tablesize,
1697 (unsigned short)SCSI_MAX_PROT_SG_SEGMENTS);
1698 BUG_ON(shost->sg_prot_tablesize < shost->sg_tablesize);
1699 blk_queue_max_integrity_segments(q, shost->sg_prot_tablesize);
1700 }
1701
1702 blk_queue_max_hw_sectors(q, shost->max_sectors);
1703 blk_queue_bounce_limit(q, scsi_calculate_bounce_limit(shost));
1704 blk_queue_segment_boundary(q, shost->dma_boundary);
1705 dma_set_seg_boundary(dev, shost->dma_boundary);
1706
1707 blk_queue_max_segment_size(q, dma_get_max_seg_size(dev));
1708
1709 if (!shost->use_clustering)
1710 q->limits.cluster = 0;
1711
1712 /*
1713 * set a reasonable default alignment on word boundaries: the
1714 * host and device may alter it using
1715 * blk_queue_update_dma_alignment() later.
1716 */
1717 blk_queue_dma_alignment(q, 0x03);
1718
1719 return q;
1720 }
1721 EXPORT_SYMBOL(__scsi_alloc_queue);
1722
1723 struct request_queue *scsi_alloc_queue(struct scsi_device *sdev)
1724 {
1725 struct request_queue *q;
1726
1727 q = __scsi_alloc_queue(sdev->host, scsi_request_fn);
1728 if (!q)
1729 return NULL;
1730
1731 blk_queue_prep_rq(q, scsi_prep_fn);
1732 blk_queue_softirq_done(q, scsi_softirq_done);
1733 blk_queue_rq_timed_out(q, scsi_times_out);
1734 blk_queue_lld_busy(q, scsi_lld_busy);
1735 return q;
1736 }
1737
1738 /*
1739 * Function: scsi_block_requests()
1740 *
1741 * Purpose: Utility function used by low-level drivers to prevent further
1742 * commands from being queued to the device.
1743 *
1744 * Arguments: shost - Host in question
1745 *
1746 * Returns: Nothing
1747 *
1748 * Lock status: No locks are assumed held.
1749 *
1750 * Notes: There is no timer nor any other means by which the requests
1751 * get unblocked other than the low-level driver calling
1752 * scsi_unblock_requests().
1753 */
1754 void scsi_block_requests(struct Scsi_Host *shost)
1755 {
1756 shost->host_self_blocked = 1;
1757 }
1758 EXPORT_SYMBOL(scsi_block_requests);
1759
1760 /*
1761 * Function: scsi_unblock_requests()
1762 *
1763 * Purpose: Utility function used by low-level drivers to allow further
1764 * commands from being queued to the device.
1765 *
1766 * Arguments: shost - Host in question
1767 *
1768 * Returns: Nothing
1769 *
1770 * Lock status: No locks are assumed held.
1771 *
1772 * Notes: There is no timer nor any other means by which the requests
1773 * get unblocked other than the low-level driver calling
1774 * scsi_unblock_requests().
1775 *
1776 * This is done as an API function so that changes to the
1777 * internals of the scsi mid-layer won't require wholesale
1778 * changes to drivers that use this feature.
1779 */
1780 void scsi_unblock_requests(struct Scsi_Host *shost)
1781 {
1782 shost->host_self_blocked = 0;
1783 scsi_run_host_queues(shost);
1784 }
1785 EXPORT_SYMBOL(scsi_unblock_requests);
1786
1787 int __init scsi_init_queue(void)
1788 {
1789 int i;
1790
1791 scsi_sdb_cache = kmem_cache_create("scsi_data_buffer",
1792 sizeof(struct scsi_data_buffer),
1793 0, 0, NULL);
1794 if (!scsi_sdb_cache) {
1795 printk(KERN_ERR "SCSI: can't init scsi sdb cache\n");
1796 return -ENOMEM;
1797 }
1798
1799 for (i = 0; i < SG_MEMPOOL_NR; i++) {
1800 struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
1801 int size = sgp->size * sizeof(struct scatterlist);
1802
1803 sgp->slab = kmem_cache_create(sgp->name, size, 0,
1804 SLAB_HWCACHE_ALIGN, NULL);
1805 if (!sgp->slab) {
1806 printk(KERN_ERR "SCSI: can't init sg slab %s\n",
1807 sgp->name);
1808 goto cleanup_sdb;
1809 }
1810
1811 sgp->pool = mempool_create_slab_pool(SG_MEMPOOL_SIZE,
1812 sgp->slab);
1813 if (!sgp->pool) {
1814 printk(KERN_ERR "SCSI: can't init sg mempool %s\n",
1815 sgp->name);
1816 goto cleanup_sdb;
1817 }
1818 }
1819
1820 return 0;
1821
1822 cleanup_sdb:
1823 for (i = 0; i < SG_MEMPOOL_NR; i++) {
1824 struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
1825 if (sgp->pool)
1826 mempool_destroy(sgp->pool);
1827 if (sgp->slab)
1828 kmem_cache_destroy(sgp->slab);
1829 }
1830 kmem_cache_destroy(scsi_sdb_cache);
1831
1832 return -ENOMEM;
1833 }
1834
1835 void scsi_exit_queue(void)
1836 {
1837 int i;
1838
1839 kmem_cache_destroy(scsi_sdb_cache);
1840
1841 for (i = 0; i < SG_MEMPOOL_NR; i++) {
1842 struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
1843 mempool_destroy(sgp->pool);
1844 kmem_cache_destroy(sgp->slab);
1845 }
1846 }
1847
1848 /**
1849 * scsi_mode_select - issue a mode select
1850 * @sdev: SCSI device to be queried
1851 * @pf: Page format bit (1 == standard, 0 == vendor specific)
1852 * @sp: Save page bit (0 == don't save, 1 == save)
1853 * @modepage: mode page being requested
1854 * @buffer: request buffer (may not be smaller than eight bytes)
1855 * @len: length of request buffer.
1856 * @timeout: command timeout
1857 * @retries: number of retries before failing
1858 * @data: returns a structure abstracting the mode header data
1859 * @sshdr: place to put sense data (or NULL if no sense to be collected).
1860 * must be SCSI_SENSE_BUFFERSIZE big.
1861 *
1862 * Returns zero if successful; negative error number or scsi
1863 * status on error
1864 *
1865 */
1866 int
1867 scsi_mode_select(struct scsi_device *sdev, int pf, int sp, int modepage,
1868 unsigned char *buffer, int len, int timeout, int retries,
1869 struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
1870 {
1871 unsigned char cmd[10];
1872 unsigned char *real_buffer;
1873 int ret;
1874
1875 memset(cmd, 0, sizeof(cmd));
1876 cmd[1] = (pf ? 0x10 : 0) | (sp ? 0x01 : 0);
1877
1878 if (sdev->use_10_for_ms) {
1879 if (len > 65535)
1880 return -EINVAL;
1881 real_buffer = kmalloc(8 + len, GFP_KERNEL);
1882 if (!real_buffer)
1883 return -ENOMEM;
1884 memcpy(real_buffer + 8, buffer, len);
1885 len += 8;
1886 real_buffer[0] = 0;
1887 real_buffer[1] = 0;
1888 real_buffer[2] = data->medium_type;
1889 real_buffer[3] = data->device_specific;
1890 real_buffer[4] = data->longlba ? 0x01 : 0;
1891 real_buffer[5] = 0;
1892 real_buffer[6] = data->block_descriptor_length >> 8;
1893 real_buffer[7] = data->block_descriptor_length;
1894
1895 cmd[0] = MODE_SELECT_10;
1896 cmd[7] = len >> 8;
1897 cmd[8] = len;
1898 } else {
1899 if (len > 255 || data->block_descriptor_length > 255 ||
1900 data->longlba)
1901 return -EINVAL;
1902
1903 real_buffer = kmalloc(4 + len, GFP_KERNEL);
1904 if (!real_buffer)
1905 return -ENOMEM;
1906 memcpy(real_buffer + 4, buffer, len);
1907 len += 4;
1908 real_buffer[0] = 0;
1909 real_buffer[1] = data->medium_type;
1910 real_buffer[2] = data->device_specific;
1911 real_buffer[3] = data->block_descriptor_length;
1912
1913
1914 cmd[0] = MODE_SELECT;
1915 cmd[4] = len;
1916 }
1917
1918 ret = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, real_buffer, len,
1919 sshdr, timeout, retries, NULL);
1920 kfree(real_buffer);
1921 return ret;
1922 }
1923 EXPORT_SYMBOL_GPL(scsi_mode_select);
1924
1925 /**
1926 * scsi_mode_sense - issue a mode sense, falling back from 10 to six bytes if necessary.
1927 * @sdev: SCSI device to be queried
1928 * @dbd: set if mode sense will allow block descriptors to be returned
1929 * @modepage: mode page being requested
1930 * @buffer: request buffer (may not be smaller than eight bytes)
1931 * @len: length of request buffer.
1932 * @timeout: command timeout
1933 * @retries: number of retries before failing
1934 * @data: returns a structure abstracting the mode header data
1935 * @sshdr: place to put sense data (or NULL if no sense to be collected).
1936 * must be SCSI_SENSE_BUFFERSIZE big.
1937 *
1938 * Returns zero if unsuccessful, or the header offset (either 4
1939 * or 8 depending on whether a six or ten byte command was
1940 * issued) if successful.
1941 */
1942 int
1943 scsi_mode_sense(struct scsi_device *sdev, int dbd, int modepage,
1944 unsigned char *buffer, int len, int timeout, int retries,
1945 struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
1946 {
1947 unsigned char cmd[12];
1948 int use_10_for_ms;
1949 int header_length;
1950 int result;
1951 struct scsi_sense_hdr my_sshdr;
1952
1953 memset(data, 0, sizeof(*data));
1954 memset(&cmd[0], 0, 12);
1955 cmd[1] = dbd & 0x18; /* allows DBD and LLBA bits */
1956 cmd[2] = modepage;
1957
1958 /* caller might not be interested in sense, but we need it */
1959 if (!sshdr)
1960 sshdr = &my_sshdr;
1961
1962 retry:
1963 use_10_for_ms = sdev->use_10_for_ms;
1964
1965 if (use_10_for_ms) {
1966 if (len < 8)
1967 len = 8;
1968
1969 cmd[0] = MODE_SENSE_10;
1970 cmd[8] = len;
1971 header_length = 8;
1972 } else {
1973 if (len < 4)
1974 len = 4;
1975
1976 cmd[0] = MODE_SENSE;
1977 cmd[4] = len;
1978 header_length = 4;
1979 }
1980
1981 memset(buffer, 0, len);
1982
1983 result = scsi_execute_req(sdev, cmd, DMA_FROM_DEVICE, buffer, len,
1984 sshdr, timeout, retries, NULL);
1985
1986 /* This code looks awful: what it's doing is making sure an
1987 * ILLEGAL REQUEST sense return identifies the actual command
1988 * byte as the problem. MODE_SENSE commands can return
1989 * ILLEGAL REQUEST if the code page isn't supported */
1990
1991 if (use_10_for_ms && !scsi_status_is_good(result) &&
1992 (driver_byte(result) & DRIVER_SENSE)) {
1993 if (scsi_sense_valid(sshdr)) {
1994 if ((sshdr->sense_key == ILLEGAL_REQUEST) &&
1995 (sshdr->asc == 0x20) && (sshdr->ascq == 0)) {
1996 /*
1997 * Invalid command operation code
1998 */
1999 sdev->use_10_for_ms = 0;
2000 goto retry;
2001 }
2002 }
2003 }
2004
2005 if(scsi_status_is_good(result)) {
2006 if (unlikely(buffer[0] == 0x86 && buffer[1] == 0x0b &&
2007 (modepage == 6 || modepage == 8))) {
2008 /* Initio breakage? */
2009 header_length = 0;
2010 data->length = 13;
2011 data->medium_type = 0;
2012 data->device_specific = 0;
2013 data->longlba = 0;
2014 data->block_descriptor_length = 0;
2015 } else if(use_10_for_ms) {
2016 data->length = buffer[0]*256 + buffer[1] + 2;
2017 data->medium_type = buffer[2];
2018 data->device_specific = buffer[3];
2019 data->longlba = buffer[4] & 0x01;
2020 data->block_descriptor_length = buffer[6]*256
2021 + buffer[7];
2022 } else {
2023 data->length = buffer[0] + 1;
2024 data->medium_type = buffer[1];
2025 data->device_specific = buffer[2];
2026 data->block_descriptor_length = buffer[3];
2027 }
2028 data->header_length = header_length;
2029 }
2030
2031 return result;
2032 }
2033 EXPORT_SYMBOL(scsi_mode_sense);
2034
2035 /**
2036 * scsi_test_unit_ready - test if unit is ready
2037 * @sdev: scsi device to change the state of.
2038 * @timeout: command timeout
2039 * @retries: number of retries before failing
2040 * @sshdr_external: Optional pointer to struct scsi_sense_hdr for
2041 * returning sense. Make sure that this is cleared before passing
2042 * in.
2043 *
2044 * Returns zero if unsuccessful or an error if TUR failed. For
2045 * removable media, UNIT_ATTENTION sets ->changed flag.
2046 **/
2047 int
2048 scsi_test_unit_ready(struct scsi_device *sdev, int timeout, int retries,
2049 struct scsi_sense_hdr *sshdr_external)
2050 {
2051 char cmd[] = {
2052 TEST_UNIT_READY, 0, 0, 0, 0, 0,
2053 };
2054 struct scsi_sense_hdr *sshdr;
2055 int result;
2056
2057 if (!sshdr_external)
2058 sshdr = kzalloc(sizeof(*sshdr), GFP_KERNEL);
2059 else
2060 sshdr = sshdr_external;
2061
2062 /* try to eat the UNIT_ATTENTION if there are enough retries */
2063 do {
2064 result = scsi_execute_req(sdev, cmd, DMA_NONE, NULL, 0, sshdr,
2065 timeout, retries, NULL);
2066 if (sdev->removable && scsi_sense_valid(sshdr) &&
2067 sshdr->sense_key == UNIT_ATTENTION)
2068 sdev->changed = 1;
2069 } while (scsi_sense_valid(sshdr) &&
2070 sshdr->sense_key == UNIT_ATTENTION && --retries);
2071
2072 if (!sshdr_external)
2073 kfree(sshdr);
2074 return result;
2075 }
2076 EXPORT_SYMBOL(scsi_test_unit_ready);
2077
2078 /**
2079 * scsi_device_set_state - Take the given device through the device state model.
2080 * @sdev: scsi device to change the state of.
2081 * @state: state to change to.
2082 *
2083 * Returns zero if unsuccessful or an error if the requested
2084 * transition is illegal.
2085 */
2086 int
2087 scsi_device_set_state(struct scsi_device *sdev, enum scsi_device_state state)
2088 {
2089 enum scsi_device_state oldstate = sdev->sdev_state;
2090
2091 if (state == oldstate)
2092 return 0;
2093
2094 switch (state) {
2095 case SDEV_CREATED:
2096 switch (oldstate) {
2097 case SDEV_CREATED_BLOCK:
2098 break;
2099 default:
2100 goto illegal;
2101 }
2102 break;
2103
2104 case SDEV_RUNNING:
2105 switch (oldstate) {
2106 case SDEV_CREATED:
2107 case SDEV_OFFLINE:
2108 case SDEV_TRANSPORT_OFFLINE:
2109 case SDEV_QUIESCE:
2110 case SDEV_BLOCK:
2111 break;
2112 default:
2113 goto illegal;
2114 }
2115 break;
2116
2117 case SDEV_QUIESCE:
2118 switch (oldstate) {
2119 case SDEV_RUNNING:
2120 case SDEV_OFFLINE:
2121 case SDEV_TRANSPORT_OFFLINE:
2122 break;
2123 default:
2124 goto illegal;
2125 }
2126 break;
2127
2128 case SDEV_OFFLINE:
2129 case SDEV_TRANSPORT_OFFLINE:
2130 switch (oldstate) {
2131 case SDEV_CREATED:
2132 case SDEV_RUNNING:
2133 case SDEV_QUIESCE:
2134 case SDEV_BLOCK:
2135 break;
2136 default:
2137 goto illegal;
2138 }
2139 break;
2140
2141 case SDEV_BLOCK:
2142 switch (oldstate) {
2143 case SDEV_RUNNING:
2144 case SDEV_CREATED_BLOCK:
2145 break;
2146 default:
2147 goto illegal;
2148 }
2149 break;
2150
2151 case SDEV_CREATED_BLOCK:
2152 switch (oldstate) {
2153 case SDEV_CREATED:
2154 break;
2155 default:
2156 goto illegal;
2157 }
2158 break;
2159
2160 case SDEV_CANCEL:
2161 switch (oldstate) {
2162 case SDEV_CREATED:
2163 case SDEV_RUNNING:
2164 case SDEV_QUIESCE:
2165 case SDEV_OFFLINE:
2166 case SDEV_TRANSPORT_OFFLINE:
2167 case SDEV_BLOCK:
2168 break;
2169 default:
2170 goto illegal;
2171 }
2172 break;
2173
2174 case SDEV_DEL:
2175 switch (oldstate) {
2176 case SDEV_CREATED:
2177 case SDEV_RUNNING:
2178 case SDEV_OFFLINE:
2179 case SDEV_TRANSPORT_OFFLINE:
2180 case SDEV_CANCEL:
2181 break;
2182 default:
2183 goto illegal;
2184 }
2185 break;
2186
2187 }
2188 sdev->sdev_state = state;
2189 return 0;
2190
2191 illegal:
2192 SCSI_LOG_ERROR_RECOVERY(1,
2193 sdev_printk(KERN_ERR, sdev,
2194 "Illegal state transition %s->%s\n",
2195 scsi_device_state_name(oldstate),
2196 scsi_device_state_name(state))
2197 );
2198 return -EINVAL;
2199 }
2200 EXPORT_SYMBOL(scsi_device_set_state);
2201
2202 /**
2203 * sdev_evt_emit - emit a single SCSI device uevent
2204 * @sdev: associated SCSI device
2205 * @evt: event to emit
2206 *
2207 * Send a single uevent (scsi_event) to the associated scsi_device.
2208 */
2209 static void scsi_evt_emit(struct scsi_device *sdev, struct scsi_event *evt)
2210 {
2211 int idx = 0;
2212 char *envp[3];
2213
2214 switch (evt->evt_type) {
2215 case SDEV_EVT_MEDIA_CHANGE:
2216 envp[idx++] = "SDEV_MEDIA_CHANGE=1";
2217 break;
2218
2219 default:
2220 /* do nothing */
2221 break;
2222 }
2223
2224 envp[idx++] = NULL;
2225
2226 kobject_uevent_env(&sdev->sdev_gendev.kobj, KOBJ_CHANGE, envp);
2227 }
2228
2229 /**
2230 * sdev_evt_thread - send a uevent for each scsi event
2231 * @work: work struct for scsi_device
2232 *
2233 * Dispatch queued events to their associated scsi_device kobjects
2234 * as uevents.
2235 */
2236 void scsi_evt_thread(struct work_struct *work)
2237 {
2238 struct scsi_device *sdev;
2239 LIST_HEAD(event_list);
2240
2241 sdev = container_of(work, struct scsi_device, event_work);
2242
2243 while (1) {
2244 struct scsi_event *evt;
2245 struct list_head *this, *tmp;
2246 unsigned long flags;
2247
2248 spin_lock_irqsave(&sdev->list_lock, flags);
2249 list_splice_init(&sdev->event_list, &event_list);
2250 spin_unlock_irqrestore(&sdev->list_lock, flags);
2251
2252 if (list_empty(&event_list))
2253 break;
2254
2255 list_for_each_safe(this, tmp, &event_list) {
2256 evt = list_entry(this, struct scsi_event, node);
2257 list_del(&evt->node);
2258 scsi_evt_emit(sdev, evt);
2259 kfree(evt);
2260 }
2261 }
2262 }
2263
2264 /**
2265 * sdev_evt_send - send asserted event to uevent thread
2266 * @sdev: scsi_device event occurred on
2267 * @evt: event to send
2268 *
2269 * Assert scsi device event asynchronously.
2270 */
2271 void sdev_evt_send(struct scsi_device *sdev, struct scsi_event *evt)
2272 {
2273 unsigned long flags;
2274
2275 #if 0
2276 /* FIXME: currently this check eliminates all media change events
2277 * for polled devices. Need to update to discriminate between AN
2278 * and polled events */
2279 if (!test_bit(evt->evt_type, sdev->supported_events)) {
2280 kfree(evt);
2281 return;
2282 }
2283 #endif
2284
2285 spin_lock_irqsave(&sdev->list_lock, flags);
2286 list_add_tail(&evt->node, &sdev->event_list);
2287 schedule_work(&sdev->event_work);
2288 spin_unlock_irqrestore(&sdev->list_lock, flags);
2289 }
2290 EXPORT_SYMBOL_GPL(sdev_evt_send);
2291
2292 /**
2293 * sdev_evt_alloc - allocate a new scsi event
2294 * @evt_type: type of event to allocate
2295 * @gfpflags: GFP flags for allocation
2296 *
2297 * Allocates and returns a new scsi_event.
2298 */
2299 struct scsi_event *sdev_evt_alloc(enum scsi_device_event evt_type,
2300 gfp_t gfpflags)
2301 {
2302 struct scsi_event *evt = kzalloc(sizeof(struct scsi_event), gfpflags);
2303 if (!evt)
2304 return NULL;
2305
2306 evt->evt_type = evt_type;
2307 INIT_LIST_HEAD(&evt->node);
2308
2309 /* evt_type-specific initialization, if any */
2310 switch (evt_type) {
2311 case SDEV_EVT_MEDIA_CHANGE:
2312 default:
2313 /* do nothing */
2314 break;
2315 }
2316
2317 return evt;
2318 }
2319 EXPORT_SYMBOL_GPL(sdev_evt_alloc);
2320
2321 /**
2322 * sdev_evt_send_simple - send asserted event to uevent thread
2323 * @sdev: scsi_device event occurred on
2324 * @evt_type: type of event to send
2325 * @gfpflags: GFP flags for allocation
2326 *
2327 * Assert scsi device event asynchronously, given an event type.
2328 */
2329 void sdev_evt_send_simple(struct scsi_device *sdev,
2330 enum scsi_device_event evt_type, gfp_t gfpflags)
2331 {
2332 struct scsi_event *evt = sdev_evt_alloc(evt_type, gfpflags);
2333 if (!evt) {
2334 sdev_printk(KERN_ERR, sdev, "event %d eaten due to OOM\n",
2335 evt_type);
2336 return;
2337 }
2338
2339 sdev_evt_send(sdev, evt);
2340 }
2341 EXPORT_SYMBOL_GPL(sdev_evt_send_simple);
2342
2343 /**
2344 * scsi_device_quiesce - Block user issued commands.
2345 * @sdev: scsi device to quiesce.
2346 *
2347 * This works by trying to transition to the SDEV_QUIESCE state
2348 * (which must be a legal transition). When the device is in this
2349 * state, only special requests will be accepted, all others will
2350 * be deferred. Since special requests may also be requeued requests,
2351 * a successful return doesn't guarantee the device will be
2352 * totally quiescent.
2353 *
2354 * Must be called with user context, may sleep.
2355 *
2356 * Returns zero if unsuccessful or an error if not.
2357 */
2358 int
2359 scsi_device_quiesce(struct scsi_device *sdev)
2360 {
2361 int err = scsi_device_set_state(sdev, SDEV_QUIESCE);
2362 if (err)
2363 return err;
2364
2365 scsi_run_queue(sdev->request_queue);
2366 while (sdev->device_busy) {
2367 msleep_interruptible(200);
2368 scsi_run_queue(sdev->request_queue);
2369 }
2370 return 0;
2371 }
2372 EXPORT_SYMBOL(scsi_device_quiesce);
2373
2374 /**
2375 * scsi_device_resume - Restart user issued commands to a quiesced device.
2376 * @sdev: scsi device to resume.
2377 *
2378 * Moves the device from quiesced back to running and restarts the
2379 * queues.
2380 *
2381 * Must be called with user context, may sleep.
2382 */
2383 void scsi_device_resume(struct scsi_device *sdev)
2384 {
2385 /* check if the device state was mutated prior to resume, and if
2386 * so assume the state is being managed elsewhere (for example
2387 * device deleted during suspend)
2388 */
2389 if (sdev->sdev_state != SDEV_QUIESCE ||
2390 scsi_device_set_state(sdev, SDEV_RUNNING))
2391 return;
2392 scsi_run_queue(sdev->request_queue);
2393 }
2394 EXPORT_SYMBOL(scsi_device_resume);
2395
2396 static void
2397 device_quiesce_fn(struct scsi_device *sdev, void *data)
2398 {
2399 scsi_device_quiesce(sdev);
2400 }
2401
2402 void
2403 scsi_target_quiesce(struct scsi_target *starget)
2404 {
2405 starget_for_each_device(starget, NULL, device_quiesce_fn);
2406 }
2407 EXPORT_SYMBOL(scsi_target_quiesce);
2408
2409 static void
2410 device_resume_fn(struct scsi_device *sdev, void *data)
2411 {
2412 scsi_device_resume(sdev);
2413 }
2414
2415 void
2416 scsi_target_resume(struct scsi_target *starget)
2417 {
2418 starget_for_each_device(starget, NULL, device_resume_fn);
2419 }
2420 EXPORT_SYMBOL(scsi_target_resume);
2421
2422 /**
2423 * scsi_internal_device_block - internal function to put a device temporarily into the SDEV_BLOCK state
2424 * @sdev: device to block
2425 *
2426 * Block request made by scsi lld's to temporarily stop all
2427 * scsi commands on the specified device. Called from interrupt
2428 * or normal process context.
2429 *
2430 * Returns zero if successful or error if not
2431 *
2432 * Notes:
2433 * This routine transitions the device to the SDEV_BLOCK state
2434 * (which must be a legal transition). When the device is in this
2435 * state, all commands are deferred until the scsi lld reenables
2436 * the device with scsi_device_unblock or device_block_tmo fires.
2437 */
2438 int
2439 scsi_internal_device_block(struct scsi_device *sdev)
2440 {
2441 struct request_queue *q = sdev->request_queue;
2442 unsigned long flags;
2443 int err = 0;
2444
2445 err = scsi_device_set_state(sdev, SDEV_BLOCK);
2446 if (err) {
2447 err = scsi_device_set_state(sdev, SDEV_CREATED_BLOCK);
2448
2449 if (err)
2450 return err;
2451 }
2452
2453 /*
2454 * The device has transitioned to SDEV_BLOCK. Stop the
2455 * block layer from calling the midlayer with this device's
2456 * request queue.
2457 */
2458 spin_lock_irqsave(q->queue_lock, flags);
2459 blk_stop_queue(q);
2460 spin_unlock_irqrestore(q->queue_lock, flags);
2461
2462 return 0;
2463 }
2464 EXPORT_SYMBOL_GPL(scsi_internal_device_block);
2465
2466 /**
2467 * scsi_internal_device_unblock - resume a device after a block request
2468 * @sdev: device to resume
2469 * @new_state: state to set devices to after unblocking
2470 *
2471 * Called by scsi lld's or the midlayer to restart the device queue
2472 * for the previously suspended scsi device. Called from interrupt or
2473 * normal process context.
2474 *
2475 * Returns zero if successful or error if not.
2476 *
2477 * Notes:
2478 * This routine transitions the device to the SDEV_RUNNING state
2479 * or to one of the offline states (which must be a legal transition)
2480 * allowing the midlayer to goose the queue for this device.
2481 */
2482 int
2483 scsi_internal_device_unblock(struct scsi_device *sdev,
2484 enum scsi_device_state new_state)
2485 {
2486 struct request_queue *q = sdev->request_queue;
2487 unsigned long flags;
2488
2489 /*
2490 * Try to transition the scsi device to SDEV_RUNNING or one of the
2491 * offlined states and goose the device queue if successful.
2492 */
2493 if ((sdev->sdev_state == SDEV_BLOCK) ||
2494 (sdev->sdev_state == SDEV_TRANSPORT_OFFLINE))
2495 sdev->sdev_state = new_state;
2496 else if (sdev->sdev_state == SDEV_CREATED_BLOCK) {
2497 if (new_state == SDEV_TRANSPORT_OFFLINE ||
2498 new_state == SDEV_OFFLINE)
2499 sdev->sdev_state = new_state;
2500 else
2501 sdev->sdev_state = SDEV_CREATED;
2502 } else if (sdev->sdev_state != SDEV_CANCEL &&
2503 sdev->sdev_state != SDEV_OFFLINE)
2504 return -EINVAL;
2505
2506 spin_lock_irqsave(q->queue_lock, flags);
2507 blk_start_queue(q);
2508 spin_unlock_irqrestore(q->queue_lock, flags);
2509
2510 return 0;
2511 }
2512 EXPORT_SYMBOL_GPL(scsi_internal_device_unblock);
2513
2514 static void
2515 device_block(struct scsi_device *sdev, void *data)
2516 {
2517 scsi_internal_device_block(sdev);
2518 }
2519
2520 static int
2521 target_block(struct device *dev, void *data)
2522 {
2523 if (scsi_is_target_device(dev))
2524 starget_for_each_device(to_scsi_target(dev), NULL,
2525 device_block);
2526 return 0;
2527 }
2528
2529 void
2530 scsi_target_block(struct device *dev)
2531 {
2532 if (scsi_is_target_device(dev))
2533 starget_for_each_device(to_scsi_target(dev), NULL,
2534 device_block);
2535 else
2536 device_for_each_child(dev, NULL, target_block);
2537 }
2538 EXPORT_SYMBOL_GPL(scsi_target_block);
2539
2540 static void
2541 device_unblock(struct scsi_device *sdev, void *data)
2542 {
2543 scsi_internal_device_unblock(sdev, *(enum scsi_device_state *)data);
2544 }
2545
2546 static int
2547 target_unblock(struct device *dev, void *data)
2548 {
2549 if (scsi_is_target_device(dev))
2550 starget_for_each_device(to_scsi_target(dev), data,
2551 device_unblock);
2552 return 0;
2553 }
2554
2555 void
2556 scsi_target_unblock(struct device *dev, enum scsi_device_state new_state)
2557 {
2558 if (scsi_is_target_device(dev))
2559 starget_for_each_device(to_scsi_target(dev), &new_state,
2560 device_unblock);
2561 else
2562 device_for_each_child(dev, &new_state, target_unblock);
2563 }
2564 EXPORT_SYMBOL_GPL(scsi_target_unblock);
2565
2566 /**
2567 * scsi_kmap_atomic_sg - find and atomically map an sg-elemnt
2568 * @sgl: scatter-gather list
2569 * @sg_count: number of segments in sg
2570 * @offset: offset in bytes into sg, on return offset into the mapped area
2571 * @len: bytes to map, on return number of bytes mapped
2572 *
2573 * Returns virtual address of the start of the mapped page
2574 */
2575 void *scsi_kmap_atomic_sg(struct scatterlist *sgl, int sg_count,
2576 size_t *offset, size_t *len)
2577 {
2578 int i;
2579 size_t sg_len = 0, len_complete = 0;
2580 struct scatterlist *sg;
2581 struct page *page;
2582
2583 WARN_ON(!irqs_disabled());
2584
2585 for_each_sg(sgl, sg, sg_count, i) {
2586 len_complete = sg_len; /* Complete sg-entries */
2587 sg_len += sg->length;
2588 if (sg_len > *offset)
2589 break;
2590 }
2591
2592 if (unlikely(i == sg_count)) {
2593 printk(KERN_ERR "%s: Bytes in sg: %zu, requested offset %zu, "
2594 "elements %d\n",
2595 __func__, sg_len, *offset, sg_count);
2596 WARN_ON(1);
2597 return NULL;
2598 }
2599
2600 /* Offset starting from the beginning of first page in this sg-entry */
2601 *offset = *offset - len_complete + sg->offset;
2602
2603 /* Assumption: contiguous pages can be accessed as "page + i" */
2604 page = nth_page(sg_page(sg), (*offset >> PAGE_SHIFT));
2605 *offset &= ~PAGE_MASK;
2606
2607 /* Bytes in this sg-entry from *offset to the end of the page */
2608 sg_len = PAGE_SIZE - *offset;
2609 if (*len > sg_len)
2610 *len = sg_len;
2611
2612 return kmap_atomic(page);
2613 }
2614 EXPORT_SYMBOL(scsi_kmap_atomic_sg);
2615
2616 /**
2617 * scsi_kunmap_atomic_sg - atomically unmap a virtual address, previously mapped with scsi_kmap_atomic_sg
2618 * @virt: virtual address to be unmapped
2619 */
2620 void scsi_kunmap_atomic_sg(void *virt)
2621 {
2622 kunmap_atomic(virt);
2623 }
2624 EXPORT_SYMBOL(scsi_kunmap_atomic_sg);
2625
2626 void sdev_disable_disk_events(struct scsi_device *sdev)
2627 {
2628 atomic_inc(&sdev->disk_events_disable_depth);
2629 }
2630 EXPORT_SYMBOL(sdev_disable_disk_events);
2631
2632 void sdev_enable_disk_events(struct scsi_device *sdev)
2633 {
2634 if (WARN_ON_ONCE(atomic_read(&sdev->disk_events_disable_depth) <= 0))
2635 return;
2636 atomic_dec(&sdev->disk_events_disable_depth);
2637 }
2638 EXPORT_SYMBOL(sdev_enable_disk_events);
This page took 0.128983 seconds and 5 git commands to generate.